Science.gov

Sample records for airfoil trailing edge

  1. Trailing edge modifications for flatback airfoils.

    SciTech Connect

    Kahn, Daniel L.; van Dam, C.P.; Berg, Dale E.

    2008-03-01

    The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.

  2. Trailing edge flow conditions as a factor in airfoil design

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Maughmer, M. D.

    1984-01-01

    Some new developments relevant to the design of single-element airfoils using potential flow methods are presented. In particular, the role played by the non-dimensional trailing edge velocity in design is considered and the relationship between the specified value and the resulting airfoil geometry is explored. In addition, the ramifications of the unbounded trailing edge pressure gradients generally present in the potential flow solution of the flow over an airfoil are examined, and the conditions necessary to obtain a class of airfoils having finite trailing edge pressure gradients developed. The incorporation of these conditions into the inverse method of Eppler is presented and the modified scheme employed to generate a number of airfoils for consideration. The detailed viscous analysis of airfoils having finite trailing edge pressure gradients demonstrates a reduction in the strong inviscid-viscid interactions generally present near the trailing edge of an airfoil.

  3. LES tests on airfoil trailing edge serration

    NASA Astrophysics Data System (ADS)

    Zhu, Wei Jun; Shen, Wen Zhong

    2016-09-01

    In the present study, a large number of acoustic simulations are carried out for a low noise airfoil with different Trailing Edge Serrations (TES). The Ffowcs Williams-Hawkings (FWH) acoustic analogy is used for noise prediction at trailing edge. The acoustic solver is running on the platform of our in-house incompressible flow solver EllipSys3D. The flow solution is first obtained from the Large Eddy Simulation (LES), the acoustic part is then carried out based on the instantaneous hydrodynamic pressure and velocity field. To obtain the time history data of sound pressure, the flow quantities are integrated around the airfoil surface through the FWH approach. For all the simulations, the chord based Reynolds number is around 1.5x106. In the test matrix, the effects from angle of attack, the TE flap angle, the length/width of the TES are investigated. Even though the airfoil under investigation is already optimized for low noise emission, most numerical simulations and wind tunnel experiments show that the noise level is further decreased by adding the TES device.

  4. Navier-Stokes analysis of blunt trailing edge airfoils

    NASA Technical Reports Server (NTRS)

    Stanaway, Sharon; Mccroskey, W. J.; Kroo, Ilan

    1992-01-01

    The flow around blunt trailing edge airfoils was studied by solving the Reynolds-averaged Navier-Stokes equations. The solution procedure combines a grid around the airfoil with a second grid for the wake so that the time advancement over the domain is fully implicit. This is not only very efficient for the algorithm but also allows implicit solutions of a one equation turbulence model appropriate for both boundary layers and wakes. An algebraic and two one-equation turbulence models are tested for a blunt RAE 2822 airfoil section and detailed comparisons with experimental data are presented in the trailing edge region.

  5. Experiments on airfoils with trailing edge cut away

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1927-01-01

    Airfoils with their trailing edge cut away are often found on aircraft, as the fins on the hulls of flying boats and the central section of the wings for affording better visibility. It was therefore of some interest to discover the effect of such cutaways on the lift and drag and on the position of the center of pressure. For this purpose, systematic experiments were performed on two different airfoils, a symmetrical airfoil and an airfoil of medium thickness, with successive shortenings of their chords.

  6. A Computational Modeling Mystery Involving Airfoil Trailing Edge Treatments

    NASA Astrophysics Data System (ADS)

    Choo, Yeunun; Epps, Brenden

    2015-11-01

    In a curious result, Fairman (2002) observed that steady RANS calculations predicted larger lift than the experimentally-measured data for six different airfoils with non-traditional trailing edge treatments, whereas the time average of unsteady RANS calculations matched the experiments almost exactly. Are these results reproducible? If so, is the difference between steady and unsteady RANS calculations a numerical artifact, or is there a physical explanation? The goals of this project are to solve this thirteen year old mystery and further to model viscous/load coupling for airfoils with non-traditional trailing edges. These include cupped, beveled, and blunt trailing edges, which are common anti-singing treatments for marine propeller sections. In this talk, we present steady and unsteady RANS calculations (ANSYS Fluent) with careful attention paid to the possible effects of asymmetric unsteady vortex shedding and the modeling of turbulence anisotropy. The effects of non-traditional trailing edge treatments are visualized and explained.

  7. Experimental Study of Airfoil Trailing Edge Noise: Instrumentation, Methodology and Initial Results. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Manley, M. B.

    1980-01-01

    The mechanisms of aerodynamic noise generation at the trailing edge of an airfoil is investigated. Instrumentation was designed, a miniature semiconductor strain-gauge pressure transducer and associated electronic amplifier circuitry were designed and tested and digital signal analysis techniques applied to gain insight into the relationship between the dynamic pressure close to the trailing edge and the sound in the acoustic far-field. Attempts are made to verify some trailing-edge noise generation characteristics as theoretically predicted by several contemporary acousticians. It is found that the noise detected in the far-field is comprised of the sum of many uncorrelated emissions radiating from the vicinity of the trailing edge. These emissions appear to be the result of acoustic energy radiation which has been converted by the trailing-edge noise mechanism from the dynamic fluid energy of independent streamwise 'strips' of the turbulent boundary layer flow.

  8. An experimental study of airfoil instability tonal noise with trailing edge serrations

    NASA Astrophysics Data System (ADS)

    Chong, Tze Pei; Joseph, Phillip F.

    2013-11-01

    This paper presents an experimental study of the effect of trailing edge serrations on airfoil instability noise. Detailed aeroacoustic measurements are presented of the noise radiated by an NACA-0012 airfoil with trailing edge serrations in a low to moderate speed flow under acoustical free field conditions. The existence of a separated boundary layer near the trailing edge of the airfoil at an angle of attack of 4.2 degree has been experimentally identified by a surface mounted hot-film arrays technique. Hot-wire results have shown that the saw-tooth surface can trigger a bypass transition and prevent the boundary layer from becoming separated. Without the separated boundary layer to act as an amplifier for the incoming Tollmien-Schlichting waves, the intensity and spectral characteristic of the radiated tonal noise can be affected depending upon the serration geometry. Particle Imaging Velocimetry (PIV) measurements of the airfoil wakes for a straight and serrated trailing edge are also reported in this paper. These measurements show that localized normal-component velocity fluctuations that are present in a small region of the wake from the laminar airfoil become weakened once serrations are introduced. Owing to the above unique characteristics of the serrated trailing edges, we are able to further investigate the mechanisms of airfoil instability tonal noise with special emphasis on the assessment of the wake and non-wake based aeroacoustic feedback models. It has been shown that the instability tonal noise generated at an angle of attack below approximately one degree could involve several complex mechanisms. On the other hand, the non-wake based aeroacoustic feedback mechanism alone is sufficient to predict all discrete tone frequencies accurately when the airfoil is at a moderate angle of attack. Larger Δf, which is defined as (fn+1-fn). In other words, a larger margin of velocity increase is required in order to "shift" the fn and fn+1 across fs

  9. Wind-tunnel investigation of effects of trailing-edge geometry on a NASA supercritical airfoil section

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1971-01-01

    Wind-tunnel tests have been conducted at Mach numbers from 0.60 to 0.81 to determine the effects of trailing-edge geometry on the aerodynamic characteristics of a NASA supercritical airfoil shape. Variations in trailing-edge thicknesses from 0 to 1.5 percent of the chord and a cavity in the trailing edge were investigated with airfoils with maximum thicknesses of 10 and 11 percent of the chord.

  10. Wake curvature and trailing edge interaction effects in viscous flow over airfoils

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.

    1979-01-01

    A theory developed for analyzing viscous flows over airfoils at high Reynolds numbers is described. The theory includes a complete treatment of viscous interaction effects induced by the curved wake behind the airfoil and accounts for normal pressure gradients across the boundary layer in the trailing edge region. A brief description of a computer code that was developed to solve the extended viscous interaction equations is given. Comparisons of the theoretical results with wind tunnel data for two rear loaded airfoils at supercritical conditions are presented.

  11. Effects of leading and trailing edge flaps on the aerodynamics of airfoil/vortex interactions

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed A.; Sankar, L. N.; Tadghighi, H.

    1994-01-01

    A numerical procedure has been developed for predicting the two-dimensional parallel interaction between a free convecting vortex and a NACA 0012 airfoil having leading and trailing edge integral-type flaps. Special emphasis is placed on the unsteady flap motion effects which result in alleviating the interaction at subcritical and supercritical onset flows. The numerical procedure described here is based on the implicit finite-difference solutions to the unsteady two-dimensional full potential equation. Vortex-induced effects are computed using the Biot-Savart Law with allowance for a finite core radius. The vortex-induced velocities at the surface of the airfoil are incorporated into the potential flow model via the use of the velocity transpiration approach. Flap motion effects are also modeled using the transpiration approach. For subcritical interactions, our results indicate that trailing edge flaps can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, our results demonstrate the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time-dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented

  12. Some observations of surface pressures and the near wake of a blunt trailing edge airfoil

    NASA Technical Reports Server (NTRS)

    Digumarthi, R. V.; Koutsoyannis, S. P.; Karamcheti, K.

    1981-01-01

    Experiments with a truncated and untruncated airfoils of profiles NACA 640A10, were carried out in subsonic wind tunnels in a velocity range of 19m/s to 54m/s corresponding to Reynolds numbers of 200,000 to 468,000 based on the chord. Airfoil spanned the test section to achieve two dimensionality of the model. Velocity measurements, pressure measurements, and vortex shedding in the wake were measured using a hotwire and pressure transducers. The measured chordwise static pressure distribution on the smooth trailing edge airfoil along the midspan plane, agreed with the theoretical results calculated on the basis of the potential flow for that airfoil. Boundary layer profiles measured in the midspan plane, behind the maximum thickness of the airfoil show no separation of the flow. Spanwise distribution of the measured static pressure on the upper surface of the airfoil shows uniformity for both configurations with and without the boundary layer trip. This uniformity of pressure distribution and separation indicates that the flow on the airfoil was uniform and two dimensional in character.

  13. Preliminary Design and Evaluation of an Airfoil with Continuous Trailing-Edge Flap

    NASA Technical Reports Server (NTRS)

    Shen, Jinwei; Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Liu, Yi

    2012-01-01

    This paper presents the preliminary design and evaluation of an airfoil with active continuous trailing-edge flap (CTEF) as a potential rotorcraft active control device. The development of structural cross-section models of a continuous trailing-edge flap airfoil is described. The CTEF deformations with MFC actuation are predicted by NASTRAN and UM/VABS analyses. Good agreement is shown between the predictions from the two analyses. Approximately two degrees of CTEF deflection, defined as the rotation angle of the trailing edge, is achieved with the baseline MFC-PZT bender. The 2D aerodynamic characteristics of the continuous trailing-edge flap are evaluated using a CFD analysis. The aerodynamic efficiency of a continuous trailing-edge flap is compared to that of a conventional discrete trailing-edge flap (DTEF). It is found that the aerodynamic characteristics of a CTEF are equivalent to those of a conventional DTEF with the same deflection angle but with a smaller flap chord. A fluid structure interaction procedure is implemented to predict the deflection of the continuous trailingedge flap under aerodynamic pressure. The reductions in CTEF deflection are overall small when aerodynamic pressure is applied: 2.7% reduction is shown with a CTEF deflection angle of two degrees and at angle of attack of six degrees. In addition, newly developed MFC-PMN actuator is found to be a good supplement to MFC-PZT when applied as the bender outside layers. A mixed MFC-PZT and MFC-PMN bender generates 3% more CTEF deformation than an MFC-PZT only bender and 5% more than an MFC-PMN only bender under aerodynamic loads.

  14. Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction.

    PubMed

    Chong, Tze Pei; Dubois, Elisa

    2016-08-01

    This paper reports an aeroacoustic investigation of a NACA0012 airfoil with a number of poro-serrated trailing edge devices that contain porous materials of various air flow resistances at the gaps between adjacent members of the serrated-sawtooth trailing edge. The main objective of this work is to determine whether multiple-mechanisms on the broadband noise reduction can co-exist on a poro-serrated trailing edge. When the sawtooth gaps are filled with porous material of low-flow resistivity, the vortex shedding tone at low-frequency could not be completely suppressed at high-velocity, but a reasonably good broadband noise reduction can be achieved at high-frequency. When the sawtooth gaps are filled with porous material of very high-flow resistivity, no vortex shedding tone is present, but the serration effect on the broadband noise reduction becomes less effective. An optimal choice of the flow resistivity for a poro-serrated configuration has been identified, where it can surpass the conventional serrated trailing edge of the same geometry by achieving a further 1.5 dB reduction in the broadband noise while completely suppressing the vortex shedding tone. A weakened turbulent boundary layer noise scattering at the poro-serrated trailing edge is reflected by the lower-turbulence intensity at the near wake centreline across the whole spanwise wavelength of the sawtooth.

  15. 2D CFD Analysis of an Airfoil with Active Continuous Trailing Edge Flap

    NASA Astrophysics Data System (ADS)

    Jaksich, Dylan; Shen, Jinwei

    2014-11-01

    Efficient and quieter helicopter rotors can be achieved through on-blade control devices, such as active Continuous Trailing-Edge Flaps driven by embedded piezoelectric material. This project aims to develop a CFD simulation tool to predict the aerodynamic characteristics of an airfoil with CTEF using open source code: OpenFOAM. Airfoil meshes used by OpenFOAM are obtained with MATLAB scripts. Once created it is possible to rotate the airfoil to various angles of attack. When the airfoil is properly set up various OpenFOAM properties, such as kinematic viscosity and flow velocity, are altered to achieve the desired testing conditions. Upon completion of a simulation, the program gives the lift, drag, and moment coefficients as well as the pressure and velocity around the airfoil. The simulation is then repeated across multiple angles of attack to give full lift and drag curves. The results are then compared to previous test data and other CFD predictions. This research will lead to further work involving quasi-steady 2D simulations incorporating NASTRAN to model aeroelastic deformation and eventually to 3D aeroelastic simulations. NSF ECE Grant #1358991 supported the first author as an REU student.

  16. Navier-Stokes calculations and turbulence modeling in the trailing edge region of a circulation control airfoil

    NASA Technical Reports Server (NTRS)

    Viegas, John R.; Rubesin, Morris W.; Maccormack, Robert W.

    1987-01-01

    The accurate prediction of turbulent flows over curved surfaces in general and over the trailing edge region of circulation control airfoils in particular requires the coupled efforts of turbulence modelers, numerical analysts and experimentalists. The purpose of the research program in this area is described. Then, the influence on turbulence modeling of the flow characteristics over a typical circulation control wing is discussed. Next, the scope of this effort to study turbulence in the trailing edge region of a circulation control airfoil is presented. This is followed by a brief overview of the computation scheme, including the grid, governing equations, numerical method, boundary conditions and turbulence models applied to date. Then, examples of applications of two algebraic eddy viscosity models to the trailing edge region of a circulation control airfoil is presented. The results from the calculations is summarized, and conclusions drawn based on examples. Finally, the future directions of the program is outlined.

  17. LES of High-Reynolds-Number Coanda Flow Separating from a Rounded Trailing Edge of a Circulation Control Airfoil

    NASA Technical Reports Server (NTRS)

    Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-01-01

    This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.

  18. Effect of airfoil (trailing-edge) thickness on the numerical solution of panel methods based on the Dirichlet boundary condition

    NASA Technical Reports Server (NTRS)

    Yon, Steven; Katz, Joseph; Plotkin, Allen

    1992-01-01

    The practical limit of airfoil thickness ratio for which acceptable engineering results are obtainable with the Dirichlet boundary-condition-based numerical methods is investigated. This is done by studying the effect of thickness on the calculated pressure distribution near the trailing edge and by comparing the aerodynamic coefficients with available exact solutions. The first objective of this study, owing to the wide use of such computational methods, is to demonstrate the numerical symptoms that occur when the body or wing thickness approaches zero and to increase the awareness of potential users of these methods. Additionally, an effort is made to obtain the practical limits of the trailing-edge thickness where such problems will appear in the flow solution, and to propose some possible cures for very thin airfoils or those with cusped trailing edges.

  19. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  20. An experimental study of a turbulent boundary layer in the trailing edge region of a circulation-control airfoil

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Brown, Jeff

    1992-01-01

    This report discusses progress made on NASA Cooperative Agreement NCC2-545, 'An Experimental Study of a Turbulent Boundary Layer in the Trailing-Edge Region of a Circulation-Control Airfoil' during the period 9/1/91 through 9/30/92. The study features 2-component laser Doppler velocimeter (LDV) measurements in the trailing edge and wake regions of a generic 2-dimensional circulation-control model. The final experimental phase of the study will be carried out in the Ames High Reynolds Number Channel 2 (HRC2) transonic blow-down-facility. During the 13-month period covered by this report, work continued on the development of the near-wall laser Doppler velocimeter (LDV) described in previous reports.

  1. Effect of trailing edge shape on the separated flow characteristics around an airfoil at low Reynolds number: A numerical study

    NASA Astrophysics Data System (ADS)

    Thomareis, Nikitas; Papadakis, George

    2017-01-01

    Direct numerical simulations of the flow field around a NACA 0012 airfoil at Reynolds number 50 000 and angle of attack 5° with 3 different trailing edge shapes (straight, blunt, and serrated) have been performed. Both time-averaged flow characteristics and the most dominant flow structures and their frequencies are investigated using the dynamic mode decomposition method. It is shown that for the straight trailing edge airfoil, this method can capture the fundamental as well as the subharmonic of the Kelvin-Helmholtz instability that develops naturally in the separating shear layer. The fundamental frequency matches well with relevant data in the literature. The blunt trailing edge results in periodic vortex shedding, with frequency close to the subharmonic of the natural shear layer frequency. The shedding, resulting from a global instability, has an upstream effect and forces the separating shear layer. Due to forcing, the shear layer frequency locks onto the shedding frequency while the natural frequency (and its subharmonic) is suppressed. The presence of serrations in the trailing edge creates a spanwise pressure gradient, which is responsible for the development of a secondary flow pattern in the spanwise direction. This pattern affects the mean flow in the near wake. It can explain an unexpected observation, namely, that the velocity deficit downstream of a trough is smaller than the deficit after a protrusion. Furthermore, the insertion of serrations attenuates the energy of vortex shedding by de-correlating the spanwise coherence of the vortices. This results in weaker forcing of the separating shear layer, and both the subharmonics of the natural frequency and the shedding frequency appear in the spectra.

  2. Circulation control on a rounded trailing-edge wind turbine airfoil using plasma actuators

    NASA Astrophysics Data System (ADS)

    Baleriola, S.; Leroy, A.; Loyer, S.; Devinant, P.; Aubrun, S.

    2016-09-01

    This experimental study focuses on the implementation via plasma actuators of a circulation control strategy on a wind turbine aerofoil with a rounded trailing-edge with the objective of reducing the aerodynamic load fluctuations on blades. Three sets of multi-DBD (Dielectric Barrier Discharge) actuators with different positions around the trailing-edge are studied. These actuators create a tangential jet that adheres to the blade model wall and diffuses along it. According to the jet direction, lift is increased or decreased. Load and pressure measurements as well as Particle Image Velocimetry (PIV) show respectively the actuation effectiveness in terms of load modification and flow topology alteration.

  3. An experimental study of a turbulent boundary layer in the trailing edge region of a curculation-control airfoil

    NASA Technical Reports Server (NTRS)

    Brown, Jeff

    1993-01-01

    This report discusses progress made on NASA Cooperative Agreement NCC2-545, 'An Experimental Study of a Turbulent Boundary Layer in the Trailing-Edge Region of a Circulation-Control Airfoil,' during the period 1 Oct. 1992 - 30 Jun. 1993. The study, being conducted by Jeff Brown of the Eloret Institute, in conjunction with the Experimental Fluid Dynamics Branch at NASA Ames (Dennis Johnson, technical monitor), features 2-component laser Doppler velocimeter (LDV) measurements in the trailing edge and wake regions of a generic circulation-control airfoil model. The final experimental phase of the study will be carried out in the Ames High Reynolds Number Channel II (HRC2) transonic blow-down facility. During the 9-month period covered by this report, important data were acquired using the near-wall laser Doppler velocimeter (LDV) whose development has been described in previous reports. These data point strongly to the viability of this new technique for measuring the full Reynolds Stress Tensor in 3D flows.

  4. The Effectiveness at High Speeds of a 20-Percent-chord Plain Trailing-edge Flap on the NACA 65-210 Airfoil Section

    NASA Technical Reports Server (NTRS)

    Stivers, Louis S., Jr.

    1947-01-01

    An analysis has been made of the lift-control effectiveness of a 20-percent-chord plain trailing-edge flap on the NACA 65-210 airfoil section from section lift-coefficient data obtained at Mach numbers from 0.3 to 0.875. In addition, the effectiveness of the plain flap as a lift-control device has been compared with the corresponding effectiveness of both a spoiler and a dive-recovery flag on the INCA 65-210 airfoil section.

  5. Flow-field measurements on an airfoil with an oscillating trailing-edge using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.

    1984-01-01

    Holographic interferometry data were acquired on an NACA 64A010 airfoil with an oscillating flap. The airfoil was installed in the Ames 11-Foot Transonic Wind Tunnel between splitter plates. Recordings were made at discrete phase angles of the oscillation. The interferometry results provided detailed flow visualization of the shock boundary-layer interaction and the separated flow. Quantitative results were extracted from the interferograms to produce pressure data. These results were compared to the surface pressures obtained with the surface pressure taps. Excellent agreement was found for low angles of incidence. At larger angles of incidence, the flow had greater three-dimensionality, and the results were not in good agreement in some regions of the flow field. Mach contours were traced for representative flow conditions. Wake profiles were also obtained using the assumption of constant pressure across the wake and the Crocco relationship.

  6. The Effects of Blowing Over Various Trailing-edge Flaps on an NACA 0006 Airfoil Section, Comparisons with Various Types of Flaps on other Airfoil Sections, and an Analysis of Flow and Power Relationships for Blowing Systems

    NASA Technical Reports Server (NTRS)

    Dods, J. B., Jr.; Watson, E. C.

    1976-01-01

    The results are presented of a two-dimensional investigation conducted to determine the effect of blowing over various types of trailing-edge flaps on a wing having the NACA 0006 airfoil section and a drooped-nose flap. The position and profile of the trailing-edge flap, the nozzle height, and the location of the flap with respect to the nozzle were found to be important variables. Data from many investigations were used to make an evaluation of the effects of blowing on lift. An analysis was made of flow and power relationships for blowing systems.

  7. Direct numerical simulation of broadband trailing edge noise from a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Mehrabadi, Mohammad; Bodony, Daniel

    2016-11-01

    Commercial jet-powered aircraft produce unwanted noise at takeoff and landing when they are close to near-airport communities. Modern high-bypass-ratio turbofan engines have reduced jet exhaust noise sufficiently such that noise from the main fan is now significant. In preparation for a large-eddy simulation of the NASA/GE Source Diagnostic Test Fan, we study the broadband noise due to the turbulent flow on a NACA 0012 airfoil at zero degree angle-of-attack, a chord-based Reynolds number of 408,000 and a Mach number of 0.115 using direct numerical simulation (DNS) and wall-modeled large-eddy simulation (WMLES). The flow conditions correspond to existing experimental data. We investigate the roughness-induced transition-to-turbulence and sound generation from a DNS perspective as well as examine how these two features are captured by a wall model. Comparisons between the DNS- and WMLES-predicted noise are made and provide guidance on the use of WMLES for broadband fan noise prediction. AeroAcoustics Research Consortium.

  8. Theoretical effect of modifications to the upper surface of two NACA airfoils using smooth polynomial additional thickness distributions which emphasize leading edge profile and which vary quadratically at the trailing edge. [using flow equations and a CDC 7600 computer

    NASA Technical Reports Server (NTRS)

    Merz, A. W.; Hague, D. S.

    1975-01-01

    An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of the NACA 64-206 and 64 sub 1 - 212 airfoils. The additional thickness distribution had the form of a continuous mathematical function which disappears at both the leading edge and the trailing edge. The function behaves as a polynomial of order epsilon sub 1 at the leading edge, and a polynomial of order epsilon sub 2 at the trailing edge. Epsilon sub 2 is a constant and epsilon sub 1 is varied over a range of practical interest. The magnitude of the additional thickness, y, is a second input parameter, and the effect of varying epsilon sub 1 and y on the aerodynamic performance of the airfoil was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic airfoils, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.

  9. Aircraft wing trailing-edge noise

    NASA Technical Reports Server (NTRS)

    Underwood, R. L.; Hodgson, T. H.

    1981-01-01

    The mechanism and sound pressure level of the trailing-edge noise for two-dimensional turbulent boundary layer flow was examined. Experiment is compared with current theory. A NACA 0012 airfoil of 0.61 m chord and 0.46 m span was immersed in the laminar flow of a low turbulence open jet. A 2.54 cm width roughness strip was placed at 15 percent chord from the leading edge on both sides of the airfoil as a boundary layer trip so that two separate but statistically equivalent turbulent boundary layers were formed. Tests were performed with several trailing-edge geometries with the upstream velocity U sub infinity ranging from a value of 30.9 m/s up to 73.4 m/s. Properties of the boundary layer for the airfoil and pressure fluctuations in the vicinity of the trailing-edge were examined. A scattered pressure field due to the presence of the trailing-edge was observed and is suggested as a possible sound producing mechanism for the trailing-edge noise.

  10. Calculation of the chordwise load distribution over airfoil sections with plain, split, or serially hinged trailing-edge flaps

    NASA Technical Reports Server (NTRS)

    Allen, H Julian

    1938-01-01

    A method is presented for the rapid calculation of the incremental chordwise normal-force distribution over an airfoil section due to the deflection of a plain flap or tab, a split flap, or a serially hinged flap. This report is intended as a supplement to NACA Report no. 631, wherein a method is presented for the calculation of the chordwise normal-force distribution over an airfoil without a flap or, as it may be considered, an airfoil with flap (or flaps) neutral. The method enables the determination of the form and magnitude of the incremental normal-force distribution to be made for an airfoil-flap combination for which the section characteristics have been determined. A method is included for the calculation of the flap normal-force and hinge-moment coefficients without necessitating a determination of the normal-force distribution.

  11. Airfoil

    SciTech Connect

    Ristau, Neil; Siden, Gunnar Leif

    2015-07-21

    An airfoil includes a leading edge, a trailing edge downstream from the leading edge, a pressure surface between the leading and trailing edges, and a suction surface between the leading and trailing edges and opposite the pressure surface. A first convex section on the suction surface decreases in curvature downstream from the leading edge, and a throat on the suction surface is downstream from the first convex section. A second convex section is on the suction surface downstream from the throat, and a first convex segment of the second convex section increases in curvature.

  12. Trailing Edge Blowing on a Two-Dimensional Six-Percent Thick Elliptical Circulation Control Airfoil Up to Transonic Conditions

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Anders, Scott G.; Johnson, Stuart K.; Florance, Jennifer P.; Keller, Donald F.

    2005-01-01

    A wind tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) on a six percent thick slightly cambered elliptical circulation control airfoil with both upper and lower surface blowing capability. Parametric evaluations of jet slot heights and Coanda surface shapes were conducted at momentum coefficients (Cm) from 0.0 to 0.12. Test data were acquired at Mach numbers of 0.3, 0.5, 0.7, 0.8, and 0.84 at Reynolds numbers per foot of 2.43 x 105 to 1.05 x 106. For a transonic condition, (Mach = 0.8 at alpha = 3 degrees), it was generally found the smaller slot and larger Coanda surface combination was overall more effective than other slot/Coanda surface combinations. Lower surface blowing was not as effective as the upper surface blowing over the same range of momentum coefficients. No appreciable Coanda surface, slot height, or slot blowing position preference was indicated transonically with the dual slot blowing.

  13. Broadband Trailing Edge Noise Predictions in the Time Domain. Revised

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Farassat, Fereidoun

    2003-01-01

    A recently developed analytic result in acoustics, "Formulation 1B," is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Willliams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experimental results. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, by using both analytical and experimental data on the airfoil surface. The acoustic predictions are compared with analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.

  14. Trailing Edge Noise Prediction Based on a New Acoustic Formulation

    NASA Technical Reports Server (NTRS)

    Casper, J.; Farassat, F.

    2002-01-01

    A new analytic result in acoustics called 'Formulation 1B,' proposed by Farassat, is used to compute broadband trailing edge noise from an unsteady surface pressure distribution on a thin airfoil in the time domain. This formulation is a new solution of the Ffowcs Williams-Hawkings equation with the loading source term, and has been shown in previous research to provide time domain predictions of broadband noise that are in excellent agreement with experiment. Furthermore, this formulation lends itself readily to rotating reference frames and statistical analysis of broadband trailing edge noise. Formulation 1B is used to calculate the far field noise radiated from the trailing edge of a NACA 0012 airfoil in low Mach number flows, using both analytical and experimental data on the airfoil surface. The results are compared to analytical results and experimental measurements that are available in the literature. Good agreement between predictions and measurements is obtained.

  15. Experimental and simulated control of lift using trailing edge devices

    NASA Astrophysics Data System (ADS)

    Cooperman, A.; Blaylock, M.; van Dam, C. P.

    2014-12-01

    Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.

  16. Numerical Investigation of Flow Control Feasibility with a Trailing Edge Flap

    NASA Astrophysics Data System (ADS)

    Zhu, W. J.; Shen, W. Z.; Sørensen, J. N.

    2014-06-01

    This paper concerns a numerical study of employing an adaptive trailing edge flap to control the lift of an airfoil subject to unsteady inflow conditions. The periodically varying inflow is generated by two oscillating airfoils, which are located upstream of the controlled airfoil. To establish the control system, a standard PID controller is implemented in a finite volume based incompressible flow solver. An immersed boundary method is applied to treat the problem of simulating a deformable airfoil trailing edge. The flow field is solved using a 2D Reynolds averaged Navier-Stokes finite volume solver. In order to more accurately simulate wall bounded flows around the immersed boundary, a modified boundary condition is introduced in the k- ω turbulence model. As an example, turbulent flow over a NACA 64418 airfoil with a deformable trailing edge is investigated. Results from numerical simulations are convincing and may give some highlights for practical implementations of trailing edge flap to a wind turbine rotor blade

  17. Simulation of Acoustic Scattering from a Trailing Edge

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Brentner, Kenneth S.; Lockhard, David P.; Lilley, Geoffrey M.

    1999-01-01

    Three model problems were examined to assess the difficulties involved in using a hybrid scheme coupling flow computation with the the Ffowcs Williams and Hawkings equation to predict noise generated by vortices passing over a sharp edge. The results indicate that the Ffowcs Williams and Hawkings equation correctly propagates the acoustic signals when provided with accurate flow information on the integration surface. The most difficult of the model problems investigated inviscid flow over a two-dimensional thin NACA airfoil with a blunt-body vortex generator positioned at 98 percent chord. Vortices rolled up downstream of the blunt body. The shed vortices possessed similarities to large coherent eddies in boundary layers. They interacted and occasionally paired as they convected past the sharp trailing edge of the airfoil. The calculations showed acoustic waves emanating from the airfoil trailing edge. Acoustic directivity and Mach number scaling are shown.

  18. Large eddy simulation of trailing edge noise

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Nitzkorski, Zane; Mahesh, Krishnan

    2015-11-01

    Noise generation is an important engineering constraint to many marine vehicles. A significant portion of the noise comes from propellers and rotors, specifically due to flow interactions at the trailing edge. Large eddy simulation is used to investigate the noise produced by a turbulent 45 degree beveled trailing edge and a NACA 0012 airfoil. A porous surface Ffowcs-Williams and Hawkings acoustic analogy is combined with a dynamic endcapping method to compute the sound. This methodology allows for the impact of incident flow noise versus the total noise to be assessed. LES results for the 45 degree beveled trailing edge are compared to experiment at M = 0 . 1 and Rec = 1 . 9 e 6 . The effect of boundary layer thickness on sound production is investigated by computing using both the experimental boundary layer thickness and a thinner boundary layer. Direct numerical simulation results of the NACA 0012 are compared to available data at M = 0 . 4 and Rec = 5 . 0 e 4 for both the hydrodynamic field and the acoustic field. Sound intensities and directivities are investigated and compared. Finally, some of the physical mechanisms of far-field noise generation, common to the two configurations, are discussed. Supported by Office of Naval research.

  19. Effect of Trailing Edge Shape on the Unsteady Aerodynamics of Reverse Flow Dynamic Stall

    NASA Astrophysics Data System (ADS)

    Lind, Andrew; Jones, Anya

    2015-11-01

    This work considers dynamic stall in reverse flow, where flow travels over an oscillating airfoil from the geometric trailing edge towards the leading edge. An airfoil with a sharp geometric trailing edge causes early formation of a primary dynamic stall vortex since the sharp edge acts as the aerodynamic leading edge in reverse flow. The present work experimentally examines the potential merits of using an airfoil with a blunt geometric trailing edge to delay flow separation and dynamic stall vortex formation while undergoing oscillations in reverse flow. Time-resolved and phase-averaged flow fields and pressure distributions are compared for airfoils with different trailing edge shapes. Specifically, the evolution of unsteady flow features such as primary, secondary, and trailing edge vortices is examined. The influence of these flow features on the unsteady pressure distributions and integrated unsteady airloads provide insight on the torsional loading of rotor blades as they oscillate in reverse flow. The airfoil with a blunt trailing edge delays reverse flow dynamic stall, but this leads to greater downward-acting lift and pitching moment. These results are fundamental to alleviating vibrations of high-speed helicopters, where much of the rotor operates in reverse flow.

  20. On the effect of leading edge blowing on circulation control airfoil aerodynamics

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.

    1987-01-01

    In the present context the term circulation control is used to denote a method of lift generation that utilizes tangential jet blowing over the upper surface of a rounded trailing edge airfoil to determine the location of the boundary layer separation points, thus setting an effective Kutta condition. At present little information exists on the flow structure generated by circulation control airfoils under leading edge blowing. Consequently, no theoretical methods exist to predict airfoil performance under such conditions. An experimental study of the flow field generated by a two dimensional circulation control airfoil under steady leading and trailing edge blowing was undertaken. The objective was to fundamentally understand the overall flow structure generated and its relation to airfoil performance. Flow visualization was performed to define the overall flow field structure. Measurements of the airfoil forces were also made to provide a correlation of the observed flow field structure to airfoil performance. Preliminary results are presented, specifically on the effect on the flow field structure of leading edge blowing, alone and in conjunction with trailing edge blowing.

  1. The effect of multiple fixed slots and a trailing-edge flap on the lift and drag of a Clark Y airfoil

    NASA Technical Reports Server (NTRS)

    Weick, Fred E; Shortal, Joseph A

    1933-01-01

    Lift and drag tests were made on a Clark Y wing equipped with four fixed slots and a trailing-edge flap in the 5-foot vertical wind tunnel of the National Advisory Committee for Aeronautics. All possible combinations of the four slots were tested with the flap neutral and the most promising combinations were tested with the flap down 45 degrees. Considering both the maximum lift coefficient and the speed-range ratio with the flap neutral no appreciable improvement was found with the use of more than the single leading-edge slot. With the flap down 45 degrees a maximum lift coefficient of 2.60 was obtained but the particular slot combination used had a rather large minimum drag coefficient with the flap neutral. With the flap down 45 degrees the optimum combination, considering both the maximum lift coefficient and the speed-range ratio, was obtained with only the two rearmost slots in use. For this arrangement the maximum lift coefficient was 2.44.

  2. Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Montefort; Liou, William W.; Pantula, Srinivasa R.; Shams, Qamar A.

    2007-01-01

    A static extended trailing edge attached to a NACA0012 airfoil section is studied for achieving lift enhancement at a small drag penalty. It is indicated that the thin extended trailing edge can enhance the lift while the zero-lift drag is not significantly increased. Experiments and calculations are conducted to compare the aerodynamic characteristics of the extended trailing edge with those of Gurney flap and conventional flap. The extended trailing edge, as a simple mechanical device added on a wing without altering the basic configuration, has a good potential to improve the cruise flight efficiency.

  3. Survey of techniques for reduction of wind turbine blade trailing edge noise.

    SciTech Connect

    Barone, Matthew Franklin

    2011-08-01

    Aerodynamic noise from wind turbine rotors leads to constraints in both rotor design and turbine siting. The primary source of aerodynamic noise on wind turbine rotors is the interaction of turbulent boundary layers on the blades with the blade trailing edges. This report surveys concepts that have been proposed for trailing edge noise reduction, with emphasis on concepts that have been tested at either sub-scale or full-scale. These concepts include trailing edge serrations, low-noise airfoil designs, trailing edge brushes, and porous trailing edges. The demonstrated noise reductions of these concepts are cited, along with their impacts on aerodynamic performance. An assessment is made of future research opportunities in trailing edge noise reduction for wind turbine rotors.

  4. Computational investigation of miniature trailing edge effectors

    NASA Astrophysics Data System (ADS)

    Lee, Hak-Tae

    Miniature trailing edge effectors (MiTEs) are small flaps (typically 1% to 5% chord) actuated with deflection angles of up to 90 degrees. The small size, combined with little required power and good control authority, enables the device to be used for high bandwidth control as well as conventional attitude control. However, some of the aerodynamic characteristics of these devices are complex and poorly understood. This research investigated the aerodynamics of MiTEs using incompressible Navier-Stokes flow solvers, INS2D and INS3D. To understand the flow structure and establish a parametric database, two dimensional steady-state computations were performed for MiTEs with various geometries and flow conditions. Time accurate computations were used to resolve the unsteady characteristics including transient response and vortex shedding phenomena. The frequency response was studied to fully identify the dynamics of MiTEs. Three dimensional computations show the change in control effectiveness with respect to the spanwise length of MiTEs as well as the spanwise lift distribution induced by these devices. Based on the CFD results, an approximate vortex panel model was developed for design purposes that reproduces the key characteristics of MiTEs. Two application areas for MiTEs were explored. Flutter suppression was demonstrated by combining a finite element structural model with the vortex panel model. The application of MiTEs to augment maximum lift and improve the post stall behavior of an airfoil was also investigated.

  5. Computation of two-dimensional turbulent flow at subsonic Mach numbers over thick trailing edges

    NASA Technical Reports Server (NTRS)

    Drescher, P.

    1982-01-01

    An implicit time marching finite difference method is used to predict two dimensional turbulent flow at a Reynolds number of 440,000 and a Mach number of 0.574 over a shortened NACA 0012 airfoil with a trailing edge of 4.5% thickness and semicircular shape. The flow is found to be unsteady but periodic in the trailing edge region. Thus, lift and drag fluctuate at small amplitudes around mean values and at distinct frequencies.

  6. Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept

    NASA Astrophysics Data System (ADS)

    Nie, Rui; Qiu, Jinhao; Ji, Hongli; Li, Dawei

    2016-06-01

    This paper introduces a novel Morphing Wing structure known as the Active Compliant Trailing Edge (ACTE). ACTE structures are designed using the concept of “distributed compliance” and wing skins of ACTE are fabricated from high-strength fiberglass composites laminates. Through the relative sliding between upper and lower wing skins which are connected by a linear guide pairs, the wing is able to achieve a large continuous deformation. In order to present an investigation about aerodynamics and noise characteristics of ACTE, a series of 2D airfoil analyses are established. The aerodynamic characteristics between ACTE and conventional deflection airfoil are analyzed and compared, and the impacts of different ACTE structure design parameters on aerodynamic characteristics are discussed. The airfoils mentioned above include two types (NACA0012 and NACA64A005.92). The computing results demonstrate that: compared with the conventional plane flap airfoil, the morphing wing using ACTE structures has the capability to improve aerodynamic characteristic and flow separation characteristic. In order to study the noise level of ACTE, flow field analysis using LES model is done to provide noise source data, and then the FW-H method is used to get the far field noise levels. The simulation results show that: compared with the conventional flap/aileron airfoil, the ACTE configuration is better to suppress the flow separation and lower the overall sound pressure level.

  7. A Wind Tunnel Experiment for Trailing Edge Circulation Control on a 6 Percent 2-D Airfoil up to Transonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Alexander, Michael G.; Anders, Scott G.; Johnson, Stuart K.

    2005-01-01

    A wind tunnel test was conducted on a six percent thick slightly cambered elliptical circulation control airfoil with both upper and lower surface blowing. Parametric evaluations of jet slot heights and Coanda surface shapes were conducted at mass flow coefficients (C(sub mu)) from 0.0 to 0.12. The test data was acquired in the NASA Langley Transonic Dynamics Tunnel at Mach numbers of 0.8 and 0.3 at Reynolds numbers per foot of 1.05 x 10(exp 6) and 2.43 x 10(exp 5) respectively. For the transonic condition, (Mach = 0.8 at alpha = +3 deg), it was generally found that the smaller slot and larger Coanda surface were more effective overall than other slot/Coanda surface combinations. Generally it was found at Mach = 0.3 at alpha = 6 deg that the smaller slot and smaller Coanda surface were more effective overall than other slot/Coanda surface combinations.

  8. Boundary layer characterization and acoustic measurements of flow-aligned trailing edge serrations

    NASA Astrophysics Data System (ADS)

    Arce León, Carlos; Merino-Martínez, Roberto; Ragni, Daniele; Avallone, Francesco; Snellen, Mirjam

    2016-12-01

    Trailing edge serrations designed to reduce airfoil self-noise are retrofitted on a NACA 0018 airfoil. An investigation of the boundary layer flow statistical properties is performed using time-resolved stereoscopic PIV. Three streamwise locations over the edge of the serrations are compared. An analysis of the results indicates that, while there is no upstream effect, the flow experiences significant changes as it convects over the serrations and toward its edges. Among the most important, a reduced shear stress and modifications of the turbulence spectra suggest beneficial changes in the unsteady surface pressure that would result in a reduction of trailing edge noise. Microphone array measurements are additionally performed to confirm that noise reduction is indeed observed by the application of the chosen serration design over the unmodified airfoil.

  9. Miniature Trailing Edge Effector for Aerodynamic Control

    NASA Technical Reports Server (NTRS)

    Lee, Hak-Tae (Inventor); Bieniawski, Stefan R. (Inventor); Kroo, Ilan M. (Inventor)

    2008-01-01

    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states.

  10. Laminar-flow airfoil

    NASA Technical Reports Server (NTRS)

    Somers, Dan M. (Inventor)

    2005-01-01

    An airfoil having a fore airfoil element, an aft airfoil element, and a slot region in between them. These elements induce laminar flow over substantially all of the fore airfoil element and also provide for laminar flow in at least a portion of the slot region. The method of the invention is one for inducing natural laminar flow over an airfoil. In the method, a fore airfoil element, having a leading and trailing edge, and an aft airfoil element define a slot region. Natural laminar flow is induced over substantially all of the fore airfoil element, by inducing the pressures on both surfaces of the fore airfoil element to decrease to a location proximate the trailing edge of the fore airfoil element using pressures created by the aft airfoil element.

  11. Near Field Trailing Edge Tone Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2002-01-01

    Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.

  12. Summary of Section Data on Trailing-Edge High-Lift Devices

    NASA Technical Reports Server (NTRS)

    1948-01-01

    A summary has been made of available data on the characteristics of airfoil sections with trailing-edge high-lift devices. Data for plain, split, and slotted flaps are collected and analyzed. The effects of each of the variables involved in the design of the various types of flap are examined and, in cases where sufficient data are given, optimum configurations are deduced. Wherever possible, the effects of airfoil section, Reynolds number, and leading-edge roughness are shown. For single and double slotted flaps, where a great mass of unrelated date are available, maximum lift coefficients of a large number of configurations are presented in tables.

  13. The effects of leading-edge serrations on reducing flow unsteadiness about airfoils.

    NASA Technical Reports Server (NTRS)

    Schwind, R. G.; Allen, H. J.

    1973-01-01

    High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 x 1,000,000 to 6.2 x 1,000,000 on a rectangular wing of NACA 63-009 airfoil section. A wide selection of leading-edge serrations were also added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large peak in rms pressure, which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related mathematically to the airfoil trailing-edge and boundary-layer thicknesses.

  14. Critical review of the trailing edge condition in steady and unsteady flow. Blade flutter in compressors and fans: Numerical simulation of the aerodynamic loading

    NASA Technical Reports Server (NTRS)

    Radwan, S. F.; Rockwell, D. O.; Johnson, S. H.

    1982-01-01

    Existing interpretations of the trailing edge condition, addressing both theoretical and experimental works in steady, as well as unsteady flows are critically reviewed. The work of Kutta and Joukowski on the trailing edge condition in steady flow is reviewed. It is shown that for most practical airfoils and blades (as in the case of most turbomachine blades), this condition is violated due to rounded trailing edges and high frequency effects, the flow dynamics in the trailing edge region being dominated by viscous forces; therefore, any meaningful modelling must include viscous effects. The question of to what extent the trailing edge condition affects acoustic radiation from the edge is raised; it is found that violation of the trailing edge condition leads to significant sound diffraction at the tailing edge, which is related to the problem of noise generation. Finally, various trailing edge conditions in unsteady flow are discussed, with emphasis on high reduced frequencies.

  15. Equations and charts for the rapid estimation of hinge-moment and effectiveness parameters for trailing-edge controls having leading and trailing edges swept ahead of the Mach lines

    NASA Technical Reports Server (NTRS)

    Goin, Kennith L

    1951-01-01

    Existing conical-flow solutions have been used to calculate the hinge-moments and effectiveness parameters of trailing-edge controls having leading and trailing edges swept ahead of the Mach lines and having streamwise root and tip chords. Equations and detailed charts are presented for the rapid estimation of these parameters. Also included is an approximate method by which these parameters may be corrected for airfoil-section thickness.

  16. Symmetric airfoil geometry effects on leading edge noise.

    PubMed

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  17. Effects of Angle of Attack and Velocity on Trailing Edge Noise

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2004-01-01

    Trailing edge (TE) noise measurements for a NACA 63-215 airfoil model are presented, providing benchmark experimental data for a cambered airfoil. The effects of flow Mach number and angle of attack of the airfoil model with different TE bluntnesses are shown. Far-field noise spectra and directivity are obtained using a directional microphone array. Standard and diagonal removal beamforming techniques are evaluated employing tailored weighting functions for quantitatively accounting for the distributed line character of TE noise. Diagonal removal processing is used for the primary database as it successfully removes noise contaminates. Some TE noise predictions are reported to help interpret the data, with respect to flow speed, angle of attack, and TE bluntness on spectral shape and peak levels. Important findings include the validation of a TE noise directivity function for different airfoil angles of attack and the demonstration of the importance of the directivity function s convective amplification terms.

  18. Effects of Angle of Attack and Velocity on Trailing Edge Noise

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2006-01-01

    Trailing edge (TE) noise measurements for a NACA 63-215 airfoil model are presented, providing benchmark experimental data for a cambered airfoil. The effects of flow Mach number and angle of attack of the airfoil model with different TE bluntnesses are shown. Far-field noise spectra and directivity are obtained using a directional microphone array. Standard and diagonal removal beamforming techniques are evaluated employing tailored weighting functions for quantitatively accounting for the distributed line character of TE noise. Diagonal removal processing is used for the primary database as it successfully removes noise contaminates. Some TE noise predictions are reported to help interpret the data, with respect to flow speed, angle of attack, and TE bluntness on spectral shape and peak levels. Important findings include the validation of a TE noise directivity function for different airfoil angles of attack and the demonstration of the importance of the directivity function s convective amplification terms.

  19. Flow topology and acoustic emissions of trailing edge serrations at incidence

    NASA Astrophysics Data System (ADS)

    Arce León, Carlos; Ragni, Daniele; Pröbsting, Stefan; Scarano, Fulvio; Madsen, Jesper

    2016-05-01

    The flow past a NACA 0018 airfoil with sawtooth trailing edge serrations has been investigated using stereoscopic particle image velocimetry (PIV). The serration flap angle and airfoil incidence are varied in order to study the effect of secondary flow establishing between the suction and pressure sides of the serrations. The flow topology around the serrations is inferred from the analysis of time-averaged streamlines close to the airfoil surface and from the wall-normal flow velocity in between serrations. Additional PIV measurements with a plane in cross-flow highlight the formation of streamwise vortex pairs. The flow behavior is further characterized in terms of its turbulence statistics. Noise emissions are measured with an acoustic phased array in combination with beamforming. The serrations are found to be effective in reducing noise, and their application is studied for different degrees of airfoil incidence and serration flap angle.

  20. Experimental testing of spanwise morphing trailing edge concept

    NASA Astrophysics Data System (ADS)

    Pankonien, Alexander; Inman, Daniel J.

    2013-04-01

    Aircraft wings with smooth, hinge-less morphing ailerons exhibit increased chordwise aerodynamic efficiency over conventional hinged ailerons. Ideally, the wing would also use these morphing ailerons to smoothly vary its airfoil shape between spanwise stations to optimize the lift distribution and further increase aerodynamic efficiency. However, the mechanical complexity or added weight of achieving such a design has traditionally exceeded the potential aerodynamic gains. By expanding upon the previously developed cascading bimorph concept, this work uses embedded Macro-Fiber Composites and a flexure box mechanism, created using multi-material 3D printing, to achieve the Spanwise Morphing Trailing Edge (SMTE) concept. The morphing actuators are spaced spanwise along the wing with an elastomer spanning the gaps between them, which allows for optimization of the spanwise lift distribution while maintaining the continuity and efficiency of the morphing trailing edge. The concept is implemented in a representative section of a UAV wing with a 305 mm chord. A novel honeycomb skin is created from an elastomeric material using a 3D printer. The actuation capabilities of the concept are evaluated with and without spanning material on a test stand, free of aerodynamic loads. In addition, the actuation restrictions of the spanning elastomer, necessary in adapting the morphing concept from 2D to 3D, are characterized. Initial aerodynamic results from the 1'×1' wind-tunnel also show the effects of aerodynamic loading on the actuation range of the SMTE concept for uniform morphing.

  1. Effect of Wavy Trailing Edge on 100meter Flatback Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Yang; Baeder, J. D.

    2016-09-01

    The flatback trailing edge design for modern 100meter wind turbine blade has been developed and proposed to make wind turbine blade to be slender and lighter. On the other hand, it will increase aerodynamic drag; consequently the increased drag diminishes turbine power generation. Thus, an aerodynamic drag reducing technique should be accompanied with the flatback trailing edge in order to prevent loss of turbine power generation. In this work, a drag mitigation design, span-wise wavy trailing edge blade, has been applied to a modern 100meter blade. The span-wise trailing edge acts as a vortex generator, and breaks up the strong span-wise coherent trailing edge vortex structure at the flatback airfoil trailing edge which is a major source of large drag. Three-dimensional unsteady Computational Fluid Dynamics (CFD) simulations have been performed for real scale wind turbine blade geometries. Delayed Detached Eddy Simulation (DDES) with the modified laminar-turbulent transition model has been applied to obtain accurate flow field predictions. Graphical Processor Unit (GPU)-accelerated computation has been conducted to reduce computational costs of the real scale wind turbine blade simulations. To verify the structural reliability of the wavy modification of the blade a simple Eigen buckling analysis has been performed in the current study.

  2. Wavy flow cooling concept for turbine airfoils

    DOEpatents

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  3. Blade-mounted trailing edge flap control for BVI noise reduction

    NASA Technical Reports Server (NTRS)

    Hassan, A. A.; Charles, B. D.; Tadghighi, H.; Sankar, L. N.

    1992-01-01

    Numerical procedures based on the 2-D and 3-D full potential equations and the 2-D Navier-Stokes equations were developed to study the effects of leading and trailing edge flap motions on the aerodynamics of parallel airfoil-vortex interactions and on the aerodynamics and acoustics of the more general self-generated rotor blade vortex interactions (BVI). For subcritical interactions, the 2-D results indicate that the trailing edge flap can be used to alleviate the impulsive loads experienced by the airfoil. For supercritical interactions, the results show the necessity of using a leading edge flap, rather than a trailing edge flap, to alleviate the interaction. Results for various time dependent flap motions and their effect on the predicted temporal sectional loads, differential pressures, and the free vortex trajectories are presented. For the OLS model rotor, contours of a BVI noise metric were used to quantify the effects of the trailing edge flap on the size and directivity of the high/low intensity noise region(s). Average reductions in the BVI noise levels on the order of 5 dB with moderate power penalties on the order of 18 pct. for a four bladed rotor and 58 pct. for a two bladed rotor were obtained.

  4. Primary control of a Mach scale swashplateless rotor using brushless DC motor actuated trailing edge flaps

    NASA Astrophysics Data System (ADS)

    Saxena, Anand

    The focus of this research was to demonstrate a four blade rotor trim in forward flight using integrated trailing edge flaps instead of using a swashplate controls. A compact brushless DC motor was evaluated as an on-blade actuator, with the possibility of achieving large trailing edge flap amplitudes. A control strategy to actuate the trailing edge flap at desired frequency and amplitude was developed and large trailing edge flap amplitudes from the motor (instead of rotational motion) were obtained. Once the actuator was tested on the bench-top, a lightweight mechanism was designed to incorporate the motor in the blade and actuate the trailing edge flaps. A six feet diameter, four bladed composite rotor with motor-flap system integrated into the NACA 0012 airfoil section was fabricated. Systematic testing was carried out for a range of load conditions, first in the vacuum chamber followed by hover tests. Large trailing edge flap deflections were observed during the hover testing, and a peak to peak trailing edge flap amplitude of 18 degree was achieved at 2000 rotor RPM with hover tip Mach number of 0.628. A closed loop controller was designed to demonstrate trailing edge flap mean position and the peak to peak amplitude control. Further, a soft pitch link was designed and fabricated, to replace the stiff pitch link and thereby reduce the torsional stiffness of the blade to 2/rev. This soft pitch link allowed for blade root pitch motion in response to the trailing edge flap inputs. Blade pitch response due to both steady as well as sinusoidal flap deflections were demonstrated. Finally, tests were performed in Glenn L. Martin wind tunnel using a model rotor rig to assess the performance of motor-flap system in forward flight. A swashplateless trim using brushless DC motor actuated trailing edge flaps was achieved for a rotor operating at 1200 RPM and an advance ratio of 0.28. Also, preliminary exploration was carried out to test the scalability of the motor

  5. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  6. The Effect of Nozzle Trailing Edge Thickness on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Kinzie, Kevin; Haskin, Henry

    2004-01-01

    The effect of nozzle trailing edge thickness on broadband acoustic radiation and the production of tones is investigated for coannular nozzles. Experiments were performed for a core nozzle trailing edge thickness between 0.38 mm and 3.17 mm. The on-set of discrete tones was found to be predominantly affected by the velocity ratio, the ratio of the fan velocity to the core velocity, although some dependency on trailing edge thickness was also noted. For a core nozzle trailing edge thickness greater than or equal to 0.89 mm, tones were produced for velocity ratios between 0.91 and 1.61. For a constant nozzle trailing edge thickness, the frequency varied almost linearly with the core velocity. The Strouhal number based on the core velocity changed with nozzle trailing edge thickness and varied between 0.16 and 0.2 for the core nozzles used in the experiments. Increases in broadband noise with increasing trailing edge thickness were observed for tone producing and non-tone producing conditions. A variable thickness trailing edge (crenellated) nozzle resulted in no tonal production and a reduction of the broadband trailing edge noise relative to that of the corresponding constant thickness trailing edge.

  7. 7. Roaring Fork Motor Nature Trail, rocks along edge of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Roaring Fork Motor Nature Trail, rocks along edge of road. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  8. Leading edge embedded fan airfoil concept -- A new powered high lift technology

    NASA Astrophysics Data System (ADS)

    Phan, Nhan Huu

    input. The CFD results show that airfoil circulation control is achieved by the varying the CFF intake flow rate and the momentum of the CFF exhaust jet (e.g. through airfoil AoA or fan rotational speed). The presence of the CFF has the effect of moving the stagnation point on the airfoil pressure surface from the CFF airfoil LE region near the CFF to as far back as the airfoil trailing edge. At high AoA operation, LE flow separation on the airfoil suction surface is delayed by flow entrainment of the high-energy jet leaving the CFF. Detailed analysis of the flow field through the crossflow fan and its housing were carried out to understand its fluid-dynamics behavior, and it is found that the airfoil geometry acts as inlet guide vanes to the crossflow fan as the angle-of-attack is varied, thus introducing pre-swirl or co-swirl into the first stage of the crossflow fan. An experimental study of the LEEF concept confirmed that the concept works and it is robust. Finally, as application examples, the LEEF technology is applied to a Remote Control model and to a generic tiltrotor aircraft similar in characteristics to DARPA's Aerial Reconfigurable Embedded System. These aircraft configurations were analyzed using 2D and 3D CFD.

  9. An investigation of unsteady 3D effects on trailing edge flaps

    NASA Astrophysics Data System (ADS)

    Jost, E.; Fischer, A.; Lutz, T.; Krämer, E.

    2016-09-01

    The present study investigates the impact of unsteady and viscous three-dimensional aerodynamic effects on a wind turbine blade with trailing edge flap by means of CFD. Harmonic oscillations are simulated on the DTU 10 MW rotor with a flap of 10% chord extent ranging from 70% to 80% blade radius. The deflection frequency is varied in the range between 1p and 6p. To quantify 3D effects, rotor simulations are compared to 2D airfoil computations. A significant influence of trailing and shed vortex structures has been found which leads to a reduction of the lift amplitude and hysteresis effects in the lift response with regard to the flap deflection. In the 3D rotor results greater amplitude reductions and less hystereses have been found compared to the 2D airfoil simulations.

  10. Wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Migliore, P G; Miller, L S; Quandt, G A

    1995-04-01

    Five trailing-edge devices were investigated to determine their potential as wind-turbine aerodynamic brakes, and for power modulation and load alleviation. Several promising configurations were identified. A new device, called the spoiler-flap, appears to be the best alternative. It is a simple device that is effective at all angles of attack. It is not structurally intrusive, and it has the potential for small actuating loads. It is shown that simultaneous achievement of a low lift/drag ratio and high drag is the determinant of device effectiveness, and that these attributes must persist up to an angle of attack of 45{degree}. It is also argued that aerodynamic brakes must be designed for a wind speed of at least 45 m/s (100 mph).

  11. Partially turbulated trailing edge cooling passages for gas turbine nozzles

    DOEpatents

    Thatcher, Jonathan Carl; Burdgick, Steven Sebastian

    2001-01-01

    A plurality of passages are spaced one from the other along the length of a trailing edge of a nozzle vane in a gas turbine. The passages lie in communication with a cavity in the vane for flowing cooling air from the cavity through the passages through the tip of the trailing edge into the hot gas path. Each passage is partially turbulated and includes ribs in an aft portion thereof to provide enhanced cooling effects adjacent the tip of the trailing edge. The major portions of the passages are smooth bore. By this arrangement, reduced temperature gradients across the trailing edge metal are provided. Additionally, the inlets to each of the passages have a restriction whereby a reduced magnitude of compressor bleed discharge air is utilized for trailing edge cooling purposes.

  12. Experimental Investigation of Base Pressure on Blunt-Trailing-Edge Wings at Supersonic Velocities

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R; Wimbrow, William R; Kester, Robert H

    1952-01-01

    Measurements of base pressure are presented for 29 blunt-trailing-edge wings having an aspect ratio of 3.0 and various airfoil profiles. The different profiles comprised thickness ratios between 0.05 and 0.10, boattail angles between -2.9 degrees and 20 degrees, and ratios of trailing-edge thickness to airfoil thickness between 0.2 and 1.0. The tests were conducted at Mach numbers of 1.25, 1.5, 2.0, and 3.1. For each Mach number, the Reynolds number and angle of attack were varied. The lowest Reynolds number investigated was 0.2 x 10(6) and the highest was 3.5 x 10(6). Measurements on each wing were obtained separately with turbulent flow and laminar flow in the boundary layer. Span-wise surveys of the base pressure were conducted on several wings. The results with turbulent boundary-layer flow showed only small effects on base pressure of variations in Reynolds number, airfoil profile shape, boattail angle, and angle of attack. The principal variable affecting the base pressure for turbulent flow was the Mach number.

  13. Modeling the transient aerodynamic effects during the motion of a flexible trailing edge

    NASA Astrophysics Data System (ADS)

    Wolff, T.; Seume, J. R.

    2016-09-01

    Wind turbine blades have been becoming longer and more slender during the last few decades. The longer lever arm results in higher stresses at the blade root. Hence, the unsteady loads induced by turbulence, gust, or wind shear increase. One promising way to control these loads is to use flexible trailing edges near the blade tip. The unsteady effects which appear during the motion of a flexible trailing edge must be considered for the load calculation during the design process because of their high influence on aeroelastic effects and hence on the fatigue loads. This is not yet possible in most of the wind turbine simulation environments. Consequently, an empirical model is developed in the present study which accounts for unsteady effects during the motion of the trailing edge. The model is based on Fourier analyses of results generated with Reynolds-Averaged Navier-Stokes (RANS) simulations of a typical thin airfoil with a deformable trailing edge. The validation showed that the model fits Computational Fluid Dynamics (CFD) results simulated with a random time series of the deflection angle.

  14. Multi-Element Airfoil System

    NASA Technical Reports Server (NTRS)

    Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)

    2014-01-01

    A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.

  15. Lift enhancing tabs for airfoils

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor)

    1994-01-01

    A tab deployable from the trailing edge of a main airfoil element forces flow onto a following airfoil element, such as a flap, to keep the flow attached and thus enhance lift. For aircraft wings with high lift systems that include leading edge slats, the slats may also be provided with tabs to turn the flow onto the following main element.

  16. Direct Numerical Simulation of an Airfoil with Sand Grain Roughness on the Leading Edge

    NASA Technical Reports Server (NTRS)

    Ribeiro, Andre F. P.; Casalino, Damiano; Fares, Ehab; Choudhari, Meelan

    2016-01-01

    As part of a computational study of acoustic radiation due to the passage of turbulent boundary layer eddies over the trailing edge of an airfoil, the Lattice-Boltzmann method is used to perform direct numerical simulations of compressible, low Mach number flow past an NACA 0012 airfoil at zero degrees angle of attack. The chord Reynolds number of approximately 0.657 million models one of the test conditions from a previous experiment by Brooks, Pope, and Marcolini at NASA Langley Research Center. A unique feature of these simulations involves direct modeling of the sand grain roughness on the leading edge, which was used in the abovementioned experiment to trip the boundary layer to fully turbulent flow. This report documents the findings of preliminary, proof-of-concept simulations based on a narrow spanwise domain and a limited time interval. The inclusion of fully-resolved leading edge roughness in this simulation leads to significantly earlier transition than that in the absence of any roughness. The simulation data is used in conjunction with both the Ffowcs Williams-Hawkings acoustic analogy and a semi-analytical model by Roger and Moreau to predict the farfield noise. The encouraging agreement between the computed noise spectrum and that measured in the experiment indicates the potential payoff from a full-fledged numerical investigation based on the current approach. Analysis of the computed data is used to identify the required improvements to the preliminary simulations described herein.

  17. Vortical Flow Structures in the Near-Wake of a Heaving Airfoil with Passively Actuated Leading and Trailing Flaps.

    NASA Astrophysics Data System (ADS)

    Siala, Firas; Totpal, Alexander; Liburdy, James

    2015-11-01

    The flow physics of flying animals has recently received significant attention, mostly in the context of developing bio-inspired micro air vehicles and oscillating flow energy harvesters. Of particular interest is the understanding of the impact of airfoil flexibility on the flow physics. Research efforts showed that some degree of surface flexibility enhanced the strength and size of the leading edge vortex. In this study, the influence of flexibility on the near-wake dynamics and flow structures is investigated using 2D PIV measurements. The experiments are conducted in a wind tunnel at a Reynolds number of 30,000 and a range of reduced frequencies from 0.09 to 0.2. The flexibility is attained using a torsion rod forming a hinge between the flap and the main wing. Vortex flow structures are visualized using large eddy scale decomposition technique and quantified using swirling strength analysis. It is found that trailing edge flexibility increases the vortex swirling strength compared to a rigid airfoil, whereas leading edge flexibility decreases the swirling strength. Furthermore, the integral length scale determined from the autocorrelation of the velocity fluctuations is found to be approximately equal to the actual vortex size. The vortex convective velocity is shown to be independent of flexibility and oscillation frequency, and it is represented by a trimodal distribution, with peak values at 0.8, 0.95 and 1 times the free stream velocity. Oregon State University.

  18. Vertical axis wind turbine airfoil

    DOEpatents

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  19. The effects of leading-edge serrations on reducing flow unsteadiness about airfoils, an experimental and analytical investigation

    NASA Technical Reports Server (NTRS)

    Schwind, R. G.; Allen, H. J.

    1973-01-01

    High frequency surface pressure measurements were obtained from wind-tunnel tests over the Reynolds number range 1.2 times one million to 6.2 times one million on a rectangular wing of NACA 63-009 airfoil section. Measurements were also obtained with a wide selection of leading-edge serrations added to the basic airfoil. Under a two-dimensional laminar bubble very close to the leading edge of the basic airfoil there is a large apatial peak in rms pressure. Frequency analysis of the pressure signals in this region show a large, high-frequency energy peak which is interpreted as an oscillation in size and position of the bubble. The serrations divide the bubble into segments and reduce the peak rms pressures. A low Reynolds number flow visualization test on a hydrofoil in water was also conducted. A von Karman vortex street was found trailing from the rear of the foil. Its frequency is at a much lower Strouhal number than in the high Reynolds number experiment, and is related to the trailing-edge and boundary-layer thicknesses.

  20. Development of a Wind Turbine Test Rig and Rotor for Trailing Edge Flap Investigation: Static Flap Angles Case

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Ahmed; Johnson, David A.

    2014-06-01

    One of the strategies used to improve performance and increase the life-span of wind turbines is active flow control. It involves the modification of the aerodynamic characteristics of a wind turbine blade by means of moveable aerodynamic control surfaces. Trailing edge flaps are relatively small moveable control surfaces placed at the trailing edge of a blade's airfoil that modify the lift of a blade or airfoil section. An instrumented wind turbine test rig and rotor were specifically developed to enable a wide-range of experiments to investigate the potential of trailing edge flaps as an active control technique. A modular blade based on the S833 airfoil was designed to allow accurate instrumentation and customizable settings. The blade is 1.7 meters long, had a constant 178mm chord and a 6° pitch. The modular aerodynamic parts were 3D printed using plastic PC-ABS material. The blade design point was within the range of wind velocities in the available large test facility. The wind facility is a large open jet wind tunnel with a maximum velocity of 11m/s in the test area. The capability of the developed system was demonstrated through an initial study of the effect of stationary trailing edge flaps on blade load and performance. The investigation focused on measuring the changes in flapwise bending moment and power production for different trailing edge flap spanwise locations and deflection angles. The relationship between the load reduction and deflection angle was linear as expected from theory and the highest reduction was caused by the flap furthest from the rotor center. Overall, the experimental setup proved to be effective in measuring small changes in flapwise bending moment within the wind turbine blade and will provide insight when (active) flap control is targeted.

  1. Turbine Airfoil With CMC Leading-Edge Concept Tested Under Simulated Gas Turbine Conditions

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Hatton, Kenneth S.

    2000-01-01

    metal vane was tested for a total of 150 cycles. Both the leading edge and trailing edge of the blade exhibited fatigue cracking and burn-through similar to the failures experienced in service by the F402 engine. Next, an airfoil, fitted with the ceramic leading edge insert, was exposed for 200 cycles. The temperature response of those HPBR cycles indicated a reduced internal metal temperature, by as much as 600 F at the midspan location for the same surface temperature (2100 F). After testing, the composite insert appeared intact, with no signs of failure on either the vane s leading or trailing edge. Only a slight oxide scale, as would be expected, was noted on the insert. Overall, the CMC insert performed similarly to a thick thermal barrier coating. With a small air gap between the metal and the SiC/SiC leading edge, heat transfer from the CMC to the metal alloy was low, effectively lowering the temperatures. The insert's performance has proven that an uncooled CMC can be engineered and designed to withstand the thermal up-shock experienced during the severe lift conditions in the Pegasus engine. The design of the leading-edge insert, which minimized thermal stresses in the SiC/SiC CMC, showed that the CMC/metal assembly can be engineered to be a functioning component.

  2. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  3. Design and performance prediction of swashplateless helicopter rotors with trailing edge flaps and tabs

    NASA Astrophysics Data System (ADS)

    Falls, Jaye

    This work studies the design of trailing edge controls for swashplateless helicopter primary control, and examines the impact of those controls on the performance of the rotor. The objective is to develop a comprehensive aeroelastic analysis for swashplateless rotors in steady level flight. The two key issues to be solved for this swashplateless control concept are actuation of the trailing edge controls and evaluating the performance of the swashplateless rotor compared to conventionally controlled helicopters. Solving the first requires simultaneous minimization of trailing flap control angles and hinge moments to reduce actuation power. The second issue requires not only the accurate assessment of swashplateless rotor power, but also similar or improved performance compared to conventional rotors. The analysis consists of two major parts, the structural model and the aerodynamic model. The inertial contributions of the trailing edge flap and tab are derived and added to the system equations in the structural model. Two different aerodynamic models are used in the analysis, a quasi-steady thin airfoil theory that includes arbitrary hinge positions for the flap and the tab, and an unsteady lifting line model with airfoil table lookup based on wind tunnel test data and computational fluid dynamics simulation. The design aspect of the problem is investigated through parametric studies of the trailing edge flap and tab for a Kaman-type conceptual rotor and a UH-60A swashplateless variant. The UH-60A model is not changed except for the addition of a trailing edge flap to the rotor blade, and the reduction of pitch link stiffness to imitate a soft root spring. Study of the uncoupled blade response identifies torsional stiffness and flap hinge stiffness as important design features of the swashplateless rotor. Important trailing edge flap and tab design features including index angle, aerodynamic overhang, chord and length are identified through examination of coupled

  4. Structural design of morphing trailing edge actuated by SMA

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Xu, Zhiwei; Zhu, Qian

    2013-09-01

    In this paper, the morphing trailing edge is designed to achieve the up and down deflection under the aerodynamic load. After a detailed and accurate computational analysis to determine the SMA specifications and layout programs, a solid model is created in CATIA and the structures of the morphing wing trailing edge are produced by CNC machining. A set of DSP measurement and control system is designed to accomplish the controlling experiment of the morphing wing trailing edge. At last, via the force analysis, the trailing edge is fabricated with four sections of aluminum alloy, and the arrangement scheme of SMA wires is determined. Experiment of precise control integral has been performed to survey the control effect. The experiment consists of deflection angle tests of the third joint and the integral structure. Primarily, the ultimate deflection angle is tested in these two experiments. Therefore, the controlling experiment of different angles could be performed within this range. The results show that the deflection error is less than 4%and response time is less than 6.7 s, the precise controlling of the morphing trailing edge is preliminary realized.

  5. Bars as Trailing-Edge Control Surfaces

    DTIC Science & Technology

    1951-10-15

    UNCLASSIFIED AD NUMBER CLASSIFICATION CHANGES TO: FROM: LIMITATION CHANGES TO: FROM: AUTHORITY THIS PAGE IS UNCLASSIFIED ADA800295 unclassified...received limited investigation in the tests reported in Reference 1. The models weafo tested only at a -near »sere angle of attack of the "airfoil...n i *: is a 3 3 u n e d that t: he a n f i re a a v in g in servo and control system neight in used to increase the s,äxe of the poner plant. Thus

  6. Three-dimensional flow field over a trailing-edge serration and implications on broadband noise

    NASA Astrophysics Data System (ADS)

    Avallone, F.; Pröbsting, S.; Ragni, D.

    2016-11-01

    The three-dimensional flow field over the suction side of a NACA 0018 airfoil with trailing-edge serrations was studied by means of time-resolved tomographic particle image velocimetry. Mean flow results show that the boundary layer thickness decreases along the streamwise direction with a corresponding reduction of the size of the turbulent structures developing over the suction side of the serrations. At a positive angle of attack, streamwise-oriented and counter-rotating vortices aligned with the edge of the serrations are found to be the main features of the mean flow field. Their formation is attributed to the pressure imbalance between the two sides of the airfoil and the mixing layer at the edge. They locally modify the effective angle seen by the turbulent flow approaching the serrated edge. This effect may contribute to the serration underperformance in terms of noise reduction reported in literature. The spatial distribution of the spectra of the source term of the Poisson equation, which relates the velocity field to pressure fluctuations, suggests that the contribution of the serrations to far-field broadband noise is a function of the streamwise location. This observation is congruent with the spectra of the wall-normal and spanwise velocity fluctuations, which typically show low intensity close to the tips of the individual serrations. It follows that analytical models must take into account the local contribution to the far-field noise induced by the streamwise variation of the hydrodynamic pressure on the serration surface.

  7. Low speed airfoil study

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.

    1977-01-01

    Airfoil geometries were developed for low speed high lift applications, such as general aviation aircraft, propellers and helicopter rotors. The primary effort was to determine the extent to which the application of turbulent boundary layer separation criteria, plus manipulation of other input parameters, specifically trailing edging velocity ratio, could be utilized to achieve high C sub Lmax airfoils with relatively low drag at C sub Lmax. Both single-element and double-element airfoils were considered. Wind tunnel testing of some airfoils was included.

  8. Flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  9. Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream

    DOEpatents

    Myers, Robert B.; Yagiela, Anthony S.

    1990-12-25

    An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member.

  10. Airfoil lance apparatus for homogeneous humidification and sorbent dispersion in a gas stream

    DOEpatents

    Myers, R.B.; Yagiela, A.S.

    1990-12-25

    An apparatus for spraying an atomized mixture into a gas stream comprises a stream line airfoil member having a large radius leading edge and a small radius trailing edge. A nozzle assembly pierces the trailing edge of the airfoil member and is concentrically surrounded by a nacelle which directs shielding gas from the interior of the airfoil member around the nozzle assembly. Flowable medium to be atomized and atomizing gas for atomizing the medium are supplied in concentric conduits to the nozzle. A plurality of nozzles each surrounded by a nacelle are spaced along the trailing edge of the airfoil member. 3 figs.

  11. Implementation of a Trailing-Edge Flap Analysis Model in the NASA Langley CAMRAD.MOD1/Hires Program

    NASA Technical Reports Server (NTRS)

    Charles, Bruce

    1999-01-01

    Continual advances in rotorcraft performance, vibration and acoustic characteristics are being sought by rotary-wing vehicle manufacturers to improve efficiency, handling qualities and community noise acceptance of their products. The rotor system aerodynamic and dynamic behavior are among the key factors which must be addressed to meet the desired goals. Rotor aerodynamicists study how airload redistribution impacts performance and noise, and seek ways to achieve better airload distribution through changes in local aerodynamic response characteristics. One method currently receiving attention is the use of trailing-edge flaps mounted on the rotor blades to provide direct control of a portion of the spanwise lift characteristics. The following work describes the incorporation of a trailing-edge flap model in the CAMRAD.Mod1/FHUS comprehensive rotorcraft analysis code. The CAM-RAD.Mod1/HIRES analysis consists of three separate executable codes. These include the comprehensive trim analysis, CAMRAD.Mod1, the Indicial Post-Processor, IPP, for high resolution airloads, and AIRFOIL, which produces the rotor airfoil tables from input airfoil section characteristics. The modifications made to these components permitting analysis of flapped rotor configurations are documented herein along with user instructions detailing the new input variables and operational notes.

  12. Reduction of the shock wave intensity by modifying the transonic blade trailing edge

    NASA Technical Reports Server (NTRS)

    Doerffer, P.

    1983-01-01

    It is shown that the shock wave intensity can be decreased by using modified trailing edge configurations to reduce or even completely compensate for the effect of the finite thickness of the trailing edge. A theoretical analysis is presented together with numerical results for two supersonic streams flowing off the trailing edge at different velocities. The analysis is based on an ideal gas model.

  13. Compilation of Information on the Transonic Attachment of Flows at the Leading Edges of Airfoils

    NASA Technical Reports Server (NTRS)

    Lindsey, Walter F; Landrum, Emma Jean

    1958-01-01

    Schlieren photographs have been compiled of the two-dimensional flow at transonic speeds past 37 airfoils. These airfoils have variously shaped profiles, and some are related in thickness and camber. The data for these airfoils were analyzed to provide basic information on the flow changes involved and to determine factors affecting transonic-flow attachment, which is a transition from separated to unseparated flow at the leading edges of two-dimensional airfoils at fixed angles as the subsonic Mach number is increased.

  14. A critical evaluation of the predictions of the NASA-Lockheed multielement airfoil computer program

    NASA Technical Reports Server (NTRS)

    Brune, G. W.; Manke, J. W.

    1978-01-01

    Theoretical predictions of several versions of the multielement airfoil computer program are evaluated. The computed results are compared with experimental high lift data of general aviation airfoils with a single trailing edge flap, and of airfoils with a leading edge flap and double slotted trailing edge flaps. Theoretical and experimental data include lift, pitching moment, profile drag and surface pressure distributions, boundary layer integral parameters, skin friction coefficients, and velocity profiles.

  15. SiC/SiC Leading Edge Turbine Airfoil Tested Under Simulated Gas Turbine Conditions

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Hatton, Kenneth S.

    1999-01-01

    Silicon-based ceramics have been proposed as component materials for use in gas turbine engine hot-sections. A high pressure burner rig was used to expose both a baseline metal airfoil and ceramic matrix composite leading edge airfoil to typical gas turbine conditions to comparatively evaluate the material response at high temperatures. To eliminate many of the concerns related to an entirely ceramic, rotating airfoil, this study has focused on equipping a stationary metal airfoil with a ceramic leading edge insert to demonstrate the feasibility and benefits of such a configuration. Here, the idea was to allow the SiC/SiC composite to be integrated as the airfoil's leading edge, operating in a "free-floating" or unrestrained manner. and provide temperature relief to the metal blade underneath. The test included cycling the airfoils between simulated idle, lift, and cruise flight conditions. In addition, the airfoils were air-cooled, uniquely instrumented, and exposed to the same internal and external conditions, which included gas temperatures in excess of 1370 C (2500 F). Results show the leading edge insert remained structurally intact after 200 simulated flight cycles with only a slightly oxidized surface. The instrumentation clearly suggested a significant reduction (approximately 600 F) in internal metal temperatures as a result of the ceramic leading edge. The object of this testing was to validate the design and analysis done by Materials Research and Design of Rosemont, PA and to determine the feasibility of this design for the intended application.

  16. Continuous Trailing-Edge Flaps for Primary Flight Control of a Helicopter Main Rotor

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Kreshock, Andrew R.; Wilbur, Matthew L.; Sekula, Martin K.; Shen, Jinwei

    2014-01-01

    The use of continuous trailing-edge flaps (CTEFs) for primary flight control of a helicopter main rotor is studied. A practical, optimized bimorph design with Macro-Fiber Composite actuators is developed for CTEF control, and a coupled structures and computational fluid dynamics methodology is used to study the fundamental behavior of an airfoil with CTEFs. These results are used within a comprehensive rotorcraft analysis model to study the control authority requirements of the CTEFs when utilized for primary flight control of a utility class helicopter. A study of the effect of blade root pitch index (RPI) on CTEF control authority is conducted, and the impact of structural and aerodynamic model complexity on the comprehensive analysis results is presented. The results show that primary flight control using CTEFs is promising; however, a more viable option may include the control of blade RPI, as well.

  17. The effect of acoustic forcing on an airfoil tonal noise mechanism.

    PubMed

    Schumacher, Karn L; Doolan, Con J; Kelso, Richard M

    2014-08-01

    The response of the boundary layer over an airfoil with cavity to external acoustic forcing, across a sweep of frequencies, was measured. The boundary layer downstream of the cavity trailing edge was found to respond strongly and selectively at the natural airfoil tonal frequencies. This is considered to be due to enhanced feedback. However, the shear layer upstream of the cavity trailing edge did not respond at these frequencies. These findings confirm that an aeroacoustic feedback loop exists between the airfoil trailing edge and a location near the cavity trailing edge.

  18. Transition duct assembly with modified trailing edge in turbine system

    DOEpatents

    McMahan, Kevin Weston; Schott, Carl Gerard; Ingram, Clint Luigie; Siden, Gunnar Leif; Pierre, Sylvain

    2016-10-04

    Transition duct assemblies for turbine systems and turbomachines are provided. In one embodiment, a transition duct assembly includes a plurality of transition ducts disposed in a generally annular array and comprising a first transition duct and a second transition duct. Each of the plurality of transition ducts includes an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of each transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The transition duct assembly further includes an aerodynamic structure defined by the passages of the first transition duct and the second transition duct. The aerodynamic structure includes a pressure side, a suction side, and a trailing edge, the trailing edge having a modified aerodynamic contour.

  19. Stator Loading Measurements Behind a Fan With Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A.

    2000-01-01

    The problem of aircraft noise pollution around airports has become increasingly important as those areas have become more densely populated. Currently, the removal of older noisier aircraft from operation is reducing noise levels around airports; however, with air traffic projected to increase by about 5% over the next decade the number of commercial aircraft operating in the world is expected to be about 17,700 by the year 2007. To keep noise levels around airports from increasing as a result of traffic increases, it is important to investigate new methods of noise reduction. The objective of this work is to provide a better understanding of the effects that trailing edge blowing has on stator unsteady loading. This is done by presenting flowfield and stator loading data from experiments conducted with and without trailing edge blowing.

  20. Impact of trailing edge shape on the wake and propulsive performance of pitching panels

    NASA Astrophysics Data System (ADS)

    Van Buren, T.; Floryan, D.; Brunner, D.; Senturk, U.; Smits, A. J.

    2017-01-01

    The effects of changing the trailing edge shape on the wake and propulsive performance of a pitching rigid panel are examined experimentally. The panel aspect ratio is AR=1 , and the trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the mean streamwise velocity field contains a single jet. Conversely, convex trailing edges promote wake compression and produce a quadfurcated wake with four jets. As the trailing edge shape changes from the most concave to the most convex, the thrust and efficiency increase significantly.

  1. Effect of trailing edge shape on the wake and propulsive performance of pitching panels

    NASA Astrophysics Data System (ADS)

    van Buren, Tyler; Floryan, Daniel; Brunner, Daniel; Senturk, Utku; Smits, Alexander

    2016-11-01

    We present the effects of the trailing edge shape on the wake and propulsive performance of a pitching panel with an aspect ratio of 1. The trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the streamwise velocity field contains a single jet-like structure. Conversely, convex trailing edges promote wake compression and produce a wake split into four jets. Deviation from the square trailing edge mostly reduces the thrust and efficiency. Supported by the Office of Naval Research under MURI Grant Number N00014-14-1-0533.

  2. Low-Speed Fan Noise Reduction With Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Tweedt, Daniel L.; Fite, E. Brian; Envia, Edmane

    2002-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a trailing edge slot. Composite hollow rotor blades with internal flow passages were designed based on analytical codes modeling the internal flow. The hollow blade with interior guide vanes creates flow channels through which externally supplied air flows from the root of the blade to the trailing edge. The impact of the rotor wake-stator interaction on the acoustics was also predicted analytically. The Active Noise Control Fan, located at the NASA Glenn Research Center, was used as the proof- of-concept test bed. In-duct mode and farfield directivity acoustic data were acquired at blowing rates (defined as mass supplied to trailing edge blowing system divided by fan mass flow) ranging from 0.5 to 2.0 percent. The first three blade passing frequency harmonics at fan rotational speeds of 1700 to 1900 rpm were analyzed. The acoustic tone power levels (PWL) in the inlet and exhaust were reduced 11.5 and -0.1, 7.2 and 11.4, 11.8 and 19.4 PWL dB, respectively. The farfield tone power levels at the first three harmonics were reduced 5.4, 10.6, and 12.4 dB PWL. At selected conditions, two-component hotwire and stator vane unsteady surface pressures were acquired. These measurements illustrate the physics behind the noise reduction.

  3. Computational Test Cases for a Clipped Delta Wing with Pitching and Trailing-Edge Control Surface Oscillations

    NASA Technical Reports Server (NTRS)

    Bennett, Robert M.; Walker, Charlotte E.

    1999-01-01

    Computational test cases have been selected from the data set for a clipped delta wing with a six-percent-thick circular-arc airfoil section that was tested in the NASA Langley Transonic Dynamics Tunnel. The test cases include parametric variation of static angle of attack, pitching oscillation frequency, trailing-edge control surface oscillation frequency, and Mach numbers from subsonic to low supersonic values. Tables and plots of the measured pressures are presented for each case. This report provides an early release of test cases that have been proposed for a document that supplements the cases presented in AGARD Report 702.

  4. Measurement of Trailing Edge Noise Using Directional Array and Coherent Output Power Methods

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, Thomas F.

    2002-01-01

    The use of a directional (or phased) array of microphones for the measurement of trailing edge (TE) noise is described and tested. The capabilities of this method arc evaluated via measurements of TE noise from a NACA 63-215 airfoil model and from a cylindrical rod. This TE noise measurement approach is compared to one that is based on thc cross spectral analysis of output signals from a pair of microphones placed on opposite sides of an airframe model (COP method). Advantages and limitations of both methods arc examined. It is shown that the microphone array can accurately measures TE noise and captures its two-dimensional characteristic over a large frequency range for any TE configuration as long as noise contamination from extraneous sources is within bounds. The COP method is shown to also accurately measure TE noise but over a more limited frequency range that narrows for increased TE thickness. Finally, the applicability and generality of an airfoil self-noise prediction method was evaluated via comparison to the experimental data obtained using the COP and array measurement methods. The predicted and experimental results are shown to agree over large frequency ranges.

  5. Second-order subsonic airfoil theory including edge effects

    NASA Technical Reports Server (NTRS)

    Van Dyke, Milton D

    1956-01-01

    Several recent advances in plane subsonic flow theory are combined into a unified second-order theory for airfoil sections of arbitrary shape. The solution is reached in three steps: the incompressible result is found by integration, it is converted into the corresponding subsonic compressible result by means of the second-order compressibility rule, and it is rendered uniformly valid near stagnation points by further rules. Solutions for a number of airfoils are given and are compared with the results of other theories and of experiment. A straight-forward computing scheme is outlined for calculating the surface velocities and pressures on any airfoil at any angle of attack

  6. A Rapidly Growing Instability in the Wake of Airfoils with Multiple Trailing Vortices

    NASA Astrophysics Data System (ADS)

    Ortega, Jason; Savas, Omer

    2000-11-01

    Dye flow visualization and two-dimensional PIV measurements are performed in the wakes of airfoils with multiple trailing vortices. The circulation-based Reynolds number of the vortices is of order 100,000. From the flow visualization data, an instability is observed to develop in the wake within 25 spans downstream of the airfoil. At approximately 50 spans, the instability becomes highly non-linear and three-dimensional, which, for some run parameters, results in an exchange of vorticity from opposite sides of the wake. By 200 spans, the dye is completely dispersed from the vortices and no coherent structures are visible in the wake. The PIV data indicate that the wake's "two-dimensional" kinetic energy decreases by a half at the onset of the non-linear behavior. By 200 spans, the "two-dimensional" kinetic energy is a fraction of its initial value. Further quantitative analyses demonstrate that at 200 spans, the resulting vortex core radius is on average 20of the individual vortices. The results of this study indicate that this rapidly growing instability has the potential for being a solution to the wake hazard problem

  7. Airfoil shape for flight at subsonic speeds

    DOEpatents

    Whitcomb, Richard T.

    1976-01-01

    An airfoil having an upper surface shaped to control flow accelerations and pressure distribution over the upper surface and to prevent separation of the boundary layer due to shock wave formulation at high subsonic speeds well above the critical Mach number. A highly cambered trailing edge section improves overall airfoil lifting efficiency.

  8. A study of the effects of Reynolds number and Mach number on constant pressure coefficient jump for shock-induced trailing-edge separation

    NASA Technical Reports Server (NTRS)

    Cunningham, Atlee M., Jr.; Spragle, Gregory S.

    1987-01-01

    The influence of Mach and Reynolds numbers as well as airfoil and planform geometry on the phenomenon of constant shock jump pressure coefficient for conditions of shock induced trailing edge separation (SITES) was studied. It was demonstrated that the phenomenon does exist for a wide variety of two and three dimensional flow cases and that the influence of free stream Mach number was not significant. The influence of Reynolds number was found to be important but was not strong. Airfoil and planform geometric characteristics were found to be very important where the pressure coefficient jump was shown to vary with the sum of: (1) airfoil curvature at the upper surface crest, and (2) camber surface slope at the trailing edge. It was also determined that the onset of SITES could be defined as a function of airfoil geometric parameters and Mach number normal to the leading edge. This onset prediction was shown to predict the angle of onset to within + or - 1 deg accuracy or better for about 90% of the cases studied.

  9. Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat

    2016-01-01

    The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.

  10. Airfoil shape for a turbine nozzle

    DOEpatents

    Burdgick, Steven Sebastian; Patik, Joseph Francis; Itzel, Gary Michael

    2002-01-01

    A first-stage nozzle vane includes an airfoil having a profile according to Table I. The annulus profile of the hot gas path is defined in conjunction with the airfoil profile and the profile of the inner and outer walls by the Cartesian coordinate values given in Tables I and II, respectively. The airfoil is a three-dimensional bowed design, both in the airfoil body and in the trailing edge. The airfoil is steam and air-cooled by flowing cooling mediums through cavities extending in the vane between inner and outer walls.

  11. Computational Aeroacoustic Analysis of Slat Trailing-Edge Flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Lockhard, David P.; Brentner, Kenneth S.; Khorrami, Mehdi R.; Berkman, Mert E.; Choudhari, Meelan

    2000-01-01

    An acoustic analysis based on the Ffowcs Williams and Hawkings equation was performed for a high-lift system. As input, the acoustic analysis used un- steady flow data obtained from a highly resolved, time-dependent, Reynolds-averaged Navier-Stokes calculation. The analysis strongly suggests that vor- tex shedding from the trailing edge of the slat results in a high-amplitude, high-frequency acoustic signal, similar to that which was observed in a correspond- ing experimental study of the high-lift system.

  12. A review of the theory of trailing edge noise

    NASA Technical Reports Server (NTRS)

    Howe, M. S.

    1978-01-01

    A critical review is presented of the literature on the theory of the generation of sound by the interaction of low Mach number turbulent flow with the edge of a semi-infinite rigid plate. Three distinct approaches to the subject are identified, consisting of theories based on (1) Lighthill's acoustic analogy, (2) the solution of special, linearized hydroacoustic problems and (3) ad hoc aerodynamic source models. It is shown that, when appropriately interpreted, all relevant theories produce essentially identical predictions in the limit of very small Mach numbers. In none of the theories, however, are the implications of the Kutta condition discussed, nor of the effect of forward flight and source motion relative to the trailing edge. Accordingly this review includes an outline of a redevelopment of the theory which gives a unified view of the problem, exhibits the significance of the various approximations, and incorporates the effect of mean motion and of the Kutta condition.

  13. A review of the theory of trailing edge noise

    NASA Technical Reports Server (NTRS)

    Howe, M. S.

    1978-01-01

    Literature on the theory of the generation of sound by the interaction of low Mach number turbulent flow with the edge of a semi-infinite rigid plate is critically reviewed. Three different approaches to the subject are identified, consisting of theories based on (1) Lighthill's acoustic analogy; (2) the solution of special, linearized hydroacoustic problems; and (3) ad hoc aerodynamic source models. When appropriately interpreted, all relevant theories produce essentially identical predictions in the limit of very small Mach numbers. None of the theories discusses the implications of the Kutta condition, however, nor of the effect of forward flight and source motion relative to the trailing edge. An outline of a redevelopment of the theory is included to give a unified view of the problem, exhibit the significance of the various approximations, and incorporate the effect of mean motion and of the Kutta condition.

  14. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil

    PubMed Central

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    2016-01-01

    Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics

  15. The Effect of Trailing Vortices on the Production of Lift on an Airfoil Undergoing a Constant Rate of Change of Angle of Attack.

    DTIC Science & Technology

    1983-12-01

    The purpose of this study was to investigate the effect a trailing vortex wake has on an airfoil undergoing a constant rate of change of angle of...When applied to the constant rate - of - change of angle-of-attack problem, the results showed that a trailing vortex wake has a measurable and

  16. Experimental aerodynamics of mesoscale trailing-edge actuators

    NASA Astrophysics Data System (ADS)

    Solovitz, Stephen Adam

    Uninhabited air vehicles (UAVs) are commonly designed with high-aspect ratio wings, which can be susceptible to significant aeroelastic vibrations. These modes can result in a loss of control or structural failure, and new techniques are necessary to alleviate them. A multidisciplinary effort at Stanford developed a distributed flow control method that used small trailing-edge actuators to alter the aerodynamic loads at specific spanwise locations along an airplane wing. This involved design and production of the actuators, computational and experimental study of their characteristics, and application to a flexible wing. This project focused on the experimental response. The actuators were based on a Gurney flap, which is a trailing-edge flap of small size and large deflection, typically about 2% of the chord and 90 degrees, respectively. Because of the large deflection, there is a significant change to the wing camber, increasing the lift. However, due to the small size, the drag does not increase substantially, and the performance is actually improved for high lift conditions. For this project, a 1.5% flap was divided into small span segments (5.2% of the chord), each individually controllable. These devices are termed microflaps or Micro Trailing-edge Effectors (MiTEs). The aerodynamic response was examined to determine the effects of small flap span, the influence of the device structure, and the transient response to relatively rapid MiTE actuation. Measurements included integrated loads, pressure profiles, wake surveys, and near-wake studies using particle image velocimetry. The basic response was similar to a Gurney flap, as full-span actuation of the devices produced a lift increment of about +0.25 when applied towards the pressure surface. For partial actuated spans, the load increment was approximately linear with the actuated span, regardless of configuration. The primary effects occurred within two device spans, indicating that most of the load was

  17. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    SciTech Connect

    Miller, L.S.; Migliore, P.G.; Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  18. Mechanism of Water Droplet Breakup near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia

    2012-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de T cnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 micrometers, and airfoil velocities of 70 and 90 meters/second.

  19. Mechanism of Water Droplet Breakup Near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida, Garcia

    2012-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. The airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Droplet deformation is defined and studied against main parameters. The high speed imaging allowed observation of the actual mechanism of breakup and identification of the sequence of configurations from the initiation of the breakup to the disintegration of the droplet. Results and comparisons are presented for droplets of diameters in the range of 500 to 1800 microns, and airfoil velocities of 70 and 90 m/sec.

  20. Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Sor, Suthyvann; Magarino, Adelaida Garcia

    2013-01-01

    This work presents results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model was placed at the end of the rotating arm and a monosize droplet generator produced droplets that fell from above, perpendicular to the path of the airfoil. The interaction between the droplets and the airfoil was captured with high speed imaging and allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. Image processing software was used to measure the position of the droplet centroid, equivalent diameter, perimeter, area, and the major and minor axes of an ellipse superimposed over the deforming droplet. The horizontal and vertical displacement of each droplet against time was also measured, and the velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of the droplet to the beginning of breakup. Results are presented and discussed for drag coefficients of droplets with diameters in the range of 300 to 1800 micrometers, and airfoil velocities of 50, 70 and 90 meters/second. The effect of droplet oscillation on the drag coefficient is discussed.

  1. The leading-edge stall of airfoils with various nose shapes

    NASA Astrophysics Data System (ADS)

    Kraljic, Matthew; Rusak, Zvi; Wang, Shixiao

    2015-11-01

    We study the inception of leading-edge stall on stationary, smooth thin airfoils with various nose shapes of the form xa (where 0 < a < 1 / 2) at low to moderately high chord Reynolds number flows. A reduced-order, multi-scale model problem is developed and solved using numerical simulations. The asymptotic theory demonstrates that a subsonic flow about a thin airfoil can be described in terms of an outer region, around most of the airfoil's chord, and an inner region, around the nose, that asymptotically match each other. The flow in the outer region is dominated by the classical thin airfoil theory. Scaled (magnified) coordinates and a modified (smaller) Reynolds number ReM are used to correctly account for the nonlinear behavior and extreme velocity changes in the inner region, where both the near-stagnation and high suction areas occur. The inner region problem is solved numerically to determine the inception of leading-edge stall on the nose. It is found that stall is delayed to higher angles of attack with the decrease of nose parameter a. Specifically, new airfoil shapes are proposed with increased stall angle at subsonic speeds and higher critical Mach numbers at transonic speeds.

  2. Tests of N-85, N-86 and N-87 airfoil sections in the 11-inch high speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Stack, John; Lindsey, W F

    1938-01-01

    Three airfoils, the N-85, the N-86, and the N-87, were tested at the request of the Bureau of Aeronautics, Navy Department, to determine the suitability of these sections for use as propeller-blade sections. Further tests of the NACA 0009-64 airfoil were also made to measure the aerodynamic effect of thickening the trailing edge in accordance with current propeller practice. The N-86 and the N-87 airfoils appear to be nearly equivalent aerodynamically and both are superior to the N-85 airfoil. Comparison of those airfoils with the previously developed NACA 2409-34 airfoils indicate that the NACA 2409-34 is superior, particularly at high speeds. Thickening the trailing edge appears to have a detrimental effect, although the effect may be small if the trailing-edge radius is less than 0.5 percent of the cord. The N-86 and the N-87 airfoils appear to be nearly equivalent.

  3. Airfoil

    NASA Technical Reports Server (NTRS)

    Derkacs, Thomas (Inventor); Fetheroff, Charles W. (Inventor); Matay, Istvan M. (Inventor); Toth, Istvan J. (Inventor)

    1983-01-01

    Although the method and apparatus of the present invention can be utilized to apply either a uniform or a nonuniform covering of material over many different workpieces, the apparatus (20) is advantageously utilized to apply a thermal barrier covering (64) to an airfoil (22) which is used in a turbine engine. The airfoil is held by a gripper assembly (86) while a spray gun (24) is effective to apply the covering over the airfoil. When a portion of the covering has been applied, a sensor (28) is utilized to detect the thickness of the covering. A control apparatus (32) compares the thickness of the covering of material which has been applied with the desired thickness and is subsequently effective to regulate the operation of the spray gun to adaptively apply a covering of a desired thickness with an accuracy of at least plus or minus 0.0015 of an inch (1.5 mils) despite unanticipated process variations.

  4. Experimental Measurement and CFD Model Development of Thick Wind Turbine Airfoils with Leading Edge Erosion

    NASA Astrophysics Data System (ADS)

    Maniaci, David C.; White, Edward B.; Wilcox, Benjamin; Langel, Christopher M.; van Dam, C. P.; Paquette, Joshua A.

    2016-09-01

    Leading edge erosion and roughness accumulation is an issue observed with great variability by wind plant operators, but with little understanding of the effect on wind turbine performance. In wind tunnels, airfoil models are typically tested with standard grit roughness and trip tape to simulate the effects of roughness and erosion observed in field operation, but there is a lack of established relation between field measurements and wind tunnel test conditions. A research collaboration between lab, academic, and industry partners has sought to establish a method to estimate the effect of erosion in wind turbine blades that correlates to roughness and erosion measured in the field. Measurements of roughness and erosion were taken off of operational utility wind turbine blades using a profilometer. The field measurements were statistically reproduced in the wind tunnel on representative tip and midspan airfoils. Simultaneously, a computational model was developed and calibrated to capture the effect of roughness and erosion on airfoil transition and performance characteristics. The results indicate that the effects of field roughness fall between clean airfoil performance and the effects of transition tape. Severe leading edge erosion can cause detrimental performance effects beyond standard roughness. The results also indicate that a heavily eroded wind turbine blade can reduce annual energy production by over 5% for a utility scale wind turbine.

  5. Influencing the aerodynamics of the ACFA2020 aircraft with flap and trailing edge device oscillations

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Breitsamter, Ch.

    2013-12-01

    The influence of an oscillating aileron and trailing edge device on the unsteady aerodynamics of a blended wing body (BWB) aircraft configuration with high-fidelity time-accurate Euler simulations has been investigated. Steady results show an unequally-distributed lift distribution in spanwise direction with a particularly severe shock at cruise conditions on the outboard wing. Unsteady oscillations of the outboardlocated aileron are able to influence the local and global aerodynamics. The oscillation of the trailing edge device designed to be at trailing edge of the aileron does not show any great effect on neither local nor global aerodynamics.

  6. Atmospheric tests of trailing-edge aerodynamic devices

    SciTech Connect

    Miller, L S; Huang, S; Quandt, G A

    1998-01-01

    An experiment was conducted at the National Renewable Energy Laboratory`s (NREL`s) National Wind Technology Center (NWTC) using an instrumented horizontal-axis wind turbine that incorporated variable-span, trailing-edge aerodynamic brakes. The goal of the investigation was to directly compare results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were used to define effective changes in the aerodynamic and hinge-moment coefficients, as a function of angle of attack and control deflection, for three device spans (7.5%, 15%, and 22.5%) and configurations (Spoiler-Flap, vented sileron, and unvented aileron). Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (about a 30% reduction from infinite-span) for 15% or larger span devices. Interestingly, aerodynamic controls with vents or openings appear most affected by span reductions and three-dimensional flow.

  7. Unsteady Airloads on Airfoils in Reverse Flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew; Jones, Anya

    2014-11-01

    This work gives insight into the influence of airfoil characteristics on unsteady airloads for rotor applications where local airfoil sections may operate at high and/or reverse flow angles of attack. Two-dimensional wind tunnel experiments have been performed on four airfoil sections to investigate the effects of thickness, camber, and trailing edge shape on unsteady airloads (lift, pressure drag, and pitching moment). These model rotor blades were tested through 360 deg of incidence for 104 <=Re <=106 . Unsteady pressure transducers were mounted on the airfoil surface to measure the high frequency, dynamic pressure variations. The temporal evolution of chordwise pressure distributions and resulting airloads is quantified for each airfoil in each of the three unsteady wake regimes present in reverse flow. Specifically, the influence of the formation, growth, and shedding of vortices on the surface pressure distribution is quantified and compared between airfoils with a sharp geometric trailing edge and those with a blunt geometric trailing edge. These findings are integral to mitigation of rotor blade vibrations for applications where airfoil sections are subjected to reverse flow, such as high-speed helicopters and tidal turbines.

  8. Structural and aerodynamic considerations of an active piezoelectric trailing-edge tab on a helicopter rotor

    NASA Astrophysics Data System (ADS)

    Murray, Gabriel Jon

    This dissertation is concerned with an active tab for use on a rotorcraft for noise and vibration reduction. The tab is located at the trailing edge of the airfoil. The tab consists of a shim sandwiched by layers of the piezoelectric actuators, macro fiber composites, of varying length. This configuration is similar to a bimorph. The modus operandi is similar to that of a trailing edge flap. The actuators deform the tab, bending it to achieve a tip displacement. This provides a change in the lift, moment, and drag coefficients of the airfoil. By actuating the system at 3/rev to 5/rev, reductions in noise and vibration can be realized. The system was examined and designed around using the UH-60 Blackhawk as the model rotorcraft. The tab is envisioned to operate between 65% to 85% of the main rotor span. The tab's chordwise dimensions considered were 20% and 15% of the blade chord. In order to assess the potential of the tab to change the lift and moment coefficients of the airfoil-tab system, a steady computational fluid dynamics study was conducted. The results were generated via the University of Maryland's Transonic Unsteady Navier-Stokes code. Various tab deflection angles, Mach numbers, and angle-of-attack values were computed. These results were compared to a trailing edge flap of similar size. The comparison shows that the tab produces lift and moment increments similar to that of the trailing edge flap. The design of the tab---composed of both active piezoelectric actuators and passive materials---was conducted using finite element analysis. The objectives were to maximize the tip deflection due to the actuators, while minimizing the deformation due to inertial and aerodynamic forces and loads. The inertial loads (acceleration terms) come from both blade motion, such as flapping and pitch, as well as the rotation of the rotor (centrifugal force). All of these previously mentioned terms cause the tab to undergo undesirable deflections. The original concept

  9. Computational design and analysis of flatback airfoil wind tunnel experiment.

    SciTech Connect

    Mayda, Edward A.; van Dam, C.P.; Chao, David D.; Berg, Dale E.

    2008-03-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  10. Theoretical and experimental study of a new method for prediction of profile drag of airfoil sections

    NASA Technical Reports Server (NTRS)

    Goradia, S. H.; Lilley, D. E.

    1975-01-01

    Theoretical and experimental studies are described which were conducted for the purpose of developing a new generalized method for the prediction of profile drag of single component airfoil sections with sharp trailing edges. This method aims at solution for the flow in the wake from the airfoil trailing edge to the large distance in the downstream direction; the profile drag of the given airfoil section can then easily be obtained from the momentum balance once the shape of velocity profile at a large distance from the airfoil trailing edge has been computed. Computer program subroutines have been developed for the computation of the profile drag and flow in the airfoil wake on CDC6600 computer. The required inputs to the computer program consist of free stream conditions and the characteristics of the boundary layers at the airfoil trailing edge or at the point of incipient separation in the neighborhood of airfoil trailing edge. The method described is quite generalized and hence can be extended to the solution of the profile drag for multi-component airfoil sections.

  11. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  12. Aeroelastic Airworthiness Assesment of the Adaptive Compliant Trailing Edge Flaps

    NASA Technical Reports Server (NTRS)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat; Ervin, Gregory; Flick, Peter

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) demonstrator is a joint task under the National Aeronautics and Space Administration Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan). The project goal is to develop advanced technologies that enable environmentally friendly aircraft, such as adaptive compliant technologies. The ACTE demonstrator flight-test program encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a modified Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys. The control surfaces developed by FlexSys are a pair of uniquely-designed unconventional flaps to be used as lifting surfaces during flight-testing to validate their structural effectiveness. The unconventional flaps required a multidisciplinary airworthiness assessment to prove they could withstand the prescribed flight envelope. Several challenges were posed due to the large deflections experienced by the structure, requiring non-linear analysis methods. The aeroelastic assessment necessitated both conventional and extensive testing and analysis methods. A series of ground vibration tests (GVTs) were conducted to provide modal characteristics to validate and update finite element models (FEMs) used for the flutter analyses for a subset of the various flight configurations. Numerous FEMs were developed using data from FlexSys and the ground tests. The flap FEMs were then attached to the aircraft model to generate a combined FEM that could be analyzed for aeroelastic instabilities. The aeroelastic analysis results showed the combined system of aircraft and flaps were predicted to have the required flutter margin to successfully demonstrate the adaptive compliant technology. This paper documents the details of the aeroelastic airworthiness assessment described, including the ground testing and analyses, and subsequent flight

  13. Numerical prediction of vortex cores of the leading and trailing edges of delta wings

    NASA Technical Reports Server (NTRS)

    Kandil, O. A.

    1980-01-01

    The purpose of the present paper is to predict the roll-up of the vortex sheets emanating from the leading- and trailing-edges of delta wings with emphasis on the interaction of vortex cores beyond the trailing edge. The motivation behind the present work is the recent experimental data published by Hummel. The Nonlinear Discrete-Vortex method (NDV-method) is modified and extended to predict the leading- and trailing-vortex cores beyond the trailing edge. The present model alleviates the problems previously encountered in predicting satisfactory pressure distributions. This is accomplished by lumping the free-vortex lines during the iteration procedure. The leading- and trailing-edge cores and their feeding sheets are obtained as parts of the solution. The numerical results show that the NDV-method is successful in confirming the formation of a trailing-edge core with opposite circulation and opposite roll-up to those of the leading-edge core. This work is a breakthrough in the high angle of attack aerodynamics and moreover, it is the first numerical prediction done on this problem

  14. Low speed airfoil design and analysis

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Somers, D. M.

    1979-01-01

    A low speed airfoil design and analysis program was developed which contains several unique features. In the design mode, the velocity distribution is not specified for one but many different angles of attack. Several iteration options are included which allow the trailing edge angle to be specified while other parameters are iterated. For airfoil analysis, a panel method is available which uses third-order panels having parabolic vorticity distributions. The flow condition is satisfied at the end points of the panels. Both sharp and blunt trailing edges can be analyzed. The integral boundary layer method with its laminar separation bubble analog, empirical transition criterion, and precise turbulent boundary layer equations compares very favorably with other methods, both integral and finite difference. Comparisons with experiment for several airfoils over a very wide Reynolds number range are discussed. Applications to high lift airfoil design are also demonstrated.

  15. Airfoil self-noise and prediction

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Pope, D. Stuart; Marcolini, Michael A.

    1989-01-01

    A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.

  16. Transition and Turbulence Structure in the Boundary Layers of an Oscillating Airfoil

    DTIC Science & Technology

    1989-12-31

    measurements near the trailing edge of an oscillating NACA 64A010 airfoil operating at various fiequencies and in unstalled condition. It was...to identify: (i) the conditions under which a sinusoidally oscillating NACA 0012 airfoil operates with a leading edge separation bubble; (ii) the...vortex formation. These experiments were conducted using an NACA 0012 airfoil with a tripping wire to promote transition of the boundary layer. The

  17. Transonic airfoil design using Cartesian coordinates

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1976-01-01

    A numerical technique for designing transonic airfoils having a prescribed pressure distribution (the inverse problem) is presented. The method employs the basic features of Jameson's iterative solution for the full potential equation, except that inverse boundary conditions and Cartesian coordinates are used. The method is a direct-inverse approach that controls trailing-edge closure. Examples show the application of the method to design aft-cambered and other airfoils specifically for transonic flight.

  18. Trailing edges projected to move faster than leading edges for large pelagic fish habitats under climate change

    NASA Astrophysics Data System (ADS)

    Robinson, L. M.; Hobday, A. J.; Possingham, H. P.; Richardson, A. J.

    2015-03-01

    There is mounting evidence to suggest that many species are shifting their ranges in concordance with the climate velocity of their preferred environmental conditions/habitat. While accelerated rates in species' range shifts have been noted in areas of intense warming, due to climate change, few studies have considered the influence that both spatial temperature gradients and rates of warming (i.e., the two components of climate velocity) could have on rates of movement in species habitats. We compared projected shifts in the core habitat of nine large pelagic fish species (five tuna, two billfish and two shark species) off the east coast of Australia at different spatial points (centre, leading and trailing edges of the core habitat), during different seasons (summer and winter), in the near-(2030) and long-term (2070), using independent species distribution models and habitat suitability models. Model projections incorporated depth integrated temperature data from 11 climate models with a focus on the IPCC SRES A2 general emission scenario. Projections showed a number of consistent patterns: southern (poleward) shifts in all species' core habitats; trailing edges shifted faster than leading edges; shifts were faster by 2070 than 2030; and there was little difference in shifts among species and between seasons. Averaging across all species and climate models, rates of habitat shifts for 2030 were 45-60 km decade-1 at the trailing edge, 40-45 km decade-1 at the centre, and 20-30 km decade-1 at the leading edge. Habitat shifts for 2070 were 60-70 km decade-1 at the trailing edge, 50-55 km decade-1 at the centre, and 30-40 km decade-1 at the leading edge. It is often assumed that the leading edge of a species range will shift faster than the trailing edge, but there are few projections or observations in large pelagic fish to validate this assumption. We found that projected shifts at the trailing edge were greater than at the centre and leading of core habitats in

  19. Navier-Stokes analysis of airfoils with leading edge ice accretions

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.

    1993-01-01

    A numerical analysis of the flowfield characteristics and the performance degradation of an airfoil with leading edge ice accretions was performed. The important fluid dynamic processes were identified and calculated. Among these were the leading edge separation bubble at low angles of attack, complete separation on the low pressure surface resulting in premature shell, drag rise due to the ice shape, and the effects of angle of attack on the separated flow field. Comparisons to experimental results were conducted to confirm these calculations. A computer code which solves the Navier-Stokes equations in two dimensions, ARC2D, was used to perform the calculations. A Modified Mixing Length turbulence model was developed to produce grids for several ice shape and airfoil combinations. Results indicate that the ability to predict overall performance characteristics, such as lift and drag, at low angles of attack is excellent. Transition location is important for accurately determining separation bubble shape. Details of the flowfield in and downstream of the separated regions requires some modifications. Calculations for the stalled airfoil indicate periodic shedding of vorticity that was generated aft of the ice accretion. Time averaged pressure values produce results which compare favorably with experimental information. A turbulence model which accounts for the history effects in the flow may be justified.

  20. An improved viscid/inviscid interaction procedure for transonic flow over airfoils

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Chow, R. R.; Mead, H. R.; Jameson, A.

    1985-01-01

    A new interacting boundary layer approach for computing the viscous transonic flow over airfoils is described. The theory includes a complete treatment of viscous interaction effects induced by the wake and accounts for normal pressure gradient effects across the boundary layer near trailing edges. The method is based on systematic expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds numbers, Reynolds infinity. Procedures are developed for incorporating the local trailing edge solution into the numerical solution of the coupled full potential and integral boundary layer equations. Although the theory is strictly applicable to airfoils with cusped or nearly cusped trailing edges and to turbulent boundary layers that remain fully attached to the airfoil surface, the method was successfully applied to more general airfoils and to flows with small separation zones. Comparisons of theoretical solutions with wind tunnel data indicate the present method can accurately predict the section characteristics of airfoils including the absolute levels of drag.

  1. Spanwise vortex dislocation in the wake of segmented blunt trailing edge

    NASA Astrophysics Data System (ADS)

    Deshpande, P. J.; Sharma, S. D.

    2012-10-01

    Dislocation of the Karman vortex is forced in the near wake behind a two dimensional blunt trailing edge aerofoil to induce strong three dimensionality to weaken the Karman vortex and inhibit its periodic shedding by segmenting the trailing edge in a novel way, different from a rectangular segmented trailing edge tried in the past. Symmetrical trapezoidal prismatic blocks, with the major and the minor sides being equal to 4 and 2 base heights, respectively, are attached to the base at regular intervals along the span which could be varied in order to render multiple wavelengths of spanwise discontinuity to ensure that at least one of the modes of dislocation is triggered independent of the Reynolds number. Hot-wire measurements confirm effectiveness of the trailing edge configurations with trapezoidal prismatic blocks in creating controlled dislocation along the span which annihilates the Karman vortices and suppresses their periodic shedding completely. Flow visualization in a water tunnel reinforces the hot-wire results and clearly shows that the classical Karman vortex street, seen behind the plain base model, disappears when segmented trailing edge is used. In comparison, the rectangular segmented trailing edge is found to attenuate the Karman vortex strength only partially. However, the base pressure measurements have shown improvement in reducing the associated base drag only by 3-4%. The segmented trailing edges designed for the present study are found to generate strong streamwise vortices that effectively transfer energy from the Karman vortices resulting in suppression of the unsteadiness but, perhaps, lower pressures in their core may be restricting the further rise in the base pressure due to the induced effect.

  2. FORTRAN program for calculating leading and trailing-edge geometry of turbomachine blades

    NASA Technical Reports Server (NTRS)

    Schumann, L. F.

    1977-01-01

    A FORTRAN IV program which calculates leading- and trailing-edge circle radii, tangency angles on the leading- and trailing-edge circles, and stagger angles of turbomachinery blade sections using only spline points defining the blade surfaces is described. The program shifts the origin of the blade coordinates to the leading edge of the blade. Required input includes (m, theta) coordinates of a sufficient number of spline points to adequately define the two surfaces of the blade. Other required input are the radii from the axis of rotation of the leading- and trailing-edges. The output from this program is used directly as the geometrical input for a NASA developed program for calculating transonic velocities on a blade-to-blade stream surface of a turbomachine. The program is used for axial, radial, and mixed flow turbomachine blades.

  3. Flow over a hydrofoil with trailing edge vortex shedding at high-Reynolds number

    NASA Astrophysics Data System (ADS)

    Bourgoyne, Dwayne Anthony

    At high Reynolds number, the flow of an incompressible fluid over a lifting surface is a rich blend of fluid dynamic phenomena, and the individual elements of this process have been the subject of much prior work. However, controlled experimental investigations of lifting surfaces at Reynolds numbers typical of heavy-lift aircraft wings or full-size ship propellers (chord-based Reynolds numbers, ReC ˜ 107--10 8) are largely unavailable. This paper presents experimental results from the flow over a two-dimensional hydrofoil at nominal ReC values from near one million (1M) to more than 50 million (50M). The tests were conducted in the U.S. Navy's William B. Morgan Large Cavitation Channel with a solid-bronze hydrofoil (2.1 m chord, 3.0 m span, 17 cm maximum thickness) at flow speeds from 0.25 to 18.3 m/s. The foil section, a modified NACA 0016 with a rounded trailing-edge bevel, approximates the cross section of a generic naval propeller blade. Trailing-edge geometries with bevel angles of 44° and 56° are investigated. Flow field velocities are measured with laser Doppler velocimetry and planar particle imaging velocimetry. Pressure measurements are made with static pressure taps along the foil chord and test section walls and with unsteady pressure sensors near the trailing edge. Results are presented from the time-averaged flow (part I), as well as turbulence statistics, pressure and velocity spectra, and instantaneous velocity fields (part II). Geometry and Reynolds-number dependencies in the mean flow are linked to similar dependencies in the dynamic flow. A correlation is shown between the suction side time-average shear rate near the trailing edge and the strength of the near-wake vortex shedding. Peaks in spectra of vertical velocity fluctuations associated with vortex shedding near the trailing edge are strongest when the suction side shear layer, which separates upstream of the trailing edge, most effectively induces roll-up of the pressure side shear

  4. Design and analysis of rotor systems with multiple trailing edge flaps and resonant actuators

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Sik

    The purpose of this thesis is to develop piezoelectric resonant actuation systems and new active control methods utilizing the multiple trailing-edge flaps' configuration for rotorcraft vibration suppression and blade loads control. An aeroelastic model is developed for a composite rotor blade with multiple trailing-edge flaps. The rotor blade airloads are calculated using quasi-steady blade element aerodynamics with a free wake model for rotor inflow. A compressible unsteady aerodynamics model is employed to accurately predict the incremental trailing edge flap airloads. Both the finite wing effect and actuator saturation for trailing-edge flaps are also included in an aeroelastic analysis. For a composite articulated rotor, a new active blade loads control method is developed and tested numerically. The concept involves straightening the blade by introducing dual trailing edge flaps. The objective function, which includes vibratory hub loads, bending moment harmonics and active flap control inputs, is minimized by an integrated optimal control/optimization process. A numerical simulation is performed for the steady-state forward flight of an advance ratio of 0.35. It is demonstrated that through straightening the rotor blade, which mimics the behavior of a rigid blade, both the bending moments and vibratory hub loads can be significantly reduced by 32% and 57%, respectively. An active vibration control method is developed and analyzed for a hingeless rotor. The concept involves deflecting each individual trailing-edge flap using a compact resonant actuation system. Each resonant actuation system could yield high authority, while operating at a single frequency. Parametric studies are conducted to explore the finite wing effect of trailing-edge flaps and actuator saturation. A numerical simulation has been performed for the steady-state forward flight (mu = 0.15 ˜ 0.35). It is demonstrated that multiple trailing-edge flap configuration with the resonant actuation

  5. Interaction between leading and trailing edge vortex shedding: effects of bluff body geometry

    NASA Astrophysics Data System (ADS)

    Taylor, Zachary; Kopp, Gregory; Gurka, Roi

    2011-11-01

    Elongated bluff bodies are distinguished from shorter bluff bodies (e.g., circular cylinders) by the fact that they have separating-reattaching flow at the leading edge as well as having vortex shedding at the trailing edge. Engineering examples of these bodies include heat exchanger fins and long-span suspension bridges. We have performed experiments on elongated bluff bodies of varying geometry. These experiments have been performed at Reynolds numbers O(104) based on the thickness of the model. Both surface pressure measurements (using 512 simultaneously sampled pressure taps) and PIV are used to quantify the flow fields of these bodies. The leading edge separation angle is controlled by changing the leading edge geometry. It is observed that the size of the leading edge separation bubble increases with increasing leading edge separation angle. As the size of the leading edge separation bubble increases, it is shown to continually decrease the shedding frequency for a given elongation ratio. It is suggested that the shedding frequency is diminished because the trailing edge vortex shedding is affected by the structures being shed from the leading edge separation bubble. The implications of this competition between leading and trailing edge flows will be explored.

  6. Airfoils for wind turbine

    SciTech Connect

    Tangler, J.L.; Somers, D.M.

    2000-05-30

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  7. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    2000-01-01

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  8. Transonic airfoil analysis and design using Cartesian coordinates

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1975-01-01

    An inverse numerical technique for designing transonic airfoils having a prescribed pressure distribution is presented. The method uses the full potential equation, inverse boundary conditions, and Cartesian coordinates. It includes simultaneous airfoil update and utilizes a direct-inverse approach that permits a logical method for controlling trailing edge closure. The method can also be used for the analysis of flowfields about specified airfoils. Comparison with previous results shows that accurate results can be obtained with a Cartesian grid. Examples show the application of the method to design aft-cambered and other airfoils specifically for transonic flight.

  9. Investigation of airfoil leading edge separation control with nanosecond plasma actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Cui, Y. D.; Zhao, Z. J.; Li, J.; Khoo, B. C.

    2016-11-01

    A combined numerical and experimental investigation of airfoil leading edge flow separation control with a nanosecond dielectric barrier discharge (DBD) plasma actuator is presented. Our study concentrates on describing dynamics of detailed flow actuation process and elucidating the nanosecond DBD actuation mechanism. A loose coupling methodology is employed to perform simulation, which consists of a self-similar plasma model for the description of pulsed discharge and two-dimensional Reynolds averaged Navier-Stokes (RANS) equations for the calculation of external airflow. A series of simulations of poststall flows around a NACA0015 airfoil is conducted with a Reynolds number range covering both low and high Re at Re=(0.05 ,0.15 ,1.2 ) ×106 . Meanwhile, wind-tunnel experiment is performed for two low Re flows to measure aerodynamic force on airfoil model and transient flow field with time-resolved particle image velocimetry (PIV). The PIV measurement provides possibly the clearest view of flow reattachment process under the actuation of a nanosecond plasma actuator ever observed in experiments, which is highly comparable to that predicted by simulation. It is found from the detailed simulation that the discharge-induced residual heat rather than shock wave plays a dominant role in flow control. For any leading edge separations, the preliminary flow reattachment is realized by residual heat-induced spanwise vortices. After that, the nanosecond actuator functions by continuing exciting flow instability at poststall attack angles or acting as an active trip near stall angle. As a result, the controlled flow is characterized by a train of repetitive, downstream moving vortices over suction surface or an attached turbulent boundary layer, which depends on both angle of attack and Reynolds number. The advection of residual temperature with external flow offers a nanosecond plasma actuator a lot of flexibility to extend its influence region. Animations are provided for

  10. Experimental Observations on the Deformation and Breakup of Water Droplets Near the Leading Edge of an Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Feo, Alex

    2011-01-01

    This work presents the results of an experimental study on droplet deformation and breakup near the leading edge of an airfoil. The experiment was conducted in the rotating rig test cell at the Instituto Nacional de Tecnica Aeroespacial (INTA) in Madrid, Spain. An airfoil model placed at the end of the rotating arm was moved at speeds of 50 to 90 m/sec. A monosize droplet generator was employed to produce droplets that were allowed to fall from above, perpendicular to the path of the airfoil at a given location. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging allowed observation of droplet deformation and breakup as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure from the high speed movies the horizontal and vertical displacement of the droplet against time. The velocity, acceleration, Weber number, Bond number, Reynolds number, and the drag coefficients were calculated along the path of a given droplet from beginning of deformation to breakup and/or hitting the airfoil. Results are presented for droplets with a diameter of 490 micrometers at airfoil speeds of 50, 60, 70, 80 and 90 m/sec

  11. Simulated big sagebrush regeneration supports predicted changes at the trailing and leading edges of distribution shifts

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Taylor, Kyle A.; Pennington, Victoria E.; Nelson, Kellen N.; Martin, Trace E.; Rottler, Caitlin M.; Lauenroth, William K.; Bradford, John B.

    2015-01-01

    Many semi-arid plant communities in western North America are dominated by big sagebrush. These ecosystems are being reduced in extent and quality due to economic development, invasive species, and climate change. These pervasive modifications have generated concern about the long-term viability of sagebrush habitat and sagebrush-obligate wildlife species (notably greater sage-grouse), highlighting the need for better understanding of the future big sagebrush distribution, particularly at the species' range margins. These leading and trailing edges of potential climate-driven sagebrush distribution shifts are likely to be areas most sensitive to climate change. We used a process-based regeneration model for big sagebrush, which simulates potential germination and seedling survival in response to climatic and edaphic conditions and tested expectations about current and future regeneration responses at trailing and leading edges that were previously identified using traditional species distribution models. Our results confirmed expectations of increased probability of regeneration at the leading edge and decreased probability of regeneration at the trailing edge below current levels. Our simulations indicated that soil water dynamics at the leading edge became more similar to the typical seasonal ecohydrological conditions observed within the current range of big sagebrush ecosystems. At the trailing edge, an increased winter and spring dryness represented a departure from conditions typically supportive of big sagebrush. Our results highlighted that minimum and maximum daily temperatures as well as soil water recharge and summer dry periods are important constraints for big sagebrush regeneration. Overall, our results confirmed previous predictions, i.e., we see consistent changes in areas identified as trailing and leading edges; however, we also identified potential local refugia within the trailing edge, mostly at sites at higher elevation. Decreasing

  12. Noise model for serrated trailing edges compared to wind tunnel measurements

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Bertagnolio, Franck; Shen, Wen Zhong; Madsen, Jesper

    2016-09-01

    A new CFD RANS based method to predict the far field sound pressure emitted from an aerofoil with serrated trailing edge has been developed. The model was validated by comparison to measurements conducted in the Virginia Tech Stability Wind Tunnel. The model predicted 3 dB lower sound pressure levels, but the tendencies for the different configurations were predicted correctly. Therefore the model can be used to optimise the serration geometry. A disadvantage of the new model is that the computational costs are significantly higher than for the Amiet model for a straight trailing edge. However, it is by decades faster than LES methods.

  13. Explanation of the effects of leading-edge tubercles on the aerodynamics of airfoils and finite wings

    NASA Astrophysics Data System (ADS)

    Saadat, Mehdi; Haj-Hariri, Hossein; Fish, Frank

    2010-11-01

    A computational study was conducted to explain the aerodynamic effect of leading edge tubercles on maximum lift coefficient, stall angle of attack (AoA), drag, and post stall characteristics for airfoils as well as finite wings. Past experiments demonstrated airfoils with leading edge tubercles do not improve Clmax, drag, or stall AoA but smoothen post stall characteristics to a great degree. In contrast to airfoils, finite wings with L.E. tubercles improved all aerodynamic characteristics. We explain the stall mechanism of the tubercled wing by considering each L.E. tubercle as a combination of a swept forward and a swept backward wing.There are 3 mechanisms (streamline curvature, accelerated stall, and upwash) that cause Clmax of airfoils with L.E. tubercles always be lower than that of smooth airfoils. We also identify two additional mechanisms which are responsible for improved post-stall characteristics of airfoils with L.E. tubercles. Finally, we discuss why finite wings with L.E. tubercles have higher Clmax and lower drag than their smooth L.E. counterparts by studying effects of wing tip, sweep, and taper ratio.

  14. Measurements in a leading-edge separation bubble due to a simulated airfoil ice accretion

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Khodadoust, A.; Spring, S. A.

    1992-01-01

    The separation bubble formed on an airfoil at low Reynolds number behind a simulated leading-edge glaze ice accretion is studied experimentally. Surface pressure and split hot-film measurements as well as flow visualization studies of the bubble reattachment point are reported. The simulated ice generates an adverse pressure gradient that causes a laminar separation bubble of the long bubble type to form. The boundary layer separates at a location on the ice accretion that is independent of angle of attack and reattaches at a downstream location 5-40 percent chord behind the leading edge, depending on the angle of attack. Velocity profiles show a large region of reverse flow that extends up from the airfoil surface as much as 2.5 percent chord. After reattachment, a thick distorted turbulent boundary layer exists. The separation bubble growth and reattachment are clearly seen in the plots of boundary-layer momentum thickness vs surface distance. Local minima and maxima in the boundary-layer momentum thickness development compare well with the shear layer transition point as indicated by the surface pressures and the reattachment point as measured from surface oil flow, respectively.

  15. Incidence angle effects on convected gust airfoil noise

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Myers, M. R.

    1983-01-01

    An analysis is developed which predicts the influence of airfoil mean loading on noise generation due to convected gusts. The theory is based on a linearization of the exact inviscid equations about a nonuniform compressible mean flow and the solution is developed using singular perturbation techniques. The case of a flat plate airfoil, at incidence angle alpha, interacting with three-dimensional disturbances is analyzed. It is found that in the vicinity of the airfoil leading and trailing edges, local regions are present which scale on the disturbance wavelength, with the noise generation concentrated in these regions. Away from the airfoil edges, the mean flow variation is found to be slow compared to the disturbance wavelength and no significant noise generation occurs. The mean flow variation near the leading edge generates additional noise by distorting the convected gust. The cumulative effect of the airfoil mean loading in the trailing edge region produces a 0(1) phase shift between the disturbances on the upper and lower surfaces of the airfoil. A corresponding 0(1) decrease, compared to the alpha = 0 case, is found in the noise generated at the trailing edge.

  16. Characterization and estimation of three-dimensional structure in unforced and forced blunt trailing edge wake flows

    NASA Astrophysics Data System (ADS)

    Clark, Heather

    Blunt trailing edge airfoils offer structural and aerodynamic advantages in modern wind turbine and aircraft applications. However, penalties are introduced concurrently by vortex shedding at separation. In particular, the adverse effects of increased drag and unsteady loading motivate the development of a control strategy for the blunt trailing edge wake. Closed-loop control is pursued for its potentially greater effectiveness and efficiency, relative to open-loop forcing. Toward this aim, the thesis addresses the need for estimation of the state from limited measurements. The wake of a blunt trailing edge body is investigated experimentally through simultaneous measurements of velocity and the spanwise distribution of fluctuating surface pressure. Passive forcing is implemented with an array of vortex generators that are arranged according to the characteristic wavelength of the dominant small-scale instability. The guiding considerations for the analysis and discussion are physical characterization and the development of estimation strategies based on surface pressure. Joint examination of the measured variables through reduced-order modelling, wavelet analysis, and conditional averaging yields insight regarding the unsteady, three-dimensional nature of the flow. The investigation of forcing is focused upon the influence of the perturbation on the surface pressure and the performance of estimation models in the modified wake. It is found that low-frequency amplitude modulation of the pressure results from variation of both the magnitude of velocity fluctuations and the vortex formation length. The forcing regularizes the shedding in time and space, as evidenced by the attenuated modulation and enhanced spanwise coherence of the amplitude and phase. Examination of this behaviour confirms the connection between amplitude modulation and vortex dislocations in bluff body wakes. Several properties of the estimation approaches hold in general. It is shown that the

  17. Wind tunnel evaluation of a truncated NACA 64-621 airfoil for wind turbine applications

    NASA Technical Reports Server (NTRS)

    Law, S. P.; Gregorek, G. M.

    1987-01-01

    An experimental program to measure the aerodynamic performance of a NACA 64-621 airfoil with a truncated trailing edge for wind turbine applications has been conducted in the Ohio State University Aeronautical and Astronautical Research Laboratory 6 in. by 21 in. pressurized wind tunnel. The blunted or trailing edge truncated (TET) airfoil has an advantage over similar trailing edge airfoils because it is able to streamline a larger spar structure, while also providing aerodynamic properties that are quite good. Surface pressures were measured and integrated to determine the lift, pressure drag, and moment coefficients over angles of attack ranging from -14 to +90 deg at Mach 0.2 and Reynolds numbers of 1,000,000 and 600,000. Results are compared to the NACA 0025, 0030, and 0035 thick airfoils with sharp trailing edges. Comparison shows that the 30 percent thick NACA 64-621-TET airfoil has higher maximum lift, higher lift curve slope, lower drag at higher lift coefficients, and higher chordwise force coefficient than similar thick airfoils with sharp trailing edges.

  18. Influence of airfoil geometry on delta wing leading-edge vortices and vortex-induced aerodynamics at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.

    1992-01-01

    An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.

  19. Wind turbine trailing-edge aerodynamic brake design

    SciTech Connect

    Quandt, G.

    1996-01-01

    This report describes the design of a centrifugally actuated aerodynamic-overspeed device for a horizontal-axis wind turbine. The device will meet the following criteria; (1) It will be effective for airfoil angles of attack 0{degrees} to 45{degrees}. (2) It will be stowed inside the blade profile prior to deployment. (3) It will be capable of offsetting the positive torque produced by the overall blade. (4) Hinge moments will be minimized to lower actuator loads and cost. (5) It will be evaluated as a potential power modulating active rotor-control system. A literature review of aerodynamic braking devices was conducted. Information from the literature review was used to conceptualize the most effective devices for subsequent testing and design. Wind-tunnel test data for several braking devices are presented in this report. Using the data for the most promising configuration, a preliminary design was developed for a MICON 65/13 wind turbine with Phoenix 7.9-m rotor blades.

  20. Cascade trailing-edge noise modeling using a mode-matching technique and the edge-dipole theory

    NASA Astrophysics Data System (ADS)

    Roger, Michel; François, Benjamin; Moreau, Stéphane

    2016-11-01

    An original analytical approach is proposed to model the broadband trailing-edge noise produced by high-solidity outlet guide vanes in an axial turbomachine. The model is formulated in the frequency domain and first in two dimensions for a preliminary assessment of the method. In a first step the trailing-edge noise sources of a single vane are shown to be equivalent to the onset of a so-called edge dipole, the direct field of which is expanded in a series of plane-wave modes. A criterion for the distance of the dipole to the trailing-edge and a scaling of its amplitude is defined to yield a robust model. In a second step the diffraction of each plane-wave mode is derived considering the cascade as an array of bifurcated waveguides and using a mode-matching technique. The cascade response is finally synthesized by summing the diffracted fields of all cut-on modes to yield upstream and downstream sound power spectral densities. The obtained spectral shapes are physically consistent and the present results show that upstream radiation is typically 3 dB higher than downstream radiation, which has been experimentally observed previously. Even though the trailing-edge noise sources are not vane-to-vane correlated their radiation is strongly determined by a cascade effect that consequently must be accounted for. The interest of the approach is that it can be extended to a three-dimensional annular configuration without resorting to a strip theory approach. As such it is a promising and versatile alternative to previously published methods.

  1. Broadband Noise Reduction of a Low-Speed Fan Noise Using Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through the use of rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a continuous trailing edge slot. Hollow blades with interior guide vanes create flow channels through which externally supplied air flows from the blade root to the trailing edge. A previous paper documented the substantial tonal reductions of this Trailing Edge Rotor Blowing (TERB) fan. This report documents the broadband characteristics of TERB. The Active Noise Control Fan (ANCF), located at the NASA Glenn Research Center, was used as the proof-of-concept test bed. Two-component hotwire data behind the rotor, unsteady surface pressures on the stator vane, and farfield directivity acoustic data were acquired at blowing rates of 1.1, 1.5, and 1.8 percent of the total fan mass flow. The results indicate a substantial reduction in the rotor wake turbulent velocity and in the stator vane unsteady surface pressures. Based on the physics of the noise generation, these indirect measurements indicate the prospect of broadband noise reduction. However, since the broadband noise generated by the ANCF is rotor-dominated, any change in the rotor-stator interaction broadband noise levels is barely distinguishable in the farfield measurements.

  2. Suppression of dynamic stall with a leading-edge slat on a VR-7 airfoil

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Tung, C.

    1993-01-01

    The VR-7 airfoil was experimentally studied with and without a leading-edge slat at fixed angles of attack from 0 deg to 30 deg at Re = 200,000 and for unsteady pitching motions described by alpha equals alpha(sub m) + 10 deg(sin(wt)). The models were two dimensional, and the test was performed in a water tunnel at Ames Research Center. The unsteady conditions ranged over Re equals 100,000 to 250,000, k equals 0.001 to 0.2, and alpha(sub m) = 10 deg to 20 deg. Unsteady lift, drag, and pitching-moment measurements were obtained along with fluorescent-dye flow visualizations. The addition of the slat was found to delay the static-drag and static-moment stall by about 5 degrees and to eliminate completely the development of a dynamic-stall vortex during unsteady motions that reached angles as high as 25 degrees. In all of the unsteady cases studied, the slat caused a significant reduction in the force and moment hysteresis amplitudes. The reduced frequency was found to have the greatest effect on the results, whereas the Reynolds number had little effect on the behavior of either the basic or the slatted airfoil. The slat caused a slight drag penalty at low angles of attack, but generally increased the lift/drag ratio when averaged over the full cycle of oscillation.

  3. Aeroacoustics and aerodynamic performance of a rotor with flatback airfoils.

    SciTech Connect

    Paquette, Joshua A.; Barone, Matthew Franklin; Christiansen, Monica; Simley, Eric

    2010-06-01

    The aerodynamic performance and aeroacoustic noise sources of a rotor employing flatback airfoils have been studied in field test campaign and companion modeling effort. The field test measurements of a sub-scale rotor employing nine meter blades include both performance measurements and acoustic measurements. The acoustic measurements are obtained using a 45 microphone beamforming array, enabling identification of both noise source amplitude and position. Semi-empirical models of flatback airfoil blunt trailing edge noise are developed and calibrated using available aeroacoustic wind tunnel test data. The model results and measurements indicate that flatback airfoil noise is less than drive train noise for the current test turbine. It is also demonstrated that the commonly used Brooks, Pope, and Marcolini model for blunt trailing edge noise may be over-conservative in predicting flatback airfoil noise for wind turbine applications.

  4. Two experimental supercritical laminar-flow-control swept-wing airfoils

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Dagenhart, J. Ray

    1987-01-01

    Two supercritical laminar-flow-control airfoils were designed for a large-chord swept-wing experiment in the Langley 8-Foot Transonic Pressure Tunnel where suction was provided through most of the model surface for boundary-layer control. The first airfoil was derived from an existing full-chord laminar airfoil by extending the trailing edge and making changes in the two lower-surface concave regions. The second airfoil differed from the first one in that it was designed for testing without suction in the forward concave region of the lower surface. Differences between the first airfoil and the one from which it was derived as well as between the first and second airfoils are discussed. Airfoil coordinates and predicted pressure distributions for the design normal Mach number of 0.755 and section lift coefficient of 0.55 are given for the three airfoils.

  5. Wind Tunnel Aeroacoustic Tests of Six Airfoils for Use on Small Wind Turbines: Preprint

    SciTech Connect

    Migliore, P.; Oerlemans, S.

    2003-12-01

    Aeroacoustic tests of seven airfoils were performed in an open jet anechoic wind tunnel. Six of the airfoils are candidates for use on small wind turbines operating at low Reynolds number. One airfoil was tested for comparison to benchmark data. Tests were conducted with and without boundary layer tripping. In some cases a turbulence grid was placed upstream in the test section to investigate inflow turbulence noise. An array of 48 microphones was used to locate noise sources and separate airfoil noise from extraneous tunnel noise. Trailing edge noise was dominant for all airfoils in clean tunnel flow. With the boundary layer untripped, several airfoils exhibited pure tones that disappeared after proper tripping was applied. In the presence of inflow turbulence, leading edge noise was dominant for all airfoils.

  6. Active Management of Flap-Edge Trailing Vortices

    NASA Technical Reports Server (NTRS)

    Greenblatt, David; Yao, Chung-Sheng; Vey, Stefan; Paschereit, Oliver C.; Meyer, Robert

    2008-01-01

    The vortex hazard produced by large airliners and increasingly larger airliners entering service, combined with projected rapid increases in the demand for air transportation, is expected to act as a major impediment to increased air traffic capacity. Significant reduction in the vortex hazard is possible, however, by employing active vortex alleviation techniques that reduce the wake severity by dynamically modifying its vortex characteristics, providing that the techniques do not degrade performance or compromise safety and ride quality. With this as background, a series of experiments were performed, initially at NASA Langley Research Center and subsequently at the Berlin University of Technology in collaboration with the German Aerospace Center. The investigations demonstrated the basic mechanism for managing trailing vortices using retrofitted devices that are decoupled from conventional control surfaces. The basic premise for managing vortices advanced here is rooted in the erstwhile forgotten hypothesis of Albert Betz, as extended and verified ingeniously by Coleman duPont Donaldson and his collaborators. Using these devices, vortices may be perturbed at arbitrarily long wavelengths down to wavelengths less than a typical airliner wingspan and the oscillatory loads on the wings, and hence the vehicle, are small. Significant flexibility in the specific device has been demonstrated using local passive and active separation control as well as local circulation control via Gurney flaps. The method is now in a position to be tested in a wind tunnel with a longer test section on a scaled airliner configuration. Alternatively, the method can be tested directly in a towing tank, on a model aircraft, a light aircraft or a full-scale airliner. The authors believed that this method will have significant appeal from an industry perspective due to its retrofit potential with little to no impact on cruise (devices tucked away in the cove or retracted); low operating power

  7. Active aerodynamic control of wake-airfoil interaction noise - Experiment

    NASA Astrophysics Data System (ADS)

    Simonich, J. C.; Lavrich, P. L.; Sofrin, T. G.; Topol, D. A.

    A proof of concept experiment is conducted that shows the potential for active aerodynamic control of rotor wake/stator interaction noise in a simplified manner. A single airfoil model representing the stator was fitted with a moveable trailing edge flap controlled by a servo motor. The control system moves the motor driven flap in the correct angular displacement phase and rate to reduce the unsteady load on the airfoil during the wake interaction.

  8. Effect of Trailing Edge Flow Injection on Fan Noise and Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian; Woodward, Richard P.; Podboy, Gary G.

    2006-01-01

    An experimental investigation using trailing edge blowing for reducing fan rotor/guide vane wake interaction noise was completed in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel. Data were acquired to measure noise, aerodynamic performance, and flow features for a 22" tip diameter fan representative of modern turbofan technology. The fan was designed to use trailing edge blowing to reduce the fan blade wake momentum deficit. The test objective was to quantify noise reductions, measure impacts on fan aerodynamic performance, and document the flow field using hot-film anemometry. Measurements concentrated on approach, cutback, and takeoff rotational speeds as those are the primary conditions of acoustic interest. Data are presented for a 2% (relative to overall fan flow) trailing edge injection rate and show a 2 dB reduction in Overall Sound Power Level (OAPWL) at all fan test speeds. The reduction in broadband noise is nearly constant and is approximately 1.5 dB up to 20 kHz at all fan speeds. Measurements of tone noise show significant variation, as evidenced by reductions of up to 6 dB in the 2 BPF tone at 6700 rpm.: and increases of nearly 2 dB for the 4 BPF tone at approach speed. Aerodynamic performance measurements show the fan with 2 % injection has an overall efficiency that is comparable to the baseline fan and operates, as intended, with nearly the same pressure ratio and mass flow parameters. Hot-film measurements obtained at the approach operating condition indicate that mean blade wake filling in the tip region was not as significant as expected. This suggests that additional acoustic benefits could be realized if the trailing edge blowing could be modified to provide better filling of the wake momentum deficit. Nevertheless, the hot-film measurements indicate that the trailing edge blowing provided significant reductions in blade wake turbulence. Overall, these results indicate that further work may be required to fully understand the proper

  9. On the acoustic radiation of a pitching airfoil

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2013-07-01

    We examine the acoustic far field of a thin elastic airfoil, immersed in low-Mach non-uniform stream flow, and actuated by small-amplitude sinusoidal pitching motion. The near-field fluid-structure interaction problem is analyzed using potential thin-airfoil theory, combined with a discrete vortex model to describe the evolution of airfoil trailing edge wake. The leading order dipole-sound signature of the system is investigated using Powell-Howe acoustic analogy. Compared with a pitching rigid airfoil, the results demonstrate a two-fold effect of structure elasticity on airfoil acoustic field: at actuation frequencies close to the system least stable eigenfrequency, elasticity amplifies airfoil motion amplitude and associated sound levels; however, at frequencies distant from this eigenfrequency, structure elasticity acts to absorb system kinetic energy and reduce acoustic radiation. In the latter case, and with increasing pitching frequency ωp, a rigid-airfoil setup becomes significantly noisier than an elastic airfoil, owing to an ω _p^{5/2} increase of its direct motion noise component. Unlike rigid airfoil signature, it is shown that wake sound contribution to elastic airfoil radiation is significant for all ωp. Remarkably, this contribution contains, in addition to the fundamental pitching frequency, its odd multiple harmonics, which result from nonlinear interactions between the airfoil and the wake. The results suggest that structure elasticity may serve as a viable means for design of flapping flight noise control methodologies.

  10. Experimental investigation of the transonic flow around the leading edge of an eroded fan airfoil

    NASA Astrophysics Data System (ADS)

    Klinner, Joachim; Hergt, Alexander; Willert, Christian

    2014-09-01

    The influence of leading edge modification on the time-averaged and instantaneous flow around a fan airfoil is investigated by particle image velocimetry (PIV), schlieren imaging and high-speed shock shadowgraphs in a transonic cascade windtunnel. In addition to a global characterization of the time-averaged flow using PIV, the instantaneous passage shock position was extracted from single-shot PIV measurements by matching the tracer velocity across the normal shock with an exponential fit. The instantaneous shock positions are assigned to a probability density distribution in order to obtain the average position and the range of fluctuations of the eroded and reference leading edge. The profiles are used to estimate the response time of the particles to the normal shock which was found to be in the sub-microsecond range. Averaged PIV measurements and the probability density of shock position from both geometries are obtained at near stall and choked conditions. In order to extract the frequency range of the shock motion, the shadow of the shock wave was tracked using high-speed shadowgraphy. The paper also provides details on the experimental implementation such as a specifically designed light-sheet probe.

  11. Performance of Swashplateless Ultralight Helicopter Rotor with Trailing-edge Flaps for Primary Flight Control

    NASA Technical Reports Server (NTRS)

    Shen, Jin-Wei; Chopra, Inderjit

    2003-01-01

    The objective of present study is to evaluate the rotor performance, trailing-edge deflections and actuation requirement of a helicopter rotor with trailing-edge flap system for primary flight control. The swashplateless design is implemented by modifying a two-bladed teetering rotor of an production ultralight helicopter through the use of plain flaps on the blades, and by replacing the pitch link to fixed system control system assembly with a root spring. A comprehensive rotorcraft analysis based on UMARC is carried out to obtain the results for both the swashplateless and a conventional baseline rotor configuration. The predictions show swashplateless configuration achieve superior performance than the conventional rotor attributed from reduction of parasite drag by eliminating swashplate mechanic system. It is indicated that optimal selection of blade pitch index angle, flap location, length, and chord ratio reduces flap deflections and actuation requirements, however, has virtually no effect on rotor performance.

  12. Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements

    SciTech Connect

    Lee, Ching-Pang; Heneveld, Benjamin E.; Brown, Glenn E.; Klinger, Jill

    2015-05-26

    A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.

  13. Flat Plate Wake Velocity Statistics Obtained With Circular And Elliptic Trailing Edges

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2016-01-01

    The near wake of a flat plate with circular and elliptic trailing edges is investigated with data from direct numerical simulations. The plate length and thickness are the same in both cases. The separating boundary layers are turbulent and statistically identical. Therefore the wake is symmetric in the two cases. The emphasis in this study is on a comparison of the wake-distributions of velocity components, normal intensity and fluctuating shear stress obtained in the two cases.

  14. Serrated trailing edges for improving lift and drag characteristics of lifting surfaces

    NASA Technical Reports Server (NTRS)

    Vijgen, Paul M. H. W. (Inventor); Howard, Floyd G. (Inventor); Bushnell, Dennis M. (Inventor); Holmes, Bruce J. (Inventor)

    1992-01-01

    An improvement in the lift and drag characteristics of a lifting surface is achieved by attaching a serrated panel to the trailing edge of the lifting surface. The serrations may have a saw-tooth configuration, with a 60 degree included angle between adjacent serrations. The serrations may vary in shape and size over the span-wise length of the lifting surface, and may be positioned at fixed or adjustable deflections relative to the chord of the lifting surface.

  15. Optimization of a Turbine Blade Trailing Edge using Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick; Talnikar, Chaitanya; Bodart, Julien; Pierce, Brian; Bose, Sanjeeb; Wang, Qiqi

    2014-11-01

    As for many turbomachinery components, heat transfer and pressure loss are the key quantities influencing the design of turbine blades. To compute correct heat transfer and pressure loss data, flow features such as boundary layer transition and flow separation must be captured accurately. While traditional Computation Fluid Dynamics models such as Reynolds Averaged Navier-Stokes (RANS) struggle to capture these features accurately, Large Eddy Simulation (LES) is able to. This talk discusses an optimization study of a turbine blade trailing edge. The design of turbine blades involves two classical competing objectives: minimizing pressure loss and minimizing heat transfer to the blade. This trade-off is especially apparent for the design of the blade's trailing edge. The study was conducted using a novel Bayesian optimization technique developed by the authors. The optimization algorithm is combined with a massively parallel LES solver and the results for a number of trailing edge designs including the optimal geometry will be presented and their implications for turbine blade design will be discussed.

  16. Numerical and experimental investigation of a beveled trailing-edge flow field and noise emission

    NASA Astrophysics Data System (ADS)

    van der Velden, W. C. P.; Pröbsting, S.; van Zuijlen, A. H.; de Jong, A. T.; Guan, Y.; Morris, S. C.

    2016-12-01

    Efficient tools and methodology for the prediction of trailing-edge noise experience substantial interest within the wind turbine industry. In recent years, the Lattice Boltzmann Method has received increased attention for providing such an efficient alternative for the numerical solution of complex flow problems. Based on the fully explicit, transient, compressible solution of the Lattice Boltzmann Equation in combination with a Ffowcs-Williams and Hawking aeroacoustic analogy, an estimation of the acoustic radiation in the far field is obtained. To validate this methodology for the prediction of trailing-edge noise, the flow around a flat plate with an asymmetric 25° beveled trailing edge and obtuse corner in a low Mach number flow is analyzed. Flow field dynamics are compared to data obtained experimentally from Particle Image Velocimetry and Hot Wire Anemometry, and compare favorably in terms of mean velocity field and turbulent fluctuations. Moreover, the characteristics of the unsteady surface pressure, which are closely related to the acoustic emission, show good agreement between simulation and experiment. Finally, the prediction of the radiated sound is compared to the results obtained from acoustic phased array measurements in combination with a beamforming methodology. Vortex shedding results in a strong narrowband component centered at a constant Strouhal number in the acoustic spectrum. At higher frequency, a good agreement between simulation and experiment for the broadband noise component is obtained and a typical cardioid-like directivity is recovered.

  17. Pneumatic artificial muscles for trailing edge flap actuation: a feasibility study

    NASA Astrophysics Data System (ADS)

    Woods, Benjamin K. S.; Kothera, Curt S.; Sirohi, Jayant; Wereley, Norman M.

    2011-10-01

    In this study a novel aircraft trailing edge flap actuation system was developed and tested. Pneumatic artificial muscles (PAMs) were used as the driving elements of this system to demonstrate their feasibility and utility as an alternative aerospace actuation technology. A prototype flap/actuator system was integrated into a model wing section and tested on the bench-top under simulated airloads for flight at 100 m s-1 (M = 0.3) and in an open-jet wind tunnel at free stream velocities ranging up to 45 m s-1 (M = 0.13). Testing was performed for actuator pressures ranging from 0.069 to 0.62 MPa (10-90 psi) and actuation frequencies from 0.1 to 31 Hz. Results show that the PAM-driven trailing edge flap system can generate substantial and sustainable dynamic deflections, thereby proving the feasibility of using pneumatic artificial muscle actuators in a trailing edge flap system. Key issues limiting system performance are identified, that should be resolved in future research.

  18. AFSMO/AFSCL- AIRFOIL SMOOTHING AND SCALING

    NASA Technical Reports Server (NTRS)

    Morgan, H. L

    1994-01-01

    Since its early beginnings, NASA has been actively involved in the design and testing of airfoil sections for a wide variety of applications. Recently a set of programs has been developed to smooth and scale arbitrary airfoil coordinates. The smoothing program, AFSMO, utilizes both least-squares polynomial and least-squares cubic-spline techniques to iteratively smooth the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. The camber and thickness distribution of the smooth airfoil are also computed. The scaling program, AFSCL, may then be used to scale the thickness distribution generated by the smoothing program to a specified maximum thickness. Once the thickness distribution has been scaled, it is combined with the camber distribution to obtain the final scaled airfoil contour. The airfoil smoothing and scaling programs are written in FORTRAN IV for batch execution and have been implemented on a CDC CYBER 170 series computer with a central memory requirement of approximately 70K (octal) of 60 bit words. Both programs generate plotted output via CALCOMP type plotting calls. These programs were developed in 1983.

  19. Smart helicopter rotor with piezoelectric bender actuated trailing-edge flaps

    NASA Astrophysics Data System (ADS)

    Koratkar, Nikhil Ashok

    The main focus of this research is on the development of a Mach-scaled active rotor blade with trailing-edge flaps for vibration control. A solid state piezoelectric bender coupled with a rod-cusp single stage stroke amplifier is used to drive a plane trailing-edge flap that is completely integrated into the blade profile. Before embarking on the experimental test program, an analytic model was developed for the active rotor blade in hovering flight. The analysis involved the formulation of the coupled actuator-rotor equations of motion and their solution using a finite element method in space and time. The goal was to use this analysis in design studies and performance evaluation of the active rotor system. The proof-of-concept study was extended to Mach-scale. A comprehensive aeroelastic rotor code (UMARC) was used to determine the optimal trailing-edge flap span, chord and spanwise location. This design study converged to a 8% span, 20% chord flap located at 75% spanwise location with associated flap deflection requirements of +/-4 deg (at Mach-scaled operating speed of 1800 RPM). The 4-bladed Mach-scaled model was tested in Hover at 1800 RPM (tip Mach number 0.45). Flap deflection amplitudes of +/-4 to +/-6 deg were achieved in the 1--5/rev frequency range at 1800 RPM. The open-loop hover tests also showed that the actuator-flap control authority increases dramatically when the trailing-edge flap excitation frequency is close to the blade flap-bending and torsion natural frequencies. The 4-bladed Mach-scaled model was tested in the Glenn L. Martin wind tunnel to evaluate actuator-flap performance in forward flight. These tests consisted of open loop single frequency tests as well as closed loop vibration control tests conducted in conjunction with a neuro-controller. For the open-loop tests, the trailing-edge flap deflections ranged from +/-4 to +/-6 deg in the 1--5/rev frequency range and were quite insensitive to variations in the rotor collective pitch and

  20. Tests of Four Full-scale Propellers to Determine the Effect of Trailing-edge Extensions on Propeller Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Maynard, Julian D.; Evans, Albert J

    1945-01-01

    Propellers with trailing-edge extensions were studied to determine aerodynamic characteristics. Trailing-edge extension increased power absorbed by propeller with little loss in efficiency. Power coefficient for maximum efficiency was greater for 20% camber type extension than for 20% straight type extension over range of advance ratio of 1.0 to 2.5 although camber type was less efficient. Efficiency was about the same for cruising and high-speed at a high power coefficient for propeller with extension.

  1. Turbine airfoil to shroud attachment method

    SciTech Connect

    Campbell, Christian X; Kulkarni, Anand A; James, Allister W; Wessell, Brian J; Gear, Paul J

    2014-12-23

    Bi-casting a platform (50) onto an end portion (42) of a turbine airfoil (31) after forming a coating of a fugitive material (56) on the end portion. After bi-casting the platform, the coating is dissolved and removed to relieve differential thermal shrinkage stress between the airfoil and platform. The thickness of the coating is varied around the end portion in proportion to varying amounts of local differential process shrinkage. The coating may be sprayed (76A, 76B) onto the end portion in opposite directions parallel to a chord line (41) of the airfoil or parallel to a mid-platform length (80) of the platform to form respective layers tapering in thickness from the leading (32) and trailing (34) edges along the suction side (36) of the airfoil.

  2. Cold-air annular-cascade investigation of aerodynamic performance of core-engine-cooled turbine vanes. 2: Pressure surface trailing edge ejection and split trailing edge ejection

    NASA Technical Reports Server (NTRS)

    Mclallin, K. L.; Goldman, L. J.

    1976-01-01

    The aerodynamic performance of two trailing edge ejection cooling configurations of a core-engine stator vane were experimentally determined in an ambient inlet-air full-annular cascade where three-dimensional effects could be obtained. The tests were conducted at the design mean-radius ideal aftermixed critical velocity ratio of 0.778. Overall vane aftermixed thermodynamic and primary efficiencies were obtained over a range of coolant flows to about 10 percent of the primary flow at a primary to coolant total temperature ratio of 1.0. The radial variation in efficiency and the circumferential and radial variations in vane-exit total pressure were determined. Comparisons are made with the solid (uncooled) vane.

  3. Identifying Sources of Lift Production on Rapidly Pitching Trailing Edge Flaps

    NASA Astrophysics Data System (ADS)

    Mancini, Peter; Jones, Anya; Ol, Michael

    2016-11-01

    Recent work has delved into the design and quantification of the aerodynamic response of large trailing edge flaps. Ultimately, these flaps would be used as a control mechanism to provide an immediate aerodynamic response to the vehicle, e.g. in the event of a gust encounter. The present work explores the individual sources and contributions of lift in the case of a large, rapidly pitching trailing edge flap. The flap is 50% of the chord length, and thus produces large acceleration and pitch rate terms that dominate the lift production. In the experiment and simulations presented here, the front element remains fixed at a constant angle of attack, while the rear element pitches to a final incidence angle, which in this study ranges from 5 degrees to 40 degrees. Although the front element does not pitch throughout the motion, it is important to consider the time history of the lift distribution on that wing section and assess whether the rapid pitching of the aft element affects the forces experienced on the stationary front element. These results are then used to suggest a simplified method for predicting lift production of a wing with a large trailing flap.

  4. Blowing Circulation Control on a Seaplane Airfoil

    NASA Astrophysics Data System (ADS)

    Guo, B. D.; Liu, P. Q.; Qu, Q. L.

    2011-09-01

    RANS simulations are presented for blowing circulation control on a seaplane airfoil. Realizable k-epsilon turbulent model and pressure-based coupled algorithm with second-order discretization were adopted to simulate the compressible flow. Both clear and simple flap configuration were simulated with blowing momentum coefficient Cμ = 0, 0.15 and 0.30. The results show that blowing near the airfoil trailing edge could enhance the Coanda effect, delay the flow separation, and increase the lift coefficient dramatically. The blowing circulation control is promising to apply to taking off and landing of an amphibious aircraft or seaplane.

  5. Validation and Analysis of Numerical Results for a Two-Pass Trapezoidal Channel With Different Cooling Configurations of Trailing Edge.

    PubMed

    Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V; Fransson, Torsten H

    2013-01-01

    High inlet temperatures in a gas turbine lead to an increase in the thermal efficiency of the gas turbine. This results in the requirement of cooling of gas turbine blades/vanes. Internal cooling of the gas turbine blade/vanes with the help of two-pass channels is one of the effective methods to reduce the metal temperatures. In particular, the trailing edge of a turbine vane is a critical area, where effective cooling is required. The trailing edge can be modeled as a trapezoidal channel. This paper describes the numerical validation of the heat transfer and pressure drop in a trapezoidal channel with and without orthogonal ribs at the bottom surface. A new concept of ribbed trailing edge has been introduced in this paper which presents a numerical study of several trailing edge cooling configurations based on the placement of ribs at different walls. The baseline geometries are two-pass trapezoidal channels with and without orthogonal ribs at the bottom surface of the channel. Ribs induce secondary flow which results in enhancement of heat transfer; therefore, for enhancement of heat transfer at the trailing edge, ribs are placed at the trailing edge surface in three different configurations: first without ribs at the bottom surface, then ribs at the trailing edge surface in-line with the ribs at the bottom surface, and finally staggered ribs. Heat transfer and pressure drop is calculated at Reynolds number equal to 9400 for all configurations. Different turbulent models are used for the validation of the numerical results. For the smooth channel low-Re k-ɛ model, realizable k-ɛ model, the RNG k-ω model, low-Re k-ω model, and SST k-ω models are compared, whereas for ribbed channel, low-Re k-ɛ model and SST k-ω models are compared. The results show that the low-Re k-ɛ model, which predicts the heat transfer in outlet pass of the smooth channels with difference of +7%, underpredicts the heat transfer by -17% in case of ribbed channel compared to

  6. High-Lift System for a Supercritical Airfoil: Simplified by Active Flow Control

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Schaeffler, Norman W.; Lin, John C.

    2007-01-01

    Active flow control wind tunnel experiments were conducted in the NASA Langley Low-Turbulence Pressure Tunnel using a two-dimensional supercritical high-lift airfoil with a 15% chord hinged leading-edge flap and a 25% chord hinged trailing-edge flap. This paper focuses on the application of zero-net-mass-flux periodic excitation near the airfoil trailing edge flap shoulder at a Mach number of 0.1 and chord Reynolds numbers of 1.2 x 10(exp 6) to 9 x 10(exp 6) with leading- and trailing-edge flap deflections of 25 deg. and 30 deg., respectively. The purpose of the investigation was to increase the zero-net-mass-flux options for controlling trailing edge flap separation by using a larger model than used on the low Reynolds number version of this model and to investigate the effect of flow control at higher Reynolds numbers. Static and dynamic surface pressures and wake pressures were acquired to determine the effects of flow control on airfoil performance. Active flow control was applied both upstream of the trailing edge flap and immediately downstream of the trailing edge flap shoulder and the effects of Reynolds number, excitation frequency and amplitude are presented. The excitations around the trailing edge flap are then combined to control trailing edge flap separation. The combination of two closely spaced actuators around the trailing-edge flap knee was shown to increase the lift produced by an individual actuator. The phase sensitivity between two closely spaced actuators seen at low Reynolds number is confirmed at higher Reynolds numbers. The momentum input required to completely control flow separation on the configuration was larger than that available from the actuators used.

  7. The acoustics and unsteady wall pressure of a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Silver, Jonathan C.

    A Circulation Control (CC) airfoil uses a wall jet exiting onto a rounded trailing edge to generate lift via the Coanda effect. The aerodynamics of the CC airfoil have been studied extensively. The acoustics of the airfoil are, however, much less understood. The primary goal of the present work was to study the radiated sound and unsteady surface pressures of a CC airfoil. The focus of this work can be divided up into three main categories: characterizing the unsteady surface pressures, characterizing the radiated sound, and understanding the acoustics from surface pressures. The present work is the first to present the unsteady surface pressures from the trailing edge cylinder of a circulation control airfoil. The auto-spectral density of the unsteady surface pressures at various locations around the trailing edge are presented over a wide range of the jets momentum coefficient. Coherence of pressure and length scales were computed and presented. Single microphone measurements were made at a range of angles for a fixed observer distance in the far field. Spectra are presented for select angles to show the directivity of the airfoil's radiated sound. Predictions of the acoustics were made from unsteady surface pressures via Howe's curvature noise model and a modified Curle's analogy. A summary of the current understanding of the acoustics from a CC airfoil is given along with suggestions for future work.

  8. Turbine airfoil fabricated from tapered extrusions

    DOEpatents

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  9. Near-wall serpentine cooled turbine airfoil

    SciTech Connect

    Lee, Ching-Pang

    2013-09-17

    A serpentine coolant flow path (54A-54G) formed by inner walls (50, 52) in a cavity (49) between pressure and suction side walls (22, 24) of a turbine airfoil (20A). A coolant flow (58) enters (56) an end of the airfoil, flows into a span-wise channel (54A), then flows forward (54B) over the inner surface of the pressure side wall, then turns behind the leading edge (26), and flows back along a forward part of the suction side wall, then follows a loop (54E) forward and back around an inner wall (52), then flows along an intermediate part of the suction side wall, then flows into an aft channel (54G) between the pressure and suction side walls, then exits the trailing edge (28). This provides cooling matched to the heating topography of the airfoil, minimizes differential thermal expansion, revives the coolant, and minimizes the flow volume needed.

  10. KRISTINA: Kinematic rib-based structural system for innovative adaptive trailing edge

    NASA Astrophysics Data System (ADS)

    Pecora, R.; Amoroso, F.; Magnifico, M.; Dimino, I.; Concilio, A.

    2016-04-01

    Nature teaches that the flight of the birds succeeds perfectly since they are able to change the shape of their wings in a continuous manner. The careful observation of this phenomenon has re-introduced in the recent research topics the study of "metamorphic" wing structures; these innovative architectures allow for the controlled wing shape adaptation to different flight conditions with the ultimate goal of getting desirable improvements such as the increase of aerodynamic efficiency or load control effectiveness. In this framework, the European research project SARISTU aimed at combining morphing and smart ideas to the leading edge, the trailing edge and the winglet of a large commercial airplane (EASA CS25 category) while assessing integrated technologies validation through high-speed wind tunnel test on a true scale outer wing segment. The design process of the adaptive trailing edge (ATED) addressed by SARISTU is here outlined, from the conceptual definition of the camber-morphing architecture up to the assessment of the device executive layout. Rational design criteria were implemented in order to preliminarily define ATED structural layout and the general configuration of the embedded mechanisms enabling morphing under the action of aerodynamic loads. Advanced FE analyses were then carried out and the robustness of adopted structural arrangements was proven in compliance with applicable airworthiness requirements.

  11. Multiple element airfoils optimized for maximum lift coefficient.

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Chen, A. W.

    1972-01-01

    Optimum airfoils in the sense of maximum lift coefficient are obtained for incompressible fluid flow at large Reynolds number. The maximum lift coefficient is achieved by requiring that the turbulent skin friction be zero in the pressure rise region on the airfoil upper surface. Under this constraint, the pressure distribution is optimized. The optimum pressure distribution is a function of Reynolds number and the trailing edge velocity. Geometries of those airfoils which will generate these optimum pressure distributions are obtained using a direct-iterative method which is developed in this study. This method can be used to design airfoils consisting of any number of elements. Numerical examples of one- and two-element airfoils are given. The maximum lift coefficients obtained range from 2 to 2.5.

  12. Nonlinear effects of flow unsteadiness on the acoustic radiation of a heaving airfoil

    NASA Astrophysics Data System (ADS)

    Manela, Avshalom

    2013-12-01

    The study considers the combined effects of boundary animation (small-amplitude heaving) and incoming flow unsteadiness (incident vorticity) on the vibroacoustic signature of a thin rigid airfoil in low-Mach number flow. The potential-flow problem is analysed using the Brown and Michael equation, yielding the incident vortex trajectory and time evolution of trailing edge wake. The dynamical description serves as an effective source term to evaluate the far-field sound using Powell-Howe analogy. The results identify the fluid-airfoil system as a dipole-type source, and demonstrate the significance of nonlinear eddy-airfoil interactions on the acoustic radiation. Based on the value of scaled heaving frequency ωa/U (with ω the dimensional heaving frequency, a the airfoil half-chord, and U the mean flow speed), the system behaviour can be divided into two characteristic regimes: (i) for ωa/U≪1, the effect of heaving is minor, and the acoustic response is well approximated by considering the interaction of a line vortex with a stationary airfoil; (ii) for ωa/U≫1, the impact of heaving is dominant, radiating sound through an “airfoil motion” dipole oriented along the direction of heaving. In between (for ωa/U~O(1)), an intermediate regime takes place. The results indicate that trailing edge vorticity has a two-fold impact on the acoustic far field: while reducing pressure fluctuations generated by incident vortex interaction with the airfoil, trailing edge vortices transmit sound along the mean-flow direction, characterized by airfoil heaving frequency. The “silencing” effect of trailing edge vorticity is particularly efficient when the incident vortex passes close to the airfoil trailing edge: at that time, application of the Kutta condition implies the release of a trailing edge vortex in the opposite direction to the incident vortex; the released vortex then detaches from the airfoil and follows the incident vortex, forming a “silent” vortex pair

  13. Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the NASA Gulfstream GIII test bed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight.

  14. Transonic aerodynamic characteristics of a supercritical-wing transport model with trailing-edge controls

    NASA Technical Reports Server (NTRS)

    Mann, M. J.; Langhans, R. A.

    1977-01-01

    The effects of wing trailing-edge control surfaces on the static transonic aerodynamic characteristics of a transport configuration with a supercritical wing were studied. The configuration was tested with both an area-ruled fuselage and a cylindrical fuselage. The Mach number range was from 0.80 to 0.96 and the angle of attack range was from -1 deg to 12 deg. The Reynolds number was 1,580,000 based on the mean aerodynamic chord. Tabular data are presented.

  15. Optimization of the blade trailing edge geometric parameters for a small scale ORC turbine

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Zhuge, W. L.; Peng, J.; Liu, S. J.; Zhang, Y. J.

    2013-12-01

    In general, the method proposed by Whitfield and Baines is adopted for the turbine preliminary design. In this design procedure for the turbine blade trailing edge geometry, two assumptions (ideal gas and zero discharge swirl) and two experience values (WR and γ) are used to get the three blade trailing edge geometric parameters: relative exit flow angle β6, the exit tip radius R6t and hub radius R6h for the purpose of maximizing the rotor total-to-static isentropic efficiency. The method above is established based on the experience and results of testing using air as working fluid, so it does not provide a mathematical optimal solution to instruct the optimization of geometry parameters and consider the real gas effects of the organic, working fluid which must be taken into consideration for the ORC turbine design procedure. In this paper, a new preliminary design and optimization method is established for the purpose of reducing the exit kinetic energy loss to improve the turbine efficiency ηts, and the blade trailing edge geometric parameters for a small scale ORC turbine with working fluid R123 are optimized based on this method. The mathematical optimal solution to minimize the exit kinetic energy is deduced, which can be used to design and optimize the exit shroud/hub radius and exit blade angle. And then, the influence of blade trailing edge geometric parameters on turbine efficiency ηts are analysed and the optimal working ranges of these parameters for the equations are recommended in consideration of working fluid R123. This method is used to modify an existing ORC turbine exit kinetic energy loss from 11.7% to 7%, which indicates the effectiveness of the method. However, the internal passage loss increases from 7.9% to 9.4%, so the only way to consider the influence of geometric parameters on internal passage loss is to give the empirical ranges of these parameters, such as the recommended ranges that the value of γ is at 0.3 to 0.4, and the value

  16. The Effect of Aerodynamic Evaluators on the Multi-Objective Optimization of Flatback Airfoils

    NASA Astrophysics Data System (ADS)

    Miller, M.; Slew, K. Lee; Matida, E.

    2016-09-01

    With the long lengths of today's wind turbine rotor blades, there is a need to reduce the mass, thereby requiring stiffer airfoils, while maintaining the aerodynamic efficiency of the airfoils, particularly in the inboard region of the blade where structural demands are highest. Using a genetic algorithm, the multi-objective aero-structural optimization of 30% thick flatback airfoils was systematically performed for a variety of aerodynamic evaluators such as lift-to-drag ratio (Cl/Cd), torque (Ct), and torque-to-thrust ratio (Ct/Cn) to determine their influence on airfoil shape and performance. The airfoil optimized for Ct possessed a 4.8% thick trailing-edge, and a rather blunt leading-edge region which creates high levels of lift and correspondingly, drag. It's ability to maintain similar levels of lift and drag under forced transition conditions proved it's insensitivity to roughness. The airfoil optimized for Cl/Cd displayed relatively poor insensitivity to roughness due to the rather aft-located free transition points. The Ct/Cn optimized airfoil was found to have a very similar shape to that of the Cl/Cd airfoil, with a slightly more blunt leading-edge which aided in providing higher levels of lift and moderate insensitivity to roughness. The influence of the chosen aerodynamic evaluator under the specified conditions and constraints in the optimization of wind turbine airfoils is shown to have a direct impact on the airfoil shape and performance.

  17. Plasma Flow Control Optimized Airfoil

    NASA Astrophysics Data System (ADS)

    Voikov, Vladimir; Patel, Mehul

    2005-11-01

    Recent advances in flow control research have demonstrated that plasma actuators can be efficient in different aerodynamic applications, particularly in providing flight control without conventional moving surfaces. The concept involves the use of a laminar airfoil design that employs a separation ramp at the trailing edge that can be manipulated by a plasma actuator to control lift, similar to trailing-edge flaps. The advantages are lower drag by a combination of the laminar flow design, and elimination of parasitic drag associated with wing-flap junctions. This work involves numerical simulations and experiments on a HSNLF(1)-0213 airfoil. The numerical results are obtained using an unsteady, compressible Navier-Stokes simulation that includes a model for the plasma actuators. The experiments are performed on a 2-D airfoil section that is mounted on a lift-drag force balance. The results demonstrate lift enhancement produced by the plasma actuator that is comparable to a plane flap. They also reveal an optimum actuator unsteady frequency that scales with the length of the separated region and local velocity, and is associated with the generation of a train of spanwise vortices. Other scaling including the effect of Reynolds number is presented.

  18. High-flaps for natural laminar flow airfoils

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L.

    1986-01-01

    A review of the NACA and NASA low-drag airfoil research is presented with particular emphasis given to the development of mechanical high-lift flap systems and their application to general aviation aircraft. These flap systems include split, plain, single-slotted, and double-slotted trailing-edge flaps plus slat and Krueger leading-edge devices. The recently developed continuous variable-camber high-lift mechanism is also described. The state-of-the-art of theoretical methods for the design and analysis of multi-component airfoils in two-dimensional subsonic flow is discussed, and a detailed description of the Langley MCARF (Multi-Component Airfoil Analysis Program) computer code is presented. The results of a recent effort to design a single- and double-slotted flap system for the NASA high speed natural laminar flow (HSNLF) (1)-0213 airfoil using the MCARF code are presented to demonstrate the capabilities and limitations of the code.

  19. Flow Phenomena in the Very Near Wake of a Flat Plate with a Circular Trailing Edge

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    The very near wake of a flat plate with a circular trailing edge, exhibiting pronounced shedding of wake vortices, is investigated with data from a direct numerical simulation. The separating boundary layers are turbulent and statistically identical thus resulting in a wake that is symmetric in the mean. The focus here is on the instability of the detached shear layers, the evolution of rib-vortex induced localized regions of reverse flow that detach from the main body of reverse flow in the trailing edge region and convect downstream, and phaseaveraged velocity statistics in the very near wake. The detached shear layers are found to exhibit unstable behavior intermittently, including the development of shear layer vortices as in earlier cylinder flow investigations with laminar separating boundary layers. Only a small fraction of the separated turbulent boundary layers undergo this instability, and form the initial shed vortices. Pressure spectra within the shear layers show a broadband peak at a multiple of shedding frequency. Phase-averaged intensity and shear stress distributions of the randomly fluctuating component of velocity are compared with those obtained in the near wake. The distributions of the production terms in the transport equations for the turbulent stresses are also provided.

  20. Development of a resonant trailing-edge flap actuation system for helicopter rotor vibration control

    NASA Astrophysics Data System (ADS)

    Kim, J.-S.; Wang, K. W.; Smith, E. C.

    2007-12-01

    A resonant trailing-edge flap actuation system for helicopter rotors is developed and evaluated experimentally. The concept involves deflecting each individual trailing-edge flap using a compact resonant piezoelectric actuation system. Each resonant actuation system yields high authority, while operating at a single frequency. By tailoring the natural frequencies of the actuation system (including the piezoelectric actuator and the related mechanical and electrical elements) to the required operating frequencies, one can increase the output authority. The robustness of the device can be enhanced by increasing the high authority bandwidth through electric circuitry design. Such a resonant actuation system (RAS) is analyzed for a full-scale piezoelectric induced-shear tube actuator, and bench-top testing is conducted to validate the concept. An adaptive feed-forward controller is developed to realize the electric network dynamics and adapt to phase variation. The control strategy is then implemented via a digital signal processor (DSP) system. Analysis is also performed to examine the rotor system dynamics in forward flight with piezoelectric resonant actuators, using a perturbation method to evaluate the system's time-varying characteristics. Numerical simulations reveal that the resonant actuator concept can be applied to forward flights as well as to hover conditions.

  1. Distributed electromechanical actuation system design for a morphing trailing edge wing

    NASA Astrophysics Data System (ADS)

    Dimino, I.; Diodati, G.; Concilio, A.; Volovick, A.; Zivan, L.

    2016-04-01

    Next-generation flight control actuation technology will be based on "more electric" concepts to ensure benefits in terms of efficiency, weight and maintenance. This paper is concerned with the design of an un-shafted distributed servo-electromechanical actuation system, suited for morphing trailing edge wings of large commercial aircraft. It aims at producing small wing camber variations in the range between -5° and +5° in cruise, to enable aerodynamic efficiency improvements. The deployment kinematics is based on multiple "direct-drive" actuation, each made of light-weight compact lever mechanisms, rigidly connected to compliant ribs and sustained by load-bearing motors. Navier-Stokes computations are performed to estimate the pressure distribution over the interested wing region and the resulting hinge moments. These transfer to the primary structure via the driving mechanism. An electro-mechanical Matlab/Simulink model of the distributed actuation architecture is developed and used as a design tool, to preliminary evaluate the complete system performance. Implementing a multi-shaft strategy, each actuator is sized for the torque acting on the respective adaptive rib, following the effect of both the aerodynamic pressure and the morphing skin stiffness. Elastic trailing edge rotations and power needs are evaluated in operative conditions. Focus is finally given to the key challenges of the proposed concept: targeting quantifiable performance improvements while being compliant to the demanding requirements in terms of reliability and safety.

  2. The response of the inner magnetosphere to the trailing edges of high-speed solar-wind streams

    NASA Astrophysics Data System (ADS)

    Denton, M. H.; Borovsky, J. E.

    2017-01-01

    The effects of the leading edge stream interface of high-speed solar-wind streams (HSSs) upon the Earth's magnetosphere have been extensively documented. The arrival of HSSs leads to significant changes in the plasmasphere, plasma sheet, ring current, and radiation belts, during the evolution from slow solar wind to persistent fast solar wind. Studies have also documented effects in the lower ionosphere and the neutral atmosphere. However, only cursory attention has been paid to the trailing-edge stream interface during the transition back from fast solar wind to slow solar wind. Here we report on the statistical changes that occur in the plasmasphere, plasma sheet, ring current, and electron radiation belt during the passage of the trailing-edge stream interface of HSSs, when the magnetosphere is in most respects in an extremely quiescent state. Counterintuitively, the peak flux of 1 MeV electrons is observed to occur at this interface. In contrast, other regions of the magnetosphere demonstrate extremely quiet conditions. As with the leading-edge stream interface, the occurrence of the trailing-edge stream interface has a periodicity of 27 days, and hence, understanding the changes that occur in the magnetosphere during the passage of trailing edges of HSSs can lead to improved forecasting and predictability of the magnetosphere as a system.

  3. Evaluation of leading- and trailing-edge flaps on flat and cambered delta wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Wood, Richard M.; Collins, Robert E.

    1989-01-01

    An experimental investigation has been conducted to evaluate the effectiveness of leading- and trailing-edge flaps on a flat and cambered wing at superconic speeds. Results from the experimental tests showed that highly complex and three-dimensional flow can occur over the wings with leading- and/or trailing-edge flaps deflected. An analysis of the data also showed that flap effectiveness varies significantly between a cambered and flat wing of identical planform and flap geometry. Mach number effects are similar for both flat and cambered wings for all aerodynamic parameters.

  4. Mechanisms of sound amplification and sound reduction in the flapping flight of side-by-side airfoils

    NASA Astrophysics Data System (ADS)

    Manela, A.; Halachmi, M.

    2015-06-01

    The acoustic signature of side-by-side airfoils, subject to small-amplitude harmonic pitching and incoming flow unsteadiness, is investigated. The two-dimensional near-field problem is formulated using thin-airfoil theory, where flow unsteadiness is modeled as a passing line vortex, and wake evolution is calculated via the Brown and Michael formula. Assuming that the setup is acoustically compact, acoustic radiation is obtained by means of the Powell-Howe acoustic analogy. The associated compact Green's function is calculated numerically using potential-flow analysis of the fluid-structure flow domain. Results, comparing the acoustic radiation of the double-airfoil system to a reference case of a single airfoil, point to several mechanisms of sound attenuation and sound amplification, caused by airfoil-airfoil and airfoils-wake interactions. It is found that counter-phase pitching of the airfoils results in effective cloaking of the system, which otherwise becomes significantly noisy (as a 5/2-power of the pitching frequency) at large frequencies. In addition, depending on the distance between airfoils, in-phase pitching may result in an acoustic signature equivalent to a single airfoil (when the airfoils are adjacent) or to two separate airfoils (when the airfoils are far apart). In general, flow unsteadiness produces more sound when interacting with a double (compared with a single) airfoil setup. However, airfoils' nonlinear wake-wake interactions give rise to a sound reduction mechanism, which becomes most efficient at times when incoming vorticity passes above airfoils' leading and trailing edges. The present scheme can be readily extended to consider the acoustic properties of various double-airfoil configurations, as well as multiple (> 2) airfoil setups.

  5. Active Control of Separation From the Flap of a Supercritical Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, La Tunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2003-01-01

    Active flow control in the form of periodic zero-mass-flux excitation was applied at several regions on the leading edge and trailing edge flaps of a simplified high-lift system t o delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approx.= 10) and low frequency amplitude modulation (F(+)AM approx.= 1) of the high frequency excitation were used for control. Preliminary efforts to combine leading and trailing edge flap excitations are also reported.

  6. Reversible airfoils for stopped rotors in high speed flight

    NASA Astrophysics Data System (ADS)

    Niemiec, Robert; Jacobellis, George; Gandhi, Farhan

    2014-10-01

    This study starts with the design of a reversible airfoil rib for stopped-rotor applications, where the sharp trailing-edge morphs into the rounded leading-edge, and vice-versa. A NACA0012 airfoil is approximated in a piecewise linear manner and straight, rigid outer profile links used to define the airfoil contour. The end points of the profile links connect to control links, each set on a central actuation rod via an offset. Chordwise motion of the actuation rod moves the control and the profile links and reverses the airfoil. The paper describes the design methodology and evolution of the final design, based on which two reversible airfoil ribs were fabricated and used to assemble a finite span reversible rotor/wing demonstrator. The profile links were connected by Aluminum strips running in the spanwise direction which provided stiffness as well as support for a pre-tensioned elastomeric skin. An inter-rib connector with a curved-front nose piece supports the leading-edge. The model functioned well and was able to reverse smoothly back-and-forth, on application and reversal of a voltage to the motor. Navier-Stokes CFD simulations (using the TURNS code) show that the drag coefficient of the reversible airfoil (which had a 13% maximum thickness due to the thickness of the profile links) was comparable to that of the NACA0013 airfoil. The drag of a 16% thick elliptical airfoil was, on average, about twice as large, while that of a NACA0012 in reverse flow was 4-5 times as large, even prior to stall. The maximum lift coefficient of the reversible airfoil was lower than the elliptical airfoil, but higher than the NACA0012 in reverse flow operation.

  7. On the application of a hairpin vortex model of wall turbulence to trailing edge noise prediction

    NASA Technical Reports Server (NTRS)

    Liu, N. S.; Shamroth, S. J.

    1985-01-01

    The goal is to develop a technique via a hairpin vortex model of the turbulent boundary layer, which would lead to the estimation of the aerodynamic input for use in trailing edge noise prediction theories. The work described represents an initial step in reaching this goal. The hairpin vortex is considered as the underlying structure of the wall turbulence and the turbulent boundary layer is viewed as an ensemble of typical hairpin vortices of different sizes. A synthesis technique is examined which links the mean flow and various turbulence quantities via these typical vortices. The distribution of turbulence quantities among vortices of different scales follows directly from the probability distribution needed to give the measured mean flow vorticity. The main features of individual representative hairpin vortices are discussed in detail and a preliminary assessment of the synthesis approach is made.

  8. Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology

    NASA Technical Reports Server (NTRS)

    Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan

    2014-01-01

    Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.

  9. Investigation of trailing-edge-flap, spanwise-blowing concepts on an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.; Quinto, P. F.; Banks, D. W.

    1984-01-01

    The aerodynamic effects of spanwise blowing on the trailing edge flap of an advanced fighter aircraft configuration were determined in the 4 by 7 Meter Tunnel. A series of tests were conducted with variations in spanwise-blowing vector angle, nozzle exit area, nozzle location, thrust coefficient, and flap deflection in order to determine a superior configuration for both an underwing cascade concept and an overwing port concept. This screening phase of the testing was conducted at a nominal approach angle of attack from 12 deg to 16 deg; and then the superior configurations were tested over a more complete angle of attack range from 0 deg to 20 deg at tunnel free stream dynamic pressures from 20 to 40 lbf/sq ft at thrust coefficients from 0 to 2.

  10. Vortex shedding from a blunt trailing edge with equal and unequal external mean velocities

    NASA Technical Reports Server (NTRS)

    Brinich, P. F.; Boldman, D. R.; Goldstein, M. E.

    1975-01-01

    A flow visualization study showed that strong Karman vortices are developed behind the blunt trailing edge of a plate when the free stream velocities over both surfaces are equal. These vortices tend to disappear when the surface velocities are unequal. This observation provided an explanation for the occurrence and disappearance of the lip noise often present in coaxial jets. Vortex formation and lip noise occurred at a Strouhal number of about 0.2 based on the lip thickness and the average of the external steady-state velocities. Results from theoretical calculations of the vortex formation, based on an inviscid, incompressible analysis of the motion of point vortices, were in good agreement with the experimental observations.

  11. Approach for Structurally Clearing an Adaptive Compliant Trailing Edge Flap for Flight

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Lokos, William A.; Cruz, Josue; Crampton, Glen; Stephens, Craig A.; Kota, Sridhar; Ervin, Gregory; Flick, Pete

    2015-01-01

    The Adaptive Compliant Trailing Edge (ACTE) flap was flown on the National Aeronautics and Space Administration (NASA) Gulfstream GIII testbed at the NASA Armstrong Flight Research Center. This smoothly curving flap replaced the existing Fowler flaps creating a seamless control surface. This compliant structure, developed by FlexSys Inc. in partnership with the Air Force Research Laboratory, supported NASA objectives for airframe structural noise reduction, aerodynamic efficiency, and wing weight reduction through gust load alleviation. A thorough structures airworthiness approach was developed to move this project safely to flight. A combination of industry and NASA standard practice require various structural analyses, ground testing, and health monitoring techniques for showing an airworthy structure. This paper provides an overview of compliant structures design, the structural ground testing leading up to flight, and the flight envelope expansion and monitoring strategy. Flight data will be presented, and lessons learned along the way will be highlighted.

  12. Measurement of aeroacoustic noise generated on wind turbine blades modified by trailing edge brushes

    NASA Astrophysics Data System (ADS)

    Asheim, Michael J.

    As wind technology becomes a larger portion of the energy production picture, the problematic interactions between the machines and society will continue to become more pronounced. Of these problems, wind turbine noise is one of the most important to the future of wind turbine development. This study looks at the effect trailing edge brushes mounted on the 2 bladed Controls Advance Research Turbine (CART 2), located at the National Wind Technology Center, have on the overall acoustic and aerodynamic performance of the blades. The use of trailing edge brushes reduced the aeroacoustic noise by 1.0 to 5.0 dB over the baseline blade, depending on wind speed. This acoustic performance comes at a cost to the aerodynamic performance of the blades. The aerodynamic performance indicators, such as turbine power and root bending moments show that increased drag due to the brushes is the main contributor to the reduction in power production. An economic analysis also investigated how to best use noise mitigation devices to optimize acoustic, power performance and loads of a 600 kW baseline turbine, such as the CART 2. The analysis shows that the use of up a noise mitigation device of 4 dB is best used by increasing the rotor diameter and the power rating of the machine, from a 43.3 m diameter, 600 kW machine to a 68.8 m diameter, 886.7 kW machine. This increase resulted in an annual energy production increase of 414% when using a Rayleigh wind distribution with at a mean annual wind speed of 8.5 m/s. This is a reduction of cost of energy from 0.0463 per kWh to 0.0422 kWh. This reduction in energy production costs helps to explain the continuing trend of turbine machine growth in both rotor diameter and power rating.

  13. Trailing edge devices to improve performance and increase lifetime of wind-electric water pumping systems

    SciTech Connect

    Vick, B.D.; Clark, R.N.

    1996-12-31

    Trailing edge flaps were applied to the blades of a 10 kW wind turbine used for water pumping to try to improve the performance and decrease the structural fatigue on the wind turbine. Most small wind turbines (10 kW and below) use furling (rotor turns out of wind similar to a mechanical windmill) to protect the wind turbine from overspeed during high winds. Some small wind turbines, however, do not furl soon enough to keep the wind turbine from being off line part of the time in moderately high wind speeds (10 - 16 m/s). As a result, the load is disconnected and no water is pumped at moderately high wind speeds. When the turbine is offline, the frequency increases rapidly often causing excessive vibration of the wind turbine and tower components. The furling wind speed could possibly be decreased by increasing the offset between the tower centerline and the rotor centerline, but would be a major and potentially expensive retrofit. Trailing edge flaps (TEF) were used as a quick inexpensive method to try to reduce the furling wind speed and increase the on time by reducing the rotor RPM. One TEF configuration improved the water pumping performance at moderately high wind speeds, but degraded the pumping performance at low wind speeds which resulted in little change in daily water volume. The other TEF configuration differed very little from the no flap configuration. Both TEF configurations however, reduced the rotor RPM in high wind conditions. The TEF, did not reduce the rotor RPM by lowering the furling wind speed as hoped, but apparently did so by increasing the drag which also reduced the volume of water pumped at the lower wind speeds. 6 refs., 9 figs.

  14. Numerical investigation of multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Cummings, Russell M.

    1993-01-01

    The flow over multi-element airfoils with flat-plate lift-enhancing tabs was numerically investigated. Tabs ranging in height from 0.25 percent to 1.25 percent of the reference airfoil chord were studied near the trailing edge of the main-element. This two-dimensional numerical simulation employed an incompressible Navier-Stokes solver on a structured, embedded grid topology. New grid refinements were used to improve the accuracy of the solution near the overlapping grid boundaries. The effects of various tabs were studied at a constant Reynolds number on a two-element airfoil with a slotted flap. Both computed and measured results indicated that a tab in the main-element cove improved the maximum lift and lift-to-drag ratio relative to the baseline airfoil without a tab. Computed streamlines revealed that the additional turning caused by the tab may reduce the amount of separated flow on the flap. A three-element airfoil was also studied over a range of Reynolds numbers. For the optimized flap rigging, the computed and measured Reynolds number effects were similar. When the flap was moved from the optimum position, numerical results indicated that a tab may help to reoptimize the airfoil to within 1 percent of the optimum flap case.

  15. Effect of leading- and trailing-edge flaps on clipped delta wings with and without wing camber at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.

    1994-01-01

    An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.

  16. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Simon, Charles G.; Swan, P.; Walker, R. M.; Zinner, E.; Jessberger, E. K.; Lange, G.; Stadermann, F.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Experiment AO187-2 consisted of 237 capture cells, 120 on the leading edge and 117 on the trailing edge. Each cell was made of polished Ge plates covered with 2.5 micron thick mylar foil at 200 microns from the Ge. Although all leading edge cells and 105 trailing edge cells had lost their plastic covers during flight, optical and electron microscope examination revealed extended impacts in bare cells from either edge that apparently were produced by high velocity projectiles while the plastic foils were still in place. Detailed optical scanning yielded 53 extended impacts on 100 bare cells from the trailing edge that were selected for SIMS chemical analysis. Lateral multi-element ion probe profiles were obtained on 40 of these impacts. Material that can be attributed to the incoming projectiles was found in all analyzed extended compact features and most seem to be associated with cosmic dust particles. However, LDEF deposits are systematically enriched in the refractory elements Al, Ca, and Ti relative to Mg and Fe when compared to IDP's collected in the stratosphere and to chondritic compositions. These differences are most likely due to elemental fractionation effects during the high velocity impact but real differences between interplanetary particles captured on LDEF and stratospheric IDP's cannot be excluded. Recently we extended our studies to cells from the leading edge and the covered cells from the trailing edge. The 12 covered cells contain 20 extended impact candidates. Ion probe analysis of 3 yielded results similar to those obtained for impacts on the bare cells from the trailing edge. Optical scanning of the bare leading edge cell also reveals many extended impacts (42 on 22 cells scanned to date), demonstrating that the cover foils remained intact at least for some time. However, SIMS analysis showed elements that can reasonably be attributed to micrometeoroids in only 2 out of 11 impacts. Eight impacts

  17. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, S.; Foote, J.; Swan, P.; Walker, R. M.; Zinner, E.; Lange, G.

    1993-01-01

    Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts.

  18. Prediction of unsteady aerodynamic loadings caused by leading edge and trailing edge control surface motions in subsonic compressible flow: Computer program description

    NASA Technical Reports Server (NTRS)

    Redman, M. C.; Rowe, W. S.

    1975-01-01

    A digital computer program has been developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge or trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges have been extracted analytically as a preliminary step to solving the integral equation by collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accommodated.

  19. Thick airfoil designs for the root of the 10MW INNWIND.EU wind turbine

    NASA Astrophysics Data System (ADS)

    Mu≁oz, A.; Méndez, B.; Munduate, X.

    2016-09-01

    The main objective of the “INNWIND.EU” project is to investigate and demonstrate innovative designs for 10-20MW offshore wind turbines and their key components, such as lightweight rotors. In this context, the present paper describes the development of two new airfoils for the blade root region. From the structural point of view, the root is the region in charge of transmitting all the loads of the blade to the hub. Thus, it is very important to include airfoils with adequate structural properties in this region. The present article makes use of high-thickness and blunt trailing edge airfoils to improve the structural characteristics of the airfoils used to build this blade region. CENER's (National Renewable Energy Center of Spain) airfoil design tool uses the airfoil software XFOIL to compute the aerodynamic characteristics of the designed airfoils. That software is based on panel methods which show some problems with the calculation of airfoils with thickness bigger than 35% and with blunt trailing edge. This drawback has been overcome with the development of an empirical correction for XFOIL lift and drag prediction based on airfoil experiments. From the aerodynamic point of view, thick airfoils are known to be very sensitive to surface contamination or turbulent inflow conditions. Consequently, the design optimization takes into account the aerodynamic torque in both clean and contaminated conditions. Two airfoils have been designed aiming to improve the structural and the aerodynamic behaviour of the blade in clean and contaminated conditions. This improvement has been corroborated with Blade Element Momentum (BEM) computations.

  20. Wind tunnel investigation of the wake near the trailing edge of a distributed upper-surface-blown flap

    NASA Technical Reports Server (NTRS)

    Forsyth, D. R.; Yip, L. P.; Bloom, A. M.

    1975-01-01

    An investigation of the flow field near the trailing edge of a distributed upper-surface-blown propulsive-lift transport was conducted in the Langley V/STOL tunnel. This model used blowing slots across the entire wing span to produce a thin jet efflux near the leading edge and at the knee of the flap. Velocity surveys of the flow field were taken near the trailing edge of the model, and are presented as plots of the individual velocity vectors. The test conditions include an angle-of-attack range from 4 deg to 16 deg and a thrust coefficient range from 0 to 1.3 at a free-stream dynamic pressure of 814 Newton per square meter (17 pounds per square foot).

  1. Wind-tunnel test results of airfoil modifications for the EA-6B

    NASA Technical Reports Server (NTRS)

    Sewall, W. G.; Mcghee, R. J.; Ferris, J. C.

    1987-01-01

    Wind-tunnel tests have been conducted (to determine the effects on airfoil performance for several airfoil modifications) for the EA-6B Wing Improvement Program. The modifications consist of contour changes to the leading-edge slat and trailing-edge flap to provide a higher low-speed maximum lift with no high-speed cruise-drag penalty. Airfoil sections from the 28- and 76-percent span stations were selected as baseline shapes with the major testing devoted to the inboard airfoil section (28-percent span station). The airfoil modifications increased the low-speed maximum lift coefficient between 20 and 35 percent over test conditions of 3 to 14 million chord Reynolds number and 0.14 to 0.34 Mach number. At the high-speed test conditions of 0.4 to 0.80 Mach number and 10 million chord Reynolds number, the modified airfoils had either matched or had lower drag coefficients for all normal-force coefficients above 0.2 as compared to the baseline airfoil. At normal-force coefficients less than 0.2, the baseline (original) airfoil had lower drag coefficients than any of the modified airfoils.

  2. Theory of viscous transonic flow over airfoils at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Chow, R.; Mead, H. R.

    1977-01-01

    This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.

  3. CFD Analysis of the Aerodynamics of a Business-Jet Airfoil with Leading-Edge Ice Accretion

    NASA Technical Reports Server (NTRS)

    Chi, X.; Zhu, B.; Shih, T. I.-P.; Addy, H. E.; Choo, Y. K.

    2004-01-01

    For rime ice - where the ice buildup has only rough and jagged surfaces but no protruding horns - this study shows two dimensional CFD analysis based on the one-equation Spalart-Almaras (S-A) turbulence model to predict accurately the lift, drag, and pressure coefficients up to near the stall angle. For glaze ice - where the ice buildup has two or more protruding horns near the airfoil's leading edge - CFD predictions were much less satisfactory because of the large separated region produced by the horns even at zero angle of attack. This CFD study, based on the WIND and the Fluent codes, assesses the following turbulence models by comparing predictions with available experimental data: S-A, standard k-epsilon, shear-stress transport, v(exp 2)-f, and differential Reynolds stress.

  4. Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Schweikhard, W. G.; Albright, A. E.; Evanich, P.

    1981-01-01

    A glycol-exuding porous leading edge ice protection system was tested. Results show that the system is very effective in preventing ice accretion (anti-ice mode) or removing ice from an airfoil. Minimum glycol flow rates required for anti-icing are a function of velocity, liquid water content in the air, ambient temperature, and droplet size. Large ice caps were removed in only a few minutes using anti-ice flow rates. It was found that the shed time is a function of the type of ice, size of the ice cap, angle of attack, and glycol flow rate. Wake survey measurements show that there is no significant drag penalty for the installation or operation of the system tested.

  5. Noise Benefits of Rotor Trailing Edge Blowing for a Model Turbofan

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Fite, E. Brian; Podboy, Gary G.

    2007-01-01

    An advanced model turbofan was tested in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) to explore far field acoustic effects associated with rotor Trailing-Edge-Blowing (TEB) for a modern, 1.294 stage pressure ratio turbofan model. The TEB rotor (Fan9) was designed to be aerodynamically similar to the previously tested Fan1, and used the same stator and nacelle hardware. Fan9 was designed with trailing edge blowing slots using an external air supply directed through the rotor hub. The TEB flow was heated to approximate the average fan exit temperature at each fan test speed. Rotor root blockage inserts were used to block TEB to all but the outer 40 and 20% span in addition to full-span blowing. A configuration with full-span TEB on alternate rotor blades was also tested. Far field acoustic data were taken at takeoff/approach conditions at 0.10 tunnel Mach. Far-field acoustic results showed that full-span blowing near 2.0% of the total flow could reduce the overall sound power level by about 2 dB. This noise reduction was observed in both the rotor-stator interaction tones and for the spectral broadband noise levels. Blowing only the outer span region was not very effective for lowering noise, and actually increased the far field noise level in some instances. Full-span blowing of alternate blades at 1.0% of the overall flow rate (equivalent to full-span blowing of all blades at 2.0% flow) showed a more modest noise decrease relative to full-span blowing of all blades. Detailed hot film measurements of the TEB rotor wake at 2.0% flow showed that TEB was not every effective for filling in the wake defect at approach fan speed toward the tip region, but did result in overfilling the wake toward the hub. Downstream turbulence measurements supported this finding, and support the observed reduction in spectral broadband noise.

  6. Measuremants in the wake of an infinite swept airfoil

    NASA Technical Reports Server (NTRS)

    Novak, C. J.; Ramaprian, B. R.

    1982-01-01

    This is a report of the measurements in the trailing edge region as well as in the report of the developing wake behind a swept NACA 0012 airfoil at zero incidence and a sweep angle of 30 degrees. The measurements include both the mean and turbulent flow properties. The mean flow velocities, flow inclination and static pressure are measured using a calibrated three-hole yaw probe. The measurements of all the relevant Reynolds stress components in the wake are made using a tri-axial hot-wire probe and a digital data processing technique developed by the authors. The development of the three dimensional near-wake into a nearly two dimensional far-wake is discussed in the light of the experimental data. A complete set of wake data along with the data on the initial boundary layer in the trailing edge region of the airfoil are tabulated in an appendix to the report.

  7. Lift enhancement of an airfoil using a Gurney flap and vortex generators

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Jang, Cory S.

    1993-01-01

    The results of a low-speed wind tunnel test are presented for a single-element airfoil incorporating two lift-enhancing devices, namely a Gurney flap and vortex generators. The former consists of a small plate, on the order of one to two percent of the airfoil chord in height, located at the trailing edge perpendicular to the pressure side of the airfoil. The later consist of commercially-available, wishbone-shaped vortex generators. The test was conducted in the NASA Ames 7- by 10-foot Wind Tunnel with a full-span NACA 4412 airfoil. Measurements of surface pressure distributions and wake profiles were made to determine the lift, drag, and pitching-moment coefficients for the various airfoil configurations. The results indicate that the addition of a Gurney flap increased the maximum lift coefficient from 1.49 up to 1.96.

  8. Development of Variable Camber Continuous Trailing Edge Flap for Performance Adaptive Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Kaul, Upender; Lebofsky, Sonia; Ting, Eric; Chaparro, Daniel; Urnes, James

    2015-01-01

    This paper summarizes the recent development of an adaptive aeroelastic wing shaping control technology called variable camber continuous trailing edge flap (VCCTEF). As wing flexibility increases, aeroelastic interactions with aerodynamic forces and moments become an increasingly important consideration in aircraft design and aerodynamic performance. Furthermore, aeroelastic interactions with flight dynamics can result in issues with vehicle stability and control. The initial VCCTEF concept was developed in 2010 by NASA under a NASA Innovation Fund study entitled "Elastically Shaped Future Air Vehicle Concept," which showed that highly flexible wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and bending deflection in order to optimize the spanwise lift distribution for drag reduction. A collaboration between NASA and Boeing Research & Technology was subsequently funded by NASA from 2012 to 2014 to further develop the VCCTEF concept. This paper summarizes some of the key research areas conducted by NASA during the collaboration with Boeing Research and Technology. These research areas include VCCTEF design concepts, aerodynamic analysis of VCCTEF camber shapes, aerodynamic optimization of lift distribution for drag minimization, wind tunnel test results for cruise and high-lift configurations, flutter analysis and suppression control of flexible wing aircraft, and multi-objective flight control for adaptive aeroelastic wing shaping control.

  9. Swirling Flow Computation at the Trailing Edge of Radial-Axial Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    Susan-Resiga, Romeo; Muntean, Sebastian; Popescu, Constantin

    2016-11-01

    Modern hydraulic turbines require optimized runners within a range of operating points with respect to minimum weighted average draft tube losses and/or flow instabilities. Tractable optimization methodologies must include realistic estimations of the swirling flow exiting the runner and further ingested by the draft tube, prior to runner design. The paper presents a new mathematical model and the associated numerical algorithm for computing the swirling flow at the trailing edge of Francis turbine runner, operated at arbitrary discharge. The general turbomachinery throughflow theory is particularized for an arbitrary hub-to-shroud line in the meridian half-plane and the resulting boundary value problem is solved with the finite element method. The results obtained with the present model are validated against full 3D runner flow computations within a range of discharge value. The mathematical model incorporates the full information for the relative flow direction, as well as the curvatures of the hub-to-shroud line and meridian streamlines, respectively. It is shown that the flow direction can be frozen within a range of operating points in the neighborhood of the best efficiency regime.

  10. Predicting Modes of the Unsteady Vorticity Field near the Trailing Edge of a Blade

    NASA Technical Reports Server (NTRS)

    Devenport, William J.; Spitz, Nicolas; Envia, Edmane (Technical Monitor)

    2003-01-01

    Progress on predicting modes of the unsteady velocity/vorticity field of a turbulent boundary layer from Reynolds stress statistics is described. Prediction of these modes, that provide the source terms for trailing edge noise predictions in aircraft engine fans and other configurations, will allow for the first time detailed viscous flow effects to be included in such noise calculations. The key accomplishments of this work in FY02 are: (1) The development of a Matlab code for the prediction of modes in two- and three-dimensional boundary layers, previously applied to plane wakes; (2) Predictions with the code using a constant lengthscale formulation in a fully developed turbulence channel flow. Comparison of these boundary layer predictions with available DNS simulation results; and (3) Formulation of an improved model using a variable lengthscale proportional to mixing length. Turbulent channel flow predictions and comparison with DNS results. This work is being carried out in continuous communication and collaboration with the Glegg research group at Florida Atlantic University, which will be incorporating mode predictions into engine noise calculations.

  11. Dynamics of a pneumatic artificial muscle actuation system driving a trailing edge flap

    NASA Astrophysics Data System (ADS)

    Woods, Benjamin K. S.; Kothera, Curt S.; Wang, Gang; Wereley, Norman M.

    2014-09-01

    This study presents a time domain dynamic model of an antagonistic pneumatic artificial muscle (PAM) driven trailing edge flap (TEF) system for next generation active helicopter rotors. Active rotor concepts are currently being widely researched in the rotorcraft community as a means to provide a significant leap forward in performance through primary aircraft control, vibration mitigation and noise reduction. Recent work has shown PAMs to be a promising candidate for active rotor actuation due to their combination of high force, large stroke, light weight, and suitable bandwidth. When arranged into biologically inspired agonist/antagonist muscle pairs they can produce bidirectional torques for effectively driving a TEF. However, there are no analytical dynamic models in the literature that can accurately capture the behavior of such systems across the broad range of frequencies required for this demanding application. This work combines mechanical, pneumatic, and aerodynamic component models into a global flap system model developed for the Bell 407 rotor system. This model can accurately predict pressure, force, and flap angle response to pneumatic control valve inputs over a range of operating frequencies from 7 to 35 Hz (1/rev to 5/rev for the Bell 407) and operating pressures from 30 to 90 psi.

  12. The role of shock induced trailing-edge separation in limit cycle oscillations

    NASA Technical Reports Server (NTRS)

    Cunningham, Atlee M., Jr.

    1989-01-01

    The potential role of shock induced trailing edge separation (SITES) in limit cycle oscillations (LCO) was established. It was shown that the flip-flop characteristics of transition to and from SITES as well as its hysteresis could couple with wing modes with torsional motion and low damping. This connection led to the formulation of a very simple nonlinear math model using the linear equations of motion with a nonlinear step forcing function with hysteresis. A finite difference solution with time was developed and calculations were made for the F-111 TACT were used to determine the step forcing function due to SITES transition. Since no data were available for the hysteresis, a parameter study was conducted allowing the hysteresis effect to vary. Very small hysteresis effects, which were within expected bounds, were required to obtain reasonable response levels that essentially agreed with flight test results. Also in agreement with wind tunnel tests, LCO calculations for the 1/6 scale F-111 model showed that the model should have not experienced LCO.

  13. Scattering of turbulent-jet wavepackets by a swept trailing edge.

    PubMed

    Piantanida, Selene; Jaunet, Vincent; Huber, Jérôme; Wolf, William R; Jordan, Peter; Cavalieri, André V G

    2016-12-01

    Installed jet noise is studied by means of a simplified configuration comprising a flat plate in the vicinity of a round jet. The effects of Mach number, jet-plate radial distance, and trailing-edge sweep angle are explored. Acoustic measurements are performed using a traversable 18-microphone azimuthal array, providing pressure data at 360 points on a cylindrical surface surrounding the jet-plate system. Key observations include a decrease, with increasing Mach number, of the relative level of the scattered field in comparison to the uninstalled jet; an exponential dependence of the scattered sound pressure level on the radial jet-plate separation; and considerable sideline noise reductions with increasing sweep angle, with which there is an overall reduction in acoustic efficiency. The measurements are compared with results obtained using a kinematic wavepacket source model, whose radiation is computed in two ways. A TGF for a semi-infinite flat plate is used to provide a low-order approximation of the scattering effect. Use of a more computationally intensive boundary element method provides additional precision. Good agreement between model predictions and experiment, encouraging from the perspective of low-cost prediction strategies, demonstrates that the models comprise the essential sound generation mechanisms.

  14. Characterization of base pressure fluctuations in a blunt trailing edge wake with three-dimensional forcing

    NASA Astrophysics Data System (ADS)

    Clark, Heather; Lavoie, Philippe

    2015-11-01

    The wakes of many nominally two-dimensional bluff bodies exhibit multiple intrinsic three-dimensional instabilities whose spatiotemporal structure and growth rate depend on geometry and Reynolds number. Here, these features are investigated experimentally for a blunt trailing edge profiled body using simultaneous measurements of velocity and fluctuating surface pressure on the model rear face near separation. Passive three-dimensional forcing of the wake is implemented with an array of vortex generators that are distributed according to the characteristic spanwise wavelength of the dominant secondary instability. For a Reynolds number of 8000 based on model thickness, the control strategy is found to increase the base pressure coefficient by 26% while globally reducing the amplitude of base pressure fluctuations, relative to the unforced flow. Additionally, amplitude modulation of the pressure signals that is observed in the natural wake decreases in strength with distributed forcing as a result of the modified three-dimensional flow structure. The spanwise distribution of pressure will be further examined for the baseline and controlled flows via temporal spectral analysis and spatial modal decomposition.

  15. Evaluation of Load Analysis Methods for NASAs GIII Adaptive Compliant Trailing Edge Project

    NASA Technical Reports Server (NTRS)

    Cruz, Josue; Miller, Eric J.

    2016-01-01

    The Air Force Research Laboratory (AFRL), NASA Armstrong Flight Research Center (AFRC), and FlexSys Inc. (Ann Arbor, Michigan) have collaborated to flight test the Adaptive Compliant Trailing Edge (ACTE) flaps. These flaps were installed on a Gulfstream Aerospace Corporation (GAC) GIII aircraft and tested at AFRC at various deflection angles over a range of flight conditions. External aerodynamic and inertial load analyses were conducted with the intention to ensure that the change in wing loads due to the deployed ACTE flap did not overload the existing baseline GIII wing box structure. The objective of this paper was to substantiate the analysis tools used for predicting wing loads at AFRC. Computational fluid dynamics (CFD) models and distributed mass inertial models were developed for predicting the loads on the wing. The analysis tools included TRANAIR (full potential) and CMARC (panel) models. Aerodynamic pressure data from the analysis codes were validated against static pressure port data collected in-flight. Combined results from the CFD predictions and the inertial load analysis were used to predict the normal force, bending moment, and torque loads on the wing. Wing loads obtained from calibrated strain gages installed on the wing were used for substantiation of the load prediction tools. The load predictions exhibited good agreement compared to the flight load results obtained from calibrated strain gage measurements.

  16. Navier-Stokes computations for circulation controlled airfoils

    NASA Technical Reports Server (NTRS)

    Pulliam, T. H.; Jesperen, D. C.; Barth, T. J.

    1986-01-01

    Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.

  17. Influence of trailing edge flap on wind turbine blade using three-dimensional computational fluid dynamics method

    NASA Astrophysics Data System (ADS)

    Li, C. F.; Xu, Y.; Zhao, X. L.; Xu, J. Z.

    2013-12-01

    This paper investigates the influence of the trailing edge flap on integrated loads and the flow field structure of wind turbine blades. The dynamic trailing edge flap under sinusoidal wind velocity is simulated using three-dimensional computational fluid dynamics method, and SST k-ω turbulence model coupled with γ-Reθ transition model is adopted to model the turbulence. The results show that the variation of root flap bending moments can be reduced by up to 38%. A proper phase difference added to the flap deflection could improve the ability of loads reduction for some cases. The flap deflection impacts almost all sections of the blade, and the blade elements momentum method should be modified to obtain better results.

  18. Anthropogenic refugia ameliorate the severe climate-related decline of a montane mammal along its trailing edge.

    PubMed

    Morelli, Toni Lyn; Smith, Adam B; Kastely, Christina R; Mastroserio, Ilaria; Moritz, Craig; Beissinger, Steven R

    2012-10-22

    We conducted detailed resurveys of a montane mammal, Urocitellus beldingi, to examine the effects of climate change on persistence along the trailing edge of its range. Of 74 California sites where U. beldingi were historically recorded (1902-1966), 42 per cent were extirpated, with no evidence for colonization of previously unoccupied sites. Increases in both precipitation and temperature predicted site extirpations, potentially owing to snowcover loss. Surprisingly, human land-use change buffered climate change impacts, leading to increased persistence and abundance. Excluding human-modified sites, U. beldingi has shown an upslope range retraction of 255 m. Generalized additive models of past distribution were predictive of modern range contractions (AUC = 0.76) and projected extreme reductions (52% and 99%, respectively) of U. beldingi's southwestern range to 2080 climates (Hadley and CCCMA A2). Our study suggests the strong impacts of climate change on montane species at their trailing edge and how anthropogenic refugia may mitigate these effects.

  19. Analysis of noise produced by jet impingement near the trailing edge of a flat and a curved plate

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.; Burns, R. J.

    1975-01-01

    The sound fields produced by the interaction of a subsonic cold gas jet with the trailing edge of a large flat plate and a curved plate were analyzed. The analyses were performed to obtain a better understanding of the dominant noise source and the mechanism governing the peak sound-pressure-level frequencies of the broadband spectra. An analytical expression incorporating an available theory and experimental data predicts sound field data over an arc of approximately 105 deg measured from the upstream jet axis for the two independent sets of data. The dominant noise as detected on the impingement side of either plate results from the jet impact (eighth power of the velocity dependence) rather than a trailing-edge disturbance (fifth or sixth power of the velocity dependence). Also, the frequency of the peak SPL may be governed by a phenomenon which produces periodic formation and shedding of ring vortices from the nozzle lip.

  20. Unsteady Aerodynamics of Static Airfoils in Reverse Flow

    NASA Astrophysics Data System (ADS)

    Lind, Andrew; Jones, Anya

    2013-11-01

    Wind tunnel experiments have been conducted on two-dimensional blunt and sharp trailing edge airfoils held at static angles of attack in reverse flow for three Reynolds numbers. The current work is aimed at advancing the understanding of fully developed reverse flow for high-speed helicopter applications, and evaluates the potential for blunt trailing edge airfoils to mitigate unsteady rotor blade airloads in this flow regime. Time-resolved particle image velocimetry measurements at post-stall angles of attack have revealed the evolution of a trailing edge vortex formed by the roll-up of vorticity generated in a separated shear layer. Proper orthogonal decomposition (POD) was applied to the flow field measurements to improve the identification and tracking of dominant flow structures. Unsteady force balance measurements have captured non-structural vibrations with frequency content which correlates well with that of the temporal coefficients for the first two POD spatial modes. These vibrations vary in frequency with angle of attack and are shown to be linked with trailing edge vortex shedding. The findings presented here give fundamental insight towards the development of efficient rotor blades for high-speed helicopters.

  1. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade. Part 2:; Simulation Results

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Bunker, Ronald S.

    2002-01-01

    A combined experimental and numerical study to investigate the heat transfer distribution in a complex blade trailing edge passage was conducted. The geometry consists of a two pass serpentine passage with taper toward the trailing edge, as well as from hub to tip. The upflow channel has an average aspect ratio of roughly 14:1, while the exit passage aspect ratio is about 5:1. The upflow channel is split in an interrupted way and is smooth on the trailing edge side of the split and turbulated on the other side. A turning vane is placed near the tip of the upflow channel. Reynolds numbers in the range of 31,000 to 61,000, based on inlet conditions, were simulated numerically. The simulation was performed using the Glenn-HT code, a full three-dimensional Navier-Stokes solver using the Wilcox k-omega turbulence model. A structured multi-block grid is used with approximately 4.5 million cells and average y+ values on the order of unity. Pressure and heat transfer distributions are presented with comparison to the experimental data. While there are some regions with discrepancies, in general the agreement is very good for both pressure and heat transfer.

  2. Effect of trailing edge thickness on the performance of a helium turboexpander used in cryogenic refrigeration and liquefaction cycles

    NASA Astrophysics Data System (ADS)

    Sam, Ashish Alex; Ghosh, Parthasarathi

    2017-02-01

    Turboexpanders in cryogenic refrigeration and liquefaction cycles, which is of radial inflow configuration, constitute stationary and rotating components like nozzle, a rotating wheel and a diffuser. The relative motion between the stationary and rotating components and the interactions of secondary flows and vortices at different stages make the turboexpander flow unsteady. Computational Fluid Dynamics (CFD) analysis of this flow is essential to identify the scope for improvement in efficiency. The trailing edge vortex formed due to the mixing of the pressure and suction side streams is an important phenomenon to analyse, as this leads to efficiency degradation of the machine. Additionally, there are mechanical vibrations and dynamic loading associated with. This flow non-uniformity at the exit should be suppressed as this may affect the pressure recovery process in the diffuser and thereby the turboexpander’s performance. The strength of this vortex depends upon the geometrical parameters like trailing edge shape, thickness etc. In this paper, transient CFD analyses of a cryogenic turboexpander designed for helium refrigeration and liquefaction cycles using Ansys CFX® were performed to investigate the effect of trailing edge thickness on the turboexpander performance and the performance characteristics and the flow patterns were compared to understand the flow characteristics in each case.

  3. Preliminary Correlation of the Effects of Beveled Trailing Edges on the Hinge-Moment Characteristics of Control Surfaces

    NASA Technical Reports Server (NTRS)

    Purser, Paul E.; Gillis, Clarence L.

    1943-01-01

    A study of available data from various tests of beveled control surfaces has been made in an attempt to develop a rational method for predicting the effects of beveled trailing edges on the hinge-moment characteristics of control surfaces in both two- and three-dimensional flow. The results of the study indicated that the change in the included angle at the control-surface trailing edge formed a convenient basis on which a correlation could be made of the effects of various profile modifications on hinge-moment characteristics. It is believed that the formulas developed will allow reasonably accurate predictions of the hinge-moment characteristics of sealed beveled control surfaces if the characteristics of the original control surfaces are known. The presence of a gap at the control-surface hinge increased the effect of beveled trailing edges on the hinge-moment characteristics at small control-surface deflections but the available data were insufficient to allow as complete a correlation as was possible for sealed controls.

  4. Techniques for modifying airfoils and fairings on aircraft using foam and fiberglass

    NASA Technical Reports Server (NTRS)

    Meyer, M. B.; Jiran, F.

    1981-01-01

    The concept of using foam and fiberglass reinforced plastic to modify airfoils and fairings was applied successfully to high-speed aircraft at NASA Dryden Flight Research Center. An on-aircraft installation method was used to modify an F-15 wing glove and wing leading edge and an F-104 flap trailing edge in support of the Shuttle tile airload tests. A combination of methods, both an on-aircraft installation and an off-aircraft fabrication for installation on the aircraft, was used to modify a section of an F-111 supercritical wing with a natural laminar flow airfoil. Techniques, methods, problem areas, and recommendations are presented which indicate that using foam and fiberglass to modify airfoils and fairings on high-speed aircraft is a viable means of quickly developing airfoils and fairings with desired aerodynamic characteristics with little risk to the parent or carrier aircraft.

  5. Airfoil for a gas turbine engine

    DOEpatents

    Liang, George

    2011-05-24

    An airfoil is provided for a turbine of a gas turbine engine. The airfoil comprises: an outer structure comprising a first wall including a leading edge, a trailing edge, a pressure side, and a suction side; an inner structure comprising a second wall spaced from the first wall and at least one intermediate wall; and structure extending between the first and second walls so as to define first and second gaps between the first and second walls. The second wall and the at least one intermediate wall define at least one pressure side supply cavity and at least one suction side supply cavity. The second wall may include at least one first opening near the leading edge of the first wall. The first opening may extend from the at least one pressure side supply cavity to the first gap. The second wall may further comprise at least one second opening near the trailing edge of the outer structure. The second opening may extend from the at least one suction side supply cavity to the second gap. The first wall may comprise at least one first exit opening extending from the first gap through the pressure side of the first wall and at least one second exit opening extending from the second gap through the suction side of the second wall.

  6. LOCATING THE TRAILING EDGE OF THE CIRCUMBINARY RING IN THE KH 15D SYSTEM

    SciTech Connect

    Capelo, Holly L.; Herbst, William; Leggett, S. K.; Hamilton, Catrina M.; Johnson, John A.

    2012-09-20

    Following two years of complete occultation of both stars in the binary T Tauri star KH 15D by its opaque circumbinary ring, KH 15D has abruptly brightened again during apastron phases, reaching I = 15 mag. Here, we show that the brightening is accompanied by a change in spectral class from K6/K7 (the spectral class of star A) to {approx}K1, and a bluing of the system in V - I by about 0.3 mag. A radial velocity measurement confirms that, at apastron, we are now seeing direct light from star B, which is more luminous and of earlier spectral class than star A. Evidently, the trailing edge of the occulting screen has just become tangent to one anse of star B's projected orbit. This confirms a prediction of the precession models, supports the view that the tilted ring is self-gravitating, and ushers in a new era of the system's evolution that should be accompanied by the same kind of dramatic phenomena observed from 1995 to 2009. It also promotes KH 15D from a single-lined to a double-lined eclipsing binary, greatly enhancing its value for testing pre-main-sequence models. The results of our study strengthen the case for truncation of the outer ring at around 4 AU by a sub-stellar object such as an extremely young giant planet. The system is currently at an optimal configuration for detecting the putative planet and we urge expedient follow-up observations.

  7. ALESEP: A computer program for the analysis of airfoil leading edge separation bubbles

    NASA Technical Reports Server (NTRS)

    Davis, R. L.; Vatsa, V. N.; Carter, J. E.

    1984-01-01

    The ALESEP program for the analysis of the inviscid/viscous interaction which occurs due to the presence of a closed laminar transitional separation bubble on an airflow is presented. The ALESEP code provides a iterative solution of the boundary layer equations expressed in an inverse formulation coupled to a Cauchy integral representation of the inviscid flow. This interaction analysis is treated as a local perturbation to a known solution obtained from a global airfoil analysis. Part of the required input to the ALESEP code are the reference displacement thickness and tangential velocity distributions. Special windward differencing may be used in the reversed flow regions of the separation bubble to accurately account for the flow direction in the discretization of the streamwise convection of momentum. The ALESEP code contains a forced transition model based on a streamwise intermittency function and a natural transition model based on a solution of the integral form of the turbulent kinetic energy equation. Instructions for the input/output, and program usage are presented.

  8. Comparison of flow modification induced by plasma and fluidic jet actuators dedicated to circulation control around wind turbine airfoils

    NASA Astrophysics Data System (ADS)

    Leroy, A.; Braud, C.; Baleriola, S.; Loyer, S.; Devinant, P.; Aubrun, S.

    2016-09-01

    In order to reduce the aerodynamic load fluctuations on wind turbine blades by innovative control solutions, strategies of active circulation control acting at the blade airfoil trailing edge are studied, allowing lift increase and decrease. This study presents a comparison of results obtained by performing surface plasma and continuous fluidic jet actuation on a blade airfoil designed with a rounded trailing edge. In the present study, both actuator types are located at the trailing edge. Plasma actuators act uniformly in the spanwise direction, whereas fluidic jets blow through small squared holes distributed along the span, and therefore, provide a three-dimensional action on the flow. Load and velocity field measurements were performed to assess the effectiveness of both actuators and to highlight the flow mechanisms induced by both actuation methods for lift-up configurations. Results are presented for a chord Reynolds number of 2. 105 and for a lift coefficient increase of 0.06.

  9. A 3-D Computational Study of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) Spanwise Segment

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Nguyen, Nhan T.

    2015-01-01

    Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L

  10. The construction of airfoil pressure models by the plate method: Achievements, current research, technology development and potential applications

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1985-01-01

    A method of constructing airfoils by inscribing pressure channels on the face of opposing plates, bonding them together to form one plate with integral channels, and contour machining this plate to form an airfoil model is described. The research and development program to develop the bonding technology is described as well as the construction and testing of an airfoil model. Sample aerodynamic data sets are presented and discussed. Also, work currently under way to produce thin airfoils with camber is presented. Samples of the aft section of a 6 percent airfoil with complete pressure instrumentation including the trailing edge are pictured and described. This technique is particularly useful in fabricating models for transonic cryogenic testing, but it should find application in a wide ange of model construction projects, as well as the fabrication of fuel injectors, space hardware, and other applications requiring advanced bonding technology and intricate fluid passages.

  11. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics

    PubMed Central

    Jain, Shubham; Sitaram, Nekkanti; Krishnaswamy, Sriram

    2015-01-01

    The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty. PMID:27347517

  12. Computational Investigations on the Effects of Gurney Flap on Airfoil Aerodynamics.

    PubMed

    Jain, Shubham; Sitaram, Nekkanti; Krishnaswamy, Sriram

    2015-01-01

    The present study comprises steady state, two-dimensional computational investigations performed on NACA 0012 airfoil to analyze the effect of Gurney flap (GF) on airfoil aerodynamics using k-ε RNG turbulence model of FLUENT. Airfoil with GF is analyzed for six different heights from 0.5% to 4% of the chord length, seven positions from 0% to 20% of the chord length from the trailing edge, and seven mounting angles from 30° to 120° with the chord. Computed values of lift and drag coefficients with angle of attack are compared with experimental values and good agreement is found at low angles of attack. In addition static pressure distribution on the airfoil surface and pathlines and turbulence intensities near the trailing edge are present. From the computational investigation, it is recommended that Gurney flaps with a height of 1.5% chord be installed perpendicular to chord and as close to the trailing edge as possible to obtain maximum lift enhancement with minimum drag penalty.

  13. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification

    NASA Astrophysics Data System (ADS)

    Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; Dally, B. B.

    2014-10-01

    Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.

  14. Static Extended Trailing Edge for Lift Enhancement: Experimental and Computational Studies

    DTIC Science & Technology

    2007-06-01

    and ±200 in-lb for rolling moment. A parallelogram linkage sting support system is able to set the angle of attack from –36o to 36o within the... deforming under aerodynamic loading. The differential 3rd International Symposium on Integrating CFD and Experiments in Aerodynamics 20-21 June 2007...Figure 14. Comparison of normalized lift enhancement between SETE and Gurney flap based on thin airfoil theory. Deformation and Bending Moment

  15. Effects of Torsion Frequencies on Rotor Performance and Structural Loads with Trailing Edge Flap

    DTIC Science & Technology

    2012-07-24

    Introduction Next generation rotorcraft require a significant increase in speed , range, and payload capabilities. Active rotor control technologies [1...0.0826 Blade tip sweep, aft, deg. 20 Airfoils SC1095/SC1094R8 Nominal rotor speed , , rpm 258 First torsional frequency, /rev 4.53 Pre-twist, deg. −18...Jacklin S A and Sheikman A 2002 Low - speed wind tunnel investigation of a full-scale UH-60 rotor system American Helicopter Society 58th Annual Forum Proc

  16. Computer programs for smoothing and scaling airfoil coordinates

    NASA Technical Reports Server (NTRS)

    Morgan, H. L., Jr.

    1983-01-01

    Detailed descriptions are given of the theoretical methods and associated computer codes of a program to smooth and a program to scale arbitrary airfoil coordinates. The smoothing program utilizes both least-squares polynomial and least-squares cubic spline techniques to smooth interatively the second derivatives of the y-axis airfoil coordinates with respect to a transformed x-axis system which unwraps the airfoil and stretches the nose and trailing-edge regions. The corresponding smooth airfoil coordinates are then determined by solving a tridiagonal matrix of simultaneous cubic-spline equations relating the y-axis coordinates and their corresponding second derivatives. A technique for computing the camber and thickness distribution of the smoothed airfoil is also discussed. The scaling program can then be used to scale the thickness distribution generated by the smoothing program to a specific maximum thickness which is then combined with the camber distribution to obtain the final scaled airfoil contour. Computer listings of the smoothing and scaling programs are included.

  17. Summary of Airfoil Data

    NASA Technical Reports Server (NTRS)

    Abbott, Ira H; Von Doenhoff, Albert E; Stivers, Louis, Jr

    1945-01-01

    The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author)

  18. Swashplateless Helicopter Experimental Investigation: Primary Control with Trailing Edge Flaps Actuated with Piezobenders

    NASA Astrophysics Data System (ADS)

    Copp, Peter

    Helicopter rotor primary control is conventionally carried out using a swashplate with pitch links. Eliminating the swashplate promises to reduce the helicopter's parasitic power in high speed forward flight, as well as may lead to a hydraulic-less vehicle. A Mach-scale swashplateless rotor is designed with integrated piezobender-actuated trailing edge flaps and systematically tested on the benchtop, in the vacuum chamber and on the hoverstand. The blade is nominally based on the UH-60 rotor with a hover tip Mach number of 0.64. The blade diameter is 66 inches requiring 2400 RPM for Mach scale simulation. The rotor hub is modified to reduce the blade fundamental torsional frequency to less than 2.0/rev by replacing the rigid pitch links with linear springs, which results in an increase of the blade pitching response to the trailing edge flaps. Piezoelectric multilayer benders provide the necessary bandwidth, stroke and stiffness to drive the flaps for primary control while fitting inside the blade profile and withstanding the high centrifugal forces. This work focuses on several key issues. A piezobender designed from a soft piezoelectric material, PZT-5K4, is constructed. The new material is used to construct multi-layer benders with increased stroke for the same stiffness relative to hard materials such as PZT-5H2. Each layer has a thickness of 10 mils. The soft material with gold electrodes requires a different bonding method than hard material with nickel electrodes. With this new bonding method, the measured stiffness matches precisely the predicted stiffness for a 12 layer bender with 1.26 inch length and 1.0 inch width with a stiffness of 1.04 lb/mil. The final in-blade bender has a length of 1.38 inches and 1.0 inch width with a stiffness of 0.325 lb/mil and stroke of 20.2 mils for an energy output of 66.3 lb-mil. The behavior of piezobenders under very high electric fields is investigated. High field means +18.9 kV/cm (limited by arcing in air) and -3.54k

  19. An overview of some investigations of pressure and thermal distributions induced by trailing edge controls on hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Kaufman, Louis G., II; Johnson, Charles B.

    1986-01-01

    Detailed surface heat transfer and pressure distributions have been obtained in three-dimensional shock-wave boundary-layer interactions flow regions. The data described were obtained on fundamental shapes: planar wings with trailing edge flaps or spoilers and planar or cylindrical center bodies, representative of the aft portion of hypersonic aircraft. An overview of the work is presented; details of the projects are available in many reports in the open literature. Analytic, empiric methods are advanced for predicting the extent of separation and the increased heat transfer and pressure loads in three-dimensional separated flow regions.

  20. Investigation of Full-Scale Split Trailing-Edge Wing Flaps with Various Chords and Hinge Locations

    NASA Technical Reports Server (NTRS)

    Wallace, Rudolf

    1936-01-01

    This report gives the results of an investigation conducted in the NACA full-scale wind tunnel on a small parasol monoplane equipped with three different split trailing-edge wing flaps. The object of the investigation was to determine and correlate data on the characteristics of the airplane and flaps as affected by variation in flap chord, flap deflection, and flap location along the wing chord. The results give the lift, the drag, and the pitching moment characteristics of the airplane, and the flap forces and moments, the pressure distribution over the flaps and wing at one section, and the downwash characteristics of the flap and wing combinations.

  1. Airfoil gust response and the sound produced by airifoil-vortex interaction

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.

    1986-01-01

    This paper contributes to the understanding of the noise generation process of an airfoil encountering an unsteady upwash. By using a fast Fourier transform together with accurate airfoil response functions, the lift-time waveform for an airfoil encountering a delta function gust (the indicial function) is calculated for a flat plate airfoil in a compressible flow. This shows the interesting property that the lift is constant until the generated acoustic wave reaches the trailing edge. Expressions are given for the magnitude of this constant and for the pressure distribution on the airfoil during this time interval. The case of an airfoil cutting through a line vortex is also analyzed. The pressure-time waveform in the far field is closely related to the left-time waveform for the above problem of an airfoil entering a delta function gust. The effects of varying the relevant parameters in the problem are studied, including the observed position, the core diameter of the vortex, the vortex orientation and the airfoil span. The far field sound varies significantly with observer position, illustrating the importance of non-compactness effects. Increasing the viscous core diameter tends to smooth the pressure-time waveform. For small viscous core radius and infinite span, changing the vortex orientation changes only the amplitude of the pressure-time waveform, and not the shape.

  2. On the influence of airfoil deviations on the aerodynamic performance of wind turbine rotors

    NASA Astrophysics Data System (ADS)

    Winstroth, J.; Seume, J. R.

    2016-09-01

    The manufacture of large wind turbine rotor blades is a difficult task that still involves a certain degree of manual labor. Due to the complexity, airfoil deviations between the design airfoils and the manufactured blade are certain to arise. Presently, the understanding of the impact of manufacturing uncertainties on the aerodynamic performance is still incomplete. The present work analyzes the influence of a series of airfoil deviations likely to occur during manufacturing by means of Computational Fluid Dynamics and the aeroelastic code FAST. The average power production of the NREL 5MW wind turbine is used to evaluate the different airfoil deviations. Analyzed deviations include: Mold tilt towards the leading and trailing edge, thick bond lines, thick bond lines with cantilever correction, backward facing steps and airfoil waviness. The most severe influences are observed for mold tilt towards the leading and thick bond lines. By applying the cantilever correction, the influence of thick bond lines is almost compensated. Airfoil waviness is very dependent on amplitude height and the location along the surface of the airfoil. Increased influence is observed for backward facing steps, once they are high enough to trigger boundary layer transition close to the leading edge.

  3. Numerical study on reduction of aerodynamic noise around an airfoil with biomimetic structures

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Chengchun; Wu, Zhengyang; Wharton, James; Ren, Luquan

    2017-04-01

    A biomimetic airfoil featuring leading edge waves, trailing edge serrations and surface ridges is proposed in this study, based on flow control with each section meeting the NACA 0012 airfoil profile. Numerical simulations have been conducted to compare aerodynamic and acoustic performances between the NACA 0012 and biomimetic airfoils. These simulations utilize the large eddy simulation (LES) method and aeroacoustic analogy at an angle of attack of 0° and a Reynolds number of 1.0×105, based on using the airfoil chord as the characteristic length. The simulation results reveal the overall sound pressure levels (OASPLs) for all frequencies and at the seven observer points around the biomimetic airfoil, and a decrease of 13.1-13.9 dB is observed, whereas the drag coefficient is almost unchanged. The biomimetic structures can transform the shedding vortices in laminar mode for the NACA 0012 airfoil to regular horseshoe-type vortices in the wake, and reduce the spanwise correlation of the large-scale vortices, thereby restrain the vortex shedding noise around the biomimetic airfoil.

  4. A study of high-lift airfoils at high Reynolds numbers in the Langley low-turbulence pressure tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L., Jr.; Ferris, James C.; Mcghee, Robert J.

    1987-01-01

    An experimental study was conducted in the Langley Low Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of two supercritical type airfoils, one equipped with a conventional flap system and the other with an advanced high lift flap system. The conventional flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a small chord vane and a large chord aft flap. The advanced flap system consisted of a leading edge slat and a double slotted, trailing edge flap with a large chord vane and a small chord aft flap. Both models were tested with all elements nested to form the cruise airfoil and with the leading edge slat and with a single or double slotted, trailing edge flap deflected to form the high lift airfoils. The experimental tests were conducted through a Reynolds number range from 2.8 to 20.9 x 1,000,000 and a Mach number range from 0.10 to 0.35. Lift and pitching moment data were obtained. Summaries of the test results obtained are presented and comparisons are made between the observed aerodynamic performance trends for both models. The results showing the effect of leading edge frost and glaze ice formation is given.

  5. Grid generation by elliptic partial differential equations for a tri-element Augmentor-Wing airfoil

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1982-01-01

    Two efforts to numerically simulate the flow about the Augmentor-Wing airfoil in the cruise configuration using the GRAPE elliptic partial differential equation grid generator algorithm are discussed. The Augmentor-Wing consists of a main airfoil with a slotted trailing edge for blowing and two smaller airfoils shrouding the blowing jet. The airfoil and the algorithm are described, and the application of GRAPE to an unsteady viscous flow simulation and a transonic full-potential approach is considered. The procedure involves dividing a complicated flow region into an arbitrary number of zones and ensuring continuity of grid lines, their slopes, and their point distributions across the zonal boundaries. The method for distributing the body-surface grid points is discussed.

  6. An experimental investigation on the surface water transport process over an airfoil by using a digital image projection technique

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wei, Tian; Hu, Hui

    2015-09-01

    In the present study, an experimental investigation was conducted to characterize the transient behavior of the surface water film and rivulet flows driven by boundary layer airflows over a NACA0012 airfoil in order to elucidate underlying physics of the important micro-physical processes pertinent to aircraft icing phenomena. A digital image projection (DIP) technique was developed to quantitatively measure the film thickness distribution of the surface water film/rivulet flows over the airfoil at different test conditions. The time-resolved DIP measurements reveal that micro-sized water droplets carried by the oncoming airflow impinged onto the airfoil surface, mainly in the region near the airfoil leading edge. After impingement, the water droplets formed thin water film that runs back over the airfoil surface, driven by the boundary layer airflow. As the water film advanced downstream, the contact line was found to bugle locally and developed into isolated water rivulets further downstream. The front lobes of the rivulets quickly advanced along the airfoil and then shed from the airfoil trailing edge, resulting in isolated water transport channels over the airfoil surface. The water channels were responsible for transporting the water mass impinging at the airfoil leading edge. Additionally, the transition location of the surface water transport process from film flows to rivulet flows was found to occur further upstream with increasing velocity of the oncoming airflow. The thickness of the water film/rivulet flows was found to increase monotonically with the increasing distance away from the airfoil leading edge. The runback velocity of the water rivulets was found to increase rapidly with the increasing airflow velocity, while the rivulet width and the gap between the neighboring rivulets decreased as the airflow velocity increased.

  7. Cooled airfoil in a turbine engine

    SciTech Connect

    Vitt, Paul H; Kemp, David A; Lee, Ching-Pang; Marra, John J

    2015-04-21

    An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.

  8. AMELIA CESTOL Test: Acoustic Characteristics of Circulation Control Wing with Leading-and Trailing-Edge Slot Blowing

    NASA Technical Reports Server (NTRS)

    Horne, Clifton; Burnside, Nathan J.

    2013-01-01

    Aeroacoustic measurements of the 11 % scale full-span AMELIA CESTOL model with leading- and trailing-edge slot blowing circulation control (CCW) wing were obtained during a recent test in the Arnold Engineering Development Center 40- by 80-Ft. Wind Tunnel at NASA Ames Research Center, Sound levels and spectra were acquired with seven in-flow microphones and a 48-element phased microphone array for a variety of vehicle configurations, CCW slot flow rates, and forward speeds, Corrections to the measurements and processing are in progress, however the data from selected configurations presented in this report confirm good measurement quality and dynamic range over the test conditions, Array beamform maps at 40 kts tunnel speed show that the trailing edge flap source is dominant for most frequencies at flap angles of 0deg and 60deg, The overall sound level for the 60deg flap was similar to the 0deg flap for most slot blowing rates forward of 90deg incidence, but was louder by up to 6 dB for downstream angles, At 100 kts, the in-flow microphone levels were louder than the sensor self-noise for the higher blowing rates, while passive and active background noise suppression methods for the microphone array revealed source levels as much as 20 dB lower than observed with the in-flow microphones,

  9. Effects of a trailing edge flap on the aerodynamics and acoustics of rotor blade-vortex interactions

    NASA Technical Reports Server (NTRS)

    Charles, B. D.; Tadghighi, H.; Hassan, A. A.

    1992-01-01

    The use of a trailing edge flap on a helicopter rotor has been numerically simulated to determine if such a device can mitigate the acoustics of blade vortex interactions (BVI). The numerical procedure employs CAMRAD/JA, a lifting-line helicopter rotor trim code, in conjunction with RFS2, an unsteady transonic full-potential flow solver, and WOPWOP, an acoustic model based on Farassat's formulation 1A. The codes were modified to simulate trailing edge flap effects. The CAMRAD/JA code was used to compute the far wake inflow effects and the vortex wake trajectories and strengths which are utilized by RFS2 to predict the blade surface pressure variations. These pressures were then analyzed using WOPWOP to determine the high frequency acoustic response at several fixed observer locations below the rotor disk. Comparisons were made with different flap deflection amplitudes and rates to assess flap effects on BVI. Numerical experiments were carried out using a one-seventh scale AH-1G rotor system for flight conditions simulating BVI encountered during low speed descending flight with and without flaps. Predicted blade surface pressures and acoustic sound pressure levels obtained have shown good agreement with the baseline no-flap test data obtained in the DNW wind tunnel. Numerical results indicate that the use of flaps is beneficial in reducing BVI noise.

  10. Robust design of multiple trailing edge flaps for helicopter vibration reduction: A multi-objective bat algorithm approach

    NASA Astrophysics Data System (ADS)

    Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.

    2015-09-01

    The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

  11. Advancements in adaptive aerodynamic technologies for airfoils and wings

    NASA Astrophysics Data System (ADS)

    Jepson, Jeffrey Keith

    Although aircraft operate over a wide range of flight conditions, current fixed-geometry aircraft are optimized for only a few of these conditions. By altering the shape of the aircraft, adaptive aerodynamics can be used to increase the safety and performance of an aircraft by tailoring the aircraft for multiple flight conditions. Of the various shape adaptation concepts currently being studied, the use of multiple trailing-edge flaps along the span of a wing offers a relatively high possibility of being incorporated on aircraft in the near future. Multiple trailing-edge flaps allow for effective spanwise camber adaptation with resulting drag benefits over a large speed range and load alleviation at high-g conditions. The research presented in this dissertation focuses on the development of this concept of using trailing-edge flaps to tailor an aircraft for multiple flight conditions. One of the major tasks involved in implementing trailing-edge flaps is in designing the airfoil to incorporate the flap. The first part of this dissertation presents a design formulation that incorporates aircraft performance considerations in the inverse design of low-speed laminar-flow adaptive airfoils with trailing-edge cruise flaps. The benefit of using adaptive airfoils is that the size of the low-drag region of the drag polar can be effectively increased without increasing the maximum thickness of the airfoil. Two aircraft performance parameters are considered: level-flight maximum speed and maximum range. It is shown that the lift coefficients for the lower and upper corners of the airfoil low-drag range can be appropriately adjusted to tailor the airfoil for these two aircraft performance parameters. The design problem is posed as a part of a multidimensional Newton iteration in an existing conformal-mapping based inverse design code, PROFOIL. This formulation automatically adjusts the lift coefficients for the corners of the low-drag range for a given flap deflection as

  12. Experimental and Computational Investigation of Lift-Enhancing Tabs on a Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Ashby, Dale L.

    1996-01-01

    An experimental and computational investigation of the effect of lift-enhancing tabs on a two-element airfoil has been conducted. The objective of the study was to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-element airfoil. An NACA 63(2)-215 ModB airfoil with a 30% chord fowler flap was tested in the NASA Ames 7- by 10-Foot Wind Tunnel. Lift-enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. A combination of tabs located at the main element and flap trailing edges increased the airfoil lift coefficient by 11% relative to the highest lift coefficient achieved by any baseline configuration at an angle of attack of 0 deg, and C(sub 1max) was increased by 3%. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computed results predicted all of the trends observed in the experimental data quite well. In addition, a simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift-enhancing tabs work. The tabs were modeled by a point vortex at the air-foil or flap trailing edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift-enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.

  13. Evaluation of a research circulation control airfoil using Navier-Stokes methods

    NASA Technical Reports Server (NTRS)

    Shrewsbury, George D.

    1987-01-01

    The compressible Reynolds time averaged Navier-Stokes equations were used to obtain solutions for flows about a two dimensional circulation control airfoil. The governing equations were written in conservation form for a body-fitted coordinate system and solved using an Alternating Direction Implicit (ADI) procedure. A modified algebraic eddy viscosity model was used to define the turbulent characteristics of the flow, including the wall jet flow over the Coanda surface at the trailing edge. Numerical results are compared to experimental data obtained for a research circulation control airfoil geometry. Excellent agreement with the experimental results was obtained.

  14. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  15. Assessment of PIV-based unsteady load determination of an airfoil with actuated flap

    NASA Astrophysics Data System (ADS)

    Sterenborg, J. J. H. M.; Lindeboom, R. C. J.; Simão Ferreira, C. J.; van Zuijlen, A. H.; Bijl, H.

    2014-02-01

    For complex experimental setups involving movable structures it is not trivial to directly measure unsteady loads. An alternative is to deduce unsteady loads indirectly from measured velocity fields using Noca's method. The ultimate aim is to use this method in future work to determine unsteady loads for fluid-structure interaction problems. The focus in this paper is first on the application and assessment of Noca's method for an airfoil with an oscillating trailing edge flap. To our best knowledge Noca's method has not been applied yet to airfoils with moving control surfaces or fluid-structure interaction problems. In addition, wind tunnel corrections for this type of unsteady flow problem are considered.

  16. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, K. D.

    1985-01-01

    A direct-inverse technique and computer program called TAMSEP that can be sued for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicing the flowfield about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  17. Investigations of a circulation control airfoil flowfield using an advanced laser velocimeter

    NASA Technical Reports Server (NTRS)

    Novak, Charles J.; Cornelius, Kenneth C.

    1987-01-01

    The flowfield of a Circulation Control Airfoil was examined in detail through the use of a specially designed wind tunnel model and test program. Surface pressures on the model were obtained and the velocity field was surveyed in the trailing edge region of the model airfoil using the nonintrusive Laser Velocimetry technique. In this region mean flow and turbulence measurements indicate that, while the flowfield is similar to other wall-bounded jet flows, the external freestream plays an important role in the overall mixing and structure of the wall bounded flow. Finally, the turbulence measurements were used to compute eddy viscosities for the purpose of aiding computational fluid dynamics model development.

  18. AMELIA CESTOL Test: Acoustic Characteristics of Circulation Control Wing with Leading- and Trailing-Edge Slot Blowing

    NASA Technical Reports Server (NTRS)

    Horne, William C.; Burnside, Nathan J.

    2013-01-01

    The AMELIA Cruise-Efficient Short Take-off and Landing (CESTOL) configuration concept was developed to meet future requirements of reduced field length, noise, and fuel burn by researchers at Cal Poly, San Luis Obispo and Georgia Tech Research Institute under sponsorship by the NASA Fundamental Aeronautics Program (FAP), Subsonic Fixed Wing Project. The novel configuration includes leading- and trailing-edge circulation control wing (CCW), over-wing podded turbine propulsion simulation (TPS). Extensive aerodynamic measurements of forces, surfaces pressures, and wing surface skin friction measurements were recently measured over a wide range of test conditions in the Arnold Engineering Development Center(AEDC) National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Ft Wind Tunnel. Acoustic measurements of the model were also acquired for each configuration with 7 fixed microphones on a line under the left wing, and with a 48-element, 40-inch diameter phased microphone array under the right wing. This presentation will discuss acoustic characteristics of the CCW system for a variety of tunnel speeds (0 to 120 kts), model configurations (leading edge(LE) and/or trailing-edge(TE) slot blowing, and orientations (incidence and yaw) based on acoustic measurements acquired concurrently with the aerodynamic measurements. The flow coefficient, Cmu= mVSLOT/qSW varied from 0 to 0.88 at 40 kts, and from 0 to 0.15 at 120 kts. Here m is the slot mass flow rate, VSLOT is the slot exit velocity, q is dynamic pressure, and SW is wing surface area. Directivities at selected 1/3 octave bands will be compared with comparable measurements of a 2-D wing at GTRI, as will as microphone array near-field measurements of the right wing at maximum flow rate. The presentation will include discussion of acoustic sensor calibrations as well as characterization of the wind tunnel background noise environment.

  19. Heat-requirements for Ice Protection of a Cyclically Gas-heated, 36 Degree Swept Airfoil with Partial-span Leading-edge Slat

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H; vonGlahn, Uwe H

    1956-01-01

    Heating requirements for satisfactory cyclic de-icing over a wide range of icing and operating conditions have been determined for a gas-heated, 36deg swept airfoil of 6.9-foot chord with a partial-span leading-edge slat. Comparisons of heating requirements and effectiveness were made between the slatted and unslatted portions of the airfoil. Studies were also made comparing cyclic de-icing with continuous anti-icing, and cycll.cde-icing systems with and without leading-edge ice-free parting strips. De-icing heat requirements were approximately the same with either heated or unheated parting strips because of the aerodynamic effects of the 36deg sweep angle and the spanwise saw-tooth profile of leading-edge glaze-ice deposits. Cyclic de-icing heat-source requirements were found to be one-fourth or less of the heat requirements for complete anti-icing. The primary factors that affected the performance of the cyclic de-icing heating system were ambient air temperature, heat distribution, and thermal lag.

  20. Large-eddy simulation of flow around an airfoil on a structured mesh

    NASA Technical Reports Server (NTRS)

    Kaltenbach, Hans-Jakob; Choi, Haecheon

    1995-01-01

    The diversity of flow characteristics encountered in a flow over an airfoil near maximum lift taxes the presently available statistical turbulence models. This work describes our first attempt to apply the technique of large-eddy simulation to a flow of aeronautical interest. The challenge for this simulation comes from the high Reynolds number of the flow as well as the variety of flow regimes encountered, including a thin laminar boundary layer at the nose, transition, boundary layer growth under adverse pressure gradient, incipient separation near the trailing edge, and merging of two shear layers at the trailing edge. The flow configuration chosen is a NACA 4412 airfoil near maximum lift. The corresponding angle of attack was determined independently by Wadcock (1987) and Hastings & Williams (1984, 1987) to be close to 12 deg. The simulation matches the chord Reynolds number U(sub infinity)c/v = 1.64 x 10(exp 6) of Wadcock's experiment.

  1. Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)

    2001-01-01

    An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values

  2. A supercritical airfoil experiment

    NASA Technical Reports Server (NTRS)

    Mateer, G. G.; Seegmiller, H. L.; Hand, L. A.; Szodruck, J.

    1994-01-01

    The purpose of this investigation is to provide a comprehensive data base for the validation of numerical simulations. The objective of the present paper is to provide a tabulation of the experimental data. The data were obtained in the two-dimensional, transonic flowfield surrounding a supercritical airfoil. A variety of flows were studied in which the boundary layer at the trailing edge of the model was either attached or separated. Unsteady flows were avoided by controlling the Mach number and angle of attack. Surface pressures were measured on both the model and wind tunnel walls, and the flowfield surrounding the model was documented using a laser Doppler velocimeter (LDV). Although wall interference could not be completely eliminated, its effect was minimized by employing the following techniques. Sidewall boundary layers were reduced by aspiration, and upper and lower walls were contoured to accommodate the flow around the model and the boundary-layer growth on the tunnel walls. A data base with minimal interference from a tunnel with solid walls provides an ideal basis for evaluating the development of codes for the transonic speed range because the codes can include the wall boundary conditions more precisely than interference connections can be made to the data sets.

  3. An experimental study of transonic flow about a supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Spaid, F. W.; Dahlin, J. A.; Bachalo, W. D.; Stivers, L. S., Jr.

    1983-01-01

    A series of experiments was conducted on flow fields about two airfoil models whose sections are slight modifications of the original Whitcomb supercritical airfoil section. Data obtained include surface static-pressure distributions, far-wake surveys, oil-flow photographs, pitot-pressure surveys in the viscous regions, and holographic interferograms. These data were obtained for different combinations of lift coefficient and free-stream Mach number, which included both subcritical cases and flows with upper-surface shock waves. The availability of both pitot-pressure data and density data from interferograms allowed determination of flow-field properties in the vicinity of the trailing edge and in the wake without recourse to any assumptions about the local static pressure. The data show that significant static-pressure gradients normal to viscous layers exist in this region, and that they persist to approximately 10% chord downstream of the trailing edge. Comparisons are made between measured boundary-layer properties and results from boundary-layer computations that employed measured static-pressure distributions, as well as comparisons between data and results of airfoil flow-field computations.

  4. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    This is the presentation to follow conference paper of the same name. The adaptive compliant trailing edge (ACTE) flap experiment safety of flight requires that the flap to wing interface loads be sensed and monitored in real time to ensure that the wing structural load limits are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces will be monitored and each contains four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty one applied test load cases were developed using the predicted in-flight loads for the ACTE experiment.

  5. Longitudinal Aerodynamic Modeling of the Adaptive Compliant Trailing Edge Flaps on a GIII Airplane and Comparisons to Flight Data

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.; Bui, Trong T.; Garcia, Christian A.; Cumming, Stephen B.

    2016-01-01

    A pair of compliant trailing edge flaps was flown on a modified GIII airplane. Prior to flight test, multiple analysis tools of various levels of complexity were used to predict the aerodynamic effects of the flaps. Vortex lattice, full potential flow, and full Navier-Stokes aerodynamic analysis software programs were used for prediction, in addition to another program that used empirical data. After the flight-test series, lift and pitching moment coefficient increments due to the flaps were estimated from flight data and compared to the results of the predictive tools. The predicted lift increments matched flight data well for all predictive tools for small flap deflections. All tools over-predicted lift increments for large flap deflections. The potential flow and Navier-Stokes programs predicted pitching moment coefficient increments better than the other tools.

  6. Theoretical estimation of the transonic aerodynamic characteristics of a supercritical-wing transport model with trailing-edge controls

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.; Mann, M. J.

    1978-01-01

    A method for rapidly estimating the overall forces and moments at supercritical speeds, below drag divergence, of transport configurations with supercritical wings is presented. The method was also used for estimating the rolling moments due to the deflection of wing trailing-edge controls. This analysis was based on a vortex-lattice technique modified to approximate the effects of wing thickness and boundary-layer induced camber. Comparisons between the results of this method and experiment indicate reasonably good correlation of the lift, pitching moment, and rolling moment. The method required much less storage and run time to compute solutions over an angle-of-attack range than presently available transonic nonlinear methods require for a single angle-of-attack solution.

  7. SIMS chemical analysis of extended impact features from the trailing edge portion of experiment AO187-2

    NASA Technical Reports Server (NTRS)

    Amari, Sachiko; Foote, John; Simon, Charles; Jessberger, Elmar K.; Lange, Gundolf; Stadermann, Frank; Swan, Pat; Walker, Robert M.; Zinner, Ernst

    1992-01-01

    One hundred capture cells from the trailing edge, which had lost their cover foils during flight, were optically scanned for extended impact features caused by high velocity projectiles impinging on the cells while the foils were still intact. Of the 53 candidates, 24 impacts were analyzed by secondary ion mass spectroscopy for the chemical composition of the deposits. Projectile material was found in all impacts, and at least 75 percent of them appear to be caused by interplanetary dust particles. Elemental ratios are fractionated, with refractory elements enriched in the impacts relative to interplanetary dust particles collected in the stratosphere. Although this could be due to systematic differences in the compositions, a more likely explanation is volatility fractionation during the impact process.

  8. Extreme load alleviation using industrial implementation of active trailing edge flaps in a full design load basis

    NASA Astrophysics Data System (ADS)

    Barlas, Thanasis; Pettas, Vasilis; Gertz, Drew; Madsen, Helge A.

    2016-09-01

    The application of active trailing edge flaps in an industrial oriented implementation is evaluated in terms of capability of alleviating design extreme loads. A flap system with basic control functionality is implemented and tested in a realistic full Design Load Basis (DLB) for the DTU 10MW Reference Wind Turbine (RWT) model and for an upscaled rotor version in DTU's aeroelastic code HAWC2. The flap system implementation shows considerable potential in reducing extreme loads in components of interest including the blades, main bearing and tower top, with no influence on fatigue loads and power performance. In addition, an individual flap controller for fatigue load reduction in above rated power conditions is also implemented and integrated in the general controller architecture. The system is shown to be a technology enabler for rotor upscaling, by combining extreme and fatigue load reduction.

  9. On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Noever Castelos, Pablo; Balzani, Claudio

    2016-09-01

    For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline failure can lead to the loss of a rotor blade, and potentially of the entire turbine, and is extraordinarily relevant to be treated with strong emphasis when designing a wind turbine. Modern wind turbine rotor blades with lengths of 80 m and more offer a degree of flexibility that has never been seen in wind energy technology before. Large deflections result in high strains in the adhesive connections, especially at the trailing edge. The latest edition of the DNV GL guideline from end of 2015 demands a three-dimensional stress analysis of bondlines, whereas before an isolated shear stress proof was sufficient. In order to quantify the lack of safety from older certification guidelines this paper studies the influence of multi-axial stress states on the ultimate and fatigue load resistance of trailing edge adhesive bonds. For this purpose, detailed finite element simulations of the IWES IWT-7.5-164 reference wind turbine blades are performed. Different yield criteria are evaluated for the prediction of failure and lifetime. The results show that the multi-axial stress state is governed by span-wise normal stresses. Those are evidently not captured in isolated shear stress proofs, yielding non-conservative estimates of lifetime and ultimate load resistance. This finding highlights the importance to include a three-dimensional stress state in the failure analysis of adhesive bonds in modern wind turbine rotor blades, and the necessity to perform a three-dimensional characterization

  10. Evaluation of the Hinge Moment and Normal Force Aerodynamic Loads from a Seamless Adaptive Compliant Trailing Edge Flap in Flight

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Cruz, Josue; Lung, Shun-Fat; Kota, Sridhar; Ervin, Gregory; Lu, Kerr-Jia; Flick, Pete

    2016-01-01

    A seamless adaptive compliant trailing edge (ACTE) flap was demonstrated in flight on a Gulfstream III aircraft at the NASA Armstrong Flight Research Center. The trailing edge flap was deflected between minus 2 deg up and plus 30 deg down in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The safety-of-flight parameters for the ACTE flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. The attachment fittings connecting the flap to the aircraft wing rear spar were instrumented with strain gages and calibrated using known loads for measuring hinge moment and normal force loads in flight. The interface hardware instrumentation layout and load calibration are discussed. Twenty-one applied calibration test load cases were developed for each individual fitting. The 2-sigma residual errors for the hinge moment was calculated to be 2.4 percent, and for normal force was calculated to be 7.3 percent. The hinge moment and normal force generated by the ACTE flap with a hinge point located at 26-percent wing chord were measured during steady state and symmetric pitch maneuvers. The loads predicted from analysis were compared to the loads observed in flight. The hinge moment loads showed good agreement with the flight loads while the normal force loads calculated from analysis were over-predicted by approximately 20 percent. Normal force and hinge moment loads calculated from the pressure sensors located on the ACTE showed good agreement with the loads calculated from the installed strain gages.

  11. Analysis of a theoretically optimized transonic airfoil

    NASA Technical Reports Server (NTRS)

    Lores, M. E.; Burdges, K. P.; Shrewsbury, G. D.

    1978-01-01

    Numerical optimization was used in conjunction with an inviscid, full potential equation, transonic flow analysis computer code to design an upper surface contour for a conventional airfoil to improve its supercritical performance. The modified airfoil was tested in a compressible flow wind tunnel. The modified airfoil's performance was evaluated by comparison with test data for the baseline airfoil and for an airfoil developed by optimization of leading edge of the baseline airfoil. While the leading edge modification performed as expected, the upper surface re-design did not produce all of the expected performance improvements. Theoretical solutions computed using a full potential, transonic airfoil code corrected for viscosity were compared to experimental data for the baseline airfoil and the upper surface modification. These correlations showed that the theory predicted the aerodynamics of the baseline airfoil fairly well, but failed to accurately compute drag characteristics for the upper surface modification.

  12. Aerodynamic sound of flow past an airfoil

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1995-01-01

    The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord

  13. Aerodynamic characteristics of two rotorcraft airfoils designed for application to the inboard region of a main rotor blade

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W.

    1990-01-01

    A wind tunnel investigation was conducted to determine the 2-D aerodynamic characteristics of two new rotorcraft airfoils designed especially for application to the inboard region of a helicopter main rotor blade. The two new airfoils, the RC(4)-10 and RC(5)-10, and a baseline airfoil, the VR-7, were all studied in the Langley Transonic Tunnel at Mach nos. from about 0.34 to 0.84 and at Reynolds nos. from about 4.7 to 9.3 x 10 (exp 6). The VR-7 airfoil had a trailing edge tab which is deflected upwards 4.6 degs. In addition, the RC(4)-10 airfoil was studied in the Langley Low Turbulence Pressure Tunnel at Mach nos. from 0.10 to 0.44 and at Reynolds nos. from 1.4 to 5.4 x 10 (exp 6) respectively. Some comparisons were made of the experimental data for the new airfoils and the predictions of two different theories. The results of this study indicates that both of the new airfoils offer advantages over the baseline airfoil. These advantages are discussed.

  14. Transonic PIV (Particle Image Velocity) measurements made in the stator trailing-edge and rotor region of the ILPF (Isentropic Light Piston Facility) at Pyestock Farnborough

    NASA Astrophysics Data System (ADS)

    Bryanston-Cross, Peter J.; Burnett, Mark; Lee, Wing K. A.; Udrea, Doina D.; Chana, Kamaljit S.; Anderson, S. J.

    1997-11-01

    A series of measurement have been made using PIV in the trailing edge region of the stator row and rotor in the annular transonic cascade at RAe Farnborough. The measurements provide an instantaneous quantitative whole field visualization of an unsteady transonic flow interaction region. This work is the first such measurement to be made in a rotating transonic facility.

  15. A flow visualization study of the leading edge separation bubble on a NACA 0012 airfoil with simulated glaze ice. Final Report M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Khodadoust, Abdollah

    1988-01-01

    As a part of the ongoing research in aircraft icing, the leading edge separation bubble on the NACA 0012 model with a 5-min simulated glaze ice was investigated. The flow visualization methods used oil, tuft, splitter plate, smoke, and liquid crystals to get reattachment line data for the leading edge separation bubble on both surfaces of the airfoil. On the upper surface, the bubble was found to grow larger with increasing negative angles of attack and reduce in size with increasing angles of attack. The separated flow fails to reattach beyond 6 deg for the upper surface and -5 deg for the lower surface. The results of this study compared well with those of other experiments and computational results.

  16. Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil

    NASA Technical Reports Server (NTRS)

    Adair, Desmond; Horne, W. Clifton

    1988-01-01

    Flow characteristics in the vicinity of the trailing edge of a single-slotted airfoil flap are presented and analyzed. The experimental arrangement consisted of a NACA 4412 airfoil equipped with a NACA 4415 flap whose angle of deflection was 21.8 deg. The flow remained attached over the model surfaces except in the vicinity of the flap trailing edge where a small region of boundary-layer separation extended over the aft 7 percent of flap chord. The flow was complicated by the presence of a strong, initially inviscid jet emanating from the slot between airfoil and flap, and a gradual merging of the main airfoil wake and flap suction-side boundary layer. Downstream of the flap, the airfoil and flap wakes fully merged to form an asymmetrical curved wake. The airfoil configuration was tested at an angle of attack of 8.2 deg, at a Mach number of 0.09, and a chord based Reynolds number of 1.8 x 10 to the 6th power in the Ames Research Center 7- by 10-Foot Wind Tunnel. Surface pressure measurements were made on the airfoil and flap and on the wind tunnel roof and floor. It was estimated that the wall interference increased the C sub L by 7 percent and decreased the C sub M by 4.5 percent. Velocity characteristics were quantified using hot-wire anemometry in regions of flow with preferred direction and low turbulence intensity. A 3-D laser velocimeter was used in regions of flow recirculation and relatively high turbulence intensity.

  17. Design and simulative experiment of an innovative trailing edge morphing mechanism driven by artificial muscles embedded in skin

    NASA Astrophysics Data System (ADS)

    Li, Hongda; Liu, Long; Xiao, Tianhang; Ang, Haisong

    2016-09-01

    In this paper, conceptual design of a tailing edge morphing mechanism developed based on a new kind of artificial muscle embedded in skin, named Driving Skin, is proposed. To demonstrate the feasibility of this conceptual design, an experiment using ordinary fishing lines to simulate the function of artificial muscles was designed and carried out. Some measures were designed to ensure measurement accuracy. The experiment result shows that the contraction ratio and force required by the morphing mechanism can be satisfied by the new artificial muscles, and a relationship between contraction ratios and morphing angles can be found. To demonstrate the practical application feasibility of this conceptual design, a wing section using ordinary ropes to simulate the function of the Driving Skin mechanism was designed and fabricated. The demonstration wing section, extremely light in weight and capable of changing thickness, performs well, with a -30^\\circ /+30^\\circ morphing angle achieved. The trailing edge morphing mechanism is efficient in re-contouring the wing profile.

  18. Aerodynamics of a Flapping Airfoil with a Flexible Tail

    NASA Astrophysics Data System (ADS)

    Lai, Alan Kai San

    This dissertation presents computational solutions to an airfoil in a oscillatory heaving motion with a aeroelastically flexible tail attachment. An unsteady potential flow solver is coupled to a structural solver to obtain the aeroelastic flow solution over an inviscid fluid to investigate the propulsive performance of such a configuration. The simulation is then extended to a two-dimensional viscous solver by coupling NASA's CFL3D solver to the structural solver to study how the flow is altered by the presence of viscosity. Finally, additional simulations are done in three dimensions over wings with varying aspect ratio to study the three-dimensional effects on the propulsive performance of an airfoil with an aeroelastic tail. The computation reveals that the addition of the aeroelastic trailing edge improved the thrust generated by a heaving airfoil significantly. As the frequency of the heaving motion increases, the thrust generated by the airfoil with the tail increases exponentially. In an inviscid fluid, the increase in thrust is insufficient to overcome the increase in power required to maintain the motion and as a result the overall propulsive efficiency is reduced. When the airfoil is heaving in a viscous fluid, the presence of a suction boundary layer and the appearance of leading edge vortex increase the thrust generated to such an extent that the propulsive efficiency is increased by about 3% when compared to the same airfoil with a rigid tail. The three-dimensional computations shows that the presence of the tip vorticies suppress some of the increase in thrust observed in the two-dimensional viscous computations for short span wings. For large span wings, the overall thrust enhancing capabilities of the aeroelastic tail is preserved.

  19. Summary of Airfoil Data

    NASA Technical Reports Server (NTRS)

    Stivers, Louis S.; Abbott, Ira H.; von Doenhoff, Albert E.

    1945-01-01

    Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from

  20. Artificial Selection Reveals High Genetic Variation in Phenology at the Trailing Edge of a Species Range.

    PubMed

    Sheth, Seema Nayan; Angert, Amy Lauren

    2016-02-01

    Species responses to climate change depend on the interplay of migration and adaptation, yet we know relatively little about the potential for adaptation. Genetic adaptations to climate change often involve shifts in the timing of phenological events, such as flowering. If populations at the edge of a species range have lower genetic variation in phenological traits than central populations, then their persistence under climate change could be threatened. To test this hypothesis, we performed artificial selection experiments using the scarlet monkeyflower (Mimulus cardinalis) and compared genetic variation in flowering time among populations at the latitudinal center, northern edge, and southern edge of the species range. We also assessed whether selection on flowering time yielded correlated responses in functional traits, potentially representing a cost associated with early or late flowering. Contrary to prediction, southern populations exhibited greater responses to selection on flowering time than central or northern populations. Further, selection for early flowering resulted in correlated increases in specific leaf area and leaf nitrogen, whereas selection for late flowering led to decreases in these traits. These results provide critical insights about how spatial variation in the potential for adaptation may affect population persistence under changing climates.

  1. Parametric Evaluation of Thin, Transonic Circulation-Control Airfoils

    NASA Technical Reports Server (NTRS)

    Schlecht, Robin; Anders, Scott

    2007-01-01

    Wind-tunnel tests were conducted in the NASA Langley Transonic Dynamics Tunnel on a 6 percent-thick, elliptical circulation-control airfoil with upper-surface and lower-surface blowing capability. Results for elliptical Coanda trailing-edge geometries, biconvex Coanda trailing-edge geometries, and leading-edge geometries are reported. Results are presented at subsonic and transonic Mach numbers of 0.3 and 0.8, respectively. When considering one fixed trailing-edge geometry, for both the subsonic and transonic conditions it was found that the [3.0:1] ratio elliptical Coanda surface with the most rounded leading-edge [03] performed favorably and was determined to be the best compromise between comparable configurations that took advantage of the Coanda effect. This configuration generated a maximum. (Delta)C(sub 1) = 0.625 at a C(sub mu) = 0.06 at M = 0.3, alpha = 6deg. This same configuration generated a maximum (Delta)C(sub 1) = 0.275 at a C(sub mu) = 0.0085 at M = 0.8, alpha = 3deg.

  2. A Surrogate Approach to the Experimental Optimization of Multielement Airfoils

    NASA Technical Reports Server (NTRS)

    Otto, John C.; Landman, Drew; Patera, Anthony T.

    1996-01-01

    The incorporation of experimental test data into the optimization process is accomplished through the use of Bayesian-validated surrogates. In the surrogate approach, a surrogate for the experiment (e.g., a response surface) serves in the optimization process. The validation step of the framework provides a qualitative assessment of the surrogate quality, and bounds the surrogate-for-experiment error on designs "near" surrogate-predicted optimal designs. The utility of the framework is demonstrated through its application to the experimental selection of the trailing edge ap position to achieve a design lift coefficient for a three-element airfoil.

  3. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope

  4. Effect of Ice Formations on Section Drag of Swept NACA 63A-009 Airfoil with Partial-Span Leading-Edge Slat for Various Modes of Thermal Ice Protection

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe H.; Gray, Vernon H.

    1954-01-01

    The effects of primary and runback ice formations on the section drag of a 36 deg swept NACA 63A-009 airfoil section with a partial-span leading-edge slat were studied over a range of angles of attack from 2 to 8 deg and airspeeds up to 260 miles per hour for icing conditions with liquid-water contents ranging from 0.39 to 1.23 grams per cubic meter and datum air temperatures from 10 to 25 F. The results with slat retracted showed that glaze-ice formations caused large and rapid increases in section drag coefficient and that the rate of change in section drag coefficient for the swept 63A-009 airfoil was about 2-1 times that for an unswept 651-212 airfoil. Removal of the primary ice formations by cyclic de-icing caused the drag to return almost to the bare-airfoil drag value. A comprehensive study of the slat icing and de-icing characteristics was prevented by limitations of the heating system and wake interference caused by the slat tracks and hot-gas supply duct to the slat. In general, the studies showed that icing on a thin swept airfoil will result in more detrimental aerodynamic characteristics than on a thick unswept airfoil.

  5. Experimental Investigation of a Yawed Airfoil in Reverse Flow Dynamic Stall

    NASA Astrophysics Data System (ADS)

    Smith, Luke; Lind, Andrew, , Dr.; Jones, Anya, , Dr.

    2016-11-01

    When a rotating blade enters high advance ratio flight, a significant portion of the blade is subject to reverse flow, where flow travels from the blade's geometric trailing edge to the geometric leading edge. The purpose of this work is to determine the influence of spanwise flow on a blade undergoing dynamic stall in reverse flow. Without spanwise flow, an oscillating sharp trailing edge airfoil in reverse flow experiences separation about its sharp aerodynamic leading edge, leading to the formation of a dynamic stall vortex at low angles of attack. With spanwise flow, an airfoil experiences a delay in lift stall, possibly due to the convection of a vortex along the freestream. This work characterizes the three-dimensional flow field of an oscillating airfoil at static yaw angles in reverse flow. Time-resolved velocity fields and chordwise pressure distributions are presented for several span locations, reduced frequencies, and Reynolds numbers. The unsteady velocity fields allow for the identification of dynamic stall vortex locations, and the unsteady pressure distributions allow for the analysis of spanwise variation in aerodynamic forces. By comparing the yawed and un-yawed cases, this work illustrates the relative importance of spanwise flow in reverse flow dynamic stall.

  6. Airfoil in sinusoidal motion in a pulsating stream

    NASA Technical Reports Server (NTRS)

    Greenberg, J Mayo

    1947-01-01

    The forces and moments on a two-dimensional airfoil executing harmonic motions in a pulsating stream are derived on the basis of non-stationary incompressible potential flow theory, with the inclusion of the effect of the continuous sheet of vortices shed from the trailing edge. An assumption as to the form of the wake is made with a certain degree of approximation. A comparison with previous work applicable only to the special case of a stationary airfoil is made by means of a numerical example, and the excellent agreement obtained shows that the wake approximation is quite sufficient. The results obtained are expected to be useful in considerations of forced vibrations and flutter of rotary wing aircraft.

  7. Design and Experimental Results for the S825 Airfoil; Period of Performance: 1998-1999

    SciTech Connect

    Somers, D. M.

    2005-01-01

    A 17%-thick, natural-laminar-flow airfoil, the S825, for the 75% blade radial station of 20- to 40-meter, variable-speed and variable-pitch (toward feather), horizontal-axis wind turbines has been designed and analyzed theoretically and verified experimentally in the NASA Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift, relatively insensitive to roughness and low-profile drag have been achieved. The airfoil exhibits a rapid, trailing-edge stall, which does not meet the design goal of a docile stall. The constraints on the pitching moment and the airfoil thickness have been satisfied. Comparisons of the theoretical and experimental results generally show good agreement.

  8. Aerodynamic Flight-Test Results for the Adaptive Compliant Trailing Edge

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Smith, Mark S.; Ali, Aliyah N.; Bui, Trong T.; Ellsworth, Joel C.; Garcia, Christian A.

    2016-01-01

    The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.

  9. Prey switching as a means of enhancing persistence in predators at the trailing southern edge.

    PubMed

    Peers, Michael J L; Wehtje, Morgan; Thornton, Daniel H; Murray, Dennis L

    2014-04-01

    Understanding the effects of climate change on species' persistence is a major research interest; however, most studies have focused on responses at the northern or expanding range edge. There is a pressing need to explain how species can persist at their southern range when changing biotic interactions will influence species occurrence. For predators, variation in distribution of primary prey owing to climate change will lead to mismatched distribution and local extinction, unless their diet is altered to more extensively include alternate prey. We assessed whether addition of prey information in climate projections restricted projected habitat of a specialist predator, Canada lynx (Lynx canadensis), and if switching from their primary prey (snowshoe hare; Lepus americanus) to an alternate prey (red squirrel; Tamiasciurus hudsonicus) mitigates range restriction along the southern range edge. Our models projected distributions of each species to 2050 and 2080 to then refine predictions for southern lynx on the basis of varying combinations of prey availability. We found that models that incorporated information on prey substantially reduced the total predicted southern range of lynx in both 2050 and 2080. However, models that emphasized red squirrel as the primary species had 7-24% lower southern range loss than the corresponding snowshoe hare model. These results illustrate that (i) persistence at the southern range may require species to exploit higher portions of alternate food; (ii) selection may act on marginal populations to accommodate phenotypic changes that will allow increased use of alternate resources; and (iii) climate projections based solely on abiotic data can underestimate the severity of future range restriction. In the case of Canada lynx, our results indicate that the southern range likely will be characterized by locally varying levels of mismatch with prey such that the extent of range recession or local adaptation may appear as a geographical

  10. Investigation of nonlinear inviscid and viscous flow effects in the analysis of dynamic stall. [air flow and chordwise pressure distribution on airfoil below stall condition

    NASA Technical Reports Server (NTRS)

    Crimi, P.

    1974-01-01

    A method for analyzing unsteady airfoil stall was refined by including nonlinear effects in the representation of the inviscid flow. Certain other aspects of the potential-flow model were reexamined and the effects of varying Reynolds number on stall characteristics were investigated. Refinement of the formulation improved the representation of the flow and chordwise pressure distribution below stall, but substantial quantitative differences between computed and measured results are still evident for sinusoidal pitching through stall. Agreement is substantially improved by assuming the growth rate of the dead-air region at the onset of leading-edge stall is of the order of the component of the free stream normal to the airfoil chordline. The method predicts the expected increase in the resistance to stalling with increasing Reynolds number. Results indicate that a given airfoil can undergo both trailing-edge and leading-edge stall under unsteady conditions.

  11. Using potential flow theory and conformal mapping technique to measure pressure differential on airfoil

    NASA Astrophysics Data System (ADS)

    Mughal, Umair Najeeb

    2017-01-01

    Flow around an airfoil to calculate pressure co-efficient variations at different relative velocities have always been an important/basic part of Aerodynamic Study. Potential flow theory is used to study flow behavior on rankine half body, non-rotating cylinder and rotating cylinder as it is more trackable. Falkan-Skan Similarity Solution is taken to simulate the flow behavior on wedge. However, to use potential flow theory on usable airfoils the author have used conformal mapping to show a relation between realistic airfoil shapes and the knowledge gained from flow about cylinders. This method can further be used in the designing of an airfoil section. The author has used Joukowski Tranform to generate the flow around airfoils of various geometries and then utilized Kutta condition to force the stagnation point at the trailing edge. Co-efficient of pressure over the entire airfoil surface were calculated and corrected using Karman-Tsien compressibility correction equations. On the basis of this, the location of the ports to install the flush measurement system is suggested.

  12. Cylinder wake influence on the tonal noise and aerodynamic characteristics of a NACA0018 airfoil

    NASA Astrophysics Data System (ADS)

    Takagi, Y.; Fujisawa, N.; Nakano, T.; Nashimoto, A.

    2006-11-01

    The influence of cylinder wake on discrete tonal noise and aerodynamic characteristics of a NACA0018 airfoil is studied experimentally in a uniform flow at a moderate Reynolds number. The experiments are carried out by measuring sound pressure levels and spectrum, separation and the reattachment points, pressure distribution, fluid forces, mean-flow and turbulence characteristics around the airfoil with and without the cylinder wake. Present results indicate that the tonal noise from the airfoil is suppressed by the influence of the cylinder wake and the aerodynamic characteristics are improved in comparison with the case without the cylinder wake. These are mainly due to the separation control of boundary layers over the airfoil caused by the wake-induced transition, which is observed by surface flow visualization with liquid- crystal coating. The PIV measurements of the flow field around the airfoil confirm that highly turbulent velocity fluctuation of the cylinder wake induces the transition of the boundary layers and produces an attached boundary layer over the airfoil. Then, the vortex shedding phenomenon near the trailing edge of pressure surface is removed by the influence of the wake and results in the suppression of tonal noise.

  13. An airloads theory for morphing airfoils in dynamic stall with experimental correlation

    NASA Astrophysics Data System (ADS)

    Ahaus, Loren A.

    Helicopter rotor blades frequently encounter dynamic stall during normal flight conditions, limiting the applicability of classical thin-airfoil theory at large angles of attack. Also, it is evident that because of the largely different conditions on the advancing and retreating sides of the rotor, future rotorcraft may incorporate dynamically morphing airfoils (trailing-edge aps, dynamic camber, dynamic droop, etc.). Reduced-order aerodynamic models are needed for preliminary design and ight simulation. A unified model for predicting the airloads on a morphing airfoil in dynamic stall is presented, consisting of three components. First, a linear airloads theory allows for arbitrary airfoil deformations consistent with a morphing airfoil. Second, to capture the effects of the wake, the airloads theory is coupled to an induced ow model. Third, the overshoot and time delay associated with dynamic stall are modeled by a second-order dynamic filter, along the lines of the ONERA dynamic stall model. This paper presents a unified airloads model that allows arbitrary airfoil morphing with dynamic stall. Correlations with experimental data validate the theory.

  14. Estimated performance of an adaptive trailing-edge device aimed at reducing fuel consumption on a medium-size aircraft

    NASA Astrophysics Data System (ADS)

    Diodati, Gianluca; Concilio, Antonio; Ricci, Sergio; De Gaspari, Alessandro; Huvelin, Fabien; Dumont, Antoine; Godard, Jean-Luc

    2013-03-01

    This paper deals with the estimation of the performance of a medium-size aircraft (3-hour flight range) equipped with an adaptive trailing edge device (ATED) that runs span-wise from the wing root in the flap zone and extends chord-wise for a limited percentage of the MAC. Computations are calculated referring to the full wing and do not refer to the complete aircraft configuration. Aerodynamic computations, taking into account ideal shapes, have been performed by using both Euler and Navier- Stokes method in order to extract the wing polars for the reference and the optimal wing, implementing an ATED, deflected upwards and downwards. A comparison of the achieved results is discussed. Considering the shape domain, a suitable interpolation procedure has been set up to obtain the wing polar envelop of the adaptive wing, intended as the set of "best" values, picked by each different polar. At the end, the performances of the complete reference and adaptive wing are computed and compared for a symmetric, centered, leveled and steady cruise flight for a medium size aircraft. A significant fuel burn reduction estimate or, alternatively, an increased range capability is demonstrated, with margins of further improvements. The research leading to these results has gratefully received funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under Grant Agreement n° 284562.

  15. Vibration reduction in helicopter rotors using an actively controlled partial span trailing edge flap located on the blade

    NASA Technical Reports Server (NTRS)

    Millott, T. A.; Friedmann, P. P.

    1994-01-01

    This report describes an analytical study of vibration reduction in a four-bladed helicopter rotor using an actively controlled, partial span, trailing edge flap located on the blade. The vibration reduction produced by the actively controlled flap (ACF) is compared with that obtained using individual blade control (IBC), in which the entire blade is oscillated in pitch. For both cases a deterministic feedback controller is implemented to reduce the 4/rev hub loads. For all cases considered, the ACF produced vibration reduction comparable with that obtained using IBC, but consumed only 10-30% of the power required to implement IBC. A careful parametric study is conducted to determine the influence of blade torsional stiffness, spanwise location of the control flap, and hinge moment correction on the vibration reduction characteristics of the ACF. The results clearly demonstrate the feasibility of this new approach to vibration reduction. It should be emphasized than the ACF, used together with a conventional swashplate, is completely decoupled from the primary flight control system and thus it has no influence on the airworthiness of the helicopter. This attribute is potentially a significant advantage when compared to IBC.

  16. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.

    PubMed

    Levy, David-Elie; Seifert, Avraham

    2010-10-21

    Aerodynamic study of a simplified Dragonfly airfoil in gliding flight at Reynolds numbers below 10,000 is motivated by both pure scientific interest and technological applications. At these Reynolds numbers, the natural insect flight could provide inspiration for technology development of Micro UAV's and more. Insect wings are typically characterized by corrugated airfoils. The present study follows a fundamental flow physics study (Levy and Seifert, 2009), that revealed the importance of flow separation from the first corrugation, the roll-up of the separated shear layer to discrete vortices and their role in promoting flow reattachment to the aft arc, as the leading mechanism enabling high-lift, low drag performance of the Dragonfly gliding flight. This paper describes the effect of systematic airfoil geometry variations on the aerodynamic properties of a simplified Dragonfly airfoil at Reynolds number of 6000. The parameter study includes a detailed analysis of small variations of the nominal geometry, such as corrugation placement or height, rear arc and trailing edge shape. Numerical simulations using the 2D laminar Navier-Stokes equations revealed that the flow accelerating over the first corrugation slope is followed by an unsteady pressure recovery, combined with vortex shedding. The latter allows the reattachment of the flow over the rear arc. Also, the drag values are directly linked to the vortices' magnitude. This parametric study shows that geometric variations which reduce the vortices' amplitude, as reduction of the rear cavity depth or the reduction of the rear arc and trailing edge curvature, will reduce the drag values. Other changes will extend the flow reattachment over the rear arc for a larger mean lift coefficients range; such as the negative deflection of the forward flat plate. These changes consequently reduce the drag values at higher mean lift coefficients. The detailed geometry study enabled the definition of a corrugated airfoil

  17. Wicket gate trailing-edge blowing: A method for improving off-design hydroturbine performance by adjusting the runner inlet swirl angle

    NASA Astrophysics Data System (ADS)

    Lewis, B. J.; Cimbala, J. M.; Wouden, A. M.

    2014-03-01

    At their best efficiency point (BEP), hydroturbines operate at very high efficiency. However, with the ever-increasing penetration of alternative electricity generation, it has become common to operate hydroturbines at off-design conditions in order to maintain stability in the electric power grid. This paper demonstrates a method for improving hydroturbine performance during off-design operation by injecting water through slots at the trailing edges of the wicket gates. The injected water causes a change in bulk flow direction at the inlet of the runner. This change in flow angle from the wicket gate trailing-edge jets provides the capability of independently varying the flow rate and swirl angle through the runner, which in current designs are both determined by the wicket gate opening angle. When properly tuned, altering the flow angle results in a significant improvement in turbine efficiency during off-design operation.

  18. Decomposing the aerodynamic forces of low-Reynolds flapping airfoils

    NASA Astrophysics Data System (ADS)

    Moriche, Manuel; Garcia-Villalba, Manuel; Flores, Oscar

    2016-11-01

    We present direct numerical simulations of flow around flapping NACA0012 airfoils at relatively small Reynolds numbers, Re = 1000 . The simulations are carried out with TUCAN, an in-house code that solves the Navier-Stokes equations for an incompressible flow with an immersed boundary method to model the presence of the airfoil. The motion of the airfoil is composed of a vertical translation, heaving, and a rotation about the quarter of the chord, pitching. Both motions are prescribed by sinusoidal laws, with a reduced frequency of k = 1 . 41 , a pitching amplitude of 30deg and a heaving amplitude of one chord. Both, the mean pitch angle and the phase shift between pitching and heaving motions are varied, to build a database with 18 configurations. Four of these cases are analysed in detail using the force decomposition algorithm of Chang (1992) and Martín Alcántara et al. (2015). This method decomposes the total aerodynamic force into added-mass (translation and rotation of the airfoil), a volumetric contribution from the vorticity (circulatory effects) and a surface contribution proportional to viscosity. In particular we will focus on the second, analysing the contribution of the leading and trailing edge vortices that typically appear in these flows. This work has been supported by the Spanish MINECO under Grant TRA2013-41103-P. The authors thankfully acknowledge the computer resources provided by the Red Española de Supercomputacion.

  19. Airfoil structure

    DOEpatents

    Frey, G.A.; Twardochleb, C.Z.

    1998-01-13

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.

  20. Airfoil structure

    DOEpatents

    Frey, Gary A.; Twardochleb, Christopher Z.

    1998-01-01

    Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally "C" configuration of the airfoil. The generally "C" configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion.

  1. Downwash and Wake Behind Plain and Flapped Airfoils

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S; Bullivant, W Kenneth

    1939-01-01

    Extensive experimental measurements have been made of the downwash angles and the wake characteristics behind airfoils with and without flaps and the data have been analyzed and correlated with the theory. A detailed study was made of the errors involved in applying lifting-line theory, such as the effects of a finite wing chord, the rolling-up of the trailing vortex sheet, and the wake. The downwash angles, as computed from the theoretical span load distribution by means of the Biot-Savart equation, were found to be in satisfactory agreement with the experimental results. The rolling-up of the trailing vortex sheet may be neglected, but the vertical displacement of the vortex sheet requires consideration. By the use of a theoretical treatment indicated by Prandtl, it has been possible to generalize the available experimental results so the predictions can be made of the important wake parameters in terms of the distance behind the airfoil trailing edge and the profile-drag coefficient. The method of application of the theory to design and the satisfactory agreement between predicted and experimental results when applied to an airplane are demonstrated.

  2. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade - Part 1: Experimental Measurements. Part 1; Experimental Measurements

    NASA Technical Reports Server (NTRS)

    Bunker, Ronald S.; Wetzel, Todd G.; Rigby, David L.; Reddy, D. R. (Technical Monitor)

    2000-01-01

    A combined experimental and computational study has been performed to investigate the detailed heat transfer coefficient distributions within a complex blade trailing edge passage. The experimental measurements are made using a steady liquid crystal thermography technique applied to one major side of the passage. The geometry of the trailing edge passage is that of a two-pass serpentine circuit with a sharp 180-degree turning region at the tip. The upflow channel is split by interrupted ribs into two major subchannels, one of which is turbulated. This channel has an average aspect ratio of roughly 14:1. The spanwise extent of the channel geometry includes both area convergence from root to tip, as well as taper towards the trailing edge apex. The average section Reynolds numbers tested in this upflow channel range from 55,000 to 98,000. The tip section contains a turning vane near the extreme comer. The downflow channel has an aspect ratio of about 5:1, and also includes convergence and taper. Turbulators of varying sizes are included in this channel also. Both detailed heat transfer and pressure distribution measurements are presented. The pressure measurements are incorporated into a flow network model illustrating the major loss contributors.

  3. A Study of Trailing Edge Blowing as a Means of Reducing Noise Generated by the Interaction of Flow with a Surface

    NASA Technical Reports Server (NTRS)

    Scharton, T. D.; Pinkel, B.; Wilby, J. F.

    1973-01-01

    A system for reducing the noise generated when a jet impinges against a flap is described. The eddies formed by the alternate zones of positive and negative pressure on the flap surface are identified as the sound source. In the proposed concept, a stream of low velocity secondary air is ejected from a slot near the trailing edge of the flap as a buffer between the flap and the primary air jet to reduce the intensity of the fluctuating surface pressure field near the flap edge and thus reduce the intensity of the aerodynamic noise.

  4. Lock-in of elastically mounted airfoils at a 90° angle of attack

    NASA Astrophysics Data System (ADS)

    Ehrmann, R. S.; Loftin, K. M.; Johnson, S.; White, E. B.

    2014-01-01

    Reducing vortex-induced vibration (VIV) of elastically mounted cylinders has applications to petroleum, nuclear, and civil engineering. One simple method is streamlining the cylinder into an airfoil shape. However, if flow direction changes, an elastic airfoil could experience similar oscillations with even more drag. To better understand a general airfoil's response, three elastically mounted airfoil shapes are tested at a 90° angle of attack in a 3 ft by 4 ft wind tunnel. The shapes are a NACA 0018, a sharp leading- and trailing-edge (sharp-sharp) model, and a round leading- and trailing-edge (round-round) model. Mass-damping ranges from 0.96 to 1.44. For comparison to canonical VIV research, a cylinder is also tested. Since lock-in occurs near Rec=125×103, the models are also tested with a trip strip. The NACA 0018 and sharp-sharp configuration show nearly identical responses. The cylinder and round-round airfoil have responses five to eight times larger. Thus, the existence of a single sharp edge is sufficient to greatly reduce VIV at 90° angle of attack. Whereas the cylinder and round-round maximum response amplitudes are similar, cylinder lock-in occurs over a velocity range three times larger than the round-round. The tripped cylinder and round-round models' response is attenuated by 70% compared to their respective clean configurations. Hysteresis is only observed in the circular cylinder and round-round models. Hotwire data indicates the clean cylinder has a unique vortex pattern compared to the other configurations.

  5. Airplane wing leading edge variable camber flap

    NASA Technical Reports Server (NTRS)

    Cole, J. B.

    1980-01-01

    The invention and design of an aerodynamic high lift device which provided a solution to an aircraft performance problem are described. The performance problem of converting a high speed cruise airfoil into a low speed aerodynamic shape that would provide landing and take-off characteristics superior to those available with contemporary high lift devices are addressed. The need for an improved wing leading edge device that would complement the high lift performance of a triple slotted trailing edge flap is examined. The mechanical and structural aspects of the variable camber flap are discussed and the aerodynamic performance aspects only as they relate to the invention and design of the device are presented.

  6. An Experimental Investigation of Impingement Heat Transfer in a Rib-Roughened Trailing-Edge Channel with Crossover Holes

    NASA Astrophysics Data System (ADS)

    Huang, Xiao

    Turbine cooling technology plays a critical role in increasing the thermal efficiency and power output of advanced gas turbines. The common cooling methods include the impingement cooling method, the film cooling method, and the rib roughened cooling method. This study focuses on the impingement cooling effect on a rib roughened trailing edge channel with cross over holes and aims to find the influence of blocked exit holes to the heat transfer efficiency. A steady state liquid crystal technique was used to get the heat transfer coefficient. In this experiment, two different kinds of cross over holes were used: five tilt angle and zero tilt angle. Both inline and staggered slot-arrangement were tested and investigated. There were total 16 geometry cases. The numbers of blocked exit holes are 0, 3, 4 and 5 for inline arrangement and 0, 2, 3 and 4 for staggered arrangement. For each geometry setting, a range of Reynolds numbers was tested. The graphs of the Nusselt number versus the Reynolds number were plotted. For each individual area, the Nusselt numbers with different number of blocked exit holes were compared. The results showed that the Nusselt numbers increase monotonically with increasing Reynolds numbers. It was also found that for staggered arrangement, the highest Nusselt numbers were found in the area two holes away from the nearest blocked exit hole. And for inline arrangement, conclusions are different between zero tilt angle and five tilt angle. With zero tilt angle, the Nusselt numbers of area1 and area2 both increased first and then decreased as the number of blocked holes increased. While with five tilt angle, Nusselt numbers of all the four areas decreased monotonically.

  7. Strain Gage Load Calibration of the Wing Interface Fittings for the Adaptive Compliant Trailing Edge Flap Flight Test

    NASA Technical Reports Server (NTRS)

    Miller, Eric J.; Holguin, Andrew C.; Cruz, Josue; Lokos, William A.

    2014-01-01

    The safety-of-flight parameters for the Adaptive Compliant Trailing Edge (ACTE) flap experiment require that flap-to-wing interface loads be sensed and monitored in real time to ensure that the structural load limits of the wing are not exceeded. This paper discusses the strain gage load calibration testing and load equation derivation methodology for the ACTE interface fittings. Both the left and right wing flap interfaces were monitored; each contained four uniquely designed and instrumented flap interface fittings. The interface hardware design and instrumentation layout are discussed. Twenty-one applied test load cases were developed using the predicted in-flight loads. Pre-test predictions of strain gage responses were produced using finite element method models of the interface fittings. Predicted and measured test strains are presented. A load testing rig and three hydraulic jacks were used to apply combinations of shear, bending, and axial loads to the interface fittings. Hardware deflections under load were measured using photogrammetry and transducers. Due to deflections in the interface fitting hardware and test rig, finite element model techniques were used to calculate the reaction loads throughout the applied load range, taking into account the elastically-deformed geometry. The primary load equations were selected based on multiple calibration metrics. An independent set of validation cases was used to validate each derived equation. The 2-sigma residual errors for the shear loads were less than eight percent of the full-scale calibration load; the 2-sigma residual errors for the bending moment loads were less than three percent of the full-scale calibration load. The derived load equations for shear, bending, and axial loads are presented, with the calculated errors for both the calibration cases and the independent validation load cases.

  8. Boundary-layer and stalling characteristics of two symmetrical NACA low-drag airfoil sections

    NASA Technical Reports Server (NTRS)

    Mccullough, George B; Gault, Donald E

    1947-01-01

    Two symmetrical airfoils, an NACA 633-018 and an NACA 631-012, were investigated for the purpose of determining their stalling and boundary-layer characteristics with a view toward the eventual application of this information to the problem of boundary-layer control. Force measurements, pressure distributions, tuft studies, and boundary-layer-profile measurements were made at a value of 5,800,000 Reynolds number. It was found that the 18-percent-thick airfoil stalled progressively from the trailing edge because of separation of the turbulent boundary layer. In contrast, the12-percent-thick airfoil stalled abruptly from a separation of flow near the leading edge before the turbulent boundary layer became subject to separation. From this it was concluded that if high values of lift are to be obtained with thin, high-critical-speed sections by means of boundary-layer control, the work must be directed toward delaying the separation of flow near the leading edge. It was found that the presence of a nose flap on the 12-percent-thick section caused the airfoil to stall in a manner similar to that of the 18-percent-thick section.

  9. Large Eddy Simulation of Airfoil Self-Noise at High Reynolds Number

    NASA Astrophysics Data System (ADS)

    Kocheemoolayil, Joseph; Lele, Sanjiva

    2015-11-01

    The trailing edge noise section (Category 1) of the Benchmark Problems for Airframe Noise Computations (BANC) workshop features five canonical problems. No first-principles based approach free of empiricism and tunable coefficients has successfully predicted trailing edge noise for the five configurations to date. Our simulations predict trailing edge noise accurately for all five configurations. The simulation database is described in detail, highlighting efforts undertaken to validate the results through systematic comparison with dedicated experiments and establish insensitivity to grid resolution, domain size, alleatory uncertainties such as the tripping mechanism used to force transition to turbulence and epistemic uncertainties such as models for unresolved near-wall turbulence. Ongoing efforts to extend the predictive capability to non-canonical configurations featuring flow separation are summarized. A novel, large-span calculation that predicts the flow past a wind turbine airfoil in deep stall with unprecedented accuracy is presented. The simulations predict airfoil noise in the near-stall regime accurately. While the post-stall noise predictions leave room for improvement, significant uncertainties in the experiment might preclude a fair comparison in this regime. We thank Cascade Technologies Inc. for providing access to the CharLES toolkit - a massively-parallel, unstructured large eddy simulation framework.

  10. Passive Boundary Layer Separation Control on a NACA2415 Airfoil at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Parikh, Agastya; Hultmark, Marcus

    2016-11-01

    The design and analysis of a passive flow control system for a NACA2415 airfoil is undertaken. There exists a vast body of knowledge on airfoil boundary layer control with the use of controlled mass flux, but there is little work investigating passive mass flux-based methods. A simple duct system that uses the upper surface pressure gradient to force blowing near the leading edge and suction near the trailing edge is proposed and evaluated. 2D RANS analyses at Rec 1 . 27 ×106 were used to generate potential configurations for experimental tests. Initial computational results suggest drag reductions of approximately 2 - 7 % as well as lift increases of 4 - 5 % at α = 10 .0° and α = 12 .5° . A carbon composite-aluminum structure model that implements the most effective configurations, according to the CFD predictions, has been designed and fabricated. Experiments are being performed to evaluate the CFD results and the feasibility the duct system.

  11. Experimental Test Results of Energy Efficient Transport (EET) High-Lift Airfoil in Langley Low-Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Morgan, Harry L., Jr.

    2002-01-01

    This report describes the results of an experimental study conducted in the Langley Low-Turbulence Pressure Tunnel to determine the effects of Reynolds number and Mach number on the two-dimensional aerodynamic performance of the Langley Energy Efficient Transport (EET) High-Lift Airfoil. The high-lift airfoil was a supercritical-type airfoil with a thickness-to- chord ratio of 0.12 and was equipped with a leading-edge slat and a double-slotted trailing-edge flap. The leading-edge slat could be deflected -30 deg, -40 deg, -50 deg, and -60 deg, and the trailing-edge flaps could be deflected to 15 deg, 30 deg, 45 deg, and 60 deg. The gaps and overlaps for the slat and flaps were fixed at each deflection resulting in 16 different configurations. All 16 configurations were tested through a Reynolds number range of 2.5 to 18 million at a Mach number of 0.20. Selected configurations were also tested through a Mach number range of 0.10 to 0.35. The plotted and tabulated force, moment, and pressure data are available on the CD-ROM supplement L-18221.

  12. Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.

    1959-01-01

    A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.

  13. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Carlson, H. W.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is

  14. AERO2S - SUBSONIC AERODYNAMIC ANALYSIS OF WINGS WITH LEADING- AND TRAILING-EDGE FLAPS IN COMBINATION WITH CANARD OR HORIZONTAL TAIL SURFACES (CDC VERSION)

    NASA Technical Reports Server (NTRS)

    Darden, C. M.

    1994-01-01

    This code was developed to aid design engineers in the selection and evaluation of aerodynamically efficient wing-canard and wing-horizontal-tail configurations that may employ simple hinged-flap systems. Rapid estimates of the longitudinal aerodynamic characteristics of conceptual airplane lifting surface arrangements are provided. The method is particularly well suited to configurations which, because of high speed flight requirements, must employ thin wings with highly swept leading edges. The code is applicable to wings with either sharp or rounded leading edges. The code provides theoretical pressure distributions over the wing, the canard or horizontal tail, and the deflected flap surfaces as well as estimates of the wing lift, drag, and pitching moments which account for attainable leading edge thrust and leading edge separation vortex forces. The wing planform information is specified by a series of leading edge and trailing edge breakpoints for a right hand wing panel. Up to 21 pairs of coordinates may be used to describe both the leading edge and the trailing edge. The code has been written to accommodate 2000 right hand panel elements, but can easily be modified to accommodate a larger or smaller number of elements depending on the capacity of the target computer platform. The code provides solutions for wing surfaces composed of all possible combinations of leading edge and trailing edge flap settings provided by the original deflection multipliers and by the flap deflection multipliers. Up to 25 pairs of leading edge and trailing edge flap deflection schedules may thus be treated simultaneously. The code also provides for an improved accounting of hinge-line singularities in determination of wing forces and moments. To determine lifting surface perturbation velocity distributions, the code provides for a maximum of 70 iterations. The program is constructed so that successive runs may be made with a given code entry. To make additional runs, it is

  15. Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Fromme, J.; Golberg, M.; Werth, J.

    1979-01-01

    The numerical computation of unsteady airloads acting upon thin airfoils with multiple leading and trailing-edge controls in two-dimensional ventilated subsonic wind tunnels is studied. The foundation of the computational method is strengthened with a new and more powerful mathematical existence and convergence theory for solving Cauchy singular integral equations of the first kind, and the method of convergence acceleration by extrapolation to the limit is introduced to analyze airfoils with flaps. New results are presented for steady and unsteady flow, including the effect of acoustic resonance between ventilated wind-tunnel walls and airfoils with oscillating flaps. The computer program TWODI is available for general use and a complete set of instructions is provided.

  16. Application of digital holographic interferometry to pressure measurements of symmetric, supercritical and circulation-control airfoils in transonic flow fields

    NASA Technical Reports Server (NTRS)

    Torres, Francisco J.

    1987-01-01

    Six airfoil interferograms were evaluated using a semiautomatic image-processor system which digitizes, segments, and extracts the fringe coordinates along a polygonal line. The resulting fringe order function was converted into density and pressure distributions and a comparison was made with pressure transducer data at the same wind tunnel test conditions. Three airfoil shapes were used in the evaluation to test the capabilities of the image processor with a variety of flows. Symmetric, supercritical, and circulation-control airfoil interferograms provided fringe patterns with shocks, separated flows, and high-pressure regions for evaluation. Regions along the polygon line with very clear fringe patterns yielded results within 1% of transducer measurements, while poorer quality regions, particularly near the leading and trailing edges, yielded results that were not as good.

  17. The modelling of symmetric airfoil vortex generators

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Wendt, B. J.

    1996-01-01

    An experimental study is conducted to determine the dependence of vortex generator geometry and impinging flow conditions on shed vortex circulation and crossplane peak vorticity for one type of vortex generator. The vortex generator is a symmetric airfoil having a NACA 0012 cross-sectional profile. The geometry and flow parameters varied include angle-of-attack alfa, chordlength c, span h, and Mach number M. The vortex generators are mounted either in isolation or in a symmetric counter-rotating array configuration on the inside surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio is delta/R = 0. 17. Circulation and peak vorticity data are derived from crossplane velocity measurements conducted at or about 1 chord downstream of the vortex generator trailing edge. Shed vortex circulation is observed to be proportional to M, alfa, and h/delta. With these parameters held constant, circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio AR. Shed vortex peak vorticity is also observed to be proportional to M, alfa, and h/delta. Unlike circulation, however, peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at AR approx. 2.0 before falling off.

  18. Heat transfer in internal channel of a blade: Effects of rotation in a trailing edge cooling system

    NASA Astrophysics Data System (ADS)

    Andrei, Luca; Andreini, Antonio; Bonanni, Leonardo; Facchini, Bruno

    2012-06-01

    The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 scaled model reproducing a typical wedge shaped discharge duct with one row of enlarged pedestals. The airflow pattern inside the device simulates a highly loaded rotor blade cooling scheme with a 90 [deg] turning flow from the radial hub inlet to the tangential TE outlet. Two different tip configurations were tested, the first one with a completely closed section, the second one with a 5 holes outlet surfaces discharging at ambient pressure. In order to assess rotation effects, a rotating test rig, composed of a rotating arm holding both the PMMA TE model and the instrumentation, was purposely developed and manufactured. A thin Inconel heating foil and wide band Thermo-chromic Liquid Crystals are used to perform steady state heat transfer measurements on the blade pressure side. A rotary joint ensures the pneumatic connection between the blower and the rotating apparatus; moreover several slip rings are used for both instrumentation power supply and thermocouple connection. A parallel CFD analysis involving steady-state RANS modeling was conducted to allow an insight of the flow field inside the redirecting channel and the interpedestal ducts to better interpret the developing vortical structures. Low-Reynolds grid clustering permits to integrate up to the wall both the momentum and the thermal boundary layer. Calculations were performed by means of an in-house developed pressure based solver exploiting the k-ω SST turbulence model implemented in the framework of the open-source finite volume discretization toolbox OpenFOAM®. Analyzed flow conditions correspond to Reynolds number of 20000 in the hub inlet section and angular speed varies to obtain rotation numbers in the range from 0 to 0.3. The orientation of the rotation axis is orthogonal to the

  19. Experimental investigation of cross-over jets in a rib-roughened trailing-edge cooling channel

    NASA Astrophysics Data System (ADS)

    Xue, Fei

    Increasing the rotor inlet temperature can dramatically increase the efficiency and power output of the gas turbine engine. However, the melting point of turbine blade material limits the realistic upper bound of the rotor inlet temperature. As a result, the development of high temperature turbine blade material and advanced turbine blade cooling technology determines the future of turbine blade engine. Adding impingement jet holes and rib turbulators in the inner cooling channel of the gas turbine blades are two effective ways to enhance the cooling effects. The purpose of this study is to figure out the influence of different combinations of jet holes and rib turbulators on the heat transfer efficiency. A tabletop scale test model is used in the study to simulate the cooling cavity of trailing edge and its feed channel in a real gas turbine blade. The Dimensional Analysis Theory is used in the study to eliminate the influence of scaling. Two different crossover slots are tested with 5 different rib arrangements, and each of the test geometries is tested for 6 jet Reynolds numbers ranging from 10,000 to 36,000. The two different crossover slots are the crossover slots with 0 and 5 degree tilt angles. The four different rib arrangements are ribs with 0 degree, 45 degree, 90 degree and 135 degree angles of attack with respect to the flow direction. Furthermore, a smooth test section (no ribs) was also tested. The steady state liquid crystal thermography is used to quantify the heat transfer performance of the target areas. The variation of Nusselt number versus Reynolds number is plotted for each of the 10 geometries. Also, the variation of Nusselt number versus Reynolds number are compared for different rib angles of attack with the same crossover slot tilt angle, and between different crossover slots tilt angles with the same rib angle. The results show that, the area-weighted average Nusselt number increases monotonically with the Reynolds number; the target

  20. Flutter Analysis of a Two-Dimensional and Two-Degree-of-Freedom Supercritical Airfoil in Small-Disturbance Unsteady Transonic Flow.

    DTIC Science & Technology

    1980-03-01

    mass matrix Qh - total aerodynamic lifting force Q - total aerodynamic moment about pitching axis x 17 -- NOMENCLATURE (Continued) l/m2)1/2 r (I...mb ) , radius of gyration about elastic axis s - (ah - Xp)12 S -airfoil static moment about elastic axis U -free stream velocity x - distance between...mid-chord and pitching axis in semi- P chords, positive toward the trailing edge x - S/mb, distance between elastic axis and center of mass in semi

  1. Wind Tunnel Evaluation of a Model Helicopter Main-Rotor Blade With Slotted Airfoils at the Tip

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W.; Yeager, William T., Jr.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Mirick, Paul H.

    2001-01-01

    Data for rotors using unconventional airfoils are of interest to permit an evaluation of this technology's capability to meet the U.S. Army's need for increased helicopter mission effectiveness and improved safety and survivability. Thus, an experimental investigation was conducted in the Langley Transonic Dynamics Tunnel (TDT) to evaluate the effect of using slotted airfoils in the rotor blade tip region (85 to 100 percent radius) on rotor aerodynamic performance and loads. Four rotor configurations were tested in forward flight at advance ratios from 0.15 to 0.45 and in hover in-ground effect. The hover tip Mach number was 0.627, which is representative of a design point of 4000-ft geometric altitude and a temperature of 95 F. The baseline rotor configuration had a conventional single-element airfoil in the tip region. A second rotor configuration had a forward-slotted airfoil with a -6 deg slat, a third configuration had a forward-slotted airfoil with a -10 slat, and a fourth configuration had an aft-slotted airfoil with a 3 deg flap (trailing edge down). The results of this investigation indicate that the -6 deg slat configuration offers some performance and loads benefits over the other three configurations.

  2. Control of Vortex Shedding on an Airfoil using Mini Flaps at Low Reynolds Number

    NASA Astrophysics Data System (ADS)

    Oshiyama, Daisuke; Numata, Daiju; Asai, Keisuke

    2015-11-01

    In this study, the effects of mini flaps (MFs) on a NACA0012 airfoil were investigated experimentally at low Reynolds number. MFs are small flat plates attached to the trailing edge of an airfoil perpendicularly. All the tests were conducted at the Tohoku-University Basic Aerodynamic Research Tunnel at the chord Reynolds number of 25,000. Aerodynamic forces were measured using a 3-component balance and the surface flow was visualized by luminescent oil film technique. The results of force measurement show that attachment of MFs enhances lift and the enhanced lift increases with MF height. On the other hand, the results of oil flow visualization show that attachment of MFs enlarges the separated region on the airfoil rather than diminishes it. To understand the physical mechanism of MFs for lift enhancement, the flow around the airfoil was visualized by the smoke-wire method and the wake profile behind the airfoil was measured using a hot wire anemometer. It was found that vortices shed periodically from the tip of the MFs and interact with the separated shear layer from the upper surface. This unsteady vortex shedding forms a low-pressure region on the upper surface, generating higher lift. These results suggest that the height of MFs controls the frequency of vortex shedding behind the MF, forcing the separated shear layer on the upper surface flow in unsteady manner.

  3. On the unsteady motion and stability of a heaving airfoil in ground effect

    NASA Astrophysics Data System (ADS)

    Molina, Juan; Zhang, Xin; Angland, David

    2011-04-01

    This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces' behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizingmotion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity. However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.

  4. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2016-07-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  5. Theoretical Calculations of the Pressures, Forces, and Moments Due to Various Lateral Motions Acting on Tapered Sweptback Vertical Tails with Supersonic Leading and Trailing Edges

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Elliott, Miriam H.

    1960-01-01

    Based on expressions for the linearized velocity potentials and pressure distributions given in NACA Technical Report 1268, formulas for the span load distribution, forces, and moments are derived for families of thin isolated vertical tails with arbitrary aspect ratio, taper ratio, and sweepback performing the motions constant sideslip, steady rolling, steady yawing, and constant lateral acceleration. The range of Mach number considered corresponds, in general, to the condition that the tail leading and trailing edges are supersonic. To supplement the analytical results, design-type charts are presented which enable rapid estimation of the forces and moments (expressed as stability derivatives) for given combinations of geometry parameters and Mach number.

  6. Shockless airfoils with thicknesses of 20.6 and 20.7 percent chord analytically designed for a Mach number of 0.68 and a lift coefficient of 0.40

    NASA Technical Reports Server (NTRS)

    Allison, D. O.

    1976-01-01

    A 20.8 percent-thick airfoil shape was designed to have shockless inviscid flow at a Mach number of 0.68 and a lift coefficient of 0.40. In order to determine the actual airfoils which would yield this same shockless flow when viscous effects are included, boundary layer displacement thicknesses were subtracted from the inviscid shape for Reynolds numbers of 100 and 35 million. This process yielded airfoils with thicknesses of 20.7 and 20.6 percent, respectively. Subtraction of boundary layer displacement thicknesses for Reynolds numbers below 35 million yielded nonphysical airfoils, that is airfoils with negative thicknesses near tHe trailing edge. The pitching moment about the quarter-chord point at the design condition was -0.082 for the inviscid shape and, consequently, for both airfoils. Off-design calculations for the two airfoils were made using a computer program which provides for the interaction of the inviscid flow and boundary layer solutions. The pressure distributions of the airfoils were shockless for conditions from the design point to lower Mach numbers and lift coefficients. No boundary layer separation was predicted except in the last 3 percent chord on the upper surface.

  7. Pneumatic Spoiler Controls Airfoil Lift

    NASA Technical Reports Server (NTRS)

    Hunter, D.; Krauss, T.

    1991-01-01

    Air ejection from leading edge of airfoil used for controlled decrease of lift. Pneumatic-spoiler principle developed for equalizing lift on helicopter rotor blades. Also used to enhance aerodynamic control of short-fuselage or rudderless aircraft such as "flying-wing" airplanes. Leading-edge injection increases maneuverability of such high-performance fixed-wing aircraft as fighters.

  8. Control of Pitching Airfoil Aerodynamics by Vorticity Flux Modification using Active Bleed

    NASA Astrophysics Data System (ADS)

    Kearney, John; Glezer, Ari

    2014-11-01

    Distributed active bleed driven by pressure differences across a pitching airfoil is used to regulate the vorticity flux over the airfoil's surface and thereby to control aerodynamic loads in wind tunnel experiments. The range of pitch angles is varied beyond the static stall margin of the 2-D VR-7 airfoil at reduced pitching rates up to k = 0.42. Bleed is regulated dynamically using piezoelectric louvers between the model's pressure side near the trailing edge and the suction surface near the leading edge. The time-dependent evolution of vorticity concentrations over the airfoil and in the wake during the pitch cycle is investigated using high-speed PIV and the aerodynamic forces and moments are measured using integrated load cells. The timing of the dynamic stall vorticity flux into the near wake and its effect on the flow field are analyzed in the presence and absence of bleed using proper orthogonal decomposition (POD). It is shown that bleed actuation alters the production, accumulation, and advection of vorticity concentrations near the surface with significant effects on the evolution, and, in particular, the timing of dynamic stall vortices. These changes are manifested by alteration of the lift hysteresis and improvement of pitch stability during the cycle, while maintaining cycle-averaged lift to within 5% of the base flow level with significant implications for improvement of the stability of flexible wings and rotor blades. This work is supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  9. Study of viscous flow about airfoils by the integro-differential method

    NASA Technical Reports Server (NTRS)

    Wu, J. C.; Sampath, S.

    1975-01-01

    An integro-differential method was used for numerically solving unsteady incompressible viscous flow problems. A computer program was prepared to solve the problem of an impulsively started 9% thick symmetric Joukowski airfoil at an angle of attack of 15 deg and a Reynolds number of 1000. Some of the results obtained for this problem were discussed and compared with related work completed previously. Two numerical procedures were used, an Alternating Direction Implicit (ADI) method and a Successive Line Relaxation (SLR) method. Generally, the ADI solution agrees well with the SLR solution and with previous results are stations away from the trailing edge. At the trailing edge station, the ADI solution differs substantially from previous results, while the vorticity profiles obtained from the SLR method there are in good qualitative agreement with previous results.

  10. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  11. About the effects of an oscillating miniflap upon the wake on an airfoil, all immersed in turbulent flow

    NASA Astrophysics Data System (ADS)

    S, Delnero J.; J, Marañón Di Leo; Colman; J; M, Camocardi; Sainz M, García; F, Muñoz

    2011-12-01

    The present research analyzes the asymmetry in the rolling up shear layers behind the blunt trailing edge of an airfoil 4412 with a miniflap acting as active flow control device and its wake organization. Experimental investigations relating the asymmetry of the vortex flow in the near wake region, able to distort the flow increasing the downwash of an airfoil, have been performed. All of these in a free upstream turbulent flow (1.8% intensity). We examine the near wake region characteristics of a wing model with a 4412 airfoil without and with a rotating miniflap located on the lower surface, near the trailing edge. The flow in the near wake, for 3 x-positions (along chord line) and 20 vertical points in each x-position, was explored, for three different rotating frequencies, in order to identify signs of asymmetry of the initial counter rotating vortex structures. Experimental evidence is presented showing that for typical lifting conditions the shear layer rollup process within the near wake is different for the upper and lower vortices: the shear layer separating from the pressure side of the airfoil begins its rollup immediately behind the trailing edge, creating a stronger vortex while the shear layer from the suction side begins its rollup more downstream creating a weaker vortex. The experimental data were processed by classical statistics methods. Aspects of a mechanism connecting the different evolution and pattern of these initial vortex structures with lift changes and wake alleviating processes, due to these miniflaps, will be studied in future works.

  12. A low speed wind tunnel investigation of Reynolds number effects on a 60-deg swept wing configuration with leading and trailing edge flaps

    NASA Technical Reports Server (NTRS)

    Rao, Dhanvada M.; Hoffler, Keith D.

    1988-01-01

    A low-speed wind tunnel test was performed to investigate Reynolds number effects on the aerodynamic characteristics of a supersonic cruise wing concept model with a 60-deg swept wing incorporating leading-edge and trailing-edge flap deflections. The Reynolds number ranged from 0.3 to 1.6 x 10 to the 6th, and corresponding Mach numbers from .05 to 0.3. The objective was to define a threshold Reynolds number above which the flap aerodynamics basically remained unchanged, and also to generate a data base useful for validating theoretical predictions for the Reynolds number effects on flap performance. This report documents the test procedures used and the basic data acquired in the investigation.

  13. Low-speed aerodynamic characteristics of a wing-canard configuration with underwing spanwise blowing on the trailing-edge flap system

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Paulson, John W., Jr.

    1987-01-01

    An investigation of the effects of spanwise blowing applied to the lower surface of a trailing-edge flap system on a wing-canard configuration has been conducted in the Langley 4- by 7-Meter Tunnel. The investigation studied spanwise-blowing angles of 30 deg., 45 deg., and 60 deg. measured from a perpendicular to the body center-line. The test conditions covered a range of free-stream dynamic pressures up to 50 psf for thrust coefficients up to 2.1 over a range of angles of attack from -2 deg. to 26 deg. Model height above the wind tunnel floor was varied from a height-to-span ratio of 1.70 down to 0.20 (a representative wheel touchdown height). The results indicate that blowing angles of 30 deg. and 45 deg. increase the induced-lift increment produced by spanwise blowing on the lower surface of a trailing-edge flap system. Increasing the blowing angle to 60 deg., in general, produces little further improvement.

  14. The Effect of Blunt-Trailing-Edge Modifications on the High-Speed Stability and Control Characteristics of a Swept-Wing Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin; Matteson, Frederick H.; Van Dyke, Rudolph D., Jr.

    1954-01-01

    An investigation was conducted on a 35 deg swept-wing fighter airplane to determine the effects of several blunt-trailing-edge modifications to the wing and tail on the high-speed stability and control characteristics and tracking performance. The results indicated significant improvement in the pitch-up characteristics for the blunt-aileron configuration at Mach numbers around 0.90. As a result of increased effectiveness of the blunt-trailing-edge aileron, the roll-off, customarily experienced with the unmodified airplane in wings-level flight between Mach numbers of about 0.9 and 1.0 was eliminated, The results also indicated that the increased effectiveness of the blunt aileron more than offset the large associated aileron hinge moment, resulting in significant improvement in the rolling performance at Mach numbers between 0.85 and 1.0. It appeared from these results that the tracking performance with the blunt-aileron configuration in the pitch-up and buffeting flight region at high Mach numbers was considerably improved over that of the unmodified airplane; however, the tracking errors of 8 to 15 mils were definitely unsatisfactory. A drag increment of about O.OOl5 due to the blunt ailerons was noted at Mach numbers to about 0.85. The drag increment was 0 at Mach numbers above 0.90.

  15. Flow and heat transfer in an L-shaped cooling passage with ribs and pin fins for the trailing edge of a gas-turbine vane and blade

    NASA Astrophysics Data System (ADS)

    Pardeshi, Irsha

    Efficient and effective cooling of the trailing edges of gas-turbine vanes and blades is challenging because there is very little space to work with. In this study, CFD simulations based on steady RANS closed by the shear-stress transport turbulence model were performed to study the flow and heat transfer in an L-shaped duct for the trailing edge under two operating conditions. One operating condition, referred to as the laboratory condition, where experimental measurements were made, has a Reynolds number at the duct inlet of ReD = 15,000, coolant inlet temperature of Tinlet = 300 K, wall temperature of Twall = 335 K, a back pressure of Pb = 1 atm. When rotating, the angular speed was O = 1,000 rpm. The other condition, referred to as the engine-relevant condition, has Re D = 150,000 at the duct inlet, Tinlet = 673 K, Twall = 1,173 K, and Pb = 25 atm. When rotating, O was 3,600 rpm. The objective is to understand the nature of the flow and heat transfer in an L-shaped cooling passage for the trailing edge that has a combination of ribs and pin fins under rotating and non-rotating conditions with focus on how pin fins and ribs distribute the flow throughout the passage and to understand what features of the flow and heat transfer can or cannot be extrapolated from the laboratory to the engine-relevant operating conditions. When there is no rotation, results obtained show that for both operating conditions, the pin fins minimized the size of the separation bubble when the flow exits the inlet duct into the expanded portion of the L-shaped duct. The size of the separation bubble at the tip of the L-shaped duct created by the adverse pressure gradient is quite large for the laboratory condition and relatively small for the engine condition. Each rib was found to create two sets of recirculating flows, one just upstream of the rib because of the adverse pressure gradient induced by the rib and one just downstream of the rib because of flow separation from a sharp edge

  16. Effects of Compressibility, Pitch Rate and Reynolds Number on Unsteady Incipient Leading-Edge Boundary Layer Separation Over a Pitching Airfoil

    DTIC Science & Technology

    2007-11-02

    STRUCTURED GRID) The governing equations employed for the numerical simulation of unsteady flow past an airfoil utilizing a structured grid are...numerical simulation of aerodynamic flows . The physical boundaries of the flow are mapped into constant trans- formed coordinate lines, and this...damping term. 3.3 Geometric Conservation Law The numerical simulation of unsteady flow past a moving airfoil involves the move- ment of the computational

  17. CO2 and potassium in the mantle: carbonaceous pelite melts from the trailing edge of a detached slab hybridizing in the mantle to ultrapotassic kamafugite

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.

    2007-12-01

    .0-3.5 GPa). The proposition is, that the carbonaceous pelite melts only form in thermally relaxing slabs typical for an ending subduction. Slab break off causes inflow of hot asthenospheric mantle, which further heats the trailing edge of the slab. Normally, subduction ends through continental collision at the surface, and the melts from the trailing edge appear to freeze in the relatively cool mantle below the orogen and await the next thermal event in order to form group II kimberlites. In the particular Italian situation, where large scale plate tectonic movements changed the convergence into a strike slip, temperatures of the trailing slab edge and the asthenosphere are apparently sufficient to keep the carbonaceaous slab melts liquid during hydridization in the mantle, leading to the surface kamafugites. The short longevity of the ultrapotassic magmatism (800 ka) collaborates the concept of a one-time event, i.e. the one-time melting of the trailing slab edge during it's break-off.

  18. CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades

    NASA Astrophysics Data System (ADS)

    Papadakis, G.; Voutsinas, S.; Sieros, G.; Chaviaropoulos, T.

    2014-12-01

    The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes.

  19. Experimental and computational investigation of lift-enhancing tabs on a multi-element airfoil

    NASA Technical Reports Server (NTRS)

    Ashby, Dale

    1996-01-01

    An experimental and computational investigation of the effect of lift enhancing tabs on a two-element airfoil was conducted. The objective of the study was to develop an understanding of the flow physics associated with lift enhancing tabs on a multi-element airfoil. A NACA 63(sub 2)-215 ModB airfoil with a 30 percent chord Fowler flap was tested in the NASA Ames 7 by 10 foot wind tunnel. Lift enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computer results predict all of the trends in the experimental data quite well. When the flow over the flap upper surface is attached, tabs mounted at the main element trailing edge (cove tabs) produce very little change in lift. At high flap deflections. however, the flow over the flap is separated and cove tabs produce large increases in lift and corresponding reductions in drag by eliminating the separated flow. Cove tabs permit high flap deflection angles to be achieved and reduce the sensitivity of the airfoil lift to the size of the flap gap. Tabs attached to the flap training edge (flap tabs) are effective at increasing lift without significantly increasing drag. A combination of a cove tab and a flap tab increased the airfoil lift coefficient by 11 percent relative to the highest lift tab coefficient achieved by any baseline configuration at an angle of attack of zero percent and the maximum lift coefficient was increased by more than 3 percent. A simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift enhancing tabs work. The tabs were modeled by a point vortex at the training edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift enhancing tabs on a multi-element airfoil. Results of the modeling

  20. Single-stage experimental evaluation of tandem-airfoil rotor and stator blading for compressors. Part 3: Data and performance for stage C

    NASA Technical Reports Server (NTRS)

    Brent, J. A.; Clemmons, D.

    1972-01-01

    Stage C, comprised of tandem-airfoil rotor C and tandem-airfoil stator B, was designed and tested to establish performance data for comparison with the performance of conventional single-airfoil blading. Velocity diagrams and blade leading and trailing edge metal angles selected for the conventional rotor and stator blading were used in the design of the tandem blading. The rotor had an inlet hub/tip ratio of 0.8 and a design tip velocity of 757 ft/sec. At design equivalent rotor speed, rotor C achieved a maximum adiabatic efficiency of 91.8% at a pressure ratio of 1.31. The stage maximum adiabatic efficiency was 86.5% at a pressure ratio of 1.31.

  1. Special Course on Inverse Methods for Airfoil Design for Aeronautical and Turbomachinery Applications (Methodes Inverses pour la Conception des Profils Porteurs pour des Applications dans les Domaines de l’Aeronautique et des Turbomachines)

    DTIC Science & Technology

    1990-11-01

    unique This value is known, together with the relationship H3 2k(Hlk) for unseparated velocity profile of the corresponding as well as for separated flow...Compressor" "Similar Solutions for a Family of Proceedings of the 6th Separated Turbulent Boundary International Symposium of Air Layers" Breathing Engines...with the airfoil is that the upper and lower surface trailing edge relationship between prescribed pressures and the points be separated by prescribed

  2. The influence of sweep on the aerodynamic loading of an oscillating NACA 0012 airfoil. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    St.hilaire, A. O.; Carta, F. O.; Fink, M. R.; Jepson, W. D.

    1979-01-01

    Aerodynamic experiments were performed on an oscillating NACA 0012 airfoil utilizing a tunnel-spanning wing in both unswept and 30 degree swept configurations. The airfoil was tested in steady state and in oscillatory pitch about the quarter chord. The unsteady aerodynamic loading was measured using pressure transducers along the chord. Numerical integrations of the unsteady pressure transducer responses were used to compute the normal force, chord force, and moment components of the induced loading. The effects of sweep on the induced aerodynamic load response was examined. For the range of parameters tested, it was found that sweeping the airfoil tends to delay the onset of dynamic stall. Sweeping was also found to reduce the magnitude of the unsteady load variation about the mean response. It was determined that at mean incidence angles greater than 9 degrees, sweep tends to reduce the stability margin of the NACA 0012 airfoil; however, for all cases tested, the airfoil was found to be stable in pure pitch. Turbulent eddies were found to convect downstream above the upper surface and generate forward-moving acoustic waves at the trailing edge which move upstream along the lower surface.

  3. Micro-abrasion package capture cell experiment on the trailing edge of LDEF: Impactor chemistry and whipple bumper shield efficiencies

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Howard J.; Yano, Hajime

    1995-01-01

    Four of the eight available double layer microparticle capture cells, flown as the experiment A0023 on the trailing (West) face of LDEF, have been extensively studied. An investigation of the chemistry of impactors has been made using SEM/EDX techniques and the effectiveness of the capture cells as bumper shields has also been examined. Studies of these capture cells gave positive EDX results, with 53 percent of impact sites indicating the presence of some chemical residues, the predominant residue identified as being silicon in varying quantities.

  4. Experimental investigation of the flowfield of an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    1992-01-01

    The flowfield of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than or = k less than or = 1.6 is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between angles of attack (alpha) of 5 and 25 degrees. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 degrees at k = 0.2, but is shed at the minimum alpha of 5 degrees at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 degrees) dominates the unsteady fluctuations in the wake.

  5. Experimental investigation of the flowfield of an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Panda, J.; Zaman, K. B. M. Q.

    1992-01-01

    The flow field of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than k less than 1.6, is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between alpha of 5 deg and 25 deg. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 deg at k = 0.2, but is shed at the minimum alpha of 5 deg at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 deg) dominates the unsteady fluctuations in the wake.

  6. Blowing-Type Boundary-Layer Control as Applied to the Trailing-Edge Flaps of a 35 Degree Swept-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Kelly, Mark W; Anderson, Seth B; Innis, Robert C

    1958-01-01

    A wind-tunnel investigation was made to determine the effects on the aerodynamic characteristics of a 35 degree swept-wing airplane of applying blowing-type boundary-layer control to the trailing-edge flaps. Flight tests of a similar airplane were then conducted to determine the effects of boundary-layer control on the handling qualities and operation of the airplane, particularly during landing and take-off. The wind-tunnel and flight tests indicated that blowing over the flaps produced large increases in flap lift increment, and significant increases in maximum lift. The use of blowing permitted reductions in the landing approach speeds of as much as 12 knots.

  7. Persistent source influences on the trailing edge of a groundwater plume, and natural attenuation timeframes: the F-Area Savannah River Site.

    PubMed

    Wan, Jiamin; Tokunaga, Tetsu K; Dong, Wenming; Denham, Miles E; Hubbard, Susan S

    2012-04-17

    At the Savannah River Site's F-Area, wastewaters containing radionuclides were disposed into seepage basins for decades. After closure and capping in 1991, the U.S. Department of Energy (DOE) has being monitoring and remediating the groundwater plume. Despite numerous studies of the plume, its persistence for over 20 years has not been well understood. To better understand the plume dynamics, a limited number of deep boreholes were drilled to determine the current plume characteristics. A mixing model was developed to predict plume tritium and nitrate concentrations. We found that the plume trailing edges have emerged for some contaminants, and that contaminant recharge from the basin's vadose zone is still important. The model's estimated time-dependent basin drainage rates combined with dilution from natural recharge successfully predicted plume tritium and nitrate concentrations. This new understanding of source zone influences can help guide science-based remediation, and improve predictions of the natural attenuation timeframes.

  8. Numerical Investigation of the Control of Separation from Curved and Blunt Trailing Edges Using DNS and LES

    NASA Astrophysics Data System (ADS)

    Fasel, Hermann F.

    2002-07-01

    Wall jets over a curved wall geometry (Coanda flows) are investigated using DNS and turbulence modeling. In experiments large coherent structures have enhanced the effectiveness of wall jets in delaying or preventing flow separation on airfoils. Understanding the behavior of these structures is essential for utilizing wall jets for separation control. The research objective is to investigate curvature effects on large coherent structures, in particular the development of longitudinal (Goertler-type) vortices and their interaction with 2D vortices. The focus is on Coanda cylinders using two computational approaches. With the Flow Simulation Methodology (FSM), a turbulent wall jet is computed over a cylinder segment on a body-fitted grid. In FSM, the contribution of the turbulence model depends on the grid resolution relative to a local turbulent length scale. For a flat-plate reference case, FSM is employed as DNS, LES, and URANS. In all cases the large 2D vortices are captured. For the curved-wall geometry, FSM is employed as a DNS. Goertler-type vortices emerge in the simulation but remain weak due to the narrow computational domain. In the second approach, Coanda flows including nozzle and separated region are computed using immersed boundary techniques (IBT). The feasibility of IBT for Coanda Flows is established.

  9. Recent Turbulence Model Advances Applied to Multielement Airfoil Computations

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Gatski, Thomas B.

    2000-01-01

    A one-equation linear turbulence model and a two-equation nonlinear explicit algebraic stress model (EASM) are applied to the flow over a multielement airfoil. The effect of the K-epsilon and K-omega forms of the two-equation model are explored, and the K-epsilon form is shown to be deficient in the wall-bounded regions of adverse pressure gradient flows. A new K-omega form of EASM is introduced. Nonlinear terms present in EASM are shown to improve predictions of turbulent shear stress behind the trailing edge of the main element and near midflap. Curvature corrections are applied to both the one- and two-equation turbulence models and yield only relatively small local differences in the flap region, where the flow field undergoes the greatest curvature. Predictions of maximum lift are essentially unaffected by the turbulence model variations studied.

  10. Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomin

    Shape optimization is widely used in the design of wind turbine blades. In this dissertation, a numerical optimization method called Genetic Algorithm (GA) is applied to address the shape optimization of wind turbine airfoils and blades. In recent years, the airfoil sections with blunt trailing edge (called flatback airfoils) have been proposed for the inboard regions of large wind-turbine blades because they provide several structural and aerodynamic performance advantages. The FX, DU and NACA 64 series airfoils are thick airfoils widely used for wind turbine blade application. They have several advantages in meeting the intrinsic requirements for wind turbines in terms of design point, off-design capabilities and structural properties. This research employ both single- and multi-objective genetic algorithms (SOGA and MOGA) for shape optimization of Flatback, FX, DU and NACA 64 series airfoils to achieve maximum lift and/or maximum lift to drag ratio. The commercially available software FLUENT is employed for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a two-equation Shear Stress Transport (SST) turbulence model and a three equation k-kl-o turbulence model. The optimization methodology is validated by an optimization study of subsonic and transonic airfoils (NACA0012 and RAE 2822 airfoils). In this dissertation, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given B and lambda and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated

  11. Airfoil modification effects on subsonic and transonic pressure distributions and performance for the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Sewall, William G.

    1995-01-01

    Longitudinal characteristics and wing-section pressure distributions are compared for the EA-6B airplane with and without airfoil modifications. The airfoil modifications were designed to increase low-speed maximum lift for maneuvering, while having a minimal effect on transonic performance. Section contour changes were confined to the leading-edge slat and trailing-edge flap regions of the wing. Experimental data are analyzed from tests in the Langley 16-Foot Transonic Tunnel on the baseline and two modified wing-fuselage configurations with the slats and flaps in their retracted positions. Wing modification effects on subsonic and transonic performance are seen in wing-section pressure distributions of the various configurations at similar lift coefficients. The modified-wing configurations produced maximum lift coefficients which exceeded those of the baseline configuration at low-speed Mach numbers (0.300 and 0.400). This benefit was related to the behavior of the wing upper surface leading-edge suction peak and the behavior of the trailing-edge pressure. At transonic Mach numbers (0.725 to 0.900), the wing modifications produced a somewhat stronger nose-down pitching moment, a slightly higher drag at low-lift levels, and a lower drag at higher lift levels.

  12. Trail Preservation.

    ERIC Educational Resources Information Center

    Sanders, Bill

    1993-01-01

    Discusses the maintenance of hiking trails in the United States using volunteer workers from clubs like the American Hiking Society. Describes the organization of the National Trails Day and other methods of promoting trail maintenance. (MDH)

  13. Wind-Tunnel Tests of an NACA 44R-Series Tapered Wing with a Straight Trailing Edge and a Constant-Chord Center Section

    NASA Technical Reports Server (NTRS)

    Neely, Robert H.

    1943-01-01

    As part of a general investigation in the NACA 19-foot pressure tunnel to determine stall characteristics and effectiveness of high-lift devices on wings of various sections, tests were made of a tapered. wing having NACA 44R-series airfoil sections. Lift, drag, pitching-moment, and stall characteristics were determined at a Reynolds number of 4,850,000 for the plain wing and for the wing with partial-and with full-span split flaps. The stall progressed slowly over The plain wing; a gradual loss of lift for angles of attack up to and beyond that for the maximum lift coefficient resulted. As Compared with the stall of the plain wing, the initial stall of the wing with either partial-span or full-span flaps deflected occurred at a higher angle of attack and the stall progressed much more rapidly. The maximum lift coefficients at a Reynolds number of 4,850,000 were 1.35 for the plain wing, 2.25 for the wing with partial-span flaps at 60 deg, and 2.67 for the wing with full-span flaps at 60 deg. The positions of the aerodynamic center, in terms of mean chords back of the leading edge of the root section, were approximately 0.458 with no flaps, 0.483 with partial-span flaps at 60 deg, and 0.498 with full-span flaps at 60 deg.

  14. Characterization of dynamic stall on 9-15 % thick airfoils using experiment and computation

    NASA Astrophysics Data System (ADS)

    Davidson, Phillip B.

    In recent years, the blade geometry on wind turbines and helicopters has been optimized for a particular span location. Unsteady flow phenomena like dynamic stall limit these designs and need to be better understood and correctly simulated. Currently, empirical and computational fluid dynamics (CFD) methods are used to simulate rotating wind turbine or helicopter blades, but each of these methods has limitations in predicting unsteady separated flows. To address these needs, the present work investigated oscillating airfoils over a range of conditions with an approach that provided fast, low-cost unsteady pressure data combined with a highly resolved flow field to better understand the physics of dynamic stall. An additional objective was to show how such data may be used to assess CFD simulations. This research has yielded interesting results showing characteristics of thin airfoil stall, leading edge stall, and trailing edge stall that were sorted and classified. Classification of the oscillating airfoil behavior with or without dynamic stall was performed using previous definitions for stall regime, separation characteristics, and other qualitative differences in stall pattern. After classifying the unsteady flow for each of the cases, comparison of experimental results and results obtained using an unsteady Reynolds Averaged Navier-Stokes (URANS) solver was performed to assess the ability of the solver to produce the same unsteady effects. Although both experiment and computation produced similar flow features, the timing and magnitude of the features in the dynamic stall and re-attachment process of the pitching cycle exhibited some significant differences.

  15. Active Control of Separation from the Slat Shoulder of a Supercritical Airfoil

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Schaeffler, Norman W.; Yao, Chung-Sheng; Seifert, Avi

    2002-01-01

    Active flow control in the form of zero-mass-flux excitation was applied at the slat shoulder of a simplified high-lift airfoil to delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge slat and a 25% chord simply hinged trailing edge flap. The cruise configuration data was successfully reproduced, repeating previous experiments. The effects of flap and slat deflection angles on the performance of the airfoil integral parameters were quantified. Detailed flow features were measured as well, in an attempt to identify optimal actuator placement. The measurements included: steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization and Particle Image Velocimetry (PIV). High frequency periodic excitation was applied to delay the occurrence of slat stall and improve the maximum lift by 10 to 15%. Low frequency amplitude modulation was used to reduce the oscillatory momentum coefficient by roughly 50% with similar aerodynamic performance.

  16. Experimental Study of Lift-Enhancing Tabs on a Two-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Storms, Bruce L.; Ross, James C.

    1995-01-01

    The results of a wind-tunnel test are presented for a two-dimensional NASA 63(sub 2)-215 Mod B airfoil with a 30% chord single-slotted flap. The use of lift-enhancing tabs (similar to Gurney flaps) on the lower surface near the trailing edge of both elements was investigated on four nap configurations. A combination of vortex generators on the flap and lift-enhancing tabs was also investigated. Measurements of surface-pressure distributions and wake profiles were used to determine the aerodynamic performance of each configuration. By reducing flow separation on the flap, a lift-enhancing tab at the main-element trailing edge increased the maximum lift by 10.3% for the 42-deg flap case. The tab had a lesser effect at a moderate flap deflection (32 deg) and adversely affected the performance at the smallest flap deflection (22 deg). A tab located near the flap trailing edge produced an additional lift increment for all flap deflections. The application of vortex generators to the flap eliminated lift-curve hysteresis and reduced flow separation on two configurations with large flap deflections (greater than 40 deg). A maximum-lift coefficient of 3.32 (17% above the optimum baseline) was achieved with the combination of lift-enhancing tabs on both elements and vortex generators on the flap.

  17. Airfoils for wind turbine

    DOEpatents

    Tangler, James L.; Somers, Dan M.

    1996-01-01

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  18. Airfoils for wind turbine

    DOEpatents

    Tangler, J.L.; Somers, D.M.

    1996-10-08

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  19. Composite airfoil assembly

    DOEpatents

    Garcia-Crespo, Andres Jose

    2015-03-03

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  20. Wind tunnel results for a high-speed, natural laminar-flow airfoil designed for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Sewall, William G.; Mcghee, Robert J.; Viken, Jeffery K.; Waggoner, Edgar G.; Walker, Betty S.; Millard, Betty F.

    1985-01-01

    Two dimensional wind tunnel tests were conducted on a high speed natural laminar flow airfoil in both the Langley 6 x 28 inch Transonic Tunnel and the Langley Low Turbulence Pressure Tunnel. The test conditions consisted of Mach numbers ranging from 0.10 to 0.77 and Reynolds numbers ranging from 3 x 1 million to 11 x 1 million. The airfoil was designed for a lift coefficient of 0.20 at a Mach number of 0.70 and Reynolds number of 11 x 1 million. At these conditions, laminar flow would extend back to 50 percent chord of the upper surface and 70 percent chord of the lower surface. Low speed results were also obtained with a 0.20 chord trailing edge split flap deflected 60 deg.

  1. Pressure distributions on a rectangular aspect-ratio-6, slotted supercritical airfoil wing with externally blown flaps

    NASA Technical Reports Server (NTRS)

    Johnson, W. G., Jr.

    1976-01-01

    An investigation was made in the 5.18 m (17 ft) test section of the Langley 300 MPH 7 by 10 foot tunnel on a rectangular, aspect ratio 6 wing which had a slotted supercritical airfoil section and externally blown flaps. The 13 percent thick wing was fitted with two high lift flap systems: single slotted and double slotted. The designations single slotted and double slotted do not include the slot which exists near the trailing edge of the basic slotted supercritical airfoil. Tests were made over an angle of attack range of -6 deg to 20 deg and a thrust-coefficient range up to 1.94 for a free-stream dynamic pressure of 526.7 Pa (11.0 lb/sq ft). The results of the investigation are presented as curves and tabulations of the chordwise pressure distributions at the midsemispan station for the wing and each flap element.

  2. Technology for pressure-instrumented thin airfoil models, phase 1

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1985-01-01

    A network of channels was chemically milled into one surface of a pair of matched plates having bond planes which were neither planar or profiled to match the contour of the trailing edge of a supercritical airfoil for testing in cryogenic wind tunnels. Vacuum brazing bonded the plates together to create a network of pressure passages without blockages or cross leaks. The greatest success was achieved with the smaller samples and planar bonding surfaces. In larger samples, problems were encountered due to warpage created by the relief of residual stresses. Successful bonds were formed by brazing A286, Nitronic 40 and 300 series stainless steels at 1065 C using AMS 4777B brazing alloy, but excessive grain growth occurred in samples of 200 grade 18 nickel maraging steels. Good bonds were obtained with maraging steel using a 47 percent Nickel-47 percent Palladium-6 percent Silicon alloy and brazing at 927 C. Electro-Discharge-Machining was an effective method of cutting profiled bond planes and airfoil contours. Orifices of good definition were obtained when the EDM wire cut passed through predrilled holes. Possible configurations for joints between small segments and the larger main wing were also studied.

  3. The Determination of the Geometries of Multiple-Element Airfoils Optimized for Maximum Lift Coefficient. Ph.D. Thesis - Illinois Univ., Urbana

    NASA Technical Reports Server (NTRS)

    Chen, A. W.

    1971-01-01

    Optimum airfoils in the sense of maximum lift coefficient are obtained by a newly developed method. The maximum lift coefficient is achieved by requiring that the turbulent skin friction be zero in the pressure rise region on the upper surface. Under this constraint, the pressure distribution is optimized. The optimum pressure distribution consists of a uniform stagnation pressure on the lower surface, a uniform minimum pressure on the upper surface immediately downstream of the front stagnation point followed by a Stratford zero skin friction pressure rise. When multiple-element airfoils are under consideration, this optimum pressure distribution appears on every element. The parameters used to specify the pressure distribution on each element are the Reynolds number and the normalized trailing edge velocity. The newly developed method of design computes the velocity distribution on a given airfoil and modifies the airfoil contour in a systematic manner until the desired velocity distribution is achieved. There are no limitations on how many elements the airfoil to be designed can have.

  4. Wind-tunnel of three lateral-control devices in combination with a full-span slotted flap on an NACA 23012 airfoil

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Bamber, Millard J

    1938-01-01

    A large-chord NACA 23012 airfoil was tested. The airfoil extended completely across the test section, and two-dimensional flow was approximated. The model was fitted with a full-span slotted flap having a chord 25.66 percent of the airfoil chord. The ailerons investigated extended over the entire span and each had a chord 10 percent of the airfoil chord. The types of ailerons tested were: retractable ailerons, slot-lip ailerons using the lip of the slot for ailerons, and plain ailerons on the trailing edge of the slotted flap. The data are presented in the form of curves of section lift, drag, and pitching-moment coefficients for the airfoil with flap deflected but with ailerons neutral, and of rolling-moment, yawing-moment, and hinge-moment coefficients calculated for a rectangular wing of aspect ratio 6 with a semi-span aileron and a full-span flap. For the ailerons investigated the data indicate that, from considerations of rolling and yawing moments produced and of stick forces desired, the retractable aileron is the most satisfactory means of lateral control for use with a full-span slotted flap.

  5. Assessment of dual-point drag reduction for an executive-jet modified airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1996-01-01

    This paper presents aerodynamic characteristics and pressure distributions for an executive-jet modified airfoil and discusses drag reduction relative to a baseline airfoil for two cruise design points. A modified airfoil was tested in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) for Mach numbers ranging from 0.250 to 0.780 and chord Reynolds numbers ranging from 3.0 x 10(exp 6) to 18.0 x 10(exp 6). The angle of attack was varied from minus 2 degrees to almost 10 degrees. Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The two design Mach numbers were 0.654 and 0.735, chord Reynolds numbers were 4.5 x 10(exp 6) and 8.9 x 10(exp 6), and normal-force coefficients were 0.98 and 0.51. Test data are presented graphically as integrated force and moment coefficients and chordwise pressure distributions. The maximum normal-force coefficient decreases with increasing Mach number. At a constant normal-force coefficient in the linear region, as Mach number increases an increase occurs in the slope of normal-force coefficient versus angle of attack, negative pitching-moment coefficient, and drag coefficient. With increasing Reynolds number at a constant normal-force coefficient, the pitching-moment coefficient becomes more negative and the drag coefficient decreases. The pressure distributions reveal that when present, separation begins at the trailing edge as angle of attack is increased. The modified airfoil, which is designed with pitching moment and geometric constraints relative to the baseline airfoil, achieved drag reductions for both design points (12 and 22 counts). The drag reductions are associated with stronger suction pressures in the first 10 percent of the upper surface and weakened shock waves.

  6. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  7. Flight Tests of a Curtiss No. 838-1C2-18 Three-Blade Propeller Having Trailing-Edge Extensions

    NASA Technical Reports Server (NTRS)

    Gardner, John J.

    1947-01-01

    Flight tests to determine propeller performance have been made of a Curtiss No. 838-102-18 three-blade propeller having trailing-edge extensions on a Republic P-47D-28 airplane in climb and high speed. These tests are a part of a general propeller flight-test program at the Langley Laboratory of the National Advisory Committee for Aeronautics. Results of climb tests indicate that when power is changed from approximately 1475 horsepower at 2550 rpm (roughly normal power) to 2400 horsepower at 2700 rpm (approximately military power) there is a loss in propeller efficiency of 3 percent at an altitude of 7000 feet, and 4 percent at 21,000 feet. At an airplane Mach number of 0.7 there is a gain of 9 percent in propeller efficiency when the power coefficient per blade is increased from 0.06 to 0.09. Optimum power coefficient per blade at this Mach number is estimated to be approximately 0.12. An analysis to determine the effect of the addition of extensions on the performance of the basic propeller blades indicates that climb performance was increased but high-speed performance was reduced. Both effects, however, were small.

  8. Experimental and numerical investigations of internal heat transfer in an innovative trailing edge blade cooling system: stationary and rotation effects, part 2: numerical results

    NASA Astrophysics Data System (ADS)

    Beniaiche, Ahmed; Ghenaiet, Adel; Carcasci, Carlo; Facchini, Bruno

    2017-02-01

    This paper presents a numerical validation of the aero-thermal study of a 30:1 scaled model reproducing an innovative trailing edge with one row of enlarged pedestals under stationary and rotating conditions. A CFD analysis was performed by means of commercial ANSYS-Fluent modeling the isothermal air flow and using k- ω SST turbulence model and an isothermal air flow for both static and rotating conditions (Ro up to 0.23). The used numerical model is validated first by comparing the numerical velocity profiles distribution results to those obtained experimentally by means of PIV technique for Re = 20,000 and Ro = 0-0.23. The second validation is based on the comparison of the numerical results of the 2D HTC maps over the heated plate to those of TLC experimental data, for a smooth surface for a Reynolds number = 20,000 and 40,000 and Ro = 0-0.23. Two-tip conditions were considered: open tip and closed tip conditions. Results of the average Nusselt number inside the pedestal ducts region are presented too. The obtained results help to predict the flow field visualization and the evaluation of the aero-thermal performance of the studied blade cooling system during the design step.

  9. Experimental and numerical investigations of internal heat transfer in an innovative trailing edge blade cooling system: stationary and rotation effects, part 1—experimental results

    NASA Astrophysics Data System (ADS)

    Beniaiche, Ahmed; Ghenaiet, Adel; Facchini, Bruno

    2017-02-01

    The aero-thermal behavior of the flow field inside 30:1 scaled model reproducing an innovative smooth trailing edge of shaped wedge discharge duct with one row of enlarged pedestals have been investigated in order to determine the effect of rotation, inlet velocity and blowing conditions effects, for Re = 20,000 and 40,000 and Ro = 0-0.23. Two configurations are presented: with and without open tip configurations. Thermo-chromic liquid crystals technique is used to ensure a local measurement of the heat transfer coefficient on the blade suction side under stationary and rotation conditions. Results are reported in terms of detailed 2D HTC maps on the suction side surface as well as the averaged Nusselt number inside the pedestal ducts. Two correlations are proposed, for both closed and open tip configurations, based on the Re, Pr, Ro and a new non-dimensional parameter based on the position along the radial distance, to assess a reliable estimation of the averaged Nusselt number at the inter-pedestal region. A good agreement is found between prediction and experimental data with about ±10 to ±12 % of uncertainty, for the simple form correlation, and about ±16 % using a complex form. The obtained results help to predict the flow field visualization and the evaluation of the aero-thermal performance of the studied blade cooling system during the design step.

  10. Airfoil Dynamic Stall and Rotorcraft Maneuverability

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2000-01-01

    The loading of an airfoil during dynamic stall is examined in terms of the augmented lift and the associated penalties in pitching moment and drag. It is shown that once stall occurs and a leading-edge vortex is shed from the airfoil there is a unique relationship between the augmented lift, the negative pitching moment, and the increase in drag. This relationship, referred to here as the dynamic stall function, shows limited sensitivity to effects such as the airfoil section profile and Mach number, and appears to be independent of such parameters as Reynolds number, reduced frequency, and blade sweep. For single-element airfoils there is little that can be done to improve rotorcraft maneuverability except to provide good static C(l(max)) characteristics and the chord or blade number that is required to provide the necessary rotor thrust. However, multi-element airfoils or airfoils with variable geometry features can provide augmented lift in some cases that exceeds that available from a single-element airfoil. The dynamic stall function is shown to be a useful tool for the evaluation of both measured and calculated dynamic stall characteristics of single element, multi-element, and variable geometry airfoils.

  11. An investigation on the effect of second-order additional thickness distributions to the upper surface of an NACA 64 sub 1-212 airfoil. [using flow equations and a CDC 7600 digital computer

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Merz, A. W.

    1975-01-01

    An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64 sub 1 - 212 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64 sub 1 - 212 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.

  12. An investigation on the effect of second-order additional thickness distributions to the upper surface of an NACA 64-206 airfoil. [using flow equations and a CDC 7600 digital computer

    NASA Technical Reports Server (NTRS)

    Merz, A. W.; Hague, D. S.

    1975-01-01

    An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64-206 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64-206 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations.

  13. Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory

    NASA Technical Reports Server (NTRS)

    Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.

    2015-01-01

    An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.

  14. Full-scale semispan tests of a business-jet wing with a natural laminar flow airfoil

    NASA Technical Reports Server (NTRS)

    Hahne, David E.; Jordan, Frank L., Jr.

    1991-01-01

    A full-scale semispan model was investigated to evaluate and document the low-speed, high-lift characteristics of a business-jet class wing that utilized the HSNLF(1)-0213 airfoil section and a single-slotted flap system. Also, boundary-layer transition effects were examined, a segmented leading-edge droop for improved stall/spin resistance was studied, and two roll-controlled devices were evaluated. The wind-tunnel investigation showed that deployment of single-slotted, trailing-edge flap was effective in providing substantial increments in lift required for takeoff and landing performance. Fixed-transition studies to investigate premature tripping of the boundary layer indicated no adverse effects in lift and pitching-moment characteristics for either the cruise or landing configuration. The full-scale results also suggested the need to further optimize the leading-edge droop design that was developed in the subscale tests.

  15. Wall-modeled large-eddy simulation of transonic airfoil buffet at high Reynolds number

    NASA Astrophysics Data System (ADS)

    Fukushima, Yuma; Kawai, Soshi

    2016-11-01

    In this study, we conduct the wall-modeled large-eddy simulation (LES) of transonic buffet phenomena over the OAT15A supercritical airfoil at high Reynolds number. The transonic airfoil buffet involves shock-turbulent boundary layer interactions and shock vibration associated with the flow separation downstream of the shock wave. The wall-modeled LES developed by Kawai and Larsson PoF (2012) is tuned on the K supercomputer for high-fidelity simulation. We first show the capability of the present wall-modeled LES on the transonic airfoil buffet phenomena and then investigate the detailed flow physics of unsteadiness of shock waves and separated boundary layer interaction phenomena. We also focus on the sustaining mechanism of the buffet phenomena, including the source of the pressure waves propagated from the trailing edge and the interactions between the shock wave and the generated sound waves. This work was supported in part by MEXT as a social and scientific priority issue to be tackled by using post-K computer. Computer resources of the K computer was provided by the RIKEN Advanced Institute for Computational Science (Project ID: hp150254).

  16. Active Flow Control at Low Reynolds Numbers on a NACA 0015 Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Hannon, Judith; Yao, Chung-Sheng; Harris, Jerome

    2008-01-01

    Results from a low Reynolds number wind tunnel experiment on a NACA 0015 airfoil with a 30% chord trailing edge flap tested at deflection angles of 0, 20, and 40 are presented and discussed. Zero net mass flux periodic excitation was applied at the ap shoulder to control flow separation for flap deflections larger than 0. The primary objective of the experiment was to compare force and moment data obtained from integrating surface pressures to data obtained from a 5-component strain-gage balance in preparation for additional three-dimensional testing of the model. To achieve this objective, active flow control is applied at an angle of attack of 6 where published results indicate that oscillatory momentum coefficients exceeding 1% are required to delay separation. Periodic excitation with an oscillatory momentum coefficient of 1.5% and a reduced frequency of 0.71 caused a significant delay of separation on the airfoil with a flap deflection of 20. Higher momentum coefficients at the same reduced frequency were required to achieve a similar level of flow attachment on the airfoil with a flap deflection of 40. There was a favorable comparison between the balance and integrated pressure force and moment results.

  17. Trailing Vortex Attenuation Devices.

    DTIC Science & Technology

    1985-06-01

    pp. 8-10, 2-33]. The trailing edge flap which alters the spanwise loading of the wing has shown scie promise and NASA has extended their Lasic...number which explains the differ- ence in zero lift drag. High Reynolds numbers produced less separation and therefore decreased the drag and increased

  18. Wall-resolved LES of high Reynolds number airfoil flow near stall condition for wall modeling in LES: LESFOIL revisited

    NASA Astrophysics Data System (ADS)

    Asada, Kengo; Kawai, Soshi

    2016-11-01

    Wall-resolved large-eddy simulation (LES) of an airfoil flow involving a turbulent transition and separations near stall condition at a high Reynolds number 2.1 x 106 (based on the freestream velocity and the airfoil chord length) is conducted by using K computer. This study aims to provide the wall-resolved LES database including detailed turbulence statistics for near-wall modeling in LES and also to investigate the flow physics of the high Reynolds number airfoil flow near stall condition. The LES well predicts the laminar separation bubble, turbulent reattachment and turbulent separation. The LES also clarified unsteady flow features associated with shear-layer instabilities: high frequency unsteadiness at St = 130 at the laminar separation bubble near the leading edge and low frequency unsteadiness at St = 1.5 at the separated turbulent shear-layer near the trailing edge. Regarding the near-wall modeling in LES, the database indicates that the pressure term in the mean streamwise-momentum equation is not negligible at the laminar and turbulent separated regions. This fact suggests that widely used equilibrium wall model is not sufficient and the inclusion of the pressure term is necessary for wall modeling in LES of such flow. This research used computational resources of the K computer provided by the RIKEN Advanced Institute for Computational Science through the HPCI System Research project (Project ID: hp140028). This work was supported by KAKENHI (Grant Number: 16K18309).

  19. Initial Assessment of a Variable-Camber Continuous Trailing-Edge Flap System on a Rigid Wing for Drag Reduction in Subsonic Cruise

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Nguyen, Nhan; Totah, Joe; Trinh, Khanh; Ting, Eric

    2013-01-01

    In this paper, we describe an initial optimization study of a Variable-Camber Continuous Trailing-Edge Flap (VCCTEF) system. The VCCTEF provides a light-weight control system for aircraft with long flexible wings, providing efficient high-lift capability for takeoff and landing, and greater efficiency with reduced drag at cruising flight by considering the effects of aeroelastic wing deformations in the control law. The VCCTEF system is comprised of a large number of distributed and individually-actuatable control surfaces that are constrained in movement relative to neighboring surfaces, and are non-trivially coupled through structural aeroelastic dynamics. Minimzation of drag results in a constrained, coupled, non-linear optimization over a high-dimension search space. In this paper, we describe the modeling, analysis, and optimization of the VCCTEF system control inputs for minimum drag in cruise. The purpose of this initial study is to quantify the expected benefits of the system concept. The scope of this analysis is limited to consideration of a rigid wing without structural flexibility in a steady-state cruise condition at various fuel weights. For analysis, we developed an optimization engine that couples geometric synthesis with vortex-lattice analysis to automate the optimization procedure. In this paper, we present and describe the VCCTEF system concept, optimization approach and tools, run-time performance, and results of the optimization at 20%, 50%, and 80% fuel load. This initial limited-scope study finds the VCCTEF system can potentially gain nearly 10% reduction in cruise drag, provides greater drag savings at lower operating weight, and efficiency is negatively impacted by the severity of relative constraints between control surfaces.

  20. The impact of geometric non-linearities on the fatigue analysis of trailing edge bond lines in wind turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Noever Castelos, Pablo; Balzani, Claudio

    2016-09-01

    The accurate prediction of stress histories for the fatigue analysis is of utmost importance for the design process of wind turbine rotor blades. As detailed, transient, and geometrically non-linear three-dimensional finite element analyses are computationally weigh too expensive, it is commonly regarded sufficient to calculate the stresses with a geometrically linear analysis and superimpose different stress states in order to obtain the complete stress histories. In order to quantify the error from geometrically linear simulations for the calculation of stress histories and to verify the practical applicability of the superposition principal in fatigue analyses, this paper studies the influence of geometric non-linearity in the example of a trailing edge bond line, as this subcomponent suffers from high strains in span-wise direction. The blade under consideration is that of the IWES IWT-7.5-164 reference wind turbine. From turbine simulations the highest edgewise loading scenario from the fatigue load cases is used as the reference. A 3D finite element model of the blade is created and the bond line fatigue assessment is performed according to the GL certification guidelines in its 2010 edition, and in comparison to the latest DNV GL standard from end of 2015. The results show a significant difference between the geometrically linear and non-linear stress analyses when the bending moments are approximated via a corresponding external loading, especially in case of the 2010 GL certification guidelines. This finding emphasizes the demand to reconsider the application of the superposition principal in fatigue analyses of modern flexible rotor blades, where geometrical nonlinearities become significant. In addition, a new load application methodology is introduced that reduces the geometrically non-linear behaviour of the blade in the finite element analysis.

  1. Development of high-rate large-deflection hingeless trailing-edge control surface for the Smart Wing wind tunnel model

    NASA Astrophysics Data System (ADS)

    Wang, Donny P.; Bartley-Cho, Jonathan D.; Martin, Christopher A.; Hallam, Brian J.

    2001-06-01

    A key objective of the Smart Wing Phase 2, Test 2 is to demonstrate high-rate actuation of hingeless control surfaces using smart material-based actuators. Actuation rates resulting in a minimum of 20 degree(s) flap deflection in 0.33 sec, producing a sweep rate of at least 60 degree(s)/sec, are desired. This sweep rate is similar to those specified for many of the existing military platforms with hinged control surfaces. The ability to deploy control surfaces without discrete hingeline would, however, enhance platform mission by reducing radar cross section and improving aerodynamic performance. Studies on numerous actuation concepts and flexible structures were executed during the early and mid phase of the program in an effort to satisfy these goals. In the first study, several actuation concepts with different transducers were modeled and analyzed. These concepts included distributed piezoelectric stack actuators with and without hydraulic amplifiers and pumps, antagonistic tendon actuation, and eccentuation. The transducers selected for the trade studies included piezoelectric ultrasonic motors, actively cooled SMA, ferromagnetic SMA, and stacks made from piezoelectric ceramic wafer, piezoelectric single crystal wafer, irradiated PVDF-TrFE film, and dielectric elastomer film. Although many of the technologies are not fully mature, they provide a glimpse of what improvements could be possible with their successful development. The studies showed that distributed polymer stacks provided the most elegant solution, but eccentuation was deemed the most realistic and lowest risk approach to attaining the program goals. A common issue to all the concepts was the structural stiffness that the actuators worked against. This was resolved in the second study by developing a flexcore- elastomeric skin trailing edge structure with eccentuation using high power ultrasonic motors. This paper describes the two studies and the final concept in detail.

  2. Influence of airfoil thickness on convected gust interaction noise

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Tsai, C. T.

    1989-01-01

    The case of a symmetric airfoil at zero angle of attack is considered in order to determine the influence of airfoil thickness on sound generated by interaction with convected gusts. The analysis is based on a linearization of the Euler equations about the subsonic mean flow past the airfoil. Primary sound generation is found to occur in a local region surrounding the leading edge, with the size of the local region scaling on the gust wavelength. For a parabolic leading edge, moderate leading edge thickness is shown to decrease the noise level in the low Mach number limit.

  3. Robust, optimal subsonic airfoil shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan (Inventor)

    2008-01-01

    Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.

  4. Spline-Based Smoothing of Airfoil Curvatures

    NASA Technical Reports Server (NTRS)

    Li, W.; Krist, S.

    2008-01-01

    Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been

  5. Active Control of Separation From the Flap of a Supercritical Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2006-01-01

    Zero-mass-flux periodic excitation was applied at several regions on a simplified high-lift system to delay the occurrence of flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approximately equal to 10) and low frequency amplitude modulation (F(+) sub AM approximately equal to 1) of the high frequency excitation were used for control. It was noted that the same performance gains were obtained with amplitude modulation and required only 30% of the momentum input required by pure sine excitation.

  6. New airfoils for small horizontal axis wind turbines

    SciTech Connect

    Giguere, P.; Selig, M.S.

    1997-12-31

    In a continuing effort to enhance the performance of small energy systems, one root airfoil and three primary airfoils were specifically designed for small horizontal axis wind turbines. These airfoils are intended primarily for 1-10 kW variable-speed wind turbines for both conventional (tapered/twisted) or pultruded blades. The four airfoils were wind-tunnel tested at Reynolds numbers between 100,000 and 500,000. Tests with simulated leading-edge roughness were also conducted. The results indicate that small variable-speed wind turbines should benefit from the use of the new airfoils which provide enhanced lift-to-drag ratio performance as compared with previously existing airfoils.

  7. Two-dimensional aerodynamic characteristics of three rotorcraft airfoils at Mach numbers from 0.35 to 0.90

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Noonan, K. W.

    1982-01-01

    Three airfoils designed for helicopter rotor application were investigated in the Langley 6- by 28-inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics at Mach numbers from 0.34 to 0.88 and respective Reynolds numbers from about 4.4 x 10(6) power to 9.5 x 10(6) power. The airfoils have thickness-to-chord ratios of 0.08, 0.10, and 0.12. Trailing-edge reflex was applied to minimize pitching moment. The maximum normal-force coefficient of the RC(3)-12 airfoil is from 0.1 to 0.2 higher, depending on Mach number M, than that of the NACA 0012 airfoil tested in the same facility. The maximum normal-force coefficient of the RC(3)-10 is about equal to that of the NACA 0012 at Mach numbers to 0.40 and is higher than that of the NACA 0012 at Mach numbers above 0.40. The maximum normal force coefficient of the RC(3)-08 is about 0.19 lower than that of the NACA 0012 at a Mach number of 0.35 and about 0.05 lower at a Mach number of 0.54. The drag divergence Mach number of the RC(3)-08 airfoil at normal-force coefficients below 0.1 was indicated to be greater than the maximum test Mach number of 0.88. At zero lift, the drag-divergence Mach numbers of the RC(3)-12 and the RC(3)-10 are about 0.77 and 0.82, respectively.

  8. Global surface pressure measurements of static and dynamic stall on a wind turbine airfoil at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Disotell, Kevin J.; Nikoueeyan, Pourya; Naughton, Jonathan W.; Gregory, James W.

    2016-05-01

    Recognizing the need for global surface measurement techniques to characterize the time-varying, three-dimensional loading encountered on rotating wind turbine blades, fast-responding pressure-sensitive paint (PSP) has been evaluated for resolving unsteady aerodynamic effects in incompressible flow. Results of a study aimed at demonstrating the laser-based, single-shot PSP technique on a low Reynolds number wind turbine airfoil in static and dynamic stall are reported. PSP was applied to the suction side of a Delft DU97-W-300 airfoil (maximum thickness-to-chord ratio of 30 %) at a chord Reynolds number of 225,000 in the University of Wyoming open-return wind tunnel. Static and dynamic stall behaviors are presented using instantaneous and phase-averaged global pressure maps. In particular, a three-dimensional pressure topology driven by a stall cell pattern is detected near the maximum lift condition on the steady airfoil. Trends in the PSP-measured pressure topology on the steady airfoil were confirmed using surface oil visualization. The dynamic stall case was characterized by a sinusoidal pitching motion with mean angle of 15.7°, amplitude of 11.2°, and reduced frequency of 0.106 based on semichord. PSP images were acquired at selected phase positions, capturing the breakdown of nominally two-dimensional flow near lift stall, development of post-stall suction near the trailing edge, and a highly three-dimensional topology as the flow reattaches. Structural patterns in the surface pressure topologies are considered from the analysis of the individual PSP snapshots, enabled by a laser-based excitation system that achieves sufficient signal-to-noise ratio in the single-shot images. The PSP results are found to be in general agreement with observations about the steady and unsteady stall characteristics expected for the airfoil.

  9. Large-eddy simulations of a turbulent Coanda jet on a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Nishino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-12-01

    Large-eddy simulations are performed of a turbulent Coanda jet separating from a rounded trailing edge of a simplified circulation control airfoil model. The freestream Reynolds number based on the airfoil chord is 0.49×106, the jet Reynolds number based on the jet slot height is 4470, and the ratio of the peak jet velocity to the freestream velocity is 3.96. Three different grid resolutions are used to show that their effect is very small on the mean surface pressure distribution, which agrees very well with experiments, as well as on the mean velocity profiles over the Coanda surface. It is observed that the Coanda jet becomes fully turbulent just downstream of the jet exit, accompanied by asymmetric alternating vortex shedding behind a thin (but blunt) jet blade splitting the jet and the external flow. A number of "backward-tilted" hairpin vortices (i.e., the head of each hairpin being located upstream of the legs) are observed around the outer edge of the jet over the Coanda surface. These hairpins create strong upwash between the legs and weak downwash around them, contributing to turbulent mixing of the high-momentum jet below the hairpins and the low-momentum external flow above them. The probability density distribution of velocity fluctuations is shown to be highly asymmetric in this region, consistent with the observation that the hairpin vortices create strong upwash and weak downwash. Turbulent structures inside the jet, its spreading rate, and self-similarity are also discussed.

  10. Experimental Heat Transfer Coefficients and Friction Factors in a Rib-Roughened Leading-Edge Cooling Cavity of a Gas Turbine Airfoil

    NASA Astrophysics Data System (ADS)

    Hagan, Peter

    A gas turbine airfoil contains multiple coolant passageways. These passages usually have rib roughened wall surfaces in order to increase the heat transfer from the blade to the cooling air. Auxiliary power and compressed air is very valuable in a gas turbine, therefore low pumping power requirements are crucial. The thermal performance of three different coolant channel geometries with three different rib sizes was investigated. Heat transfer calculations were performed for Reynolds numbers ranging from 6,000 to 40,000. The performance characteristics were calculated through the use of the convective heat transfer coefficient and the friction factor. In this study, the most desirable characteristics are a high heat transfer coefficient and minimal pumping power requirements. The thermal performance of each case was determined by comparing the average Nusselt numbers to the friction factor ratio. The resulting value was then plotted against the Reynolds number for each case. The trending data indicated thermal efficiency decreases with an increasing Reynolds number for all cases. The picture data shows increased thermal efficiency at larger distances from the nose portion of the cavity. In addition, thermal efficiency was higher at the half distance of the rib pitch while areas close to the ribs saw a lower thermal efficiency. The following experimental data will show that Rig 2 and 3 are the most thermally efficient geometries, with Rig 2 requiring lower pumping power and Rig 3 having a higher average Nusselt number.

  11. Comparison of pressure distributions on model and full-scale NACA 64-621 airfoils with ailerons for wind turbine application

    NASA Technical Reports Server (NTRS)

    Gregorek, G. M.; Kuniega, R. J.; Nyland, T. W.

    1988-01-01

    The aerodynamic similarity between a small (4-inch chord) wind tunnel model and a full-scale wind turbine blade (24-foot tip section with a 36-inch chord) was evaluated by comparing selected pressure distributions around the geometrically similar cross sections. The airfoils were NACA 64-621 sections, including trailing-edge ailerons with a width equal to 38 percent of the airfoil chord. The model airfoil was tested in the OSU 6- by 12-inch High Reynolds Number Wind Tunnel; the full-scale blade section was tested in the NASA Langley Research Center 30- by 60-foot Subsonic Wind Tunnel. The model airfoil contained 61 pressure taps connected by embedded tubes to pressure transducers. A belt containing 29 pressure taps was fixed to the full-scale section at midspan to obtain surface pressure data. Lift coefficients were obtained by integrating pressures, and corrections were made for the 3-D effects of blade twist and downwash in the blade tip section. The results of the two different experimental methods correlated well for angles of attack from minus 4 to 36 degrees and aileron reflections from 0 to 90 degrees.

  12. Comparative Study of Airfoil Flow Separation Criteria

    NASA Astrophysics Data System (ADS)

    Laws, Nick; Kahouli, Waad; Epps, Brenden

    2015-11-01

    Airfoil flow separation impacts a multitude of applications including turbomachinery, wind turbines, and bio-inspired micro-aerial vehicles. In order to achieve maximum performance, some devices operate near the edge of flow separation, and others use dynamic flow separation advantageously. Numerous criteria exist for predicting the onset of airfoil flow separation. This talk presents a comparative study of a number of such criteria, with emphasis paid to speed and accuracy of the calculations. We evaluate the criteria using a two-dimensional unsteady vortex lattice method, which allows for rapid analysis (on the order of seconds instead of days for a full Navier-Stokes solution) and design of optimal airfoil geometry and kinematics. Furthermore, dynamic analyses permit evaluation of dynamic stall conditions for enhanced lift via leading edge vortex shedding, commonly present in small flapping-wing flyers such as the bumblebee and hummingbird.

  13. The construction and operation of a water tunnel in application to flow visualization studies of an oscillating airfoil

    NASA Technical Reports Server (NTRS)

    Olsen, J. H.; Liu, H. T.

    1973-01-01

    The water tunnel which was constructed at the NASA Ames Research Center is described along with the flow field adjacent to an oscillating airfoil. The design and operational procedures of the tunnel are described in detail. Hydrogen bubble and thymol blue techniques are used to visualize the flow field. Results of the flow visualizations are presented in a series of still pictures and a high speed movie. These results show that time stall is more complicated than simple shedding from the leading edge or the trailing edge, particularly at relatively low frequency oscillations comparable to those of a helicopter blade. Therefore, any successful theory for predicting the stall loads on the helicopter blades must treat an irregular separated region rather than a discrete vortex passing over each blade surface.

  14. Unsteady flow field, lift and drag measurements of impulsively started elliptic cylinder and circular-arc airfoil

    NASA Astrophysics Data System (ADS)

    Izumi, K.; Kuwahara, K.

    1983-07-01

    Developments of flow fields around and forces acting on an elliptic cylinder and a circular-arc airfoil with high angle of attack after impulsive start were experimentally investigated using a water tank. Special attention is called to elucidate the correlation between the unsteady forces acting on the body and the corresponding flow patterns. Except the initial instant, the peaks of the lift are observed when the large, separated vortex from the leading edge is traped on the leeward surface of the body, while the troughs of it coincide to the period when these vortex is shed from the trailing edge. The variations of the drag are found to be very small compared with those of the lift. These results are succesfully compared with the corresponding computation by discrete-vortex approximation.

  15. Viscous Thin Airfoil Theory

    DTIC Science & Technology

    1980-02-01

    the elliptic cross section is considered to be more representative of the NACA 64A010 airfoil with boundary layer displacement thickness added on than...section and the flat plate airfoil with Kutta condition. The experimental results are for the NACA 64A010 airfoil at M = 0.5 and Reynolds number between...practice for actual airfoils. The experimental data shown in Fig. 3.5 are for the NACA 4 and 5 digit series airfoils (Ref. 17). The lift curve slope is

  16. Characteristics of NACA 4400R Series Rectangular and Tapered Airfoils, Including the Effect of Split Flaps

    NASA Technical Reports Server (NTRS)

    Greenberg, Harry

    1941-01-01

    At the request of the Bureau of Aeronautics, Navy Department, tests were made in the variable-density wind tunnel of a tapered wing of 3-10-18 plan form and based on the NACA 4400R series sections. The wing was also tested with 0.2 chord spit flaps, deflected 60 deg span ratios of 0.3, 0.5, 0.7 and 1.0 respectively. In order to get data from which to calculate the characteristics of the flapped wing, the investigation was extended to include tests of the four rectangular airfoils of the NACA 4400R series (4409R, 4412R, 4415R, and 4418R) with full-span 0.2 chord, trailing edge split flaps deflected 60 deg.

  17. The S415 and S418 Airfoils

    DTIC Science & Technology

    2010-08-01

    airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 4.) This characteristic is related to the...edge with increasing (decreasing) lift coefficient. This feature results in a leading-edge shape that produces a suction peak at higher lift...should look like sketch 3. Sketch 3 1Director, Institute for Aerodynamics and Gas Dynamics, University of Stuttgart, Germany, 1974–1985.5 No suction

  18. Streamwise Oscillation of Airfoils into Reverse Flow

    NASA Astrophysics Data System (ADS)

    Granlund, Kenneth; Jones, Anya; Ol, Michael

    2015-11-01

    An airfoil in freestream is oscillated in streamwise direction to cyclically enter reverse flow. Measured lift is compared to analytical blade element theories. Advance ratio, reduced frequency and angle of attack is varied within those typical for helicopters. Experimental results reveal that lift does not become negative in the flow reversal part, contradicting one theory and supported by another. Flow visualization reveal the leading edge vortex advecting against the freestream to a point in front of the leading edge.

  19. Airbag Trails

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This segment of the first color image from the panoramic camera on the Mars Exploration Rover Spirit shows the rover's airbag trails. These depressions in the soil were made when the airbags were deflated and retracted after landing.

  20. Two-Dimensional Wind-Tunnel Investigation of Modified NACA 65(sub 112)-111 Airfoil with 35-Percent-Chord Slotted Flap to Determine Pitching-Moment Characteristics and Effects of Roughness

    NASA Technical Reports Server (NTRS)

    Racisz, Stanley F.

    1947-01-01

    An investigation has been made in the Langley two-dimensional low-turbulence pressure tunnel to develop the optimum configuration of a 0.35-chord slotted flap on an NACA 65(sub 1120)-111 airfoil section modified by removing the trailing-edge cusp. The section pitching-moment characteristics and the effects of standard roughness on the section characteristics were determined for the flap retracted at Reynolds numbers ranging from 3.0 x 10(exp 6) to 9.0 x 10(exp 6).

  1. Effects of Airfoil Thickness and Maximum Lift Coefficient on Roughness Sensitivity: 1997--1998

    SciTech Connect

    Somers, D. M.

    2005-01-01

    A matrix of airfoils has been developed to determine the effects of airfoil thickness and the maximum lift to leading-edge roughness. The matrix consists of three natural-laminar-flow airfoils, the S901, S902, and S903, for wind turbine applications. The airfoils have been designed and analyzed theoretically and verified experimentally in the Pennsylvania State University low-speed, low-turbulence wind tunnel. The effect of roughness on the maximum life increases with increasing airfoil thickness and decreases slightly with increasing maximum lift. Comparisons of the theoretical and experimental results generally show good agreement.

  2. Measurements in Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Hultgren, Lennart .

    2000-01-01

    Detailed velocity measurements were made along a flat plate subject to the same dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil. Reynolds numbers based on wetted plate length and nominal exit velocity were varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low and high inlet free-stream turbulence intensities (0.2% and 7%) were set using passive grids. The location of boundary-layer separation does not depend strongly on the free-stream turbulence level or Reynolds number, as long as the boundary layer remains non-turbulent prior to separation. Strong acceleration prevents transition on the upstream part of the plate in all cases. Both free-stream turbulence and Reynolds number have strong effects on transition in the adverse pressure gradient region. Under low free-stream turbulence conditions transition is induced by instability waves in the shear layer of the separation bubble. Reattachment generally occurs at the transition start. At Re = 50,000 the separation bubble does not close before the trailing edge of the modeled airfoil. At higher Re, transition moves upstream, and the boundary layer reattaches. With high free-stream turbulence levels, transition appears to occur in a bypass mode, similar to that in attached boundary layers. Transition moves upstream, resulting in shorter separation regions. At Re above 200,000, transition begins before separation. Mean velocity, turbulence and intermittency profiles are presented.

  3. Wind tunnel test of the S814 thick root airfoil

    SciTech Connect

    Somers, D.M.; Tangler, J.L.

    1996-11-01

    The objective of this wind-tunnel test was to verify the predictions of the Eppler Airfoil Design and Analysis Code for a very thick airfoil having a high maximum lift coefficient designed to be largely insensitive to leading-edge roughness effects. The 24 percent thick S814 airfoil was designed with these characteristics to accommodate aerodynamic and structural considerations for the root region of a wind-turbine blade. In addition, the airfoil`s maximum lift-to-drag ratio was designed to occur at a high lift coefficient. To accomplish the objective, a two-dimensional wind tunnel test of the S814 thick root airfoil was conducted in January 1994 in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. Data were obtained with transition free and transition fixed for Reynolds numbers of 0.7, 1.0, 1.5, 2.0, and 3.0 {times} 10{sup 6}. For the design Reynolds number of 1.5 {times} 10{sup 6}, the maximum lift coefficient with transition free is 1.32, which satisfies the design specification. However, this value is significantly lower than the predicted maximum lift coefficient of almost 1.6. With transition fixed at the leading edge, the maximum lift coefficient is 1.22. The small difference in maximum lift coefficient between the transition-free and transition-fixed conditions demonstrates the airfoil`s minimal sensitivity to roughness effects. The S814 root airfoil was designed to complement existing NREL low maximum-lift-coefficient tip-region airfoils for rotor blades 10 to 15 meters in length.

  4. Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack

    SciTech Connect

    Martín-Alcántara, A.; Fernandez-Feria, R.

    2015-07-15

    The thrust efficiency of a two-dimensional heaving airfoil is studied computationally for a low Reynolds number using a vortex force decomposition. The auxiliary potentials that separate the total vortex force into lift and drag (or thrust) are obtained analytically by using an elliptic airfoil. With these auxiliary potentials, the added-mass components of the lift and drag (or thrust) coefficients are also obtained analytically for any heaving motion of the airfoil and for any value of the mean angle of attack α. The contributions of the leading- and trailing-edge vortices to the thrust during their down- and up-stroke evolutions are computed quantitatively with this formulation for different dimensionless frequencies and heave amplitudes (St{sub c} and St{sub a}) and for several values of α. Very different types of flows, periodic, quasi-periodic, and chaotic described as St{sub c}, St{sub a}, and α, are varied. The optimum values of these parameters for maximum thrust efficiency are obtained and explained in terms of the interactions between the vortices and the forces exerted by them on the airfoil. As in previous numerical and experimental studies on flapping flight at low Reynolds numbers, the optimum thrust efficiency is reached for intermediate frequencies (St{sub c} slightly smaller than one) and a heave amplitude corresponding to an advance ratio close to unity. The optimal mean angle of attack found is zero. The corresponding flow is periodic, but it becomes chaotic and with smaller average thrust efficiency as |α| becomes slightly different from zero.

  5. Unsteady Newton-Busemann flow theory. I - Airfoils

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1981-01-01

    Newtonian flow theory for unsteady flow at very high Mach numbers is completed by the addition of a centrifugal force correction to the impact pressures. The correction term is the unsteady counterpart of Busemann's centrifugal force correction to impact pressures in steady flow. For airfoils of arbitary shape, exact formulas for the unsteady pressure and stiffness and damping-in-pitch derivatives are obtained in closed form, which require only numerical quadratures of terms involving the airfoil shape. They are applicable to airfoils of arbitrary thickness having sharp or blunt leading edges. For wedges and thin airfoils these formulas are greatly simplified, and it is proved that the pitching motions of thin airfoils of convex shape and of wedges of arbitrary thickness are always dynamically stable according to Newton-Busemann theory. Leading-edge bluntness is shown to have a favorable effect on the dynamic stability; on the other hand, airfoils of concave shape tend toward dynamic instability over a range of axis positions if the surface curvature exceeds a certain limit. As a byproduct, it is also shown that a pressure formula recently given by Barron and Mandl for unsteady Newtonian flow over a pitching power-law shaped airfoil is erroneous and that their conclusion regarding the effect of pivot position on the dynamic stability is misleading.

  6. Potential flow analysis of glaze ice accretions on an airfoil

    NASA Technical Reports Server (NTRS)

    Zaguli, R. J.

    1984-01-01

    The results of an analytical/experimental study of the flow fields about an airfoil with leading edge glaze ice accretion shapes are presented. Tests were conducted in the Icing Research Tunnel to measure surface pressure distributions and boundary layer separation reattachment characteristics on a general aviation wing section to which was affixed wooden ice shapes which approximated typical glaze ice accretions. Comparisons were made with predicted pressure distributions using current airfoil analysis codes as well as the Bristow mixed analysis/design airfoil panel code. The Bristow code was also used to predict the separation reattachment dividing streamline by inputting the appropriate experimental surface pressure distribution.

  7. Control of flow separation in airfoil/wing design applications

    NASA Technical Reports Server (NTRS)

    Gally, Thomas A.

    1994-01-01

    , and severity of the separated flow regions may allow aircraft manufacturers to gain an advantage in the early design stages of an aircraft, when configuration changes are relatively inexpensive to make. Continuing the work begun last year, an airfoil design package has been modified to provide some control over the existence and extent of flow separation. This package consists of a 2-D Navier-Stokes flow solver which is coupled to the CDISC (constrained direct/iterative surface curvature) design method. The first modification is a prediction method for determining whether separation is likely based solely upon a given pressure distribution. If separation is predicted but is undesirable, the new routines will modify the pressure distribution to alleviate the problem. This new pressure distribution is then used in the design method to generate a new aerodynamic shape. Since separation may be acceptable in some cases, particularly if the separation does not extend to the trailing edge, another added logic estimates the extent of separation based upon a correlation with calculated separated flow cases. If the flow behind a shock induced separation is not predicted to reattach before the trailing edge, the logic weakens the shock strength and otherwise alters the pressure distribution in order to promote reattachment. This later addition is as yet unreliable due to secondary separation effects, but additional work is being pursued to improve the method.

  8. Wind-Tunnel Investigation of Control-Surface Characteristics of Plain and Balanced Flaps With Several Trailing-Edge Angles on an NACA 0009 Tapered Semispan Wing

    DTIC Science & Technology

    1947-04-01

    beueled- tratIinq-edge plain f/ap. Sea/ed qgp j @ =/9S0j A = 3 . Fig 7 cont. NACA TN No. 1248 NACA TN No. 1248 Fig. 7 cone. -.36 f i g u r e 7...characJer/sfics of a tapered semispan wing hdvlhg a 030c beveled- froding- edge p/mn flop . 0,005~ qgp j &/985 A = 3, NACA TN No. 1248 Fig. 8

  9. Snail Trails

    ERIC Educational Resources Information Center

    Galus, Pamela

    2002-01-01

    The slime trails of snails lead the author's students to a better understanding of science as inquiry and the processes of science. During this five-day activity, students get up close and personal with one of her favorite creatures, the land snail. Students begin by observing the organism and recording their observations. After making initial…

  10. Numerical and experimental investigation of an airfoil with load control in the wake of an active grid

    NASA Astrophysics Data System (ADS)

    Fischer, A.; Lutz, T.; Kramer, E.; Cordes, U.; Hufnagel, K.; Tropea, C.; Kampers, G.; Hölling, M.; Peinke, J.

    2016-09-01

    A new passive load reduction system, using coupled leading and trailing edge flaps, was developed at TU Darmstadt and investigated experimentally and numerically. The experiments were performed in the wind tunnel of the University of Oldenburg, where sinusoidal inflow conditions, representing for example the tower blockage effect, were created by means of an active grid. The numerical investigations were performed at the University of Stuttgart, using a quasi two-dimensional setup and a block structured CFD solver. In the present paper, a brief description of the experimental setup is given, whereas the numerical setup, in particular the realisation of the wind tunnel conditions, is presented in more detail. Moreover, a comparison between the measured and simulated loads for an airfoil with and without adaptive camber concept is discussed.

  11. The Effects of the Critical Ice Accretion on Airfoil and Wing Performance

    NASA Technical Reports Server (NTRS)

    Selig, Michael S.; Bragg, Michael B.; Saeed, Farooq

    1998-01-01

    In support of the NASA Lewis Modern Airfoils Ice Accretion Test Program, the University of Illinois at Urbana-Champaign provided expertise in airfoil design and aerodynamic analysis to determine the aerodynamic effect of ice accretion on modern airfoil sections. The effort has concentrated on establishing a design/testing methodology for "hybrid airfoils" or "sub-scale airfoils," that is, airfoils having a full-scale leading edge together with a specially designed and foreshortened aft section. The basic approach of using a full-scale leading edge with a foreshortened aft section was considered to a limited extent over 40 years ago. However, it was believed that the range of application of the method had not been fully exploited. Thus a systematic study was being undertaken to investigate and explore the range of application of the method so as to determine its overall potential.

  12. Modern Airfoil Ice Accretions

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.

    1997-01-01

    This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.

  13. An experimental low Reynolds number comparison of a Wortmann FX67-K170 airfoil, a NACA 0012 airfoil and a NACA 64-210 airfoil in simulated heavy rain

    NASA Technical Reports Server (NTRS)

    Craig, Anthony P.; Hansman, R. John

    1987-01-01

    Wind tunnel experiments were conducted on Wortmann FX67-K170, NACA 0012, and NACA 64-210 airfoils at rain rates of 1000 mm/hr and Reynolds numbers of 310,000 to compare the aerodynamic performance degradation of the airfoils and to attempt to identify the various mechanisms which affect performance in heavy rain conditions. Lift and drag were measured in dry and wet conditions, a variety of flow visualization techniques were employed, and a computational code which predicted airfoil boundary layer behavior was used. At low angles of attack, the lift degradation in wet conditions varied significantly between the airfoils. The Wortmann section had the greatest overall lift degradation and the NACA 64-210 airfoil had the smallest. At high angles of attack, the NACA 64-210 and 0012 airfoils had improved aerodynamic performance in rain conditions due to an apparent reduction of the boundry layer separation. Performance degradation in heavy rain for all three airfoils at low angles of attack could be emulated by forced boundary layer transition near the leading edge. The secondary effect occurs at time scales consistent with top surface water runback times. The runback layer is thought to effectively alter the airfoil geometry. The severity of the performance degradation for the airfoils varied. The relative differences appeared to be related to the susceptibility of each airfoil to premature boundary layer transition.

  14. Interferometric investigations of compressible dynamic stall over a transiently pitching airfoil

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.

    1993-01-01

    The dynamic stall flow field over NACA 0012 airfoil pitching transiently from 0 - 60 at a constant rate under compressible flow conditions has been studied using the real-time technique of point diffraction interferometry. This investigation using nonintrusive diagnostics provides a quantitative description of the overall flow field, including the finer details of dynamic stall vortex formation, growth and the concomitant changes in the pressure distribution. Analysis of several hundred interferograms obtained for a range of flow conditions shows that the peak leading edge suction pressure coefficient that stall is nearly constant for a given free stream Mach number at all nondimensional pitch rates. Also, this value is below that seen in steady flow at static stall for the same Mach number, indicating that dynamic effects significantly effect the separation behavior. Further, for a given Mach number, the dynamic stall vortex seems to form rapidly at nearly the same angle of attack for all pitch rates studied. As the vortex is shed, it induces an anti-clockwise trailing edge vortex, which grows in a manner similar to that of a starting vortex. The measured peak suction pressure coefficient drops as the free stream Mach number increases. For free stream Mach numbers above 0.4, small multiple shocks appear near the leading edge.

  15. Multiple piece turbine airfoil

    DOEpatents

    Kimmel, Keith D; Wilson, Jr., Jack W.

    2010-11-02

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

  16. The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.

    SciTech Connect

    Griffith, Daniel; Richards, Phillip William

    2014-09-01

    A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) was prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.

  17. Effect of pivot location and passive heave on propulsion from a pitching airfoil

    NASA Astrophysics Data System (ADS)

    Mackowski, A. W.; Williamson, C. H. K.

    2017-01-01

    We experimentally investigate the propulsive characteristics of a pitching NACA 0012 airfoil section, with emphasis on thrust and propulsive efficiency, at a Reynolds number of 1.7 ×104 . For the sake of mechanical simplicity, we consider an airfoil restricted to a single actuator in the pitching direction. We examine the effect of changing the airfoil's axis of rotation, finding that contrary to Garrick's linear theory, there exists a pitching axis near the airfoil that maximizes propulsive efficiency. Next, we examine the effect of placing passive springs on the airfoil in the heave (transverse) direction using our Cyber-Physical Fluid Dynamics technique. This elastic heaving motion allows the airfoil to combine pitching and heaving modes while being actuated only in the pitching direction. Two sets of dynamics are considered: one case where the airfoil is weighted unevenly and pitched about its center of mass (so that the resulting heaving motion is independent of inertial forces), and another case where the airfoil's center of mass is fixed at its centroid. For pitching at an amplitude of 8∘ and a reduced frequency k of two, we find that elastic heave produces a maximum propulsive efficiency of 35%, compared to 25% without any heave motion. Further, while operating at the same efficiency as the static-pivot case, we find that passive heaving greatly increases the magnitude of the airfoil's thrust. The airfoil configurations with highest propulsive efficiency generally involve pitching near or ahead of the airfoil's leading edge.

  18. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  19. Design and Experimental Results for the S411 Airfoil

    DTIC Science & Technology

    2010-08-01

    unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 8...produces a suction peak at higher lift coefficients, which ensures that tran- sition on the upper surface will occur very near the leading edge. Thus...like sketch 3. Sketch 3 No suction peak exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which allows some laminar

  20. Design and Experimental Results for the S406 Airfoil

    DTIC Science & Technology

    2010-08-01

    point B is not as low as at point A, unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly...in a leading edge that produces a suction peak at higher lift coefficients, which ensures that transition on the upper surface will occur very near...3. Sketch 3 No suction peak exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which allows some laminar flow

  1. Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications

    NASA Technical Reports Server (NTRS)

    Somers, D. M.

    1981-01-01

    A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.

  2. Steady inviscid transonic flows over planar airfoils: A search for a simplified procedure

    NASA Technical Reports Server (NTRS)

    Magnus, R.; Yoshihara, H.

    1973-01-01

    A finite difference procedure based upon a system of unsteady equations in proper conservation form with either exact or small disturbance steady terms is used to calculate the steady flows over several classes of airfoils. The airfoil condition is fulfilled on a slab whose upstream extremity is a semi-circle overlaying the airfoil leading edge circle. The limitations of the small disturbance equations are demonstrated in an extreme example of a blunt-nosed, aft-cambered airfoil. The necessity of using the equations in proper conservation form to capture the shock properly is stressed. Ability of the steady relaxation procedures to capture the shock is briefly examined.

  3. NASA supercritical airfoils: A matrix of family-related airfoils

    NASA Technical Reports Server (NTRS)

    Harris, Charles D.

    1990-01-01

    The NASA supercritical airfoil development program is summarized in a chronological fashion. Some of the airfoil design guidelines are discussed, and coordinates of a matrix of family related supercritical airfoils ranging from thicknesses of 2 to 18 percent and over a design lift coefficient range from 0 to 1.0 are presented.

  4. Robust, Optimal Subsonic Airfoil Shapes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2014-01-01

    A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

  5. Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus

    PubMed Central

    2013-01-01

    Background Significant effects of recent global climate change have already been observed in a variety of ecosystems, with evidence for shifts in species ranges, but rarely have such consequences been related to the changes in the species genetic pool. The stretch of Atlantic coast between North Africa and North Iberia is ideal for studying the relationship between species distribution and climate change as it includes the distributional limits of a considerable number of both cold- and warm-water species. We compared temporal changes in distribution of the canopy-forming alga Fucus vesiculosus with historical sea surface temperature (SST) patterns to draw links between range shifts and contemporary climate change. Moreover, we genetically characterized with microsatellite markers previously sampled extinct and extant populations in order to estimate resulting cryptic genetic erosion. Results Over the past 30 years, a geographic contraction of the southern range edge of this species has occurred, with a northward latitudinal shift of approximately 1,250 km. Additionally, a more restricted distributional decline was recorded in the Bay of Biscay. Coastal SST warming data over the last three decades revealed a significant increase in temperature along most of the studied coastline, averaging 0.214°C/decade. Importantly, the analysis of existing and extinct population samples clearly distinguished two genetically different groups, a northern and a southern clade. Because of the range contraction, the southern group is currently represented by very few extant populations. This southern edge range shift is thus causing the loss of a distinct component of the species genetic background. Conclusions We reveal a climate-correlated diversity loss below the species level, a process that could render the species more vulnerable to future environmental changes and affect its evolutionary potential. This is a remarkable case of genetic uniqueness of a vanishing cryptic genetic

  6. Iced-airfoil aerodynamics

    NASA Astrophysics Data System (ADS)

    Bragg, M. B.; Broeren, A. P.; Blumenthal, L. A.

    2005-07-01

    Past research on airfoil aerodynamics in icing are reviewed. This review emphasizes the time period after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This article identifies four classes of ice accretions: roughness, horn ice, streamwise ice, and spanwise-ridge ice. For each class, the key flowfield features such as flowfield separation and reattachment are discussed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are summarized.

  7. Multiple piece turbine airfoil

    DOEpatents

    Kimmel, Keith D

    2010-11-09

    A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

  8. Analysis of airfoil transitional separation bubbles

    NASA Technical Reports Server (NTRS)

    Davis, R. L.; Carter, J. E.

    1984-01-01

    A previously developed local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation) has been modified to utilize a more accurate windward finite difference procedure in the reversed flow region, and a natural transition/turbulence model has been incorporated for the prediction of transition within the separation bubble. Numerous calculations and experimental comparisons are presented to demonstrate the effects of the windward differencing scheme and the natural transition/turbulence model. Grid sensitivity and convergence capabilities of this inviscid-viscous interaction technique are briefly addressed. A major contribution of this report is that with the use of windward differencing, a second, counter-rotating eddy has been found to exist in the wall layer of the primary separation bubble.

  9. Ice Accretions on a Swept GLC-305 Airfoil

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Papadakis, Michael; Potapczuk, Mark; Addy, Harold; Sheldon, David; Giriunas, Julius

    2002-01-01

    An experiment was conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center to obtain castings of ice accretions formed on a 28 deg. swept GLC-305 airfoil that is representative of a modern business aircraft wing. Because of the complexity of the casting process, the airfoil was designed with three removable leading edges covering the whole span. Ice accretions were obtained at six icing conditions. After the ice was accreted, the leading edges were detached from the airfoil and moved to a cold room. Molds of the ice accretions were obtained, and from them, urethane castings were fabricated. This experiment is the icing test of a two-part experiment to study the aerodynamic effects of ice accretions.

  10. An experimental and numerical investigation on the formation of stall-cells on airfoils

    NASA Astrophysics Data System (ADS)

    Manolesos, M.; Papadakis, G.; Voutsinas, S.

    2014-12-01

    Stall Cells (SCs) are large scale three-dimensional structures of separated flow that have been observed on the suction side of airfoils designed for or used on wind turbine blades. SCs are unstable in nature but can be stabilised by means of a localized disturbance; here in the form of a zigzag tape covering 10% of the wing span. Based on extensive tuft flow visualisations, the resulting flow was found macroscopically similar to the undisturbed flow. Next a combined investigation was carried out including pressure recordings, Stereo-PIV measurements and CFD simulations. The investigation parameters were the aspect ratio, the angle of attack and the Re number. Tuft and pressure data were found in good agreement. The 3D CFD simulations reproduced the structure of the SCs in qualitative agreement with the experimental data but had a delay of ~3deg in capturing the first appearance of a SC. The error in Cl max prediction was 7% compared to 19% for the 2D cases. Tests show that SCs grow with Re number and angle of attack. Also analysis of the time averaged computational results indicated the presence of three types of vortices: (a) the trailing edge line vortex (TELV) in the wake, (b) the separation line vortex (SLV) over the wing and (c) the SC vortices. The TELV and SLV run parallel to the trailing edge and are of opposite sign, while the SC vortices start normal to the wing suction surface, then bend towards the SC centre and later extend downstream, with their vorticity parallel to the free stream.

  11. Turbine airfoil film cooling

    NASA Technical Reports Server (NTRS)

    Hylton, Larry D.

    1986-01-01

    Emphasis is placed on developing more accurate analytical models for predicting turbine airfoil external heat transfer rates. Performance goals of new engines require highly refined, accurate design tools to meet durability requirements. In order to obtain improvements in analytical capabilities, programs are required which focus on enhancing analytical techniques through verification of new models by comparison with relevant experimental data. The objectives of the current program are to develop an analytical approach, based on boundary layer theory, for predicting the effects of airfoil film cooling on downstream heat transfer rates and to verify the resulting analytical method by comparison of predictions with hot cascade data obtained under this program.

  12. Transonic airfoil codes

    NASA Technical Reports Server (NTRS)

    Garabedian, P. R.

    1979-01-01

    Computer codes for the design and analysis of transonic airfoils are considered. The design code relies on the method of complex characteristics in the hodograph plane to construct shockless airfoil. The analysis code uses artificial viscosity to calculate flows with weak shock waves at off-design conditions. Comparisons with experiments show that an excellent simulation of two dimensional wind tunnel tests is obtained. The codes have been widely adopted by the aircraft industry as a tool for the development of supercritical wing technology.

  13. A juxta-membrane amino acid sequence of P-selectin glycoprotein ligand-1 is involved in moesin binding and ezrin/radixin/moesin-directed targeting at the trailing edge of migrating lymphocytes.

    PubMed

    Serrador, Juan M; Urzainqui, Ana; Alonso-Lebrero, Jose L; Cabrero, J Román; Montoya, Maria C; Vicente-Manzanares, Miguel; Yáñez-Mó, María; Sánchez-Madrid, Francisco

    2002-06-01

    P-selectin glycoprotein ligand 1 (PSGL-1) is an adhesion receptor localized on the tips of microvilli that is involved in the rolling of neutrophils on activated endothelium. We found that PSGL-1 was concentrated at the uropod of chemokine-stimulated lymphoid cells. Dynamic fluorescence videomicroscopy analyses of migrating lymphocytes demonstrated that PSGL-1 and moesin redistributed towards the cellular uropod at the trailing edge of these cells, where activated ezrin/radixin/moesin (ERM) proteins were located. An eighteen amino acid sequence in the juxta-membrane region of the PSGL-1 cytoplasmic tail was found to be critical for uropod targeting and moesin binding. Substitution of S336, S348, and the basic cluster R337K338 by alanines within this region significantly impaired both moesin binding and PSGL-1 polarization. These results underline the role of moesin in the subcellular redistribution of PSGL-1 in lymphoid cells and make evident the importance of specific serine residues within the cytoplasmic tail of PSGL-1 for this process.

  14. Linearized propulsion theory of flapping airfoils revisited

    NASA Astrophysics Data System (ADS)

    Fernandez-Feria, R.

    2016-12-01

    A vortical impulse theory is used to compute the thrust force of a plunging and pitching airfoil in forward flight at high Reynolds numbers within the framework of linear potential flow theory. The result is significantly different from the classical one of Garrick, which considered only two effects, the leading-edge suction and the projection in the flight direction of the pressure force on the airfoil. By taking into account the complete vorticity distribution on the airfoil and the wake the mean thrust coefficient contains, in addition to the pressure force projection term, a new term that generalizes the leading-edge suction term in Garrick's theory. This term depends on Theodorsen function C (k ) and on a new complex function C1(k ) of the reduced frequency k . The main qualitative difference with Garrick's theory is that the propulsive efficiency, or ratio of the mean thrust power and the mean input power required to drive the airfoil, tends to zero as the reduced frequency increases to infinity (as k-1), in contrast to Garrick's propulsive efficiency that tends to a constant (1 /2 ). Consequently, for pure pitching and combined pitching and plunging motions, the maximum of the propulsive efficiency is not reached as k →∞ like in Garrick's theory, but at a finite value of the reduced frequency that depends on the remaining nondimensional parameters. The present analytical results are in good agreement, for small amplitude oscillations, with numerical results from unsteady panel methods, and with experimental data and numerical results from the Navier-Stokes equations, except for small reduced frequencies where viscous effects are obviously important.

  15. Airfoil Design and Rotorcraft Performance

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    2003-01-01

    The relationship between global performance of a typical helicopter and the airfoil environment, as represented by the airfoil angles of attack and Mach number, has been examined using the comprehensive analysis CAMRAD II. A general correspondence is observed between global performance parameters, such as rotor L/D, and airfoil performance parameters, such as airfoil L/D, the drag bucket boundaries, and the divergence Mach number. Effects of design parameters such as blade twist and rotor speed variation have been examined and, in most cases, improvements observed in global performance are also observed in terms of airfoil performance. The relations observed between global Performance and the airfoil environment suggests that the emphasis in airfoil design should be for good L/D, while the maximum lift coefficient performance is less important.

  16. Design and Experimental Results for the S415 Airfoil

    DTIC Science & Technology

    2010-08-01

    polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant. (See, for example, ref. 8.) This... suction peak at higher lift coefficients, which ensures that transition on the upper surface will occur very near the leading edge. Thus, the...pressure distribution should look like sketch 3. Sketch 3 No suction peak exists at the leading edge. Instead, a moderately adverse pressure

  17. The S411, S412, and S413 Airfoils

    DTIC Science & Technology

    2010-08-01

    not as low as at point A, unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is nearly constant...in a leading edge that produces a suction peak at higher lift coefficients, which ensures that tran- sition on the upper surface will occur very near...This concept allows a wide low-drag range to be achieved and increases the loading in the leading-edge region. The forward loading serves to balance

  18. Transonic Free-Flight Investigation of the Longitudinal Aerodynamic Characteristics of a 1/10-Scale Steel-Wing Model of the Northrop MX-775A Missile with Leading-Edge Extensions, Inboard Trailing-Edge Flaps, and a Speed Brake on the Vertical Tail

    NASA Technical Reports Server (NTRS)

    Arbic, R. G.

    1955-01-01

    Results are presented of a free-flight investigation between Mach numbers of 0.7 to 1.3 and Reynolds numbers of 3.1 x 10(exp 6) to 7.0 x 10(exp 6) to determine the longitudinal aerodynamic characteristics of the Northrop MX-775A missile. This missile has a weng, body, and vertical tail, but has no horizontal tail. The basic wing plan form has an aspect ratio of 5.5, 45 deg of sweepback of the 0.406 streamwise chord line, and a taper ratio of 0.4. A 1/10-scale steel-wing model of the missile was flown with modifications to the basic wing plan form consisting of leading-edge chord-extensions deflected 7 deg downward together with the forward 15 percent of the wing chord, and inboard trailing-edge flaps deflected 5 deg downward. In addition, the model had a static-pressure tube mounted at the tip of the vertical tail for position-error measurements and had a speed brake also mounted on the vertical tail to trim the model to positive lift coefficients and to permit determination of the trim and drag effectiveness of the brake. The data are uncorrected for the effects of wing elasticity, but experimental wing influence coefficients are presented.

  19. Experimental Measurements of Two-dimensional Planar Propagating Edge Flames

    NASA Technical Reports Server (NTRS)

    Villa-Gonzalez, Marcos; Marchese, Anthony J.; Easton, John W.; Miller, Fletcher J.

    2007-01-01

    The study of edge flames has received increased attention in recent years. This work reports the results of a recent study into two-dimensional, planar, propagating edge flames that are remote from solid surfaces (called here, free-layer flames, as opposed to layered flames along floors or ceilings). They represent an ideal case of a flame propagating down a flammable plume, or through a flammable layer in microgravity. The results were generated using a new apparatus in which a thin stream of gaseous fuel is injected into a low-speed laminar wind tunnel thereby forming a flammable layer along the centerline. An airfoil-shaped fuel dispenser downstream of the duct inlet issues ethane from a slot in the trailing edge. The air and ethane mix due to mass diffusion while flowing up towards the duct exit, forming a flammable layer with a steep lateral fuel concentration gradient and smaller axial fuel concentration gradient. We characterized the flow and fuel concentration fields in the duct using hot wire anemometer scans, flow visualization using smoke traces, and non-reacting, numerical modeling using COSMOSFloWorks. In the experiment, a hot wire near the exit ignites the ethane air layer, with the flame propagating downwards towards the fuel source. Reported here are tests with the air inlet velocity of 25 cm/s and ethane flows of 967-1299 sccm, which gave conditions ranging from lean to rich along the centerline. In these conditions the flame spreads at a constant rate faster than the laminar burning rate for a premixed ethane air mixture. The flame spread rate increases with increasing transverse fuel gradient (obtained by increasing the fuel flow rate), but appears to reach a maximum. The flow field shows little effect due to the flame approach near the igniter, but shows significant effect, including flow reversal, well ahead of the flame as it approaches the airfoil fuel source.

  20. Ordered roughness effects on NACA 0026 airfoil

    NASA Astrophysics Data System (ADS)

    Harun, Z.; Abbas, A. A.; Dheyaa, R. Mohammed; Ghazali, M. I.

    2016-10-01

    The effects of highly-ordered rough surface - riblets, applied onto the surface of a NACA 0026 airfoil, are investigated experimentally using wind tunnel. The riblets are arranged in directionally converging - diverging pattern with dimensions of height, h = 1 mm, pitch or spacing, s = 1 mm, yaw angle α = 0o and 10o The airfoil with external geometry of 500 mm span, 600 mm chord and 156 mm thickness has been built using mostly woods and aluminium. Turbulence quantities are collected using hotwire anemometry. Hotwire measurements show that flows past converging and diverging pattern inherit similar patterns in the near-wall region for both mean velocity and turbulence intensities profiles. The mean velocity profiles in logarithmic regions for both flows past converging and diverging riblet pattern are lower than that with yaw angle α = 0o. Converging riblets cause the boundary layer to thicken and the flow with yaw angle α = 0o produces the thinnest boundary layer. Both the converging and diverging riblets cause pronounced outer peaks in the turbulence intensities profiles. Most importantly, flows past converging and diverging pattern experience 30% skin friction reductions. Higher order statistics show that riblet surfaces produce similar effects due to adverse pressure gradient. It is concluded that a small strip of different ordered roughness features applied at a leading edge of an airfoil can change the turbulence characteristics dramatically.

  1. Numerical simulation and reduced-order modeling of a flapping airfoil

    NASA Astrophysics Data System (ADS)

    Lewin, Gregory Carl

    Recent advances in many fields have made the design of micro-aerial vehicles that implement flapping wings a possibility. However, there are many outstanding problems that must be solved before flapping flight can be implemented as a practical means of propulsion. This dissertation focuses on two important aspects of flapping flight: the physics of the flow of a fluid around a heaving airfoil and the development of a reduced-order model for the control of a flapping airfoil. To study the physics of the flow, a numerical model for two-dimensional flow around an airfoil undergoing prescribed oscillatory motions in a viscous flow is developed. The model is used to examine the flow characteristics and power coefficients of a symmetric airfoil heaving sinusoidally over a range of frequencies and amplitudes. Both periodic and aperiodic solutions are found. Additionally, some flows are asymmetric in that the up-stroke is not a mirror image of the down-stroke. For a given Strouhal number---defined as the product of dimensionless frequency and heave amplitude---the maximum efficiency occurs at an intermediate heaving frequency. This is in contrast to ideal flow models, in which efficiency increases monotonically as frequency decreases. Below a threshold frequency, the separation of the leading edge vortices early in each stroke reduces the force on the airfoil and leads to diminished thrust and efficiency. Above the optimum frequency, the efficiency decreases similarly to inviscid theory. For most cases, the efficiency can be correlated to interactions between leading and trailing edge vortices, with positive reinforcement leading to relatively high efficiency, and negative reinforcement leading to relatively low efficiency. Additionally, the efficiency is related to the proximity of the heaving frequency to the frequency of the most spatially unstable mode of the average velocity profile of the wake; the greatest efficiency occurs when the two frequencies are nearly

  2. Shape Changing Airfoil

    NASA Technical Reports Server (NTRS)

    Ott, Eric A.

    2005-01-01

    Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.

  3. Planform curvature effects on flutter characteristics of a wing with 56 deg leading-edge sweep and panel aspect ratio of 1.14

    NASA Technical Reports Server (NTRS)

    Keller, Donald F.; Sandford, Maynard C.; Pinkerton, Theresa L.

    1991-01-01

    An experimental and analytical investigation was initiated to determine the effects of planform curvature (curving the leading and trailing edges of a wing in the X-Y plane) on the transonic flutter characteristics of a series of three moderately swept wing models. Experimental flutter results were obtained in the Langley Transonic Dynamics Tunnel for Mach numbers from 0.60-1.00, with air as the test medium. The models were semispan cantilevered wings with a 3 percent biconvex airfoil and a panel aspect ratio of 1.14. The baseline model had straight leading and trailing edges (i.e., no planform curvature). The radii of curvature of the leading edges for these two models were 200 and 80 inches. The radii of curvature of the leading edges of the other two models were determined so that the root and tip chords were identical for all three models. Experimental results showed that flutter-speed index and flutter frequency ratio increased as planform curvature increase (radius of curvature of the leading edge was decreased) over the test range of Mach numbers. Analytical flutter results were calculated with a subsonic flutter-prediction program, and they agreed well with the experimental results.

  4. Investigation of the Kline-Fogleman airfoil section for rotor blade applications

    NASA Technical Reports Server (NTRS)

    Lumsdaine, E.; Johnson, W. S.; Fletcher, L. M.; Peach, J. E.

    1974-01-01

    Wind tunnel tests of a wedgeshaped airfoil with sharp leading edge and a spanwise step were conducted. The airfoil was tested with variations of the following parameters: (1) Reynolds number, (2) step location, (3) step shape, (4) apex angle, and (5) with the step on either the upper or lower surface. The results are compared with a flat plate and with wedge airfoils without a step having the same aspect ratio. Water table tests were conducted for flow visualization and it was determined that the flow separates from the upper surface at low angles of attack. The wind tunnel tests show that the lift/drag ratio of the airfoil is lower than for a flat plate and the pressure data show that the airfoil derives its lift in the same manner as a flat plate.

  5. Evaluation of Airfoil Dynamic Stall Characteristics for Maneuverability

    NASA Technical Reports Server (NTRS)

    Bousman, William G.; Aiken, Edwin W. (Technical Monitor)

    2000-01-01

    In severe maneuvers, out of necessity for a military aircraft or inadvertently for a civil aircraft, a helicopter airfoil will stall in a dynamic manner and provide lift beyond what would be calculated based on static airfoil tests. The augmented lift that occurs in dynamic stall is related to a vortex that is shed near the leading edge of the airfoil. However, directly related to the augmented lift that results from the dynamic stall vortex are significant penalties in pitching moment and drag. An understanding of the relationship between the augmented lift in dynamic stall and the associated moment and drag penalties is the purpose of this paper. This relationship is characterized using data obtained in two-dimensional wind tunnel tests and related to the problem of helicopter maneuverability.

  6. NREL airfoil families for HAWTs

    SciTech Connect

    Tangler, J.L.; Somers, D.M.

    1995-12-31

    The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time nine airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c{sub 1,max}) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.

  7. NREL airfoil families for HAWTs

    SciTech Connect

    Tangler, J L; Somers, D M

    1995-01-01

    The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time seven airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c{sub l,max}) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.

  8. Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Gentry, Garl L., Jr.; Melson, W. Edward, Jr.

    1992-01-01

    The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration.

  9. Aerodynamic forces acting on a passive flow control equipped airfoil in turbulent inflow conditions

    NASA Astrophysics Data System (ADS)

    Kampers, Gerrit; Peinke, Joachim; Hölling, Michael

    2016-11-01

    Wind turbines work within turbulent atmospheric flows, with their well known challenging features of intermittent two point statistics. These intermittent statistics have a big impact on wind turbines, concerning fluctuating mechanical loads. Flow control is a promising approach for the reduction of these fluctuations. In this project, an airfoil profile is equipped with mechanically coupled flexible leading and trailing edge flaps, enabling to passively adapt its camber. We expose the profile to different reproducible turbulent inflow conditions, generated with an active grid in a wind tunnel and study the profile's ability to alleviate lift fluctuations. The first experiment is concerned with repeated mexican hat shaped inflow gusts. The corresponding lift reactions of the profile show, that the adaptive camber mechanism is able to alleviate lift fluctuations caused by the inflow gust. In the second experiment, we use different grid excitations to vary the flatness of the inflow angle increments and study the influence of the statistics at different angles of attack. We propose a stochastic Langevin approach to decompose the lift dynamics into a deterministic response and a stochastic part, allowing for a quantitative analysis of the response dynamics. Funded by the German Research Foundation, Ref. No. PE 478/15-1.

  10. Two-dimensional wind-tunnel tests of a NASA supercritical airfoil with various high-lift systems. Volume 1: Data analysis

    NASA Technical Reports Server (NTRS)

    Omar, E.; Zierten, T.; Mahal, A.

    1977-01-01

    High-lift systems for a NASA, 9.3%, method for calculating the viscous flow about two-dimensional multicomponent airfoils was evaluated by comparing its predictions with test data. High-lift systems derived from supercritical airfoils were compared in terms of performance to high-lift systems derived from conventional airfoils. The high-lift systems for the supercritical airfoil were designed to achieve maximum lift and consisted of: a single-slotted flap; a double-slotted flap and a leading-edge slat; and a triple-slotted flap and a leading-edge slat. Agreement between theoretical predictions and experimental results are also discussed.

  11. The Pimlico Chemistry Trail.

    ERIC Educational Resources Information Center

    Borrows, Peter

    1984-01-01

    Describes a chemistry "trail" (similar to a nature trail) which focuses on chemical phenomena in the environment. The trail includes 20 stops in and around a local school. Types of phenomena examined include building materials, air pollution, corrosion of metals, swimming pools, and others. Additional activities are also suggested. (DH)

  12. Linearized propulsion theory of flapping airfoils revisited

    NASA Astrophysics Data System (ADS)

    Fernandez-Feria, Ramon

    2016-11-01

    A vortical impulse theory is used to compute the thrust of a plunging and pitching airfoil in forward flight within the framework of linear potential flow theory. The result is significantly different from the classical one of Garrick that considered the leading-edge suction and the projection in the flight direction of the pressure force. By taking into account the complete vorticity distribution on the airfoil and the wake the mean thrust coefficient contains a new term that generalizes the leading-edge suction term and depends on Theodorsen function C (k) and on a new complex function C1 (k) of the reduced frequency k. The main qualitative difference with Garrick's theory is that the propulsive efficiency tends to zero as the reduced frequency increases to infinity (as 1 / k), in contrast to Garrick's efficiency that tends to a constant (1 / 2). Consequently, for pure pitching and combined pitching and plunging motions, the maximum of the propulsive efficiency is not reached as k -> ∞ like in Garrick's theory, but at a finite value of the reduced frequency that depends on the remaining non-dimensional parameters. The present analytical results are in good agreement with experimental data and numerical results for small amplitude oscillations. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  13. Control of unsteady separated flow associated with the dynamic stall of airfoils

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.

    1994-01-01

    A unique active flow-control device is proposed for the control of unsteady separated flow associated with the dynamic stall of airfoils. The device is an adaptive-geometry leading-edge which will allow controlled, dynamic modification of the leading-edge profile of an airfoil while the airfoil is executing an angle-of-attack pitch-up maneuver. A carbon-fiber composite skin has been bench tested, and a wind tunnel model is under construction. A baseline parameter study of compressible dynamic stall was performed for flow over an NACA 0012 airfoil. Parameters included Mach number, pitch rate, pitch history, and boundary layer tripping. Dynamic stall data were recorded via point-diffraction interferometry and the interferograms were analyzed with in-house developed image processing software. A new high-speed phase-locked photographic image recording system was developed for real-time documentation of dynamic stall.

  14. Turbine airfoil to shround attachment

    DOEpatents

    Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J

    2014-05-06

    A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.

  15. The S407, S409, and S410 Airfoils

    DTIC Science & Technology

    2010-08-01

    coefficient at point B is not as low as at point A, unlike the polars of many laminar-flow airfoils where the drag coefficient within the laminar bucket is...feature results in a leading-edge shape that produces a suction peak at higher lift coefficients, which ensures that transition on the upper surface...like sketch 3. Sketch 3 No suction peak exists at the leading edge. Instead, a rounded peak occurs aft of the leading edge, which allows some laminar

  16. Theory and Low-Order Modeling of Unsteady Airfoil Flows

    NASA Astrophysics Data System (ADS)

    Ramesh, Kiran

    Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It

  17. Design and experimental results for a flapped natural-laminar-flow airfoil for general aviation applications

    NASA Technical Reports Server (NTRS)

    Somers, D. M.

    1981-01-01

    A flapped natural laminar flow airfoil for general aviation applications, the NLF(1)-0215F, has been designed and analyzed theoretically and verified experimentally in the Langley Low Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low speed airfoils with the low cruise drag of the NACA 6 series airfoils has been achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge has also been met. Comparisons of the theoretical and experimental results show generally good agreement.

  18. Effectiveness of Thermal-Pneumatic Airfoil-Ice-Protection System

    NASA Technical Reports Server (NTRS)

    Gowan, William H., Jr.; Mulholland, Donald R.

    1951-01-01

    Icing and drag investigations were conducted in the NACA Lewis icing research tunnel employing a combination thermal-pneumatic de-icer mounted on a 42-inch-chord NACA 0018 airfoil. The de-icer consisted of a 3-inch-wide electrically heated strip symmetrically located about the leading edge with inflatable tubes on the upper and lower airfoil surfaces aft of the heated area. The entire de-icer extended to approximately 25 percent of chord. A maximum power density of 9.25 watts per square inch was required for marginal ice protection on the airfoil leading edge at an air temperature of 00 F and an airspeed of 300 miles per hour. Drag measurements indicated, that without icing, the de-icer installation increased the section drag to approximately 140 percent of that of the bare airfoil; with the tubes inflated, this value increased to a maximum of approximately 620 percent. A 2-minute tube-inflation cycle prevented excessive ice formation on the inflatable area although small scattered residual Ice formations remained after inflation and were removed intermittently during later cycles. Effects of the time lag of heater temperatures after initial application of power and the insulating effect of ice formations on heater temperatures were also determined.

  19. Input description for Jameson's three-dimensional transonic airfoil analysis program

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Davis, R. M.

    1974-01-01

    The input parameters are presented for a computer program which performs calculations for inviscid isentropic transonic flow over three dimensional airfoils with straight leading edges. The free stream Mach number is restricted only by the isentropic assumption. Weak shock waves are automatically located where they occur in the flow. The finite difference form of the full equation for the velocity potential is solved by the method of relaxation, after the flow exterior to the airfoil is mapped to the upper half plane.

  20. Compressibility effects on dynamic stall of airfoils undergoing rapid transient pitching motion

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Platzer, M. F.

    1992-01-01

    The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range.

  1. Control of unsteady separated flow associated with the dynamic stall of airfoils

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.

    1995-01-01

    An effort to understand and control the unsteady separated flow associated with the dynamic stall of airfoils was funded for three years through the NASA cooperative agreement program. As part of this effort a substantial data base was compiled detailing the effects various parameters have on the development of the dynamic stall flow field. Parameters studied include Mach number, pitch rate, and pitch history, as well as Reynolds number (through two different model chord lengths) and the condition of the boundary layer at the leading edge of the airfoil (through application of surface roughness). It was found for free stream Mach numbers as low as 0.4 that a region of supersonic flow forms on the leading edge of the suction surface of the airfoil at moderate angles of attack. The shocks which form in this supersonic region induce boundary-layer separation and advance the dynamic stall process. Under such conditions a supercritical airfoil profile is called for to produce a flow field having a weaker leading-edge pressure gradient and no leading-edge shocks. An airfoil having an adaptive-geometry, or dynamically deformable leading edge (DDLE), is under development as a unique active flow-control device. The DDLE, formed of carbon-fiber composite and fiberglass, can be flexed between a NACA 0012 profile and a supercritical profile in a controllable fashion while the airfoil is executing an angle-of-attack pitch-up maneuver. The dynamic stall data were recorded using point diffraction interferometry (PDI), a noninvasive measurement technique. A new high-speed cinematography system was developed for recording interferometric images. The system is capable of phase-locking with the pitching airfoil motion for real-time documentation of the development of the dynamic stall flow field. Computer-aided image analysis algorithms were developed for fast and accurate reduction of the images, improving interpretation of the results.

  2. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, J.E.; Norton, P.F.

    1997-06-03

    An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

  3. Airfoil nozzle and shroud assembly

    DOEpatents

    Shaffer, James E.; Norton, Paul F.

    1997-01-01

    An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

  4. On the attenuating effect of permeability on the low frequency sound of an airfoil

    NASA Astrophysics Data System (ADS)

    Weidenfeld, M.; Manela, A.

    2016-08-01

    The effect of structure permeability on the far-field radiation of a thin airfoil is studied. Assuming low-Mach and high-Reynolds number flow, the near- and far-field descriptions are investigated at flapping-flight and unsteady flow conditions. Analysis is carried out using thin-airfoil theory and compact-body-based calculations for the hydrodynamic and acoustic fields, respectively. Airfoil porosity is modeled via Darcy's law, governed by prescribed distribution of surface intrinsic permeability. Discrete vortex model is applied to describe airfoil wake evolution. To assess the impact of penetrability, results are compared to counterpart predictions for the sound of an impermeable airfoil. Considering the finite-chord airfoil as "acoustically transparent", the leading-order contribution of surface porosity is obtained in terms of an acoustic dipole. It is shown that, at all flow conditions considered, porosity causes attenuation in outcome sound level. This is accompanied by a time-delay in the pressure signal, reflecting the mediating effect of permeability on the interaction of fluid flow with airfoil edge points. To the extent that thin-airfoil theory holds (requiring small normal-to-airfoil flow velocities), the results indicate on a decrease of ~ 10 percent and more in the total energy radiated by a permeable versus an impermeable airfoil. This amounts to a reduction in system sound pressure level of 3 dB and above at pitching flight conditions, where the sound-reducing effect of the seepage dipole pressure becomes dominant. The applicability of Darcy's law to model the effect of material porosity is discussed in light of existing literature.

  5. Lift Optimization Study of a Multi-Element Three-Segment Variable Camber Airfoil

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Nguyen, Nhan T.

    2016-01-01

    This paper reports a detailed computational high-lift study of the Variable Camber Continuous Trailing Edge Flap (VCCTEF) system carried out to explore the best VCCTEF designs, in conjunction with a leading edge flap called the Variable Camber Krueger (VCK), for take-off and landing. For this purpose, a three-segment variable camber airfoil employed as a performance adaptive aeroelastic wing shaping control effector for a NASA Generic Transport Model (GTM) in landing and take-off configurations is considered. The objective of the study is to define optimal high-lift VCCTEF settings and VCK settings/configurations. A total of 224 combinations of VCK settings/configurations and VCCTEF settings are considered for the inboard GTM wing, where the VCCTEFs are configured as a Fowler flap that forms a slot between the VCCTEF and the main wing. For the VCK settings of deflection angles of 55deg, 60deg and 65deg, 18, 19 and 19 vck configurations, respectively, were considered for each of the 4 different VCCTEF deflection settings. Different vck configurations were defined by varying the horizontal and vertical distance of the vck from the main wing. A computational investigation using a Reynolds-Averaged Navier-Stokes (RANS) solver was carried out to complement a wind-tunnel experimental study covering three of these configurations with the goal of identifying the most optimal high-lift configurations. Four most optimal high-lift configurations, corresponding to each of the VCK deflection settings, have been identified out of all the different configurations considered in this study yielding the highest lift performance.

  6. Nozzle airfoil having movable nozzle ribs

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael

    2002-01-01

    A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

  7. Boundary Layer Control on Airfoils.

    ERIC Educational Resources Information Center

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  8. Second Stage Turbine Bucket Airfoil.

    DOEpatents

    Xu, Liming; Ahmadi, Majid; Humanchuk, David John; Moretto, Nicholas; Delehanty, Richard Edward

    2003-05-06

    The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

  9. Numerical design of shockless airfoils

    NASA Technical Reports Server (NTRS)

    Garabedian, P. R.

    1979-01-01

    An attempt is made to indicate and briefly discuss only the most significant achievements of the research. The most successful contribution from the contract was the code for two dimensional analysis of airfoils in transonic flow.

  10. A Rapid Distortion Theory modified turbulence spectra for semi-analytical airfoil noise prediction

    NASA Astrophysics Data System (ADS)

    Santana, Leandro D.; Christophe, Julien; Schram, Christophe; Desmet, Wim

    2016-11-01

    This paper proposes an implementation of the Rapid Distortion Theory, for the prediction of the noise resulting from the interaction of an airfoil with incoming turbulence. In the framework of the semi-analytical modeling strategy known as Amiet's theory, this interaction mechanism is treated in a linearized form where the airfoil thickness, camber and angle of attack are assumed negligible, leading to a frozen turbulence description of the incident gust. Important semi-analytical developments have been proposed in the literature to improve the modeling of the gust-airfoil interaction accounting for parallel and skewed gusts, non-rectangular linearized airfoil shapes or blade tip effects. This work is rather focused on the investigation of the distortion of turbulence that occurs in the vicinity of the airfoil leading edge, compared with Rapid Distortion Theory, where main results are briefly reminded in this paper. The main contribution of this work is a detailed experimental investigation of the evolution of turbulent quantities relevant to noise production, performed in the close vicinity of the airfoil leading edge subjected to grid turbulence, by means of stereoscopic Particle Image Velocimetry measurements. The results indicate that the distortion effects are concentrated in a narrow region close to the stagnation point of the leading edge, with dimension of the order of its radius of curvature. Additionally, it is shown that the turbulence intensity grows significantly as the flow approaches the airfoil leading-edge. Based on those results, a modified turbulence spectrum is proposed to describe the incoming turbulence in Amiet's theory. The sound predictions show a significantly better match with acoustic measurements than using the original turbulence model.

  11. Computer Program to Obtain Ordinates for NACA Airfoils

    NASA Technical Reports Server (NTRS)

    Ladson, Charles L.; Brooks, Cuyler W., Jr.; Hill, Acquilla S.; Sproles, Darrell W.

    1996-01-01

    Computer programs to produce the ordinates for airfoils of any thickness, thickness distribution, or camber in the NACA airfoil series were developed in the early 1970's and are published as NASA TM X-3069 and TM X-3284. For analytic airfoils, the ordinates are exact. For the 6-series and all but the leading edge of the 6A-series airfoils, agreement between the ordinates obtained from the program and previously published ordinates is generally within 5 x 10(exp -5) chord. Since the publication of these programs, the use of personal computers and individual workstations has proliferated. This report describes a computer program that combines the capabilities of the previously published versions. This program is written in ANSI FORTRAN 77 and can be compiled to run on DOS, UNIX, and VMS based personal computers and workstations as well as mainframes. An effort was made to make all inputs to the program as simple as possible to use and to lead the user through the process by means of a menu.

  12. Persistent Leonid Meteor Trails

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Milster, S. P.; Grime, B. W.; Gardner, C. S.; Liu, A. Z.; Chu, X.; Kelley, M. C.; Kruschwitz, C. A.; Kane, T. J.

    2000-10-01

    In 1998 and 1999 a campaign was conducted to study the lingering trails left by (brighter than -1.5 mag) Leonid meteors over the Starfire Optical Range near Albuquerque, NM, a facility owned by the Directed Energy Directorate of the Air Force Research Laboratory. Although not unique to the Leonids, lingering trails are characteristic of the brighter members of this shower, even in non-storm years. They are self-luminous from unknown chemiluminscent reactions involving both atmospheric and cometary species. A sodium lidar was used to probe the aftermath of several meteors, some of which left trails visible for more than 20 minutes. CCD images have been analyzed for four trails. The classical explanation of the double line appearance of many trails as shell burning in an optically thin cylinder is shown to be invalid. Surface brightnesses and line emission rates have been derived and indicate that the trails are overbright compared to non-Leonids by orders of magnitude, pointing perhaps to a compositional difference between lingering trails of Leonid and non-Leonid meteors. Because the atmospheric trajectory of the parent meteor is known, the winds and parameters of a gravity wave between 90-100 km above the Earth have been deduced from a single image taken 1-2 minutes after the meteor, or from a series of images. A five degree wide video camera was used to record the evolution of several trails, and a highlight video will be shown of this fascinating and mysterious phenomenon.

  13. Oregon Trail Teacher's Guide.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    The road to the U.S. West, known as the Oregon Trail, had its first real traffic in 1843 when a group of about 1000 people left Independence, Missouri and traveled west. This teacher's guide contains short descriptions of the main landmarks and stopping points that were significant along the northwest portion of the Oregon Trail. The guide is…

  14. Effects of laminar separation bubbles and turbulent separation on airfoil stall

    SciTech Connect

    Dini, P.; Coiro, D.P.

    1997-12-31

    An existing two-dimensional, interactive, stall prediction program is extended by improving its laminar separation bubble model. The program now accounts correctly for the effects of the bubble on airfoil performance characteristics when it forms at the mid-chord and on the leading edge. Furthermore, the model can now predict bubble bursting on very sharp leading edges at high angles of attack. The details of the model are discussed in depth. Comparisons of the predicted stall and post-stall pressure distributions show excellent agreement with experimental measurements for several different airfoils at different Reynolds numbers.

  15. A Method for the Constrained Design of Natural Laminar Flow Airfoils

    NASA Technical Reports Server (NTRS)

    Green, Bradford E.; Whitesides, John L.; Campbell, Richard L.; Mineck, Raymond E.

    1996-01-01

    A fully automated iterative design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. Drag reductions have been realized using the design method over a range of Mach numbers, Reynolds numbers and airfoil thicknesses. The thrusts of the method are its ability to calculate a target N-Factor distribution that forces the flow to undergo transition at the desired location; the target-pressure-N-Factor relationship that is used to reduce the N-Factors in order to prolong transition; and its ability to design airfoils to meet lift, pitching moment, thickness and leading-edge radius constraints while also being able to meet the natural laminar flow constraint. The method uses several existing CFD codes and can design a new airfoil in only a few days using a Silicon Graphics IRIS workstation.

  16. A compressible solution of the Navier-Stokes equations for turbulent flow about an airfoil

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Gibeling, H. J.

    1979-01-01

    A compressible time dependent solution of the Navier-Stokes equations including a transition turbulence model is obtained for the isolated airfoil flow field problem. The equations are solved by a consistently split linearized block implicit scheme. A nonorthogonal body-fitted coordinate system is used which has maximum resolution near the airfoil surface and in the region of the airfoil leading edge. The transition turbulence model is based upon the turbulence kinetic energy equation and predicts regions of laminar, transitional, and turbulent flow. Mean flow field and turbulence field results are presented for an NACA 0012 airfoil at zero and nonzero incidence angles of Reynolds number up to one million and low subsonic Mach numbers.

  17. Airfoil Vibration Dampers program

    NASA Technical Reports Server (NTRS)

    Cook, Robert M.

    1991-01-01

    The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.

  18. Airfoil deposition model

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.

    1982-01-01

    The methodology to predict deposit evolution (deposition rate and subsequent flow of liquid deposits) as a function of fuel and air impurity content and relevant aerodynamic parameters for turbine airfoils is developed in this research. The spectrum of deposition conditions encountered in gas turbine operations includes the mechanisms of vapor deposition, small particle deposition with thermophoresis, and larger particle deposition with inertial effects. The focus is on using a simplified version of the comprehensive multicomponent vapor diffusion formalism to make deposition predictions for: (1) simple geometry collectors; and (2) gas turbine blade shapes, including both developing laminar and turbulent boundary layers. For the gas turbine blade the insights developed in previous programs are being combined with heat and mass transfer coefficient calculations using the STAN 5 boundary layer code to predict vapor deposition rates and corresponding liquid layer thicknesses on turbine blades. A computer program is being written which utilizes the local values of the calculated deposition rate and skin friction to calculate the increment in liquid condensate layer growth along a collector surface.

  19. Characteristics of two sharp-nosed airfoils having reduced spinning tendencies

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1932-01-01

    According to Mr. L.D. Bell, of the Consolidated Aircraft Corporation, certain undesirable spinning characteristics of a commercial airplane were eliminated by the addition of a filler to the forward part of the wing to give it a sharp leading edge. To ascertain what aerodynamic effects result from such a change of section, two airfoils having sharp leading edges were tested in the variable-density wind tunnel. Both sections were derived by modifying the Gott. 398. The tests, which were made at a large value of the Reynolds Number, were carried to very large angles of attack to provide data for application to flight at angles of attack well beyond the stall. The characteristics of the sharp-nosed airfoils are compared with those of the normal Gott. 398 airfoil. Both of the sharp-nosed airfoils, which differ in the angle between the upper and lower surfaces at the leading edge, have about the same characteristics. As compared with the normal airfoil, the maximum lift is reduced by approximately 26 per cent, but the objectionable rapidly decreasing lift with angle of attack beyond the stall is eliminated; the profile drag of the section is slightly reduced in the range of the lift coefficient between 0.2 and 0.85, but at higher and lower lift coefficients the drag is increased.

  20. DIRBE Comet Trails

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.

    2015-01-01

    Re-examination of the COBE DIRBE data reveals the thermal emission of several comet dust trails.The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported.The known trails of 2P/Encke, and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 microns surface brightnesses of <0.1 and <0.15 MJy/sr, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals one additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.