Science.gov

Sample records for airframe structural components

  1. Airframe noise component interaction studies

    NASA Technical Reports Server (NTRS)

    Fink, M. R.; Schlinker, R. H.

    1979-01-01

    Acoustic wind tunnel tests were conducted to examine the noise-generating processes of an airframe during approach flight. The airframe model was a two-dimensional wing section, to which highlift leading and trailing edge devices and landing gear could be added. Far field conventional microphones were utilized to determine component spectrum levels. An acoustic mirror directional microphone was utilized to examine noise source distributions on airframe components extended separately and in combination. Measured quantities are compared with predictions inferred from aircraft flyover data. Aeroacoustic mechanisms for each airframe component are identified. Component interaction effects on total radiated noise generally were small (within about 2 dB). However, some interactions significantly redistributed the local noise source strengths by changing local flow velocities and turbulence levels. Possibilities for noise reduction exist if trailing edge flaps could be modified to decrease their noise radiation caused by incident turbulent flow.

  2. Airframe noise component interaction studies

    NASA Technical Reports Server (NTRS)

    Fink, M. R.; Schlinker, R. H.

    1979-01-01

    Acoustic wind tunnel tests were conducted of a two-dimensional wing section with removable high-lift leading and trailing edge devices and a removeable two-wheel landing gear with open cavity. An array of far field conventional microphones and an acoustic mirror directional microphone were utilized to determine far field spectrum levels and noise source distribution. Data were obtained for the wing with components deployed separately and in various combinations. The basic wing model had 0.305 m (1.00 ft) chord, which is roughly 1/10 scale for a one-hundred passenger transport airplane. Most of the data were obtained at 70.7 and 100 m/sec (232 and 328 ft/sec) airspeeds, which bracket the range of practical approach speeds for such aircraft. Data were obtained at frequence to 40 kHz so that, when scaled to s typical full-airframe, the frequency region which strongly influences preceived noise level would be included.

  3. Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan M.; McGinley, Catherine B.

    2005-01-01

    A joint computational and experimental study has been performed at NASA Langley Research Center to investigate the unsteady flow generated by the components of an aircraft landing gear system. Because the flow field surrounding a full landing gear is so complex, the study was conducted on a simplified geometry consisting of two cylinders in tandem arrangement to isolate and characterize the pertinent flow phenomena. This paper focuses on the experimental effort where surface pressures, 2-D Particle Image Velocimetry, and hot-wire anemometry were used to document the flow interaction around the two cylinders at a Reynolds Number of 1.66 x 10(exp 5), based on cylinder diameter, and cylinder spacing-todiameter ratios, L/D, of 1.435 and 3.70. Transition strips were applied to the forward cylinder to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the forward and rear cylinders show the effects of L/D on flow symmetry, base pressure, and the location of flow separation and attachment. Mean velocities and instantaneous vorticity obtained from the PIV data are used to examine the flow structure between and aft of the cylinders. Shedding frequencies and spectra obtained using hot-wire anemometry are presented. These results are compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, Jenkins, and McGinley (2005). The experimental dataset produced in this study provides information to better understand the mechanisms associated with component interaction noise, develop and validate time-accurate computer methods used to calculate the unsteady flow field, and assist in modeling of the radiated noise from landing gears.

  4. Crashworthy design of helicopter composite airframe structures

    NASA Technical Reports Server (NTRS)

    Boitnott, Richard L.; Kindervater, Christof

    1989-01-01

    The crashworthy behavior of composite materials and generic structural elements is investigated. Cruciform structural elements are crushed in order to determine their energy absorption capability to rotorcraft crash-type loads, and quasi-static compression tests are conducted on a series of aluminum and composite cruciform elements. These elements are representative of keel beam and bulkhead intersections in the subfloor of rotorcraft. Various designs of 'trigger mechanisms' reducing initial peak failure loads and initiating stable crushing failure modes are considered. It is shown that a carbon-fiber-composite/aramid-fiber-composite hybrid element with a columnlike midsection behaves more like a well-designed tubular composite element. Specimens which fail primarily in bending are typical of structural components used in the upper and lower portions of rotorcraft airframes.

  5. NASA airframe structural integrity program

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.

    1990-01-01

    NASA initiated a research program with the long-term objective of supporting the aerospace industry in addressing issues related to the aging of the commercial transport fleet. The program combines advanced fatigue crack growth prediction methodology with innovative nondestructive examination technology with the focus on multi-stage damage (MSD) at rivited connections. A fracture mechanics evaluation of the concept of pressure proof testing the fuselage to screen for MSD was completed. A successful laboratory demonstration of the ability of the thermal flux method to detect disbonds at rivited lap splice joints was conducted. All long-term program elements were initiated, and the plans for the methodology verification program are being coordinated with the airframe manufacturers.

  6. Airframe Noise Sub-Component Definition and Model

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Sen, Rahul; Hardy, Bruce; Yamamoto, Kingo; Guo, Yue-Ping; Miller, Gregory

    2004-01-01

    Both in-house, and jointly with NASA under the Advanced Subsonic Transport (AST) program, Boeing Commerical Aircraft Company (BCA) had begun work on systematically identifying specific components of noise responsible for total airframe noise generation and applying the knowledge gained towards the creation of a model for airframe noise prediction. This report documents the continuation of the collection of database from model-scale and full-scale airframe noise measurements to compliment the earlier existing databases, the development of the subcomponent models and the generation of a new empirical prediction code. The airframe subcomponent data includes measurements from aircraft ranging in size from a Boeing 737 to aircraft larger than a Boeing 747 aircraft. These results provide the continuity to evaluate the technology developed under the AST program consistent with the guidelines set forth in NASA CR-198298.

  7. Structural Qualification of Composite Airframes

    NASA Technical Reports Server (NTRS)

    Kedward, Keith T.; McCarty, John E.

    1997-01-01

    The development of fundamental approaches for predicting failure and elongation characteristics of fibrous composites are summarized in this document. The research described includes a statistical formulation for individual fiber breakage and fragmentation and clustered fiber breakage, termed macrodefects wherein the aligned composite may represent a structural component such as a reinforcing bar element, a rebar. Experimental work conducted in support of the future exploitation of aligned composite rebar elements is also described. This work discusses the experimental challenges associated with rebar tensile test evaluation and describes initial numerical analyses performed in support of the experimental program.

  8. Reliability-Based Design Optimization of a Composite Airframe Component

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.

    2009-01-01

    A stochastic design optimization methodology (SDO) has been developed to design components of an airframe structure that can be made of metallic and composite materials. The design is obtained as a function of the risk level, or reliability, p. The design method treats uncertainties in load, strength, and material properties as distribution functions, which are defined with mean values and standard deviations. A design constraint or a failure mode is specified as a function of reliability p. Solution to stochastic optimization yields the weight of a structure as a function of reliability p. Optimum weight versus reliability p traced out an inverted-S-shaped graph. The center of the inverted-S graph corresponded to 50 percent (p = 0.5) probability of success. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponds to unity for reliability p (or p = 1). Weight can be reduced to a small value for the most failure-prone design with a reliability that approaches zero (p = 0). Reliability can be changed for different components of an airframe structure. For example, the landing gear can be designed for a very high reliability, whereas it can be reduced to a small extent for a raked wingtip. The SDO capability is obtained by combining three codes: (1) The MSC/Nastran code was the deterministic analysis tool, (2) The fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and (3) NASA Glenn Research Center s optimization testbed CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life raked wingtip structure of the Boeing 767-400 extended range airliner made of metallic and composite materials.

  9. Aviation Maintenance Technology. Airframe. A201. Airframe Structures and Non-Metallic Structural Repairs. Instructor Material.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This teacher's guide is designed to aid teachers in leading students through a module on airframe structures and nonmetallic structural repairs. The module contains four units that cover the following topics: (1) identifying aerodynamic and construction characteristics of aircraft structures; (2) inspecting wooden structures; (3) inspecting and…

  10. Simulating the Impact Response of Composite Airframe Components

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.

    2014-01-01

    In 2010, NASA Langley Research Center obtained residual hardware from the US Army's Survivable Affordable Repairable Airframe Program (SARAP). The hardware consisted of a composite fuselage section that was representative of the center section of a Black Hawk helicopter. The section was fabricated by Sikorsky Aircraft Corporation and designated the Test Validation Article (TVA). The TVA was subjected to a vertical drop test in 2008 to evaluate a tilting roof concept to limit the intrusion of overhead mass items, such as the rotor transmission, into the fuselage cabin. As a result of the 2008 test, damage to the hardware was limited primarily to the roof. Consequently, when the post-test article was obtained in 2010, the roof area was removed and the remaining structure was cut into six different types of test specimens including: (1) tension and compression coupons for material property characterization, (2) I-beam sections, (3) T-sections, (4) cruciform sections, (5) a large subfloor section, and (6) a forward framed fuselage section. In 2011, NASA and Sikorsky entered into a cooperative research agreement to study the impact responses of composite airframe structures and to evaluate the capabilities of the explicit transient dynamic finite element code, LS-DYNA®, to simulate these responses including damage initiation and progressive failure. Finite element models of the composite specimens were developed and impact simulations were performed. The properties of the composite material were represented using both a progressive in-plane damage model (Mat 54) and a continuum damage mechanics model (Mat 58) in LS-DYNA. This paper provides test-analysis comparisons of time history responses and the location and type of damage for representative I-beam, T-section, and cruciform section components.

  11. Impact Testing and Simulation of Composite Airframe Structures

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Littell, Justin D.; Horta, Lucas G.; Annett, Martin S.; Fasanella, Edwin L.; Seal, Michael D., II

    2014-01-01

    Dynamic tests were performed at NASA Langley Research Center on composite airframe structural components of increasing complexity to evaluate their energy absorption behavior when subjected to impact loading. A second objective was to assess the capabilities of predicting the dynamic response of composite airframe structures, including damage initiation and progression, using a state-of-the-art nonlinear, explicit transient dynamic finite element code, LS-DYNA. The test specimens were extracted from a previously tested composite prototype fuselage section developed and manufactured by Sikorsky Aircraft Corporation under the US Army's Survivable Affordable Repairable Airframe Program (SARAP). Laminate characterization testing was conducted in tension and compression. In addition, dynamic impact tests were performed on several components, including I-beams, T-sections, and cruciform sections. Finally, tests were conducted on two full-scale components including a subfloor section and a framed fuselage section. These tests included a modal vibration and longitudinal impact test of the subfloor section and a quasi-static, modal vibration, and vertical drop test of the framed fuselage section. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from instrumentation such as accelerometers and strain gages and from full-field photogrammetry.

  12. Airframe structural dynamic considerations in rotor design optimization

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Murthy, T. Sreekanta

    1989-01-01

    An an overview and discussion of those aspects of airframe structural dynamics that have a strong influence on rotor design optimization is provided. Primary emphasis is on vibration requirements. The vibration problem is described, the key vibratory forces are identified, the role of airframe response in rotor design is summarized, and the types of constraints which need to be imposed on rotor design due to airframe dynamics are discussed. Some considerations of ground and air resonance as they might affect rotor design are included.

  13. Design sensitivity analysis of rotorcraft airframe structures for vibration reduction

    NASA Technical Reports Server (NTRS)

    Murthy, T. Sreekanta

    1987-01-01

    Optimization of rotorcraft structures for vibration reduction was studied. The objective of this study is to develop practical computational procedures for structural optimization of airframes subject to steady-state vibration response constraints. One of the key elements of any such computational procedure is design sensitivity analysis. A method for design sensitivity analysis of airframes under vibration response constraints is presented. The mathematical formulation of the method and its implementation as a new solution sequence in MSC/NASTRAN are described. The results of the application of the method to a simple finite element stick model of the AH-1G helicopter airframe are presented and discussed. Selection of design variables that are most likely to bring about changes in the response at specified locations in the airframe is based on consideration of forced response strain energy. Sensitivity coefficients are determined for the selected design variable set. Constraints on the natural frequencies are also included in addition to the constraints on the steady-state response. Sensitivity coefficients for these constraints are determined. Results of the analysis and insights gained in applying the method to the airframe model are discussed. The general nature of future work to be conducted is described.

  14. Optimization of helicopter airframe structures for vibration reduction considerations, formulations and applications

    NASA Technical Reports Server (NTRS)

    Murthy, T. Sreekanta

    1988-01-01

    Several key issues involved in the application of formal optimization technique to helicopter airframe structures for vibration reduction are addressed. Considerations which are important in the optimization of real airframe structures are discussed. Considerations necessary to establish relevant set of design variables, constraints and objectives which are appropriate to conceptual, preliminary, detailed design, ground and flight test phases of airframe design are discussed. A methodology is suggested for optimization of airframes in various phases of design. Optimization formulations that are unique to helicopter airframes are described and expressions for vibration related functions are derived. Using a recently developed computer code, the optimization of a Bell AH-1G helicopter airframe is demonstrated.

  15. Computational Structures Technology for Airframes and Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Housner, Jerrold M. (Compiler); Starnes, James H., Jr. (Compiler); Hopkins, Dale A. (Compiler); Chamis, Christos C. (Compiler)

    1992-01-01

    This conference publication contains the presentations and discussions from the joint University of Virginia (UVA)/NASA Workshops. The presentations included NASA Headquarters perspectives on High Speed Civil Transport (HSCT), goals and objectives of the UVA Center for Computational Structures Technology (CST), NASA and Air Force CST activities, CST activities for airframes and propulsion systems in industry, and CST activities at Sandia National Laboratory.

  16. Health Monitoring for Airframe Structural Characterization

    NASA Technical Reports Server (NTRS)

    Munns, Thomas E.; Kent, Renee M.; Bartolini, Antony; Gause, Charles B.; Borinski, Jason W.; Dietz, Jason; Elster, Jennifer L.; Boyd, Clark; Vicari, Larry; Ray, Asok; Cooper, E. G. (Technical Monitor)

    2002-01-01

    This study established requirements for structural health monitoring systems, identified and characterized a prototype structural sensor system, developed sensor interpretation algorithms, and demonstrated the sensor systems on operationally realistic test articles. Fiber-optic corrosion sensors (i.e., moisture and metal ion sensors) and low-cycle fatigue sensors (i.e., strain and acoustic emission sensors) were evaluated to validate their suitability for monitoring aging degradation; characterize the sensor performance in aircraft environments; and demonstrate placement processes and multiplexing schemes. In addition, a unique micromachined multimeasure and sensor concept was developed and demonstrated. The results show that structural degradation of aircraft materials could be effectively detected and characterized using available and emerging sensors. A key component of the structural health monitoring capability is the ability to interpret the information provided by sensor system in order to characterize the structural condition. Novel deterministic and stochastic fatigue damage development and growth models were developed for this program. These models enable real time characterization and assessment of structural fatigue damage.

  17. An integrated computer procedure for sizing composite airframe structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.

    1979-01-01

    A computerized algorithm to generate cross-sectional dimensions and fiber orientations for composite airframe structures is described, and its application in a wing structural synthesis is established. The algorithm unifies computations of aeroelastic loads, stresses, and deflections, as well as optimal structural sizing and fiber orientations in an open-ended system of integrated computer programs. A finite-element analysis and a mathematical-optimization technique are discussed.

  18. Application of composites to helicopter airframe and landing gear structures

    NASA Technical Reports Server (NTRS)

    Rich, M. J.; Ridgley, G. F.; Lowry, D. W.

    1973-01-01

    A preliminary design study has indicated that advanced composite helicopter airframe structures can provide significant system cost advantages in the 1980's. A seven percent increase in productivity and a five percent reduction in life cycle cost are projected. Due to their complexity, landing gear structures do not substantially benefit from the use of advanced composites. The most successful concept was found to be all-molded composite modular panels, which provide integral skin/stringer and frame subassemblies. These subassemblies significantly reduce the number of parts relative to present construction. The subassemblies are mechanically jointed together for economical, rapid final assembly and permit field replacement in the event of major damage.

  19. New Tool Released for Engine-Airframe Blade-Out Structural Simulations

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    2004-01-01

    Researchers at the NASA Glenn Research Center have enhanced a general-purpose finite element code, NASTRAN, for engine-airframe structural simulations during steady-state and transient operating conditions. For steady-state simulations, the code can predict critical operating speeds, natural modes of vibration, and forced response (e.g., cabin noise and component fatigue). The code can be used to perform static analysis to predict engine-airframe response and component stresses due to maneuver loads. For transient response, the simulation code can be used to predict response due to bladeoff events and subsequent engine shutdown and windmilling conditions. In addition, the code can be used as a pretest analysis tool to predict the results of the bladeout test required for FAA certification of new and derivative aircraft engines. Before the present analysis code was developed, all the major aircraft engine and airframe manufacturers in the United States and overseas were performing similar types of analyses to ensure the structural integrity of engine-airframe systems. Although there were many similarities among the analysis procedures, each manufacturer was developing and maintaining its own structural analysis capabilities independently. This situation led to high software development and maintenance costs, complications with manufacturers exchanging models and results, and limitations in predicting the structural response to the desired degree of accuracy. An industry-NASA team was formed to overcome these problems by developing a common analysis tool that would satisfy all the structural analysis needs of the industry and that would be available and supported by a commercial software vendor so that the team members would be relieved of maintenance and development responsibilities. Input from all the team members was used to ensure that everyone's requirements were satisfied and that the best technology was incorporated into the code. Furthermore, because the code

  20. Airframe structural damage detection: a non-linear structural surface intensity based technique.

    PubMed

    Semperlotti, Fabio; Conlon, Stephen C; Barnard, Andrew R

    2011-04-01

    The non-linear structural surface intensity (NSSI) based damage detection technique is extended to airframe applications. The selected test structure is an upper cabin airframe section from a UH-60 Blackhawk helicopter (Sikorsky Aircraft, Stratford, CT). Structural damage is simulated through an impact resonator device, designed to simulate the induced vibration effects typical of non-linear behaving damage. An experimental study is conducted to prove the applicability of NSSI on complex mechanical systems as well as to evaluate the minimum sensor and actuator requirements. The NSSI technique is shown to have high damage detection sensitivity, covering an extended substructure with a single sensing location. PMID:21476618

  1. Recent advances in convectively cooled engine and airframe structures for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.; Shore, C. P.; Nowak, R. J.

    1978-01-01

    A hydrogen-cooled structure for a fixed-geometry, airframe-integrated scramjet is described. The thermal/structural problems, concepts, design features, and technological advances are applicable to a broad range of engines. Convectively cooled airframe structural concepts that have evolved from an extensive series of investigations, the technology developments that have led to these concepts, and the benefits that accrue from their use are discussed.

  2. Airframe/TPS Session

    NASA Technical Reports Server (NTRS)

    Welch, Sharon; Bowles, David

    2000-01-01

    This viewgraph presentation gives an overview of the second generation Reusable Launch Vehicle (RLV) airframe configuration, including details on the structures and materials, tanks, airframe/cryotank demonstrations, internal assemblies, weight growth and margin, and safety and cost requirements.

  3. Prediction of airframe noise

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Fratello, D. J.; Hayden, R. E.; Kadman, Y.; Africk, S.

    1975-01-01

    Methods of predicting airframe noise generated by aircraft in flight under nonpowered conditions are discussed. Approaches to predictions relying on flyover data and component theoretical analyses are developed. A nondimensional airframe noise spectrum of various aircraft is presented. The spectrum was obtained by smoothing all the measured spectra to remove any peculiarities due to airframe protrusions, normalizing each spectra by its overall sound pressure level and a characteristics frequency, and averaging the spectra together. A chart of airframe noise sources is included.

  4. Airframe noise

    NASA Astrophysics Data System (ADS)

    Crighton, David G.

    1991-08-01

    Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.

  5. Structural health monitoring of CFRP airframe structures using fiber-optic-based strain mapping

    NASA Astrophysics Data System (ADS)

    Takahashi, I.; Sekine, K.; Kume, M.; Takeya, H.; Iwahori, Y.; Minakuchi, S.; Takeda, N.; Enomoto, K.

    2012-04-01

    This paper proposes structural health monitoring technology based on the strain mapping of composite airframe structures through their life cycles by FBG sensors. We carried out operational load tests of small-sized mockup specimens of CFRP pressure bulkhead and measured the strain by FBG sensors. In addition, we confirmed strain change due to stiffener debondings. Moreover, debonding detectability of FBG sensors were investigated through the strain monitoring test of CFRP skin-stiffener panel specimens. As a result, the strain distribution varied with damage configurations. Moreover, the change in strain distribution measured by FBG sensors agrees well with numerical simulation. These results demonstrate that FBG sensors can detect stiffener debondings with the dimension of 5mm in composite airframe structures.

  6. New Tools Being Developed for Engine- Airframe Blade-Out Structural Simulations

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    2003-01-01

    One of the primary concerns of aircraft structure designers is the accurate simulation of the blade-out event. This is required for the aircraft to pass Federal Aviation Administration (FAA) certification and to ensure that the aircraft is safe for operation. Typically, the most severe blade-out occurs when a first-stage fan blade in a high-bypass gas turbine engine is released. Structural loading results from both the impact of the blade onto the containment ring and the subsequent instantaneous unbalance of the rotating components. Reliable simulations of blade-out are required to ensure structural integrity during flight as well as to guarantee successful blade-out certification testing. The loads generated by these analyses are critical to the design teams for several components of the airplane structures including the engine, nacelle, strut, and wing, as well as the aircraft fuselage. Currently, a collection of simulation tools is used for aircraft structural design. Detailed high-fidelity simulation tools are used to capture the structural loads resulting from blade loss, and then these loads are used as input into an overall system model that includes complete structural models of both the engines and the airframe. The detailed simulation (shown in the figure) includes the time-dependent trajectory of the lost blade and its interactions with the containment structure, and the system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes are typically used, and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine s turbomachinery. To develop and validate these new tools with test data, the NASA Glenn Research Center has teamed with GE Aircraft Engines, Pratt & Whitney, Boeing Commercial Aircraft, Rolls-Royce, and MSC.Software.

  7. Application of advanced composites to helicopter airframe structures. [CH-53 D materials

    NASA Technical Reports Server (NTRS)

    Rich, M. J.; Ridgley, G. F.; Lowry, D. W.

    1974-01-01

    The present work outlines a study whose objective was to assess the possible use of advanced composite materials to helicopter fuselage structure. The study used the CH-53D as a baseline design for comparison of composite with current conventional construction. Boron/epoxy and graphite/epoxy appeared to be the prime candidate materials for the major portion of the primary structure, while Kevlar-49/epoxy was the prime candidate material for secondary structure. A single-laminate shear-carrying skin combined with stringers and frames in an all-molded construction was considered the most promising concept for the airframe shell construction; foam-stabilized graphite/epoxy stringer was considered the prime concept for stringer construction. Shell construction and assembly concepts are discussed, and comparison of weight and material between current CH-53D airframe and the composite airframe shows that the latter may represent an 18% weight saving. Based on a fleet requirement of 600 vehicles, the operating cost for a fleet of helicopters constructed with the composite material airframe flying 500 hours a year per aircraft over a ten-year service life was calculated, indicating a $337,000 saving per helicopter.

  8. Supersonic Cruise Research 1979, part 2. [airframe structures and materials, systems integration, economic analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Advances in airframe structure and materials technology for supersonic cruise aircraft are reported with emphasis on titanium and composite structures. The operation of the Concorde is examined as a baseline for projections into the future. A market survey of U.S. passenger attitudes and preferences, the impact of advanced air transport technology and the integration of systems for the advanced SST and for a smaller research/business jet vehicle are also discussed.

  9. Airframe-Jet Engine Integration Noise

    NASA Technical Reports Server (NTRS)

    Tam, Christopher; Antcliff, Richard R. (Technical Monitor)

    2003-01-01

    It has been found experimentally that the noise radiated by a jet mounted under the wing of an aircraft exceeds that of the same jet in a stand-alone environment. The increase in noise is referred to as jet engine airframe integration noise. The objectives of the present investigation are, (1) To obtain a better understanding of the physical mechanisms responsible for jet engine airframe integration noise or installation noise. (2) To develop a prediction model for jet engine airframe integration noise. It is known that jet mixing noise consists of two principal components. They are the noise from the large turbulence structures of the jet flow and the noise from the fine scale turbulence. In this investigation, only the effect of jet engine airframe interaction on the fine scale turbulence noise of a jet is studied. The fine scale turbulence noise is the dominant noise component in the sideline direction. Thus we limit out consideration primarily to the sideline.

  10. Effect of Directional Array Size on the Measurement of Airframe Noise Components

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    1999-01-01

    A study was conducted to examine the effects of overall size of directional (or phased) arrays on the measurement of aeroacoustic components. An airframe model was mounted in the potential core of an open-jet windtunnel, with the directional arrays located outside the flow in an anechoic environment. Two array systems were used; one with a solid measurement angle that encompasses 31.6 deg.of source directivity and a smaller one that encompasses 7.2 deg. The arrays, and sub-arrays of various sizes, measured noise from a calibrator source and flap edge model setups. In these cases, noise was emitted from relatively small, but finite size source regions, with intense levels compared to other sources. Although the larger arrays revealed much more source region detail, the measured source levels were substantially reduced due to finer resolution compared to that of the smaller arrays. To better understand the measurements quantitatively, an analytical model was used to define the basic relationships between array to source region sizes and measured output level. Also, the effect of noise scattering by shear layer turbulence was examined using the present data and those of previous studies. Taken together, the two effects were sufficient to explain spectral level differences between arrays of different sizes. An important result of this study is that total (integrated) noise source levels are retrievable and the levels are independent of the array size as long as certain experimental and processing criteria are met. The criteria for both open and closed tunnels are discussed. The success of special purpose diagonal-removal processing in obtaining integrated results is apparently dependent in part on source distribution. Also discussed is the fact that extended sources are subject to substantial measurement error, especially for large arrays.

  11. Unsteady Flowfield Around Tandem Cylinders as Prototype for Component Interaction in Airframe Noise

    NASA Technical Reports Server (NTRS)

    Khorrami, Meldi R.; Choudhari, Meelan M.; Jenkins, Luther N.; McGinley, Catherine B.

    2005-01-01

    Synergistic application of experiments and numerical simulations is crucial to understanding the underlying physics of airframe noise sources. The current effort is aimed at characterizing the details of the flow interaction between two cylinders in a tandem configuration. This setup is viewed to be representative of several component-level flow interactions that occur when air flows over the main landing gear of large civil transports. Interactions of this type are likely to have a significant impact on the noise radiation associated with the aircraft undercarriage. The paper is focused on two-dimensional, time-accurate flow simulations for the tandem cylinder configuration. Results of the unsteady Reynolds Averaged Navier-Stokes (URANS) computations with a two-equation turbulence model, at a Reynolds number of 0.166 million and a Mach number of 0.166, are presented. The experimental measurements of the same flow field are discussed in a separate paper by Jenkins, Khorrami, Choudhari, and McGinley (2005). Two distinct flow regimes of interest, associated with short and intermediate separation distances between the two cylinders, are considered. Emphasis is placed on understanding both time averaged and unsteady flow features between the two cylinders and in the wake of the rear cylinder. Predicted mean flow quantities and vortex shedding frequencies show reasonable agreement with the measured data for both cylinder spacings. Computations for short separation distance indicate decay of flow unsteadiness with time, which is not unphysical; however, the predicted sensitivity of mean lift coefficient to small angles of attack explains the asymmetric flowfield observed during the experiments.

  12. Life cycle structural health monitoring of airframe structures by strain mapping using FBG sensors

    NASA Astrophysics Data System (ADS)

    Takahashi, I.; Sekine, K.; Takeya, H.; Iwahori, Y.; Takeda, N.; Koshioka, Y.

    2010-04-01

    The purpose of this research is to develop the structural health monitoring system for composite airframe structures by strain mapping through their life cycles. We apply FBG sensor networks to CFRP pressure bulkheads and monitor the strain through their life cycles: molding, processing, assembly, operation and maintenance. Damages, defects and deformations which occurred in each stage are detected using the strain distribution. At first, we monitored the strain of CFRP laminates during molding and processing with FBG sensors. As a result, not only the thermal strain on curing process but also strain change due to demolding was measured precisely. In addition, we analyzed the change in strain distribution due to damages of CFRP pressure bulkhead such as stringer debonding and impact damage of skin under operational load in flight. On the basis of these results, the location of FBG sensors suitable for the detection of damages was determined.

  13. Low-frequency noise reduction of lightweight airframe structures

    NASA Technical Reports Server (NTRS)

    Getline, G. L.

    1976-01-01

    The results of an experimental study to determine the noise attenuation characteristics of aircraft type fuselage structural panels were presented. Of particular interest was noise attenuation at low frequencies, below the fundamental resonances of the panels. All panels were flightweight structures for transport type aircraft in the 34,050 to 45,400 kg (75,000 to 100,000 pounds) gross weight range. Test data include the results of vibration and acoustic transmission loss tests on seven types of isotropic and orthotropically stiffened, flat and curved panels. The results show that stiffness controlled acoustically integrated structures can provide very high noise reductions at low frequencies without significantly affecting their high frequency noise reduction capabilities.

  14. Reduced complexity structural modeling for automated airframe synthesis

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1987-01-01

    A procedure is developed for the optimum sizing of wing structures based on representing the built-up finite element assembly of the structure by equivalent beam models. The reduced-order beam models are computationally less demanding in an optimum design environment which dictates repetitive analysis of several trial designs. The design procedure is implemented in a computer program requiring geometry and loading information to create the wing finite element model and its equivalent beam model, and providing a rapid estimate of the optimum weight obtained from a fully stressed design approach applied to the beam. The synthesis procedure is demonstrated for representative conventional-cantilever and joined wing configurations.

  15. Hypersonic airframe structures: Technology needs and flight test requirements

    NASA Technical Reports Server (NTRS)

    Stone, J. E.; Koch, L. C.

    1979-01-01

    Hypersonic vehicles, that may be produced by the year 2000, were identified. Candidate thermal/structural concepts that merit consideration for these vehicles were described. The current status of analytical methods, materials, manufacturing techniques, and conceptual developments pertaining to these concepts were reviewed. Guidelines establishing meaningful technology goals were defined and twenty-eight specific technology needs were identified. The extent to which these technology needs can be satisfied, using existing capabilities and facilities without the benefit of a hypersonic research aircraft, was assessed. The role that a research aircraft can fill in advancing this technology was discussed and a flight test program was outlined. Research aircraft thermal/structural design philosophy was also discussed. Programs, integrating technology advancements with the projected vehicle needs, were presented. Program options were provided to reflect various scheduling and cost possibilities.

  16. Foam composite structures. [for fire retardant airframe materials

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Milligan, R. J.

    1976-01-01

    The need to include fire resistant foams into state of the art aircraft interior paneling to increase passenger safety in aircraft fires was studied. Present efforts were directed toward mechanical and fire testing of panels with foam inclusions. Skinned foam filled honeycomb and PBI structural foams were the two constructions investigated with attention being directed toward weight/performance/cost trade-off. All of the new panels demonstrated improved performance in fire and some were lighter weight but not as strong as the presently used paneling. Continued efforts should result in improved paneling for passenger safety. In particular the simple partial filling (fire side) of state-of-the-art honeycomb with fire resistant foams with little sacrifice in weight would result in panels with increased fire resistance. More important may be the retarded rate of toxic gas evolution in the fire due to the protection of the honeycomb by the foam.

  17. Investigation of contact acoustic nonlinearities on metal and composite airframe structures via intensity based health monitoring.

    PubMed

    Romano, P Q; Conlon, S C; Smith, E C

    2013-01-01

    Nonlinear structural intensity (NSI) and nonlinear structural surface intensity (NSSI) based damage detection techniques were improved and extended to metal and composite airframe structures. In this study, the measurement of NSI maps at sub-harmonic frequencies was completed to provide enhanced understanding of the energy flow characteristics associated with the damage induced contact acoustic nonlinearity mechanism. Important results include NSI source localization visualization at ultra-subharmonic (nf/2) frequencies, and damage detection results utilizing structural surface intensity in the nonlinear domain. A detection metric relying on modulated wave spectroscopy was developed and implemented using the NSSI feature. The data fusion of the intensity formulation provided a distinct advantage, as both the single interrogation frequency NSSI and its modulated wave extension (NSSI-MW) exhibited considerably higher sensitivities to damage than using single-sensor (strain or acceleration) nonlinear detection metrics. The active intensity based techniques were also extended to composite materials, and results show both NSSI and NSSI-MW can be used to detect damage in the bond line of an integrally stiffened composite plate structure with high sensitivity. Initial damage detection measurements made on an OH-58 tailboom (Penn State Applied Research Laboratory, State College, PA) indicate the techniques can be transitioned to complex airframe structures achieving high detection sensitivities with minimal sensors and actuators. PMID:23297894

  18. Simulating the Impact Response of Full-Scale Composite Airframe Structures

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Littell, Justin D.; Seal, Michael D.

    2012-01-01

    NASA Langley Research Center obtained a composite helicopter cabin structure in 2010 from the US Army's Survivable Affordable Repairable Airframe Program (SARAP) that was fabricated by Sikorsky Aircraft Corporation. The cabin had been subjected to a vertical drop test in 2008 to evaluate a tilting roof concept to limit the intrusion of overhead masses into the fuselage cabin. Damage to the cabin test article was limited primarily to the roof. Consequently, the roof area was removed and the remaining structure was cut into test specimens including a large subfloor section and a forward framed fuselage section. In 2011, NASA and Sikorsky entered into a cooperative research agreement to study the impact responses of composite airframe structures and to evaluate the capabilities of the explicit transient dynamic finite element code, LS-DYNA®, to simulate these responses including damage initiation and progressive failure. Most of the test articles were manufactured of graphite unidirectional tape composite with a thermoplastic resin system. However, the framed fuselage section was constructed primarily of a plain weave graphite fabric material with a thermoset resin system. Test data were collected from accelerometers and full-field photogrammetry. The focus of this paper will be to document impact testing and simulation results for the longitudinal impact of the subfloor section and the vertical drop test of the forward framed fuselage section.

  19. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  20. Laboratory Pod Data Acquisition from Inner Layer Cracks in Simulated Airframe Structures

    NASA Astrophysics Data System (ADS)

    Larson, Brian; Madison, Erin; Nakagawa, Norio

    2009-03-01

    This paper discusses the acquisition and processing of experimental data collected using a low frequency eddy current sliding probe to inspect aluminum, simulated airframe structure for inner layer cracks. This effort is part of a model-assisted probability of detection (MAPOD) study aimed at complex structure. Since the experimental data will be compared to idealized model-generated data, an automated scanning setup in the laboratory was used to produce results with minimal human factor variables and low measurement uncertainty. While good reproducibility of the data was achieved, the inherent nature of the multilayer, riveted structure resulted in significant scatter in the data. This scatter required special statically processing techniques to produce a meaningful POD curve, which will be discussed in an accompanying paper.

  1. Thermal-structural design study of an airframe-integrated Scramjet

    NASA Technical Reports Server (NTRS)

    Killackey, J. J.; Katinszky, E. A.; Tepper, S.; Vuigner, A. A.; Wright, C. C.; Stockwell, G. G.

    1980-01-01

    The development and evaluation of a design concept for the cooled structures assembly for the Scramjet engine is discussed. Development concepts for engine subsystems and design concepts for the aircraft/engine interface are included. A thermal protection system was defined which makes it possible to attain a life of 100 hr and 1000 cycles, the specified goal. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six module engine, the mass per unit capture area is 1256 kg/sq m. The total mass of a six module engine assembly including the fuel system is 1502 kg.

  2. Thermal-structural design study of an airframe-integrated Scramjet

    NASA Technical Reports Server (NTRS)

    Killackey, J. J.; Katinsky, E. A.; Tepper, S.; Vuigner, A. A.

    1978-01-01

    Design concepts are developed and evaluated for a cooled structures assembly for the Scramjet engine, for engine subsystems mass, volume, and operating requirements, and for the aircraft/engine interface. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles. The coolant equivalence ratio at the Mach 10 maximum thermal loading condition is 0.6, indicating a capacity for airframe cooling. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 12.4 KN/sq m. The total weight of a six-module engine assembly including the fuel system is 14.73 KN.

  3. Life cycle strain mapping of composite airframe structures by using FBG sensors

    NASA Astrophysics Data System (ADS)

    Sekine, K.; Takahashi, I.; Kume, M.; Takeya, H.; Iwahori, Y.; Minakuchi, S.; Takeda, N.; Koshioka, Y.

    2011-04-01

    The objective of this work is to develop a system for monitoring the structural integrity of composite airframe structures by strain mapping over the entire lifecycle of the structure. Specifically, we use fiber Bragg grating sensors to measure strain in a pressure bulkhead made of carbon fiber reinforced plastics (CFRPs) through a sequence of lifecycle stages (molding, machining, assembly, operation and maintenance) and detect the damage, defects, and deformation that occurs at each stage from the obtained strain distributions. In previous work, we have evaluated strain monitoring at each step in the FRP molding and machining stages of the lifecycle. In the work reported here, we evaluate the monitoring of the changes in strain that occur at the time of bolt fastening during assembly. The results show that the FBG sensors can detect the changes in strain that occur when a load is applied to the structure during correction of thermal deformation or when there is an offset in the hole position when structures are bolted together. We also conducted experiments to evaluate the detection of damage and deformation modes that occur in the pressure bulkhead during operation. Those results show that the FBG sensors detect the characteristic changes in strain for each mode.

  4. Life cycle strain monitoring of composite airframe structures by FBG sensors

    NASA Astrophysics Data System (ADS)

    Takahashi, I.; Sekine, K.; Kume, M.; Takeya, H.; Minakuchi, S.; Takeda, N.; Enomoto, K.

    2013-04-01

    Life cycle health monitoring technology for composite airframe structures based on strain mapping is proposed. It detects damages and deformation harmful to the structures by strain mapping using fiber Bragg grating (FBG) sensors through their life cycles including the stages of molding, machining, assembling, operation, and maintenance. In this paper, we firstly carried out a strain monitoring test of CFRP mock-up structure through the life cycle including the stage of molding, machining, assembling, and operation. The experimental result confirms that the strain which arises in each life cycle stage can be measured by FBG sensors embedded in molding stage and demonstrates the feasibility of life cycle structural health monitoring by using FBG sensors. Secondly, we conducted the strain monitoring test of CFRP scarf-repaired specimen subject to fatigue load. FBG sensors were embedded in the scarf-repaired part of the specimen and their reflection spectra were measured in uni-axial cyclic load test. Strain changes were compared with the pulse thermographic inspection. As a result, strain measured by FBG sensors changed sensitively with debonded area of repair patch, which demonstrates that the debondings of repair patches in scarf-repaired composites due to fatigue load can be detected by FBG sensors.

  5. Development of Eddy Current Techniques for Detection of Deep Fatigue Cracks in Multi-Layer Airframe Components

    NASA Technical Reports Server (NTRS)

    Wincheski, Russell A.

    2008-01-01

    Thick, multi-layer aluminum structure has been widely used in aircraft design in critical wing splice areas. The multi-layer structure generally consists of three or four aluminum layers with different geometry and varying thickness, which are held together with fasteners. The detection of cracks under fasteners with ultrasonic techniques in subsurface layers away from the skin is impeded primarily by interlayer bonds and faying sealant condition. Further, assessment of such sealant condition is extremely challenging in terms of complexity of structure, limited access, and inspection cost. Although Eddy current techniques can be applied on in-service aircraft from the exterior of the skin without knowing sealant condition, the current eddy current techniques are not able to detect defects with wanted sensitivity. In this work a series of low frequency eddy current probes have been designed, fabricated and tested for this application. A probe design incorporating a shielded magnetic field sensor concentrically located in the interior of a drive coil has been employed to enable a localized deep diffusion of the electromagnetic field into the part under test. Due to the required low frequency inspections, probes have been testing using a variety of magnetic field sensors (pickup coil, giant magneto-resistive, anisotropic magneto-resistive, and spin-dependent tunneling). The probe designs as well as capabilities based upon a target inspection for sub-layer cracking in an airframe wing spar joint is presented.

  6. Evaluation of approximate methods for the prediction of noise shielding by airframe components

    NASA Technical Reports Server (NTRS)

    Ahtye, W. F.; Mcculley, G.

    1980-01-01

    An evaluation of some approximate methods for the prediction of shielding of monochromatic sound and broadband noise by aircraft components is reported. Anechoic-chamber measurements of the shielding of a point source by various simple geometric shapes were made and the measured values compared with those calculated by the superposition of asymptotic closed-form solutions for the shielding by a semi-infinite plane barrier. The shields used in the measurements consisted of rectangular plates, a circular cylinder, and a rectangular plate attached to the cylinder to simulate a wing-body combination. The normalized frequency, defined as a product of the acoustic wave number and either the plate width or cylinder diameter, ranged from 4.6 to 114. Microphone traverses in front of the rectangular plates and cylinders generally showed a series of diffraction bands that matched those predicted by the approximate methods, except for differences in the magnitudes of the attenuation minima which can be attributed to experimental inaccuracies. The shielding of wing-body combinations was predicted by modifications of the approximations used for rectangular and cylindrical shielding. Although the approximations failed to predict diffraction patterns in certain regions, they did predict the average level of wing-body shielding with an average deviation of less than 3 dB.

  7. Dual-band infrared imaging to detect corrosion damage within airframes and concrete structures

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.

    1994-12-31

    The authors are developing dual-band infrared (DBIR) imaging and detection techniques to inspect airframes and concrete bridge decks for hidden corrosion damage. Using selective DBIR image ratios, they enhanced surface temperature contrast and removed surface emissivity noise associated with clutter. The surface temperature maps depicted defect sites, which heat and cool at different rates than their surroundings. The emissivity-ratio maps tagged and removed the masking effects of surface clutter. For airframe inspections, the authors used time-resolved DBIR temperature, emissivity-ratio and composite thermal inertia maps to locate corrosion-thinning effects within a flash-heated Boeing 737 airframe. Emissivity-ratio maps tagged and removed clutter sites from uneven paint, dirt and surface markers. Temperature and thermal inertia maps characterized defect sites, types, sizes, thicknesses, thermal properties and material-loss effects from airframe corrosion. For concrete inspections, they mapped DBIR temperature and emissivity-ratio patterns to better interpret surrogate delamination sites within naturally-heated, concrete slabs and removed the clutter mask from sand pile-up, grease stains, rocks and other surface objects.

  8. A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Walton, W. C., Jr.

    1982-01-01

    A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.

  9. Advances in Structural Integrity Analysis Methods for Aging Metallic Airframe Structures with Local Damage

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Newman, James C., Jr.; Harris, Charles E.; Piascik, Robert S.; Young, Richard D.; Rose, Cheryl A.

    2003-01-01

    Analysis methodologies for predicting fatigue-crack growth from rivet holes in panels subjected to cyclic loads and for predicting the residual strength of aluminum fuselage structures with cracks and subjected to combined internal pressure and mechanical loads are described. The fatigue-crack growth analysis methodology is based on small-crack theory and a plasticity induced crack-closure model, and the effect of a corrosive environment on crack-growth rate is included. The residual strength analysis methodology is based on the critical crack-tip-opening-angle fracture criterion that characterizes the fracture behavior of a material of interest, and a geometric and material nonlinear finite element shell analysis code that performs the structural analysis of the fuselage structure of interest. The methodologies have been verified experimentally for structures ranging from laboratory coupons to full-scale structural components. Analytical and experimental results based on these methodologies are described and compared for laboratory coupons and flat panels, small-scale pressurized shells, and full-scale curved stiffened panels. The residual strength analysis methodology is sufficiently general to include the effects of multiple-site damage on structural behavior.

  10. Airframe noise: A design and operating problem

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1976-01-01

    A critical assessment of the state of the art in airframe noise is presented. Full-scale data on the intensity, spectra, and directivity of this noise source are evaluated in light of the comprehensive theory developed by Ffowcs Williams and Hawkings. Vibration of panels on the aircraft is identified as a possible additional source of airframe noise. The present understanding and methods for prediction of other component sources - airfoils, struts, and cavities - are discussed. Operating problems associated with airframe noise as well as potential design methods for airframe noise reduction are identified.

  11. Aeroacoustics of Propulsion Airframe Integration: Overview of NASA's Research

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.

    2003-01-01

    The integration of propulsion and airframe is fundamental to the design of an aircraft system. Many considerations influence the integration, such as structural, aerodynamic, and maintenance factors. In regard to the acoustics of an aircraft, the integration can have significant effects on the net radiated noise. Whether an engine is mounted above a wing or below can have a significant effect on noise that reaches communities below because of shielding or reflection of engine noise. This is an obvious example of the acoustic effects of propulsion airframe installation. Another example could be the effect of the pylon on the development of the exhaust plume and on the resulting jet noise. In addition, for effective system noise reduction the impact that installation has on noise reduction devices developed on isolated components must be understood. In the future, a focus on the aerodynamic and acoustic interaction effects of installation, propulsion airframe aeroacoustics, will become more important as noise reduction targets become more difficult to achieve. In addition to continued fundamental component reduction efforts, a system level approach that includes propulsion airframe aeroacoustics will be required in order to achieve the 20 dB of perceived noise reduction envisioned by the long-range NASA goals. This emphasis on the aeroacoustics of propulsion airframe integration is a new part of NASA s noise research. The following paper will review current efforts and highlight technical challenges and approaches.

  12. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  13. Dual-band infrared imaging to detect corrosion damage within airframes and concrete structures

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.

    1994-01-01

    We are developing dual-band infrared (DBIR) imaging and detection techniques to inspect air frames and concrete bridge decks for hidden corrosion damage. Using selective DBIR image ratios,, we enhanced surface temperature contrast and removed surface emissivity noise associated with clutter. Our surface temperature maps depicted defect sites, which heat and cool at different rates than their surroundings. Our emissivity-ratio maps tagged and removed the masking effects of surface clutter. For airframe inspections, we used time-resolved DBIR temperature, emissivity-ratio and composite thermal inertia maps to locate corrosion-thinning effects within a flash-heated Boeing 737 airframe. Emissivity-ratio maps tagged and removed clutter sites from uneven paint, dirt and surface markers. Temperature and thermal inertia maps characterized defect sites, types, sizes, thicknesses, thermal properties and material-loss effects from air frame corrosion. For concrete inspections, we mapped DBIR temperature and emissivity-ratio patterns to better interpret surrogate delamination sites within naturally-heated, concrete slabs and remove the clutter mask from sand pile-up, grease stains, rocks and other surface objects.

  14. A Proposed Approach for Certification of Bonded Composite Repairs to Flight-Critical Airframe Structure

    NASA Astrophysics Data System (ADS)

    Baker, Alan A.

    2011-08-01

    This paper focuses on the difficult issue of the certification of adhesively bonded repairs in applications where credit has to be given to the patch for restoring residual strength in flight-critical structure. The scope of the paper includes both adhesively bonded composite repairs to composite components and composite repairs to metallic components. After discussing typical bonded repairs and, as a baseline, procedures currently used to certify new structure, a proposal is made which may constitute an acceptable basis for the structural certification of repairs. The key requirement is to demonstrate an acceptably low probability of patch disbonding during the remaining life of the structure. The focus is on one-off repairs where development of a comprehensive certification procedure based even on limited testing will be infeasible: Firstly, a decision process is undertaken to establish if there is indeed a certification issue. That is situations where flight safety depends on the structural integrity of the repair patch.

  15. Controlled impact demonstration airframe bending bridges

    NASA Technical Reports Server (NTRS)

    Soltis, S. J.

    1986-01-01

    The calibration of the KRASH and DYCAST models for transport aircraft is discussed. The FAA uses computer analysis techniques to predict the response of controlled impact demonstration (CID) during impact. The moment bridges can provide a direct correlation between the predictive loads or moments that the models will predict and what was experienced during the actual impact. Another goal is to examine structural failure mechanisms and correlate with analytical predictions. The bending bridges did achieve their goals and objectives. The data traces do provide some insight with respect to airframe loads and structural response. They demonstrate quite clearly what's happening to the airframe. A direct quantification of metal airframe loads was measured by the moment bridges. The measured moments can be correlated with the KRASH and DYCAST computer models. The bending bridge data support airframe failure mechanisms analysis and provide residual airframe strength estimation. It did not appear as if any of the bending bridges on the airframe exceeded limit loads. (The observed airframe fracture was due to the fuselage encounter with the tomahawk which tore out the keel beam.) The airframe bridges can be used to estimate the impact conditions and those estimates are correlating with some of the other data measurements. Structural response, frequency and structural damping are readily measured by the moment bridges.

  16. Advanced composite airframe program: Today's technology

    NASA Technical Reports Server (NTRS)

    Good, Danny E.; Mazza, L. Thomas

    1988-01-01

    The Advanced Composite Airframe Program (ACAP) was undertaken to demonstrate the advantages of the application of advanced composite materials and structural design concepts to the airframe structure on helicopters designed to stringent military requirements. The primary goals of the program were the reduction of airframe production costs and airframe weight by 17 and 22 percent respectively. The ACAP effort consisted of a preliminary design phase, detail design, and design support testing, full-scale fabrication, laboratory testing, and a ground/flight test demonstration. Since the completion of the flight test demonstration programs follow-on efforts were initiated to more fully evaluate a variety of military characteristics of the composite airframe structures developed under the original ACAP advanced development contracts. An overview of the ACAP program is provided and some of the design features, design support testing, manufacturing approaches, and the results of the flight test evaluation, as well as, an overview of Militarization Test and Evaluation efforts are described.

  17. Integral Airframe Structures (IAS): Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    NASA Technical Reports Server (NTRS)

    Munroe, J.; Wilkins, K.; Gruber, M.; Domack, Marcia S. (Technical Monitor)

    2000-01-01

    The Integral Airframe Structures (IAS) program investigated the feasibility of using "integrally stiffened" construction for commercial transport fuselage structure. The objective of the program was to demonstrate structural performance and weight equal to current "built-up" structure with lower manufacturing cost. Testing evaluated mechanical properties, structural details, joint performance, repair, static compression, and two-bay crack residual strength panels. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511x extrusion, and 7475-T7351 plate. Structural performance was evaluated with a large 7475-T7351 pressure test that included the arrest of a two-bay longitudinal crack, and a measure of residual strength for a two-bay crack centered on a broken frame. Analysis predictions for the two-bay longitudinal crack panel correlated well with the test results. Analysis activity conducted by the IAS team strongly indicates that current analysis tools predict integral structural behavior as accurately as built-up structure. The cost study results indicated that, compared to built-up fabrication methods, high-speed machining structure from aluminum plate would yield a recurring cost savings of 61%. Part count dropped from 78 individual parts on a baseline panel to just 7 parts for machined IAS structure.

  18. Transonic airframe propulsion integration

    NASA Technical Reports Server (NTRS)

    Coltrin, Robert E.; Sanders, Bobby W.; Bencze, Daniel P.

    1992-01-01

    This chart shows the time line for HSR propulsion/airframe integration program. HSR Phase 1 efforts are underway in both propulsion and aerodynamics. The propulsion efforts focus on cycles, inlets combustors and nozzles that will be required to reduce nitrogen oxide (NOX) at cruise and noise at takeoff and landing to acceptable levels. The aerodynamic efforts concentrate on concepts that will reduce sonic booms and increase the lift/drag (L/D) ratio for the aircraft. The Phase 2 critical propulsion component technology program will focus on large scale demonstrators of the inlet, fan, combustor, and nozzle. The hardware developed here will feed into the propulsion system program which will demonstrate overall system technology readiness, particularly in the takeoff and supersonic cruise speed ranges. The Phase 2 aerodynamic performance and vehicle integration program will provide a validated data base for advanced airframe/control/integration concepts over the full HSR speed range. The results of this program will also feed into the propulsion system demonstration program, particularly in the critical transonic arena.

  19. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  20. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons and methods for making such materials. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  1. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1983-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  2. Airframe noise prediction evaluation

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.

    1995-01-01

    The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).

  3. Status of ERA Airframe Technology Demonstrators

    NASA Technical Reports Server (NTRS)

    Davis, Pamela; Jegley, Dawn; Rigney, Tom

    2015-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. The Airframe Technology subproject contains two elements. Under the Damage Arresting Composite Demonstration an advanced material system is being explored which will lead to lighter airframes that are more structural efficient than the composites used in aircraft today. Under the Adaptive Compliant Trailing Edge Flight Experiment a new concept of a flexible wing trailing edge is being evaluated which will reduce weight and improve aerodynamic performance. This presentation will describe the development these two airframe technologies.

  4. Generalized Structured Component Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Takane, Yoshio

    2004-01-01

    We propose an alternative method to partial least squares for path analysis with components, called generalized structured component analysis. The proposed method replaces factors by exact linear combinations of observed variables. It employs a well-defined least squares criterion to estimate model parameters. As a result, the proposed method…

  5. Fuel Efficiencies Through Airframe Improvements

    NASA Technical Reports Server (NTRS)

    Bezos-O'Connor, Gaudy M.; Mangelsdorf, Mark F.; Maliska, Heather A.; Washburn, Anthony E.; Wahls, Richard A.

    2011-01-01

    The factors of continuing strong growth in air traffic volume, the vital role of the air transport system on the economy, and concerns about the environmental impact of aviation have added focus to the National Aeronautics Research Policy. To address these concerns in the context of the National Policy, NASA has set aggressive goals in noise reduction, emissions, and energy consumption. With respect to the goal of reducing energy consumption in the fleet, the development of promising airframe technologies is required to realize the significant improvements that are desired. Furthermore, the combination of advances in materials and structures with aerodynamic technologies may lead to a paradigm shift in terms of potential configurations for the future. Some of these promising airframe technologies targeted at improved efficiency are highlighted.

  6. Integrated airframe propulsion control

    NASA Technical Reports Server (NTRS)

    Fennell, R. E.; Black, S. B.

    1982-01-01

    Perturbation equations which describe flight dynamics and engine operation about a given operating point are combined to form an integrated aircraft/propulsion system model. Included in the model are the dependence of aerodynamic coefficients upon atmospheric variables along with the dependence of engine variables upon flight condition and inlet performance. An off-design engine performance model is used to identify interaction parameters in the model. Inclusion of subsystem interaction effects introduces coupling between flight and propulsion variables. To analyze interaction effects on control, consideration is first given to control requirements for separate flight and engine models. For the separate airframe model, feedback control provides substantial improvement in short period damping. For the integrated system, feedback control compensates for the coupling present in the model and provides good overall system stability. However, this feedback control law involves many non-zero gains. Analysis of suboptimal control strategies indicates that performance of the closed loop integrated system can be maintained with a feedback matrix in which the number of non-zero gains is small relative to the number of components in the feedback matrix.

  7. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., airframes, aircraft engines, propellers, appliances, or component parts for return to service after... FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING, AND ALTERATION § 43.7 Persons authorized to approve aircraft, airframes, aircraft...

  8. Thermal-structural Design Study of an Airframe-integrated Scramjet

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1979-01-01

    Design concepts for the cooled structures assembly for the Langley Scramjet engine, for engine subsystems, and for the aircraft/engine interface were developed and evaluated. Results show that the objectives for the Scramjet engine can be met. A thermal protection system was defined that makes it possible to attain a life of 100 hours and 1000 cycles, which is the specified goal. With stoichiometric combustion, the fuel provides an adequate heat sink for cooling the engine at Mach numbers up to 9 at the minimum fuel flow condition. The mechanical design is feasible for manufacture using conventional materials. For the cooled structures in a six-module engine, the mass per unit capture area is 1328 kg/sq m (259 lb/sq ft). The total mass of a six-module engine assembly including the fuel system is 1577 kg (3477 lb).

  9. Airframe noise prediction

    NASA Astrophysics Data System (ADS)

    1990-11-01

    This Data Item 90023, an addition to the Noise Sub-series, provides the FORTRAN listing of a computer program for a semi-empirical method that calculates the far-field airframe aerodynamic noise generated by turbo-fan powered transport aircraft or gliders in one-third octave bands over a frequency range specified by the user. The overall sound pressure level is also output. The results apply for a still, lossless atmosphere; other ESDU methods may be used to correct for atmospheric attenuation, ground reflection, lateral attenuation, and wind and temperature gradients. The position of the aircraft relative to the observer is input in terms of the height at minimum range, and the elevation and azimuthal angles to the aircraft; if desired the user may obtain results over a range of those angles in 10 degree intervals. The method sums the contributions made by various components, results for which can also be output individually. The components are: the wind (conventional or delta), tailplane, fin, flaps (single/double slotted or triple slotted), leading-edge slats, and undercarriage legs and wheels (one/two wheel or four wheel units). The program requires only geometric data for each component (area and span in the case of lifting elements, flap deflection angle, and leg length and wheel diameter for the undercarriage). The program was validated for aircraft with take-off masses from 42,000 to 390,000 kg (92,000 to 860,000 lb) at airspeeds from 70 to 145 m/s (135 to 280 kn). Comparisons with available experimental data suggest a prediction rms accuracy of 1 dB at minimum range, rising to between 2 and 3 dB at 60 degrees to either side.

  10. Development of the NASA/FLAGRO computer program for analysis of airframe structures

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Shivakumar, V.; Newman, J. C., Jr.

    1994-01-01

    The NASA/FLAGRO (NASGRO) computer program was developed for fracture control analysis of space hardware and is currently the standard computer code in NASA, the U.S. Air Force, and the European Agency (ESA) for this purpose. The significant attributes of the NASGRO program are the numerous crack case solutions, the large materials file, the improved growth rate equation based on crack closure theory, and the user-friendly promptive input features. In support of the National Aging Aircraft Research Program (NAARP); NASGRO is being further developed to provide advanced state-of-the-art capability for damage tolerance and crack growth analysis of aircraft structural problems, including mechanical systems and engines. The project currently involves a cooperative development effort by NASA, FAA, and ESA. The primary tasks underway are the incorporation of advanced methodology for crack growth rate retardation resulting from spectrum loading and improved analysis for determining crack instability. Also, the current weight function solutions in NASGRO or nonlinear stress gradient problems are being extended to more crack cases, and the 2-d boundary integral routine for stress analysis and stress-intensity factor solutions is being extended to 3-d problems. Lastly, effort is underway to enhance the program to operate on personal computers and work stations in a Windows environment. Because of the increasing and already wide usage of NASGRO, the code offers an excellent mechanism for technology transfer for new fatigue and fracture mechanics capabilities developed within NAARP.

  11. Development of the NASA/FLAGRO computer program for analysis of airframe structures

    NASA Astrophysics Data System (ADS)

    Forman, R. G.; Shivakumar, V.; Newman, J. C., Jr.

    1994-09-01

    The NASA/FLAGRO (NASGRO) computer program was developed for fracture control analysis of space hardware and is currently the standard computer code in NASA, the U.S. Air Force, and the European Agency (ESA) for this purpose. The significant attributes of the NASGRO program are the numerous crack case solutions, the large materials file, the improved growth rate equation based on crack closure theory, and the user-friendly promptive input features. In support of the National Aging Aircraft Research Program (NAARP); NASGRO is being further developed to provide advanced state-of-the-art capability for damage tolerance and crack growth analysis of aircraft structural problems, including mechanical systems and engines. The project currently involves a cooperative development effort by NASA, FAA, and ESA. The primary tasks underway are the incorporation of advanced methodology for crack growth rate retardation resulting from spectrum loading and improved analysis for determining crack instability. Also, the current weight function solutions in NASGRO or nonlinear stress gradient problems are being extended to more crack cases, and the 2-d boundary integral routine for stress analysis and stress-intensity factor solutions is being extended to 3-d problems. Lastly, effort is underway to enhance the program to operate on personal computers and work stations in a Windows environment. Because of the increasing and already wide usage of NASGRO, the code offers an excellent mechanism for technology transfer for new fatigue and fracture mechanics capabilities developed within NAARP.

  12. Airframe Technology Development for Next Generation Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2004-01-01

    The Airframe subproject within NASA's Next Generation Launch Technology (NGLT) program has the responsibility to develop airframe technology for both rocket and airbreathing vehicles for access to space. The Airframe sub-project pushes the state-of-the-art in airframe technology for low-cost, reliable, and safe space transportation. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas being addressed include design and integration, hot and integrated structures, cryogenic tanks, and thermal protection systems. Each of the technologies in these areas are discussed in this paper.

  13. Microstructural and Mechanical Characterization of Shear Formed Aluminum Alloys for Airframe and Space Applications

    NASA Technical Reports Server (NTRS)

    Troeger, L. P.; Domack, M. S.; Wagner, J. A.

    1998-01-01

    Advanced manufacturing processes such as near-net-shape forming can reduce production costs and increase the reliability of launch vehicle and airframe structural components through the reduction of material scrap and part count and the minimization of joints. The current research is an investigation of the processing-microstructure-property relationship for shear formed cylinders of the Al-Cu-Li-Mg-Ag alloy 2195 for space applications and the Al-Cu-Mg-Ag alloy C415 for airframe applications. Cylinders which have undergone various amounts of shear-forming strain have been studied to assess the microstructure and mechanical properties developed during and after shear forming.

  14. Civil aircraft. [composite materials for airframes and engines

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1974-01-01

    This study deals with aircraft material and structural requirements, advantages of composites, airframe and engine applications, design procedures, problem areas, and future trends in civil aircraft. The selection of materials and design of structure for any given component or part must be made not only on the basis of the mechanical and structural functions, but must also consider the operational and cost parameters for civil aircraft. Composites have caused the orientation to shift from a metal-based philosophy for design, where only incremental improvements could be anticipated, to one where substantial changes in design approaches are possible. Future designs are likely to include a combination of new approaches and composite materials.

  15. Predicted airframe noise levels

    NASA Astrophysics Data System (ADS)

    Raney, J. P.

    1980-09-01

    Calculated values of airframe noise levels corresponding to FAA noise certification conditions for six aircraft are presented. The aircraft are: DC-9-30; Boeing 727-200; A300-B2 Airbus; Lockheed L-1011; DC-10-10; and Boeing 747-200B. The prediction methodology employed is described and discussed.

  16. Plan, formulate, and discuss a NASTRAN finite element model of the UH-60A helicopter airframe

    NASA Technical Reports Server (NTRS)

    Dinyovszky, P.; Twomey, W. J.

    1990-01-01

    Under a rotorcraft structural dynamics program sponsored by the NASA Langley Research Center, Sikorsky Aircraft, together with the other major helicopter airframe manufacturers, is engaged in a study to improve the use of finite element analysis to predict the dynamic behavior of helicopter airframes. This program, which was designated DAMVIBS (Design Analysis Methods for VIBrationS), includes activities in the areas of: planning, creating, and documenting finite element models of helicopter airframes; the performance of ground vibration tests; and the correlation of test and analysis. The work performed at Sikorsky Aircraft for planning, creating, and documenting a finite element model of the UH-60A BLACK HAWK helicopter airframe is summarized. A complete description of the components of the helicopter which are to be represented in the model is presented and includes: the structural arrangement, the identification of primary and secondary structure, the components of the drive and power trains, and the attachment of large weight items to the structure. Also presented are the techniques which were used to formulate the structural finite element model for static analysis, for forming the mass and vibration models for dynamic analysis, and the procedures which were used to check out and verify the integrity of the model. Initial predictions for the vibration modes for the helicopter are included.

  17. Coupled rotor/airframe vibration analysis

    NASA Technical Reports Server (NTRS)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  18. A Simple Buckling Analysis Method for Airframe Composite Stiffened Panel by Finite Strip Method

    NASA Astrophysics Data System (ADS)

    Tanoue, Yoshitsugu

    Carbon fiber reinforced plastics (CFRP) have been used in structural components for newly developed aircraft and spacecraft. The main structures of an airframe, such as the fuselage and wings, are essentially composed of stiffened panels. Therefore, in the structural design of airframes, it is important to evaluate the buckling strength of the composite stiffened panels. Widely used finite element method (FEM) can analyzed any stiffened panel shape with various boundary conditions. However, in the early phase of airframe development, many studies are required in structural design prior to carrying out detail drawing. In this phase, performing structural analysis using only FEM may not be very efficient. This paper describes a simple buckling analysis method for composite stiffened panels, which is based on finite strip method. This method can deal with isotropic and anisotropic laminated plates and shells with several boundary conditions. The accuracy of this method was verified by comparing it with theoretical analysis and FEM analysis (NASTRAN). It has been observed that the buckling coefficients calculated via the present method are in agreement with results found by detail analysis methods. Consequently, this method is designed to be an effective calculation tool for the buckling analysis in the early phases of airframe design.

  19. Modeling for Airframe Noise Prediction Using Vortex Methods

    NASA Astrophysics Data System (ADS)

    Zheng, Z. Charlie

    2002-12-01

    Various components of the airframe are known to be a significant source of noise. With the advent of technology in quieting modern engines, airframe generated noise competes and, in certain instances, surpasses the engine noise. Airframe noise is most pronounced during aircraft approach when the engines are operating at reduced thrust, and airframe components such as high-lift devices and landing gears are in deployed conditions. Recent experimental studies have reaffirmed that the most significant sources of high-lift noise are from the leading-edge slat and the side edges of flaps. Studies of flow field around these structures have consistently shown that there are complicated unsteady vortical flows such as vortex shedding, secondary vortices and vortex breakdown, which are susceptible to far-field radiated sound. The near-field CFD computational data have been used to calculate the far-field acoustics by employing Ffowcs-Williams/Hawkings equation using Lighthill's analogy. However, because of the limit of current computing capacity, it is very time consuming to generate unsteady Navier-Stokes (N-S) computational data for aeroacoustics. Although the N-S simulations are probably necessary to reveal many complex flow phenomena that are unsteady and fully nonlinear, these simulations are not feasible to be used for parametric design. purposes. The objective of this study is thus to develop theoretical models for airframe noise predictions which have quick turn-around computing time. Since it is known that vorticity is a major mechanism responsible for noise generation on high-lift devices, vortex methods have been chosen as modeling tools. Vortex methods are much faster in comparison with other numerical methods, yet they are able to incorporate nonlinear interactions between vortices. Obviously, as with any theoretical model, assumptions have to be made and justified when such models are used in complex flow. The merit and applicability of the models for

  20. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development

    NASA Technical Reports Server (NTRS)

    Bryson, L. L.; Mccarty, J. E.

    1973-01-01

    Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.

  1. Regularized Generalized Structured Component Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun

    2009-01-01

    Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…

  2. Large area QNDE inspection for airframe integrity

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Heyman, Joseph S.

    1991-01-01

    Quantitative Nondestructive Evaluation (QNDE) technology is being developed to provide new options for cost effective inspection of airframes. An R&D effort based on five NDE technologies is addressing questions of structural bonding assessment, corrosion detection, multisite damage detection, and fatigue characterization. The research/applications are being conducted by prioritized focussing and staging of the following technologies: (1) thermal NDE; (2) ultrasonic NDE; (3) coherent optical NDE; (4) magnetic imaging NDE; and (5) radiographic NDE. The focus here is on the most recent applications of thermal NDE technology to large area inspection of lap-joint and stiffener bonds. The approach is based on pulsed radiant heating of the airframe and measurement of the surface temperature of the structure with an infrared imager. Several advantages of the technique are that it is noncontacting, inspects one square meter area in a period of less than 2 minutes and has no difficulty inspecting typical curvatures of the fuselage. Numerical models of heat flow in these geometries are used to determine appropriate techniques for reduction of the infrared images, thereby delineating regions of disbonds. These models are also used to determine the optimum heating and measurement times for maximizing the contrast between bonded and unbonded structures. Good agreement is found between these results and experimental measurements, and a comparison of the two are presented. Also presented are results of measurements on samples with fabricated defects which show the technique is able to clearly indicate regions of disbonds. Measurements on an airframe also clearly image subsurface structure.

  3. Fundamental Investigations of Airframe Noise

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    2004-01-01

    An extensive numerical and experimental study of airframe noise mechanisms associated with a subsonic high-lift system has been performed at NASA Langley Research Center (LaRC). Investigations involving both steady and unsteady computations and experiments on a small-scale, part-span flap model are presented. Both surface (steady and unsteady pressure measurements, hot films, oil flows, pressure sensitive paint) and off surface (5 hole-probe, particle-imaged velocimetry, laser velocimetry, laser light sheet measurements) were taken in the LaRC Quiet Flow Facility (QFF) and several hard-wall tunnels up to flight Reynolds number. Successful microphone array measurements were also taken providing both acoustic source maps on the model, and quantitative spectra. Critical directivity measurements were obtained in the QFF. NASA Langley unstructured and structured Reynolds- Averaged Navier-Stokes codes modeled the flap geometries excellent comparisons with surface and offsurface experimental data were obtained. Subsequently, these meanflow calculations were utilized in both linear stability and direct numerical simulations of the flap-edge flow field to calculate unsteady surface pressures and farfield acoustic spectra. Accurate calculations were critical in obtaining not only noise source characteristics, but shear layer correction data as well. Techniques utilized in these investigations as well as brief overviews of results will be given.

  4. Comanche airframe design - The PDT approach

    NASA Astrophysics Data System (ADS)

    Kay, Bruce F.

    1993-04-01

    The paper discusses the product development team (PDT) management approach adopted for the airframe design of the RAH-66 Comanche, a new helicopter for armed reconnaissance. One of the Comanche program's most important goals is cost control, and mechanisms for accomplishing this are firmly imbedded in all PDTs. Continuous evaluation of the supportability attributes is performed by PDT members representing different areas. Typical of the analyses used to influence the design is the predictions of maintenance requirements. These data are used, for example, to determine equipment locations; components requiring the most maintenance are placed in the most accessible positions.

  5. Residual Strength Analysis Methodology: Laboratory Coupons to Structural Components

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Newman, J. C., Jr.; Starnes, J. H., Jr.; Rose, C. A.; Young, R. D.; Seshadri, B. R.

    2000-01-01

    The NASA Aircraft Structural Integrity (NASIP) and Airframe Airworthiness Assurance/Aging Aircraft (AAA/AA) Programs have developed a residual strength prediction methodology for aircraft fuselage structures. This methodology has been experimentally verified for structures ranging from laboratory coupons up to full-scale structural components. The methodology uses the critical crack tip opening angle (CTOA) fracture criterion to characterize the fracture behavior and a material and a geometric nonlinear finite element shell analysis code to perform the structural analyses. The present paper presents the results of a study to evaluate the fracture behavior of 2024-T3 aluminum alloys with thickness of 0.04 inches to 0.09 inches. The critical CTOA and the corresponding plane strain core height necessary to simulate through-the-thickness effects at the crack tip in an otherwise plane stress analysis, were determined from small laboratory specimens. Using these parameters, the CTOA fracture criterion was used to predict the behavior of middle crack tension specimens that were up to 40 inches wide, flat panels with riveted stiffeners and multiple-site damage cracks, 18-inch diameter pressurized cylinders, and full scale curved stiffened panels subjected to internal pressure and mechanical loads.

  6. Optimal airframe synthesis for gust loads

    NASA Technical Reports Server (NTRS)

    Hajela, P.

    1986-01-01

    An optimization capability for sizing airframe structures that are subjected to a combination of deterministic and random flight loads was established. The random vibration environment introduces the need for selecting a statistical process that best describes the random loads and permits computation of the dynamic response parameters of interest. Furthermore, it requires a formulation of design constraints that would minimize the conservativeness in the design and retain computational viability. The random loads are treated as a stationary, homogeneous process with a Gaussian probability distribution. The formulation of the analysis problem, the structure of the optimization programming system and a representative numerical example are discussed.

  7. Application of linear array imaging techniques to the real-time inspection of airframe structures and substructures

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1995-01-01

    Development and application of linear array imaging technologies to address specific aging-aircraft inspection issues is described. Real-time video-taped images were obtained from an unmodified commercial linear-array medical scanner of specimens constructed to simulate typical types of flaws encountered in the inspection of aircraft structures. Results suggest that information regarding the characteristics, location, and interface properties of specific types of flaws in materials and structures may be obtained from the images acquired with a linear array. Furthermore, linear array imaging may offer the advantage of being able to compare 'good' regions with 'flawed' regions simultaneously, and in real time. Real-time imaging permits the inspector to obtain image information from various views and provides the opportunity for observing the effects of introducing specific interventions. Observation of an image in real-time can offer the operator the ability to 'interact' with the inspection process, thus providing new capabilities, and perhaps, new approaches to nondestructive inspections.

  8. Integrating CFD, CAA, and Experiments Towards Benchmark Datasets for Airframe Noise Problems

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Yamamoto, Kazuomi

    2012-01-01

    Airframe noise corresponds to the acoustic radiation due to turbulent flow in the vicinity of airframe components such as high-lift devices and landing gears. The combination of geometric complexity, high Reynolds number turbulence, multiple regions of separation, and a strong coupling with adjacent physical components makes the problem of airframe noise highly challenging. Since 2010, the American Institute of Aeronautics and Astronautics has organized an ongoing series of workshops devoted to Benchmark Problems for Airframe Noise Computations (BANC). The BANC workshops are aimed at enabling a systematic progress in the understanding and high-fidelity predictions of airframe noise via collaborative investigations that integrate state of the art computational fluid dynamics, computational aeroacoustics, and in depth, holistic, and multifacility measurements targeting a selected set of canonical yet realistic configurations. This paper provides a brief summary of the BANC effort, including its technical objectives, strategy, and selective outcomes thus far.

  9. Fuel efficiency through new airframe technology

    NASA Technical Reports Server (NTRS)

    Leonard, R. W.

    1982-01-01

    In its Aircraft Energy Efficiency Program, NASA has expended approximately 200 million dollars toward development and application of advanced airframe technologies to United States's commercial transports. United States manufacturers have already been given a significant boost toward early application of advanced composite materials to control surface and empennage structures and toward selected applications of active controls and advanced aerodynamic concepts. In addition, significant progress in definition and development of innovative, but realistic systems for laminar flow control over the wings of future transports has already been made.

  10. Airframe integrity based on Bayesian approach

    NASA Astrophysics Data System (ADS)

    Hurtado Cahuao, Jose Luis

    Aircraft aging has become an immense challenge in terms of ensuring the safety of the fleet while controlling life cycle costs. One of the major concerns in aircraft structures is the development of fatigue cracks in the fastener holes. A probabilistic-based method has been proposed to manage this problem. In this research, the Bayes' theorem is used to assess airframe integrity by updating generic data with airframe inspection data while such data are compiled. This research discusses the methodology developed for assessment of loss of airframe integrity due to fatigue cracking in the fastener holes of an aging platform. The methodology requires a probability density function (pdf) at the end of SAFE life. Subsequently, a crack growth regime begins. As the Bayesian analysis requires information of a prior initial crack size pdf, such a pdf is assumed and verified to be lognormally distributed. The prior distribution of crack size as cracks grow is modeled through a combined Inverse Power Law (IPL) model and lognormal relationships. The first set of inspections is used as the evidence for updating the crack size distribution at the various stages of aircraft life. Moreover, the materials used in the structural part of the aircrafts have variations in their properties due to their calibration errors and machine alignment. A Matlab routine (PCGROW) is developed to calculate the crack distribution growth through three different crack growth models. As the first step, the material properties and the initial crack size are sampled. A standard Monte Carlo simulation is employed for this sampling process. At the corresponding aircraft age, the crack observed during the inspections, is used to update the crack size distribution and proceed in time. After the updating, it is possible to estimate the probability of structural failure as a function of flight hours for a given aircraft in the future. The results show very accurate and useful values related to the reliability

  11. Airframe Research and Technology for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Merski, N. Ronald; Glass, Christopher E.

    2002-01-01

    The Hypersonics Investment Area (HIA) within NASA's Advanced Space Transportation Program (ASTP) has the responsibility to develop hypersonic airbreathing vehicles for access to space. The Airframe Research and Technology (AR and T) Project, as one of six projects in the HIA, will push the state-of-the-art in airframe and vehicle systems for low-cost, reliable, and safe space transportation. The individual technologies within the project are focused on advanced, breakthrough technologies in airframe and vehicle systems and cross-cutting activities that are the basis for improvements in these disciplines. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas that will be addressed by the project include analysis and design tools, integrated vehicle health management (IVHM), composite (polymer, metal, and ceramic matrix) materials development, thermal/structural wall concepts, thermal protection systems, seals, leading edges, aerothermodynamics, and airframe/propulsion flowpath technology. Each of the technical areas or sub-projects within the Airframe R and T Project is described in this paper.

  12. Inelastic behavior of structural components

    NASA Technical Reports Server (NTRS)

    Hussain, N.; Khozeimeh, K.; Toridis, T. G.

    1980-01-01

    A more accurate procedure was developed for the determination of the inelastic behavior of structural components. The actual stress-strain curve for the mathematical of the structure was utilized to generate the force-deformation relationships for the structural elements, rather than using simplified models such as elastic-plastic, bilinear and trilinear approximations. relationships were generated for beam elements with various types of cross sections. In the generational of these curves, stress or load reversals, kinematic hardening and hysteretic behavior were taken into account. Intersections between loading and unloading branches were determined through an iterative process. Using the inelastic properties obtained, the plastic static response of some simple structural systems composed of beam elements was computed. Results were compared with known solutions, indicating a considerable improvement over response predictions obtained by means of simplified approximations used in previous investigations.

  13. Structural Studies of Ciliary Components

    PubMed Central

    Mizuno, Naoko; Taschner, Michael; Engel, Benjamin D.; Lorentzen, Esben

    2012-01-01

    Cilia are organelles found on most eukaryotic cells, where they serve important functions in motility, sensory reception, and signaling. Recent advances in electron tomography have facilitated a number of ultrastructural studies of ciliary components that have significantly improved our knowledge of cilium architecture. These studies have produced nanometer‐resolution structures of axonemal dynein complexes, microtubule doublets and triplets, basal bodies, radial spokes, and nexin complexes. In addition to these electron tomography studies, several recently published crystal structures provide insights into the architecture and mechanism of dynein as well as the centriolar protein SAS-6, important for establishing the 9-fold symmetry of centrioles. Ciliary assembly requires intraflagellar transport (IFT), a process that moves macromolecules between the tip of the cilium and the cell body. IFT relies on a large 20-subunit protein complex that is thought to mediate the contacts between ciliary motor and cargo proteins. Structural investigations of IFT complexes are starting to emerge, including the first three‐dimensional models of IFT material in situ, revealing how IFT particles organize into larger train-like arrays, and the high-resolution structure of the IFT25/27 subcomplex. In this review, we cover recent advances in the structural and mechanistic understanding of ciliary components and IFT complexes. PMID:22683354

  14. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 4: Summary

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Wallace, H. W.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 4 of 4: Final Report- Summary.

  15. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Mraz, M. R.; Hiley, P. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to present two different test techniques. One was a coventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a subscale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously.

  16. Crashworthy airframe design concepts: Fabrication and testing

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  17. Airframe technology for aircraft energy efficiency. [economic factors

    NASA Technical Reports Server (NTRS)

    James, R. L., Jr.; Maddalon, D. V.

    1984-01-01

    The economic factors that resulted in the implementation of the aircraft energy efficiency program (ACEE) are reviewed and airframe technology elements including content, progress, applications, and future direction are discussed. The program includes the development of laminar flow systems, advanced aerodynamics, active controls, and composite structures.

  18. Proceedings of the Airframe Icing Workshop

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron O. (Editor)

    2009-01-01

    The NASA Glenn Research Center (GRC) has a long history of working with its partners towards the understanding of ice accretion formation and its associated degradation of aerodynamic performance. The June 9, 2009, Airframe Icing Workshop held at GRC provided an opportunity to examine the current NASA airframe icing research program and to dialogue on remaining and emerging airframe icing issues and research with the external community. Some of the airframe icing gaps identified included, but are not limited to, ice accretion simulation enhancements, three-dimensional benchmark icing database development, three-dimensional iced aerodynamics modeling, and technology development for a smart icing system.

  19. Airframe life prediction

    NASA Technical Reports Server (NTRS)

    Sendeckyj, G. P.

    1992-01-01

    The required research to develop improved life prediction methods for metallic and composite structures under severe thermomechanical loading must include the development of a verified thermoinelastic fracture criterion. There has been much work in this area with many fracture criteria being proposed. Due to the lack of adequate experimental verification none of them are widely accepted. Research must also be performed to develop and implement improved thermoinelasticity theories that properly model large temperature excursions and high temperature gradient. This research is required to provide confidence in the simpler theories currently used for thermoinelastic analysis. Finally, experimental data is needed to define the behavior of and damage accumulation process in thermoinelastic materials. Special emphasis must be placed on understanding failure mode transitions under thermomechanical loading conditions.

  20. The Airframe Noise Reduction Challenge

    NASA Technical Reports Server (NTRS)

    Lockhard, David P.; Lilley, Geoffrey M.

    2004-01-01

    The NASA goal of reducing external aircraft noise by 10 dB in the near-term presents the acoustics community with an enormous challenge. This report identifies technologies with the greatest potential to reduce airframe noise. Acoustic and aerodynamic effects will be discussed, along with the likelihood of industry accepting and implementing the different technologies. We investigate the lower bound, defined as noise generated by an aircraft modified with a virtual retrofit capable of eliminating all noise associated with the high lift system and landing gear. However, the airframe noise of an aircraft in this 'clean' configuration would only be about 8 dB quieter on approach than current civil transports. To achieve the NASA goal of 10 dB noise reduction will require that additional noise sources be addressed. Research shows that energy in the turbulent boundary layer of a wing is scattered as it crosses trailing edge. Noise generated by scattering is the dominant noise mechanism on an aircraft flying in the clean configuration. Eliminating scattering would require changes to much of the aircraft, and practical reduction devices have yet to receive serious attention. Evidence suggests that to meet NASA goals in civil aviation noise reduction, we need to employ emerging technologies and improve landing procedures; modified landing patterns and zoning restrictions could help alleviate aircraft noise in communities close to airports.

  1. Landing approach airframe noise measurements and analysis

    NASA Technical Reports Server (NTRS)

    Lasagna, P. L.; Mackall, K. G.; Burcham, F. W., Jr.; Putnam, T. W.

    1980-01-01

    Flyover measurements of the airframe noise produced by the AeroCommander, JetStar, CV-990, and B-747 airplanes are presented for various landing approach configurations. Empirical and semiempirical techniques are presented to correlate the measured airframe noise with airplane design and aerodynamic parameters. Airframe noise for the jet-powered airplanes in the clean configuration (flaps and gear retracted) was found to be adequately represented by a function of airplane weight and the fifth power of airspeed. Results show the airframe noise for all four aircraft in the landing configuration (flaps extended and gear down) also varied with the fifth power of airspeed, but this noise level could not be represented by the addition of a constant to the equation for clean-configuration airframe noise.

  2. Airframe Noise Studies: Review and Future Direction

    NASA Technical Reports Server (NTRS)

    Rackl, Robert G.; Miller, Gregory; Guo, Yueping; Yamamoto, Kingo

    2005-01-01

    This report contains the following information: 1) a review of airframe noise research performed under NASA's Advanced Subsonic Transport (AST) program up to the year 2000, 2) a comparison of the year 1992 airframe noise predictions with those using a year 2000 baseline, 3) an assessment of various airframe noise reduction concepts as applied to the year 2000 baseline predictions, and 4) prioritized recommendations for future airframe noise reduction work. NASA's Aircraft Noise Prediction Program was the software used for all noise predictions and assessments. For future work, the recommendations for the immediate future focus on the development of design tools sensitive to airframe noise treatment effects and on improving the basic understanding of noise generation by the landing gear as well as on its reduction.

  3. Airframe noise reduction studies and clean-airframe noise investigation

    NASA Astrophysics Data System (ADS)

    Fink, M. R.; Bailey, D. A.

    1980-04-01

    Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved.

  4. Airframe Noise Reduction Studies and Clean-Airframe Noise Investigation

    NASA Technical Reports Server (NTRS)

    Fink, M. R.; Bailey, D. A.

    1980-01-01

    Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved.

  5. Correlation of AH-1G airframe test data with a NASTRAN mathematical model

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.

    1976-01-01

    Test data was provided for evaluating a mathematical vibration model of the Bell AH-1G helicopter airframe. The math model was developed and analyzed using the NASTRAN structural analysis computer program. Data from static and dynamic tests were used for comparison with the math model. Static tests of the fuselage and tailboom were conducted to verify the stiffness representation of the NASTRAN model. Dynamic test data were obtained from shake tests of the airframe and were used to evaluate the NASTRAN model for representing the low frequency (below 30 Hz) vibration response of the airframe.

  6. Airframe Integration Trade Studies for a Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.; Wu, Chauncey; Rivers, Kevin; Martin, Carl; Smith, Russell

    1999-01-01

    Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.

  7. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 1: Wind tunnel test pressure data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.; Devereaux, P. A.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 1 of 2: Wind Tunnel Test Pressure Data Report.

  8. Design and Test of an Improved Crashworthiness Small Composite Airframe

    NASA Technical Reports Server (NTRS)

    Terry, James E.; Hooper, Steven J.; Nicholson, Mark

    2002-01-01

    The purpose of this small business innovative research (SBIR) program was to evaluate the feasibility of developing small composite airplanes with improved crashworthiness. A combination of analysis and half scale component tests were used to develop an energy absorbing airframe. Four full scale crash tests were conducted at the NASA Impact Dynamics Research Facility, two on a hard surface and two onto soft soil, replicating earlier NASA tests of production general aviation airplanes. Several seat designs and restraint systems including both an air bag and load limiting shoulder harnesses were tested. Tests showed that occupant loads were within survivable limits with the improved structural design and the proper combination of seats and restraint systems. There was no loss of cabin volume during the events. The analysis method developed provided design guidance but time did not allow extending the analysis to soft soil impact. This project demonstrated that survivability improvements are possible with modest weight penalties. The design methods can be readily applied by airplane designers using the examples in this report.

  9. Structured Functional Principal Component Analysis

    PubMed Central

    Shou, Haochang; Zipunnikov, Vadim; Crainiceanu, Ciprian M.; Greven, Sonja

    2015-01-01

    Summary Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure of the latent processes. A computationally fast and scalable estimation procedure is developed for high-dimensional data. Methods are used in applications including high-frequency accelerometer data for daily activity, pitch linguistic data for phonetic analysis, and EEG data for studying electrical brain activity during sleep. PMID:25327216

  10. Structured functional principal component analysis.

    PubMed

    Shou, Haochang; Zipunnikov, Vadim; Crainiceanu, Ciprian M; Greven, Sonja

    2015-03-01

    Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure of the latent processes. A computationally fast and scalable estimation procedure is developed for high-dimensional data. Methods are used in applications including high-frequency accelerometer data for daily activity, pitch linguistic data for phonetic analysis, and EEG data for studying electrical brain activity during sleep. PMID:25327216

  11. Structural interaction of cytoskeletal components.

    PubMed

    Schliwa, M; van Blerkom, J

    1981-07-01

    Three-dimensional cytoskeletal organization of detergent-treated epithelial African green monkey kidney cells (BSC-1) and chick embryo fibroblasts was studied in whole-mount preparations visualized in a high voltage electron microscope. Stereo images are generated at both low and high magnification to reveal both overall cytoskeletal morphology and details of the structural continuity of different filament types. By the use of an improved extraction procedure in combination with heavy meromyosin subfragment 1 decoration of actin filaments, several new features of filament organization are revealed that suggest that the cytoskeleton is a highly interconnected structural unit. In addition to actin filaments, intermediate filaments, and microtubules, a new class of filaments of 2- to 3-nm diameter and 30- to 300-nm length that do not bind heavy merymyosin is demonstrated. They form end-to-side contacts with other cytoskeletal filaments, thereby acting as linkers between various fibers, both like (e.g., actin- actin) and unlike (e.g., actin-intermediate filament, intermediate filament-microtubule). Their nature is unknown. In addition to 2- to 3-nm filaments, actin filaments are demonstrated to form end-to-side contacts with other filaments. Y-shaped actin filament "branches" are observed both in the cell periphery close to ruffles and in more central cell areas also populated by abundant intermediate filaments and microtubules. Arrowhead complexes formed by subfragment 1 decoration of actin filaments point towards the contact site. Actin filaments also form end-to-side contacts with microtubules and intermediate filaments. Careful inspection of numerous actin-microtubule contacts shows that microtubules frequently change their course at sites of contact. A variety of experimentally induced modifications of the frequency of actin-microtubule contacts can be shown to influence the course of microtubules. We conclude that bends in microtubules are imposed by structural

  12. Generalized Structured Component Analysis with Latent Interactions

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan

    2010-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…

  13. Experimental Analysis of Flow over a Highly Maneuverable Airframe

    NASA Astrophysics Data System (ADS)

    Spirnak, Jonathan; Benson, Michael; van Poppel, Bret; Elkins, Christopher; Eaton, John; Team HMA Team

    2015-11-01

    One way to reduce the collateral damage in war is by increasing the accuracy of indirect fire weapons. The Army Research Laboratory is currently developing a Highly Maneuverable Airframe (HMA) consisting of four deflecting canards to provide in-flight maneuverability while fins maintain short duration aerodynamic stability. An experiment was conducted using Magnetic Resonance Velocimetry (MRV) techniques to gather three dimensional, three-component velocity data for fluid flow over a scaled down HMA model. Tests were performed at an angle of attack of 2.3° and canard deflection angles of 0° and 2°. The resulting data serve to both validate computational fluid dynamics (CFD) simulations and understand the flow over this complex geometry. Particular interest is given to the development of the tip and inboard vortices that originate at the canard/body junction and the canard tips to determine their effects on airframe stability. Results show the development of a strong tip vortex and four weaker inboard vortices off each canard. Although the weaker inboard vortices dissipate rapidly downstream of the canard trailing edges, the stronger tip vortices persist until reaching the fins approximately six chord lengths downstream of the canard trailing edges. Team HMA designed and built the water channel and airframe for this experiment.

  14. Probabilistic evaluation of SSME structural components

    NASA Astrophysics Data System (ADS)

    Rajagopal, K. R.; Newell, J. F.; Ho, H.

    1991-05-01

    The application is described of Composite Load Spectra (CLS) and Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) family of computer codes to the probabilistic structural analysis of four Space Shuttle Main Engine (SSME) space propulsion system components. These components are subjected to environments that are influenced by many random variables. The applications consider a wide breadth of uncertainties encountered in practice, while simultaneously covering a wide area of structural mechanics. This has been done consistent with the primary design requirement for each component. The probabilistic application studies are discussed using finite element models that have been typically used in the past in deterministic analysis studies.

  15. Preliminary Analysis of Acoustic Measurements from the NASA-Gulfstream Airframe Noise Flight Test

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Lockhard, David D.; Humphreys, Willliam M.; Choudhari, Meelan M.; Van De Ven, Thomas

    2008-01-01

    The NASA-Gulfstream joint Airframe Noise Flight Test program was conducted at the NASA Wallops Flight Facility during October, 2006. The primary objective of the AFN flight test was to acquire baseline airframe noise data on a regional jet class of transport in order to determine noise source strengths and distributions for model validation. To accomplish this task, two measuring systems were used: a ground-based microphone array and individual microphones. Acoustic data for a Gulfstream G550 aircraft were acquired over the course of ten days. Over twenty-four test conditions were flown. The test matrix was designed to provide an acoustic characterization of both the full aircraft and individual airframe components and included cruise to landing configurations. Noise sources were isolated by selectively deploying individual components (flaps, main landing gear, nose gear, spoilers, etc.) and altering the airspeed, glide path, and engine settings. The AFN flight test program confirmed that the airframe is a major contributor to the noise from regional jets during landing operations. Sound pressure levels from the individual microphones on the ground revealed the flap system to be the dominant airframe noise source for the G550 aircraft. The corresponding array beamform maps showed that most of the radiated sound from the flaps originates from the side edges. Using velocity to the sixth power and Strouhal scaling of the sound pressure spectra obtained at different speeds failed to collapse the data into a single spectrum. The best data collapse was obtained when the frequencies were left unscaled.

  16. Historical review of tactical missile airframe developments

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1992-01-01

    A comprehensive development history of missile airframe aerodynamics is presented, encompassing ground-, ground vehicle-, ship-, and air-launched categories of all ranges short of strategic. Emphasis is placed on the swift acceleration of missile configuration aerodynamics by German researchers in the course of the Second World War and by U.S. research establishments thereafter, often on the foundations laid by German workers. Examples are given of foundational airframe design criteria established by systematic researches undertaken in the 1950s, regarding L/D ratios, normal force and pitching moment characteristics, minimum drag forebodies and afterbodies, and canard and delta winged configuration aerodynamics.

  17. Airframe Noise from a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.

    2016-01-01

    A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.

  18. 14 CFR 65.85 - Airframe rating; additional privileges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Mechanics § 65.85 Airframe rating; additional privileges. (a) Except as provided in paragraph (b) of this section, a certificated mechanic with...) A certificated mechanic with an airframe rating can approve and return to service an airframe,...

  19. 14 CFR 65.85 - Airframe rating; additional privileges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Mechanics § 65.85 Airframe rating; additional privileges. (a) Except as provided in paragraph (b) of this section, a certificated mechanic with...) A certificated mechanic with an airframe rating can approve and return to service an airframe,...

  20. 14 CFR 65.85 - Airframe rating; additional privileges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Mechanics § 65.85 Airframe rating; additional privileges. (a) Except as provided in paragraph (b) of this section, a certificated mechanic with...) A certificated mechanic with an airframe rating can approve and return to service an airframe,...

  1. 14 CFR 65.85 - Airframe rating; additional privileges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Mechanics § 65.85 Airframe rating; additional privileges. (a) Except as provided in paragraph (b) of this section, a certificated mechanic with...) A certificated mechanic with an airframe rating can approve and return to service an airframe,...

  2. 14 CFR 65.85 - Airframe rating; additional privileges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Mechanics § 65.85 Airframe rating; additional privileges. (a) Except as provided in paragraph (b) of this section, a certificated mechanic with...) A certificated mechanic with an airframe rating can approve and return to service an airframe,...

  3. Effective rapid airframe suppression evaluation (ERASE)

    NASA Astrophysics Data System (ADS)

    Engelhardt, Michel

    1993-08-01

    This paper presents an analytical method to effectively and rapidly evaluate the impact of airframe suppression on electro-optical/infrared (E-O/IR) system lock-on range. This method is known as the Effective Rapid Airframe Suppression Evaluation (ERASE). It can be used to perform tradeoff analyses with respect to IR suppression systems and evaluate the impact of these systems on E-O/IR systems. This paper discusses a new set of dimensionless equations and how these equations are used to evaluate changes in airframe area, temperature, emissivity, and reflectivity (as a function of earthshine, solar reflections, and skyshine). Since the ERASE code has been formulated as a rapid computational tool (capable of generating over 1000 design variations in minutes), it is ideal for performing design tradeoffs against airframe shaping, thermal control systems, and diffuse reflectivity/emissivity control. Results from the ERASE code are presented using Grumman's System for IR Evaluation/Contrast Generator Code (SIRE/CONGEN) as input.

  4. Scramjet Engine/Airframe Integration Methodology

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; McClinton, Charles R.

    1997-01-01

    Scramjet engine/airframe integration methodology currently in use at the NASA Langley Research Center for design/analysis of hypersonic airbreathing vehicles is presented with illustrative example applications. The matrix encompasses engineering and higher order numerical methods that cover the major disciplines as well as a multidiscipline design/optimization approach.

  5. Manufacturing tolerances for natural laminar flow airframe surfaces

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Obara, C. J.; Martin, G. L.; Domack, C. S.

    1985-01-01

    Published aircraft surface waviness and boundary layer transition measurements imply that currently achievable low levels of surface waviness are compatible with the natural laminar flow (NLF) requirements of business and commuter aircraft, in the cases of both metallic and composite material airframes. The primary challenge to the manufacture of NLF-compatible surfaces is two-dimensional roughness in the form of steps and gaps at structural joints. Attention is presently given to recent NASA investigations of manufacturing tolerance requirements for NLF surfaces, including flight experiment results.

  6. Compression Strength of Composite Primary Structural Components

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.

    1998-01-01

    Research conducted under NASA Grant NAG-1-537 focussed on the response and failure of advanced composite material structures for application to aircraft. Both experimental and analytical methods were utilized to study the fundamental mechanics of the response and failure of selected structural components subjected to quasi-static loads. Most of the structural components studied were thin-walled elements subject to compression, such that they exhibited buckling and postbuckling responses prior to catastrophic failure. Consequently, the analyses were geometrically nonlinear. Structural components studied were dropped-ply laminated plates, stiffener crippling, pressure pillowing of orthogonally stiffened cylindrical shells, axisymmetric response of pressure domes, and the static crush of semi-circular frames. Failure of these components motivated analytical studies on an interlaminar stress postprocessor for plate and shell finite element computer codes, and global/local modeling strategies in finite element modeling. These activities are summarized in the following section. References to literature published under the grant are listed on pages 5 to 10 by a letter followed by a number under the categories of journal publications, conference publications, presentations, and reports. These references are indicated in the text by their letter and number as a superscript.

  7. 14 CFR 43.7 - Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Persons authorized to approve aircraft, airframes, aircraft engines, propellers, appliances, or component parts for return to service after maintenance, preventive maintenance, rebuilding, or alteration. 43.7 Section 43.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT...

  8. Futuristic Airframe Concepts & Technology (FACT)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The distributed exhaust nozzle (DEN) components: view of the DEN nozzle from upstream looking downstream (looking out of the exit of the nozzle). Photographed in building 1221B, room 116, Jet Noise Lab.

  9. Design and analysis of a scramjet engine. [regenerative cooled and airframe-integrated

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1978-01-01

    Design concepts defined for the cooled-structures assembly of a hydrogen fueled, regeneratively cooled, airframe-integrated Scramjet engine are considered. Engine subsystems, in particular, the fuel subsystem associated with the operating engine are included along with the engine mounting and the interfacing with the airplane. The engine structure and thermal protection system, including the fuel injection struts are emphasized.

  10. Environmental effects on composite airframes: A study conducted for the ARM UAV Program (Atmospheric Radiation Measurement Unmanned Aerospace Vehicle)

    SciTech Connect

    Noguchi, R.A.

    1994-06-01

    Composite materials are affected by environments differently than conventional airframe structural materials are. This study identifies the environmental conditions which the composite-airframe ARM UAV may encounter, and discusses the potential degradation processes composite materials may undergo when subjected to those environments. This information is intended to be useful in a follow-on program to develop equipment and procedures to prevent, detect, or otherwise mitigate significant degradation with the ultimate goal of preventing catastrophic aircraft failure.

  11. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    NASA Technical Reports Server (NTRS)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  12. System for inspecting large size structural components

    DOEpatents

    Birks, Albert S.; Skorpik, James R.

    1990-01-01

    The present invention relates to a system for inspecting large scale structural components such as concrete walls or the like. The system includes a mobile gamma radiation source and a mobile gamma radiation detector. The source and detector are constructed and arranged for simultaneous movement along parallel paths in alignment with one another on opposite sides of a structural component being inspected. A control system provides signals which coordinate the movements of the source and detector and receives and records the radiation level data developed by the detector as a function of source and detector positions. The radiation level data is then analyzed to identify areas containing defects corresponding to unexpected variations in the radiation levels detected.

  13. Associated neural network independent component analysis structure

    NASA Astrophysics Data System (ADS)

    Kim, Keehoon; Kostrzweski, Andrew

    2006-05-01

    Detection, classification, and localization of potential security breaches in extremely high-noise environments are important for perimeter protection and threat detection both for homeland security and for military force protection. Physical Optics Corporation has developed a threat detection system to separate acoustic signatures from unknown, mixed sources embedded in extremely high-noise environments where signal-to-noise ratios (SNRs) are very low. Associated neural network structures based on independent component analysis are designed to detect/separate new acoustic sources and to provide reliability information. The structures are tested through computer simulations for each critical component, including a spontaneous detection algorithm for potential threat detection without a predefined knowledge base, a fast target separation algorithm, and nonparametric methodology for quantified confidence measure. The results show that the method discussed can separate hidden acoustic sources of SNR in 5 dB noisy environments with an accuracy of 80%.

  14. Greenstone belts: Their components and structure

    NASA Technical Reports Server (NTRS)

    Vearncombe, J. R.; Barton, J. M., Jr.; Vanreenen, D. D.; Phillips, G. N.; Wilson, A. H.

    1986-01-01

    Greenstone sucessions are defined as the nongranitoid component of granitoid-greenstone terrain and are linear to irregular in shape and where linear are termed belts. The chemical composition of greenstones is described. Also discussed are the continental environments of greenstone successions. The effects of contact with granitoids, geophysical properties, recumbent folds and late formation structures upon greenstones are examined. Large stratigraphy thicknesses are explained.

  15. Service evaluation of aircraft composite structural components

    NASA Technical Reports Server (NTRS)

    Brooks, W. A., Jr.; Dow, M. B.

    1973-01-01

    The advantages of the use of composite materials in structural applications have been identified in numerous engineering studies. Technology development programs are underway to correct known deficiencies and to provide needed improvements. However, in the final analysis, flight service programs are necessary to develop broader acceptance of, and confidence in, any new class of materials such as composites. Such flight programs, initiated by NASA Langley Research Center, are reviewed. These programs which include the selectively reinforced metal and the all-composite concepts applied to both secondary and primary aircraft structural components, are described and current status is indicated.

  16. Finite element analysis of helicopter structures

    NASA Technical Reports Server (NTRS)

    Rich, M. J.

    1978-01-01

    Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.

  17. Numerical methods for engine-airframe integration

    SciTech Connect

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.

  18. Preliminary considerations for the computer analysis of fringe maps generated when holographic interferometry is applied as an NDT tool for airframe structures

    NASA Astrophysics Data System (ADS)

    Mew, Jacqueline M.; Webster, John M.; Hand, Steve; Schmidt, Timothy E.

    1998-09-01

    The temptation when presented with the requirement to interpret holographic interferograms of aluminum aircraft structures derived through a non-destructive testing technique is to examine the whole interferogram. Computers are renowned for their ability to process large amounts of data accurately and speedily, therefore there is a strong temptation to harness their particular powers. This is not only time-consuming and wasteful of computing resources, it is also unnecessary. However, before work can begin on interpreting an interferogram by computer the problem itself must be defined. In this particular example the interferogram is from a sample taken from one of the world's aging passenger airline fleet. The sample is from an aluminum stabilizer in which faults have been induced or have occurred during the service lifetime of the aircraft. All faults have been confirmed by destructive evaluation or by alternative techniques. Thus the problem domain is known. When a human expert examines an interferogram s/he concentrates on areas where faults are likely to occur namely, the areas immediately surrounding the stringers and frames as well as the stringers and frames themselves. The faults are typically caused through endless pressurization cycles or through corrosion. These faults have been induced to show themselves by a distinctive pattern of interference fringes across stringers and frames, where normally no fringes should be expected to occur. Therefore the human expert search concentrates on these areas, using the fringe count density or shape over the whole of the interferogram simply for comparison or control. The computer aims to emulate the human search. However, difficulties have been identified that could prove problematic for the computer that are elementary for the human brain. In our early work the sample interferograms for computer analysis have been selected because, to a human, they are uncomplicated and relatively noise-free sample in which faults

  19. Packaging of structural health monitoring components

    NASA Astrophysics Data System (ADS)

    Kessler, Seth S.; Spearing, S. Mark; Shi, Yong; Dunn, Christopher T.

    2004-07-01

    Structural Health Monitoring (SHM) technologies have the potential to realize economic benefits in a broad range of commercial and defense markets. Previous research conducted by Metis Design and MIT has demonstrated the ability of Lamb waves methods to provide reliable information regarding the presence, location and type of damage in composite specimens. The present NSF funded program was aimed to study manufacturing, packaging and interface concepts for critical SHM components. The intention is to be able to cheaply manufacture robust actuating/sensing devices, and isolate them from harsh operating environments including natural, mechanical, or electrical extremes. Currently the issues related to SHM system durability have remained undressed. During the course of this research several sets of test devices were fabricated and packaged to protect the piezoelectric component assemblies for robust operation. These assemblies were then tested in hot and wet conditions, as well as in electrically noisy environments. Future work will aim to package the other supporting components such as the battery and wireless chip, as well as integrating all of these components together for operation. SHM technology will enable the reduction or complete elimination of scheduled inspections, and will allow condition-based maintenance for increased reliability and reduced overall life-cycle costs.

  20. Design of a convective cooling system for a Mach 6 hypersonic transport airframe

    NASA Technical Reports Server (NTRS)

    Helenbrook, R. G.; Anthony, F. M.

    1971-01-01

    Results of analytical and design studies are presented for a water-glycol convective cooling system for the airframe structure of a hypersonic transport. System configurations and weights are compared. The influences of system pressure drop and flow control schedules on system weight are defined.

  1. FDC, rapid fabrication of structural components

    SciTech Connect

    Agarwala, M.K.; Bandyopadhyay, A.; Weeren, R. van; Safari, A.; Danforth, S.C.; Langrana, N.A.; Jamalabad, V.R.; Whalen, P.J.

    1996-11-01

    Solid freeform fabrication (SFF) is used to make 3-D components directly from computer-aided design (CAD) files. Many SFF techniques have been developed to fabricate parts and prototypes from CAD without hard tooling, dies or molds. Most of these techniques have been commercialized for fabrication of polymer and plastic parts for design verification and form and fit. Other SFF techniques are being developed for production of ceramic components with functional properties. One such technique, called fused deposition of ceramics (FDC), has been developed and demonstrated for structural ceramics. FDC is based on existing fused deposition modeling (FDM{trademark}) technology, commercialized by Stratasys Inc. (Eden Prairie, Minn.), for processing of polymers and waxes. High-green-density, simple- and complex-shaped silicon nitride parts have been formed by fused deposition of ceramics.

  2. Structural reliability analysis of laminated CMC components

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Palko, Joseph L.; Gyekenyesi, John P.

    1991-01-01

    For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution.

  3. Unstructured CFD and Noise Prediction Methods for Propulsion Airframe Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.; Campbell, Richard L.; Hunter, Craig A.; Massey, Steven J.; Elmiligui, Alaa A.

    2006-01-01

    Using unstructured mesh CFD methods for Propulsion Airframe Aeroacoustics (PAA) analysis has the distinct advantage of precise and fast computational mesh generation for complex propulsion and airframe integration arrangements that include engine inlet, exhaust nozzles, pylon, wing, flaps, and flap deployment mechanical parts. However, accurate solution values of shear layer velocity, temperature and turbulence are extremely important for evaluating the usually small noise differentials of potential applications to commercial transport aircraft propulsion integration. This paper describes a set of calibration computations for an isolated separate flow bypass ratio five engine nozzle model and the same nozzle system with a pylon. These configurations have measured data along with prior CFD solutions and noise predictions using a proven structured mesh method, which can be used for comparison to the unstructured mesh solutions obtained in this investigation. This numerical investigation utilized the TetrUSS system that includes a Navier-Stokes solver, the associated unstructured mesh generation tools, post-processing utilities, plus some recently added enhancements to the system. New features necessary for this study include the addition of two equation turbulence models to the USM3D code, an h-refinement utility to enhance mesh density in the shear mixing region, and a flow adaptive mesh redistribution method. In addition, a computational procedure was developed to optimize both solution accuracy and mesh economy. Noise predictions were completed using an unstructured mesh version of the JeT3D code.

  4. Corrosion and corrosion fatigue of airframe aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  5. Airframe Noise Prediction by Acoustic Analogy: Revisited

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Casper, Jay H.; Tinetti, A.; Dunn, M. H.

    2006-01-01

    The present work follows a recent survey of airframe noise prediction methodologies. In that survey, Lighthill s acoustic analogy was identified as the most prominent analytical basis for current approaches to airframe noise research. Within this approach, a problem is typically modeled with the Ffowcs Williams and Hawkings (FW-H) equation, for which a geometry-independent solution is obtained by means of the use of the free-space Green function (FSGF). Nonetheless, the aeroacoustic literature would suggest some interest in the use of tailored or exact Green s function (EGF) for aerodynamic noise problems involving solid boundaries, in particular, for trailing edge (TE) noise. A study of possible applications of EGF for prediction of broadband noise from turbulent flow over an airfoil surface and the TE is, therefore, the primary topic of the present work. Typically, the applications of EGF in the literature have been limited to TE noise prediction at low Mach numbers assuming that the normal derivative of the pressure vanishes on the airfoil surface. To extend the application of EGF to higher Mach numbers, the uniqueness of the solution of the wave equation when either the Dirichlet or the Neumann boundary condition (BC) is specified on a deformable surface in motion. The solution of Lighthill s equation with either the Dirichlet or the Neumann BC is given for such a surface using EGFs. These solutions involve both surface and volume integrals just like the solution of FW-H equation using FSGF. Insight drawn from this analysis is evoked to discuss the potential application of EGF to broadband noise prediction. It appears that the use of a EGF offers distinct advantages for predicting TE noise of an airfoil when the normal pressure gradient vanishes on the airfoil surface. It is argued that such an approach may also apply to an airfoil in motion. However, for the prediction of broadband noise not directly associated with a trailing edge, the use of EGF does not

  6. Overview of the Transport Rotorcraft Airframe Crash Testbed (TRACT) Full Scale Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin; Littell, Justin

    2015-01-01

    The Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate Anthropomorphic Test Devices (ATD) responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 ATDs were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the horizontal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  7. Evaluation of the Second Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full Scale Crash Test

    NASA Technical Reports Server (NTRS)

    Annett, Martin; Littell, Justin

    2015-01-01

    Two Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate ATD responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 Anthropomorphic Test Devices (ATDs) were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the longitudinal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  8. 14 CFR Appendix C to Part 147 - Airframe Curriculum Subjects

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airframe Curriculum Subjects C Appendix C to Part 147 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Pt. 147, App. C Appendix C to Part 147—Airframe...

  9. 14 CFR Appendix C to Part 147 - Airframe Curriculum Subjects

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airframe Curriculum Subjects C Appendix C to Part 147 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Pt. 147, App. C Appendix C to Part 147—Airframe...

  10. Aerothermodynamic flow phenomena of the airframe-integrated supersonic combustion ramjet

    NASA Astrophysics Data System (ADS)

    Walton, James T.

    1992-11-01

    The unique component flow phenomena is discussed of the airframe-integrated supersonic combustion ramjet (scramjet) in a format geared towards new players in the arena of hypersonic propulsion. After giving an overview of the scramjet aerothermodynamic cycle, the characteristics are then covered individually of the vehicle forebody, inlet, combustor, and vehicle afterbody/nozzle. Attention is given to phenomena such as inlet speeding, inlet starting, inlet spillage, fuel injection, thermal choking, and combustor-inlet interaction.

  11. Aerothermodynamic flow phenomena of the airframe-integrated supersonic combustion ramjet

    NASA Technical Reports Server (NTRS)

    Walton, James T.

    1992-01-01

    The unique component flow phenomena is discussed of the airframe-integrated supersonic combustion ramjet (scramjet) in a format geared towards new players in the arena of hypersonic propulsion. After giving an overview of the scramjet aerothermodynamic cycle, the characteristics are then covered individually of the vehicle forebody, inlet, combustor, and vehicle afterbody/nozzle. Attention is given to phenomena such as inlet speeding, inlet starting, inlet spillage, fuel injection, thermal choking, and combustor-inlet interaction.

  12. Software for Testing Electroactive Structural Components

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Fox, Robert L.; Dimery, Archie D.; Bryant, Robert G.; Shams, Qamar

    2003-01-01

    A computer program generates a graphical user interface that, in combination with its other features, facilitates the acquisition and preprocessing of experimental data on the strain response, hysteresis, and power consumption of a multilayer composite-material structural component containing one or more built-in sensor(s) and/or actuator(s) based on piezoelectric materials. This program runs in conjunction with Lab-VIEW software in a computer-controlled instrumentation system. For a test, a specimen is instrumented with appliedvoltage and current sensors and with strain gauges. Once the computational connection to the test setup has been made via the LabVIEW software, this program causes the test instrumentation to step through specified configurations. If the user is satisfied with the test results as displayed by the software, the user activates an icon on a front-panel display, causing the raw current, voltage, and strain data to be digitized and saved. The data are also put into a spreadsheet and can be plotted on a graph. Graphical displays are saved in an image file for future reference. The program also computes and displays the power and the phase angle between voltage and current.

  13. Nondestructive characterization of structural ceramic components

    SciTech Connect

    Ellingson, W.A.; Steckenrider, J.S.; Sivers, E.A.; Ling, J.R.

    1994-06-01

    Advanced structural ceramic components under development for heat-engine applications include both monolithic and continuous fiber composites (CFC). Nondestructive characterization (NDC) methods being developed differ for each material system. For monolithic materials, characterization during processing steps is important. For many CFC, only post process characterization is possible. Many different NDC systems have been designed and built A 3D x-ray micro computed tomographic (3DXCT) imaging system has been shown to be able to map density variations to better than 3% in pressure slip cast Si{sub 3}N{sub 4} monolithic materials. In addition, 3DXCT coupled to image processing has been shown to be able to map through-thickness fiber orientations in 2D lay-ups of 0{degrees}/45{degrees}, 0{degrees}/75{degrees}, 0{degrees}/90{degrees}, in SiC/SiC CVI CFC. Fourier optics based laser scatter systems have been shown to be able to detect surface and subsurface defects (as well as microstructural variations) in monolithic Si{sub 3}N{sub 4} bearing balls. Infrared methods using photothermal excitation have been shown to be able to detect and measure thermal diffusivity differences on SiC/SiC 2D laminated CFC which have been subjected to different thermal treatments including thermal shock and oxidizing environments. These NDC methods and their applications help provide information to allow reliable usage of ceramics in advanced heat engine applications.

  14. Investigation of difficult component effects on FEM vibration prediction for the AH-1G helicopter

    NASA Technical Reports Server (NTRS)

    Dompka, Robert V.

    1988-01-01

    Under the NASA-sponsored Design Analysis Methods for Vibrations program, a series of ground vibration tests and NASTRAN finite element model correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Secondary structure and damping were found to have significant effects on the frequency response of the airframe above 15 Hz. The nonlinear effects of thrust stiffening and elastomeric mounts on the low-frequency pylon modes below the main rotor were also significant.

  15. Life cycle cost analysis of aging aircraft airframe maintenance

    NASA Astrophysics Data System (ADS)

    Sperry, Kenneth Robert

    Scope and method of study. The purpose of this study was to examine the relationship between an aircraft's age and its annual airframe maintenance costs. Common life cycle costing methodology has previously not recognized the existence of this cost growth potential, and has therefor not determined the magnitude nor significance of this cost element. This study analyzed twenty-five years of DOT Form 41-airframe maintenance cost data for the Boeing 727, 737, 747 and McDonnell Douglas DC9 and DC-10 aircraft. Statistical analysis included regression analysis, Pearson's r, and t-tests to test the null hypothesis. Findings and conclusion. Airframe maintenance cost growth was confirmed to be increasing after an aircraft's age exceeded its designed service objective of approximately twenty-years. Annual airframe maintenance cost growth increases were measured ranging from 3.5% annually for a DC-9, to approximately 9% annually for a DC-10 aircraft. Average measured coefficient of determination between age and airframe maintenance, exceeded .80, confirming a strong relationship between cost: and age. The statistical significance of the difference between airframe costs sampled in 1985, compared to airframe costs sampled in 1998 was confirmed by t-tests performed on each subject aircraft group. Future cost forecasts involving aging aircraft subjects must address cost growth due to aging when attempting to model an aircraft's economic service life.

  16. CFD Assessment of Aerodynamic Degradation of a Subsonic Transport Due to Airframe Damage

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.; Pirzadeh, Shahyar Z.; Atkins, Harold L.; Viken, Sally A.; Morrison, Joseph H.

    2010-01-01

    A computational study is presented to assess the utility of two NASA unstructured Navier-Stokes flow solvers for capturing the degradation in static stability and aerodynamic performance of a NASA General Transport Model (GTM) due to airframe damage. The approach is to correlate computational results with a substantial subset of experimental data for the GTM undergoing progressive losses to the wing, vertical tail, and horizontal tail components. The ultimate goal is to advance the probability of inserting computational data into the creation of advanced flight simulation models of damaged subsonic aircraft in order to improve pilot training. Results presented in this paper demonstrate good correlations with slope-derived quantities, such as pitch static margin and static directional stability, and incremental rolling moment due to wing damage. This study further demonstrates that high fidelity Navier-Stokes flow solvers could augment flight simulation models with additional aerodynamic data for various airframe damage scenarios.

  17. The Development of Two Composite Energy Absorbers for Use in a Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full-Scale Crash Test

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  18. Estimators for variance components in structured stair nesting models

    NASA Astrophysics Data System (ADS)

    Monteiro, Sandra; Fonseca, Miguel; Carvalho, Francisco

    2016-06-01

    The purpose of this paper is to present the estimation of the components of variance in structured stair nesting models. The relationship between the canonical variance components and the original ones, will be very important in obtaining that estimators.

  19. Analysis of airframe/engine interactions - An integrated control perspective

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Schierman, John D.; Garg, Sanjay

    1990-01-01

    Techniques for the analysis of the dynamic interactions between airframe/engine dynamical systems are presented. Critical coupling terms are developed that determine the significance of these interactions with regard to the closed loop stability and performance of the feedback systems. A conceptual model is first used to indicate the potential sources of the coupling, how the coupling manifests itself, and how the magnitudes of these critical coupling terms are used to quantify the effects of the airframe/engine interactions. A case study is also presented involving an unstable airframe with thrust vectoring for attitude control. It is shown for this system with classical, decentralized control laws that there is little airframe/engine interaction, and the stability and performance with those control laws is not affected. Implications of parameter uncertainty in the coupling dynamics is also discussed, and effects of these parameter variations are also demonstrated to be small for this vehicle configuration.

  20. Ground shake test of the UH-60A helicopter airframe and comparison with NASTRAN finite element model predictions

    NASA Technical Reports Server (NTRS)

    Howland, G. R.; Durno, J. A.; Twomey, W. J.

    1990-01-01

    Sikorsky Aircraft, together with the other major helicopter airframe manufacturers, is engaged in a study to improve the use of finite element analysis to predict the dynamic behavior of helicopter airframes, under a rotorcraft structural dynamics program called DAMVIBS (Design Analysis Methods for VIBrationS), sponsored by the NASA-Langley. The test plan and test results are presented for a shake test of the UH-60A BLACK HAWK helicopter. A comparison is also presented of test results with results obtained from analysis using a NASTRAN finite element model.

  1. An analysis of prop-fan/airframe aerodynamic integration

    NASA Technical Reports Server (NTRS)

    Boctor, M. L.; Clay, C. W.; Watson, C. F.

    1978-01-01

    An approach to aerodynamic integration of turboprops and airframes, with emphasis placed upon wing mounted installations is addressed. Potential flow analytical techniques were employed to study aerodynamic integration of the prop fan propulsion concept with advanced, subsonic, commercial transport airframes. Three basic configurations were defined and analyzed: wing mounted prop fan at a cruise Mach number of 0.8, wing mounted prop fan in a low speed configuration, and aft mounted prop fan at a cruise Mach number of 0.8.

  2. Application of component mode synthesis in structural dynamics

    NASA Technical Reports Server (NTRS)

    Craig, R. R.

    1986-01-01

    The principal analytical techniques used for component mode synthesis (CMS) of undamped systems and their application to structural dynamics are discussed. In the CMS, a system is divided into components or substructures, and for each of these components, the number of degrees of freedom is reduced by expressing the physical coordinates in terms of a reduced set of component modal coordinates. Among a number of component modes, a new form of component mode, called an applied force attachment mode, is described. Consideration is given to literature studies of damped structures and recent combined analytical/experimental studies.

  3. Structural components and architectures of RNA exosomes.

    PubMed

    Januszyk, Kurt; Lima, Christopher D

    2010-01-01

    A large body of structural work conducted over the past ten years has elucidated mechanistic details related to 3' to 5' processing and decay of RNA substrates by the RNA exosome. This chapter will focus on the structural organization of eukaryotic exosomes and their evolutionary cousins in bacteria and archaea with an emphasis on mechanistic details related to substrate recognition and to 3' to 5' phosphorolytic exoribonucleolytic activities of bacterial and archaeal exosomes as well as the hydrolytic exoribonucleolytic and endoribonucleolytic activities of eukaryotic exosomes. These points will be addressed in large part through presentation of crystal structures ofphosphorolytic enzymes such as bacterial RNase PH, PNPase and archaeal exosomes and crystal structures ofthe eukaryotic exosome and exosome sub-complexes in addition to standalone structures of proteins that catalyze activities associated with the eukaryotic RNA exosome, namely Rrp44, Rrp6 and their bacterial counterparts. PMID:21618871

  4. Evaluation of the First Transport Rotorcraft Airframe Crash Testbed (TRACT 1) Full-Scale Crash Test

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Littell, Justin D.; Jackson, Karen E.; Bark, Lindley W.; DeWeese, Rick L.; McEntire, B. Joseph

    2014-01-01

    absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats, legacy troop bench seats, and a three-tiered patient litter. In addition, two standing ATDs were used to evaluate the benefit of Mobile Aircrew Restraint Systems (MARS) versus a standard gunner's belt. The ATD with the MARS survived the impact, while fatal head blunt trauma occurred for the standing ATD held by the legacy gunner's belt. In addition to occupant loading, the structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation.

  5. Airframe Icing Research Gaps: NASA Perspective

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  6. Airframe Noise Prediction Using the Sngr Method

    NASA Astrophysics Data System (ADS)

    Chen, Rongqian; Wu, Yizhao; Xia, Jian

    In this paper, the Stochastic Noise Generation and Radiation method (SNGR) is used to predict airframe noise. The SNGR method combines a stochastic model with Computational Fluid Dynamics (CFD), and it can give acceptable noise results while the computation cost is relatively low. In the method, the time-averaged mean flow field is firstly obtained by solving Reynolds Averaged Navier-Stokes equations (RANS), and a stochastic velocity is generated based on the obtained information. Then the turbulent field is used to generate the source for the Acoustic Perturbation Equations (APEs) that simulate the noise propagation. For numerical methods, timeaveraged RANS equations are solved by finite volume method, and the turbulent model is K - ɛ model; APEs are solved by finite difference method, and the numerical scheme is the Dispersion-Relation-Preserving (DRP) scheme, with explicit optimized 5-stage Rung-Kutta scheme time step. In order to test the APE solver, propagation of a Gaussian pulse in a uniform mean flow is firstly simulated and compared with the analytical solution. Then, using the method, the trailing edge noise of NACA0012 airfoil is calculated. The results are compared with reference data, and good agreements are demonstrated.

  7. Airframe Noise Results from the QTD II Flight Test Program

    NASA Technical Reports Server (NTRS)

    Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.

    2007-01-01

    With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise

  8. Tip Fence for Reduction of Lift-Generated Airframe Noise

    NASA Technical Reports Server (NTRS)

    Ross, James C. (Inventor); Storms, Bruce L. (Inventor)

    1998-01-01

    The present invention is directed toward a unique lift-generated noise reduction apparatus. This apparatus includes a plurality of tip fences that are secured to the trailing and leading assemblies of the high-lift system, as close as possible to the discontinuities where the vortices are most likely to form. In one embodiment, these tip fences are secured to some or all of the outboard and inboard tips of the wing slats and flaps. The tip fence includes a generally flat, or an aerodynamically shaped plate or device that could be formed of almost any rigid material, such as metal, wood, plastic, fiber glass, aluminum, etc. In a preferred embodiment, the tip fences extend below and perpendicularly to flaps and the slats to which they are attached, such that these tip fences are aligned with the nominal free stream velocity of the aircraft. In addition to reducing airframe noise, the tip fence tends to decrease drag and to increase lift, thus improving the overall aerodynamic performance of the aircraft. Another advantage presented by the tip fence lies in the simplicity of its design, its elegance, and its ready ability to fit on the wing components, such as the flaps and the slats. Furthermore, it does not require non-standard materials or fabrication techniques, and it can be readily, easily and inexpensively retrofited on most of the existing aircraft, with minimal design changes.

  9. Evaluation of aging degradation of structural components

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1992-03-01

    Irradiation embrittlement of the neutron shield tank (NST) A212 Grade B steel from the Shippingport reactor, as well as thermal embrittlement of CF-8 cast stainless steel components from the Shippingport and KRB reactors, has been characterized. Increases in Charpy transition temperature (CTT), yield stress, and hardness of the NST material in the low-temperature low-flux environment are consistent with the test reactor data for irradiations at < 232{degrees}C. The shift in CTT is not as severe as that observed in surveillance samples from the High Flux Isotope Reactor (HFIR): however, it shows very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor. The results indicate that fluence rate has not effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center dot}s at the low operating temperature of the Shippingport NST, i.e., 55{degrees}C. This suggest that radiation damage in Shippingport NST and HFIR surveillance samples may be different because of the neutron spectra and/or Cu and Ni content of the two materials. Cast stainless steel components show relatively modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength. Correlations for estimating mechanical properties of cast stainless steels predict accurate or slightly conservative values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predict the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y.

  10. Evaluation of aging degradation of structural components

    SciTech Connect

    Chopra, O.K.; Shack, W.J.

    1992-03-01

    Irradiation embrittlement of the neutron shield tank (NST) A212 Grade B steel from the Shippingport reactor, as well as thermal embrittlement of CF-8 cast stainless steel components from the Shippingport and KRB reactors, has been characterized. Increases in Charpy transition temperature (CTT), yield stress, and hardness of the NST material in the low-temperature low-flux environment are consistent with the test reactor data for irradiations at < 232{degrees}C. The shift in CTT is not as severe as that observed in surveillance samples from the High Flux Isotope Reactor (HFIR): however, it shows very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor. The results indicate that fluence rate has not effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center_dot}s at the low operating temperature of the Shippingport NST, i.e., 55{degrees}C. This suggest that radiation damage in Shippingport NST and HFIR surveillance samples may be different because of the neutron spectra and/or Cu and Ni content of the two materials. Cast stainless steel components show relatively modest decreases in fracture toughness and Charpy-impact properties and a small increase in tensile strength. Correlations for estimating mechanical properties of cast stainless steels predict accurate or slightly conservative values for Charpy-impact energy, tensile flow stress, fracture toughness J-R curve, and J{sub IC} of the materials. The kinetics of thermal embrittlement and degree of embrittlement at saturation, i.e., the minimum impact energy achieved after long-term aging, were established from materials that were aged further in the laboratory. The results were consistent with the estimates. The correlations successfully predict the mechanical properties of the Ringhals 2 reactor hot- and crossover-leg elbows (CF-8M steel) after service of {approx}15 y.

  11. Electronics speckle interferometry applications for NDE of spacecraft structural components

    NASA Astrophysics Data System (ADS)

    Rao, M. V.; Samuel, R.; Ananthan, A.; Dasgupta, S.; Nair, P. S.

    2008-09-01

    The spacecraft components viz., central cylinder, deck plates, solar panel substrates, antenna reflectors are made of aluminium/composite honeycomb sandwich construction. Detection of these defects spacecraft structural components is important to assess the integrity of the spacecraft structure. Electronic Speckle Interferometry (ESI) techniques identify the defects as anomalous regions in the interferometric fringe patterns of the specklegram while the component is suitably stressed to give rise to differential displacement/strain around the defective region. Calibration studies, different phase shifting methods associated with ESI and the development of a prototype Twin Head ESSI System (THESSIS) and its use for the NDE of a typical satellite structural component are presented.

  12. Nondestructive Evaluation (NDE) Results on Sikorsky Aircraft Survivable Affordable Reparable Airframe Program (SARAP) Samples

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Anastasi, Robert F.; Madaras, Eric I.

    2004-01-01

    The Survivable, Affordable, Reparable Airframe Program (SARAP) will develop/produce new structural design concepts with lower structural weight, reduced manufacturing complexity and development time, increased readiness, and improved threat protection. These new structural concepts will require advanced field capable inspection technologies to help meet the SARAP structural objectives. In the area of repair, damage assessment using nondestructive inspection (NDI) is critical to identify repair location and size. The purpose of this work is to conduct an assessment of new and emerging NDI methods that can potentially satisfy the SARAP program goals.

  13. The universal scissor component: Optimization of a reconfigurable component for deployable scissor structures

    NASA Astrophysics Data System (ADS)

    Alegria Mira, Lara; Thrall, Ashley P.; De Temmerman, Niels

    2016-02-01

    Deployable scissor structures are well equipped for temporary and mobile applications since they are able to change their form and functionality. They are structural mechanisms that transform from a compact state to an expanded, fully deployed configuration. A barrier to the current design and reuse of scissor structures, however, is that they are traditionally designed for a single purpose. Alternatively, a universal scissor component (USC)-a generalized element which can achieve all traditional scissor types-introduces an opportunity for reuse in which the same component can be utilized for different configurations and spans. In this article, the USC is optimized for structural performance. First, an optimized length for the USC is determined based on a trade-off between component weight and structural performance (measured by deflections). Then, topology optimization, using the simulated annealing algorithm, is implemented to determine a minimum weight layout of beams within a single USC component.

  14. Nonthermal Components in the Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    2004-12-01

    I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to γ-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of γ-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.

  15. In Search of the Physics: NASA's Approach to Airframe Noise

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Lockard, David P.; Streett, Craig L.

    1999-01-01

    An extensive numerical and experimental study of airframe noise mechanisms associated with a subsonic high-lift system has been performed at NASA Langley Research Center (LaRC). Investigations involving both steady and unsteady computations and experiments on small-scale models with part-span flaps and full-span flaps are presented. Both surface (steady and unsteady pressure measurements, hot films, oil flows, pressure sensitive paint) and off-surface (5 holeprobe, particle-imaged velocimetry, laser velocimetry, laser light sheet measurements) were taken in the LaRC Quiet Flow Facility (QFF) and several hard-wall tunnels. Experiments in the Low Turbulence Pressure Tunnel (LTPT) included Reynolds number variations up to flight conditions. Successful microphone array measurements were also taken providing both acoustic source maps on the model, and quantitative spectra. Critical directivity measurements were obtained in the QFF. NASA Langley unstructured and structured Reynolds-Averaged Navier-Stokes codes modeled the steady aspects of the flows. Excellent comparisons with surface and off-surface experimental data were obtained. Subsequently, these meanflow calculations were utilized in both linear stability and direct numerical simulations of the flow fields to calculate unsteady surface pressures and farfield acoustic spectra. Accurate calculations were critical in obtaining not only noise source characteristics, but shear layer correction data as well. Techniques utilized in these investigations as well as brief overviews of the results are given.

  16. Experiences at Langley Research Center in the application of optimization techniques to helicopter airframes for vibration reduction

    NASA Technical Reports Server (NTRS)

    Sreekanta Murthy, T.; Kvaternik, Raymond G.

    1991-01-01

    A NASA/industry rotorcraft structural dynamics program known as Design Analysis Methods for VIBrationS (DAMVIBS) was initiated at Langley Research Center in 1984 with the objective of establishing the technology base needed by the industry for developing an advanced finite-element-based vibrations design analysis capability for airframe structures. As a part of the in-house activities contributing to that program, a study was undertaken to investigate the use of formal, nonlinear programming-based, numerical optimization techniques for airframe vibrations design work. Considerable progress has been made in connection with that study since its inception in 1985. This paper presents a unified summary of the experiences and results of that study. The formulation and solution of airframe optimization problems are discussed. Particular attention is given to describing the implementation of a new computational procedure based on MSC/NASTRAN and CONstrained function MINimization (CONMIN) in a computer program system called DYNOPT for the optimization of airframes subject to strength, frequency, dynamic response, and fatigue constraints. The results from the application of the DYNOPT program to the Bell AH-1G helicopter are presented and discussed.

  17. Open Rotor Aeroacoustic Installation Effects for Conventional and Unconventional Airframes

    NASA Technical Reports Server (NTRS)

    Czech, Michael J.; Thomas, Russell H.

    2013-01-01

    As extensive experimental campaign was performed to study the aeroacoustic installation effects of an open rotor with respect to both a conventional tube and wing type airframe and an unconventional hybrid wing body airframe. The open rotor rig had two counter rotating rows of blades each with eight blades of a design originally flight tested in the 1980s. The aeroacoustic installation effects measured in an aeroacoustic wind tunnel included those from flow effects due to inflow distortion or wake interaction and acoustic propagation effects such as shielding and reflection. The objective of the test campaign was to quantify the installation effects for a wide range of parameters and configurations derived from the two airframe types. For the conventional airframe, the open rotor was positioned in increments in front of and then over the main wing and then in positions representative of tail mounted aircraft with a conventional tail, a T-tail and a U-tail. The interaction of the wake of the open rotor as well as acoustic scattering results in an increase of about 10 dB when the rotor is positioned in front of the main wing. When positioned over the main wing a substantial amount of noise reduction is obtained and this is also observed for tail-mounted installations with a large U-tail. For the hybrid wing body airframe, the open rotor was positioned over the airframe along the centerline as well as off-center representing a twin engine location. A primary result was the documentation of the noise reduction from shielding as a function of the location of the open rotor upstream of the trailing edge of the hybrid wing body. The effects from vertical surfaces and elevon deflection were also measured. Acoustic lining was specially designed and inserted flush with the elevon and airframe surface, the result was an additional reduction in open rotor noise propagating to the far field microphones. Even with the older blade design used, the experiment provided

  18. Closeup view of Flume Bridge #4 showing structural components. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of Flume Bridge #4 showing structural components. Looking northeast - Childs-Irving Hydroelectric Project, Childs System, Flume Bridge No. 4, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  19. Block-Krylov component synthesis method for structural model reduction

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.; Hale, Arthur L.

    1988-01-01

    A new analytical method is presented for generating component shape vectors, or Ritz vectors, for use in component synthesis. Based on the concept of a block-Krylov subspace, easily derived recurrence relations generate blocks of Ritz vectors for each component. The subspace spanned by the Ritz vectors is called a block-Krylov subspace. The synthesis uses the new Ritz vectors rather than component normal modes to reduce the order of large, finite-element component models. An advantage of the Ritz vectors is that they involve significantly less computation than component normal modes. Both 'free-interface' and 'fixed-interface' component models are derived. They yield block-Krylov formulations paralleling the concepts of free-interface and fixed-interface component modal synthesis. Additionally, block-Krylov reduced-order component models are shown to have special disturbability/observability properties. Consequently, the method is attractive in active structural control applications, such as large space structures. The new fixed-interface methodology is demonstrated by a numerical example. The accuracy is found to be comparable to that of fixed-interface component modal synthesis.

  20. Probabilistic structural analysis methods for space propulsion system components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1986-01-01

    The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The methodology has led to significant technical progress in several important aspects of probabilistic structural analysis. The program and accomplishments to date are summarized.

  1. Probabilistic structural analysis methods for space propulsion system components

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1987-01-01

    The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The methodology has led to significant technical progress in several important aspects of probabilistic structural analysis. The program and accomplishments to date are summarized.

  2. Sensor modules for structural health monitoring and reliability of components

    NASA Astrophysics Data System (ADS)

    Kroening, Michael; Berthold, Axel; Meyendorf, Norbert

    2005-05-01

    Safety and availability of ageing infrastructures require periodic or continuous monitoring of the structure"s integrity. Innovative design criteria for new infrastructure components may allow material and energy conservation if components are continuously monitored by using advanced sensor systems. This concept for recurring Structural Health Monitoring will replace a significant part of conventional NDE by new maintenance concepts. The goal consists in sensor networks based on advanced principles of testing technology with integrated signal/data processing and data communication. NDE modeling is required for the quantification of measurement results. Finally, a decision on the integrity of the structure based on sensor results requires detailed knowledge about material behavior and modeling capacity for materials and components. IZFP has developed sensor concepts for complex solutions applicable to Structural Health Monitoring for different applications. These applications include railroad inspection, aircraft inspection, inspection of wind energy systems, power electric switches and micro gas valves. Basic concepts and applications of sensor networks will be presented.

  3. Characterization of damped structural connections for multi-component systems

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Huckelbridge, Arthur A.

    1989-01-01

    The inability to model connections adequately has historically limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurataely model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode Synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection stiffness and damping properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model.

  4. Characterization of damped structural connections for multi-component systems

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Huckelbridge, Arthur A.

    1988-01-01

    The inability to model connections adequately has historically limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode Synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection stiffness and damping properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model.

  5. Engine structures analysis software: Component Specific Modeling (COSMO)

    NASA Astrophysics Data System (ADS)

    McKnight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-08-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  6. Engine Structures Analysis Software: Component Specific Modeling (COSMO)

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Schwartz, S.

    1994-01-01

    A component specific modeling software program has been developed for propulsion systems. This expert program is capable of formulating the component geometry as finite element meshes for structural analysis which, in the future, can be spun off as NURB geometry for manufacturing. COSMO currently has geometry recipes for combustors, turbine blades, vanes, and disks. Component geometry recipes for nozzles, inlets, frames, shafts, and ducts are being added. COSMO uses component recipes that work through neutral files with the Technology Benefit Estimator (T/BEST) program which provides the necessary base parameters and loadings. This report contains the users manual for combustors, turbine blades, vanes, and disks.

  7. NASA service experience with composite components. [for aircraft structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.; Chapman, A. J.

    1980-01-01

    NASA Langley has been active in sponsoring flight service programs with advanced composites during the past decade. A broad data base and confidence in the durability of composite structures are being developed. Flight service experience is reported for more than 140 composite aircraft components with up to 8 years service and almost two million successful component flight hours. Composite components are being evaluated on Boeing, Douglas, and Lockheed transport aircraft. Components are currently under development for service evaluation on Bell and Sikorsky helicopters. Design concepts and inspection and maintenance results are reported for components currently in service. Components under development in the NASA Aircraft Energy Efficiency (ACEE) program are discussed. Results of flight, outdoor ground, and controlled laboratory environmental tests on composite materials used in the flight service programs are also presented.

  8. Simplified design procedures for fiber composite structural components/joints

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, Christos C.

    1990-01-01

    Simplified step-by-step design procedures are summarized, which are suitable for the preliminary design of composite structural components such as panels (laminates) and composite built-up structures (box beams). Similar procedures are also summarized for the preliminary design of composite bolted and adhesively bonded joints. The summary is presented in terms of sample design cases complemented with typical results. Guidelines are provided which can be used in the design selection process of composite structural components/joints. Also, procedures to account for cyclic loads, hygrothermal effects and lamination residual stresses are included.

  9. Aviation Maintenance Technology. Airframe. A204. Aircraft Welding. Instructor Material.

    ERIC Educational Resources Information Center

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This teacher's guide is designed to aid teachers in leading students through a module on aircraft welding on airframes. The module contains four units that cover the following topics: (1) gas welding and cutting; (2) brazing and soldering; (3) shielded metal arc welding; and (4) gas tungsten arc welding. Each unit follows a standardized format…

  10. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.; Torkelson, Thomas C.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture.

  11. Airframe and Powerplant Mechanics Certification Guide. Revised 1971.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The guide was prepared to provide information to prospective airframe and powerplant mechanics and other persons interested in the certification of mechanics. The requirements for a mechanic certificate are concerned with age, language ability, experience, knowledge, and skill. The sections of the guide explain the procedure for either…

  12. The estimation technique of the airframe design for manufacturability

    NASA Astrophysics Data System (ADS)

    Govorkov, A.; Zhilyaev, A.

    2016-04-01

    This paper discusses the method of quantitative estimation of a design for manufacturability of the parts of the airframe. The method is based on the interaction of individual indicators considering the weighting factor. The authors of the paper introduce the algorithm of the design for manufacturability of parts based on its 3D model

  13. Novel inlet-airframe integration methodology for hypersonic waverider vehicles

    NASA Astrophysics Data System (ADS)

    Ding, Feng; Liu, Jun; Shen, Chi-bing; Huang, Wei

    2015-06-01

    With the aim of integrating a ramjet or scramjet with an airframe, a novel inlet-airframe integration methodology for the hypersonic waverider vehicle is proposed. For this newly proposed design concept and for the specified flight conditions, not only the forebody of the vehicle but also its engine cowl and wings can ride on the bow shock wave, causing the bow shock wave to remain attached to the leading edge for the entire length of the vehicle. Thus, this integrated vehicle can take full advantage of the waverider's high lift-to-drag ratio characteristics and the ideal pre-compression surface for the engine. In this work, a novel inlet-airframe integrated axisymmetric basic flow model that accounts for both external and internal flows is first designed using the method of characteristics and the streamline tracing technique. Subsequently, the design of the inlet-airframe integrated waverider vehicle is generated from the integrated axisymmetric basic flow model using the streamline tracing technique. Then, the design methodologies of both the integrated axisymmetric basic flow model and the integrated waverider vehicle are verified by a computational numerical method. Finally, the viscous effects and performance of both the integrated axisymmetric basic flow model and the integrated waverider vehicle are analysed under the design condition using the numerical computation. The obtained results show that the proposed approach is effective in designing the integrated hypersonic waverider vehicle.

  14. Weight minimization of structural components for launch in space shuttle

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Gendy, Atef S.; Hopkins, Dale A.; Berke, Laszlo

    1994-01-01

    Minimizing the weight of structural components of the space station launched into orbit in a space shuttle can save cost, reduce the number of space shuttle missions, and facilitate on-orbit fabrication. Traditional manual design of such components, although feasible, cannot represent a minimum weight condition. At NASA Lewis Research Center, a design capability called CometBoards (Comparative Evaluation Test Bed of Optimization and Analysis Routines for the Design of Structures) has been developed especially for the design optimization of such flight components. Two components of the space station - a spacer structure and a support system - illustrate the capability of CometBoards. These components are designed for loads and behavior constraints that arise from a variety of flight accelerations and maneuvers. The optimization process using CometBoards reduced the weights of the components by one third from those obtained with traditional manual design. This paper presents a brief overview of the design code CometBoards and a description of the space station components, their design environments, behavior limitations, and attributes of their optimum designs.

  15. Coupled rotor/airframe vibration analysis program manual manual. Volume 1: User's and programmer's instructions

    NASA Technical Reports Server (NTRS)

    Cassarino, S.; Sopher, R.

    1982-01-01

    user instruction and software descriptions for the base program of the coupled rotor/airframe vibration analysis are provided. The functional capabilities and procedures for running the program are provided. Interfaces with external programs are discussed. The procedure of synthesizing a dynamic system and the various solution methods are described. Input data and output results are presented. Detailed information is provided on the program structure. Sample test case results for five representative dynamic configurations are provided and discussed. System response are plotted to demonstrate the plots capabilities available. Instructions to install and execute SIMVIB on the CDC computer system are provided.

  16. Computational Analysis of a Chevron Nozzle Uniquely Tailored for Propulsion Airframe Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Elmiligui, Alaa A.; Hunter, Craig A.; Thomas, Russell H.; Pao, S. Paul; Mengle, Vinod G.

    2006-01-01

    A computational flow field and predicted jet noise source analysis is presented for asymmetrical fan chevrons on a modern separate flow nozzle at take off conditions. The propulsion airframe aeroacoustic asymmetric fan nozzle is designed with an azimuthally varying chevron pattern with longer chevrons close to the pylon. A baseline round nozzle without chevrons and a reference nozzle with azimuthally uniform chevrons are also studied. The intent of the asymmetric fan chevron nozzle was to improve the noise reduction potential by creating a favorable propulsion airframe aeroacoustic interaction effect between the pylon and chevron nozzle. This favorable interaction and improved noise reduction was observed in model scale tests and flight test data and has been reported in other studies. The goal of this study was to identify the fundamental flow and noise source mechanisms. The flow simulation uses the asymptotically steady, compressible Reynolds averaged Navier-Stokes equations on a structured grid. Flow computations are performed using the parallel, multi-block, structured grid code PAB3D. Local noise sources were mapped and integrated computationally using the Jet3D code based upon the Lighthill Acoustic Analogy with anisotropic Reynolds stress modeling. In this study, trends of noise reduction were correctly predicted. Jet3D was also utilized to produce noise source maps that were then correlated to local flow features. The flow studies show that asymmetry of the longer fan chevrons near the pylon work to reduce the strength of the secondary flow induced by the pylon itself, such that the asymmetric merging of the fan and core shear layers is significantly delayed. The effect is to reduce the peak turbulence kinetic energy and shift it downstream, reducing overall noise production. This combined flow and noise prediction approach has yielded considerable understanding of the physics of a fan chevron nozzle designed to include propulsion airframe aeroacoustic

  17. Clean wing airframe noise modeling for multidisciplinary design and optimization

    NASA Astrophysics Data System (ADS)

    Hosder, Serhat

    A new noise metric has been developed that may be used for optimization problems involving aerodynamic noise from a clean wing. The modeling approach uses a classical trailing edge noise theory as the starting point. The final form of the noise metric includes characteristic velocity and length scales that are obtained from three-dimensional, steady, RANS simulations with a two equation k-o turbulence model. The noise metric is not the absolute value of the noise intensity, but an accurate relative noise measure as shown in the validation studies. One of the unique features of the new noise metric is the modeling of the length scale, which is directly related to the turbulent structure of the flow at the trailing edge. The proposed noise metric model has been formulated so that it can capture the effect of different design variables on the clean wing airframe noise such as the aircraft speed, lift coefficient, and wing geometry. It can also capture three dimensional effects which become important at high lift coefficients, since the characteristic velocity and the length scales are allowed to vary along the span of the wing. Noise metric validation was performed with seven test cases that were selected from a two-dimensional NACA 0012 experimental database. The agreement between the experiment and the predictions obtained with the new noise metric was very good at various speeds, angles of attack, and Reynolds Number, which showed that the noise metric is capable of capturing the variations in the trailing edge noise as a relative noise measure when different flow conditions and parameters are changed. Parametric studies were performed to investigate the effect of different design variables on the noise metric. Two-dimensional parametric studies were done using two symmetric NACA four-digit airfoils (NACA 0012 and NACA 0009) and two supercritical (SC(2)-0710 and SC(2)-0714) airfoils. The three-dimensional studies were performed with two versions of a conventional

  18. Structural Analysis Methods Development for Turbine Hot Section Components

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.

    1988-01-01

    The structural analysis technologies and activities of the NASA Lewis Research Center's gas turbine engine Hot Section Technology (HOST) program are summarized. The technologies synergistically developed and validated include: time-varying thermal/mechanical load models; component-specific automated geometric modeling and solution strategy capabilities; advanced inelastic analysis methods; inelastic constitutive models; high-temperature experimental techniques and experiments; and nonlinear structural analysis codes. Features of the program that incorporate the new technologies and their application to hot section component analysis and design are described. Improved and, in some cases, first-time 3-D nonlinear structural analyses of hot section components of isotropic and anisotropic nickel-base superalloys are presented.

  19. Structural analysis of ultra-high speed aircraft structural components

    NASA Technical Reports Server (NTRS)

    Lenzen, K. H.; Siegel, W. H.

    1977-01-01

    The buckling characteristics of a hypersonic beaded skin panel were investigated under pure compression with boundary conditions similar to those found in a wing mounted condition. The primary phases of analysis reported include: (1) experimental testing of the panel to failure; (2) finite element structural analysis of the beaded panel with the computer program NASTRAN; and (3) summary of the semiclassical buckling equations for the beaded panel under purely compressive loads. A comparison of each of the analysis methods is also included.

  20. Probabilistic structural analysis methods for critical SSME propulsion components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1986-01-01

    The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The progress in the development of generic probabilistic models for various individual loads which consist of a steady state load, a periodic load, a random load, and a spike, is discussed. The capabilities of the Numerical Evaluation of Stochastic Structures Under Stress finite element code designed for probabilistic structural analysis of the SSME are examined. Variation principles for formulation probabilistic finite elements and a structural analysis for evaluating the geometric and material properties tolerances on the structural response of turbopump blades are being designed.

  1. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1987-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig are presented.

  2. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1987-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig, are presented.

  3. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1989-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig, are presented.

  4. Biological Insights from Structures of Two-Component Proteins

    PubMed Central

    Gao, Rong; Stock, Ann M.

    2013-01-01

    Two-component signal transduction based on phosphotransfer from a histidine protein kinase to a response regulator protein is a prevalent strategy for coupling environmental stimuli to adaptive responses in bacteria. In both histidine kinases and response regulators, modular domains with conserved structures and biochemical activities adopt different conformational states in the presence of stimuli or upon phosphorylation, enabling a diverse array of regulatory mechanisms based on inhibitory and/or activating protein-protein interactions imparted by different domain arrangements. This review summarizes some of the recent structural work that has provided insight to the functioning of bacterial histidine kinases and response regulators. Particular emphasis is placed on identifying features that are expected to be conserved among different two-component proteins from those that are expected to differ, with the goal of defining the extent to which knowledge of previously characterized two-component proteins can be applied to newly discovered systems. PMID:19575571

  5. Experimental component mode synthesis of structures with sloppy joints

    NASA Technical Reports Server (NTRS)

    Blackwood, Gary H.; Von Flotow, A. H.

    1988-01-01

    The accuracy of component mode synthesis is investigated experimentally for substructures coupled by nonideal joints. The work is based upon a segmented experimental beam for which free-interface frequency response matrices are measured for each segment. These measurements are used directly in component mode synthesis to predict the behavior of the assembled structure; the segments are then physically joined, and the resulting frequency response of the superstructure is compared to the prediction. Rotational freeplay is then introduced into the connecting joint, and the new superstructure frequency response is compared to the original linear component mode synthesis prediction. The level of accuracy to be expected in component mode synthesis is discussed in terms of the degree of nonlinearity in the joints, mode number, and mode shapes.

  6. Beyond lamins: other structural components of the nucleoskeleton

    PubMed Central

    Zhong, Zhixia; Wilson, Katherine L.; Dahl, Kris Noel

    2010-01-01

    The nucleus is bordered by a double bilayer nuclear envelope, communicates with the cytoplasm via embedded nuclear pore complexes, and is structurally supported by an underlying nucleoskeleton. The nucleoskeleton includes nuclear intermediate filaments formed by lamin proteins, which provide major structural and mechanical support to the nucleus. However other structural proteins also contribute to the function of nucleoskeleton and help connect it to the cytoskeleton. This chapter reviews nucleoskeletal components beyond lamins, and summarizes specific methods and strategies useful for analyzing nuclear structural proteins including actin, spectrin, titin, LINC complex proteins and nuclear spindle matrix proteins. These components can localize to highly specific functional subdomains at the nuclear envelope or nuclear interior, and can interact either stably or dynamically with a variety of partners. These components confer upon the nucleoskeleton a functional diversity and mechanical resilience that appears to rival the cytoskeleton. To facilitate the exploration of this understudied area of biology, we summarize methods useful for localizing, solubilizing and immunoprecipitating nuclear structural proteins, and a state-of-the-art method to measure a newly-recognized mechanical property of nucleus. PMID:20816232

  7. Beyond lamins other structural components of the nucleoskeleton.

    PubMed

    Zhong, Zhixia; Wilson, Katherine L; Dahl, Kris Noel

    2010-01-01

    The nucleus is bordered by a double bilayer nuclear envelope, communicates with the cytoplasm via embedded nuclear pore complexes, and is structurally supported by an underlying nucleoskeleton. The nucleoskeleton includes nuclear intermediate filaments formed by lamin proteins, which provide major structural and mechanical support to the nucleus. However, other structural proteins also contribute to the function of the nucleoskeleton and help connect it to the cytoskeleton. This chapter reviews nucleoskeletal components beyond lamins and summarizes specific methods and strategies useful for analyzing nuclear structural proteins including actin, spectrin, titin, linker of nucleoskeleton and cytoskeleton (LINC) complex proteins, and nuclear spindle matrix proteins. These components can localize to highly specific functional subdomains at the nuclear envelope or nuclear interior and can interact either stably or dynamically with a variety of partners. These components confer upon the nucleoskeleton a functional diversity and mechanical resilience that appears to rival the cytoskeleton. To facilitate the exploration of this understudied area of biology, we summarize methods useful for localizing, solubilizing, and immunoprecipitating nuclear structural proteins, and a state-of-the-art method to measure a newly-recognized mechanical property of nucleus. PMID:20816232

  8. Equilibrium Structures of Differentially Rotating Primary Components of Binary Stars

    NASA Astrophysics Data System (ADS)

    Mohan, C.; Lal, A. K.; Singh, V. P.

    1997-11-01

    In this paper a method is proposed for computing the equilibrium structures and various other observable physical parameters of the primary components of stars in binary systems assuming that the primary is more massive than the secondary and is rotating differentially about its axis. Kippenhahn and Thomas averaging approach (1970) is used in a manner earlier used by Mohan, Saxena and Agarwal (1990) to incorporate the rotational and tidal effects in the equations of stellar structure. Explicit expressions for the distortional terms appearing in the stellar structure equations have been obtained by assuming a general law of differential rotation of the typeω2 = b 0+b 1 s 2+b 2 s 4, where ω is the angular velocity of rotation of a fluid element in the star at a distance s from the axis of rotation, and b 0, b 1, b 2 are suitably chosen numerical constants. The expressions incorporate the effects of differential rotation and tidal distortions up to second order terms. The use of the proposed method has been illustrated by applying it to obtain the structures and observable parameters of certain differentially rotating primary components of the binary stars assuming the primary components to have polytropic structures.

  9. The Integrated Airframe/Propulsion Control System Architecture program (IAPSA)

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Cohen, Gerald C.; Meissner, Charles W.

    1990-01-01

    The Integrated Airframe/Propulsion Control System Architecture program (IAPSA) is a two-phase program which was initiated by NASA in the early 80s. The first phase, IAPSA 1, studied different architectural approaches to the problem of integrating engine control systems with airframe control systems in an advanced tactical fighter. One of the conclusions of IAPSA 1 was that the technology to construct a suitable system was available, yet the ability to create these complex computer architectures has outpaced the ability to analyze the resulting system's performance. With this in mind, the second phase of IAPSA approached the same problem with the added constraint that the system be designed for validation. The intent of the design for validation requirement is that validation requirements should be shown to be achievable early in the design process. IAPSA 2 has demonstrated that despite diligent efforts, integrated systems can retain characteristics which are difficult to model and, therefore, difficult to validate.

  10. Advanced general aviation comparative engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Huggins, G. L.; Ellis, D. R.

    1981-01-01

    The NASA Advanced Aviation Comparative Engine/Airframe Integration Study was initiated to help determine which of four promising concepts for new general aviation engines for the 1990's should be considered for further research funding. The engine concepts included rotary, diesel, spark ignition, and turboprop powerplants; a conventional state-of-the-art piston engine was used as a baseline for the comparison. Computer simulations of the performance of single and twin engine pressurized aircraft designs were used to determine how the various characteristics of each engine interacted in the design process. Comparisons were made of how each engine performed relative to the others when integrated into an airframe and required to fly a transportation mission.

  11. Computational Aeroelastic Modeling of Airframes and TurboMachinery: Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Bartels, R. E.; Sayma, A. I.

    2006-01-01

    Computational analyses such as computational fluid dynamics and computational structural dynamics have made major advances toward maturity as engineering tools. Computational aeroelasticity is the integration of these disciplines. As computational aeroelasticity matures it too finds an increasing role in the design and analysis of aerospace vehicles. This paper presents a survey of the current state of computational aeroelasticity with a discussion of recent research, success and continuing challenges in its progressive integration into multidisciplinary aerospace design. This paper approaches computational aeroelasticity from the perspective of the two main areas of application: airframe and turbomachinery design. An overview will be presented of the different prediction methods used for each field of application. Differing levels of nonlinear modeling will be discussed with insight into accuracy versus complexity and computational requirements. Subjects will include current advanced methods (linear and nonlinear), nonlinear flow models, use of order reduction techniques and future trends in incorporating structural nonlinearity. Examples in which computational aeroelasticity is currently being integrated into the design of airframes and turbomachinery will be presented.

  12. Advanced general aviation engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Zmroczek, L. A.

    1982-01-01

    A comparison of the in-airframe performance and efficiency of the advanced engine concepts is presented. The results indicate that the proposed advanced engines can significantly improve the performance and economy of general aviation airplanes. The engine found to be most promising is the highly advanced version of a rotary combustion (Wankel) engine. The low weight and fuel consumption of this engine, as well as its small size, make it suited for aircraft use.

  13. Analysis of small crack behavior for airframe applications

    NASA Technical Reports Server (NTRS)

    Mcclung, R. C.; Chan, K. S.; Hudak, S. J., Jr.; Davidson, D. L.

    1994-01-01

    The small fatigue crack problem is critically reviewed from the perspective of airframe applications. Different types of small cracks-microstructural, mechanical, and chemical-are carefully defined and relevant mechanisms identified. Appropriate analysis techniques, including both rigorous scientific and practical engineering treatments, are briefly described. Important materials data issues are addressed, including increased scatter in small crack data and recommended small crack test methods. Key problems requiring further study are highlighted.

  14. Design of an integrated airframe/propulsion control system architecture

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Lee, C. William; Strickland, Michael J.

    1990-01-01

    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that used both reliability and performance tools. An account is given of the motivation for the final design and problems associated with both reliability and performance modeling. The appendices contain a listing of the code for both the reliability and performance model used in the design.

  15. NASA Airframe Icing Research Overview Past and Current

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    This slide presentation reviews the past and current research that NASA has done in the area of airframe icing. Both the history experimental efforts and model development to understand the process and problem of ice formation are reviewed. This has resulted in the development of new experimental methods, advanced icing simulation software, flight dynamics and experimental databases that have an impact on design, testing, construction and certification and qualification of the aircraft and its sub-systems.

  16. Avionics and airframe options: current usage and future plans.

    PubMed

    Mayfield, T; Cady, G

    1994-01-01

    The 1994 Avionics and Airframe Survey was sent to 178 chief or lead pilots of helicopter emergency medical services (HEMS) programs in October 1993, and 100 (56%) were returned. Sixty-four programs (64%) reported that they operate one helicopter exclusively for EMS, 24 (24%) operate two, and 12 (12%) reported using three or more aircraft. Interestingly, the reported percentage of programs with two or more exclusive helicopters continues to rise, increasing by 5.6% to 36%. PMID:10131002

  17. Improved Joining of Metal Components to Composite Structures

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund

    2009-01-01

    Systems requirements for complex spacecraft drive design requirements that lead to structures, components, and/or enclosures of a multi-material and multifunctional design. The varying physical properties of aluminum, tungsten, Invar, or other high-grade aerospace metals when utilized in conjunction with lightweight composites multiply system level solutions. These multi-material designs are largely dependent upon effective joining techAn improved method of joining metal components to matrix/fiber composite material structures has been invented. The method is particularly applicable to equipping such thin-wall polymer-matrix composite (PMC) structures as tanks with flanges, ceramic matrix composite (CMC) liners for high heat engine nozzles, and other metallic-to-composite attachments. The method is oriented toward new architectures and distributing mechanical loads as widely as possible in the vicinities of attachment locations to prevent excessive concentrations of stresses that could give rise to delaminations, debonds, leaks, and other failures. The method in its most basic form can be summarized as follows: A metal component is to be joined to a designated attachment area on a composite-material structure. In preparation for joining, the metal component is fabricated to include multiple studs projecting from the aforementioned face. Also in preparation for joining, holes just wide enough to accept the studs are molded into, drilled, or otherwise formed in the corresponding locations in the designated attachment area of the uncured ("wet') composite structure. The metal component is brought together with the uncured composite structure so that the studs become firmly seated in the holes, thereby causing the composite material to become intertwined with the metal component in the joining area. Alternately, it is proposed to utilize other mechanical attachment schemes whereby the uncured composite and metallic parts are joined with "z-direction" fasteners. The

  18. Crystal structure of the RNA component of bacterial ribonuclease P

    SciTech Connect

    Torres-Larios, Alfredo; Swinger, Kerren K.; Krasilnikov, Andrey S.; Pan, Tao; Mondragon, Alfonso

    2010-03-08

    Transfer RNA (tRNA) is produced as a precursor molecule that needs to be processed at its 3' and 5' ends. Ribonuclease P is the sole endonuclease responsible for processing the 5' end of tRNA by cleaving the precursor and leading to tRNA maturation. It was one of the first catalytic RNA molecules identified and consists of a single RNA component in all organisms and only one protein component in bacteria. It is a true multi-turnover ribozyme and one of only two ribozymes (the other being the ribosome) that are conserved in all kingdoms of life. Here we show the crystal structure at 3.85 {angstrom} resolution of the RNA component of Thermotoga maritima ribonuclease P. The entire RNA catalytic component is revealed, as well as the arrangement of the two structural domains. The structure shows the general architecture of the RNA molecule, the inter- and intra-domain interactions, the location of the universally conserved regions, the regions involved in pre-tRNA recognition and the location of the active site. A model with bound tRNA is in agreement with all existing data and suggests the general basis for RNA-RNA recognition by this ribozyme.

  19. Investigation of difficult component effects on finite element model vibration prediction for the Bell AG-1G helicopter. Volume 2: Correlation results

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.

    1989-01-01

    Under the NASA-sponsored DAMVIBS (Design Analysis Methods for VIBrationS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AG-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, furl, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the NASTRAN FEM correlations are given.

  20. Investigation of difficult component effects on finite element model vibration prediction for the Bell AH-1G helicopter. Volume 1: Ground vibration test results

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.

    1989-01-01

    Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.

  1. Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.

    2005-01-01

    This document is the final report for the project entitled, "Multi-Scale Sizing of Lightweight Multifunctional Spacecraft Structural Components," funded under the NRA entitled "Cross-Enterprise Technology Development Program" issued by the NASA Office of Space Science in 2000. The project was funded in 2001, and spanned a four year period from March, 2001 to February, 2005. Through enhancements to and synthesis of unique, state of the art structural mechanics and micromechanics analysis software, a new multi-scale tool has been developed that enables design, analysis, and sizing of advance lightweight composite and smart materials and structures from the full vehicle, to the stiffened structure, to the micro (fiber and matrix) scales. The new software tool has broad, cross-cutting value to current and future NASA missions that will rely on advanced composite and smart materials and structures.

  2. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Klotzsche, M. (Compiler)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.

  3. Probabilistic structural analysis methods for select space propulsion system components

    NASA Technical Reports Server (NTRS)

    Millwater, H. R.; Cruse, T. A.

    1989-01-01

    The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.

  4. Evaluation of active cooling systems for a Mach 6 hypersonic transport airframe, part 2

    NASA Technical Reports Server (NTRS)

    Helenbrook, R. G.; Mcconarty, W. A.; Anthony, F. M.

    1971-01-01

    Transpiration and convective cooling concepts are examined for the fuselage and tail surface of a Mach 6 hypersonic transport aircraft. Hydrogen, helium, and water are considered as coolants. Heat shields and radiation barriers are examined to reduce heat flow to the cooled structures. The weight and insulation requirements for the cryogenic fuel tanks are examined so that realistic totals can be estimated for the complete fuselage and tail. Structural temperatures are varied to allow comparison of aluminum alloy, titanium alloy, and superalloy contruction materials. The results of the study are combined with results obtained on the wing structure, obtained in a previous study, to estimate weights for the complete airframe. The concepts are compared among themselves, and with the uncooled concept on the basis of structural weight, cooling system weight, and coolant weight.

  5. Damage rates for FFTF structural components and surveillance assemblies

    SciTech Connect

    Simons, R.L.

    1993-08-01

    The Fast Flux Test Facility (FFTF) surveillance program provides coupon surveillance materials that are irradiated to the expected lifetime damage dose that the represented component will experience. This methodology requires a knowledge of the damage dose rates to the surveillance assemblies and to the critical locations of the structural components. This analysis updates the predicted exposures from a total fluence to a displacement per atom (dpa) basis using Monte Carlo (computer code for) neutron photon (transport) code (MCNP). The MCNP calculation improves the relative consistency and lowers the predicted damage rates uncertainty in a number of out-of-core locations. The results were used an part of the evaluation to extend the lifetime of the invessel components to 30 years in support of multiple missions for FFTF.

  6. Experimental component mode systhesis of structures with nonlinear joints

    NASA Technical Reports Server (NTRS)

    Blackwood, Gary H.; Vonflotow, A. H.

    1988-01-01

    The accuracy of component mode synthesis is investigated experimentally for substructures coupled by non-ideal joints. The work is based upon a segmented experimental beam for which the free-interface frequency response matrices are measured for each segment. These measurements are used directly in component mode synthesis to predict the behavior of the assembled structure; the segments are then physically joined and the resulting frequency response of the superstructure is compared to the prediction. Rotational freeplay is then introduced into the connecting joint and the new superstructure frequency response is compared to the original linear CMS prediction. The level of accuracy to be expected in component mode synthesis is discussed in terms of the degree of nonlinearity in the joints, mode number and mode shapes.

  7. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise About Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the air-frame and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large at plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position. The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non- dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  8. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise about Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the airframe and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large flat plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position.The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non-dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  9. A life prediction model for laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1990-01-01

    A life prediction methodology for laminated continuous fiber composites subjected to fatigue loading conditions was developed. A summary is presented of research completed. A phenomenological damage evolution law was formulated for matrix cracking which is independent of stacking sequence. Mechanistic and physical support was developed for the phenomenological evolution law proposed above. The damage evolution law proposed above was implemented to a finite element computer program. And preliminary predictions were obtained for a structural component undergoing fatigue loading induced damage.

  10. A structured overview of simultaneous component based data integration

    PubMed Central

    Van Deun, Katrijn; Smilde, Age K; van der Werf, Mariët J; Kiers, Henk AL; Van Mechelen, Iven

    2009-01-01

    Background Data integration is currently one of the main challenges in the biomedical sciences. Often different pieces of information are gathered on the same set of entities (e.g., tissues, culture samples, biomolecules) with the different pieces stemming, for example, from different measurement techniques. This implies that more and more data appear that consist of two or more data arrays that have a shared mode. An integrative analysis of such coupled data should be based on a simultaneous analysis of all data arrays. In this respect, the family of simultaneous component methods (e.g., SUM-PCA, unrestricted PCovR, MFA, STATIS, and SCA-P) is a natural choice. Yet, different simultaneous component methods may lead to quite different results. Results We offer a structured overview of simultaneous component methods that frames them in a principal components setting such that both the common core of the methods and the specific elements with regard to which they differ are highlighted. An overview of principles is given that may guide the data analyst in choosing an appropriate simultaneous component method. Several theoretical and practical issues are illustrated with an empirical example on metabolomics data for Escherichia coli as obtained with different analytical chemical measurement methods. Conclusion Of the aspects in which the simultaneous component methods differ, pre-processing and weighting are consequential. Especially, the type of weighting of the different matrices is essential for simultaneous component analysis. These types are shown to be linked to different specifications of the idea of a fair integration of the different coupled arrays. PMID:19671149

  11. [Structural components and peculiarities of Pseudomonas aeruginosa biofilm organization].

    PubMed

    Balko, O B; Avdieieva, L V

    2010-01-01

    Peculiarities of the structural organization of bacterial biofilm during its formation and disintegration have been investigated on the model of Pseudomonas aeruginosa UCM B-900 (ATCC 9027). It was shown, that development of the biofilm in a stationary system on glass was a two-vector process with changes in time and space. P. aeruginosa UCM B-900 biofilm is formed from single cells, passes through the stages of base components, net structure, islands and comes to the end with integration into a complete monolayer. The biofilm degradation repeats the stages of its formation in the reverse sequence. PMID:20812507

  12. Incorporation of a hierarchical grid component structure into GRIDGEN

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Chawner, John R.

    1993-01-01

    The underlying framework of the GRIDGEN multiple block grid generation system has been refined so that grid components are now stored within a hierarchical data structure. This restructuring has enhanced the usability of the software by allowing grids to be generated on a more intuitive level. This new framework also provides a means by which the multiple block system can be edited at most any level in the grid generation process. Editing tools are currently being added to GRIDGEN so that a change to the grid can be propagated backward and forward in the data hierarchy. The new data structure, the editing tools, and other recent GRIDGEN improvements are described in this paper.

  13. Aircraft fatigue and crack growth considering loads by structural component

    NASA Technical Reports Server (NTRS)

    Yost, J. D.

    1994-01-01

    The indisputable 1968 C-130 fatigue/crack growth data is reviewed to obtain additional useful information on fatigue and crack growth. The proven Load Environment Model concept derived empirically from F-105D multichannel recorder data is refined to a simpler method by going from 8 to 5 variables in the spectra without a decrease in accuracy. This approach provides the true fatigue/crack growth and load environment by structural component for both fatigue and strength design. Methods are presented for defining fatigue scatter and damage at crack initiation. These design tools and criteria may be used for both metal and composite aircraft structure.

  14. Computer-aided design of antenna structures and components

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1976-01-01

    This paper discusses computer-aided design procedures for antenna reflector structures and related components. The primary design aid is a computer program that establishes cross sectional sizes of the structural members by an optimality criterion. Alternative types of deflection-dependent objectives can be selected for designs subject to constraints on structure weight. The computer program has a special-purpose formulation to design structures of the type frequently used for antenna construction. These structures, in common with many in other areas of application, are represented by analytical models that employ only the three translational degrees of freedom at each node. The special-purpose construction of the program, however, permits coding and data management simplifications that provide advantages in problem size and execution speed. Size and speed are essentially governed by the requirements of structural analysis and are relatively unaffected by the added requirements of design. Computation times to execute several design/analysis cycles are comparable to the times required by general-purpose programs for a single analysis cycle. Examples in the paper illustrate effective design improvement for structures with several thousand degrees of freedom and within reasonable computing times.

  15. Advanced method and processing technology for complicated shape airframe part forming

    NASA Technical Reports Server (NTRS)

    Miodushevsky, P. V.; Rajevskaya, G. A.

    1994-01-01

    Slow deformation modes of forming give considerably higher residual fatigue life of the airframe part. It has experimentally proven that fatigue life of complicated shape integral airframe panels made of high strength aluminum alloys is significantly increased after creep deformation process. To implement the slow deformation mode forming methods, universal automated equipment was developed. Multichannel forming systems provide high accuracy of airframe part shape eliminating residual stresses and spring effect. Forming process multizone control technology was developed and experimentally proved that static/fatigue properties of formed airframe parts are increased.

  16. Development of airframe design technology for crashworthiness.

    NASA Technical Reports Server (NTRS)

    Kruszewski, E. T.; Thomson, R. G.

    1973-01-01

    This paper describes the NASA portion of a joint FAA-NASA General Aviation Crashworthiness Program leading to the development of improved crashworthiness design technology. The objectives of the program are to develop analytical technology for predicting crashworthiness of structures, provide design improvements, and perform full-scale crash tests. The analytical techniques which are being developed both in-house and under contract are described, and typical results from these analytical programs are shown. In addition, the full-scale testing facility and test program are discussed.

  17. Crash Testing of Helicopter Airframe Fittings

    NASA Technical Reports Server (NTRS)

    Clarke, Charles W.; Townsend, William; Boitnott, Richard

    2004-01-01

    As part of the Rotary Wing Structures Technology Demonstration (RWSTD) program, a surrogate RAH-66 seat attachment fitting was dynamically tested to assess its response to transient, crash impact loads. The dynamic response of this composite material fitting was compared to the performance of an identical fitting subjected to quasi-static loads of similar magnitude. Static and dynamic tests were conducted of both smaller bench level and larger full-scale test articles. At the bench level, the seat fitting was supported in a steel fixture, and in the full-scale tests, the fitting was integrated into a surrogate RAH-66 forward fuselage. Based upon the lessons learned, an improved method to design, analyze, and test similar composite material fittings is proposed.

  18. Investigation of airframe noise for a large-scale wing model with high-lift devices

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Zaytsev, M. Yu.; Belyaev, I. V.

    2016-01-01

    The acoustic characteristics of a large-scale model of a wing with high-lift devices in the landing configuration have been studied in the DNW-NWB wind tunnel with an anechoic test section. For the first time in domestic practice, data on airframe noise at high Reynolds numbers (1.1-1.8 × 106) have been obtained, which can be used for assessment of wing noise levels in aircraft certification tests. The scaling factor for recalculating the measurement results to natural conditions has been determined from the condition of collapsing the dimensionless noise spectra obtained at various flow velocities. The beamforming technique has been used to obtain localization of noise sources and provide their ranking with respect to intensity. For flap side-edge noise, which is an important noise component, a noise reduction method has been proposed. The efficiency of this method has been confirmed in DNW-NWB experiments.

  19. Nde of Bonded Aluminum Components on Aircraft Structures

    NASA Astrophysics Data System (ADS)

    Barnard, Daniel J.; Hsu, David K.; Foreman, Cory; Wendt, Scott; Kreitinger, Nicholas A.; Steffes, Gary J.

    2008-02-01

    Bonded aluminum structures have been commonly used on aircraft for many years, and many of these applications include flight control surfaces. These bonded structures can be made up of aluminum face sheets adhesively bonded to a central honeycomb core, or they could also be composed of machined components that are bonded in a tongue-in-groove type manner called Grid-Lock. Nondestructive Inspection (NDI) methods of bonded aluminum structures usually involve the detection of skin-to-core disbonds, core buckling and damage caused by impacts. In the case of Grid-Lock, NDI techniques are focused on the detection of failures in the tongue-in-groove adhesive joint. Three nondestructive inspection methods were applied to honeycomb sandwich structures and Grid-Lock panels. The three methods were computer aided tap test (CATT), air-coupled ultrasonic testing (ACUT), and mechanical impedance analysis (MIA). The honeycomb structures tested consisted of structural panels and flight control surfaces from various aircraft. The Grid-Lock samples tested are laboratory specimens that simulate various defects. Experimental results and comparisons from each of these methods and samples will be presented.

  20. Composite Load Spectra for Select Space Propulsion Structural Components

    NASA Technical Reports Server (NTRS)

    Ho, Hing W.; Newell, James F.

    1994-01-01

    Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.

  1. Application of Circulation Control Technology to Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Sankar, L. N.; Englar, R. J.; Munro, Scott E.; Li, Yi; Gaeta, R. J.

    2003-01-01

    This report is a summary of the work performed by Georgia Tech Research Institute (GTRI) under NASA Langley Grant NAG-1-2146, which was awarded as a part of NASA's Breakthrough Innovative Technologies (BIT) initiative. This was a three-year program, with a one-year no-cost extension. Each year's study has been an integrated effort consisting of computational fluid dynamics, experimental aerodynamics, and detailed noise and flow measurements. Year I effort examined the feasibility of reducing airframe noise by replacing the conventional wing systems with a Circulation Control Wing (CCW), where steady blowing was used through the trailing edge of the wing over a Coanda surface. It was shown that the wing lift increases with CCW blowing and indeed for the same lift, a CCW wing was shown to produce less noise. Year 2 effort dealt with a similar study on the role of pulsed blowing on airframe noise. The main objective of this portion of the study was to assess whether pulse blowing from the trailing edge of a CCW resulted in more, less, or the same amount of radiated noise to the farfield. Results show that a reduction in farfield noise of up to 5 dB is measured when pulse flow is compared with steady flow for an equivalent lift configuration. This reduction is in the spectral region associated with the trailing edge jet noise. This result is due to the unique advantage that pulsed flow has over steady flow. For a range of frequencies, more lift is experienced with the same mass flow as the steady case. Thus, for an equivalent lift and slot height, the pulsed system can operate at lower jet velocities, and hence lower jet noise. The computational analysis showed that for a given time-averaged mass flow rate, pulsed jets give a higher value of C(sub l) and a higher L/D than equivalent steady jets. This benefit is attributable to higher instantaneous jet velocities, and higher instantaneous C(sub mu) values for the pulsed jet. Pulsed jet benefits increase at higher

  2. Ground Shake Test of the Boeing Model 360 Helicopter Airframe

    NASA Technical Reports Server (NTRS)

    Reed, D. A.; Gabel, R.

    1989-01-01

    Boeing Helicopters, together with other U.S. Helicopter manufacturers, is engaged in a finite element applications program designed to emplace in the U.S. a superior capability to utilize finite element analysis models in support of helicopter airframe structurel design. This program was given the acronym DAMVIBS (Design Analysis Methods for VIBrationS). The test plan is reviewed and results are presented for a shake test of the Boeing Model 360 helicopter. Results of the test will serve as the basis for validation of a finite element vibration model of the helicopter.

  3. Should we attempt global (inlet engine airframe) control design?

    NASA Technical Reports Server (NTRS)

    Carlin, C. M.

    1980-01-01

    The feasibility of multivariable design of the entire airplane control system is briefly addressed. An intermediate step in that direction is to design a control for an inlet engine augmentor system by using multivariable techniques. The supersonic cruise large scale inlet research program is described which will provide an opportunity to develop, integrate, and wind tunnel test a control for a mixed compression inlet and variable cycle engine. The integrated propulsion airframe control program is also discussed which will introduce the problem of implementing MVC within a distributed processing avionics architecture, requiring real time decomposition of the global design into independent modules in response to hardware communication failures.

  4. Airframe-integrated propulsion system for hypersonic cruise vehicles

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Huber, P. W.

    1978-01-01

    Research on a new, hydrogen burning, airbreathing engine concept which offers good potential for efficient hypersonic cruise vehicles is considered. Features of the engine which lead to good performance include; extensive engine-airframe integration, fixed geometry, low cooling, and the control of heat release in the supersonic combustor by mixed-modes of fuel injection from the combustor entrance. The engine concept is described along with results from inlet tests, direct-connect combustor tests, and tests of two subscale boiler-plate research engines presently underway at conditions which simulate flight at Mach 4 and 7.

  5. Study of hypersonic propulsion/airframe integration technology

    NASA Technical Reports Server (NTRS)

    Hartill, W. R.; Goebel, T. P.; Vancamp, V. V.

    1978-01-01

    An assessment is done of current and potential ground facilities, and analysis and flight test techniques for establishing a hypersonic propulsion/airframe integration technology base. A mach 6 cruise prototype aircraft incorporating integrated Scramjet engines was considered the baseline configuration, and the assessment focused on the aerodynamic and configuration aspects of the integration technology. The study describes the key technology milestones that must be met to permit a decision on development of a prototype vehicle, and defines risk levels for these milestones. Capabilities and limitations of analysis techniques, current and potential ground test facilities, and flight test techniques are described in terms of the milestones and risk levels.

  6. Studies of engine-airframe integrated hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Saland, H.; Fox, H.; Hoydysh, W.

    1972-01-01

    A parametric study of an integrated airframe and engine is presented for a hypersonic transport at an altitude of 70,000 feet and a free stream Mach number of 6. The engine considered is a subsonic combustion ramjet using conventional hydrocarbon fuels. The lift-to-drag ratio of the aircraft for two configurations, one with full capture and accelerated flight and the other allowing spillage of the leading shock and in unaccelerated flight, is studied. The parameters varied are the engine efficiencies, the angle of attack, the combustion rates, as well as the captured mass flow. Lift-to-drag ratios on the order of 6.5 are obtained.

  7. Structural ECM components in the premetastatic and metastatic niche.

    PubMed

    Høye, Anette M; Erler, Janine T

    2016-06-01

    The aim of this review is to give an overview of the extracellular matrix (ECM) components that are important for creating structural changes in the premetastatic and metastatic niche. The successful arrival and survival of cancer cells that have left the primary tumor and colonized distant sites depends on the new microenvironment they encounter. The primary tumor itself releases factors into the circulation that travel to distant organs and then initiate structural changes, both non-enzymatic and enzymatic, to create a favorable niche for the disseminating tumor cells. Therapeutic strategies aimed at targeting cell-ECM interactions may well be one of the best viable approaches to combat metastasis and thus improve patient care. PMID:27053524

  8. Detection of Component Failures for Smart Structure Control Systems

    NASA Astrophysics Data System (ADS)

    Okubo, Hiroshi

    Uncertainties in the dynamics model of a smart structure are often of significance due to model errors caused by parameter identification errors and reduced-order modeling of the system. Design of a model-based Failure Detection and Isolation (FDI) system for smart structures, therefore, needs careful consideration regarding robustness with respect to such model uncertainties. In this paper, we proposes a new method of robust fault detection that is insensitive to the disturbances caused by unknown modeling errors while it is highly sensitive to the component failures. The capability of the robust detection algorithm is examined for the sensor failure of a flexible smart beam control system. It is shown by numerical simulations that the proposed method suppresses the disturbances due to model errors and markedly improves the detection performance.

  9. Magnons in one-dimensional k-component Fibonacci structures

    SciTech Connect

    Costa, C. H.; Vasconcelos, M. S.

    2014-05-07

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  10. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H. W.; Kurth, R. E.

    1991-01-01

    The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.

  11. Development of a SMA-Based, Slat-Gap Filler for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Long, David L.

    2015-01-01

    Noise produced by unsteady flow around aircraft structures, termed airframe noise, is an important source of aircraft noise during the approach and landing phases of flight. Conventional leading-edge-slat devices for high lift on typical transport aircraft are a prominent source of airframe noise. Many concepts for slat noise reduction have been investigated. Slat-cove fillers have emerged as an attractive solution, but they maintain the gap flow, leaving some noise production mechanisms unabated, and thus represent a nonoptimal solution. Drooped-leading-edge (DLE) concepts have been proposed as "optimal" because the gap flow is eliminated. The deployed leading edge device is not distinct and separate from the main wing in DLE concepts and the high-lift performance suffers at high angles of attack (alpha) as a consequence. Elusive high-alpha performance and excessive weight penalty have stymied DLE development. The fact that high-lift performance of DLE systems is only affected at high alpha suggests another concept that simultaneously achieves the high-lift of the baseline airfoil and the noise reduction of DLE concepts. The concept involves utilizing a conventional leading-edge slat device and a deformable structure that is deployed from the leading edge of the main wing and closes the gap between the slat and main wing, termed a slat-gap filler (SGF). The deployable structure consists of a portion of the skin of the main wing and it is driven in conjunction with the slat during deployment and retraction. Benchtop models have been developed to assess the feasibility and to study important parameters. Computational models have assisted in the bench-top model design and provided valuable insight in the parameter space as well as the feasibility.

  12. Investigation of Volumetric Sources in Airframe Noise Simulations

    NASA Technical Reports Server (NTRS)

    Casper, Jay H.; Lockard, David P.; Khorrami, Mehdi R.; Streett, Craig L.

    2004-01-01

    Hybrid methods for the prediction of airframe noise involve a simulation of the near field flow that is used as input to an acoustic propagation formula. The acoustic formulations discussed herein are those based on the Ffowcs Williams and Hawkings equation. Some questions have arisen in the published literature in regard to an apparently significant dependence of radiated noise predictions on the location of the integration surface used in the solution of the Ffowcs Williams and Hawkings equation. These differences in radiated noise levels are most pronounced between solid-body surface integrals and off-body, permeable surface integrals. Such differences suggest that either a non-negligible volumetric source is contributing to the total radiation or the input flow simulation is suspect. The focus of the current work is the issue of internal consistency of the flow calculations that are currently used as input to airframe noise predictions. The case study for this research is a computer simulation for a three-element, high-lift wing profile during landing conditions. The noise radiated from this flow is predicted by a two-dimensional, frequency-domain formulation of the Ffowcs Williams and Hawkings equation. Radiated sound from volumetric sources is assessed by comparison of a permeable surface integration with the sum of a solid-body surface integral and a volume integral. The separate noise predictions are found in good agreement.

  13. Fabrication and development of several heat pipe honeycomb sandwich panel concepts. [airframe integrated scramjet engine

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1982-01-01

    The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon; a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation; nine panels were processed as heat pipes, and two panels were left unprocessed.

  14. Correlation of AH-1G airframe flight vibration data with a coupled rotor-fuselage analysis

    NASA Technical Reports Server (NTRS)

    Sangha, K.; Shamie, J.

    1990-01-01

    The formulation and features of the Rotor-Airframe Comprehensive Analysis Program (RACAP) is described. The analysis employs a frequency domain, transfer matrix approach for the blade structural model, a time domain wake or momentum theory aerodynamic model, and impedance matching for rotor-fuselage coupling. The analysis is applied to the AH-1G helicopter, and a correlation study is conducted on fuselage vibration predictions. The purpose of the study is to evaluate the state-of-the-art in helicopter fuselage vibration prediction technology. The fuselage vibration predicted using RACAP are fairly good in the vertical direction and somewhat deficient in the lateral/longitudinal directions. Some of these deficiencies are traced to the fuselage finite element model.

  15. State of the Art in Beta Titanium Alloys for Airframe Applications

    NASA Astrophysics Data System (ADS)

    Cotton, James D.; Briggs, Robert D.; Boyer, Rodney R.; Tamirisakandala, Sesh; Russo, Patrick; Shchetnikov, Nikolay; Fanning, John C.

    2015-06-01

    Beta titanium alloys were recognized as a distinct materials class in the 1950s, and following the introduction of Ti-13V-11Cr-3Al in the early 1960s, intensive research occurred for decades thereafter. By the 1980s, dozens of compositions had been explored and sufficient work had been accomplished to warrant the first major conference in 1983. Metallurgists of the time recognized beta alloys as highly versatile and capable of remarkable property development at much lower component weights than steels, coupled with excellent corrosion resistance. Although alloys such as Ti-15V-3Al-3Sn-3Cr, Ti-10V-2Fe-3Al and Ti-3AI-8V-6Cr-4Mo-4Zr (Beta C) were commercialized into well-known airframe systems by the 1980s, Ti-13V-11Cr-3Al was largely discarded following extensive employment on the SR-71 Blackbird. The 1990s saw the implementation of specialty beta alloys such as Beta 21S and Alloy C, in large part for their chemical and oxidation resistance. It was also predicted that by the 1990s, cost would be the major limitation on expansion into new applications. This turned out to be true and is part of the reason for some stagnation in commercialization of new such compositions over the past two decades, despite a good understanding of the relationships among chemistry, processing, and performance and some very attractive offerings. Since then, only a single additional metastable beta alloy, Ti-5Al-5V-5Mo-3Cr-0.5Fe, has been commercialized in aerospace, although low volumes of other chemistries have found a place in the biomedical implant market. This article examines the evolution of this important class of materials and the current status in airframe applications. It speculates on challenges for expanding their use.

  16. X-Aerogels for Structural Components and High Temperature Applications

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Future NASA missions and space explorations rely on the use of materials that are strong ultra lightweight and able to withstand extreme temperatures. Aerogels are low density (0.01-0.5 g/cu cm) high porosity materials that contain a glass like structure formed through standard sol-gel chemistry. As a result of these structural properties, aerogels are excellent thermal insulators and are able to withstand temperatures in excess of l,000 C. The open structure of aerogels, however, renders these materials extremely fragile (fracturing at stress forces less than 0.5 N/sq cm). The goal of NASA Glenn Research Center is to increase the strength of these materials by templating polymers and metals onto the surface of an aerogel network facilitating the use of this material for practical applications such as structural components of space vehicles used in exploration. The work this past year focused on two areas; (1) the research and development of new templated aerogels materials and (2) process development for future manufacturing of structural components. Research and development occurred on the production and characterization of new templating materials onto the standard silica aerogel. Materials examined included polymers such as polyimides, fluorinated isocyanates and epoxies, and, metals such as silver, gold and platinum. The final properties indicated that the density of the material formed using an isocyanate is around 0.50 g/cc with a strength greater than that of steel and has low thermal conductivity. The process used to construct these materials is extremely time consuming and labor intensive. One aspect of the project involved investigating the feasibility of shortening the process time by preparing the aerogels in the templating solvent. Traditionally the polymerization used THF as the solvent and after several washes to remove any residual monomers and water, the solvent around the aerogels was changed to acetonitrile for the templating step. This process

  17. Investigation on the use of optimization techniques for helicopter airframe vibrations design studies

    NASA Technical Reports Server (NTRS)

    Sreekanta Murthy, T.

    1992-01-01

    Results of the investigation of formal nonlinear programming-based numerical optimization techniques of helicopter airframe vibration reduction are summarized. The objective and constraint function and the sensitivity expressions used in the formulation of airframe vibration optimization problems are presented and discussed. Implementation of a new computational procedure based on MSC/NASTRAN and CONMIN in a computer program system called DYNOPT for optimizing airframes subject to strength, frequency, dynamic response, and dynamic stress constraints is described. An optimization methodology is proposed which is thought to provide a new way of applying formal optimization techniques during the various phases of the airframe design process. Numerical results obtained from the application of the DYNOPT optimization code to a helicopter airframe are discussed.

  18. Structure of the basal components of a bacterial transporter

    SciTech Connect

    Meisner, Jeffrey; Maehigashi, Tatsuya; André, Ingemar; Dunham, Christine M.; Moran, Jr., Charles P.

    2012-12-10

    Proteins SpoIIQ and SpoIIIAH interact through two membranes to connect the forespore and the mother cell during endospore development in the bacterium Bacillus subtilis. SpoIIIAH consists of a transmembrane segment and an extracellular domain with similarity to YscJ proteins. YscJ proteins form large multimeric rings that are the structural scaffolds for the assembly of type III secretion systems in Gram-negative bacteria. The predicted ring-forming motif of SpoIIIAH and other evidence led to the model that SpoIIQ and SpoIIIAH form the core components of a channel or transporter through which the mother cell nurtures forespore development. Therefore, to understand the roles of SpoIIIAH and SpoIIQ in channel formation, it is critical to determine whether SpoIIIAH adopts a ring-forming structural motif, and whether interaction of SpoIIIAH with SpoIIQ would preclude ring formation. We report a 2.8-{angstrom} resolution structure of a complex of SpoIIQ and SpoIIIAH. SpoIIIAH folds into the ring-building structural motif, and modeling shows that the structure of the SpoIIQ-SpoIIIAH complex is compatible with forming a symmetrical oligomer that is similar to those in type III systems. The inner diameters of the two most likely ring models are large enough to accommodate several copies of other integral membrane proteins. SpoIIQ contains a LytM domain, which is found in metalloendopeptidases, but lacks residues important for metalloprotease activity. Other LytM domains appear to be involved in protein-protein interactions. We found that the LytM domain of SpoIIQ contains an accessory region that interacts with SpoIIIAH.

  19. Performance categorization of structures, systems & components and related issues

    SciTech Connect

    Hossain, Q.A.

    1993-09-30

    Provisions of DOE-STD-1021-93 on performance categorization of structures, systems and components (SSCs) subjected to natural phenomena hazards (NPHs) are summarized. The interrelationship among safety classification of SSCs (per DOE 6430.1A and DOE 5480.30), facility hazard categorization/classification (per DOE 5481.1B and DOE 5480.23), and NPH performance categorization of SSCs (per DOE 5480.28 and DOE-STD-1021-93) is discussed. The compatibility between the safety goals in the Department of Energy Safety Policy, SEN-35-91, and the numerical NPH performance goals of DOE 5480.28, as presented in UCRL-ID-12612 (draft), is examined.

  20. Induced radioactivity of LDEF materials and structural components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Laird, C. E.; Fishman, G. J.; Parnell, T. A.; Camp, D. C.; Frederick, C. E.; Hurley, D. L.; Lindstrom, D. J.; Moss, C. E.; Reedy, R. C.; Reeves, J. H.; Smith, A. R.; Winn, W. G.; Benton, E. V.

    1996-01-01

    We present an overview of the Long Duration Exposure Facility (LDEF) induced activation measurements. The LDEF, which was gravity-gradient stabilized, was exposed to the low Earth orbit (LEO) radiation environment over a 5.8 year period. Retrieved activation samples and structural components from the spacecraft were analyzed with low and ultra-low background HPGe gamma spectrometry at several national facilities. This allowed a very sensitive measurement of long-lived radionuclides produced by proton- and neutron-induced reactions in the time-dependent, non-isotropic LEO environment. A summary of major findings from this study is given that consists of directionally dependent activation, depth profiles, thermal neutron activation, and surface beryllium-7 deposition from the upper atmosphere. We also describe a database of these measurements that has been prepared for use in testing radiation environmental models and spacecraft design.

  1. Induced radioactivity of LDEF materials and structural components.

    PubMed

    Harmon, B A; Laird, C E; Fishman, G J; Parnell, T A; Camp, D C; Frederick, C E; Hurley, D L; Lindstrom, D J; Moss, C E; Reedy, R C; Reeves, J H; Smith, A R; Winn, W G; Benton, E V

    1996-11-01

    We present an overview of the Long Duration Exposure Facility (LDEF) induced activation measurements. The LDEF, which was gravity-gradient stabilized, was exposed to the low Earth orbit (LEO) radiation environment over a 5.8 year period. Retrieved activation samples and structural components from the spacecraft were analyzed with low and ultra-low background HPGe gamma spectrometry at several national facilities. This allowed a very sensitive measurement of long-lived radionuclides produced by proton- and neutron-induced reactions in the time-dependent, non-isotropic LEO environment. A summary of major findings from this study is given that consists of directionally dependent activation, depth profiles, thermal neutron activation, and surface beryllium-7 deposition from the upper atmosphere. We also describe a database of these measurements that has been prepared for use in testing radiation environmental models and spacecraft design. PMID:11540519

  2. 3D printed components with ultrasonically arranged microscale structure

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, Thomas M.; Drinkwater, Bruce W.; Trask, Richard S.

    2016-02-01

    This paper shows the first application of in situ manipulation of discontinuous fibrous structure mid-print, within a 3D printed polymeric composite architecture. Currently, rapid prototyping methods (fused filament fabrication, stereolithography) are gaining increasing popularity within the engineering commnity to build structural components. Unfortunately, the full potential of these components is limited by the mechanical properties of the materials used. The aim of this study is to create and demonstrate a novel method to instantaneously orient micro-scale glass fibres within a selectively cured photocurable resin system, using ultrasonic forces to align the fibres in the desired 3D architecture. To achieve this we have mounted a switchable, focused laser module on the carriage of a three-axis 3D printing stage, above an in-house ultrasonic alignment rig containing a mixture of photocurable resin and discontinuous 14 μm diameter glass fibre reinforcement(50 μm length). In our study, a suitable print speed of 20 mm s-1 was used, which is comparable to conventional additive layer techniques. We show the ability to construct in-plane orthogonally aligned sections printed side by side, where the precise orientation of the configurations is controlled by switching the ultrasonic standing wave profile mid-print. This approach permits the realisation of complex fibrous architectures within a 3D printed landscape. The versatile nature of the ultrasonic manipulation technique also permits a wide range of particle types (diameters, aspect ratios and functions) and architectures (in-plane, and out-plane) to be patterned, leading to the creation of a new generation of fibrous reinforced composites for 3D printing.

  3. Structure and phase behavior in five-component microemulsions

    SciTech Connect

    Billman, J.F. ); Kaler, E.W. )

    1990-03-01

    Droplet-to-bicontinuous structure transitions in a family of five-component microemulsions formed with sodium 4-(1{prime}-heptylnonyl)benzenesulfonate, isobutyl alcohol, D{sub 2}O, sodium chloride, and alkanes with even carbon numbers from octane to hexadecane are probed by using small-angle neutron scattering, electrical conductivity, and NMR self-diffusion measurements. The phase behavior and structure of these microemulsions are intimately linked and depend on salinity and the chain length of the alkane. Both the range of salt concentration in which the three-phase region is observed and the range of microemulsion water volume fraction within the three-phase region decrease with decreasing alkane chain length. Further, the appearance of the three-phase region is preceded by droplet-to-bicontinuous transitions. Microemulsions not exhibiting three-phase regions become bicontinuous only when they contain equal amounts of oil and water. The coincidence of the so-called percolation thresholds as determined by using electrical conductivity and self-diffusion measurements shows that electrical conduction in a dispersion of water droplets occurs with the exchange of material between the droplets.

  4. Bonding and structure in dense multi-component molecular mixtures.

    PubMed

    Meyer, Edmund R; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D; Collins, Lee A

    2015-10-28

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. A basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers. PMID:26520533

  5. Bonding and structure in dense multi-component molecular mixtures

    DOE PAGESBeta

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D.; Collins, Lee A.

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systemsmore » engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.« less

  6. Recognizing genes and other components of genomic structure

    SciTech Connect

    Burks, C. ); Myers, E. . Dept. of Computer Science); Stormo, G.D. . Dept. of Molecular, Cellular and Developmental Biology)

    1991-01-01

    The Aspen Center for Physics (ACP) sponsored a three-week workshop, with 26 scientists participating, from 28 May to 15 June, 1990. The workshop, entitled Recognizing Genes and Other Components of Genomic Structure, focussed on discussion of current needs and future strategies for developing the ability to identify and predict the presence of complex functional units on sequenced, but otherwise uncharacterized, genomic DNA. We addressed the need for computationally-based, automatic tools for synthesizing available data about individual consensus sequences and local compositional patterns into the composite objects (e.g., genes) that are -- as composite entities -- the true object of interest when scanning DNA sequences. The workshop was structured to promote sustained informal contact and exchange of expertise between molecular biologists, computer scientists, and mathematicians. No participant stayed for less than one week, and most attended for two or three weeks. Computers, software, and databases were available for use as electronic blackboards'' and as the basis for collaborative exploration of ideas being discussed and developed at the workshop. 23 refs., 2 tabs.

  7. Development and fabrication of structural components for a scramjet engine

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.

    1990-01-01

    A program broadly directed toward design and development of long-life (100 hours and 1,000 cycles with a goal of 1,000 hours and 10,000 cycles) hydrogen-cooled structures for application to scramjets is presented. Previous phases of the program resulted in an overall engine design and analytical and experimental characterization of selected candidate materials and concepts. The latter efforts indicated that the basic life goals for the program can be reached with available means. The main objective of this effort was an integrated, experimental evaluation of the results of the previous program phases. The fuel injection strut was selected for this purpose, including fabrication development and fabrication of a full-scale strut. Testing of the completed strut was to be performed in a NASA-Langley wind tunnel. In addition, conceptual designs were formulated for a heat transfer test unit and a flat panel structural test unit. Tooling and fabrication procedures required to fabricate the strut were developed, and fabrication and delivery to NASA of all strut components, including major subassemblies, were completed.

  8. Bonding and structure in dense multi-component molecular mixtures

    SciTech Connect

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; Hamel, Sebastien; Redmer, Ronald; Kress, Joel D.; Collins, Lee A.

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

  9. Plan, execute, and discuss vibration measurements and correlations to evaluate a NASTRAN finite element model of the AH-64 helicopter airframe

    NASA Technical Reports Server (NTRS)

    Ferg, D.; Foote, L.; Korkosz, G.; Straub, F.; Toossi, M.; Weisenburger, R.

    1990-01-01

    A ground vibration test was performed on the AH-64 (Apache) helicopter to determine the frequency response of the airframe. The structure was excited at both the main and tail rotor hubs, separately, and response measurements were taken at 102 locations throughout the fuselage structure. Frequency responses were compared and correlated with results from a NASTRAN finite element model of AH-64. In addition, natural frequencies and mode shapes were estimated from the frequency response data and were correlated with analytical results.

  10. Quantifying Ecosystem Structural Components with Highly Portable Lidar

    NASA Astrophysics Data System (ADS)

    Schaaf, C.; Paynter, I.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.

    2015-12-01

    Terrestrial laser scanners (TLS), which utilize light detection and ranging (lidar) have demonstrated the ability to produce accurate reconstructions of ecosystems, including spatially complex systems such as forests. Reconstructions at the object or plot scale can be used to interpret or simulate satellite observations, particularly for lidar instruments such as those involved in the forthcoming GEDI and ICESat 2 missions. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The rapid scanning of the CBL and similar highly portable TLS improve acquisition of 3D surfaces such as canopy height models and digital elevation models derived from point clouds. This is due to the ability to capture additional scanning points within the window of temporal stability for the ecosystem, mitigating the rapid loss of information density associated with distance and occlusion. Utilizing terrestrial lidar in tandem with airborne lidar profiles vertically distributed structural components of ecosystems, such as the canopy of forests. We will present 3D surfaces documenting the growth of vegetation species including the invasive Phragmites australis over the 2015 growing season at Plum Island Long Term Ecological Research sites, derived from CBL. Additionally we will show vertical structure profiles from voxelization analyses in tropical forest (La Selva, Costa Rica) and temperate forest (Harvard Forest, MA, USA). We will discuss and present results from emerging point cloud reconstruction methods, including the Quantitative Structure Model (QSM) for tree modeling, and their implications particularly for GEDI-related calibration and validation studies.

  11. Cyanobacterial Two-Component Proteins: Structure, Diversity, Distribution, and Evolution†

    PubMed Central

    Ashby, Mark K.; Houmard, Jean

    2006-01-01

    A survey of the already characterized and potential two-component protein sequences that exist in the nine complete and seven partially annotated cyanobacterial genome sequences available (as of May 2005) showed that the cyanobacteria possess a much larger repertoire of such proteins than most other bacteria. By analysis of the domain structure of the 1,171 potential histidine kinases, response regulators, and hybrid kinases, many various arrangements of about thirty different modules could be distinguished. The number of two-component proteins is related in part to genome size but also to the variety of physiological properties and ecophysiologies of the different strains. Groups of orthologues were defined, only a few of which have representatives with known physiological functions. Based on comparisons with the proposed phylogenetic relationships between the strains, the orthology groups show that (i) a few genes, some of them clustered on the genome, have been conserved by all species, suggesting their very ancient origin and an essential role for the corresponding proteins, and (ii) duplications, fusions, gene losses, insertions, and deletions, as well as domain shuffling, occurred during evolution, leading to the extant repertoire. These mechanisms are put in perspective with the different genetic properties that cyanobacteria have to achieve genome plasticity. This review is designed to serve as a basis for orienting further research aimed at defining the most ancient regulatory mechanisms and understanding how evolution worked to select and keep the most appropriate systems for cyanobacteria to develop in the quite different environments that they have successfully colonized. PMID:16760311

  12. Impact of broad-specification fuels on future jet aircraft. [engine components and performance

    NASA Technical Reports Server (NTRS)

    Grobman, J. S.

    1978-01-01

    The effects that broad specification fuels have on airframe and engine components were discussed along with the improvements in component technology required to use broad specification fuels without sacrificing performance, reliability, maintainability, or safety.

  13. Bibliography on aerodynamics of airframe/engine integration of high-speed turbine-powered aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. R.

    1980-01-01

    This bibliography was developed as a first step in the preparation of a monograph on the subject of the aerodynamics of airframe/engine integration of high speed turbine powered aircraft. It lists 1535 unclassified documents published mainly in the period from 1955 to 1980. Primary emphasis was devoted to aerodynamic problems and interferences encountered in the integration process; however, extensive coverage also was given to the characteristics and problems of the isolated propulsion system elements. A detailed topic breakdown structure is used. The primary contents of the individual documents are indicated by the combination of the document's title and its location within the framework of the bibliography.

  14. Experimental Results of the 2.7% Reference H Nacelle Airframe Interference High Speed Civil Transport Model

    NASA Technical Reports Server (NTRS)

    Cappuccio, Gelsomina

    1999-01-01

    Experiments were conducted in the NASA Ames 9-Ft by 7-Ft Supersonic and 11-Ft by 11-Ft Transonic Wind Tunnels of a 2.7% Reference H (Ref. H) Nacelle Airframe Interference (NAI) High Speed Civil Transport (HSCT) model. NASA Ames did the experiment with the cooperation and assistance of Boeing and McDonnell Douglas. The Ref. H geometry was designed by Boeing. The model was built and tested by NASA under a license agreement with Boeing. Detailed forces and pressures of individual components of the configuration were obtained to assess nacelle airframe interference through the transonic and supersonic flight regime. The test apparatus was capable of measuring forces and pressures of the Wing body (WB) and nacelles. Axisymmetric and 2-D inlet nacelles were tested with the WB in both the in-proximity and captive mode. The in-proximity nacelles were mounted to a nacelle support system apparatus and were individually positioned. The right hand nacelles were force instrumented with flow through strain-gauged balances and the left hand nacelles were pressure instrumented. Mass flow ratio was varied to get steady state inlet unstart data. In addition, supersonic spillage data was taken by testing the 2-D inlet nacelles with ramps and the axisymmetric inlet nacelles with an inlet centerbody for the Mach condition of interest. The captive nacelles, both axisymmetric and 2-D, were attached to the WB via diverters. The captive 2-D inlet nacelle was also tested with ramps to get supersonic spillage data. Boeing analyzed the data and showed a drag penalty of four drag counts for the 2-D compared with the axisymmetric inlet nacelle. Two of the four counts were attributable to the external bevel designed into the 2-D inlet contour. Boeing and McDonnell Douglas used these data for evaluating Computational Fluid Dynamic (CFD) codes and for evaluation of nacelle airframe integration problems and solutions.

  15. CHEMICAL STRUCTURES IN COAL: GEOCHEMICAL EVIDENCE FOR THE PRESENCE OF MIXED STRUCTURAL COMPONENTS.

    USGS Publications Warehouse

    Hatcher, P.G.; Breger, I.A.; Maciel, G.E.; Szeverenyi, N.M.

    1983-01-01

    The purpose of this paper is to summarize work on the chemical structural components of coal, comparing them with their possible plant precursors in modern peat. Solid-state **1**3C nuclear magnetic resonance (NMR), infrared spectroscopy (IR), elemental analysis and, in some cases, individual compound analyses formed the bases for these comparisons.

  16. Structural materials for ITER in-vessel component design

    NASA Astrophysics Data System (ADS)

    Kalinin, G.; Gauster, W.; Matera, R.; Tavassoli, A.-A. F.; Rowcliffe, A.; Fabritsiev, S.; Kawamura, H.

    1996-10-01

    The materials proposed for ITER in-vessel components have to exhibit adequate performance for the operating lifetime of the reactor or for specified replacement intervals. Estimates show that maximum irradiation dose to be up to 5-7 dpa (for 1 MWa/m 2 in the basic performance phase (BPP)) within a temperature range from 20 to 300°C. Austenitic SS 316LN-ITER Grade was defined as a reference option for the vacuum vessel, blanket, primary wall, pipe lines and divertor body. Conventional technologies and mill products are proposed for blanket, back plate and manifold manufacturing. HIPing is proposed as a reference manufacturing method for the primary wall and blanket and as an option for the divertor body. The existing data show that mechanical properties of HIPed SS are no worse than those of forged 316LN SS. Irradiation will result in property changes. Minimum ductility has been observed after irradiation in an approximate temperature range between 250 and 350°C, for doses of 5-10 dpa. In spite of radiation-induced changes in tensile deformation behavior, the fracture remains ductile. Irradiation assisted corrosion cracking is a concern for high doses of irradiation and at high temperatures. Re-welding is one of the critical issues because of the need to replace failed components. It is also being considered for the replacement of shielding blanket modules by breeding modules after the BPP. Estimates of radiation damage at the locations for re-welding show that the dose will not exceed 0.05 dpa (with He generation of 1 appm) for the manifold and 0.01 dpa (with He generation 0.1 appm) for the back plate for the BPP of ITER operation. Existing experimental data show that these levels will not result in property changes for SS; however, neutron irradiation and He generation promote crack formation in the heat affected zone during welding. Cu based alloys, DS-Cu (Glidcop A125) and PHCu CuCrZr bronze) are proposed as a structural materials for high heat flux

  17. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: Boeing Helicopters airframe finite element modeling

    NASA Technical Reports Server (NTRS)

    Gabel, R.; Lang, P.; Reed, D.

    1993-01-01

    Mathematical models based on the finite element method of structural analysis, as embodied in the NASTRAN computer code, are routinely used by the helicopter industry to calculate airframe static internal loads used for sizing structural members. Historically, less reliance has been placed on the vibration predictions based on these models. Beginning in the early 1980's NASA's Langley Research Center initiated an industry wide program with the objective of engendering the needed trust in vibration predictions using these models and establishing a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process. Emphasis in this paper is placed on the successful modeling of the Army/Boeing CH-47D which showed reasonable correlation with test data. A principal finding indicates that improved dynamic analysis requires greater attention to detail and perhaps a finer mesh, especially the mass distribution, than the usual stress model. Post program modeling efforts show improved correlation placing key modal frequencies in the b/rev range with 4 percent of the test frequencies.

  18. Recent Advances in Structures for Hypersonic Flight, part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The papers at this symposium were presented by 24 speakers representing airframe, missile, and engine manufacturers, the U.S. Air Force, and two NASA Research Centers. The papers cover a variety of topics including engine structures, cooled airframe structures, hot structures, thermal protection systems, cryogenic tankage structures, cryogenic insulations, and analysis methods for thermal/structures.

  19. Towards an Airframe Noise Prediction Methodology: Survey of Current Approaches

    NASA Technical Reports Server (NTRS)

    Farassat, Fereidoun; Casper, Jay H.

    2006-01-01

    In this paper, we present a critical survey of the current airframe noise (AFN) prediction methodologies. Four methodologies are recognized. These are the fully analytic method, CFD combined with the acoustic analogy, the semi-empirical method and fully numerical method. It is argued that for the immediate need of the aircraft industry, the semi-empirical method based on recent high quality acoustic database is the best available method. The method based on CFD and the Ffowcs William- Hawkings (FW-H) equation with penetrable data surface (FW-Hpds ) has advanced considerably and much experience has been gained in its use. However, more research is needed in the near future particularly in the area of turbulence simulation. The fully numerical method will take longer to reach maturity. Based on the current trends, it is predicted that this method will eventually develop into the method of choice. Both the turbulence simulation and propagation methods need to develop more for this method to become useful. Nonetheless, the authors propose that the method based on a combination of numerical and analytical techniques, e.g., CFD combined with FW-H equation, should also be worked on. In this effort, the current symbolic algebra software will allow more analytical approaches to be incorporated into AFN prediction methods.

  20. Structure of multi-component/multi-Yukawa mixtures

    NASA Astrophysics Data System (ADS)

    Blum, L.; Arias, M.

    2006-09-01

    Recent small angle scattering experiments reveal new peaks in the structure function S(k) of colloidal systems (Liu et al 2005 J. Chem. Phys. 122 044507), in a region that was inaccessible with older instruments. It has been increasingly evident that a single (or double) Yukawa MSA-closure cannot account for these observations, and three or more terms are needed. On the other hand the MSA is not sufficiently accurate (Broccio et al 2005 Preprint); more accurate theories such as the HNC have been tried. But while the MSA is asymptotically exact at high densities (Rosenfield and Blum 1986 J. Chem. Phys. 85 1556), it does not satisfy the low density asymptotics. This has been corrected in the soft MSA (Blum et al 1972 J. Chem. Phys. 56 5197, Narten et al 1974 J. Chem. Phys. 60 3378) by adding exponential type terms. The results compared to experiment and simulation for liquid sodium by Rahman and Paskin (as shown in Blum et al 1972 J. Chem. Phys. 56 5197) are remarkably good. We use here a general closure of the Ornstein-Zernike equation, which is not necessarily the MSA closure (Blum and Hernando 2001 Condensed Matter Theories vol 16 ed Hernandez and Clark (New York: Nova) p 411). \\begin{equation} \\fl c_{ij}(r)=\\sum_{n=1}^{M}{\\cal{K}}_{ij}^{(n)}\\rme^{-z_{n}r}/r\\tqs {\\cal{K}}_{ij}^{(n)}=K^{(n)}\\delta_{i}^{(n)}\\delta_{j}^{(n)}\\tqs r\\geq \\sigma_{ij} \\label{eq1} \\end{equation} with the boundary condition for gij(r) = 0 for r<=σij. This general closure of the Ornstein-Zernike equation will go well beyond the MSA since it has been tested by Monte Carlo simulation for tetrahedral water (Blum et al 1999 Physica A 265 396), toroidal ion channels (Enriquez and Blum 2005 Mol. Phys. 103 3201) and polyelectrolytes (Blum and Bernard 2004 Proc. Int. School of Physics Enrico Fermi, Course CLV vol 155, ed Mallamace and Stanley (Amsterdam: IOS Press) p 335). For this closure we get for the Laplace transform of the pair correlation function an explicitly symmetric result

  1. Application of an Integrated Methodology for Propulsion and Airframe Control Design to a STOVL Aircraft

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay; Mattern, Duane

    1994-01-01

    An advanced methodology for integrated flight propulsion control (IFPC) design for future aircraft, which will use propulsion system generated forces and moments for enhanced maneuver capabilities, is briefly described. This methodology has the potential to address in a systematic manner the coupling between the airframe and the propulsion subsystems typical of such enhanced maneuverability aircraft. Application of the methodology to a short take-off vertical landing (STOVL) aircraft in the landing approach to hover transition flight phase is presented with brief description of the various steps in the IFPC design methodology. The details of the individual steps have been described in previous publications and the objective of this paper is to focus on how the components of the control system designed at each step integrate into the overall IFPC system. The full nonlinear IFPC system was evaluated extensively in nonreal-time simulations as well as piloted simulations. Results from the nonreal-time evaluations are presented in this paper. Lessons learned from this application study are summarized in terms of areas of potential improvements in the STOVL IFPC design as well as identification of technology development areas to enhance the applicability of the proposed design methodology.

  2. Structure and compositional studies of multi-component nanoparticles

    NASA Astrophysics Data System (ADS)

    Malyavanatham, Gokul

    The laser ablation of microparticle (LAM) process was used to study nanoparticles of multi-component materials. The production process utilized laser ablation of a continuously flowing aerosol of micron-sized particles under a gas ambient. An aerosol generator entrained microparticles into a gas flow and directed them through a nozzle into a laser interaction cell. After plasma breakdown, the shock wave propagated through the microparticles and the nanoparticles condensed behind this shockwave. Two methods were developed to collect nanoparticles; the first method used supersonic impaction on substrates at room temperature to enable direct writing of thick films and the second method used electric fields to deflect and collect charged, individual nanoparticles. Two methods for generating multi-component nanostructured materials were studied. The first method involved feeding single-phase microparticles containing the desired composition. Lead Zirconate Titanate (PZT) microparticles were used to generate nanoparticles that were then impacted onto substrates to produce thick films. Quality, morphology, crystallization and composition variations of these thick films were analyzed using material characterization techniques. Segregation of elements and an overall deficiency in Zr and Ti were observed in the deposited thick films as a result of the agglomerated state of the PZT microparticles. However, the analysis for this material system was complicated by the presence of multiple compounds. To develop a further understanding of how segregation occurs in multi-component systems during the LAM process, a second method for generating multi-component nanoparticles by feeding mixtures of single component microparticles was studied. Nanoparticles generated by ablation of Cu and Au microparticle mixtures were collected electrostatically and analyzed. Interactions between exploding microparticles resulted in condensation of nanoparticles that were non-equilibrium solid

  3. Propulsion System Airframe Integration Issues and Aerodynamic Database Development for the Hyper-X Flight Research Vehicle

    NASA Technical Reports Server (NTRS)

    Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.

    1999-01-01

    NASA's Hyper-X Research Vehicle will provide a unique opportunity to obtain data on an operational airframe integrated scramjet propulsion system at true flight conditions. The airframe integrated nature of the scramjet engine with the Hyper-X vehicle results in a strong coupling effect between the propulsion system operation and the airframe s basic aerodynamic characteristics. Comments on general airframe integrated scramjet propulsion system effects on vehicle aerodynamic performance, stability, and control are provided, followed by examples specific to the Hyper-X research vehicle. An overview is provided of the current activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts. A brief summary of the Hyper-X aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics.

  4. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.

    1987-01-01

    The objective of this program is to develop generic load models to simulate the composite load spectra (CLS) that are induced in space propulsion system components representative of the space shuttle main engines (SSME). These models are being developed through describing individual component loads with an appropriate mix of deterministic and state-of-the-art probabilistic models that are related to key generic variables. Combinations of the individual loads are used to synthesize the composite loads spectra. A second approach for developing the composite loads spectra load model simulation, the option portion of the contract will develop coupled models which combine the individual load models. Statistically varying coefficients of the physical models will be used to obtain the composite load spectra.

  5. Low-Cost Composite Materials and Structures for Aircraft Applications

    NASA Technical Reports Server (NTRS)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  6. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2004-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  7. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2006-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  8. Towards Full Aircraft Airframe Noise Prediction: Lattice Boltzmann Simulations

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano

    2014-01-01

    Computational results for an 18%-scale, semi-span Gulfstream aircraft model are presented. Exa Corporation's lattice Boltzmann PowerFLOW(trademark) solver was used to perform time-dependent simulations of the flow field associated with this high-fidelity aircraft model. The simulations were obtained for free-air at a Mach number of 0.2 with the flap deflected at 39 deg (landing configuration). We focused on accurately predicting the prominent noise sources at the flap tips and main landing gear for the two baseline configurations, namely, landing flap setting without and with gear deployed. Capitalizing on the inherently transient nature of the lattice Boltzmann formulation, the complex time-dependent flow features associated with the flap were resolved very accurately and efficiently. To properly simulate the noise sources over a broad frequency range, the tailored grid was very dense near the flap inboard and outboard tips. Extensive comparison of the computed time-averaged and unsteady surface pressures with wind tunnel measurements showed excellent agreement for the global aerodynamic characteristics and the local flow field at the flap inboard and outboard tips and the main landing gear. In particular, the computed fluctuating surface pressure field for the flap agreed well with the measurements in both amplitude and frequency content, indicating that the prominent airframe noise sources at the tips were captured successfully. Gear-flap interaction effects were remarkably well predicted and were shown to affect only the inboard flap tip, altering the steady and unsteady pressure fields in that region. The simulated farfield noise spectra for both baseline configurations, obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach, were shown to be in close agreement with measured values.

  9. Design Oriented Structural Modeling for Airplane Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1999-01-01

    The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.

  10. Detection of bondline delaminations in multilayer structures with lossy components

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Winfree, William P.; Smith, B. T.; Heyman, Joseph H.

    1988-01-01

    The detection of bondline delaminations in multilayer structures using ultrasonic reflection techniques is a generic problem in adhesively bonded composite structures such as the Space Shuttles's Solid Rocket Motors (SRM). Standard pulse echo ultrasonic techniques do not perform well for a composite resonator composed of a resonant layer combined with attenuating layers. Excessive ringing in the resonant layer tends to mask internal echoes emanating from the attenuating layers. The SRM is made up of a resonant steel layer backed by layers of adhesive, rubber, liner and fuel, which are ultrasonically attenuating. The structure's response is modeled as a lossy ultrasonic transmission line. The model predicts that the acoustic response of the system is sensitive to delaminations at the interior bondlines in a few narrow frequency bands. These predictions are verified by measurements on a fabricated system. Successful imaging of internal delaminations is sensitive to proper selection of the interrogating frequency. Images of fabricated bondline delaminations are presented based on these studies.

  11. Heat-stressed structural components in combustion-engine design

    NASA Technical Reports Server (NTRS)

    Kraemer, Otto

    1938-01-01

    Heated structural parts alter their shape. Anything which hinders free heat expansion will give rise to heat stresses. Design rules are thus obtained for the heated walls themselves as well as for the adjoining parts. An important guiding principle is that of designing the heat-conducting walls as thin as possible.

  12. Release strategies for making transferable semiconductor structures, devices and device components

    DOEpatents

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  13. Release strategies for making transferable semiconductor structures, devices and device components

    DOEpatents

    Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J.

    2016-05-24

    Provided are methods for making a device or device component by providing a multi layer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  14. Release strategies for making transferable semiconductor structures, devices and device components

    DOEpatents

    Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J.

    2011-04-26

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  15. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.

  16. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts and system ducting. These models will be developed using two independent approaches. The first approach consists of using state-of-the-art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The methodology required to combine the various individual load simulation models (hot-gas dynamic, vibrations, instantaneous position, centrifugal field, etc.) into composite load spectra simulation models will be developed under this program. A computer code incorporating the various individual and composite load spectra models will be developed to construct the specific load model desired. The second approach, which is covered under the options portion of the contract, will consist of developing coupled models for composite load spectra simulation which combine the (deterministic) models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data. This report covers the efforts of the third year of the contract. The overall program status is that the turbine blade loads have been completed and implemented. The transfer duct loads are defined and are being implemented. The thermal loads for all components are defined and coding is being developed. A dynamic pressure load model is under development. The parallel work on the probabilistic methodology is essentially completed. The overall effort is being

  17. An Ongoing Role for Structural Sarcomeric Components in Maintaining Drosophila melanogaster Muscle Function and Structure

    PubMed Central

    Perkins, Alexander D.; Tanentzapf, Guy

    2014-01-01

    Animal muscles must maintain their function while bearing substantial mechanical loads. How muscles withstand persistent mechanical strain is presently not well understood. The basic unit of muscle is the sarcomere, which is primarily composed of cytoskeletal proteins. We hypothesized that cytoskeletal protein turnover is required to maintain muscle function. Using the flight muscles of Drosophila melanogaster, we confirmed that the sarcomeric cytoskeleton undergoes turnover throughout adult life. To uncover which cytoskeletal components are required to maintain adult muscle function, we performed an RNAi-mediated knockdown screen targeting the entire fly cytoskeleton and associated proteins. Gene knockdown was restricted to adult flies and muscle function was analyzed with behavioural assays. Here we analyze the results of that screen and characterize the specific muscle maintenance role for several hits. The screen identified 46 genes required for muscle maintenance: 40 of which had no previously known role in this process. Bioinformatic analysis highlighted the structural sarcomeric proteins as a candidate group for further analysis. Detailed confocal and electron microscopic analysis showed that while muscle architecture was maintained after candidate gene knockdown, sarcomere length was disrupted. Specifically, we found that ongoing synthesis and turnover of the key sarcomere structural components Projectin, Myosin and Actin are required to maintain correct sarcomere length and thin filament length. Our results provide in vivo evidence of adult muscle protein turnover and uncover specific functional defects associated with reduced expression of a subset of cytoskeletal proteins in the adult animal. PMID:24915196

  18. Design-Load Basis for LANL Structures, Systems, and Components

    SciTech Connect

    I. Cuesta

    2004-09-01

    This document supports the recommendations in the Los Alamos National Laboratory (LANL) Engineering Standard Manual (ESM), Chapter 5--Structural providing the basis for the loads, analysis procedures, and codes to be used in the ESM. It also provides the justification for eliminating the loads to be considered in design, and evidence that the design basis loads are appropriate and consistent with the graded approach required by the Department of Energy (DOE) Code of Federal Regulation Nuclear Safety Management, 10, Part 830. This document focuses on (1) the primary and secondary natural phenomena hazards listed in DOE-G-420.1-2, Appendix C, (2) additional loads not related to natural phenomena hazards, and (3) the design loads on structures during construction.

  19. Optimal glass-ceramic structures: Components of giant mirror telescopes

    NASA Technical Reports Server (NTRS)

    Eschenauer, Hans A.

    1990-01-01

    Detailed investigations are carried out on optimal glass-ceramic mirror structures of terrestrial space technology (optical telescopes). In order to find an optimum design, a nonlinear multi-criteria optimization problem is formulated. 'Minimum deformation' at 'minimum weight' are selected as contradictory objectives, and a set of further constraints (quilting effect, optical faults etc.) is defined and included. A special result of the investigations is described.

  20. The Effects of Polyunsaturated Lipid Components on bilayer Structure

    NASA Astrophysics Data System (ADS)

    Pramudya, Y.; Kiss, A.; Nguyen, Lam T.; Yuan, J.; Hirst, Linda S.

    2007-03-01

    Polyunsaturated fatty acids (PUFAs), such as DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) have been the focus of much research attention in recent years, due to their apparent health benefits and effects on cell physiology. They are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, particularly in the retinal rod cells and the central nervous system. In this work lipid bilayer structure has been investigated in lipid mixtures, incorporating polyunsaturated fatty acid moieties. The structural effects of increasing concentrations of both symmetric and asymmetric PUFA materials on the bilayer structure are investigated via synchrotron x-ray diffraction on solution samples. We observe bilayer spacings to increase with the percentage of unsaturated fatty acid lipid in the membrane, whilst the degree of ordering significantly decreases. In fact above 20% of fatty acid, well defined bilayers are no longer observed to form. Evidence of phase separation can be clearly seen from these x-ray results and in combination with AFM measurements.

  1. Design component method for sensitivity analysis of built-up structures

    NASA Technical Reports Server (NTRS)

    Choi, Kyung K.; Seong, Hwai G.

    1986-01-01

    A 'design component method' that provides a unified and systematic organization of design sensitivity analysis for built-up structures is developed and implemented. Both conventional design variables, such as thickness and cross-sectional area, and shape design variables of components of built-up structures are considered. It is shown that design of components of built-up structures can be characterized and system design sensitivity expressions obtained by simply adding contributions from each component. The method leads to a systematic organization of computations for design sensitivity analysis that is similar to the way in which computations are organized within a finite element code.

  2. 78 FR 19541 - Proposed Revision to Design of Structures, Components, Equipment and Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... published in the Federal Register (FR) on March 1, 2013 (78 FR 13911), that announced the request for comments on the proposed revisions in Chapter 3, ``Design of Structures, Components, Equipment, and Systems... COMMISSION Proposed Revision to Design of Structures, Components, Equipment and Systems AGENCY:...

  3. 78 FR 15755 - Proposed Revision to Design of Structures, Components, Equipment and Systems; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... March 1, 2013 (41 FR 13911), that announced the solicitation for comments of the proposed revision in Chapter 3, ``Design of Structures, Components, Equipment, and Systems'' and is soliciting public comment... COMMISSION Proposed Revision to Design of Structures, Components, Equipment and Systems; Correction...

  4. Design procedures for fiber composite structural components: Rods, columns and beam columns

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1983-01-01

    Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.

  5. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1986-01-01

    A multiyear program is performed with the objective to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts. Progress of the first year's effort includes completion of a sufficient portion of each task -- probabilistic models, code development, validation, and an initial operational code. This code has from its inception an expert system philosophy that could be added to throughout the program and in the future. The initial operational code is only applicable to turbine blade type loadings. The probabilistic model included in the operational code has fitting routines for loads that utilize a modified Discrete Probabilistic Distribution termed RASCAL, a barrier crossing method and a Monte Carlo method. An initial load model was developed by Battelle that is currently used for the slowly varying duty cycle type loading. The intent is to use the model and related codes essentially in the current form for all loads that are based on measured or calculated data that have followed a slowly varying profile.

  6. Flight-service evaluation of composite structural components

    NASA Technical Reports Server (NTRS)

    Dexter, H. B.

    1973-01-01

    A review of programs aimed at flight-service evaluation of composite materials in various applications is presented. These flight-service programs are expected to continue for up to 5 years and include selective reinforcement of an airplane center wing box a helicopter tail cone, and composite replacements for commercial aircraft spoilers and fairings. These longtime flight-service programs will help provide the necessary information required by commercial airlines to commit advanced composites to aircraft structures with confidence. Results of these programs will provide information concerning the stability of composite materials when subjected to various flight environments.

  7. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system components, part 2

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The technical effort and computer code enhancements performed during the sixth year of the Probabilistic Structural Analysis Methods program are summarized. Various capabilities are described to probabilistically combine structural response and structural resistance to compute component reliability. A library of structural resistance models is implemented in the Numerical Evaluations of Stochastic Structures Under Stress (NESSUS) code that included fatigue, fracture, creep, multi-factor interaction, and other important effects. In addition, a user interface was developed for user-defined resistance models. An accurate and efficient reliability method was developed and was successfully implemented in the NESSUS code to compute component reliability based on user-selected response and resistance models. A risk module was developed to compute component risk with respect to cost, performance, or user-defined criteria. The new component risk assessment capabilities were validated and demonstrated using several examples. Various supporting methodologies were also developed in support of component risk assessment.

  8. Electron microscopic examination of wastewater biofilm formation and structural components.

    PubMed Central

    Eighmy, T T; Maratea, D; Bishop, P L

    1983-01-01

    This research documents in situ wastewater biofilm formation, structure, and physiochemical properties as revealed by scanning and transmission electron microscopy. Cationized ferritin was used to label anionic sites of the biofilm glycocalyx for viewing in thin section. Wastewater biofilm formation paralleled the processes involved in marine biofilm formation. Scanning electron microscopy revealed a dramatic increase in cell colonization and growth over a 144-h period. Constituents included a variety of actively dividing morphological types. Many of the colonizing bacteria were flagellated. Filaments were seen after primary colonization of the surface. Transmission electron microscopy revealed a dominant gram-negative cell wall structure in the biofilm constituents. At least three types of glycocalyces were observed. The predominant glycocalyx possessed interstices and was densely labeled with cationized ferritin. Two of the glycocalyces appeared to mediate biofilm adhesion to the substratum. The results suggest that the predominant glycocalyx of this thin wastewater biofilm serves, in part, to: (i) enclose the bacteria in a matrix and anchor the biofilm to the substratum and (ii) provide an extensive surface area with polyanionic properties. Images PMID:6881965

  9. Optimum Design of Aerospace Structural Components Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Berke, L.; Patnaik, S. N.; Murthy, P. L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  10. Advanced subsonic transport approach noise: The relative contribution of airframe noise

    NASA Technical Reports Server (NTRS)

    Willshire, William L., Jr.; Garber, Donald P.

    1992-01-01

    With current engine technology, airframe noise is a contributing source for large commercial aircraft on approach, but not the major contributor. With the promise of much quieter jet engines with the planned new generation of high-by-pass turbofan engines, airframe noise has become a topic of interest in the advanced subsonic transport research program. The objective of this paper is to assess the contribution of airframe noise relative to the other aircraft noise sources on approach. The assessment will be made for a current technology large commercial transport aircraft and for an envisioned advanced technology aircraft. NASA's Aircraft Noise Prediction Program (ANOPP) will be used to make total aircraft noise predictions for these two aircraft types. Predicted noise levels and areas of noise contours will be used to determine the relative importance of the contributing approach noise sources. The actual set-up decks used to make the ANOPP runs for the two aircraft types are included in appendixes.

  11. Silicon carbide tritium permeation barrier for steel structural components.

    SciTech Connect

    Causey, Rion A.; Garde, Joseph Maurico; Buchenauer, Dean A.; Calderoni, Pattrick; Holschuh, Thomas, Jr.; Youchison, Dennis Lee; Wright, Matt; Kolasinski, Robert D.

    2010-09-01

    Chemical vapor deposited (CVD) silicon carbide (SiC) has superior resistance to tritium permeation even after irradiation. Prior work has shown Ultrametfoam to be forgiving when bonded to substrates with large CTE differences. The technical objectives are: (1) Evaluate foams of vanadium, niobium and molybdenum metals and SiC for CTE mitigation between a dense SiC barrier and steel structure; (2) Thermostructural modeling of SiC TPB/Ultramet foam/ferritic steel architecture; (3) Evaluate deuterium permeation of chemical vapor deposited (CVD) SiC; (4) D testing involved construction of a new higher temperature (> 1000 C) permeation testing system and development of improved sealing techniques; (5) Fabricate prototype tube similar to that shown with dimensions of 7cm {theta} and 35cm long; and (6) Tritium and hermeticity testing of prototype tube.

  12. Vertical distribution of structural components in corn stover

    SciTech Connect

    Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.; Cantrell, Keri B.; Archer, David W.; Wienhold, Brian J.; Varvel, Gary E.; Laird, David A.; Baker, John; Ochsner, Tyson E.; Novak, Jeff M.; Halvorson, Ardell D.; Arriaga, Francisco; Lightle, David T.; Hoover, Amber; Emerson, Rachel; Barbour, Nancy W.

    2014-11-17

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg⁻¹, but with an alkalinity measure of 0.83 g MJ⁻¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha⁻¹, but it would be only 1000 L ha⁻¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  13. Vertical distribution of structural components in corn stover

    SciTech Connect

    Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham; Keri B. Cantrell; David W. Archer; Brian J. Wienhold; Gary E. Varvel; David A. Laird; John Baker; Tyson E. Ochsner; Jeff M. Novak; Ardell D. Halvorson; Francisco Arriaga; David T. Lightle; Amber Hoover; Rachel Emerson; Nancy W. Barbour

    2014-11-01

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg?¹, but with an alkalinity measure of 0.83 g MJ?¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?¹, but it would be only 1000 L ha?¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  14. Vertical distribution of structural components in corn stover

    DOE PAGESBeta

    Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.; Cantrell, Keri B.; Archer, David W.; Wienhold, Brian J.; Varvel, Gary E.; Laird, David A.; Baker, John; Ochsner, Tyson E.; et al

    2014-11-17

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the earmore » averaged 16.3 ± 0.40 MJ kg⁻¹, but with an alkalinity measure of 0.83 g MJ⁻¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha⁻¹, but it would be only 1000 L ha⁻¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.« less

  15. The structural components of music perception. A functional anatomical study.

    PubMed

    Platel, H; Price, C; Baron, J C; Wise, R; Lambert, J; Frackowiak, R S; Lechevalier, B; Eustache, F

    1997-02-01

    This work explores the cerebral structures involved in the appreciation of music. We studied six young healthy subjects (right handed, French, without musical talent), using a high resolution PET device (CTI 953B) and 15O-labelled water. In three tasks, we studied the effects of selective attention to pitch, timbre and rhythm; a final task studied semantic familiarity with tunes (considered as divided attention for pitch and rhythm). These four tasks were performed on the same material (a tape consisting of 30 randomly arranged sequences of notes). We selected a paradigm, without a reference task, to compare the activations produced by attention to different parameters of the same stimulus. We expected that the activations recorded during each task would differ according to the differences in cognitive operations. We found activations preferentially in the left hemisphere for familiarity, pitch tasks and rhythm, and in the right hemisphere for the timbre task. The familiarity task activated the left inferior frontal gyrus, Brodmann area (BA) 47, and superior temporal gyrus (in its anterior part, BA 22). These activations presumably represent lexico-semantic access to melodic representations. In the pitch task, activations were observed in the left cuneus/precuneus (BA 18/19). These results were unexpected and we interpret them as reflecting a visual mental imagery strategy employed to carry out this task. The rhythm task activated left inferior Broca's area (BA 44/6), with extention into the neighbouring insula, suggesting a role for this cerebral region in the processing of sequential sounds. PMID:9117371

  16. Summary of the Tandem Cylinder Solutions from the Benchmark Problems for Airframe Noise Computations-I Workshop

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2011-01-01

    Fifteen submissions in the tandem cylinders category of the First Workshop on Benchmark problems for Airframe Noise Computations are summarized. Although the geometry is relatively simple, the problem involves complex physics. Researchers employed various block-structured, overset, unstructured and embedded Cartesian grid techniques and considerable computational resources to simulate the flow. The solutions are compared against each other and experimental data from 2 facilities. Overall, the simulations captured the gross features of the flow, but resolving all the details which would be necessary to compute the noise remains challenging. In particular, how to best simulate the effects of the experimental transition strip, and the associated high Reynolds number effects, was unclear. Furthermore, capturing the spanwise variation proved difficult.

  17. Flight service evaluation of composite components on the Bell Helicopter model 206L: Design, fabrication and testing

    NASA Technical Reports Server (NTRS)

    Zinberg, H.

    1982-01-01

    The design, fabrication, and testing phases of a program to obtain long term flight service experience on representative helicopter airframe structural components operating in typical commercial environments are described. The aircraft chosen is the Bell Helicopter Model 206L. The structural components are the forward fairing, litter door, baggage door, and vertical fin. The advanced composite components were designed to replace the production parts in the field and were certified by the FAA to be operable through the full flight envelope of the 206L. A description of the fabrication process that was used for each of the components is given. Static failing load tests on all components were done. In addition fatigue tests were run on four specimens that simulated the attachment of the vertical fin to the helicopter's tail boom.

  18. Measurement of wavefront structure from large aperture optical components by phase shifting interferometry

    SciTech Connect

    Wolfe, C.R.; Lawson, J.K.; Kellam, M.; Maney, R.T.; Demiris, A.

    1995-05-12

    This paper discusses the results of high spatial resolution measurement of the transmitted or reflected wavefront of optical components using phase shifting interferometry with a wavelength of 6328 {angstrom}. The optical components studied range in size from approximately 50 mm {times} 100 mm to 400 mm {times} 750 mm. Wavefront data, in the form of 3-D phase maps, have been obtained for three regimes of scale length: ``micro roughness``, ``mid-spatial scale``, and ``optical figure/curvature.`` Repetitive wavefront structure has been observed with scale lengths from 10 mm to 100 mm. The amplitude of this structure is typically {lambda}/100 to {lambda}/20. Previously unobserved structure has been detected in optical materials and on the surfaces of components. We are using this data to assist in optimizing laser system design, to qualify optical components and fabrication processes under study in our component development program.

  19. Probabilistic Structural Analysis Methods (PSAM) for Select Space Propulsion System Components

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Probabilistic Structural Analysis Methods (PSAM) are described for the probabilistic structural analysis of engine components for current and future space propulsion systems. Components for these systems are subjected to stochastic thermomechanical launch loads. Uncertainties or randomness also occurs in material properties, structural geometry, and boundary conditions. Material property stochasticity, such as in modulus of elasticity or yield strength, exists in every structure and is a consequence of variations in material composition and manufacturing processes. Procedures are outlined for computing the probabilistic structural response or reliability of the structural components. The response variables include static or dynamic deflections, strains, and stresses at one or several locations, natural frequencies, fatigue or creep life, etc. Sample cases illustrates how the PSAM methods and codes simulate input uncertainties and compute probabilistic response or reliability using a finite element model with probabilistic methods.

  20. Airframe Repair Specialist, 2-3. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of five volumes of individualized, self-paced training manuals for use by those studying to be airframe repair technicians. Covered in the individual volumes are the following topics: fundamentals of organization and management (ground safety, aircraft ground safety, and aerospace and power…

  1. Airframe Assembly, Rigging and Inspection (Course Outline), Aviation Mechanics 2 (Air Frame): 9065.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for 135-hour course designed to familiarize the student with the manipulative skills and knowledge concerning airframe assembly, rigging, and inspection techniques in accordance with Federal Aviation Agency regulations. The aviation maintenance technician must be able to demonstrate a knowledge of assembly methods…

  2. Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Chen, Tony

    2006-01-01

    The previously developed Ko closed-form aging theory has been reformulated into a more compact mathematical form for easier application. A new equivalent loading theory and empirical loading theories have also been developed and incorporated into the revised Ko aging theory for the prediction of a safe operational life of airborne failure-critical structural components. The new set of aging and loading theories were applied to predict the safe number of flights for the B-52B aircraft to carry a launch vehicle, the structural life of critical components consumed by load excursion to proof load value, and the ground-sitting life of B-52B pylon failure-critical structural components. A special life prediction method was developed for the preflight predictions of operational life of failure-critical structural components of the B-52H pylon system, for which no flight data are available.

  3. AGE-RELATED DEGRADATION OF NUCLEAR POWER PLANT STRUCTURES AND COMPONENTS.

    SciTech Connect

    BRAVERMAN,J.

    1999-03-29

    This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what are the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk.

  4. Age-Related Degradation of Nuclear Power Plant Structures and Components

    SciTech Connect

    Braverman, J.; Chang, T.-Y.; Chokshi, N.; Hofmayer, C.; Morante, R.; Shteyngart, S.

    1999-03-29

    This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what was the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk.

  5. A Rayleigh-Ritz approach to the synthesis of large structures with rotating flexible components

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Hale, A. L.

    1976-01-01

    The equations of motion for large structures with rotating flexible components are derived by regarding the structure as an assemblage of substructures. Based on a stationarity principle for rotating structures, it is shown that each continuous or discrete substructure can be simulated by a suitable set of admissible functions or admissible vectors. This substructure synthesis approach provides a rational basis for truncating the number of degrees of freedom both of each substructure and of the assembled structure.

  6. 76 FR 69292 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    .... ML100920158), for which a notice of availability was published in the Federal Register on June 22, 2010 (75 FR... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water AGENCY... Staff Guidance (LR-ISG), LR- ISG-2011-01, ``Aging Management of Stainless Steel Structures...

  7. On bi-Hamiltonian structure of two-component Novikov equation

    NASA Astrophysics Data System (ADS)

    Li, Nianhua; Liu, Q. P.

    2013-01-01

    In this Letter, we present a bi-Hamiltonian structure for the two-component Novikov equation. We also show that proper reduction of this bi-Hamiltonian structure leads to the Hamiltonian operators found by Hone and Wang for the Novikov equation.

  8. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    NASA Technical Reports Server (NTRS)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  9. Safe-life and damage-tolerant design approaches for helicopter structures

    NASA Technical Reports Server (NTRS)

    Reddick, H. K., Jr.

    1983-01-01

    The safe-life and damage-tolerant design approaches discussed apply to both metallic and fibrous composite helicopter structures. The application of these design approaches to fibrous composite structures is emphasized. Safe-life and damage-tolerant criteria are applied to all helicopter flight critical components, which are generally categorized as: dynamic components with a main and tail rotor system, which includes blades, hub and rotating controls, and drive train which includes transmission, and main and interconnecting rotor shafts; and the airframe, composed of the fuselage, aerodynamic surfaces, and landing gear.

  10. Structures for attaching or sealing a space between components having different coefficients or rates of thermal expansion

    DOEpatents

    Corman, Gregory Scot; Dean, Anthony John; Tognarelli, Leonardo; Pecchioli, Mario

    2005-06-28

    A structure for attaching together or sealing a space between a first component and a second component that have different rates or amounts of dimensional change upon being exposed to temperatures other than ambient temperature. The structure comprises a first attachment structure associated with the first component that slidably engages a second attachment structure associated with the second component, thereby allowing for an independent floating movement of the second component relative to the first component. The structure can comprise split rings, laminar rings, or multiple split rings.

  11. Subscale, hydrogen-burning, airframe-integrated-scramjet: Experimental and theoretical evaluation of a water cooled strut airframe-integrated-scramjet: Experimental leading edge

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.; Guy, R. W.; Beach, H. L., Jr.; Rogers, R. C.

    1975-01-01

    A water-cooled leading-edge design for an engine/airframe integrated scramjet model strut leading edge was evaluated. The cooling design employs a copper cooling tube brazed just downstream of the leading edge of a wedge-shaped strut which is constructed of oxygen-free copper. The survival of the strut leading edge during a series of tests at stagnation point heating rates confirms the practicality of the cooling design. A finite difference thermal model of the strut was also proven valid by the reasonable agreement of calculated and measured values of surface temperature and cooling-water heat transfer.

  12. Thermal design and analysis of a hydrogen-burning wind tunnel model of an airframe-integrated scramjet

    NASA Technical Reports Server (NTRS)

    Guy, R. W.; Mueller, J. N.; Pinckney, S. Z.; Lee, L. P.

    1976-01-01

    An aerodynamic model of a hydrogen burning, airframe integrated scramjet engine has been designed, fabricated, and instrumented. This model is to be tested in an electric arc heated wind tunnel at an altitude of 35.39 km (116,094 ft.) but with an inlet Mach number of 6 simulating precompression on an aircraft undersurface. The scramjet model is constructed from oxygen free, high conductivity copper and is a heat sink design except for water cooling in some critical locations. The model is instrumented for pressure, surface temperature, heat transfer rate, and thrust measurements. Calculated flow properties, heat transfer rates, and surface temperature distributions along the various engine components are included for the conditions stated above. For some components, estimates of thermal strain are presented which indicate significant reductions in plastic strain by selective cooling of the model. These results show that the 100 thermal cycle life of the engine was met with minimum distortion while staying within the 2669 N (600 lbf) engine weight limitation and while cooling the engine only in critical locations.

  13. Component-Based Syntheses of Trioxacarcin A, DC-45-A1, and Structural Analogs

    PubMed Central

    Magauer, Thomas; Smaltz, Daniel J.; Myers, Andrew G.

    2014-01-01

    The trioxacarcins are polyoxygenated, structurally complex natural products that potently inhibit the growth of cultured human cancer cells. Here we describe syntheses of trioxacarcin A, DC-45-A1, and structural analogs by latestage, stereoselective glycosylation reactions of fully functionalized, differentially protected aglycon substrates. Key issues addressed in this work include the identification of an appropriate means to activate and protect each of the two 2-deoxysugar components, trioxacarcinose A and trioxacarcinose B, as well as a viable sequencing of the glycosidic couplings. The convergent, component-based sequence we present allows for rapid construction of structurally diverse, synthetic analogs that would be inaccessible by any other means, in amounts required to support biological evaluation. Analogs arising from modification of four of five modular components are assembled in 11 steps or fewer. The majority of these are found to be active in antiproliferative assays using cultured human cancer cells. PMID:24056347

  14. Component-based syntheses of trioxacarcin A, DC-45-A1 and structural analogues

    NASA Astrophysics Data System (ADS)

    Magauer, Thomas; Smaltz, Daniel J.; Myers, Andrew G.

    2013-10-01

    The trioxacarcins are polyoxygenated, structurally complex natural products that potently inhibit the growth of cultured human cancer cells. Here we describe syntheses of trioxacarcin A, DC-45-A1 and structural analogues by late-stage stereoselective glycosylation reactions of fully functionalized, differentially protected aglycon substrates. Key issues addressed in this work include the identification of an appropriate means to activate and protect each of the two 2-deoxysugar components, trioxacarcinose A and trioxacarcinose B, as well as a viable sequencing of the glycosidic couplings. The convergent, component-based sequence we present allows for rapid construction of structurally diverse, synthetic analogues that would be inaccessible by any other means, in amounts required to support biological evaluation. Analogues that arise from the modification of four of five modular components are assembled in 11 steps or fewer. The majority of these are found to be active in antiproliferative assays using cultured human cancer cells.

  15. Nonlinear low frequency electrostatic structures in a magnetized two-component auroral plasma

    NASA Astrophysics Data System (ADS)

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2016-03-01

    Finite amplitude nonlinear ion-acoustic solitons, double layers, and supersolitons in a magnetized two-component plasma composed of adiabatic warm ions fluid and energetic nonthermal electrons are studied by employing the Sagdeev pseudopotential technique and assuming the charge neutrality condition at equilibrium. The model generates supersoliton structures at supersonic Mach numbers regime in addition to solitons and double layers, whereas in the unmagnetized two-component plasma case only, soliton and double layer solutions can be obtained. Further investigation revealed that wave obliqueness plays a critical role for the evolution of supersoliton structures in magnetized two-component plasmas. In addition, the effect of ion temperature and nonthermal energetic electron tends to decrease the speed of oscillation of the nonlinear electrostatic structures. The present theoretical results are compared with Viking satellite observations.

  16. Dimensions and equilibrium structures of the primary component of the nonsynchronous binary systems

    NASA Astrophysics Data System (ADS)

    Pathania, A.; Medupe, T.

    2014-01-01

    Rotating stars and stars in the synchronous binaries have been extensively studied in literature. However, there are only few studies that have investigated the problems of the nonsynchronous binaries. In the present paper, we have made an attempt to study the various dimensions and equilibrium structures of the primary component of the nonsynchronous binaries. We have used the first approximation theory of Limber (1963) along with the methodology as that proposed by Mohan and Saxena (1983) for the present study. The objective of this paper is to check the effect of nonsynchronism on the various dimensions and equilibrium structures of the primary components of the binary systems. The results of the present study shows that there is change in the dimensions and equilibrium structures of the primary component of the binary systems due to nonsynchronism, and this change is more appreciable when the difference between the angular velocities of rotation and revolution is large.

  17. 14 CFR Appendix C to Part 147 - Airframe Curriculum Subjects

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... landing gear, retraction systems, shock struts, brakes, wheels, tires, and steering systems. b. hydraulic and pneumatic power systems (2) 30. Repair hydraulic and pneumatic power systems components. (3) 31. Identify and select hydraulic fluids. (3) 32. Inspect, check, service, troubleshoot, and repair...

  18. V-Lab{trademark}: Virtual laboratories -- The analysis tool for structural analysis of composite components

    SciTech Connect

    1999-07-01

    V-Lab{trademark}, an acronym for Virtual Laboratories, is a design and analysis tool for fiber-reinforced composite components. This program allows the user to perform analysis, numerical experimentation, and design prototyping using advanced composite stress and failure analysis tools. The software was designed to be intuitive and easy to use, even by designers who are not experts in composite materials or structural analysis. V-Lab{trademark} is the software tool every specialist in design engineering, structural analysis, research and development and repair needs to perform accurate, fast and economical analysis of composite components.

  19. Lie algebras and Hamiltonian structures of multi-component Ablowitz-Kaup-Newell-Segur hierarchy

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao-ying; Zhang, Da-jun

    2013-05-01

    Isospectral and non-isospectral hierarchies of multi-component Ablowitz-Kaup-Newell-Segur (AKNS) are obtained from a matrix spectral problem, then by means of the zero curvature representations of the isospectral flows {Km} and non-isospectral flows {σn}, we construct the symmetries and their algebraic structures for isospectral multi-component AKNS hierarchies, demonstrate the recursive operator L is a strong and hereditary symmetry for the isospectral hierarchy. We also derive that there are implectic operator θ and symplectic operator J such that L = θJ, and discuss the multi-Hamiltonian structures and the Liouville integrability of the isospectral hierarchies.

  20. An Integrated Theory for Predicting the Hydrothermomechanical Response of Advanced Composite Structural Components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1977-01-01

    An integrated theory is developed for predicting the hydrothermomechanical (HDTM) response of fiber composite components. The integrated theory is based on a combined theoretical and experimental investigation. In addition to predicting the HDTM response of components, the theory is structured to assess the combined hydrothermal effects on the mechanical properties of unidirectional composites loaded along the material axis and off-axis, and those of angleplied laminates. The theory developed predicts values which are in good agreement with measured data at the micromechanics, macromechanics, laminate analysis and structural analysis levels.

  1. Use of system identification techniques for improving airframe finite element models using test data

    NASA Technical Reports Server (NTRS)

    Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.

    1993-01-01

    A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.

  2. Use of system identification techniques for improving airframe finite element models using test data

    NASA Technical Reports Server (NTRS)

    Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.

    1991-01-01

    A method for using system identification techniques to improve airframe finite element models using test data has been developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.

  3. Use of system identification techniques for improving airframe finite element models using test data

    NASA Technical Reports Server (NTRS)

    Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.

    1991-01-01

    A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.

  4. Size and shape of grain boundary network components and their atomic structures in polycrystalline nanoscale materials

    SciTech Connect

    Xu, Tao; Li, Mo

    2015-10-28

    Microstructure in polycrystalline materials is composed of grain boundary plane, triple junction line, and vertex point. They are the integral parts of the grain boundary network structure and the foundation for the structure-property relations. In polycrystalline, especially nanocrystalline, materials, it becomes increasingly difficult to probe the atomistic structure of the microstructure components directly in experiment due to the size limitation. Here, we present a numerical approach using pair correlation function from atomistic simulation to obtain the detailed information for atomic order and disorder in the grain boundary network in nanocrystalline materials. We show that the atomic structures in the different microstructural components are related closely to their geometric size and shape, leading to unique signatures for atomic structure in microstructural characterization at nanoscales. The dependence varies systematically with the characteristic dimension of the microstructural component: liquid-like disorder is found in vertex points, but a certain order persists in triple junctions and grain boundaries along the extended dimensions of these microstructure components.

  5. Delay between the Circularly Polarized Components in Fine Structures during Solar Type IV Events

    NASA Astrophysics Data System (ADS)

    Chernov, G. P.; Zlobec, P.

    1995-08-01

    We analyzed intermediately polarized (20 80%) fine structures (pulsations, sudden reductions, fiber bursts and zebras) that were recorded in type IV events. The mean polarization degree was practically the same for all the fine structures recorded in an interval lasting a few minutes and it was similar to the polarization of the continuum. A detailed analysis during the evolution of single structures reveals changes in polarization (in particular an ‘undulation’ at flux density minima) even stronger than 20%. They were caused by a delay, up to 0.1 s, between the two circularly polarized components. The weaker polarimetric component was delayed in 2 sets and the stronger one in 1 set. In the event of April 24, 1985 different types of fine structures were sporadically detected in more than one hour long time interval. Short delays of the stronger or of the weaker component were sometimes observed. The events characterized by fine structures are generally totally polarized in the ordinary mode. We assume that this holds also for the phenomena studied here. The observed intermediate polarization therefore requires a depolarization due to propagation effects. We discuss the mode coupling and the reflection of the original radio signal that could also generate the delay of the weaker and the stronger component respectively. The possibility of polarization variation due to the change of the angle between the direction of the propagation and the magnetic field in a quasi-transversal region and in a low intensity magnetic field in a current sheet is also given.

  6. Static and Dynamic Friction Behavior of Candidate High Temperature Airframe Seal Materials

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Lukaszewicz, V.; Morris, D. E.; Steinetz, B. M.

    1994-01-01

    The following report describes a series of research tests to evaluate candidate high temperature materials for static to moderately dynamic hypersonic airframe seals. Pin-on-disk reciprocating sliding tests were conducted from 25 to 843 C in air and hydrogen containing inert atmospheres. Friction, both dynamic and static, was monitored and serves as the primary test measurement. In general, soft coatings lead to excessive static friction and temperature affected friction in air environments only.

  7. Gain selection method and model for coupled propulsion and airframe systems

    NASA Technical Reports Server (NTRS)

    Murphy, P. C.

    1982-01-01

    A longitudinal model is formulated for an advanced fighter from three subsystem models: the inlet, the engine, and the airframe. Notable interaction is found in the coupled system. A procedure, based on eigenvalue sensitivities, is presented which indicates the importance of the feedback gains to the optimal solution. This allows ineffectual gains to be eliminated; thus, hardware and expense may be saved in the realization of the physical controller.

  8. Aerodynamic Database Development for the Hyper-X Airframe Integrated Scramjet Propulsion Experiments

    NASA Technical Reports Server (NTRS)

    Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.

    2000-01-01

    This paper provides an overview of the activities associated with the aerodynamic database which is being developed in support of NASA's Hyper-X scramjet flight experiments. Three flight tests are planned as part of the Hyper-X program. Each will utilize a small, nonrecoverable research vehicle with an airframe integrated scramjet propulsion engine. The research vehicles will be individually rocket boosted to the scramjet engine test points at Mach 7 and Mach 10. The research vehicles will then separate from the first stage booster vehicle and the scramjet engine test will be conducted prior to the terminal decent phase of the flight. An overview is provided of the activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts for all phases of the Hyper-X flight tests. A brief summary of the Hyper-X research vehicle aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics. Brief comments on the planned post flight data analysis efforts are also included.

  9. Database of Inlet and Exhaust Noise Shielding for Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.

    2001-01-01

    An experiment to measure the noise shielding of the blended wing body design concept was developed using a simplified wedge-shaped airframe. The experimental study was conducted in the Langley Anechoic Noise Research Facility. A wideband, omnidirective sound source in a simulated engine nacelle was held at locations representative of a range of engine locations above the wing. The sound field around the model was measured with the airframe and source in place and with source alone, using an-array of microphones on a rotating hoop that is also translated along an axis parallel to the airframe axis. The insertion loss was determined from the difference between the two resulting contours. Although no attempt was made to simulate the noise characteristics of a particular engine, the broadband noise source radiated sound over a range of scaled frequencies encompassing 1 and 2 times the blade passage frequency representative of a large, high-bypass-ratio turbofan engine. The measured data show that significant shielding of the inlet-radiated noise is obtained in the area beneath and upstream of the model. The data show the sensitivity of insertion loss to engine location.

  10. Small Engine Technology (SET). Task 33: Airframe, Integration, and Community Noise Study

    NASA Technical Reports Server (NTRS)

    Lieber, Lys S.; Elkins, Daniel; Golub, Robert A. (Technical Monitor)

    2002-01-01

    Task Order 33 had four primary objectives as follows: (1) Identify and prioritize the airframe noise reduction technologies needed to accomplish the NASA Pillar goals for business and regional aircraft. (2) Develop a model to estimate the effect of jet shear layer refraction and attenuation of internally generated source noise of a turbofan engine on the aircraft system noise. (3) Determine the effect on community noise of source noise changes of a generic turbofan engine operating from sea level to 15,000 feet. (4) Support lateral attenuation experiments conducted by NASA Langley at Wallops Island, VA, by coordinating opportunities for Contractor Aircraft to participate as a noise source during the noise measurements. Noise data and noise prediction tools, including airframe noise codes, from the NASA Advanced Subsonic Technology (AST) program were applied to assess the current status of noise reduction technologies relative to the NASA pillar goals for regional and small business jet aircraft. In addition, the noise prediction tools were applied to evaluate the effectiveness of airframe-related noise reduction concepts developed in the AST program on reducing the aircraft system noise. The AST noise data and acoustic prediction tools used in this study were furnished by NASA.

  11. Seismic performance of non-structural components and contents in buildings: an overview of NZ research

    NASA Astrophysics Data System (ADS)

    Dhakal, Rajesh P.; Pourali, Atefeh; Tasligedik, Ali Sahin; Yeow, Trevor; Baird, Andrew; MacRae, Gregory; Pampanin, Stefano; Palermo, Alessandro

    2016-03-01

    This paper summarizes the research on non-structural elements and building contents being conducted at University of Canterbury in New Zealand. Since the 2010-2011 series of Canterbury earthquakes, in which damage to non-structural components and contents contributed heavily to downtime and overall financial loss, attention to seismic performance and design of non-structural components and contents in buildings has increased exponentially in NZ. This has resulted in an increased allocation of resources to research leading to development of more resilient non-structural systems in buildings that would incur substantially less damage and cause little downtime during earthquakes. In the last few years, NZ researchers have made important developments in understanding and improving the seismic performance of secondary building elements such as partitions, facades, ceilings and contents.

  12. Probabilistic Structural Analysis Methods for select space propulsion system components (PSAM). Volume 2: Literature surveys of critical Space Shuttle main engine components

    NASA Technical Reports Server (NTRS)

    Rajagopal, K. R.

    1992-01-01

    The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.

  13. Probabilistic Structural Analysis Methods (PSAM) for select space propulsion system structural components

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.

    1987-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  14. Probabilistic Structural Analysis Methods for select space propulsion system structural components (PSAM)

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Burnside, O. H.; Wu, Y.-T.; Polch, E. Z.; Dias, J. B.

    1988-01-01

    The objective is the development of several modular structural analysis packages capable of predicting the probabilistic response distribution for key structural variables such as maximum stress, natural frequencies, transient response, etc. The structural analysis packages are to include stochastic modeling of loads, material properties, geometry (tolerances), and boundary conditions. The solution is to be in terms of the cumulative probability of exceedance distribution (CDF) and confidence bounds. Two methods of probability modeling are to be included as well as three types of structural models - probabilistic finite-element method (PFEM); probabilistic approximate analysis methods (PAAM); and probabilistic boundary element methods (PBEM). The purpose in doing probabilistic structural analysis is to provide the designer with a more realistic ability to assess the importance of uncertainty in the response of a high performance structure. Probabilistic Structural Analysis Method (PSAM) tools will estimate structural safety and reliability, while providing the engineer with information on the confidence that should be given to the predicted behavior. Perhaps most critically, the PSAM results will directly provide information on the sensitivity of the design response to those variables which are seen to be uncertain.

  15. Data structure characterization of miltispectral data using principal component and principal factor analysis

    NASA Technical Reports Server (NTRS)

    Lee, Jae K.; Mausel, Paul W.; Lulla, Kamlesh P.

    1989-01-01

    Both principal component analysis (PCA) and principal factor analysis (PFA) were used to analyze an experimental multispectral data structure in terms of common and unique variance. Only the common variance of the multispectral data was associated with the principal factor, while higher-order principal components were associated with both common and unique variance. The unique variance was found to represent small spectral variations within each cover type as well as noise vectors, and was most abundant in the lower-order principal components. The lower-order principal components can be useful in research designed to discriminate minor physical variations within features, and to highlight localized change when using multitemporal-multispectral data. Conversely, PFA of the multispectral data provided an insight into a great potential for discriminating basic land-cover types by excluding the unique variance which was related to the noise and minor spectral variations.

  16. Next Generation Nuclear Plant Structures, Systems, and Components Safety Classification White Paper

    SciTech Connect

    Pete Jordan

    2010-09-01

    This white paper outlines the relevant regulatory policy and guidance for a risk-informed approach for establishing the safety classification of Structures, Systems, and Components (SSCs) for the Next Generation Nuclear Plant and sets forth certain facts for review and discussion in order facilitate an effective submittal leading to an NGNP Combined Operating License application under 10 CFR 52.

  17. [Method of Calculating the Distance Between the Classes of the Structural Components of the Forebrain Birds].

    PubMed

    Voronov, L N; Konstantinov, V Y

    2016-01-01

    The method of calculating the distance between the classes of the structural components of the brain of birds. Compared interclass distances of glia, neurons and neuroglial complexes in the forebrain hooded crow (Corvus cornix) (a bird with a highly rational activity) and common crossbill (Loxia curvirostra) (birds with a medium level of rational activity). PMID:27263281

  18. Structure and Mechanism of the S Component of a Bacterial ECF Transporter

    SciTech Connect

    P Zhang; J Wang; Y Shi

    2011-12-31

    The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-{angstrom} resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.

  19. 77 FR 27815 - Aging Management of Stainless Steel Structures and Components in Treated Borated Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... Register on June 22, 2010 (75 FR 35510). The NRC staff has determined that existing guidance in the SRP-LR... Register notice (76 FR 69292) to request public comments on draft LR-ISG-2011-01 (ADAMS Accession No... COMMISSION Aging Management of Stainless Steel Structures and Components in Treated Borated Water...

  20. An engineering approach for the application of textile composites to a structural component

    NASA Technical Reports Server (NTRS)

    Baldwin, Jack W.; Gracias, Brian K.; Clark, Steven R.

    1993-01-01

    An engineering approach for the application of textile composites to a structural component is addressed. The main objective is to improve impact resistance of composite blades by using some form of 3-D reinforcement. Project goals, results, and conclusions are discussed.

  1. The spherically averaged structures of cowpea mosaic virus components by X-ray solution scattering.

    PubMed

    Schmidt, T; Johnson, J E; Phillips, W E

    1983-05-01

    The X-ray diffraction patterns of the four components of cowpea mosaic virus isolated from a cesium chloride gradient were measured, using film methods, to 30 A resolution. Diffraction patterns were analyzed by fitting computed two-shell spherical models to the observed data. The fitting procedure was applied to data to 80 A resolution to avoid the nonspherical contribution to the pattern observed at higher resolution. At pH 7.0 all four components displayed the same external spherically averaged radius of 140 +/-2 A. The lowest density component (top), which contains no RNA, was best modeled by an empty shell with an outer radius of 140 A and an inner radius of 101 +/- 3 A. The middle component, containing 27% RNA by weight, was modeled with a uniform electron density sphere. The bottom upper and bottom lower components, which are biologically identical but display different buoyant densities in cesium chloride solutions, were analyzed independently. The bottom upper component was best modeled with a 101 A inner (RNA containing) sphere of mean electron density 0.453e-/A(3) and a 101 to 140 A outer (protein containing) shell of electron density 0.410e-/A(3). The bottom lower component was fit with the same model except that the RNA containing region displayed a mean electron density of 0.459e-/A(3). The implications of the spherically averaged component structures for the protein structure, RNA and protein hydration, and cesium binding to RNA are discussed. PMID:18638997

  2. Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses

    NASA Technical Reports Server (NTRS)

    Mei, C.

    1984-01-01

    The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.

  3. Two-Dimensional Crystal Structure Formed by Two Components of DNA Nanoparticles on a Substrate

    NASA Astrophysics Data System (ADS)

    Katsuno, Hiroyasu; Maegawa, Yuya; Sato, Masahide

    2016-07-01

    We study the two-dimensional crystal structure of two components of DNA nanoparticles on a substrate by Brownian dynamics simulation. We use the Lennard-Jones potential as the interaction potential between particles and assume that the interaction length between different types of particles, σAB, is smaller than that between the same types of particles, σ. Two types of particles form an alloy structure. With decreasing σAB/σ, the crystal structure changes from a triangular lattice, to a square lattice, a honeycomb lattice, a rectangular lattice, and a triangular lattice.

  4. ROCOPT: A user friendly interactive code to optimize rocket structural components

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1989-01-01

    ROCOPT is a user-friendly, graphically-interfaced, microcomputer-based computer program (IBM compatible) that optimizes rocket components by minimizing the structural weight. The rocket components considered are ring stiffened truncated cones and cylinders. The applied loading is static, and can consist of any combination of internal or external pressure, axial force, bending moment, and torque. Stress margins are calculated by means of simple closed form strength of material type equations. Stability margins are determined by approximate, orthotropic-shell, closed-form equations. A modified form of Powell's method, in conjunction with a modified form of the external penalty method, is used to determine the minimum weight of the structure subject to stress and stability margin constraints, as well as user input constraints on the structural dimensions. The graphical interface guides the user through the required data prompts, explains program options and graphically displays results for easy interpretation.

  5. A multi-structural single cell model of force-induced interactions of cytoskeletal components.

    PubMed

    Barreto, Sara; Clausen, Casper H; Perrault, Cecile M; Fletcher, Daniel A; Lacroix, Damien

    2013-08-01

    Several computational models based on experimental techniques and theories have been proposed to describe cytoskeleton (CSK) mechanics. Tensegrity is a prominent model for force generation, but it cannot predict mechanics of individual CSK components, nor explain the discrepancies from the different single cell stimulating techniques studies combined with cytoskeleton-disruptors. A new numerical concept that defines a multi-structural 3D finite element (FE) model of a single-adherent cell is proposed to investigate the biophysical and biochemical differences of the mechanical role of each cytoskeleton component under loading. The model includes prestressed actin bundles and microtubule within cytoplasm and nucleus surrounded by the actin cortex. We performed numerical simulations of atomic force microscopy (AFM) experiments by subjecting the cell model to compressive loads. The numerical role of the CSK components was corroborated with AFM force measurements on U2OS-osteosarcoma cells and NIH-3T3 fibroblasts exposed to different cytoskeleton-disrupting drugs. Computational simulation showed that actin cortex and microtubules are the major components targeted in resisting compression. This is a new numerical tool that explains the specific role of the cortex and overcomes the difficulty of isolating this component from other networks in vitro. This illustrates that a combination of cytoskeletal structures with their own properties is necessary for a complete description of cellular mechanics. PMID:23702149

  6. Reduced models of multi-stage cyclic structures using cyclic symmetry reduction and component mode synthesis

    NASA Astrophysics Data System (ADS)

    Tran, Duc-Minh

    2014-10-01

    Reduced models of multi-stage cyclic structures such as bladed-disk assemblies are developed by using the multi-stage cyclic symmetry reduction and/or component mode synthesis methods. The multi-stage cyclic symmetry reduction consists in writing the equations of the bladed disks, the inter-disk structures, the inter-disk constraints and the whole multi-stage coupled system in terms of the traveling wave coordinates for all the phase indexes of the reference sectors and for all the bladed disks. Several reduced coupled systems are then solved by selecting at each time only one or a few phase indexes for each bladed disk and by applying the cyclic symmetry boundary conditions. On the other hand, component mode synthesis methods are used either independently or in combination with the multi-stage cyclic symmetry reduction to obtain reduced models of the multi-stage structure. Two of them are particularly efficient, that are firstly component mode synthesis methods with interface modes applied on the bladed disks and secondly component mode synthesis methods with traveling wave coordinates applied on the reference sectors.

  7. Val d'Agri: structural settings by using gravity gradient tensor (ggt) components.

    NASA Astrophysics Data System (ADS)

    Fedi, M.; Ferranti, L.; Florio, G.; Giori, I.; Italiano, F.

    2003-04-01

    Within the investigated area, which covers the median and frontal zone of the Campano-Lucano segment of the Southern Apennines, the gravity field shows a clear spatial relation with the tectonic structure of the belt. The fold and thrust belt formed in response to late Miocene-Early Pleistocene shortening and allochthon emplacement toward the northeast, and was subsequently affected by extensional faulting which migrated to northeast ahead of the thrust system. As a result, contractional structures are found associated to Pliocene-Early Pleistocene thrust-top basins in the NE part of the area, whereas extensional faults shape Middle Pleistocene-Holocene basin on the SW sector. The main structural grain of the belt is NW-SE, but E-W structures are widespread in the area as a result of phases of non-coaxial thrusting and strike-slip faulting. Gravity anomalies mirrors the spatial distribution of thrust-top and extensional basins and of the deeper bedrock structures controlling basin deposition. The gravity gradient is a second rank tensor containing the second spatial derivatives of the gravity potential. At present gravity gradient airborne surveys are just at the beginning, while gradiometry instrumentations have not yet being implemented for land surveys over rugged terrains. In order to access to this important geophysical quantity for land surveys, we use here a stable technique to compute it from gravity data. The gradient tensor of gravity helps detecting the geometrical parameters of a geological body and has been used in regions traditionally difficult for reflection seismic, such as those where sub-salt and sub-basalt structures occur. The analysis, one by one, of the components of the gradient tensor of gravity has proved to yield a fine image of the structural setting of the Val d'Agri. The Tzz component allows accurate location of the anomalies and appreciation of their spatial relation with basins and structures, but other components of the GGT provide

  8. Four- and five-component molecular solids: crystal engineering strategies based on structural inequivalence

    PubMed Central

    Mir, Niyaz A.; Dubey, Ritesh; Desiraju, Gautam R.

    2016-01-01

    A synthetic strategy is described for the co-crystallization of four- and five-component molecular crystals, based on the fact that if any particular chemical constituent of a lower cocrystal is found in two different structural environments, these differences may be exploited to increase the number of components in the solid. 2-Methylresorcinol and tetramethylpyrazine are basic template molecules that allow for further supramolecular homologation. Ten stoichiometric quaternary cocrystals and one quintinary cocrystal with some solid solution character are reported. Cocrystals that do not lend themselves to such homologation are termed synthetic dead ends. PMID:27006772

  9. Multilevel Dynamic Generalized Structured Component Analysis for Brain Connectivity Analysis in Functional Neuroimaging Data.

    PubMed

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S

    2016-06-01

    We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects. PMID:25697370

  10. Review of monitoring, inspection and maintenance of structural components in 900 meters of water

    SciTech Connect

    Webb, R.M.; Thomas, D.B.J.; Geronimi, C.

    1994-12-31

    Monitoring, inspection and maintenance of offshore structures is undertaken to satisfy owners stringent operational requirements, together with the requirements of government regulations, Certifying Authorities and insurance underwriters. The immense costs of offshore inspection and maintenance work has resulted in a growing need for engineers to consider these problems much earlier in the design stages than previously thought necessary and to be aware of future subsea tasks which may need to be performed during the life of an installation. This is particularly so for platforms going beyond the range of divers and those using new structural systems. The paper reviews the requirements for critical components of a compliant tower, a Deep draught Semi-submersible and a SPAR platform in 900 m of water. The assessment is based on the following top down process: (1) identify the structural components of the structure; (2) for each component identify failure or degradation mechanisms; (3) for each failure or degradation mechanism identify the monitoring, inspection and maintenance requirements; (4) for each requirement review available techniques and equipment, identify feasibility in 900 m or advances that are required before feasibility is proved. A simple tabular form enables easy interpretation of the results.

  11. Computational Evaluation of Airframe Noise Reduction Concepts at Full Scale

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Duda, Benjamin; Hazir, Andreas; Fares, Ehab

    2016-01-01

    High-fidelity simulations focused on full-scale evaluation of new technologies for mitigating flap and landing gear noise are presented. These noise reduction concepts were selected because of their superior acoustic performance, as demonstrated during NASA wind tunnel tests of an 18%-scale, semi-span model of a Gulfstream aircraft. The full-scale, full-aircraft, time-accurate simulations were performed with the lattice Boltzmann PowerFLOW(Registered Trademark) solver for free air at a Mach number of 0.2. Three aircraft configurations (flaps deflected at 39? without and with main gear deployed, and 0? flaps with main gear extended) were used to determine the aero-acoustic performance of the concepts on component-level (individually) and system-level (concurrent applica-tion) bases. Farfield noise spectra were obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach. Comparison of the predicted spectra without (baseline) and with the noise treatments applied showed that noise reduction benefits between 2-3 dB for the flap and 1.3-1.7 dB for the main landing gear are obtained. It was also found that the full extent of the benefits is being masked by the noise generated from the flap brackets and main gear cavities, which act as prominent secondary sources.

  12. Application of MEMS Microphone Array Technology to Airframe Noise Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Shams, Qamar A.; Graves, Sharon S.; Sealey, Bradley S.; Bartram, Scott M.; Comeaux, Toby

    2005-01-01

    Current generation microphone directional array instrumentation is capable of extracting accurate noise source location and directivity data on a variety of aircraft components, resulting in significant gains in test productivity. However, with this gain in productivity has come the desire to install larger and more complex arrays in a variety of ground test facilities, creating new challenges for the designers of array systems. To overcome these challenges, a research study was initiated to identify and develop hardware and fabrication technologies which could be used to construct an array system exhibiting acceptable measurement performance but at much lower cost and with much simpler installation requirements. This paper describes an effort to fabricate a 128-sensor array using commercially available Micro-Electro-Mechanical System (MEMS) microphones. The MEMS array was used to acquire noise data for an isolated 26%-scale high-fidelity Boeing 777 landing gear in the Virginia Polytechnic Institute and State University Stability Tunnel across a range of Mach numbers. The overall performance of the array was excellent, and major noise sources were successfully identified from the measurements.

  13. Engine/airframe compatibility studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology assessment studies were conducted to provide an updated technology base from which an advanced supersonic cruise aircraft can be produced with a high probability of success. An assessment of the gains available through the application of advanced technologies in aerodynamics, propulsion, acoustics, structures, materials, and active controls is developed. The potential market and range requirements as well as economic factors including payload, speed, airline operating costs, and airline profitability are analyzed. The conceptual design of the baseline aircraft to be used in assessing the technology requirements is described.

  14. Preliminary weight and cost estimates for transport aircraft composite structural design concepts

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Preliminary weight and cost estimates have been prepared for design concepts utilized for a transonic long range transport airframe with extensive applications of advanced composite materials. The design concepts, manufacturing approach, and anticipated details of manufacturing cost reflected in the composite airframe are substantially different from those found in conventional metal structure and offer further evidence of the advantages of advanced composite materials.

  15. The effect of non-structural components and lignin on hemicellulose extraction.

    PubMed

    Liu, Kai-Xuan; Li, Hong-Qiang; Zhang, Jie; Zhang, Zhi-Guo; Xu, Jian

    2016-08-01

    As the important structural component of corn stover, hemicellulose could be converted into a variety of high value-added products. However, high quality hemicellulose extraction is not an easy issue. The present study aims to investigate the effects of non-structural components (NSCs) and lignin removal on alkaline extraction of hemicellulose. Although NSCs were found to have a minimal effect on hemicellulose dissolution, they affected the color values of the hemicellulose extracts. The lignin limited the hemicellulose dissolution and increased the color value by binding to hemicellulose molecules and forming lignin-carbohydrate complexes. Sodium chlorite method can remove about 90% lignin from corn stover, especially the lignin connected to hemicellulose through p-coumaric and ferulic acids. Which increased the hemicellulose dissolution ratio to 93% and reduced the color value 14-28%, but the cost is about 20% carbohydrates lost. PMID:27213576

  16. Electric propulsion plasma plume interaction with “Phobos-Soil” spacecraft structural components

    NASA Astrophysics Data System (ADS)

    Nadiradze, Andrey B.; Obukhov, Vladimir A.; Popov, Garri A.

    2009-05-01

    Assessment was made by calculations for the possible consequences of the effect of plasma plume injected by the solar electric propulsion system (SEPS) on the structural components of "Phobos-Soil" spacecraft (SC). Propulsion system comprises three SPT-140 thrusters, two of which should secure the required total thrust impulse during 8000 hours of operation approximately. Variation of the solar panel (SP) properties as a result of their surface contamination with the products of erosion of thruster and SC structural components is the primary negative consequence of plasma plume effect on the SC. Calculation study for the processes of erosion, particle flow distribution, and contaminating coating formation on the SP surface was made for different SEPS arrangements. It is shown that power reduction for the landing module SP sections, which are subjected to the contaminating coating deposition to the most extent, will not exceed 5% of the nominal level.

  17. Modelling and extraction procedure for gate insulator and fringing gate capacitance components of an MIS structure

    NASA Astrophysics Data System (ADS)

    Tinoco, J. C.; Martinez-Lopez, A. G.; Lezama, G.; Mendoza-Barrera, C.; Cerdeira, A.; Estrada, M.

    2016-07-01

    CMOS technology has been guided by the continuous reduction of MOS transistors used to fabricate integrated circuits. Additionally, the use of high-k dielectrics as well as a metal gate electrode have promoted the development of nanometric MOS transistors. Under this scenario, the proper modelling of the gate capacitance, with the aim of adequately evaluating the dielectric film thickness, becomes challenging for nanometric metal-insulator-semiconductor (MIS) structures due to the presence of extrinsic fringing capacitance components which affect the total gate capacitance. In this contribution, a complete intrinsic–extrinsic model for gate capacitance under accumulation of an MIS structure, together with an extraction procedure in order to independently determine the different capacitance components, is presented. ATLAS finite element simulation has been used to validate the proposed methodology.

  18. An integrated theory for predicting the hydrothermomechanical response of advanced composite structural components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1977-01-01

    A theory is developed for predicting the hydrothermomechanical response of advanced composite structural components. The combined hydrothermal effects on the mechanical properties of unidirectional composites loaded along the material axis and off-axis, and of angleplied laminates are also evaluated. The materials investigated consist of neat PR-288 epoxy matrix resin and an AS-type graphite fiber/PR-288 resin unidirectional composite.

  19. Bonding exterior grade structural panels with copolymer resins of biomass residue components, phenol, and formaldehyde

    SciTech Connect

    Chen, C.M.

    1993-12-31

    Components of various forest and agricultural residue biomass-including the polyphenolic compounds-were converted into aqueous solution and/or suspension by extraction and digestion. Some biomass components reacted vigorously under alkaline catalysis with formaldehyde and initially showed a high degree of exothermic reaction; however, other components did not react as vigorously under these conditions, indicating that different biomass materials require different methods to obtain optimum reactivity for the copolymerization with phenol. Our primary goal is to develop adhesives capable of producing acceptable bond quality, as determined by the wood products industries` standards, under a reasonable range of gluing conditions. Copolymer resins of phenol, formaldehyde, and biomass components were synthesized and evaluated for gluability of bonding exterior grade structural replaced with chemicals derived from peanut hulls, pecan shell flour, pecan pith, southern pine bark, and pine needle required shorter press times. These resins also tolerated a broader range of gluing conditions. In summary, it appears that the technology of the fast curing copolymer resins of biomass components as adhesives for wood products has been developed and is ready to be transferred to industrial practice.

  20. Probabilistic structural analysis methodology and applications to advanced space propulsion system components

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Rajagopal, K. R.; Dias, J. B.

    1990-01-01

    The goal of the reported work is to develop and apply new technology that will enable the designer to efficiently and accurately account for each of the design sources of uncertainty as it might affect structural reliability and risk assessment. The paper discusses the development of the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) finite element code and its supporting reliability algorithms. The NESSUS code and the elements of the solution strategy are outlined and applications are made to several propulsion system components.

  1. Selected topics from the structural acoustics program for the B-1 aircraft

    NASA Technical Reports Server (NTRS)

    Belcher, P. M.

    1979-01-01

    The major elements of the structural acoustics program for the B-1 aircraft are considered. Acoustic pressures measured at 280 sites on the surface of the vehicle were used to develop pressure models for a resizing of airframe components for aircraft No. 4 (A/C4). Acoustical fatigue design data for two dynamically complex structural configurations were acquired in laboratory programs, the conceptions for and executions of which detailed significant departures from the conventional. Design requirements for mechanical fasteners for configurations other than these two made use of analytical extensions of regrettably limited available information.

  2. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods.

    PubMed

    McClements, David Julian; Decker, Eric Andrew; Park, Yeonhwa; Weiss, Jochen

    2009-06-01

    There have been major advances in the design and fabrication of structured delivery systems for the encapsulation of nutraceutical and functional food components. A wide variety of delivery systems is now available, each with its own advantages and disadvantages for particular applications. This review begins by discussing some of the major nutraceutical and functional food components that need to be delivered and highlights the main limitations to their current utilization within the food industry. It then discusses the principles underpinning the rational design of structured delivery systems: the structural characteristics of the building blocks; the nature of the forces holding these building blocks together; and, the different ways of assembling these building blocks into structured delivery systems. Finally, we review the major types of structured delivery systems that are currently available to food scientists: lipid-based (simple, multiple, multilayer, and solid lipid particle emulsions); surfactant-based (simple micelles, mixed micelles, vesicles, and microemulsions) and biopolymer-based (soluble complexes, coacervates, hydrogel droplets, and particles). For each type of delivery system we describe its preparation, properties, advantages, and limitations. PMID:19484636

  3. Variations of structural components: specific intercultural differences in facial morphology, skin type, and structures.

    PubMed

    McKnight, Aisha; Momoh, Adeyiza O; Bullocks, Jamal M

    2009-08-01

    Analysis of the differences in facial morphology and skin structure and tone among ethnic groups within the realm of plastic surgery is relevant due to the increasing number of ethnic individuals seeking cosmetic surgery. Previous classifications of ideal facial morphologic characteristics have been revised and challenged over the years to accurately reflect the differences in facial structure that are aesthetically pleasing to individuals of differing ethnic groups. The traditional neoclassic canons reflected the European Caucasian facial morphology and cannot be used to classify facial characteristics in ethnic groups due to drastic differences in measurement and proportion. In addition, differences in biophysiologic properties of ethnic skin types influence the progression of aging and the ability of skin to withstand environmental insults. Thickness of the stratum corneum, water content, and melanin composition are important factors that were analyzed in varying ethnic groups. Although it appears that Caucasian Americans are subject to earlier onset of skin wrinkling and sagging than are African Americans due to thinner stratum corneum layers and decreased water content, more research needs to be conducted to be inclusive of other ethnic groups. These data will enable plastic surgeons to treat these groups more effectively while preserving their unique characteristics. PMID:20676309

  4. Structural damage assessment of propulsion system components by impedance based health monitoring

    NASA Astrophysics Data System (ADS)

    Martin, Richard E.; Gyekneyesi, Andrew L.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-05-01

    Critical components of propulsion systems frequently operate at high stress levels for long periods of time. The integrity of these parts must be proven by non-destructive evaluation (NDE) during various manufacturing steps and also during systematic overhaul inspections. Conventional NDE methods, however, have unacceptable limits. Some of these techniques are time-consuming and inconvenient for service aircraft testing. Impedance-based structural-health-monitoring (SHM) uses piezoelectric (PZT) patches that are bonded onto or embedded in a structure; each individual patch both actuates the surrounding structural area and senses the resulting structural response. The size of the excited area varies with the geometry and material composition of the structure. A series of experiments on simple geometry specimens (thin-gage aluminum square plates) was conducted for assessing the potential of E/M impedance method for structural damage detection. Based on the results of this preliminary study, further testing was conducted on a subscale disk specimen. Based on the results it can be concluded that the E/M impedance method has the potential to be used for damage detection of structures. The experimental method, signal processing, and damage detection algorithm should be tuned to the specific method used for structural interrogation.

  5. Two-component Structure of the Hβ Broad-line Region in Quasars. I. Evidence from Spectral Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Hu, Chen; Wang, Jian-Min; Ho, Luis C.; Ferland, Gary J.; Baldwin, Jack A.; Wang, Ye

    2012-12-01

    We report on a spectral principal component analysis (SPCA) of a sample of 816 quasars, selected to have small Fe II velocity shifts with spectral coverage in the rest wavelength range 3500-5500 Å. The sample is explicitly designed to mitigate spurious effects on SPCA induced by Fe II velocity shifts. We improve the algorithm of SPCA in the literature and introduce a new quantity, the fractional-contribution spectrum, that effectively identifies the emission features encoded in each eigenspectrum. The first eigenspectrum clearly records the power-law continuum and very broad Balmer emission lines. Narrow emission lines dominate the second eigenspectrum. The third eigenspectrum represents the Fe II emission and a component of the Balmer lines with kinematically similar intermediate-velocity widths. Correlations between the weights of the eigenspectra and parametric measurements of line strength and continuum slope confirm the above interpretation for the eigenspectra. Monte Carlo simulations demonstrate the validity of our method to recognize cross talk in SPCA and firmly rule out a single-component model for broad Hβ. We also present the results of SPCA for four other samples that contain quasars in bins of larger Fe II velocity shift; similar eigenspectra are obtained. We propose that the Hβ-emitting region has two kinematically distinct components: one with very large velocities whose strength correlates with the continuum shape and another with more modest, intermediate velocities that is closely coupled to the gas that gives rise to Fe II emission.

  6. Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Khorrami, Mehdi R.; Lockhard, David P.; Neuhart, Dan H.; Bahr, Christopher J.

    2015-01-01

    The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle.

  7. Structure Measurements of Leaf and Woody Components of Forests with Dual-Wavelength Lidar Scanning Data

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Li, Z.; Schaaf, C.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Paynter, I.; Saenz, E. J.; Wang, Z.; Woodcock, C. E.; Jupp, D. L. B.; Schaefer, M.; Newnham, G.

    2014-12-01

    Forest structure plays a critical role in the exchange of energy, carbon and water between land and atmosphere and nutrient cycle. We can provide detailed forest structure measurements of leaf and woody components with the Dual Wavelength Echidna® Lidar (DWEL), which acquires full-waveform scans at both near-infrared (NIR, 1064 nm) and shortwave infrared (SWIR, 1548 nm) wavelengths from simultaneous laser pulses. We collected DWEL scans at a broadleaf forest stand and a conifer forest stand at Harvard Forest in June 2014. Power returned from leaves is much lower than from woody materials such as trunks and branches at the SWIR wavelength due to the liquid water absorption by leaves, whereas returned power at the NIR wavelength is similar from both leaves and woody materials. We threshold a normalized difference index (NDI), defined as the difference between returned power at the two wavelengths divided by their sum, to classify each return pulse as a leaf or trunk/branch hit. We obtain leaf area index (LAI), woody area index (WAI) and vertical profiles of leaf and woody components directly from classified lidar hits without empirical wood-to-total ratios as are commonly used in optical methods of LAI estimation. Tree heights, diameter at breast height (DBH), and stem count density are the other forest structure parameters estimated from our DWEL scans. The separation of leaf and woody components in tandem with fine-scale forest structure measurements will benefit studies on carbon allocation of forest ecosystems and improve our understanding of the effects of forest structure on ecosystem functions. This research is supported by NSF grant, MRI-0923389

  8. Principal component analysis for surface reflection components and structure in the facial image and synthesis of the facial image in various ages

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Toyota, Saori; Ojima, Nobutoshi; Ogawa-Ochiai, Keiko; Tsumura, Norimichi

    2015-03-01

    In this paper, principal component analysis is applied to pigmentation distributions, surface reflectance components and facial landmarks in the whole facial images to obtain feature values. Furthermore, the relationship between the obtained feature vectors and age is estimated by multiple regression analysis to modulate facial images in woman of ages 10 to 70. In our previous work, we analyzed only pigmentation distributions and the reproduced images looked younger than the reproduced age by the subjective evaluation. We considered that this happened because we did not modulate the facial structures and detailed surfaces such as wrinkles. By analyzing landmarks represented facial structures and surface reflectance components, we analyzed the variation of facial structures and fine asperity distributions as well as pigmentation distributions in the whole face. As a result, our method modulate the appearance of a face by changing age more appropriately.

  9. Validation of an Integrated Airframe and Turbofan Engine Simulation for Evaluation of Propulsion Control Modes

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Sowers, T Shane; Liu, Yuan; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The National Aeronautics and Space Administration (NASA) has developed independent airframe and engine models that have been integrated into a single real-time aircraft simulation for piloted evaluation of propulsion control algorithms. In order to have confidence in the results of these evaluations, the integrated simulation must be validated to demonstrate that its behavior is realistic and that it meets the appropriate Federal Aviation Administration (FAA) certification requirements for aircraft. The paper describes the test procedures and results, demonstrating that the integrated simulation generally meets the FAA requirements and is thus a valid testbed for evaluation of propulsion control modes.

  10. Investigation of a panel code for airframe/propeller integration analyses

    NASA Technical Reports Server (NTRS)

    Miley, S. J.

    1982-01-01

    The Hess panel code was investigated as a procedure to predict the aerodynamic loading associated with propeller slipstream interference on the airframe. The slipstream was modeled as a variable onset flow to the lifting and nonlifting bodies treated by the code. Four sets of experimental data were used for comparisons with the code. The results indicate that the Hess code, in its present form, will give valid solutions for nonuniform onset flows which vary in direction only. The code presently gives incorrect solutions for flows with variations in velocity. Modifications to the code to correct this are discussed.

  11. Exhaust plumes and their interaction with missile airframes - A new viewpoint

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Sinha, N.

    1992-01-01

    The present, novel treatment of missile airframe-exhaust plume interactions emphasizes their simulation via a formal solution of the Reynolds-averaged Navier-Stokes (RNS) equation and is accordingly able to address the simulation requirements of novel missiles with nonconventional/integrated propulsion systems. The method is made possible by implicit RNS codes with improved artificial dissipation models, generalized geometric capabilities, and improved two-equation turbulence models, as well as by such codes' recent incorporation of plume thermochemistry and multiphase flow effects.

  12. Structure borne noise analysis using Helmholtz equation least squares based forced vibro acoustic components

    NASA Astrophysics Data System (ADS)

    Natarajan, Logesh Kumar

    This dissertation presents a structure-borne noise analysis technology that is focused on providing a cost-effective noise reduction strategy. Structure-borne sound is generated or transmitted through structural vibration; however, only a small portion of the vibration can effectively produce sound and radiate it to the far-field. Therefore, cost-effective noise reduction is reliant on identifying and suppressing the critical vibration components that are directly responsible for an undesired sound. However, current technologies cannot successfully identify these critical vibration components from the point of view of direct contribution to sound radiation and hence cannot guarantee the best cost-effective noise reduction. The technology developed here provides a strategy towards identifying the critical vibration components and methodically suppressing them to achieve a cost-effective noise reduction. The core of this technology is Helmholtz equation least squares (HELS) based nearfield acoustic holography method. In this study, the HELS formulations derived in spherical co-ordinates using spherical wave expansion functions utilize the input data of acoustic pressures measured in the nearfield of a vibrating object to reconstruct the vibro-acoustic responses on the source surface and acoustic quantities in the far field. Using these formulations, three steps were taken to achieve the goal. First, hybrid regularization techniques were developed to improve the reconstruction accuracy of normal surface velocity of the original HELS method. Second, correlations between the surface vibro-acoustic responses and acoustic radiation were factorized using singular value decomposition to obtain orthogonal basis known here as the forced vibro-acoustic components (F-VACs). The F-VACs enables one to identify the critical vibration components for sound radiation in a similar manner that modal decomposition identifies the critical natural modes in a structural vibration. Finally

  13. Investigation of structure in the modular light pipe component for LED automotive lamp

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Zhou, Yang; Huang, Chien-Sheng; Jhong, Wan-Ling; Cheng, Bo-Wei; Jhang, Jhe-Ming

    2014-09-01

    Light-Emitting Diodes (LEDs) have the advantages of small length, long lifetime, fast response time (μs), low voltage, good mechanical properties and environmental protection. Furthermore, LEDs could replace the halogen lamps to avoid the mercury pollution and economize the use of energy. Therefore, the LEDs could instead of the traditional lamp in the future and became an important light source. The proposal of this study was to investigate the effects of the structure and length of the reflector component for a LED automotive lamp. The novel LED automotive lamp was assembled by several different modularization columnar. The optimized design of the different structure and the length to the reflector was simulated by software TracePro. The design result must met the vehicle regulation of United Nations Economic Commission for Europe (UNECE) such as ECE-R19 etc. The structure of the light pipe could be designed by two steps structure. Then constitute the proper structure and choose different power LED to meet the luminous intensity of the vehicle regulation. The simulation result shows the proper structure and length has the best total luminous flux and a high luminous efficiency for the system. Also, the stray light could meet the vehicle regulation of ECE R19. Finally, the experimental result of the selected structure and length of the light pipe could match the simulation result above 80%.

  14. The structure and dynamics of secretory component and its interactions with polymeric immunoglobulins

    PubMed Central

    Stadtmueller, Beth M; Huey-Tubman, Kathryn E; López, Carlos J; Yang, Zhongyu; Hubbell, Wayne L; Bjorkman, Pamela J

    2016-01-01

    As a first-line vertebrate immune defense, the polymeric immunoglobulin receptor (pIgR) transports polymeric IgA and IgM across epithelia to mucosal secretions, where the cleaved ectodomain (secretory component; SC) becomes a component of secretory antibodies, or when unliganded, binds and excludes bacteria. Here we report the 2.6Å crystal structure of unliganded human SC (hSC) and comparisons with a 1.7Å structure of teleost fish SC (tSC), an early pIgR ancestor. The hSC structure comprises five immunoglobulin-like domains (D1-D5) arranged as a triangle, with an interface between ligand-binding domains D1 and D5. Electron paramagnetic resonance measurements confirmed the D1-D5 interface in solution and revealed that it breaks upon ligand binding. Together with binding studies of mutant and chimeric SCs, which revealed domain contributions to secretory antibody formation, these results provide detailed models for SC structure, address pIgR evolution, and demonstrate that SC uses multiple conformations to protect mammals from pathogens. DOI: http://dx.doi.org/10.7554/eLife.10640.001 PMID:26943617

  15. Capturing multidimensionality in stroke aphasia: mapping principal behavioural components to neural structures

    PubMed Central

    Butler, Rebecca A.

    2014-01-01

    Stroke aphasia is a multidimensional disorder in which patient profiles reflect variation along multiple behavioural continua. We present a novel approach to separating the principal aspects of chronic aphasic performance and isolating their neural bases. Principal components analysis was used to extract core factors underlying performance of 31 participants with chronic stroke aphasia on a large, detailed battery of behavioural assessments. The rotated principle components analysis revealed three key factors, which we labelled as phonology, semantic and executive/cognition on the basis of the common elements in the tests that loaded most strongly on each component. The phonology factor explained the most variance, followed by the semantic factor and then the executive-cognition factor. The use of principle components analysis rendered participants’ scores on these three factors orthogonal and therefore ideal for use as simultaneous continuous predictors in a voxel-based correlational methodology analysis of high resolution structural scans. Phonological processing ability was uniquely related to left posterior perisylvian regions including Heschl’s gyrus, posterior middle and superior temporal gyri and superior temporal sulcus, as well as the white matter underlying the posterior superior temporal gyrus. The semantic factor was uniquely related to left anterior middle temporal gyrus and the underlying temporal stem. The executive-cognition factor was not correlated selectively with the structural integrity of any particular region, as might be expected in light of the widely-distributed and multi-functional nature of the regions that support executive functions. The identified phonological and semantic areas align well with those highlighted by other methodologies such as functional neuroimaging and neurostimulation. The use of principle components analysis allowed us to characterize the neural bases of participants’ behavioural performance more robustly and

  16. Secondary Structure, a Missing Component of Sequence-Based Minimotif Definitions

    PubMed Central

    Sargeant, David P.; Gryk, Michael R.; Maciejewski, Mark W.; Thapar, Vishal; Kundeti, Vamsi; Rajasekaran, Sanguthevar; Romero, Pedro; Dunker, Keith; Li, Shun-Cheng; Kaneko, Tomonori; Schiller, Martin R.

    2012-01-01

    Minimotifs are short contiguous segments of proteins that have a known biological function. The hundreds of thousands of minimotifs discovered thus far are an important part of the theoretical understanding of the specificity of protein-protein interactions, posttranslational modifications, and signal transduction that occur in cells. However, a longstanding problem is that the different abstractions of the sequence definitions do not accurately capture the specificity, despite decades of effort by many labs. We present evidence that structure is an essential component of minimotif specificity, yet is not used in minimotif definitions. Our analysis of several known minimotifs as case studies, analysis of occurrences of minimotifs in structured and disordered regions of proteins, and review of the literature support a new model for minimotif definitions that includes sequence, structure, and function. PMID:23236358

  17. Strategy of manufacturing components with designed internal structure by selective laser melting of metallic powder

    NASA Astrophysics Data System (ADS)

    Yadroitsev, I.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    2007-12-01

    Application of selective laser melting for manufacturing three-dimensional objects represents one of the promising directions to solve challenging industrial problems. This approach permits to extend dramatically the freedom of design and manufacture by allowing, for example, to create an object with desired shape and internal structure in a single fabrication step. The design of the part can be tailored to meet specific functions and properties (e.g. physical, mechanical, chemical, biological, etc.) using different materials. Metallic objects were manufactured by Phenix PM 100 machine from Inconel 625 powder. The objective was to analyze the influence of the manufacturing strategy on the internal structure and mechanical properties of the components manufactured by selective laser melting technology. Anisotropy of the internal structure and mechanical properties of the fabricated objects were studied.

  18. Structural and Thermodynamic Factors of Suppressed Interdiffusion Kinetics in Multi-component High-entropy Materials

    PubMed Central

    Chang, Shou-Yi; Li, Chen-En; Huang, Yi-Chung; Hsu, Hsun-Feng; Yeh, Jien-Wei; Lin, Su-Jien

    2014-01-01

    We report multi-component high-entropy materials as extraordinarily robust diffusion barriers and clarify the highly suppressed interdiffusion kinetics in the multi-component materials from structural and thermodynamic perspectives. The failures of six alloy barriers with different numbers of elements, from unitary Ti to senary TiTaCrZrAlRu, against the interdiffusion of Cu and Si were characterized, and experimental results indicated that, with more elements incorporated, the failure temperature of the barriers increased from 550 to 900°C. The activation energy of Cu diffusion through the alloy barriers was determined to increase from 110 to 163 kJ/mole. Mechanistic analyses suggest that, structurally, severe lattice distortion strains and a high packing density caused by different atom sizes, and, thermodynamically, a strengthened cohesion provide a total increase of 55 kJ/mole in the activation energy of substitutional Cu diffusion, and are believed to be the dominant factors of suppressed interdiffusion kinetics through the multi-component barrier materials. PMID:24561911

  19. The Influence of the Molecular Structure of Cyanine Dye on the Component Composition of Molecular Layers

    NASA Astrophysics Data System (ADS)

    Kaliteevskaya, E. N.; Krutyakova, V. P.; Razumova, T. K.; Starovoitov, A. A.

    2016-03-01

    The formation of the component composition of symmetric cationic cyanine dyes on glass is studied. The absorption spectra of layers of three homologous series of dyes with end heterocyclic groups of different spatial and chemical compositions are measured, and the absorption spectra of monomer components and aggregates are separated. The component compositions of layers of different thicknesses are compared. It is shown that the widening of the absorption spectra of molecular layers against the spectra of ethanol solutions of these compounds is caused mainly by the formation of various monomer stereoisomers and molecular aggregates and their interaction with the substrate surface and the neighborhood. The number of isomer forms and their relative concentrations depend on the layer thickness, the electron donor ability and spatial structure of end groups, and the cation conjugation chain length. The influence of the anion manifests itself only in the concentration ratio of the formed monomers and a small shift of the maxima of their absorption bands. The increase in the number of monomer forms produced in the layer corresponds to the increase in the conjugation chain length. Spatial obstacles created by heterocyclic groups inhibit the formation of definite stereoisomers, which reduces the number of components of the layer.

  20. Colorimetric Method for Identifying Plant Essential Oil Components That Affect Biofilm Formation and Structure

    PubMed Central

    Niu, C.; Gilbert, E. S.

    2004-01-01

    The specific biofilm formation (SBF) assay, a technique based on crystal violet staining, was developed to locate plant essential oils and their components that affect biofilm formation. SBF analysis determined that cinnamon, cassia, and citronella oils differentially affected growth-normalized biofilm formation by Escherichia coli. Examination of the corresponding essential oil principal components by the SBF assay revealed that cinnamaldehyde decreased biofilm formation compared to biofilms grown in Luria-Bertani broth, eugenol did not result in a change, and citronellol increased the SBF. To evaluate these results, two microscopy-based assays were employed. First, confocal laser scanning microscopy (CLSM) was used to examine E. coli biofilms cultivated in flow cells, which were quantitatively analyzed by COMSTAT, an image analysis program. The overall trend for five parameters that characterize biofilm development corroborated the findings of the SBF assay. Second, the results of an assay measuring growth-normalized adhesion by direct microscopy concurred with the results of the SBF assay and CLSM imaging. Viability staining indicated that there was reduced toxicity of the essential oil components to cells in biofilms compared to the toxicity to planktonic cells but revealed morphological damage to E. coli after cinnamaldehyde exposure. Cinnamaldehyde also inhibited the swimming motility of E. coli. SBF analysis of three Pseudomonas species exposed to cinnamaldehyde, eugenol, or citronellol revealed diverse responses. The SBF assay could be useful as an initial step for finding plant essential oils and their components that affect biofilm formation and structure. PMID:15574886

  1. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component

    PubMed Central

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall. PMID:27242758

  2. Reynolds number effects on wavelet components of self-preserving turbulent structures

    NASA Astrophysics Data System (ADS)

    Rinoshika, Akira; Zhou, Yu

    2009-04-01

    The effect of the Reynolds number on the wavelet-decomposed turbulent structures in a self-preserving plane wake has been investigated for Reθ (based on the free-stream velocity and momentum thickness, θ , of the wake) =1350 and 4600. Measurements were made at x/θ ( x is the streamwise distance downstream of the cylinder) =580 for the circular cylinder using two orthogonal arrays of 16 X wires, eight in the (x,y) plane, and eight in the (x,z) plane. A wavelet multiresolution technique is used to analyze the measured hot-wire data. This technique decomposes turbulence structures into a number of components based on their central frequencies, which are linked with the turbulence scales. Sectional streamlines and vorticity contours at the same central frequency, i.e., the comparable scales of turbulent structures, are examined and compared between the two Reynolds numbers. Discernible differences are observed in the turbulent structures of relatively large to intermediate scales. The differences are further quantified in terms of contributions from the turbulent structures of different scales to the Reynolds stresses, vorticity variance, and probability density functions of the fluctuating velocities. The large-scale structure contributes most to the Reynolds stresses and this contribution drops for the higher Reθ .

  3. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component.

    PubMed

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall. PMID:27242758

  4. Magnonic band structure investigation of one-dimensional bi-component magnonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Ma, Fu Sheng; Lim, Hock Siah; Zhang, Vanessa Li; Ng, Ser Choon; Kuok, Meng Hau

    2012-09-01

    The magnonic band structures for exchange spin waves propagating in one-dimensional magnonic crystal waveguides of different material combinations are investigated using micromagnetic simulations. The waveguides are periodic arrays of alternating nanostripes of different ferromagnetic materials. Our results show that the widths and center frequencies of the bandgaps are controllable by the component materials, the stripe widths, and the orientation of the applied magnetic field. One salient feature of the bandgap frequency plot against stripe width is that there are n-1 zero-width gaps for the nth bandgap for both transversely and longitudinally magnetized waveguides. Additionally, the largest bandgap widths are primarily dependent on the exchange constant contrast between the component materials of the nanostructured waveguides.

  5. Magnonic band structure investigation of one-dimensional bi-component magnonic crystal waveguides

    PubMed Central

    2012-01-01

    The magnonic band structures for exchange spin waves propagating in one-dimensional magnonic crystal waveguides of different material combinations are investigated using micromagnetic simulations. The waveguides are periodic arrays of alternating nanostripes of different ferromagnetic materials. Our results show that the widths and center frequencies of the bandgaps are controllable by the component materials, the stripe widths, and the orientation of the applied magnetic field. One salient feature of the bandgap frequency plot against stripe width is that there are n-1 zero-width gaps for the nth bandgap for both transversely and longitudinally magnetized waveguides. Additionally, the largest bandgap widths are primarily dependent on the exchange constant contrast between the component materials of the nanostructured waveguides. PMID:22943207

  6. Local Laser Strengthening of Steel Sheets for Load Adapted Component Design in Car Body Structures

    NASA Astrophysics Data System (ADS)

    Jahn, Axel; Heitmanek, Marco; Standfuss, Jens; Brenner, Berndt; Wunderlich, Gerd; Donat, Bernd

    The current trend in car body construction concerning light weight design and car safety improvement increasingly requires an adaption of the local material properties on the component load. Martensitic hardenable steels, which are typically used in car body components, show a significant hardening effect, for instance in laser welded seams. This effect can be purposefully used as a local strengthening method. For several steel grades the local strengthening, resulting from a laser remelting process was investigated. The strength in the treated zone was determined at crash relevant strain rates. A load adapted design of complex reinforcement structures was developed for compression and bending loaded tube samples, using numerical simulation of the deformation behavior. Especially for bending loaded parts, the crash energy absorption can be increased significantly by local laser strengthening.

  7. Calculating excess volumes of binary solutions with allowance for structural differences between mixed components

    NASA Astrophysics Data System (ADS)

    Balankina, E. S.

    2016-06-01

    Analytical dependences of a volume's properties on the differences between the geometric structures of initial monosystems are obtained for binary systems simulated by a grain medium. The effect of microstructural parameter k (the ratio of volumes of molecules of mixed components) on the concentration behavior of the relative excess molar volume of different types of real binary solutions is analyzed. It is established that the contribution due to differences between the volumes of molecules and coefficients of the packing density of mixed components is ~80-100% for mutual solutions of n-alkanes and ~55-80% of the experimental value of the relative excess molar volume for water solutions of n-alcohols.

  8. A Novel Method of Extraction of Blend Component Structure from SANS Measurements of Homopolymer Bimodal Blends

    PubMed Central

    Smerdova, Olga; Graham, Richard S; Gasser, Urs; Hutchings, Lian R; De Focatiis, Davide S A

    2014-01-01

    A new method is presented for the extraction of single-chain form factors and interchain interference functions from a range of small-angle neutron scattering (SANS) experiments on bimodal homopolymer blends. The method requires a minimum of three blends, made up of hydrogenated and deuterated components with matched degree of polymerization at two different chain lengths, but with carefully varying deuteration levels. The method is validated through an experimental study on polystyrene homopolymer bimodal blends with . By fitting Debye functions to the structure factors, it is shown that there is good agreement between the molar mass of the components obtained from SANS and from chromatography. The extraction method also enables, for the first time, interchain scattering functions to be produced for scattering between chains of different lengths. PMID:25866454

  9. Magnonic band structure investigation of one-dimensional bi-component magnonic crystal waveguides.

    PubMed

    Ma, Fu Sheng; Lim, Hock Siah; Zhang, Vanessa Li; Ng, Ser Choon; Kuok, Meng Hau

    2012-01-01

    The magnonic band structures for exchange spin waves propagating in one-dimensional magnonic crystal waveguides of different material combinations are investigated using micromagnetic simulations. The waveguides are periodic arrays of alternating nanostripes of different ferromagnetic materials. Our results show that the widths and center frequencies of the bandgaps are controllable by the component materials, the stripe widths, and the orientation of the applied magnetic field. One salient feature of the bandgap frequency plot against stripe width is that there are n-1 zero-width gaps for the nth bandgap for both transversely and longitudinally magnetized waveguides. Additionally, the largest bandgap widths are primarily dependent on the exchange constant contrast between the component materials of the nanostructured waveguides. PMID:22943207

  10. AH-1G flight vibration correlation using NASTRAN and the C81 rotor/airframe coupled analysis

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.; Corrigan, J. J.

    1986-01-01

    Analytical results are presented bearing on the accuracy of state-of-the-art NASTRAN FEM modeling techniques and rotor/airframe coupling methods for the prediction of flight vibrations; these results have been studied by NASA and industry experts in order to ensure scientific control of the analysis/correlation exercise. The rotor loads predicted by the dynamically coupled rotor/airframe analysis showed good agreement between calculated and experimental blade loads, as did the predominant excitation frequency vibration levels predicted by NASTRAN.

  11. Stress Analysis of B-52B and B-52H Air-Launching Systems Failure-Critical Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2005-01-01

    The operational life analysis of any airborne failure-critical structural component requires the stress-load equation, which relates the applied load to the maximum tangential tensile stress at the critical stress point. The failure-critical structural components identified are the B-52B Pegasus pylon adapter shackles, B-52B Pegasus pylon hooks, B-52H airplane pylon hooks, B-52H airplane front fittings, B-52H airplane rear pylon fitting, and the B-52H airplane pylon lower sway brace. Finite-element stress analysis was performed on the said structural components, and the critical stress point was located and the stress-load equation was established for each failure-critical structural component. The ultimate load, yield load, and proof load needed for operational life analysis were established for each failure-critical structural component.

  12. Analysis of complex elastic structures by a Rayleigh-Ritz component modes method using Lagrange multipliers. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Klein, L. R.

    1974-01-01

    The free vibrations of elastic structures of arbitrary complexity were analyzed in terms of their component modes. The method was based upon the use of the normal unconstrained modes of the components in a Rayleigh-Ritz analysis. The continuity conditions were enforced by means of Lagrange Multipliers. Examples of the structures considered are: (1) beams with nonuniform properties; (2) airplane structures with high or low aspect ratio lifting surface components; (3) the oblique wing airplane; and (4) plate structures. The method was also applied to the analysis of modal damping of linear elastic structures. Convergence of the method versus the number of modes per component and/or the number of components is discussed and compared to more conventional approaches, ad-hoc methods, and experimental results.

  13. An Assessment of IMPAC - Integrated Methodology for Propulsion and Airframe Controls

    NASA Technical Reports Server (NTRS)

    Walker, G. P.; Wagner, E. A.; Bodden, D. S.

    1996-01-01

    This report documents the work done under a NASA sponsored contract to transition to industry technologies developed under the NASA Lewis Research Center IMPAC (Integrated Methodology for Propulsion and Airframe Control) program. The critical steps in IMPAC are exercised on an example integrated flight/propulsion control design for linear airframe/engine models of a conceptual STOVL (Short Take-Off and Vertical Landing) aircraft, and MATRIXX (TM) executive files to implement each step are developed. The results from the example study are analyzed and lessons learned are listed along with recommendations that will improve the application of each design step. The end product of this research is a set of software requirements for developing a user-friendly control design tool which will automate the steps in the IMPAC methodology. Prototypes for a graphical user interface (GUI) are sketched to specify how the tool will interact with the user, and it is recommended to build the tool around existing computer aided control design software packages.

  14. Utility of an airframe referenced spatial auditory display for general aviation operations

    NASA Astrophysics Data System (ADS)

    Naqvi, M. Hassan; Wigdahl, Alan J.; Ranaudo, Richard J.

    2009-05-01

    The University of Tennessee Space Institute (UTSI) completed flight testing with an airframe-referenced localized audio cueing display. The purpose was to assess its affect on pilot performance, workload, and situational awareness in two scenarios simulating single-pilot general aviation operations under instrument meteorological conditions. Each scenario consisted of 12 test procedures conducted under simulated instrument meteorological conditions, half with the cue off, and half with the cue on. Simulated aircraft malfunctions were strategically inserted at critical times during each test procedure. Ten pilots participated in the study; half flew a moderate workload scenario consisting of point to point navigation and holding pattern operations and half flew a high workload scenario consisting of non precision approaches and missed approach procedures. Flight data consisted of aircraft and navigation state parameters, NASA Task Load Index (TLX) assessments, and post-flight questionnaires. With localized cues there was slightly better pilot technical performance, a reduction in workload, and a perceived improvement in situational awareness. Results indicate that an airframe-referenced auditory display has utility and pilot acceptance in general aviation operations.

  15. A Comparison of Ffowcs Williams-Hawkings Solvers for Airframe Noise Applications

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2002-01-01

    This paper presents a comparison between two implementations of the Ffowcs Williams and Hawkings equation for airframe noise applications. Airframe systems are generally moving at constant speed and not rotating, so these conditions are used in the current investigation. Efficient and easily implemented forms of the equations applicable to subsonic, rectilinear motion of all acoustic sources are used. The assumptions allow the derivation of a simple form of the equations in the frequency-domain, and the time-domain method uses the restrictions on the motion to reduce the work required to find the emission time. The comparison between the frequency domain method and the retarded time formulation reveals some of the advantages of the different approaches. Both methods are still capable of predicting the far-field noise from nonlinear near-field flow quantities. Because of the large input data sets and potentially large numbers of observer positions of interest in three-dimensional problems, both codes utilize the message passing interface to divide the problem among different processors. Example problems are used to demonstrate the usefulness and efficiency of the two schemes.

  16. Structural complexity and component type increase intertidal biodiversity independently of area.

    PubMed

    Loke, Lynette H L; Todd, Peter A

    2016-02-01

    Complexity is well accepted as one of the primary drivers of biodiversity, however, empirical support for such positive associations is often confounded with surface area and undermined by other potential explanatory factors, especially the type of structural component (e.g., pits, crevices, overhangs, etc.). In the present study, sample units (artificial substrates) of equal surface area (± 0.2%) were used to simultaneously examine the independent effects of complexity and different structural component types on species richness (S), abundance (N), and community composition. We created simple and complex concrete substrates of four different geometric designs using novel software. The substrates (n = 8) were mounted onto granite seawalls (at two tidal heights) on two islands south of Singapore Island. After 13 months of colonization, all 384 tiles were collected and their assemblages compared. A total of 53 744 individuals of 70 species/morphospecies were collected and identified. Our results show that greater complexity can support greater species richness and different communities that are independent of surface area. Furthermore, the type of structure (e.g., "pits," "grooves," "towers") can have an effect on richness and community composition that is independent of complexity. PMID:27145613

  17. Structure and assembly of the essential RNA ring component of a viral DNA packaging motor

    SciTech Connect

    Ding, Fang; Lu, Changrui; Zhao, Wei; Rajashankar, Kanagalaghatta R.; Anderson, Dwight L.; Jardine, Paul J.; Grimes, Shelley; Ke, Ailong

    2011-07-25

    Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage {psi}29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 {angstrom} resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNA cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of {psi}29 DNA.

  18. Structure and assembly of the essential RNA ring component of a viral DNA packaging motor.

    PubMed

    Ding, Fang; Lu, Changrui; Zhao, Wei; Rajashankar, Kanagalaghatta R; Anderson, Dwight L; Jardine, Paul J; Grimes, Shelley; Ke, Ailong

    2011-05-01

    Prohead RNA (pRNA) is an essential component in the assembly and operation of the powerful bacteriophage 29 DNA packaging motor. The pRNA forms a multimeric ring via intermolecular base-pairing interactions between protomers that serves to guide the assembly of the ring ATPase that drives DNA packaging. Here we report the quaternary structure of this rare multimeric RNA at 3.5 Å resolution, crystallized as tetrameric rings. Strong quaternary interactions and the inherent flexibility helped rationalize how free pRNA is able to adopt multiple oligomerization states in solution. These characteristics also allowed excellent fitting of the crystallographic pRNA protomers into previous prohead/pRNA cryo-EM reconstructions, supporting the presence of a pentameric, but not hexameric, pRNA ring in the context of the DNA packaging motor. The pentameric pRNA ring anchors itself directly to the phage prohead by interacting specifically with the fivefold symmetric capsid structures that surround the head-tail connector portal. From these contacts, five RNA superhelices project from the pRNA ring, where they serve as scaffolds for binding and assembly of the ring ATPase, and possibly mediate communication between motor components. Construction of structure-based designer pRNAs with little sequence similarity to the wild-type pRNA were shown to fully support the packaging of 29 DNA. PMID:21471452

  19. Crystal Structure of the Terminal Oxygenase Component of Cumene Dioxygenase from Pseudomonas fluorescens IP01†

    PubMed Central

    Dong, Xuesong; Fushinobu, Shinya; Fukuda, Eriko; Terada, Tohru; Nakamura, Shugo; Shimizu, Kentaro; Nojiri, Hideaki; Omori, Toshio; Shoun, Hirofumi; Wakagi, Takayoshi

    2005-01-01

    The crystal structure of the terminal component of the cumene dioxygenase multicomponent enzyme system of Pseudomonas fluorescens IP01 (CumDO) was determined at a resolution of 2.2 Å by means of molecular replacement by using the crystal structure of the terminal oxygenase component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4 (NphDO). The ligation of the two catalytic centers of CumDO (i.e., the nonheme iron and Rieske [2Fe-2S] centers) and the bridging between them in neighboring catalytic subunits by hydrogen bonds through a single amino acid residue, Asp231, are similar to those of NphDO. An unidentified external ligand, possibly dioxygen, was bound at the active site nonheme iron. The entrance to the active site of CumDO is different from the entrance to the active site of NphDO, as the two loops forming the lid exhibit great deviation. On the basis of the complex structure of NphDO, a biphenyl substrate was modeled in the substrate-binding pocket of CumDO. The residues surrounding the modeled biphenyl molecule include residues that have already been shown to be important for its substrate specificity by a number of engineering studies of biphenyl dioxygenases. PMID:15774891

  20. Single-Component Conductors: A Sturdy Electronic Structure Generated by Bulky Substituents.

    PubMed

    Filatre-Furcate, Agathe; Bellec, Nathalie; Jeannin, Olivier; Auban-Senzier, Pascale; Fourmigué, Marc; Íñiguez, Jorge; Canadell, Enric; Brière, Benjamin; Ta Phuoc, Vinh; Lorcy, Dominique

    2016-06-20

    While the introduction of large, bulky substituents such as tert-butyl, -SiMe3, or -Si(isopropyl)3 has been used recently to control the solid state structures and charge mobility of organic semiconductors, this crystal engineering strategy is usually avoided in molecular metals where a maximized overlap is sought. In order to investigate such steric effects in single component conductors, the ethyl group of the known [Au(Et-thiazdt)2] radical complex has been replaced by an isopropyl one to give a novel single component molecular conductor denoted [Au(iPr-thiazdt)2] (iPr-thiazdt: N-isopropyl-1,3-thiazoline-2-thione-4,5-dithiolate). It exhibits a very original stacked structure of crisscross molecules interacting laterally to give a truly three-dimensional network. This system is weakly conducting at ambient pressure (5 S·cm(-1)), and both transport and optical measurements evidence a slowly decreasing energy gap under applied pressure with a regime change around 1.5 GPa. In contrast with other conducting systems amenable to a metallic state under physical or chemical pressure, the Mott insulating state is stable here up to 4 GPa, a consequence of its peculiar electronic structure. PMID:27266960

  1. Mining the physical infrastructure: Opportunities, barriers and interventions in promoting structural components reuse.

    PubMed

    Iacovidou, Eleni; Purnell, Phil

    2016-07-01

    Construction is the most resource intensive sector in the world. It consumes more than half of the total global resources; it is responsible for more than a third of the total global energy use and associated emissions; and generates the greatest and most voluminous waste stream globally. Reuse is considered to be a material and carbon saving practice highly recommended in the construction sector as it can address both waste and carbon emission regulatory targets. This practice offers the possibility to conserve resources through the reclamation of structural components and the carbon embedded in them, as well as opportunities for the development of new business models and the creation of environmental, economic, technical and social value. This paper focuses on the identification and analysis of existing interventions that can promote the reuse of construction components, and outlines the barriers and opportunities arising from this practice as depicted from the global literature. The main conclusions that derive from this study are that the combination of incentives that promote reuse of construction components and recycling of the rest of the construction materials with the provision of specialised education, skills and training would transform the way construction sector currently operates and create opportunities for new business development. Moreover, a typology system developed based on the properties and lifetime of construction components is required in order to provide transparency and guidance in the way construction components are used and reused, in order to make them readily available to designers and contractors. Smart technologies carry the potential to aid the development and uptake of this system by enabling efficient tracking, storage and archiving, while providing information relevant to the environmental and economic savings that can be regained, enabling also better decision-making during construction and deconstruction works. However, further

  2. Strategies To Discover the Structural Components of Cyst and Oocyst Walls

    PubMed Central

    Bushkin, G. Guy; Chatterjee, Aparajita; Robbins, Phillips W.

    2013-01-01

    Cysts of Giardia lamblia and Entamoeba histolytica and oocysts of Toxoplasma gondii and Cryptosporidium parvum are the infectious and sometimes diagnostic forms of these parasites. To discover the structural components of cyst and oocyst walls, we have developed strategies based upon a few simple assumptions. Briefly, the most abundant wall proteins are identified by monoclonal antibodies or mass spectrometry. Structural components include a sugar polysaccharide (chitin for Entamoeba, β-1,3-linked glucose for Toxoplasma, and β-1,3-linked GalNAc for Giardia) and/or acid-fast lipids (Toxoplasma and Cryptosporidium). Because Entamoeba cysts and Toxoplasma oocysts are difficult to obtain, studies of walls of nonhuman pathogens (E. invadens and Eimeria, respectively) accelerate discovery. Biochemical methods to dissect fungal walls work well for cyst and oocyst walls, although the results are often unexpected. For example, echinocandins, which inhibit glucan synthases and kill fungi, arrest the development of oocyst walls and block their release into the intestinal lumen. Candida walls are coated with mannans, while Entamoeba cysts are coated in a dextran-like glucose polymer. Models for cyst and oocyst walls derive from their structural components and organization within the wall. Cyst walls are composed of chitin fibrils and lectins that bind chitin (Entamoeba) or fibrils of the β-1,3-GalNAc polymer and lectins that bind the polymer (Giardia). Oocyst walls of Toxoplasma have two distinct layers that resemble those of fungi (β-1,3-glucan in the inner layer) or mycobacteria (acid-fast lipids in the outer layer). Oocyst walls of Cryptosporidium have a rigid bilayer of acid-fast lipids and inner layer of oocyst wall proteins. PMID:24096907

  3. Hydrodynamic impact of a system with a single elastic mode I : theory and generalized solution with an application to an elastic airframe

    NASA Technical Reports Server (NTRS)

    Mayo, Wilbur L

    1952-01-01

    Solutions of impact of a rigid prismatic float connected by a massless spring to a rigid upper mass are presented. The solutions are based on hydrodynamic theory which has been experimentally confirmed for a rigid structure. Equations are given for defining the spring constant and the ratio of the sprung mass to the lower mass so that the two-mass system provides representation of the fundamental mode of an airplane wing. The forces calculated are more accurate than the forces which would be predicted for a rigid airframe since the effect of the fundamental mode on the hydrodynamic force is taken into account. In a comparison of the theoretical data with data for a severe flight-test landing impact, the effect of the fundamental mode on the hydrodynamic force is considered and response data are compared with experimental data.

  4. High-temperature combustor liner tests in structural component response test facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Paul E.

    1988-01-01

    Jet engine combustor liners were tested in the structural component response facility at NASA Lewis. In this facility combustor liners were thermally cycled to simulate a flight envelope of takeoff, cruise, and return to idle. Temperatures were measured with both thermocouples and an infrared thermal imaging system. A conventional stacked-ring louvered combustor liner developed a crack at 1603 cycles. This test was discontinued after 1728 cycles because of distortion of the liner. A segmented or float wall combustor liner tested at the same heat flux showed no significant change after 1600 cycles. Changes are being made in the facility to allow higher temperatures.

  5. Holey-structured metamaterial lens for subwavelength resolution in ultrasonic characterization of metallic components

    NASA Astrophysics Data System (ADS)

    Amireddy, Kiran Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2016-05-01

    This paper presents the implementation of holey structured metamaterial lens for ultrasonic characterization of subwavelength subsurface defects in metallic components. Experimental results are presented, demonstrating ultrasound-based resolution of side drilled through-holes spaced (λ/5) in an aluminum block. Numerical simulation is then used to investigate the parameters that can help improve the resolution performance of the metamaterial lens, particularly, the addition of end-conditions. This work has important implications for higher resolution ultrasonic imaging in the context of practical non-destructive imaging and non-invasive material diagnostics.

  6. Detection and Sizing of Defects in Structural Components of a Nuclear Power Plant by ECT

    NASA Astrophysics Data System (ADS)

    Chen, Zhenmao; Miya, Kenzo

    2005-04-01

    In this paper, progress of ECT technique for inspection of stress corrosion cracks in a structural component of a nuclear power plant is reported. Access and scanning vehicle (robot), advanced probes for SG tube inspection, development and evaluation of new probes for welding joint, and ECT based crack sizing technique are described respectively. Based on these new techniques, it is clarified that ECT can play as a supplement of UT for the welding zone inspection. It is also proved in this work that new ECT sensors are efficient even for a stainless plate as thick as 15mm.

  7. Interactive buckling of thin-walled structural components under static and dynamic loads

    NASA Technical Reports Server (NTRS)

    Sridharan, S.; Benito, R.

    1984-01-01

    Recent advances in the study of interactive buckling of thin walled structural components achieved with the aid of finite strip technique used in conjunction with the theory of mode interaction are summarized. The interaction of the primary local mode with Euler buckling (in columns) and flexural torsional buckling (in columns and beams) is of primary interest. The interaction of two companion local modes with the overall mode is also considered briefly for the columns with doubly symmetric cross sections. The effect of dynamic loads in the form of suddenly applied and compression is also investigated.

  8. Practical theories for service life prediction of critical aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Monaghan, Richard C.; Jackson, Raymond H.

    1992-01-01

    A new second-order theory was developed for predicting the service lives of aerospace structural components. The predictions based on this new theory were compared with those based on the Ko first-order theory and the classical theory of service life predictions. The new theory gives very accurate service life predictions. An equivalent constant-amplitude stress cycle method was proposed for representing the random load spectrum for crack growth calculations. This method predicts the most conservative service life. The proposed use of minimum detectable crack size, instead of proof load established crack size as an initial crack size for crack growth calculations, could give a more realistic service life.

  9. Effects of inulin on the structure and emulsifying properties of protein components in dough.

    PubMed

    Liu, Juan; Luo, Denglin; Li, Xuan; Xu, Baocheng; Zhang, Xiaoyu; Liu, Jianxue

    2016-11-01

    High-purity gliadin, glutenin and gluten fractions were extracted from wheat gluten flour. To investigate the effects of three types of inulin with different degrees of polymerization (DP) on the emulsifying properties, disulfide contents, secondary structures and microstructures of these fractions, Turbidimetry, spectrophotometer, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) were used in this study. The results showed that the emulsifying activity of gliadin was higher than that of glutenin and gluten, but its emulsion stability was lower than that of glutenin. Adding inulin increased the emulsifying activity of the three protein fractions and emulsion stability of gliadin and gluten, but decreased the emulsion stability of glutenin and disulfide bond contents of glutenin and gluten. In the presence of inulin, the α-helical structure of the three proteins had no significant change, whereas the β-turn structure decreased and β-sheet structure increased. The SEM images showed that inulin had the most significant effect on the glutenin microstructure. In general, inulin with a higher DP had greater effects on the structure and emulsifying properties of protein components in dough. PMID:27211643

  10. Structural Design of Glass and Ceramic Components for Space System Safety

    NASA Technical Reports Server (NTRS)

    Bernstein, Karen S.

    2007-01-01

    Manned space flight programs will always have windows as part of the structural shell of the crew compartment. Astronauts and cosmonauts need to and enjoy looking out of the spacecraft windows at Earth, at approaching vehicles, at scientific objectives and at the stars. With few exceptions spacecraft windows have been made of glass, and the lessons learned over forty years of manned space flight have resulted in a well-defined approach for using this brittle, unforgiving material in NASA's vehicles, in windows and other structural applications. This chapter will outline the best practices that have developed at NASA for designing, verifying and accepting glass (and ceramic) windows and other components for safe and reliable use in any space system.

  11. Scanning Probe Microscopy for Identifying the Component Materials of a Nanostripe Structure

    NASA Astrophysics Data System (ADS)

    Mizuno, Akira; Ando, Yasuhisa

    2010-08-01

    The authors prepared a nanostripe structure in which two types of metal are arranged alternately, and successfully identified the component materials using scanning probe microscopy (SPM) to measure the lateral force distribution image. The nanostripe structure was prepared using a new method developed by the authors and joint development members. The lateral force distribution image was measured in both friction force microscopy (FFM) and lateral modulation friction force microscopy (LM-FFM) modes. In FFM mode, the effect of slope angle appeared in the lateral force distribution image; therefore, no difference in the type of material was observed. On the other hand, in LM-FFM mode, the effect of surface curvature was observed in the lateral force distribution image. A higher friction force on chromium than on gold was identified, enabling material identification.

  12. Achromatic flat optical components via compensation between structure and material dispersions

    NASA Astrophysics Data System (ADS)

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems.

  13. Sliding and Rocking of Unanchored Components and Structures: Chapter 7.6 ASCE 4 Revision 2

    SciTech Connect

    S. R. Jensen

    2011-04-01

    Chapter 7.6 of ASCE 4-Rev 2, Seismic Analysis of Safety-Related Nuclear Structures: Standard and Commentary, provides updated guidance for analysis of rocking and sliding of unanchored structures and components subjected to seismic load. This guidance includes provisions both for simplified approximate energy-based approaches, and for detailed probabilistic time history analysis using nonlinear methods. Factors to be applied to the analytical results are also provided with the intent of ensuring achievement of the 80% non-exceedence probability target of the standard. The present paper surveys the published literature supporting these provisions. The results of available testing and analysis are compared to results produced by both simplified and probabilistic approaches. In addition, adequacy of the standard's provisions for analysis methods and factors is assessed. A comparison is made between the achieved level of conservatism and the standard's non-exceedence probability target.

  14. [Establishment of industry promotion technology system in Chinese medicine secondary exploitation based on "component structure theory"].

    PubMed

    Cheng, Xu-Dong; Feng, Liang; Zhang, Ming-Hua; Gu, Jun-Fei; Jia, Xiao-Bin

    2014-10-01

    The purpose of the secondary exploitation of Chinese medicine is to improve the quality of Chinese medicine products, enhance core competitiveness, for better use in clinical practice, and more effectively solve the patient suffering. Herbs, extraction, separation, refreshing, preparation and quality control are all involved in the industry promotion of Chinese medicine secondary exploitation of industrial production. The Chinese medicine quality improvement and industry promotion could be realized with the whole process of process optimization, quality control, overall processes improvement. Based on the "component structure theory", "multi-dimensional structure & process dynamic quality control system" and systematic and holistic character of Chinese medicine, impacts of whole process were discussed. Technology systems of Chinese medicine industry promotion was built to provide theoretical basis for improving the quality and efficacy of the secondary development of traditional Chinese medicine products. PMID:25751964

  15. A methodology to model physical contact between structural components in NASTRAN

    NASA Astrophysics Data System (ADS)

    Prabhu, Annappa A.

    1993-09-01

    Two components of a structure which are located side by side, will come in contact by certain force and will transfer the compressive force along the contact area. If the force acts in the opposite direction, the elements will separate and no force will be transferred. If this contact is modeled, the load path will be correctly represented, and the load redistribution results in more realistic stresses in the structure. This is accomplished by using different sets of rigid elements for different loading conditions, or by creating multipoint constraint sets. Comparison of these two procedures is presented for a 4 panel unit (PU) stowage drawer installed in an experiment rack in the Spacelab Life Sciences (SLS-2) payload.

  16. Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.

  17. A methodology to model physical contact between structural components in NASTRAN

    NASA Technical Reports Server (NTRS)

    Prabhu, Annappa A.

    1993-01-01

    Two components of a structure which are located side by side, will come in contact by certain force and will transfer the compressive force along the contact area. If the force acts in the opposite direction, the elements will separate and no force will be transferred. If this contact is modeled, the load path will be correctly represented, and the load redistribution results in more realistic stresses in the structure. This is accomplished by using different sets of rigid elements for different loading conditions, or by creating multipoint constraint sets. Comparison of these two procedures is presented for a 4 panel unit (PU) stowage drawer installed in an experiment rack in the Spacelab Life Sciences (SLS-2) payload.

  18. Evaluation of hot isostatic pressing for joining of fusion reactor structural components

    NASA Astrophysics Data System (ADS)

    Ivanov, A. D.; Sato, S.; Le Marois, G.

    2000-12-01

    Hot isostatic pressing (HIP) is a promising technology to fabricate the blanket structure of fusion reactors. HIP joining of solid materials has been selected as a reference fabrication method for the shielding blanket/first wall of the international thermonuclear experimental reactor (ITER). On the basis of experimental results obtained in Europe, Japan and Russia, an evaluation of HIP joining for fusion reactor structural components has been carried out. The parameters of HIP fabrication for copper alloys and stainless steels are given. The results of microscopic observations, X-ray microanalysis, tensile, impact toughness, fracture toughness and fatigue tests are presented. Material science criteria for an estimation of quality for joints fabricated by HIP are discussed.

  19. Achromatic flat optical components via compensation between structure and material dispersions

    PubMed Central

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems. PMID:26794855

  20. Structure of ion acoustic solitons and shock waves in a two-component plasma.

    NASA Technical Reports Server (NTRS)

    White, R. B.; Fried, B. D.; Coroniti, F. V.

    1972-01-01

    Time-independent solitary waves and shocks are investigated in a two-component plasma using a fluid model and kinetic theory. It is found that very small concentrations of a light ion can drastically alter the structure, changing the potential maximum by an order of magnitude. For a fixed Mach number, a critical density ratio of light to heavy ions is found at which the potential maximum changes discontinuously from a value large enough to reflect the light ions to one which allows them to traverse the shock front and enter the downstream flow. The downstream oscillatory structure normally seen in a shock is completely quenched by dissipation due to light ion reflection at concentrations of 3-8% He in an Ar plasma for typical electron to ion temperature ratios and Mach number values.

  1. Achromatic flat optical components via compensation between structure and material dispersions.

    PubMed

    Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang

    2016-01-01

    Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems. PMID:26794855

  2. Design, fabrication and test of graphite/epoxy metering truss structure components, phase 3

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design, materials, tooling, manufacturing processes, quality control, test procedures, and results associated with the fabrication and test of graphite/epoxy metering truss structure components exhibiting a near zero coefficient of thermal expansion are described. Analytical methods were utilized, with the aid of a computer program, to define the most efficient laminate configurations in terms of thermal behavior and structural requirements. This was followed by an extensive material characterization and selection program, conducted for several graphite/graphite/hybrid laminate systems to obtain experimental data in support of the analytical predictions. Mechanical property tests as well as the coefficient of thermal expansion tests were run on each laminate under study, the results of which were used as the selection criteria for the single most promising laminate. Further coefficient of thermal expansion measurement was successfully performed on three subcomponent tubes utilizing the selected laminate.

  3. Evidence for a Meteoritic Component in Impact Melt Rock from the Chicxulub Structure

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Sharpton, Virgil L.; Schuraytz, Benjamin C.; Shirey, Steven B.; Blum, Joel D.; Marin, Luis E.

    1994-01-01

    The Chicxulub structure in Yucatan, Mexico, has recently been recognized as a greater then 200-km-diameter multi-ring impact crater of K-T boundary age. Crystalline impact melt rocks and breccias from within the crater, which have compositions similar to those of normal continental crustal rocks and which show shock metamorphic effects, have been studied for trace element and Re-Os isotope compositions. Re-Os isotope systematics allow the sensitive and selective determination of an extraterrestrial component in impact-derived rocks. A melt rock sample shows elevated iridium concentrations, an osmium concentration of 25 ppb, and a low Os-187/Os-188 ratio of 0.113, which are incompatible with derivation from the continental crust. Even though the Os-187/Os-188 ratio is slightly lower than the range so far measured in meteorites, a mantle origin seems unlikely for mass balance reasons and because the cratering event is unlikely to have excavated mantle material. The data support the hypothesis of a heterogeneously distributed meteoritic component in the Chicxulub melt rock. A sample of impact glass from the Haitian K-T boundary at Beloc yielded about 0.1 ppb osmium and an Os-187/0s-188 ratio of 0.251, indicating the presence of a small meteoritic component in the impact ejecta as well.

  4. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination

    PubMed Central

    Kim, Keun P.; Weiner, Beth M.; Zhang, Liangran; Jordan, Amy; Dekker, Job; Kleckner, Nancy

    2010-01-01

    SUMMARY Meiotic recombination occurs between one chromatid of each maternal and paternal homolog (homolog bias) versus between sister chromatids (sister bias). Physical DNA analysis reveals that meiotic cohesin/axis component Rec8 promotes sister bias, likely via its cohesion activity. Two meiosis-specific axis components, Red1/Mek1kinase, counteract this effect. With this precondition satisfied, other molecules directly specify homolog bias per se. Rec8 also acts positively to maintain homolog bias during crossover recombination. These observations point to sequential release of double-strand break ends from association with their sister. Red1 and Rec8 are found to play distinct roles for sister cohesion, DSB formation and recombination progression kinetics. Also, the two components are enriched in spatially distinct domains of axial structure that develop prior to DSB formation. We propose that Red1 and Rec8 domains provide functionally complementary environments whereby inputs evolved from DSB repair and late-stage chromosome morphogenesis are integrated to give the complete meiotic chromosomal program. PMID:21145459

  5. Structural infection and anomalous phase sequences in complex oxides prepared from nanodispersed components

    SciTech Connect

    Shmytko, I. M. Strukova, G. K.; Kudrenko, E. A.

    2006-12-15

    The complex oxides prepared by solid-phase synthesis from nanoscopic components are studied using X-ray diffraction. It is demonstrated that the use of nanoscopic components in the solid-phase synthesis of lutetium borate LuBO{sub 3} and europium molybdate Eu{sub 2}(MoO{sub 4}){sub 3} leads to anomalous sequences of phase transformations in these compounds: the vaterite {sup {yields}} calcite {r_reversible} vaterite sequence for LuBO{sub 3} and the {beta} {sup {yields}} {alpha} {r_reversible} {beta} sequence for Eu{sub 2}(MoO{sub 4}){sub 3} are observed instead of the previously known sequences, namely, the calcite {r_reversible} vaterite sequence for LuBO{sub 3} and the {alpha} {r_reversible} {beta} sequence for Eu{sub 2}(MoO{sub 4}){sub 3}. The revealed anomalous sequences do not depend on the procedure used for preparing reactants and are determined by the nanoscopic sizes of the initial components. It is found that microscopic additions of a number of simple oxides can suppress the kinetics of solid-phase synthesis of particular complex oxides and initiate the formation of new phases in the synthesis of other complex oxides (the so-called structural infection effect)

  6. Structure of the poly-C9 component of the complement membrane attack complex

    NASA Astrophysics Data System (ADS)

    Dudkina, Natalya V.; Spicer, Bradley A.; Reboul, Cyril F.; Conroy, Paul J.; Lukoyanova, Natalya; Elmlund, Hans; Law, Ruby H. P.; Ekkel, Susan M.; Kondos, Stephanie C.; Goode, Robert J. A.; Ramm, Georg; Whisstock, James C.; Saibil, Helen R.; Dunstone, Michelle A.

    2016-02-01

    The membrane attack complex (MAC)/perforin-like protein complement component 9 (C9) is the major component of the MAC, a multi-protein complex that forms pores in the membrane of target pathogens. In contrast to homologous proteins such as perforin and the cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomerisation, C9 assembles directly onto the nascent MAC from solution. However, the molecular mechanism of MAC assembly remains to be understood. Here we present the 8 Å cryo-EM structure of a soluble form of the poly-C9 component of the MAC. These data reveal a 22-fold symmetrical arrangement of C9 molecules that yield an 88-strand pore-forming β-barrel. The N-terminal thrombospondin-1 (TSP1) domain forms an unexpectedly extensive part of the oligomerisation interface, thus likely facilitating solution-based assembly. These TSP1 interactions may also explain how additional C9 subunits can be recruited to the growing MAC subsequent to membrane insertion.

  7. Structure of the poly-C9 component of the complement membrane attack complex

    PubMed Central

    Dudkina, Natalya V.; Spicer, Bradley A.; Reboul, Cyril F.; Conroy, Paul J.; Lukoyanova, Natalya; Elmlund, Hans; Law, Ruby H. P.; Ekkel, Susan M.; Kondos, Stephanie C.; Goode, Robert J. A.; Ramm, Georg; Whisstock, James C.; Saibil, Helen R.; Dunstone, Michelle A.

    2016-01-01

    The membrane attack complex (MAC)/perforin-like protein complement component 9 (C9) is the major component of the MAC, a multi-protein complex that forms pores in the membrane of target pathogens. In contrast to homologous proteins such as perforin and the cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomerisation, C9 assembles directly onto the nascent MAC from solution. However, the molecular mechanism of MAC assembly remains to be understood. Here we present the 8 Å cryo-EM structure of a soluble form of the poly-C9 component of the MAC. These data reveal a 22-fold symmetrical arrangement of C9 molecules that yield an 88-strand pore-forming β-barrel. The N-terminal thrombospondin-1 (TSP1) domain forms an unexpectedly extensive part of the oligomerisation interface, thus likely facilitating solution-based assembly. These TSP1 interactions may also explain how additional C9 subunits can be recruited to the growing MAC subsequent to membrane insertion. PMID:26841934

  8. Free vibration analysis of civil engineering structures by component-wise models

    NASA Astrophysics Data System (ADS)

    Carrera, Erasmo; Pagani, Alfonso

    2014-09-01

    Higher-order beam models are used in this paper to carry out free vibration analysis of civil engineering structures. Refined kinematic fields are developed using the Carrera Unified Formulation (CUF), which allows for the implementation of any-order theory without the need for ad hoc formulations. The principle of virtual displacements in conjunction with the finite element method (FEM) is used to formulate stiffness and mass matrices in terms of fundamental nuclei. The nuclei depend neither on the adopted class of beam theory nor on the FEM approximation along the beam axis. This paper focuses on a particular class of CUF models that makes use of Lagrange polynomials to discretize cross-sectional displacement variables. This class of models are referred to as component-wise (CW) in recent works. According to the CW approach, each structural component (e.g. columns, walls, frame members, and floors) can be modeled by means of the same 1D formulation. A number of typical civil engineering structures (e.g. simple beams, arches, truss structures, and complete industrial and civil buildings) are analyzed and CW results are compared to classical beam theories (Euler-Bernoulli and Timoshenko), refined beam models based on Taylor-like expansions of the displacements on the cross-section, and classical solid/shell FEM solutions from the commercial code MSC Nastran. The results highlight the enhanced capabilities of the proposed formulation. It is in fact demonstrated that CW models are able to replicate 3D solid results with very low computational efforts.

  9. Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path Components

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael K.

    2013-01-01

    During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two.

  10. Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path Components

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael

    2013-01-01

    During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two

  11. Structure and Ligand Binding Properties of the Epoxidase Component of Styrene Monooxygenase

    SciTech Connect

    Ukaegbu, Uchechi E.; Kantz, Auric; Beaton, Michelle; Gassner, George T.; Rosenzweig, Amy C.

    2010-07-23

    Styrene monooxygenase (SMO) is a two-component flavoprotein monooxygenase that transforms styrene to styrene oxide in the first step of the styrene catabolic and detoxification pathway of Pseudomonas putida S12. The crystal structure of the N-terminally histidine-tagged epoxidase component of this system, NSMOA, determined to 2.3 {angstrom} resolution, indicates the enzyme exists as a homodimer in which each monomer forms two distinct domains. The overall architecture is most similar to that of p-hydroxybenzoate hydroxylase (PHBH), although there are some significant differences in secondary structure. Structural comparisons suggest that a large cavity open to the surface forms the FAD binding site. At the base of this pocket is another cavity that likely represents the styrene binding site. Flavin binding and redox equilibria are tightly coupled such that reduced FAD binds apo NSMOA {approx}8000 times more tightly than the oxidized coenzyme. Equilibrium fluorescence and isothermal titration calorimetry data using benzene as a substrate analogue indicate that the oxidized flavin and substrate analogue binding equilibria of NSMOA are linked such that the binding affinity of each is increased by 60-fold when the enzyme is saturated with the other. A much weaker {approx}2-fold positive cooperative interaction is observed for the linked binding equilibria of benzene and reduced FAD. The low affinity of the substrate analogue for the reduced FAD complex of NSMOA is consistent with a preferred reaction order in which flavin reduction and reaction with oxygen precede the binding of styrene, identifying the apoenzyme structure as the key catalytic resting state of NSMOA poised to bind reduced FAD and initiate the oxygen reaction.

  12. Structure of components of an intercellular channel complex in sporulating Bacillus subtilis

    PubMed Central

    Levdikov, Vladimir M.; Blagova, Elena V.; McFeat, Amanda; Fogg, Mark J.; Wilson, Keith S.; Wilkinson, Anthony J.

    2012-01-01

    Following asymmetric cell division during spore formation in Bacillus subtilis, a forespore expressed membrane protein SpoIIQ, interacts across an intercellular space with a mother cell-expressed membrane protein, SpoIIIAH. Their interaction can serve as a molecular “ratchet” contributing to the migration of the mother cell membrane around that of the forespore in a phagocytosis-like process termed engulfment. Upon completion of engulfment, SpoIIQ and SpoIIIAH are integral components of a recently proposed intercellular channel allowing passage from the mother cell into the forespore of factors required for late gene expression in this compartment. Here we show that the extracellular domains of SpoIIQ and SpoIIIAH form a heterodimeric complex in solution. The crystal structure of this complex reveals that SpoIIQ has a LytM-like zinc-metalloprotease fold but with an incomplete zinc coordination sphere and no metal. SpoIIIAH has an α-helical subdomain and a protruding β-sheet subdomain, which mediates interactions with SpoIIQ. SpoIIIAH has sequence and structural homology to EscJ, a type III secretion system protein that forms a 24-fold symmetric ring. Superposition of the structures of SpoIIIAH and EscJ reveals that the SpoIIIAH protomer overlaps with two adjacent protomers of EscJ, allowing us to generate a dodecameric SpoIIIAH ring by using structural homology. Following this superposition, the SpoIIQ chains also form a closed dodecameric ring abutting the SpoIIIAH ring, producing an assembly surrounding a 60 Å channel. The dimensions and organization of the proposed complex suggest it is a plausible model for the extracellular component of a gap junction-like intercellular channel. PMID:22431604

  13. GP3 is a structural component of the PRRSV type II (US) virion

    SciTech Connect

    Lima, M. de; Ansari, I.H.; Das, P.B.; Ku, B.J.; Martinez-Lobo, F.J.; Pattnaik, A.K.; Osorio, F.A.

    2009-07-20

    Glycoprotein 3 (GP3) is a highly glycosylated PRRSV envelope protein which has been reported as being present in the virions of PRRSV type I, while missing in the type II PRRSV (US) virions. We herein present evidence that GP3 is indeed incorporated in the virus particles of a North American strain of PRRSV (FL12), at a density that is consistent with the minor structural role assigned to GP3 in members of the Arterivirus genus. Two 15aa peptides corresponding to two different immunodominant linear epitopes of GP3 derived from the North American strain of PRRSV (FL12) were used as antigen to generate a rabbit monospecific antiserum to this protein. The specificity of this anti-GP3 antiserum was confirmed by radioimmunoprecipitation (RIP) assay using BHK-21 cells transfected with GP3 expressing plasmid, MARC-145 cells infected with FL12 PRRSV, as well as by confocal microscopy on PRRSV-infected MARC-145 cells. To test if GP3 is a structural component of the virion, {sup 35}S-labelled PRRSV virions were pelleted through a 30% sucrose cushion, followed by a second round of purification on a sucrose gradient (20-60%). Virions were detected in specific gradient fractions by radioactive counts and further confirmed by viral infectivity assay in MARC 145 cells. The GP3 was detected in gradient fractions containing purified virions by RIP using anti-GP3 antiserum. Predictably, the GP3 was less abundant in purified virions than other major structural envelope proteins such as GP5 and M. Further evidence of the presence of GP3 at the level of PRRSV FL12 envelope was obtained by immunogold staining of purified virions from the supernatant of infected cells with anti-GP3 antiserum. Taken together, these results indicate that GP3 is a minor structural component of the PRRSV type II (FL12 strain) virion, as had been previously described for PRRSV type I.

  14. Periodic Cellular Structure Technology for Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  15. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  16. Detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural components

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Li, H.; Li, M. Q.

    2016-05-01

    This study focused on the detailed analysis of surface asperity deformation mechanism in similar diffusion bonding as well as on the fabrication of high quality martensitic stainless steel hollow structural components. A special surface with regular patterns was processed to be joined so as to observe the extent of surface asperity deformation under different bonding pressures. Results showed that an undamaged hollow structural component has been obtained with full interfacial contact and the same shear strength to that of base material. Fracture surface characteristic combined with surface roughness profiles distinctly revealed the enhanced surface asperity deformation as the applied pressure increases. The influence of surface asperity deformation mechanism on joint formation was analyzed: (a) surface asperity deformation not only directly expanded the interfacial contact areas, but also released deformation heat and caused defects, indirectly accelerating atomic diffusion, then benefits to void shrinkage; (b) surface asperity deformation readily introduced stored energy difference between two opposite sides of interface grain boundary, resulting in strain induced interface grain boundary migration. In addition, the influence of void on interface grain boundary migration was analyzed in detail.

  17. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    SciTech Connect

    Farrar, Charles R; Gobbato, Maurizio; Conte, Joel; Kosmatke, John; Oliver, Joseph A

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current state of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.

  18. Insights into Bacteriophage T5 Structure from Analysis of Its Morphogenesis Genes and Protein Components

    PubMed Central

    Zivanovic, Yvan; Confalonieri, Fabrice; Ponchon, Luc; Lurz, Rudi; Chami, Mohamed; Flayhan, Ali; Renouard, Madalena; Huet, Alexis; Decottignies, Paulette; Davidson, Alan R.; Breyton, Cécile

    2014-01-01

    Bacteriophage T5 represents a large family of lytic Siphoviridae infecting Gram-negative bacteria. The low-resolution structure of T5 showed the T=13 geometry of the capsid and the unusual trimeric organization of the tail tube, and the assembly pathway of the capsid was established. Although major structural proteins of T5 have been identified in these studies, most of the genes encoding the morphogenesis proteins remained to be identified. Here, we combine a proteomic analysis of T5 particles with a bioinformatic study and electron microscopic immunolocalization to assign function to the genes encoding the structural proteins, the packaging proteins, and other nonstructural components required for T5 assembly. A head maturation protease that likely accounts for the cleavage of the different capsid proteins is identified. Two other proteins involved in capsid maturation add originality to the T5 capsid assembly mechanism: the single head-to-tail joining protein, which closes the T5 capsid after DNA packaging, and the nicking endonuclease responsible for the single-strand interruptions in the T5 genome. We localize most of the tail proteins that were hitherto uncharacterized and provide a detailed description of the tail tip composition. Our findings highlight novel variations of viral assembly strategies and of virion particle architecture. They further recommend T5 for exploring phage structure and assembly and for deciphering conformational rearrangements that accompany DNA transfer from the capsid to the host cytoplasm. PMID:24198424

  19. Neuromelanins of Human Brain Have Soluble and Insoluble Components with Dolichols Attached to the Melanic Structure

    PubMed Central

    Engelen, Mireille; Vanna, Renzo; Bellei, Chiara; Zucca, Fabio A.; Wakamatsu, Kazumasa; Monzani, Enrico; Ito, Shosuke; Casella, Luigi; Zecca, Luigi

    2012-01-01

    Neuromelanins (NMs) are neuronal pigments of melanic-lipidic type which accumulate during aging. They are involved in protective and degenerative mechanisms depending on the cellular context, however their structures are still poorly understood. NMs from nine human brain areas were analyzed in detail. Elemental analysis led to identification of three types of NM, while infrared spectroscopy showed that NMs from neurons of substantia nigra and locus coeruleus, which selectively degenerate in Parkinson’s disease, have similar structure but different from NMs from brain regions not targeted by the disease. Synthetic melanins containing Fe and bovine serum albumin were prepared to model the natural product and help clarifying the structure of NMs. Extensive nuclear magnetic resonance spectroscopy studies showed the presence of dolichols both in the soluble and insoluble parts of NM. Diffusion measurements demonstrated that the dimethyl sulfoxide soluble components consist of oligomeric precursors with MWs in the range 1.4–52 kDa, while the insoluble part contains polymers of larger size but with a similar composition. These data suggest that the selective vulnerability of neurons of substantia nigra and locus coeruleus in Parkinson’s disease might depend on the structure of the pigment. Moreover, they allow to propose a pathway for NM biosynthesis in human brain. PMID:23139786

  20. Crystal structures of the components of the Staphylococcus aureus leukotoxin ED

    PubMed Central

    Nocadello, S.; Minasov, G.; Shuvalova, L.; Dubrovska, I.; Sabini, E.; Bagnoli, F.; Grandi, G.; Anderson, W. F.

    2016-01-01

    Staphylococcal leukotoxins are a family of β-barrel, bicomponent, pore-forming toxins with membrane-damaging functions. These bacterial exotoxins share sequence and structural homology and target several host-cell types. Leukotoxin ED (LukED) is one of these bicomponent pore-forming toxins that Staphylococcus aureus produces in order to suppress the ability of the host to contain the infection. The recent delineation of the important role that LukED plays in S. aureus pathogenesis and the identification of its protein receptors, combined with its presence in S. aureus methicillin-resistant epidemic strains, establish this leukocidin as a possible target for the development of novel therapeutics. Here, the crystal structures of the water-soluble LukE and LukD components of LukED have been determined. The two structures illustrate the tertiary-structural variability with respect to the other leukotoxins while retaining the conservation of the residues involved in the interaction of the protomers in the bipartite leukotoxin in the pore complex. PMID:26894539

  1. Analytical Approach for Estimating Preliminary Mass of ARES I Crew Launch Vehicle Upper Stage Structural Components

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin

    2007-01-01

    electrical power functions to other Elements of the CLV, is included as secondary structure. The MSFC has an overall responsibility for the integrated US element as well as structural design an thermal control of the fuel tanks, intertank, interstage, avionics, main propulsion system, Reaction Control System (RCS) for both the Upper Stage and the First Stage. MSFC's Spacecraft and Vehicle Department, Structural and Analysis Design Division is developing a set of predicted mass of these elements. This paper details the methodology, criterion and tools used for the preliminary mass predictions of the upper stage structural assembly components. In general, weight of the cylindrical barrel sections are estimated using the commercial code Hypersizer, whereas, weight of the domes are developed using classical solutions. HyperSizer is software that performs automated structural analysis and sizing optimization based on aerospace methods for strength, stability, and stiffness. Analysis methods range from closed form, traditional hand calculations repeated every day in industry to more advanced panel buckling algorithms. Margin-of-safety reporting for every potential failure provides the engineer with a powerful insight into the structural problem. Optimization capabilities include finding minimum weight panel or beam concepts, material selections, cross sectional dimensions, thicknesses, and lay-ups from a library of 40 different stiffened and sandwich designs and a database of composite, metallic, honeycomb, and foam materials. Multiple different concepts (orthogrid, isogrid, and skin stiffener) were run for multiple loading combinations of ascent design load with and with out tank pressure as well as proof pressure condition. Subsequently, selected optimized concept obtained from Hypersizer runs was translated into a computer aid design (CAD) model to account for the wall thickness tolerance, weld land etc for developing the most probable weight of the components. The flow diram

  2. Propulsion Airframe Aeroacoustic Integration Effects for a Hybrid Wing Body Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Czech, Michael J.; Thomas, Russell H; Elkoby, Ronen

    2012-01-01

    An extensive experimental investigation was performed to study the propulsion airframe aeroacoustic effects of a high bypass ratio engine for a hybrid wing body aircraft configuration where the engine is installed above the wing. The objective was to provide an understanding of the jet noise shielding effectiveness as a function of engine gas condition and location as well as nozzle configuration. A 4.7% scale nozzle of a bypass ratio seven engine was run at characteristic cycle points under static and forward flight conditions. The effect of the pylon and its orientation on jet noise was also studied as a function of bypass ratio and cycle condition. The addition of a pylon yielded significant spectral changes lowering jet noise by up to 4 dB at high polar angles and increasing it by 2 to 3 dB at forward angles. In order to assess jet noise shielding, a planform representation of the airframe model, also at 4.7% scale was traversed such that the jet nozzle was positioned from downstream of to several diameters upstream of the airframe model trailing edge. Installations at two fan diameters upstream of the wing trailing edge provided only limited shielding in the forward arc at high frequencies for both the axisymmetric and a conventional round nozzle with pylon. This was consistent with phased array measurements suggesting that the high frequency sources are predominantly located near the nozzle exit and, consequently, are amenable to shielding. The mid to low frequency sources were observed further downstream and shielding was insignificant. Chevrons were designed and used to impact the distribution of sources with the more aggressive design showing a significant upstream migration of the sources in the mid frequency range. Furthermore, the chevrons reduced the low frequency source levels and the typical high frequency increase due to the application of chevron nozzles was successfully shielded. The pylon was further modified with a technology that injects air

  3. Synergistic Airframe-Propulsion Interactions and Integrations: A White Paper Prepared by the 1996-1997 Langley Aeronautics Technical Committee

    NASA Technical Reports Server (NTRS)

    Yaros, Steven F.; Sexstone, Matthew G.; Huebner, Lawrence D.; Lamar, John E.; McKinley, Robert E., Jr.; Torres, Abel O.; Burley, Casey L.; Scott, Robert C.; Small, William J.

    1998-01-01

    This white paper addresses the subject of Synergistic Airframe-Propulsion interactions and integrations (SnAPII). The benefits of SnAPII have not been as extensively explored. This is due primarily to the separateness of design process for airframes and propulsion systems, with only unfavorable interactions addressed. The question 'How to design these two systems in such a way that the airframe needs the propulsion and the propulsion needs the airframe?' is the fundamental issue addressed in this paper. Successful solutions to this issue depend on appropriate technology ideas. This paper first details some ten technologies that have yet to make it to commercial products (with limited exceptions) and that could be utilized in a synergistic manner. Then these technologies, either alone or in combination, are applied to both a conventional twin-engine transonic transport and to an unconventional transport, the Blended Wing Body. Lastly, combinations of these technologies are applied to configuration concepts to assess the possibilities of success relative to five of the ten NASA aeronautics goals. These assessments are subjective, but they point the way in which the applied technologies could work together for some break-through benefits.

  4. Structures of the autoproteolytic domain from the Saccharomyces cerevisiae nuclear pore complex component, Nup145

    SciTech Connect

    Sampathkumar, Parthasarathy; Ozyurt, Sinem A.; Do, Johnny; Bain, Kevin T.; Dickey, Mark; Rodgers, Logan A.; Gheyi, Tarun; Sali, Andrej; Kim, Seung Joong; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Martel, Anne; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sauder, J. Michael; Burley, Stephen K.

    2012-04-30

    Nuclear pore complexes (NPCs) are large, octagonally symmetric dynamic macromolecular assemblies responsible for exchange of proteins and RNAs between the nucleus and cytoplasm. NPCs are made up of at least 456 polypeptides from {approx}30 distinct nucleoporins. Several of these components, sharing similar structural motifs, form stable subcomplexes that form a coaxial structure containing two outer rings (the nuclear and cytoplasmic rings), two inner rings, and a membrane ring. The yeast (Saccharomyces cerevisiae) Nup145 and its human counterpart are unique among the nucleoporins, in that they undergo autoproteolysis to generate functionally distinct proteins. The human counterpart of Nup145 is expressed as two alternatively spliced mRNA transcripts. The larger 190 kDa precursor undergoes post-translational autoproteolysis at the Phe863-Ser864 peptide bond yielding the 92 kDa Nup98 and the 96 kDa Nup96. The smaller 98 kDa precursor is also autoproteolysed at an analogous site giving 92 kDa Nup98-N and a 6 kDa C-terminal fragment, which may form a noncovalent complex. The yeast Nup145 precursor [Fig. 1(A)] contains twelve repeats of a 'GLFG' peptide motif (FG repeats) at its N-terminus, an internal autoproteolytic domain (a region of high conservation with the homologous yeast nucleoporins Nup110 and Nup116, neither of which undergo autoproteolysis), followed by the C-terminal domain. Various forms of the FG repeats are present in nearly half of all nucleoporins; they form intrinsically disordered regions implicated in gating mechanisms that control passage of macromolecules through NPCs. Nup145 undergoes autoproteolysis at the Phe605-Ser606 peptide bond to generate two functionally distinct proteins, Nup145N and Nup145C. Subsequently, Nup145C associates with six other proteins to form the heptameric Y-complex, a component of the outer rings of the NPC. Nup145N, on the other hand, can shuttle between the NPC and the nuclear interior. It has been suggested that Nup

  5. Neutral Buoyancy Simulator: MSFC-Langley joint test of large space structures component assembly:

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. And construction methods had to be efficient due to limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. In a joint venture between NASA/Langley Research Center in Hampton, VA and MSFC, the Assembly Concept for Construction of Erectable Space Structures (ACCESS) was developed and demonstrated at MSFC's NBS. The primary objective of this experiment was to test the ACCESS structural assembly concept for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. Pictured is a demonstration of ACCESS.

  6. Microfluidic structures and methods for integrating a functional component into a microfluidic device

    SciTech Connect

    Simmons, Blake; Domeier, Linda; Woo, Noble; Shepodd, Timothy; Renzi, Ronald F.

    2008-04-01

    Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate which may include microchannels or other features.

  7. Optical coherence tomography imaging of structural components of the respiratory tract

    NASA Astrophysics Data System (ADS)

    Whiteman, Suzanne C.; Yang, Ying; Gey van Pittius, D.; He, Yonghong; Spiteri, M. A.; Wang, Ruikang K.

    2004-07-01

    For optimal curative treatment and the prevention of metastasis, it is critical that premalignant lesions are detected as early as possible. However, current diagnostic methods for human airways do not possess sufficient resolution and tissue penetration depth to detect these aberrations. Therefore it is necessary to develop safe, reproducible imaging techniques with high spatial resolution. In this study, optical coherence tomography (OCT) was used to obtain cross sectional images of porcine respiratory tract tissue. OCT images were compared to parallel conventional histological sections. Our objective was to establish whether OCT differentiates the microstructural layers of the respiratory tract. These data demonstrate that OCT can characterize the multilayered structure of the airways, with a depth of up to 2 mm and a 10 μm spatial resolution. The subtle structural differences between trachea, main bronchus and tertiary bronchus were clearly identifiable. The epithelium, sub-epithelial tissues and cartilage were individually defined. In addition, the relative thickness of the structural components was comparable to histological sections. These data suggest that OCT is a highly feasible diagnostic tool, which requires further exploration for early detection of human airway pathology.

  8. Structural alterations of adhesion mediating components in cells cultured on poly-beta-hydroxy butyric acid.

    PubMed

    Nebe, B; Forster, C; Pommerenke, H; Fulda, G; Behrend, D; Bernewski, U; Schmitz, K P; Rychly, J

    2001-09-01

    Polymers may serve as a biodegradable material in tissue engineering. To assess the biocompatibility of poly-beta-hydroxy butyric acid (PHB), we studied the structural organization of cellular molecules involved in adhesion using osteoblastic and epithelial cell lines. On PHB, both cell lines revealed a rounded cell shape due to reduced spreading. The filamentous organization of the actin cytoskeleton was impaired. In double immunofluorescence analyses we demostrated that the colocalization of the fibronectin fibrils with the actin filaments was lost in cultures on PHB. Similarly, collagen II distribution was altered, whereas the organization of collagen I was not obviously affected. Further evidence for impaired structural organization was obtained for the beta1-integrin receptor and vinculin which mediate the interaction of the cytoskeleton with the extracellular matrix. In confluent epithelial cells, the tight junction protein ZO-1 showed a larger lateral extension in the cell-cell contacts when cells were grown on PHB. Because structural organization of components which mediate cell-matrix and cell-cell adhesion controls cell physiology these parameters could be a sensitive indicator for the biocompatibility of implant materials. PMID:11511040

  9. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    SciTech Connect

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  10. Structure of the transmembrane domain of human nicastrin-a component of γ-secretase

    PubMed Central

    Li, Yan; Liew, Lynette Sin Yee; Li, Qingxin; Kang, CongBao

    2016-01-01

    Nicastrin is the largest component of γ-secretase that is an intramembrane protease important in the development of Alzheimer’s disease. Nicastrin contains a large extracellular domain, a single transmembrane (TM) domain, and a short C-terminus. Its TM domain is important for the γ-secretase complex formation. Here we report nuclear magnetic resonance (NMR) studies of the TM and C-terminal regions of human nicastrin in both sodium dodecyl sulfate (SDS) and dodecylphosphocholine (DPC) micelles. Structural study and dynamic analysis reveal that the TM domain is largely helical and stable under both SDS and DPC micelles with its N-terminal region undergoing intermediate time scale motion. The TM helix contains a hydrophilic patch that is important for TM-TM interactions. The short C-terminus is not structured in solution and a region formed by residues V697-A702 interacts with the membrane, suggesting that these residues may play a role in the γ-secretase complex formation. Our study provides structural insight into the function of the nicastrin TM domain and the C-terminus in γ-secretase complex. PMID:26776682

  11. Relationship between the gene and protein structure in human complement component C9

    SciTech Connect

    Marazziti, D.; Eggertsen, G.; Fey, G.H.; Stanley, K.K.

    1988-08-23

    Human complement component C9 is a multidomain protein for which a large number of surface topographical features have been determined. The authors have analyzed the exon-intron boundaries of the human C9 gene and find a good correlation between splice sites and surface feature of the protein but little correlation with a putative protein domain structure, even in the cysteine-rich sequence homology with the low-density lipoprotein (LDL) receptor which is likely to be an independently folded structural motif. This is surprising because in the LDL receptor the same sequence is precisely bounded by introns, and it has been assumed that this sequence is present in both proteins as a result of exon shuffling. They deduce that substantial rearrangement of the exon-intron structure of the C9 gene must have occurred before the exchange of cysteine-rich domains, possibly linked to the process of exon duplication which was required to generate the repeats in the LDL receptor.

  12. Structural characterization of the interaction between TFIIIB components Bdp1 and Brf1.

    PubMed

    Saïda, Fakhri

    2008-12-16

    Transcription factor TFIIIB plays key roles in transcription by RNA polymerase III. Its three components (TBP, Brf1, and Bdp1) participate in crucial molecular events that include RNA polymerase recruitment, formation of the open initiation complex, and recycling of transcription. Although the details of the interaction among DNA, TBP, and Brf1 have been, in part, revealed through the crystal structure of their ternary complex, structural details of the Brf1-Bdp1 interaction are lacking. In this paper, nuclear magnetic resonance (NMR) is used to map the interaction interface between Bdp1 and Brf1 at single-amino acid resolution, using minimal functional segments of the two proteins. An NMR-derived structural model shows that the principal anchorage site of Brf1 is located on a convex surface of Bdp1 that encompasses helix 1 and helix 3 of its conserved SANT domain. The main Bdp1 anchorage site is provided by a small set of residues belonging to a Brf1 segment of residues 470-495. PMID:19086269

  13. Intermolecular interactions in multi-component crystals of acridinone/thioacridinone derivatives: Structural and energetics investigations

    NASA Astrophysics Data System (ADS)

    Wera, Michał; Storoniak, Piotr; Trzybiński, Damian; Zadykowicz, Beata

    2016-12-01

    A single crystal X-ray analysis of two multi-component crystals consisting of an acridinone/thioacridinone moiety and a solvent moiety - water and ammonia (1 and 2), respectively, was carried out to determine the crystal structures of obtained crystals. A theoretical approach was undertaken - using the DFT method, lattice energies calculations and Hirshfeld surfaces (HS) - to qualitatively and quantitatively assess the intermolecular interactions within the crystal. HS analysis was showed that the H⋯H, C⋯H/H⋯C and C⋯C contacts for both structures (altogether 81.6% of total Hirshfeld surface area for 1 and 79.3% for 2) and the O⋯H/H⋯O (14.3%) for 1 and the S⋯H/H⋯S (15.2%) contacts for 2 were the characteristic intermolecular contacts in the related crystal structures. Using a computational methods were confirmed that the main contribution to the stabilization of the crystal lattice of compound 1 comes from the Coulombic interactions, whereas in compound 2 electrostatic and van der Waals appear to have similar contribution to the crystal lattice energy. Theoretical calculations of the investigated compounds have also allowed to determine the energy of a single specific intermolecular interaction.

  14. Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes.

    PubMed

    Cubo, Jorge; Legendre, Pierre; de Ricqlès, Armand; Montes, Laëtitia; de Margerie, Emmanuel; Castanet, Jacques; Desdevises, Yves

    2008-01-01

    The biological features observed in every living organism are the outcome of three sets of factors: historical (inherited by homology), functional (biological adaptation), and structural (properties inherent to the materials with which organs are constructed, and the morphogenetic rules by which they grow). Integrating them should bring satisfactory causal explanations of empirical data. However, little progress has been accomplished in practice toward this goal, because a methodologically efficient tool was lacking. Here we use a new statistical method of variation partitioning to analyze bone growth in amniotes. (1) Historical component. The variation of bone growth rates contains a significant phylogenetic signal, suggesting that the observed patterns are partly the outcome of shared ancestry. (2) Functional causation. High growth rates, although energy costly, may be adaptive (i.e., they may increase survival rates) in taxa showing short growth periods (e.g., birds). In ectothermic amniotes, low resting metabolic rates may limit the maximum possible growth rates. (3) Structural constraint. Whereas soft tissues grow through a multiplicative process, growth of mineralized tissues is accretionary (additive, i.e., mineralization fronts occur only at free surfaces). Bone growth of many amniotes partially circumvents this constraint: it is achieved not only at the external surface of the bone shaft, but also within cavities included in the bone cortex as it grows centrifugally. Our approach contributes to the unification of historicism, functionalism, and structuralism toward a more integrated evolutionary biology. PMID:18315815

  15. Underdetermined blind modal identification of structures by earthquake and ambient vibration measurements via sparse component analysis

    NASA Astrophysics Data System (ADS)

    Amini, Fereidoun; Hedayati, Yousef

    2016-03-01

    Sparse component analysis (SCA) approach was adopted to handle underdetermined blind modal identification of structures, where the number of sensors is less than the number of active modes. To exploit the sparsity of structural responses in time-frequency domain, Short Time Fourier Transform (STFT) was used in this study. The proposed SCA-based approach has two main stages: modal matrix estimation and modal displacement estimation. In the first stage, hierarchical clustering algorithm was used to estimate the modal matrix. The clustering algorithm was preceded by a preprocessing step to select the points in time-frequency domain that only one mode makes contribution in the responses. These points were fed to the clustering algorithm as an input. Performing this analysis enhanced the modal matrix estimation accuracy and reduced the computational cost while conducting clustering analysis. Having estimated mixing matrix, the complex-valued modal responses in the transformed domain were recovered via Smoothed zero-norm (SL-0) algorithm. In a broad sense, using the SL-0 algorithm permits researchers to use any kind of transform in seeking sparsity, regardless of obtaining real-valued or complex-valued signals in transformed domain. Natural frequencies and damping ratios were extracted from the recovered modal responses. Performance of the proposed method was investigated using a synthetic example and a benchmark structure with earthquake and ambient excitation, respectively.

  16. Toward Improved CFD Predictions of Slender Airframe Aerodynamics Using the F-16XL Aircraft (CAWAPI-2)

    NASA Technical Reports Server (NTRS)

    Luckring, James M.; Rizzi, Arthur; Davis, M. Bruce

    2014-01-01

    A coordinated project has been underway to improve CFD predictions of slender airframe aerodynamics. The work is focused on two flow conditions and leverages a unique flight data set obtained with an F-16XL aircraft. These conditions, a low-speed high angleof- attack case and a transonic low angle-of-attack case, were selected from a prior prediction campaign wherein the CFD failed to provide acceptable results. In this paper the background, objectives and approach to the current project are presented. The work embodies predictions from multiple numerical formulations that are contributed from multiple organizations, and the context of this campaign to other multi-code, multiorganizational efforts is included. The relevance of this body of work toward future supersonic commercial transport concepts is also briefly addressed.

  17. Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.

    1994-01-01

    An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.

  18. Coupled rotor/airframe vibration analysis program manual. Volume 2: Sample input and output listings

    NASA Technical Reports Server (NTRS)

    Cassarino, S.; Sopher, R.

    1982-01-01

    Sample input and output listings obtained with the base program (SIMVIB) of the coupled rotor/airframe vibration analysis and the external programs, G400/F389 and E927 are presented. Results for five of the base program test cases are shown. They represent different applications of the SIMVIB program to study the vibration characteristics of various dynamic configurations. Input and output listings obtained for one cycle of the G400/F389 coupled program are presented. Results from the rotor aeroelastic analysis E927 also appear. A brief description of the check cases is provided. A summary of the check cases for all the external programs interacting with the SIMVIB program is illustrated.

  19. Propulsion Airframe Integration Test Techniques for Hypersonic Airbreathing Configurations at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Witte, David W.; Huebner, Lawrence D.; Trexler, Carl A.; Cabell, Karen F.; Andrews, Earl H., Jr.

    2003-01-01

    The scope and significance of propulsion airframe integration (PAI) for hypersonic airbreathing vehicles is presented through a discussion of the PAI test techniques utilized at NASA Langley Research Center. Four primary types of PAI model tests utilized at NASA Langley for hypersonic airbreathing vehicles are discussed. The four types of PAI test models examined are the forebody/inlet test model, the partial-width/truncated propulsion flowpath test model, the powered exhaust simulation test model, and the full-length/width propulsion flowpath test model. The test technique for each of these four types of PAI test models is described, and the relevant PAI issues addressed by each test technique are illustrated through the presentation of recent PAI test data.

  20. Fatigue crack initiation and small crack growth in several airframe alloys

    NASA Technical Reports Server (NTRS)

    Swain, M. H.; Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A.

    1990-01-01

    The growth of naturally-initiated small cracks under a variety of constant amplitude and variable amplitude load sequences is examined for several airframe materials: the conventional aluminum alloys, 2024-T3 and 7075-T6, the aluminum-lithium alloy, 2090-T8E41 and 4340 steel. Loading conditions investigated include constant amplitude loading at R = 0.5, 0, -1 and -2 and the variable amplitude sequences FALSTAFF, Mini-TWIST, and FELIX/28. Crack growth was measured at the root of semicircular edge notches using acetate replicas. Crack growth rates are compared on a stress intensity factor basis, to those for large cracks to evaluate the extent of the small crack effect in each alloy. In addition, the various alloys are compared on a crack initiation and crack growth morphology basis.

  1. Fatigue crack initiation and small crack growth in several airframe alloys

    NASA Technical Reports Server (NTRS)

    Swain, M. H.; Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1990-01-01

    The growth of naturally-initiated small cracks under a variety of constant amplitude and variable amplitude load sequences is examined for several airframe materials: the conventional aluminum alloys, 2024-T3 and 7075-T6, the aluminum-lithium alloy, 2090-T8E41, and 4340 steel. Loading conditions investigated include constant amplitude loading at R = 0.5, 0, -1 and -2 and the variable amplitude sequences FALSTAFF, Mini-TWIST and FELIX/28. Crack growth was measured at the root of semicircular edge notches using acetate replicas. Crack growth rates are compared on a stress intensity factor basis, to those for large cracks to evaluate the extent of the small crack effect in each alloy. In addition, the various alloys are compared on a crack initiation and crack growth morphology basis.

  2. The effect of flight and the presence of an airframe on engine exhaust noise

    NASA Astrophysics Data System (ADS)

    Bashforth, S.

    1981-10-01

    A full-scale static and flight test program using an HS 125 aircraft with an RR Viper 601 turbojet was carried out in order to explain the anomalies found between full-scale in-flight exhaust noise studies and model simulations. Both acoustically lined and unlined engine tailpipes were tested, and extensive installation studies were conducted using a replica tail assembly. Source location techniques were used to determine core noise levels over a wide range of frequencies. It is shown that the discrepancy between the static and flight tests was due to a number of noise-producing and/or affecting features of the aircraft/aero engine combination which were not incorporated into the analyses of the data: static tests conducted at NASA Ames demonstrated the importance of installation effects, and flight tests revealed that airframe self-noise can cause a significant amount of the total noise in small aircraft.

  3. THE CARNEGIE-IRVINE GALAXY SURVEY. III. THE THREE-COMPONENT STRUCTURE OF NEARBY ELLIPTICAL GALAXIES

    SciTech Connect

    Huang, Song; Ho, Luis C.; Peng, Chien Y.; Li, Zhao-Yu; Barth, Aaron J.

    2013-03-20

    Motivated by recent developments in our understanding of the formation and evolution of massive galaxies, we explore the detailed photometric structure of a representative sample of 94 bright, nearby elliptical galaxies, using high-quality optical images from the Carnegie-Irvine Galaxy Survey. The sample spans a range of environments and stellar masses, from M{sub *} = 10{sup 10.2} to 10{sup 12.0} M{sub Sun }. We exploit the unique capabilities of two-dimensional image decomposition to explore the possibility that local elliptical galaxies may contain photometrically distinct substructure that can shed light on their evolutionary history. Compared with the traditional one-dimensional approach, these two-dimensional models are capable of consistently recovering the surface brightness distribution and the systematic radial variation of geometric information at the same time. Contrary to conventional perception, we find that the global light distribution of the majority ({approx}>75%) of elliptical galaxies is not well described by a single Sersic function. Instead, we propose that local elliptical galaxies generically contain three subcomponents: a compact (R{sub e} {approx}< 1 kpc) inner component with luminosity fraction f Almost-Equal-To 0.1-0.15; an intermediate-scale (R{sub e} Almost-Equal-To 2.5 kpc) middle component with f Almost-Equal-To 0.2-0.25; and a dominant (f = 0.6), extended (R{sub e} Almost-Equal-To 10 kpc) outer envelope. All subcomponents have average Sersic indices n Almost-Equal-To 1-2, significantly lower than the values typically obtained from single-component fits. The individual subcomponents follow well-defined photometric scaling relations and the stellar mass-size relation. We discuss the physical nature of the substructures and their implications for the formation of massive elliptical galaxies.

  4. Establishing components of community satisfaction with recycled water use through a structural equation model.

    PubMed

    Hurlimann, Anna; Hemphill, Elizabeth; McKay, Jennifer; Geursen, Gus

    2008-09-01

    The use of recycled water is being promoted through policy in many parts of the world with the aim of achieving sustainable water management. However there are some major barriers to the success of recycled water use policies and their instruments, in particular for potable reuse schemes. One of these barriers can be a lack of community support. Despite the critical nature of community attitudes to recycled water to the success of projects, they are often little understood. Further information is required to ensure the successful implementation of recycled water policy and to ensure sustainable management of water resources is achieved. The aim of this paper is to establish the key components of community satisfaction with recycled water. This was investigated through a case study of the Mawson Lakes population in South Australia, where recycled water is used for non-potable purposes through a dual water supply system (the 'recycled water system'). This paper reports results from a survey of 162 Mawson Lakes residents. A structural equation model (SEM) was developed and tested to explain and predict components of community satisfaction with recycled water use (for non-potable use) through the dual water supply system. Results indicate the components of satisfaction with recycled water use were an individual's positive perception of: the Water Authority's communication, trust in the Water Authority, fairness in the recycled water system's implementation, quality of the recycled water, financial value of the recycled water system, and risk associated with recycled water use (negative relationship). The results of this study have positive implications for the future management and implementation of recycled water projects in particular through dual water supply systems. The results indicate to water authorities and water policy developers guiding principles for community consultation with regards to the management of recycled water projects. PMID:17662519

  5. Nano-casted Metal Oxide Aerogels as Dual Purpose Structural Components for Space Exploration

    NASA Technical Reports Server (NTRS)

    Vassilaras, Plousia E.

    2004-01-01

    NASA missions and space exploration rely on strong, ultra lightweight materials. Such materials are needed for building up past and present space vehicles such as the Sojourner Rover (1997) or the two MERs (2003), but also for a number of components and/or systems including thermal insulators, Solar Sails, Rigid Aeroshells, and Ballutes. The purpose of my internship here at Glenn Research Center is to make dual purpose materials; materials that in addition to being lightweight have electronic, photophysical and magnetic properties and, therefore, act as electronic components and sensors as well as structural components. One type of ultra lightweight material of great interest is aerogels, which have densities ranging from 0.003 g/cc to 0.8 g/cc . However, aerogels are extremely fragile and, as a result, have limited practical applications. Recently, Glenn Research Center has developed a process of nano-casting polymers onto the inorganic network of silica-based aerogels increasing the strength 300 fold while only increasing the density 3 fold. By combining the process of nano-casting polymers with inorganic oxide networks other than silica, we are actively pursuing lightweight dual purpose materials. To date, thirty different inorganic oxide aerogels have been prepared using either standard sol-gel chemistry or a non-alkoxide method involving metal chloride precursors and an epoxide; epichlorohydrin, propylene oxide or trimethylene oxide, as proton scavengers. More importantly, preliminary investigations show that the residual surface hydroxyl groups on each of these inorganic oxide aerogels can be successfully crosslinked with urethane. In addition to characterizing physical and mechanical properties such as density, strength and flexibility, each of these metal oxide aerogels are being characterized for thermal and electronic conductivity and magnetic and optical properties.

  6. Development of HVOF Sprayed Erosion/Oxidation Resistant Coatings for Composite Structural Components in Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Ivosevic, M.; Twardowski, T.; Kalidindi, S.; Knight, R.; Sutter, J.; Kim, D. Y.

    1990-01-01

    Thermally sprayed coatings are being studied and developed as methods of enabling lightweight composites to be used more extensively as structural components in propulsion applications in order to reduce costs and improve efficiency through weight reductions. The primary goal of this work is the development of functionally graded material [FGM] polymer/metal matrix composite coatings to provide improved erosion/oxidation resistance to polyimide-based polymer matrix composite [PMC] substrates. The goal is to grade the coating composition from pure polyimide, similar to the PMC substrate matrix on one side, to 100% WC-Co on the other. Both step-wise and continuous gradation of the loading of the WC-Co reinforcing phase are being investigated, Details of the coating parameter development will be presented, specifically the high velocity oxy-fuel [HVOF] combustion spraying of pure PMR-I1 matrix material and layers of various composition PMR-II/WC-Co blends onto steel and PMR-15 composite substrates. Results of the HVOF process optimization, microstructural characterization, and analysis will be presented. The sprayed coatings were evaluated using standard metallographic techniques - optical and scanning electron microscopy [SEMI. An SEM + electron dispersive spectroscopy [EDS] technique has also been used to confirm retention of the PMR-I1 component. Results of peel/butt adhesion testing to determine adhesion will also be presented.

  7. Development of HVOF Sprayed Erosion/Oxidation Resistant Coatings for Composite Structural Components in Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Knight, R.; Ivosevic, M.; Twardowski, T. E.; Kalidindi, S. R.; Sutter, James K.; Kim, D. Y.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Thermally sprayed coatings are being studied and developed as methods of enabling lightweight composites to be used more extensively as structural components in propulsion applications in order to reduce costs and improve efficiency through weight reductions. The primary goal of this work is the development of functionally graded material [FGM] polymer/metal matrix composite coatings to provide improved erosion/oxidation resistance to polyimide-based polymer matrix composite [PMC] substrates. The goal is to grade the coating composition from pure polyimide, similar to the PMC substrate matrix on one side, to 100 % WC-Co on the other. Both step-wise and continuous gradation of the loading of the WC-Co reinforcing phase are being investigated. Details of the coating parameter development will be presented, specifically the high velocity oxy-fuel [HVOF] combustion spraying of pure PMR-11 matrix material and layers of various composition PMR-II/WC-Co blends onto steel and PMR-15 composite substrates. Results of the HVOF process optimization, microstructural characterization, and analysis will be presented. The sprayed coatings were evaluated using standard metallographic techniques - optical and scanning electron microscopy [SEM]. An SEM + electron dispersive spectroscopy [EDS] technique has also been used to confirm retention of the PMR-II component. Results of peel/butt adhesion testing to determine adhesion will also be presented.

  8. Upscaling multi-component reactive transport in presence of connected subsurface structures

    NASA Astrophysics Data System (ADS)

    Willmann, M.; Mañé, R.; Tyukhova, A.

    2015-12-01

    Heterogeneity in hydraulic conductivity leads to incomplete mixing. Upscaling using the dispersion tensor in the advection-dispersion equation overestimates local mixing. Modelling multi-component reactive transport leads to an overestimation of reaction rates and overall reactions. Multi-rate mass transfer was shown previously to better represent mixing. But it is still unclear under what conditions this linear model is able to represent the underlying non-linear process. We study explicit multi-component transport in heterogeneous aquifers for the example of calcite-dissolution. We compare different types of heterogeneity from intermediately well connected (multigaussian) fields to very well connected fields. The fundamental difference stems from their connectivity structure. We observe for the well connected field different dominating channels with an almost uniform advective velocity while the multigaussian fields show dominating channels with a varying advective velocity. Then, we compare our results with an effective reactive mass transfer model where the distribution of exchanges rates or the memory function are derived from information of the hydraulic conductivity field only. We see that reactive multi-rate models show a good agreement for the well connected fields where the connected channels are more or less homogeneous and the immobile inclusions are of more or less equal size. We find connectivity important for upscaling reactive transport in highly heterogeneous conductivity fields.

  9. Analysis of fatigue, fatique-crack propagation, and fracture data. [design of metallic aerospace structural components

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Feddersen, C. E.; Davies, K. B.; Rice, R. C.

    1973-01-01

    Analytical methods have been developed for consolidation of fatigue, fatigue-crack propagation, and fracture data for use in design of metallic aerospace structural components. To evaluate these methods, a comprehensive file of data on 2024 and 7075 aluminums, Ti-6A1-4V, and 300M and D6Ac steels was established. Data were obtained from both published literature and unpublished reports furnished by aerospace companies. Fatigue and fatigue-crack-propagation analyses were restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Fracture toughness data were from tests of center-cracked tension panels, part-through crack specimens, and compact-tension specimens.

  10. A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression.

    PubMed

    Marmorstein, L Y; Kinev, A V; Chan, G K; Bochar, D A; Beniya, H; Epstein, J A; Yen, T J; Shiekhattar, R

    2001-01-26

    Germline mutations of the human BRCA2 gene confer susceptibility to breast cancer. Although the function of the BRCA2 protein remains to be determined, murine cells homozygous for BRCA2 inactivation display chromosomal aberrations. We have isolated a 2 MDa BRCA2-containing complex and identified a structural DNA binding component, designated as BRCA2-Associated Factor 35 (BRAF35). BRAF35 contains a nonspecific DNA binding HMG domain and a kinesin-like coiled coil domain. Similar to BRCA2, BRAF35 mRNA expression levels in mouse embryos are highest in proliferating tissues with high mitotic index. Strikingly, nuclear staining revealed a close association of BRAF35/BRCA2 complex with condensed chromatin coincident with histone H3 phosphorylation. Importantly, antibody microinjection experiments suggest a role for BRCA2/BRAF35 complex in modulation of cell cycle progression. PMID:11207365

  11. Atomistic modeling of the structural components of the blood-brain barrier

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Grishina, O. A.; Slepchenkov, M. M.

    2015-03-01

    Blood-brain barrier, which is a barrage system between the brain and blood vessels, plays a key role in the "isolation" of the brain of unnecessary information, and reduce the "noise" in the interneuron communication. It is known that the barrier function of the BBB strictly depends on the initial state of the organism and changes significantly with age and, especially in developing the "vascular accidents". Disclosure mechanisms of regulation of the barrier function will develop new ways to deliver neurotrophic drugs to the brain in the newborn. The aim of this work is the construction of atomistic models of structural components of the blood-brain barrier to reveal the mechanisms of regulation of the barrier function.

  12. Enantiospecific Synthesis and Biological Investigations of a Nuphar Alkaloid: Proposed Structure of a Castoreum Component

    PubMed Central

    Seki, Hajime; Georg, Gunda I.

    2014-01-01

    An enantiospecific synthesis of a Nuphar alkaloid was achieved in 9 steps from N-Boc-(L)-proline. The alkaloid is a minor component of castoreum, the dried scent glands of the beaver. During the course of our study, the stereochemistry of three synthetic intermediates was verified by X-ray analysis, which contributes to resolving existing discrepancies among the literature reports regarding the synthesis of this particular compound. Based on our synthesis, we propose the structure of the natural product. Also, intrigued by castoreum’s therapeutic effect, which was used in ancient Greece and Rome for gynecological and other purposes, biological screening was conducted. We found that the alkaloid has affinity for the oxytocin receptor. PMID:25395879

  13. Lipid Transfer Proteins As Components of the Plant Innate Immune System: Structure, Functions, and Applications

    PubMed Central

    Finkina, E. I.; Melnikova, D. N.; Bogdanov, I. V.; Ovchinnikova, T. V.

    2016-01-01

    Among a variety of molecular factors of the plant innate immune system, small proteins that transfer lipids and exhibit a broad spectrum of biological activities are of particular interest. These are lipid transfer proteins (LTPs). LTPs are interesting to researchers for three main features. The first feature is the ability of plant LTPs to bind and transfer lipids, whereby these proteins got their name and were combined into one class. The second feature is that LTPs are defense proteins that are components of plant innate immunity. The third feature is that LTPs constitute one of the most clinically important classes of plant allergens. In this review, we summarize the available data on the plant LTP structure, biological properties, diversity of functions, mechanisms of action, and practical applications, emphasizing their role in plant physiology and their significance in human life. PMID:27437139

  14. A model for predicting damage induced fatigue life of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lo, David C.; Georgiou, Ioannis T.; Harris, Charles E.

    1990-01-01

    This paper presents a model for predicting the life of laminated composite structural components subjected to fatigue induced microstructural damage. The model uses the concept of continuum damage mechanics, wherein the effects of microcracks are incorporated into a damage dependent lamination theory instead of treating each crack as an internal boundary. Internal variables are formulated to account for the effects of both matrix cracks and internal delaminations. Evolution laws for determining the damage variables as functions of ply stresses are proposed, and comparisons of predicted damage evolution are made to experiment. In addition, predicted stiffness losses, as well as ply stresses are shown as functions of damage state for a variety of stacking sequences.

  15. Isosorbide as the structural component of bio-based unsaturated polyesters for use as thermosetting resins.

    PubMed

    Sadler, Joshua M; Toulan, Faye R; Nguyen, Anh-Phuong T; Kayea, Ronald V; Ziaee, Saeed; Palmese, Giuseppe R; La Scala, John J

    2014-01-16

    In recent years, the development of renewable bio-based resins has gained interest as potential replacements for petroleum based resins. Modified carbohydrate-based derivatives have favorable structural features such as fused bicyclic rings that offer promising candidates for the development of novel renewable polymers with improved thermomechanical properties when compared to early bio-based resins. Isosorbide is one such compound and has been utilized as the stiffness component for the synthesis of novel unsaturated polyesters (UPE) resins. Resin blends of BioUPE systems with styrene were shown to possess viscosities (120-2200 cP) amenable to a variety of liquid molding techniques, and after cure had Tgs (53-107 °C) and storage moduli (430-1650 MPa) that are in the desired range for composite materials. These investigations show that BioUPEs containing isosorbide can be tailored during synthesis of the prepolymer to meet the needs of different property profiles. PMID:24188843

  16. Enantiospecific Synthesis and Biological Investigations of a Nuphar Alkaloid: Proposed Structure of a Castoreum Component.

    PubMed

    Seki, Hajime; Georg, Gunda I

    2014-06-01

    An enantiospecific synthesis of a Nuphar alkaloid was achieved in 9 steps from N-Boc-(L)-proline. The alkaloid is a minor component of castoreum, the dried scent glands of the beaver. During the course of our study, the stereochemistry of three synthetic intermediates was verified by X-ray analysis, which contributes to resolving existing discrepancies among the literature reports regarding the synthesis of this particular compound. Based on our synthesis, we propose the structure of the natural product. Also, intrigued by castoreum's therapeutic effect, which was used in ancient Greece and Rome for gynecological and other purposes, biological screening was conducted. We found that the alkaloid has affinity for the oxytocin receptor. PMID:25395879

  17. Reducing Propulsion Airframe Aeroacoustic Interactions With Uniquely Tailored Chevrons: 3. Jet-Flap Interaction

    NASA Technical Reports Server (NTRS)

    Thomas, Russ H.; Mengle, Vinod G.; Brunsniak, Leon; Elkoby, Ronen

    2006-01-01

    Propulsion airframe aeroacoustic (PAA) interactions, resulting from the integration of engine and airframe, lead to azimuthal asymmetries in the flow/acoustic field, e.g., due to the interaction between the exhaust jet flow and the pylon, the wing and its high-lift devices, such as, flaps and flaperons. In the first two parts of this series we have presented experimental results which show that isolated and installed nozzles with azimuthally varying chevrons (AVCs) can reduce noise more than conventional chevrons when integrated with a pylon and a wing with flaps at take-off conditions. In this paper, we present model-scale experimental results for the reduction of jet-flap interaction noise source due to these AVCs and document the PAA installation effects (difference in noise between installed and isolated nozzle configurations) at both approach and take-off conditions. It is found that the installation effects of both types of chevron nozzles, AVCs and conventional, are reversed at approach and take-off, in that there is more installed noise reduction at approach and less at take-off compared to that of the isolated nozzles. Moreover, certain AVCs give larger total installed noise benefits at both conditions compared to conventional chevrons. Phased microphone array results show that at approach conditions (large flap deflection, low jet speed and low ambient Mach number), chevrons gain more noise benefit from reducing jetflap interaction noise than they do from quieting the jet plume noise source which is already weak at these low jet speeds. In contrast, at take-off (small flap deflection, high jet speed and high ambient Mach number) chevrons reduce the dominant jet plume noise better than the reduction they create in jet-flap interaction noise source. In addition, fan AVCs with enhanced mixing near the pylon are found to reduce jet-flap interaction noise better than conventional chevrons at take-off.

  18. Numerical investigation of tandem-cylinder aerodynamic noise and its control with application to airframe noise

    NASA Astrophysics Data System (ADS)

    Eltaweel, Ahmed

    Prediction and reduction of airframe noise are critically important to the development of quieter civil transport aircraft. The key to noise reduction is a full understanding of the underlying noise source mechanisms. In this study, tandem cylinders in cross-flow as an idealization of a complex aircraft landing gear configuration are considered to investigate the noise generation and its reduction by flow control using single dielectric barrier discharge plasma actuators. The flow over tandem cylinders at ReD = 22, 000 with and without plasma actuation is computed using large-eddy simulation. The plasma effect is modeled as a body force obtained from a semi-empirical model. The flow statistics and surface pressure frequency spectra show excellent agreement with previous experimental measurements. For acoustic calculations, a boundary-element method is implemented to solve the convected Lighthill equation. The solution method is validated in a number of benchmark problems including flows over a cylinder, a rod-airfoil configuration, and a sphere. With validated flow field and acoustic solver, acoustic analysis is performed for the tandem-cylinder configuration to extend the experimental results and understand the mechanisms of noise generation and its control. Without flow control, the acoustic field is dominated by the interaction between the downstream cylinder and the upstream wake. Through suppression of vortex shedding from the upstream cylinder, the interaction noise is reduced drastically by the plasma flow control, and the vortex-shedding noise from the downstream cylinder becomes equally important. At a free-stream Mach number of 0.2, the peak sound pressure level is reduced by approximately 16 dB. This suggests the viability of plasma actuation for active control of airframe noise. The numerical investigation is extended to the noise from a realistic landing gear experimental model. Coarse-mesh computations are performed, and preliminary results are

  19. Reducing Propulsion Airframe Aeroacoustic Interactions with Uniquely Tailored Chevrons. 2; Installed Nozzles

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G.; Elkoby, Ronen; Brusniak, Leon; Thomas, Russ H.

    2006-01-01

    Propulsion airframe aeroacoustic (PAA) interactions arise due to the manner in which an engine is installed on the airframe and lead to an asymmetry in the flow/acoustic environment, for example, for under-the-wing installations due to the pylon, the wing and the high-lift devices. In this work we study how we can affect these PAA interactions to reduce the overall jet-related installed noise by tailoring the chevron shapes on fan and core nozzles in a unique fashion to take advantage of this asymmetry. In part 1 of this trio of papers we introduced the concept of azimuthally varying chevrons (AVC) and showed how some types of AVCs can be more beneficial than the conventional chevrons when tested on "isolated" scaled nozzles inclusive of the pylon effect. In this paper, we continue to study the effect of installing these AVC nozzles under a typical scaled modern wing with high-lift devices placed in a free jet. The noise benefits of these installed nozzles, as well as their installation effects are systematically studied for several fan/core AVC combinations at typical take-off conditions with high bypass ratio. We show, for example, that the top-enhanced mixing T-fan AVC nozzle (with enhanced mixing near the pylon and less mixing away from it) when combined with conventional chevrons on the core nozzle is quieter than conventional chevrons on both nozzles, and hardly produces any high-frequency lift, just as in the isolated case; however, its installed nozzle benefit is less than its isolated nozzle benefit. This suppression of take-off noise benefit under installed conditions, compared to its isolated nozzle benefit, is seen for all other chevron nozzles. We show how these relative noise benefits are related to the relative installation effects of AVCs and baseline nozzles.

  20. Fast plasma sintering delivers functional graded materials components with macroporous structures and osseointegration properties.

    PubMed

    Godoy, R F; Coathup, M J; Blunn, G W; Alves, A L; Robotti, P; Goodship, A E

    2016-01-01

    We explored the osseointegration potential of two macroporous titanium surfaces obtained using fast plasma sintering (FPS): Ti macroporous structures with 400-600 µmØ pores (TiMac400) and 850-1000 µmØ pores (TiMac850). They were compared against two surfaces currently in clinical use: Ti-Growth® and air plasma spray (Ti-Y367). Each surface was tested, once placed over a Ti-alloy and once onto a CoCr bulk substrate. Implants were placed in medial femoral condyles in 24 sheep. Samples were explanted at four and eight weeks after surgery. Push-out loads were measured using a material-testing system. Bone contact and ingrowth were assessed by histomorphometry and SEM and EDX analyses. Histology showed early osseointegration for all the surfaces tested. At 8 weeks, TiMac400, TiMac850 and Ti-Growth® showed deep bone ingrowth and extended colonisation with newly formed bone. The mechanical push-out force was equal in all tested surfaces. Plasma spray surfaces showed greater bone-implant contact and higher level of pores colonisation with new bone than FPS produced surfaces. However, the void pore area in FPS specimens was significantly higher, yet the FPS porous surfaces allowed a deeper osseointegration of bone to implant. FPS manufactured specimens showed similar osseointegration potential to the plasma spray surfaces for orthopaedic implants. FPS is a useful technology for manufacturing macroporous titanium surfaces. Furthermore, its capability to combine two implantable materials, using bulk CoCr with macroporous titanium surfaces, could be of interest as it enables designers to conceive and manufacture innovative components. FPS delivers functional graded materials components with macroporous structures optimised for osseointegration. PMID:27071735