Science.gov

Sample records for airglow imaging observations

  1. Airglow-imaging observation of plasma bubble disappearance at geomagnetically conjugate points

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Otsuka, Yuichi; Lynn, Kenneth JW; Wilkinson, Philip; Tsugawa, Takuya

    2015-03-01

    We report the first observation of the disappearance of a plasma bubble over geomagnetically conjugate points. It was observed by airglow imagers at Darwin, Australia (magnetic latitude: -22°N) and Sata, Japan (21°N) on 8 August 2002. The plasma bubble was observed in 630-nm airglow images from 1530 (0030 LT) to 1800 UT (0300 LT) and disappeared equatorward at 1800 to 1900 UT (0300 to 0400 LT) in the field of view. The ionograms at Darwin and Yamagawa (20 km north of Sata) show strong spread-F signatures at approximately 16 to 21 UT. At Darwin, the F-layer virtual height suddenly increased from approximately 200 to approximately 260 km at the time of bubble disappearance. However, a similar F-layer height increase was not observed over the conjugate point at Yamagawa, indicating that this F-layer rise was caused not by an eastward electric field but by enhancement of the equatorward thermospheric wind over Darwin. We think that this enhancement of the equatorward neutral wind was caused by an equatorward-propagating large-scale traveling ionospheric disturbance, which was identified in the north-south keogram of 630-nm airglow images. We speculate that polarization electric field associated with this equatorward neutral wind drive plasma drift across the magnetic field line to cause the observed bubble disappearance.

  2. Wave breaking signatures in OH airglow and sodium densities and temperatures 1. Airglow imaging, Na lidar, and MF radar observations

    NASA Astrophysics Data System (ADS)

    Hecht, J. H.; Walterscheid, R. L.; Fritts, D. C.; Isler, J. R.; Senft, D. C.; Gardner, C. S.; Franke, S. J.

    The Collaborative Observations Regarding the Nightglow (CORN) campaign took place at the Urbana Atmospheric Observatory during September 1992. The instrumentation included, among others, the Aerospace Corporation narrowband nightglow CCD camera, which observes the OH Meinel (6-2) band (hereafter designated OH) and the O2 atmospheric (0-1) band (hereafter designated O2) nightglow emissions; the University of Illinois Na density/temperature lidar; and the University of Illinois MF radar. Here we report on observations of small-scale (below 10-km horizontal wavelength) structures in the OH airglow images obtained with the CCD camera. These small-scale structures were aligned perpendicular to the motion of 30- to 50-km horizontal wavelength waves, which had observed periods of about 10-20 min. The small-scale structures were present for about 20 min and appear to be associated with an overturned or breaking atmospheric gravity wave as observed by the lidar. The breaking wave had a horizontal wavelength of between 500 and 1500 km, a vertical wavelength of about 6 km, and an observed period of between 4 and 6 hours. The motion of this larger-scale wave was in the same direction as the ~30- to 50-km waves. While such small-scale structures have been observed before, and have been previously described as ripple-type wave structures [Taylor and Hapgood, 1990], these observations are the first which can associate their occurrence with independent evidence of wave breaking. The characteristics of the observed small-scale structures are similar to the vortices generated during wave breakdown in three dimensions in simulations described in Part 2 of this study [Fritts et al., this issue]. The results of this study support the idea that ripple type wave structures we observe are these vortices generated by convective instabilities rather than structures generated by dynamical instabilities.

  3. A fast SWIR imager for observations of transient features in OH airglow

    NASA Astrophysics Data System (ADS)

    Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2016-04-01

    Since December 2013 the new imaging system FAIM (Fast Airglow IMager) for the study of smaller-scale features (both in space and time) is in routine operation at the NDMC (Network for the Detection of Mesospheric Change) station at DLR (German Aerospace Center) in Oberpfaffenhofen (48.1° N, 11.3° E).Covering the brightest OH vibrational bands between 1 and 1.7 µm, this imaging system can acquire two frames per second. The field of view is approximately 55 km times 60 km at the mesopause heights. A mean spatial resolution of 200 m at a zenith angle of 45° and up to 120 m for zenith conditions are achieved. The observations show a large variety of atmospheric waves.This paper introduces the instrument and compares the FAIM data with spectrally resolved GRIPS (GRound-based Infrared P-branch Spectrometer) data. In addition, a case study of a breaking gravity wave event, which we assume to be associated with Kelvin-Helmholtz instabilities, is discussed.

  4. Atmospheric airglow imaging with CCDs

    SciTech Connect

    Swenson, G.; Mende, S.

    1994-12-31

    Airglow imaging instrumentation has been developed to provide quality imagery of airglow in the visible and near IR wavelengths. The lower thermosphere airglow layers emit between 85 and 102 km altitude. The layers are structured with nonuniformity in the horizontal dimension as a result of Atmospheric Gravity Waves (AGWs) passing through the layer and disturbing the nominal recombination processes producing intensity and temperature modulations. Imagers have been developed to measure the AGW-produced airglow non-uniformities. The instrumentation combines large format, low noise CCDs with large aperture optics for improved S/N images. In particular, the large dynamic range of the detectors provides information from the low intensity zenith sky and the bright, van Rhijn enhanced horizon simultaneously in all-sky fields. The imagers have been used effectively to identify AGW structure from a number of ground based facilities as well as a recent NSF sponsored aircraft campaign. Imagery from the OH Meinel bands and OI 5577 {angstrom} are presented. Discussions are also presented regarding Na 5896 {angstrom}, and O{sub 2} Atmospheric (0,1) band at 8650 {angstrom} emissions.

  5. Periodic waves in the lower thermosphere observed by OI630 nm airglow images

    NASA Astrophysics Data System (ADS)

    Paulino, I.; Medeiros, A. F.; Vadas, S. L.; Wrasse, C. M.; Takahashi, H.; Buriti, R. A.; Leite, D.; Filgueira, S.; Bageston, J. V.; Sobral, J. H. A.; Gobbi, D.

    2016-02-01

    Periodic wave structures in the thermosphere have been observed at São João do Cariri (geographic coordinates: 36.5° W, 7.4° S; geomagnetic coordinates based on IGRF model to 2015: 35.8° E, 0.48° N) from September 2000 to November 2010 using OI630.0 nm airglow images. During this period, which corresponds to almost one solar cycle, characteristics of 98 waves were studied. Similarities between the characteristics of these events and observations at other places around the world were noted, primarily the spectral parameters. The observed periods were mostly found between 10 and 35 min; horizontal wavelengths ranged from 100 to 200 km, and phase speed from 30 to 180 m s-1. These parameters indicated that some of the waves, presented here, are slightly faster than those observed previously at low and middle latitudes (Indonesia, Carib and Japan), indicating that the characteristics of these waves may change at different places. Most of observed waves have appeared during magnetically quiet nights, and the occurrence of those waves followed the solar activity. Another important characteristic is the quasi-monochromatic periodicity that distinguish them from the single-front medium-scale traveling ionospheric disturbances (MSTIDs) that have been observed previously over the Brazilian region. Moreover, most of the observed waves did not present a phase front parallel to the northeast-southwest direction, which is predicted by the Perkins instability process. It strongly suggests that most of these waves must have had different generation mechanisms from the Perkins instability, which have been pointed out as being a very important mechanism for the generation of MSTIDs in the lower thermosphere.

  6. WINDII atmospheric wave airglow imaging

    SciTech Connect

    Armstrong, W.T.; Hoppe, U.-P.; Solheim, B.H.; Shepherd, G.G.

    1996-12-31

    Preliminary WINDII nighttime airglow wave-imaging data in the UARS rolldown attitude has been analyzed with the goal to survey gravity waves near the upper boundary of the middle atmosphere. Wave analysis is performed on O[sub 2](0,0) emissions from a selected 1[sup 0] x 1[sup 0] oblique view of the airglow layer at approximately 95 km altitude, which has no direct earth background and only an atmospheric background which is optically thick for the 0[sub 2](0,0) emission. From a small data set, orbital imaging of atmospheric wave structures is demonstrated, with indication of large variations in wave activity across land and sea. Comparison ground-based imagery is discussed with respect to similarity of wave variations across land/sea boundaries and future orbital mosaic image construction.

  7. Statistical characteristics of gravity waves observed by an all-sky airglow imager at Maui, HI and Cerro Pachon, Chile

    NASA Astrophysics Data System (ADS)

    Cao, Bing; Liu, Alan Z.

    2016-07-01

    Many long-term observations, such as airglow imaging, have shown that gravity waves exist in the mesopause region most of the time. These waves deposit momentum and energy into the background atmosphere when dissipating, and thus exert strong influence to the atmosphere. In this study, we focus on (1) the climatology of gravity waves characteristics, (2) the intermittency of gravity wave momentum flux and (3) the duration/lifespan of gravity wave events. These properties have important implications for gravity wave parameterizations. This study is based on multi-year all sky OH airglow observations obtained at Maui, HI (20.7° N, 156.3° W) and the Andes Lidar Observatory in Chile (30.3° S, 70.7° W). The statistical distribution of intrinsic wave parameters and the momentum flux are analyzed. The probability density functions of gravity wave momentum flux and duration can be described by simple functions and are related to the gravity wave intermittency. The probability distributions of the two sites have some similarity but with noticeable differences, indicating different effects of the background flow and wave source on the gravity wave intermittency in the mesopause region.

  8. First results from a high-speed infrared imaging system for the observation of gravity waves in OH airglow

    NASA Astrophysics Data System (ADS)

    Bittner, Michael; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine

    2015-04-01

    The OH-airglow-layer is concentrated at a height of about 87 km with a half-width of approximately 3 km. Observing the infrared emissions of the vibrational-rotational excited OH moelcules offers a unique possibility for studying atmospheric dynamics. Especially, atmospheric gravity waves are prominent features in the measurements. Since December 2013 the new imaging system FAIm (Fast Infrared Imager) for the study of smaller-scale features (both in space and time)is operational at the NDMC (Network for the Detection of Mesospheric Change, http://wdc.dlr.de/ndmc)station Oberpfaffenhofen. Covering the brightest OH vibrational bands between 1.3 and 1.7micrometer, the imaging system can acquire 2 frames per second. The field of view is approximately 50 km x 60 km at the mesopause height with a mean spatial resolution of 200 m. More than 370 nights of observation have successfully been performed already. The observations show a large variety of atmospheric waves with horizontal wavelengths down to less than 3km, different directions of propagation and phase velocities varying from nearly 0 m/s (quasi stationary waves) to more than 50 m/s. We present the experimental setup and will show first results. Especially, spatio-temporal sequences of the generation of smaller scale gravity wave fields as well as their turbulent dissipation will be shown. An outlook will be given to planned future simultaneous measurements from different stations in the alpine region in order to achieve some stereoscopic information about gravity wave fields.

  9. Gravity waves in mesopause region induced by thunderstorms over Northern China observed by a no-gap OH airglow imager network

    NASA Astrophysics Data System (ADS)

    Xu, Jiyao

    2016-07-01

    A no-gap OH airglow all-sky imager network was established in northern China in February 2012. The network is composed of 6 all-sky airglow imagers that make observations of OH airglow gravity waves and cover an area of about 2000 km east and west and about 1400 km south and north. A large number of gravity wave events in the mesopause region induced by thunderstorms were observed by the network during the past 4 years. A comparison of the observations in 2012, 2013, and 2014 are made, which shows that there were more strong thunderstorms take place in 2013 in the northern China and produce more Concentric Gravity Wave (CGW) events. Especially, a series of CGW events were observed by the network nearly every night during the first half of August 2013. These events were also observed by satellite sensors from FY-2, AIRS/Aqua, and VIIRS/Suomi NPP. Combination of the ground imager network with satellites provides multi-level observations of the CGWs from the stratosphere to the mesopause region. In this talk, two representative CGW events in August 2013 are studied in detail and movies of the two events are displayed. One is the CGW on the night of 13 August 2013, likely launched by a single thunderstorm. The temporal and spatial analyses indicate that the CGW horizontal wavelengths agree with the GW dispersion relation within 300 km from the storm center. A gravity wave with horizontal wavelength of about 20 km propagates horizontally to more than 800 km in the mesopause region, probably due to a ducting layer. Another CGW event was induced by two very strong thunderstorms on 09 August 2013. Multi-scale waves with horizontal wavelengths ranging from less than 10 km to 200 km were observed. Many ripples were found, probably due to the breaking of strong gravity waves with large relative OH intensity perturbations of 10%.

  10. Results from a high-speed imaging system for the observation of transient features in OH-Airglow with focus on small-scale structures

    NASA Astrophysics Data System (ADS)

    Hannawald, Patrick; Kazlova, Aliaksandra; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2016-04-01

    The OH-airglow layer in about 87 km altitude is suited to investigate atmospheric dynamics in a unique way, allowing continuous observations of the night-sky throughout the year. Especially, atmospheric gravity waves are prominent features in the data of airglow imaging systems. In the year 2014 the imaging system FAIM (Fast Airglow IMager) for the study of small-scale features (both in space and time) was operational at the NDMC (Network for the detection of mesospheric change) station Oberpfaffenhofen. The instrument covers many of the brightest OH vibrational bands between 1.0 μm and 1.7 μm and acquires images with a temporal resolution of 2 frames per second. It measures the night sky with an aperture angle of about 20° and a zenith angle of 45° oriented to the Southern Germany Alpine region. Hence, the field of view (FOV) is about 50 km times 60 km in the height of the mesopause (87 km) with a mean spatial resolution of about 200 m. With this resolution, the focus of the instrument is on small-scale wave structures ranging from about 1 km to 30 km and instability structures like so-called ripples or Kelvin-Helmholtz-Instabilities. Case studies will be presented showing dissipating gravity waves and the results of spectral analyses will give an overview of the prominent directions of propagation and the horizontal wavelengths within the year 2014. This work is funded by the Bavarian State Ministry of the Environment and Consumer Protection by grant no. TUS01UFS-67093. The project aims to analyse the influence of the Alpine region on the generation of atmospheric waves.

  11. Removing Milky Way from airglow images using principal component analysis

    NASA Astrophysics Data System (ADS)

    Li, Zhenhua; Liu, Alan; Sivjee, Gulamabas G.

    2014-04-01

    Airglow imaging is an effective way to obtain atmospheric gravity wave information in the airglow layers in the upper mesosphere and the lower thermosphere. Airglow images are often contaminated by the Milky Way emission. To extract gravity wave parameters correctly, the Milky Way must be removed. The paper demonstrates that principal component analysis (PCA) can effectively represent the dominant variation patterns of the intensity of airglow images that are associated with the slow moving Milky Way features. Subtracting this PCA reconstructed field reveals gravity waves that are otherwise overwhelmed by the strong spurious waves associated with the Milky Way. Numerical experiments show that nonstationary gravity waves with typical wave amplitudes and persistences are not affected by the PCA removal because the variances contributed by each wave event are much smaller than the ones in the principal components.

  12. Airglow observation by VISI on ISS-IMAP: current status of development and simulation of measurement

    NASA Astrophysics Data System (ADS)

    Sakanoi, Takeshi; Yamazaki, Atsushi; Akiya, Yusuke; Saito, Akinori; Otsuka, Yuichi; Abe, Takumi; Taguchi, Makoto; Kubota, Minoru; Takeyama, Norihide; Obuchi, Yasuyuki; Yamamoto, Mamoru; Yoshikawa, Ichiro; Suzuki, Makoto

    The ISS-IMAP mission is one of the constituents of the Japanese Experiment Module (JEM) 2nd stage plan which will be launched in 2011 or 2012 onto the International Space Station (ISS). The main scientific subject of this mission is to clarify the energy and physical transfer processes in the boundary region between earth's atmosphere and space with the visible spectrometer and extra ultraviolet imagers. We have been developing the visible imaging spectrometer instrument (VISI) on ISS-IMAP. VISI will measure three nightglow emissions; O (630 nm, altitude 250 km), OH Meinel band (730 nm, altitude 87km), and O2 (0-0) atmospheric band (762 nm, altitude 95 km). We designed a bright (F/0.9), wide-angle (field-of-view 90 degrees) objective lens. To subtract background contaminations from clouds and ground structures, VISI will perform a stereoscopic measurement by taking two line-scans of the airglow spectra in 45 deg. forward and 45 deg. backward directions. Each field-of-view is faced perpendicular to the orbital plane, and its width is about 550 km mapping to an altitude of 100 km. The phase velocity of airglow wave structure is also estimated from the difference between forward and backward data. We will obtain a continuous line-scanning image for all emissions line from +51 deg to -51 deg. in geographic latitude by the successive exposure cycle with a time interval of 1 -several sec. From the simulation of airglow observation with a simple sinecurve airglow pattern including noises, we found that the wave structure in airglow can be identified for the three emissions. In this presentation, the current status of instrumental development, system design, operation plan, and simulation of airglow observations will be reported.

  13. Ionospheric imaging using merged ultraviolet airglow and radio occultation data

    NASA Astrophysics Data System (ADS)

    Stephan, Andrew W.; Budzien, Scott A.; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya; Powell, Steven P.; Psiaki, Mark L.

    2014-09-01

    The Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) and GPS Radio Occultation and Ultraviolet Photometry-Colocated (GROUP-C) experiments are being considered for flight aboard the Space Test Program Houston 5 (STP-H5) experiment pallet to the International Space Station (ISS). LITES is a compact imaging spectrograph that makes one-dimensional images of atmospheric and ionospheric ultraviolet (60-140 nm) airglow above the limb of the Earth. The LITES optical design is advantageous in that it uses a toroidal grating as its lone optical surface to create these high-sensitivity images without the need for any moving parts. GROUP-C consists of two instruments: a nadir-viewing ultraviolet photometer that measures nighttime ionospheric airglow at 135.6 nm with unprecedented sensitivity, and a GPS receiver that measures ionospheric electron content and scintillation with the assistance of a novel antenna array designed for multipath mitigation. By flying together, these two experiments form an ionospheric observatory aboard the ISS that will provide new capability to study low- and mid-latitude ionospheric structures on a global scale. This paper presents the design and implementation of the LITES and GROUP-C experiments on the STP-H5 payload that will combine for the first time high-sensitivity in-track photometry with vertical spectrographic imagery of ionospheric airglow to create high-fidelity images of ionospheric structures. The addition of the GPS radio occultation measurement provides the unique opportunity to constrain, as well as cross-validate, the merged airglow measurements.

  14. Forward modeling of tsunami-driven gravity waves observed in airglow emission

    NASA Astrophysics Data System (ADS)

    Coisson, P.; Makela, J. J.; Vadas, S.; Sladen, A.

    2013-12-01

    Tsunamis propagating through the ocean excite gravity waves in the overlying atmosphere that propagate vertically, reaching ionospheric heights. Due to the exponential decay of the atmosphere density, waves with amplitudes as low as 10 cm at ocean level are highly amplified in the upper atmosphere, where they can have an appreciable effect on both the neutral an plasma environment. In the last decade, tsunami-generated gravity waves have been detected in the upper atmosphere for all major tsunami using ground-based GPS networks, satellite altimeters and/or airglow imagers. Airglow oscillations following tsunami propagation have been observed from an observatory on the Haleakala volcano in Hawaii for two recent large events: the Mw 9.0, 11 March 2011, Tohoku-Oki, Japan, earthquake and the Mw 7.8, 28 October 2012, Haida Gwaii, Canada, earthquake. The signature of gravity waves traveling at tsunami speed in the same direction of its propagation has been observed in the images of an all-sky imaging system for the first tsunami and in the images of a narrow-field imaging system for the second one. In order to investigate the physics of the coupling between the ocean, the neutral and charged atmosphere and understand the exact origin of the atmospheric imprint recorded by airglow imagers, we present modeling results of gravity waves excited by a realistic tsunami propagation model coupled to the atmosphere and ionosphere, during these two events. The model has been developed to include the propagation of the gravity waves in the atmosphere, the coupling between neutral and charged particles in the ionosphere and the production of the airglow emission at 630.0 nm. The results of the model are compared to the 630.0 nm emission measured by the imaging systems.

  15. Investigating Titan Airglow's Sources, Using the Imaging Capability of the Cassini-UVIS Instrument

    NASA Astrophysics Data System (ADS)

    Royer, E. M.; Esposito, L. W.; Holsclaw, G.; Lavvas, P.; Larsen, K. W.; Stevens, M. H.; West, R. A.

    2015-12-01

    The Ultraviolet Imaging Spectrograph (UVIS) instrument includes two spectrographic channels that provide both images and spectra covering the wavelength ranges from 56 to 118 nm (EUV) and 110 to 190 nm (far-UV). While previous studies focused on analyzing spectra, very few have used the capability of UVIS to produce images. This approach allows for the investigation of a much wider set of observations (currently about 10,000 over 10 years of data). A big data analytics approach narrows the number of observations for more specific applications and detailed spectral analysis. Previous studies on a reduced set of UVIS observations have demonstrated that dayglow emissions are at least a factor of ten brighter than the nightglow and are predominantly excited by solar photoelectrons. On the other hand, energetic Saturnian magnetosphere-plasma interactions with Titan's ambient neutral species are a significant source of UV nightglow emissions. Magnetosphere particle interactions, particularly the particles H+ and O+, along with secondary electrons, produce a nightglow spectrum. Our preliminary results from the UVIS images show that the airglow is highly variable in intensity and nightglow emissions are sporadic. We investigate here the various sources of nightglow to relate the nightglow spatial distribution and occurrence to the orbital position. We also present a case study where UVIS observed an airglow brightening, with an enhanced intensity over a short period of time (15 minutes). Further investigation demonstrates that other particles instruments onboard Cassini detected an electron burst correlated with this airglow. Modeling of this event brings information on the aerosols distribution in the Titan's upper atmosphere, on the airglow characteristics and the possible energy sources.

  16. Enhanced airglow at Titan

    NASA Astrophysics Data System (ADS)

    Royer, Emilie; Esposito, Larry; Wahlund, Jan-Erik

    2016-06-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) instrument made thousand of observations of Titan since its arrival in the Saturnian system in 2004, but only few of them have been analyzed yet. Using the imaging capability of UVIS combined to a big data analytics approach, we have been able to uncover an unexpected pattern in this observations: on several occasions the Titan airglow exhibits an enhanced brightness by approximately a factor of 2, generally combined with a lower altitude of the airglow emission peak. These events typically last from 10 to 30 minutes and are followed and preceded by an airglow of regular and expected level of brightness and altitude. Observations made by the Cassini Plasma Spectrometer (CAPS) instrument onboard Cassini allowed us to correlate the enhanced airglow observed on T-32 with an electron burst. The timing of the burst and the level of energetic electrons (1 keV) observed by CAPS correspond to a brighter and lower than typical airglow displayed on the UVIS data. Furthermore, during T-32 Titan was inside the Saturn's magnetosheath and thus more subject to bombardment by energetic particles. However, our analysis demonstrates that the presence of Titan inside the magnetosheath is not a necessary condition for the production of an enhanced airglow, as we detected other similar events while Titan was within Saturn's magnetosphere. The study presented here aims to a better understanding of the interactions of Titan's upper atmosphere with its direct environment.

  17. Seasonal and interannual variability of gravity waves from airglow imaging at Adelaide and Alice Springs

    NASA Astrophysics Data System (ADS)

    Gelinas, L. J.; Hecht, J. H.; Reid, I. M.; Vincent, R. A.; Walterscheid, R. L.; Woithe, J. M.

    2009-12-01

    The mesosphere and lower thermosphere (MALT) is a region largely controlled by tides and gravity waves. In this paper, we explore the seasonal and interannual variability of the MALT and its relationship to gravity wave fluxes using long-term airglow measurements at two Australian sites. The data presented here are the result of more than seven years of airglow imager observations at Adelaide 34°55’S, 138°36’ E) and Alice Springs (23°42’ S, 133°53’ E). The imagers measure rotational temperature and intensity of two atmospheric emissions, OH Meinel (6, 2) and O2 atmospheric (0, 1). Here we present analysis of the seasonal and interannual variation of gravity waves at both Australian sites. Automated analysis is used to determine individual gravity wave wavelength and orientation in each airglow image. Gravity wave statistics are then compiled and correlated with tropospheric disturbances, as characterized by Australian rainfall statistics and low pressure systems. By these methods, both seasonal variations in gravity wave occurrence and directionality and storm-related wave events can be identified.

  18. Coordinated observations of a nighttime medium-scale traveling ionospheric disturbance in 630-nm airglow and HF radar echoes

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Hosokawa, K.; Shibata, T. F.; Shiokawa, K.; Otsuka, Y.; Nishitani, N.; Ogawa, T.; Koustov, A. V.; Shevtsov, B. M.

    2008-12-01

    A nighttime medium-scale traveling ionospheric disturbance (MSTID) is studied with the SuperDARN Hokkaido HF radar and the OI 630-nm airglow imager located within the radar field of view at Paratunka, Russia (53N, 158E). On 8 December 2007, the MSTID propagating southwestward with a period of ~1 hour was first identified in optics by considering airglow intensity deviations from 1-hour running averages. Over the optical event, the radar was detecting ionospheric F-region echoes with poleward and equatorward Doppler velocities correlating, both spatially and temporally, with the airglow depletions and enhancements, respectively. The occurrence and velocity polarity of the observed echoes are consistent with the onset of the E x B plasma drifts caused by the MSTID-related electric field. These facts indicate that the MSTIDs are accompanied by oscillating polarization electric field structure in the F-region ionosphere.

  19. Calibration of imaging parameters for space-borne airglow photography using city light positions

    NASA Astrophysics Data System (ADS)

    Hozumi, Yuta; Saito, Akinori; Ejiri, Mitsumu K.

    2016-09-01

    A new method for calibrating imaging parameters of photographs taken from the International Space Station (ISS) is presented in this report. Airglow in the mesosphere and the F-region ionosphere was captured on the limb of the Earth with a digital single-lens reflex camera from the ISS by astronauts. To utilize the photographs as scientific data, imaging parameters, such as the angle of view, exact position, and orientation of the camera, should be determined because they are not measured at the time of imaging. A new calibration method using city light positions shown in the photographs was developed to determine these imaging parameters with high accuracy suitable for airglow study. Applying the pinhole camera model, the apparent city light positions on the photograph are matched with the actual city light locations on Earth, which are derived from the global nighttime stable light map data obtained by the Defense Meteorological Satellite Program satellite. The correct imaging parameters are determined in an iterative process by matching the apparent positions on the image with the actual city light locations. We applied this calibration method to photographs taken on August 26, 2014, and confirmed that the result is correct. The precision of the calibration was evaluated by comparing the results from six different photographs with the same imaging parameters. The precisions in determining the camera position and orientation are estimated to be ±2.2 km and ±0.08°, respectively. The 0.08° difference in the orientation yields a 2.9-km difference at a tangential point of 90 km in altitude. The airglow structures in the photographs were mapped to geographical points using the calibrated imaging parameters and compared with a simultaneous observation by the Visible and near-Infrared Spectral Imager of the Ionosphere, Mesosphere, Upper Atmosphere, and Plasmasphere mapping mission installed on the ISS. The comparison shows good agreements and supports the validity

  20. Thermospheric aurora and airglow

    SciTech Connect

    Meier, R.R.

    1987-04-01

    New information added in the years between 1983 and 1986 to the understanding of the physics and chemistry responsible for the production of aurora and airglow emissions is presented. On auroras, the bulk of new information comes from the information obtained from satellite-based imaging (by DE1) and spectroscopy, rocket-based observations of bremsstrahlung from electrons precipitating in the auroral zone, and measurements of metastable ion species. On airglow, the DE1 photometric experiment has provided the opportunity of studying the geocorona on a global scale. A geotail was detected in the antisolar direction, confirming earlier observations. 123 references.

  1. Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011

    NASA Astrophysics Data System (ADS)

    Makela, J. J.; Lognonné, P.; Hébert, H.; Gehrels, T.; Rolland, L.; Allgeyer, S.; Kherani, A.; Occhipinti, G.; Astafyeva, E.; Coïsson, P.; Loevenbruck, A.; Clévédé, E.; Kelley, M. C.; Lamouroux, J.

    2011-07-01

    Although only centimeters in amplitude over the open ocean, tsunamis can generate appreciable wave amplitudes in the upper atmosphere, including the naturally occurring chemiluminescent airglow layers, due to the exponential decrease in density with altitude. Here, we present the first observation of the airglow tsunami signature, resulting from the 11 March 2011 Tohoku earthquake off the eastern coast of Japan. These images are taken using a wide-angle camera system located at the top of the Haleakala Volcano on Maui, Hawaii. They are correlated with GPS measurements of the total electron content from Hawaii GPS stations and the Jason-1 satellite. We find waves propagating in the airglow layer from the direction of the earthquake epicenter with a velocity that matches that of the ocean tsunami. The first ionospheric signature precedes the modeled ocean tsunami generated by the main shock by approximately one hour. These results demonstrate the utility of monitoring the Earth's airglow layers for tsunami detection and early warning.

  2. Space-based imaging of nighttime medium-scale traveling ionospheric disturbances using FORMOSAT-2/ISUAL 630.0 nm airglow observations

    NASA Astrophysics Data System (ADS)

    Rajesh, P. K.; Liu, J. Y.; Lin, C. H.; Chen, A. B.; Hsu, R. R.; Chen, C. H.; Huba, J. D.

    2016-05-01

    This paper reports the results of space-based imaging of nighttime medium-scale traveling ionospheric disturbances (MSTIDs) in 630.0 nm emission by Imager of Sprites and Upper Atmospheric Lightnings (ISUAL), on board FORMOSAT-2 satellite. The limb integrated measurements, after removing background, reveal multiple bands of intensity perturbation when projected to a horizontal plane corresponding to the altitude of peak emission, with distinct southwest to northeast orientation in the Southern Hemisphere. Simulations are carried out by artificially introducing MSTID fluctuations in model electron density to confirm if the MSTID could be identified in the ISUAL-viewing geometry. The ISUAL observations in year 2007 are further used to investigate the MSTID features as well as occurrence characteristics in the Southern Hemisphere, most of which are over the ocean where no ground-based observations are available. The preliminary statistics shows more MSTID occurrence in solstices with peak in June-July months. Majority of the MSTID perturbations have wavelength in the range 150-300 km, and the wavefronts are aligned at about 30°-50° from the east-west plane. The statistic results of the orientation of wavefronts indicate that Es layer instability might be important in the MSTID generation.

  3. Limb Viewing Hyper Spectral Imager (LiVHySI) for airglow measurements onboard YOUTHSAT-1

    NASA Astrophysics Data System (ADS)

    Bisht, R. S.; Hait, A. K.; Babu, P. N.; Sarkar, S. S.; Benerji, A.; Biswas, A.; Saji, A. K.; Samudraiah, D. R. M.; Kirankumar, A. S.; Pant, T. K.; Parimalarangan, T.

    2014-08-01

    The Limb Viewing Hyper Spectral Imager (LiVHySI) is one of the Indian payloads onboard YOUTHSAT (inclination 98.73°, apogee 817 km) launched in April, 2011. The Hyper-spectral imager has been operated in Earth’s limb viewing mode to measure airglow emissions in the spectral range 550-900 nm, from terrestrial upper atmosphere (i.e. 80 km altitude and above) with a line-of-sight range of about 3200 km. The altitude coverage is about 500 km with command selectable lowest altitude. This imaging spectrometer employs a Linearly Variable Filter (LVF) to generate the spectrum and an Active Pixel Sensor (APS) area array of 256 × 512 pixels, placed in close proximity of the LVF as detector. The spectral sampling is done at 1.06 nm interval. The optics used is an eight element f/2 telecentric lens system with 80 mm effective focal length. The detector is aligned with respect to the LVF such that its 512 pixel dimension covers the spectral range. The radiometric sensitivity of the imager is about 20 Rayleigh at noise floor through the signal integration for 10 s at wavelength 630 nm. The imager is being operated during the eclipsed portion of satellite orbits. The integration in the time/spatial domain could be chosen depending upon the season, solar and geomagnetic activity and/or specific target area. This paper primarily aims at describing LiVHySI, its in-orbit operations, quality, potential of the data and its first observations. The images reveal the thermospheric airglow at 630 nm to be the most prominent. These first LiVHySI observations carried out on the night of 21st April, 2011 are presented here, while the variability exhibited by the thermospheric nightglow at O(1D) 630 nm has been described in detail.

  4. Observation and modeling of mesospheric Na density and OH airglow perturbations by a gravity wave approaching a critical level

    NASA Astrophysics Data System (ADS)

    Snively, Jonathan; Pautet, Pierre-Dominique; Taylor, Michael; Swenson, Gary; Liu, Alan

    2010-05-01

    Atmospheric gravity waves at a broad range of temporal and spatial scales are frequently observed in MLT airglow imaging experiments. Airglow data provide significant insight into gravity wave propagation, directionality, and seasonality, and allow estimations of wave fluxes [e.g., Swenson et al., JGR, 104(D6), 1999]. The USU CEDAR Mesospheric Temperature Mapper (MTM) is a specialized CCD airglow imaging system, which was operated at Maui MALT from November 2001 to December 2006. The MTM captures OH(6,2) and O2(0,1) emissions intensities and associated rotational temperatures. The MTM is able to reveal two-dimensional structure of intensity and temperature perturbations associated with small-scale gravity waves, and has been used to assess zenith temperatures, showing close agreement with simultaneous lidar temperature data [Zhao et al., J. Geophys. Res., 110, D09S07, 2005]. Here we investigate the vertical and horizontal structure of a small-scale gravity wave (~18 minute period and ~37 km horizontal wavelength) captured by the Maui MTM on April 11, 2002. The event was strongly visible in the OH(6,2) image data, showing intensity perturbations ~ 5-10 %, however relatively weak in the O2 data. Lidar temperatures and winds suggest the presence of a critical level shortly above ~90 km, which would have contributed to increased dissipation, and reduced detectability, due to small vertical scale. With imaged intensity and rotational temperature data, along with evolving Na lidar profile data, we reconstruct and simulate the wave event under realistic ambient conditions using a suite of numerical models. Hydroxyl photochemistry and dynamics of O3, H, O, and Na densities are obtained with a two-dimensional nonlinear numerical model for gravity wave dynamics [Snively and Pasko, JGR, 113, A06303, 2008], allowing direct comparison of OH(6,2) intensity and brightness-weighted temperature perturbations [e.g., Makhlouf et al., JGR, 100(D6), 11289, 1995]. The strong sheared

  5. Balloon-borne spectroscopic observation of the infrared hydroxyl airglow.

    PubMed

    Lowe, R P; Lytle, E A

    1973-03-01

    A balloon-borne grating spectrometer has been used to study the spectrum of the airglow between 1.8 microm and 3.6 microm and its diurnal variation. The principal features identified are the bands of the Deltaupsilon = 2 and Deltaupsilon = 1 sequences of the vibration-rotation spectrum of OH. The brightness of the 1-0 band at night was measured to be in the range 270-400 kR on two flights. A sudden decrease in the intensity of the hydroxyl bands occurred in morning twilight at a solar depression of 4 degrees and is ascribed to the photodissociation of ozone. The temperature, as indicated by the Q/R branch ratio, rose from 170 K at night to 255 K at noon indicating a reduction in the height of the emitting layer during the day.

  6. Observations of thunderstorm-related 630 nm airglow depletions

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.; Bhatt, A.

    2015-12-01

    The Midlatitude All-sky imaging Network for Geophysical Observations (MANGO) is an NSF-funded network of 630 nm all-sky imagers in the continental United States. MANGO will be used to observe the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network is actively being deployed and will ultimately consist of nine all-sky imagers. These imagers form a network providing continuous coverage over the western United States, including California, Oregon, Washington, Utah, Arizona and Texas extending south into Mexico. This network sees high levels of both medium and large scale wave activity. Apart from the widely reported northeast to southwest propagating wave fronts resulting from the so called Perkins mechanism, this network observes wave fronts propagating to the west, north and northeast. At least three of these anomalous events have been associated with thunderstorm activity. Imager data has been correlated with both GPS data and data from the AIRS (Atmospheric Infrared Sounder) instrument on board NASA's Earth Observing System Aqua satellite. We will present a comprehensive analysis of these events and discuss the potential thunderstorm source mechanism.

  7. Global variability of the oxygen airglow as observed by WINDII and predicted with the TIME-GCM

    NASA Astrophysics Data System (ADS)

    Liu, Guiping

    This dissertation reports on the global temporal variations of the oxygen airglow emissions from the analysis of seven years of WINDII (Wind Imaging Interferometer) satellite data. To interpret the emission signatures, the observations are compared with the simulations of NCAR's TIME-GCM general circulation model that includes atmospheric photochemistry and dynamics. The nighttime O(1S), O2( b1S+g ), and OH airglow emissions originate from the recombination of atomic oxygen, which acts as a tracer of atmospheric motions. Variations of these emissions thus provide information on wave activity and on the large-scale circulation in the mesosphere and lower thermosphere (MLT). The study focuses on the seasonal climatology of the emission rate for various latitude regions. In the tropics, a dramatic semi-annual variation exists but only for limited local times. The onset of the variation is consistent with the propagating tidal wave. At mid-latitudes, both semi-annual and annual variations occur. They are subject to local time variations, which again manifest the tidal influence. At higher latitudes, an annual behaviour becomes dominant. It may also result from upward and downward motions associated with the large-scale general circulation. However, a mid-summer peak is superimposed, indicating other influences. Further, the long-term trend variation is examined. The emissions at all latitudes follow the variation of F10.7 flux and are in phase with the solar cycle. They also have a two-year period variation that may be caused by the quasi-biennial oscillation. All these emission variations could be ultimately explained in terms of vertical motion. Vertical motion is observed directly as a universal inverse relationship of the airglow emission rate and emission altitude. Finally, the anomalous WINDII airglow profiles with multiple peaks are investigated. Their occurrences coincide with steep emission rate gradients associated with the diurnal tide. Moreover, the

  8. Characteristics of short-period wavelike features near 87 km altitude from airglow and lidar observations over Maui

    NASA Astrophysics Data System (ADS)

    Hecht, J. H.; Liu, A. Z.; Walterscheid, R. L.; Franke, S. J.; Rudy, R. J.; Taylor, M. J.; Pautet, P.-D.

    2007-08-01

    Small-scale (less than 15 km horizontal wavelength) wavelike structures known as ripples are a common occurrence in OH airglow images. Recent case studies attribute their origin to the presence of either convective or dynamical instabilities. However, little is known about their frequency of occurrence and period. The Maui-MALT Observatory, located at Mt. Haleakala, is instrumented with a Na wind/temperature lidar, which allows the determination of whether the atmosphere is dynamically or convectively unstable, and a fast OH airglow camera which takes images every 3 s with a sensitivity high enough to see the ripples. This study reports on 2 months of observations in October/November 2003 and in August 2004, eight nights of which also included Na lidar measurements. The imager results suggest that instability features occur in the 85- to 90-km region of the atmosphere for around 20% of the time. The nominal observed period for the ripples is between 2 and 4 min. While there are clear night-to-night variations, the average observed period is similar for both the 2003 and 2004 observations. In addition, a few of the small-scale structures are not ripples caused by instabilities but rather have features consistent with their being short horizontal wavelength evanescent waves. Their fractional intensity fluctuations are as large or larger than those of the ripple instabilities. Unlike the instabilities, the origin of the evanescent waves is not determined.

  9. Optical imaging of airglow structure in equatorial plasma bubbles at radio scintillation scales

    NASA Astrophysics Data System (ADS)

    Holmes, J. M.; Pedersen, T.; Parris, R. T.; Stephens, B.; Caton, R. G.; Dao, E. V.; Kratochvil, S.; Morton, Y.; Xu, D.; Jiao, Y.; Taylor, S.; Carrano, C. S.

    2015-12-01

    Imagery of optical emissions from F-region plasma is one of the few means available todetermine plasma density structure in two dimensions. However, the smallest spatial scalesobservable with this technique are typically limited not by magnification of the lens or resolutionof the detector but rather by the optical throughput of the system, which drives the integrationtime, which in turn causes smearing of the features that are typically moving at speeds of 100m/s or more. In this paper we present high spatio-temporal imagery of equatorial plasma bubbles(EPBs) from an imaging system called the Large Aperture Ionospheric Structure Imager(LAISI), which was specifically designed to capture short-integration, high-resolution images ofF-region recombination airglow at λ557.7 nm. The imager features 8-inch diameter entranceoptics comprised of a unique F/0.87 lens, combined with a monolithic 8-inch diameterinterference filter and a 2x2-inch CCD detector. The LAISI field of view is approximately 30degrees. Filtered all-sky images at common airglow wavelengths are combined with magneticfield-aligned LAISI images, GNSS scintillation, and VHF scintillation data obtained atAscension Island (7.98S, 14.41W geographic). A custom-built, multi-constellation GNSS datacollection system was employed that sampled GPS L1, L2C, L5, GLONASS L1 and L2, BeidouB1, and Galileo E1 and E5a signals. Sophisticated processing software was able to maintainlock of all signals during strong scintillation, providing unprecedented spatial observability ofL band scintillation. The smallest-resolvable scale sizes above the noise floor in the EPBs, as viewed byLAISI, are illustrated for integration times of 1, 5 and 10 seconds, with concurrentzonal irregularity drift speeds from both spaced-receiver VHF measurements and single-stationGNSS measurements of S4 and σφ. These observable optical scale sizes are placed in thecontext of those that give rise to radio scintillation in VHF and L band signals.

  10. Comparison of Airglow from excited O2- and OH-molecules in the global model EMAC compared to observations

    NASA Astrophysics Data System (ADS)

    Versick, Stefan; Sinnhuber, Miriam; von Savigny, Christian; Teiser, Georg; Vlasov, Alexey

    2015-04-01

    Airglow is a luminous effect mainly in the upper atmosphere (mesosphere and thermosphere). It is caused by various processes. Airglow can be used to derive minor species abundances, to diagnose dynamical phenomena or to derive chemical heating rates. There are many molecules which produce airglow, here we concentrate on Airglow from excited O2- and OH-molecules. For the presented study we use the newly developed extended EMAC version which now includes the thermosphere and reaches up to 3.5E-05 Pa. Vibrationally excited OH-molecules are mainly produced by the reaction of atomic hydrogen with ozone. We include this production in the global model EMAC, as well as other important processes for excited OH (e.g. quenching by other molecules, spontaneous emission of photons). As a result we get the airglow for different transitions of the excited OH-molecules. Our model results are compared to airglow derived from observations by SCIAMACHY onboard ENVISAT. The airglow from O2 is produced by light emission from two excited O2 states, O2(1Δ) at 1.27μm and O2(1Σ) at 762nm. O2(1Δ) is mainly produced by photolysis of ozone in the Hartley-Band and O2(1Σ) is mainly produced by the chemical reaction of O(1D) with molecular oxygen. We show first model results and compare them to values from literature.

  11. The O I 135.6 nm airglow observations of the midlatitude summer nighttime anomaly by TIMED/GUVI

    NASA Astrophysics Data System (ADS)

    Hsu, M. L.; Lin, C. H.; Hsu, R. R.; Liu, J. Y.; Paxton, L. J.; Su, H. T.; Tsai, H. F.; Rajesh, P. K.; Chen, C. H.

    2011-07-01

    This study presents the O I 135.6 nm airglow observation of the middle-latitude electron density enhancement during local summer nighttime by Global Ultraviolet Imager (GUVI) on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) spacecraft. The nighttime density enhancement at magnetic middle latitudes in the Southern Hemisphere, known as the Weddell Sea Anomaly (WSA), had been studied by using multipoint observations, and a similar anomalous nighttime enhancement was also found in the Northern Hemisphere recently. The resemblance of both anomalies at magnetic middle latitudes in the Northern and Southern Hemispheres suggests that they should be categorized as the midlatitude summer nighttime anomaly (MSNA). To further explore the three-dimensional structure of the MSNA and its day-to-day variation, the two-dimensional global radiance maps and the vertical electron density profiles derived from disk and limb scans of the TIMED/GUVI 135.6 nm airglow observations are utilized in this study. These global observations show that the northern MSNA mainly occurs in Asia, Europe, and the North Atlantic Ocean regions, while the southern MSNA occurs in the South America-Antarctica region, near the WSA region. The GUVI day-to-day observations in 2006 further illustrate that the southern MSNA appears nightly in January-February and November-December, while the northern MSNA appears in 36 out of 41 total observation nights in May-June.

  12. Characteristics of Short-Period Wavelike Features near 90 km Altitude From Airglow and Lidar Observations Over Maui

    NASA Astrophysics Data System (ADS)

    Hecht, J. H.; Rudy, R. J.; Walterscheid, R. L.; Liu, A. Z.; Franke, S. J.; Pautet, P.; Taylor, M. J.

    2006-12-01

    Small scale (less than 15 km horizontal wavelength) wavelike structures, known as ripples are a common occurrence in OH airglow images. Recent case studies attribute their origin to the presence of either convective or dynamical instabilities. However, little is known about their frequency of occurrence and characteristics such as period and wavelength. The Maui-MALT Observatory, located on Mt. Haleakala is instrumented with a Na wind/temperature lidar which allows the determination of whether the atmosphere is dynamically or convectively unstable, and a fast OH airglow camera which takes images every 3 seconds with a sensitivity high enough to see the ripples. This study reports on two months of observations in October/November 2003 and August 2004, 8 nights of which also included Na lidar measurements. The nominal observed period for the ripples is between 2 and 4 minutes. The results suggest that instability features occur in the 85 to 90 km region of the atmosphere around 20 percent of the time. While there are clear night to night variations the average is similar for both the 2003 and 2004 observations. In addition a few of the small-scale structures are not ripples caused by instabilities, but rather are short horizontal wavelength evanescent waves. Their fractional intensity fluctuations are as large or larger than those of the ripple instabilities. Unlike the instabilities, the origin of the evanescent waves is not determined.

  13. Application of conventional CCD cameras with Fabry-Perot spectrometers for airglow observations

    SciTech Connect

    Coakley, M.M.; Roesler, F.L.

    1994-12-31

    This paper describes Fabry-Perot/CCD annular summing applied to airglow observations. Criteria are developed for determining the optimal rectangular format CCD chip configuration which minimizes dark and read noise. The relative savings in integration time of the imaging Fabry-Perot/CCD system over the pressure-scanned Fabry-Perot/PMT system is estimated for the optimal configuration through calculations of the signal to noise ratios for three extreme (but typical) cases of source and background intensity. The largest savings in integration time in estimated for the daysky thermospheric [O{sup 1}D] (6,300 {angstrom}) case where the bright ({approximately} 5 {times} 10{sup 6}R/{angstrom}) Rayleigh-scattered background dominates the read noise. The long integration times required to obtain useful signal to noise ratios for the faint ({approximately} 10R) nightsky exospheric hydrogen Balmer-{alpha} (6,563 {angstrom}) reduce the importance of the read noise term and yield large savings in integration time. The significance of the read noise term is greatly increased with the very short estimated integration times required for bright ({approximately} 200 R) nightsky lines such as thermospheric [O{sup 1}D]. Alternate CCD formats and applications methods that reduce read noise and provide improved performance in the latter case are compared against the CCD annular summing technique.

  14. A stereoscopic imaging method for measuring the altitude of the near infrared airglow layer

    NASA Astrophysics Data System (ADS)

    Faivre, M.; Moreels, G.; Pautet, D.; Clairemidi, J.; Colas, F.

    2003-04-01

    A program for determining the altitude of the barycenter of the near-infrared emissive layer at the mesopause level has been undertaken. The objective is to measure the two geometric parameters of the emissive layer: its altitude and thickness in order to correlate these values with the parameters of the dynamic processes that propagate at those altitudes. A first set of correlated observations was obtained in September 2000. Two cameras were set in simultaneous operation at Pic du Midi Observatory (Hautes-Pyrénées, altitude 2860 m) and at Pic de Château-Renard (Hautes-Alpes, altitude 2989 m). The azimuths of the lines of sight were opposite along the line that joined the two observation points. The star images were removed using a numerical filter. Then the perspective inversion method developed by Pautet (Applied Optics 41, 823-831, 2002) was used to provide images of the emissive layer as seen by a virtual camera located vertically above the observation sites. The intensity correlation coefficient is computed for matched pixel blocks. The results for the night of September 8-9, 2000 will be presented. In the region where the fields of view of the cameras superimpose, the altitude for the maximum of the airglow intensity is 87.3 km. This value is the mean value for the altitude determinations. The median value is the same: 87.3 km. The emissive layer profile is retrieved with a height resolution of 0.2 km. The layer is located between the extreme altitudes of 85.4 and 89.9 km. A 2D chart representing the altitude of the layer barycenter is compared with a 2D representation of the emission intensity. In conclusion, a precise method for retrieving the near-IR airglow layer altitude with a precision of 0.2 km has been developed and will be used for measuring the altitude of the layer barycenter at different points of the wave field.

  15. Tidal influence on O(1S) airglow emission rate distributions at the geographic equator as observed by WINDII

    NASA Technical Reports Server (NTRS)

    Shephere, G. G.; Mclandress, C.; Solheim, B. H.

    1995-01-01

    WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, observes winds, temperatures and emission rates in the upper mesosphere and thermosphere. In this paper we report on nighttime observations of the vertical distribution of the O(1S) 557.7 nm emission near the geographic equator for March/April, 1993. The airglow volume emission rate distribution is found to be strongly dependent on local time. Beginning at dusk, an intense airglow emission layer descends from a mean altitude of 95 km, reaching 89 km by midnight after which the emission rapidly decays. Shortly after midnight it reappears weakly at a higher altitude and remains at this level as the emission rate gradually increases towards dawn. This strong local time dependence leads us to conclude that the effect is tidally driven. Comparison with the Forbes (1982a,b) model suggest that total density perturbations and changes in the atomic oxygen mixing ratio may the cause of the changes in emission rate distribution between dusk and midnight. The reappearance of the emission after midnight may be caused by downward winds bringing oxygen-rich air from above.

  16. Internal Gravity Wave Induced by the Queen Charlotte Event (27 October 2012, Mw 7.8): Airglow Observation and Modeling.

    NASA Astrophysics Data System (ADS)

    Occhipinti, G.; Bablet, A.; Makela, J. J.

    2015-12-01

    The detection of the tsunami related internal gravity waves (IGWtsuna) by airglow camera has been recently validated by observation (Makela et al., 2011) and modeling (Occhipinti et al., 2011) in the case of the Tohoku event (11 March 2011, Mw 9.0). The airglow is measuring the photon emission at 630 nm, indirectly linked to the plasma density of O2+ (Link & Cogger, 1988) and it is commonly used to detect transient event in the ionosphere (Kelley et al., 2002, Makela et al., 2009, Miller et al., 2009). The modeling of the IGWtsuna clearly reproduced the pattern of the airglow measurement observed over Hawaii and the comparison between the observation and the modeling allows to recognize the wave form and allow to explain the IGWtsuna arriving before the tsunami wavefront at the sea level (Occhipinti et al., 2011). Approaching the Hawaiian archipelagos the tsunami propagation is slowed down (reduction of the sea depth), instead, the IGWtsuna, propagating in the atmosphere/ionosphere, conserves its speed. In this work, we present the modeling of the new airglow observation following the Queen Charlotte event (27 October 2012, Mw 7.8) that has been recently detected, proving that the technique can be generalized for smaller events. Additionally, the effect of the wind on the IGWtsuna, already evocated in the past, is included in the modeling to better reproduce the airglow observations. All ref. here @ www.ipgp.fr/~ninto

  17. An atlas of low latitude 6300A (01) night airglow from OGO-4 observations

    NASA Technical Reports Server (NTRS)

    Reed, E. I.; Fowler, W. B.; Blamont, J. E.

    1972-01-01

    The atomic oxygen emission line at 6300 A, measured in the nadir direction by a photometer on the polar orbiting satellite OGO-4, was plotted between 40 deg N and 40 deg S latitude on a series of maps for the moon-free periods between 30 August 1967 and 10 January 1968 The longitudinal and local time variations which occur during the northern fall-winter season are indicated. The northern tropical arc is more widespread while the southern arc is not present at all longitudes. The conditions under which the observations were made are described, and four airglow maps were selected to show the local time variations.

  18. Preliminary observations and simulation of nocturnal variations of airglow temperature and emission rates at Pune (18.5°N), India

    NASA Astrophysics Data System (ADS)

    Fadnavis, S.; Feng, W.; Shepherd, Gordon G.; Plane, J. M. C.; Sonbawne, S.; Roy, Chaitri; Dhomse, S.; Ghude, S. D.

    2016-11-01

    Preliminary observations of the nocturnal variations of the OH(6-2) and O2b(0-1) nighttime airglow in the mesosphere and lower thermosphere are investigated in the context of tidal influence for the tropical latitude station Pune (18.5°N, 73.85°E). This is the only tropical Spectral Airglow Temperature Imager (SATI) station where the tidal variations of mesosphere and lower thermosphere (MLT) temperature have been determined from ground based SATI observations. The SATI observations obtained since October 2012 reveal the influence of the migrating semidiurnal tides during solstice at this tropical station. There is variability in amplitude and phase obtained from SATI observations. In this paper, SATI observations on 10 Dec 2012 and 3 March 2013 are compared with Whole Atmosphere Community Climate Model (WACCM) simulations. The amplitude of semidiurnal tides is ~25 K/30 K on 10 Dec 2012 during solstice for OH/O2 temperature. During equinox SATI data indicates existence of semidiurnal tide also. The airglow observations are compared with simulations from the WACCM. The model underestimates the amplitude of the semi diurnal tide during equinox (1.6 K/2.7 K at 87 km/96 km) and solstice (~3.8 K/4.8 K at 87 km/96 km) for these days. The reason may be related to dampening of tides in the model due to the effect of strong latitudinal shear in zonal wind. The diurnal variation of airglow emission - which the model simulates well - is related to the vertical advection associated with the tides and downward mixing of atomic oxygen.

  19. Partially light-controlled imager based on liquid crystal plate and image intensifier for aurora and airglow measurement.

    PubMed

    Tang, Yuanhe; Cao, Xiangang; Liu, Hanchen; Shepherd, G G; Liu, Shulin; Gao, Haiyang; Yang, Xusan; Wu, Yong; Wang, Shuiwei

    2012-04-20

    In order to obtain information both of aurora and airglow in one image by the same detector, a PLCI based on liquid crystal plate LCP and super second-generation image intensifier SSGII is proposed in this research. The detection thresholds of the CCD for aurora and airglow are calculated. For the detectable illumination range of 10(4)-10(-2) lx, the corresponding electron count is 1.57×10(5) - 0.2 for every pixel of CCD. The structure and work principle of the PLCI are described. An LC is introduced in the front of CCD to decrease the intensities of aurora in overexposure areas by means of controlling transmittances pixel by pixel, while an image intensifier is set between the LC and CCD to increase the intensity of the weak airglow. The modulation transfer function MTF of this system is calculated as 0.391 at a Nyquist frequency of 15 lp/mm. The curve of transmittance with regard to gray level for the LC is obtained by calibration experiment. Based on the design principle, the prototype is made and used to take photos of objects under strong light greater than 2×10(5) lx. The clear details of [symbols: see text] presented in the image indicate that the PLCI can greatly improve the imaging quality. The theoretical calculations and experiment results prove that this device can extend the dynamic range and it provides a more effective method for upper atmospheric wind measurement.

  20. Observation and modeling of Na density and OH airglow temperature and intensity perturbations by a gravity wave approaching a critical level

    NASA Astrophysics Data System (ADS)

    Snively, J. B.; Pautet, P.; Taylor, M. J.; Swenson, G. R.

    2009-12-01

    Atmospheric gravity waves at a broad range of temporal and spatial scales are frequently observed in MLT airglow imaging experiments. Airglow data provide significant insight into gravity wave propagation, directionality, and seasonality, and allow estimations of wave fluxes [e.g., Swenson et al., JGR, 104(D6), 1999]. The USU CEDAR Mesospheric Temperature Mapper (MTM) is a specialized CCD airglow imaging system, which was operated at Maui MALT from November 2001 to December 2006. The MTM captures OH(6,2) and O2(0,1) emissions intensities and associated rotational temperatures. The MTM has been used previously to assess zenith temperatures, showing close agreement with simultaneous lidar temperature data [Zhao et al., J. Geophys. Res., 110, D09S07, 2005]. It is additionally able to reveal two-dimensional structure of intensity and temperature perturbations associated with small-scale gravity waves. Here we investigate the vertical and horizontal structure of a small-scale gravity wave (~18 minute period and ~37 km horizontal wavelength) captured by the Maui MTM on April 11, 2002. The event was strongly visible in the OH(6,2) image data, showing intensity perturbations ~ 5-10 %, however relatively weak in the O2 data. Lidar temperatures and winds suggest the presence of a critical level shortly above ~90 km, which would have contributed to increased dissipation, and reduced detectability, due to small vertical scale. Using imaged intensity and rotational temperature data, along with evolving Na lidar data, we reconstruct and simulate the wave event under realistic ambient conditions using a suite of numerical models. Hydroxyl photochemistry and dynamics of O3, H, O, and Na densities are obtained with a two-dimensional nonlinear numerical model for gravity wave dynamics [Snively and Pasko, JGR, 113, A06303, 2008], allowing direct comparison of OH(6,2) intensity and brightness-weighted temperature perturbations [e.g., Makhlouf et al., JGR, 100(D6), 11289, 1995]. The

  1. Statistical analysis of infrasound signatures in airglow observations: Indications for acoustic resonance

    NASA Astrophysics Data System (ADS)

    Pilger, Christoph; Schmidt, Carsten; Bittner, Michael

    2013-02-01

    The detection of infrasonic signals in temperature time series of the mesopause altitude region (at about 80-100 km) is performed at the German Remote Sensing Data Center of the German Aerospace Center (DLR-DFD) using GRIPS instrumentation (GRound-based Infrared P-branch Spectrometers). Mesopause temperature values with a temporal resolution of up to 10 s are derived from the observation of nocturnal airglow emissions and permit the identification of signals within the long-period infrasound range.Spectral intensities of wave signatures with periods between 2.5 and 10 min are estimated applying the wavelet analysis technique to one minute mean temperature values. Selected events as well as the statistical distribution of 40 months of observation are presented and discussed with respect to resonant modes of the atmosphere. The mechanism of acoustic resonance generated by strong infrasonic sources is a potential explanation of distinct features with periods between 3 and 5 min observed in the dataset.

  2. An intense traveling airglow front in the upper mesosphere-lower thermosphere with characteristics of a bore observed over Alice Springs, Australia, during a strong 2 day wave episode

    NASA Astrophysics Data System (ADS)

    Walterscheid, R. L.; Hecht, J. H.; Gelinas, L. J.; Hickey, M. P.; Reid, I. M.

    2012-11-01

    The Aerospace Corporation's Nightglow Imager observed a large step function change in airglow in the form of a traveling front in the OH Meinel (OHM) and O2atmospheric (O2A) airglow emissions over Alice Springs, Australia, on 2 February 2003. The front exhibited nearly a factor of 2 stepwise increase in the OHM brightness and a stepwise decrease in the O2A brightness. There was significant (˜25 K) cooling behind the airglow fronts. The OHM airglow brightness behind the front was among the brightest for Alice Springs that we have measured in 7 years of observations. The event was associated with a strong phase-locked 2 day wave (PL/TDW). We have analyzed the wave trapping conditions for the upper mesosphere and lower thermosphere using a combination of data and empirical models and found that the airglow layers were located in a region of ducting. The PL/TDW-disturbed wind profile was effective in supporting a high degree of ducting, whereas without the PL/TDW the ducting was minimal or nonexistent. The change in brightness in each layer was associated with a strong leading disturbance followed by a train of weak barely visible waves. In OHM the leading disturbance was an isolated disturbance resembling a solitary wave. The characteristics of the wave train suggest an undular bore with some turbulent dissipation at the leading edge.

  3. Observations of airglow during injections of exhaust streams of ``Progress'' orbital maneuvering subsystem

    NASA Astrophysics Data System (ADS)

    Beletsky, Alexandr; Mikhalev, Alexander; Khakhinov, Vitaly; Lebedev, Valentin

    Observations of airglow during injections of exhaust streams of “Progress” orbital maneuvering subsystem A. Mikhalev, V. Khakhinov, A. Beletsky, V. Lebedev Institute of Solar-Terrestrial Physics of Siberian Branch of Russian Academy of Sciences (ISTP SB RAS) 664033, Lermontov str. 126a, p/o Box 291, Irkutsk, Russia ABSTRACT The effect of increasing the intensity of airglow emissions associated with spacecraft engines exhaust to the atmosphere is well-known. We carried out the "Radar-Progress" active space experiment for studying the ionosphere on April 17 2013. The exhaust products of orbital maneuvering subsystem engines of transport spacecraft “Progress” were used as a source of ionosphere disturbances. The engines run from 13:24:37 to 13:24:46 UT. The "Progress" orbit altitude was 412 km. We carried out observations of nightglow in the several spectral lines. The all-sky camera was used for obtaining spatial distribution of the 630 nm emission intensity. An increase in the emission intensity in the area of "Progress" track was observed after starting the engines. According to preliminary estimates, the rate of the glow expansion at the orbit altitude during first 60 seconds after the start was ~ 7 km/c along the orbit and ~ 3.5 km/s across the orbit. The observed glow area reached the largest size of ~ 350 km along the orbit and ~ 250 km across the orbit 120-150 s after start. The study has been supported by the grant 13-05-00456-a and 13-02-00957-a of the Russian Foundation for Basic Research and RF President Grant of Public Support for RF Leading Scientific Schools (NSh-2942.2014.5).

  4. Mesopause region wind, temperature and airglow irradiance above Eureka, Nunavut

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Samuel; Ward, William E.; Vail, Christopher; Shepherd, Marianna

    2016-07-01

    The PEARL All Sky Imager (PASI, airglow images), the Spectral Airglow Temperature Imager (SATI, airglow irradiance and temperature) and the E-Region Wind Interferometer II (ERWIN2, wind, airglow irradiance and temperature) are co-located at the Polar Environment Atmospheric Research Laboratory (PEARL)in Eureka, Nunavut (80 N, 86 W). These instruments view the wind, temperature and airglow irradiance of hydroxyl (all three) O2 (ERWIN2 and SATI), sodium (PASI), and oxygen green line (PASI and ERWIN2). The viewing locations and specific emissions of the various instruments differ. Nevertheless, the co-location of these instruments provides an excellent opportunity for case studies of specific events and for intercomparison between the different techniques. In this paper we discuss the approach we are using to combine observations from the different instruments. Case studies show that at times the various instruments are in good agreement but at other times they differ. Of particular interest are situations where gravity wave signatures are evident for an extended period of time and one such situation is presented. The discussion includes consideration of the filtering effect of viewing through airglow layers and the extent to which wind, airglow and temperature variations can be associated with the same gravity wave.

  5. Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo

    NASA Astrophysics Data System (ADS)

    Martinis, C.; Baumgardner, J.; Wroten, J.; Mendillo, M.

    2010-06-01

    All-sky imaging data of 630.0 nm airglow emissions are used to study the seasonal and solar activity dependence of medium-scale traveling ionospheric disturbances (MSTIDs) over Arecibo, Puerto Rico (18.3° N, 66.7° W, 28° N mag lat). MSTIDs are typical F-region signatures at midlatitudes, yet limited statistical results in the American sector hindered the progress in our understanding of these dynamical structures. This study compiles data from 2002 to 2007 and shows for the first time that optically-determined MSTIDs at Arecibo present a semiannual pattern with peak occurrence at both solstices. In the Japanese longitude sector, a similar pattern has been found, but one with a main peak during local summer. This paper explains the high occurrence rate during local winter at Arecibo via E-layer/F-layer coupling and inter-hemispheric coupling, thus accounting for a consistent morphology between the two longitude sectors.

  6. Infrasonic Waves in the Middle Atmosphere: Modelling, Airglow Observations and Analyses

    NASA Astrophysics Data System (ADS)

    Pilger, Christoph; Schmidt, Carsten; Bittner, Michael

    Infrasound is typically observed in surface level measurements of the ambient air-pressure. A novel approach performed at the German Remote Sensing Data Center of the German Aerospace Center (DLR-DFD) is the detection of infrasonic signals in temperature time series of the mesopause altitude region (at about 80-100 km). The infrasonic pressure fluctuations correspond to temperature fluctuations in the atmosphere via ideal gas law assumptions. The development and magnitude of these fluctuations can be modelled regarding propagation, attenuation and amplification processes in the atmosphere. The modelling results are quantified in order to compare it to instrumental observations of mesopause temperatures. The observations are performed at DLR-DFD using the airglow measurement technique and the GRIPS instruments (GRound-based Infrared P-branch Spectrometers). Their temporal resolution of 15 seconds permits the observation of signals within the infrasound period range. Spectral intensities are estimated applying the wavelet analysis to the complete data set of more than one year of routine measurements in order to derive a statistical distribution of wave activity in the frequency range from 0.5 to 5 minutes. Selected events are discussed with respect to the origin of the observed structures.

  7. Unambiguous evidence of HF pump-enhanced airglow at auroral latitudes

    NASA Astrophysics Data System (ADS)

    Brändström, B. U. E.; Leyser, T. B.; Steen, Å.; Rietveld, M. T.; Gustavsson, B.; Aso, T.; Ejiri, M.

    1999-12-01

    Simultaneous observations by up to three low-light imaging stations belonging to the Auroral Large Imaging System (ALIS) have provided the first strong evidence of high-frequency (HF) pump-enhanced airglow at auroral latitudes. The airglow was enhanced by an ordinary mode 4.04 MHz electromagnetic wave with an effective radiated power (ERP) of about 210 MW that was transmitted from the EISCAT-Heating facility near Tromsø, Norway. While often observed at low or mid-latitudes, and despite numerous earlier experiments, no unambiguous observations of pump-enhanced airglow have been reported at auroral latitudes. On February 16, 1999, the first successful results were obtained, and this paper concentrates on discussing optical data from this event. Triangulated estimations of the altitude and position of the enhanced airglow are also presented. Auroral-latitude observations of HF pump-enhanced airglow are important in order to better understand the underlying excitation mechanisms.

  8. Helium 584 Å and H Lyman-α Airglow in Giant Planetary Atmospheres: Modeling, Observations, and Implications

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Esposito, Larry W.

    2016-07-01

    The atmosphere of the outer planets is mainly composed of H2 and neutral atomic helium. The study of He 584 Å and H Lyman-α brightnesses is interesting as the EUV and FUV (Extreme and Far Ultraviolet) planetary airglow have the potential to yield useful information about mixing and other important parameters in their thermospheres. Time variation, asymmetries, and polar enhancement of the airglow are also possible and analysis of the public archived NASA mission data sets (i.e. Voyager and Cassini) can help solve some of the outstanding problems associated with these phenomena. The comparison of observations with results from sophisticated photochemical and radiative transfer models can also help ameliorate unexplained differences in the dynamical processes operating within planetary upper atmospheres. Powerful analysis techniques allow us to extract information on atmospheric mixing, temperatures, and temporal changes due to the solar and seasonal cycles from the variations in distribution and intensity of airglow emissions that result. The presentation will discuss the implications of interpretations from comparison of modeling and observations in giant planetary atmospheres.

  9. Airglow on Titan During Eclipse

    NASA Astrophysics Data System (ADS)

    West, R. A.; Ajello, J. M.; Stevens, M. H.; Strobel, D. F.; Gladstone, R.; Evans, J. S.; Bradley, E. T.

    2012-12-01

    Magnetospheric or cosmic ray charged particle precipitation into Titan's atmosphere is a potential energy source for driving chemistry and may contribute to airglow and energy balance. Estimates of the significance of these processes vary widely and thus far have been only poorly constrained because of the dominance of XUV radiation in stimulating UV airglow. To address these issues we observed Titan when it was deeply embedded in Saturn's shadow in 2009. We obtained EUV and FUV spectra with the Cassini Ultraviolet Imaging Spectrograph (UVIS) and images with the Cassini Imaging Science Subsystem (ISS) at visible wavelengths. For the first time, nitrogen emissions were seen in the spectra in the absence of XUV stimulation, although with insufficient spatial resolution to do limb profiling. The emissions are about a factor of ten smaller than peak dayside emissions observed with UVIS at closer range (from Stevens et al., , J. Geophys. Res., 116, A05304, doi10.1029/2010ja016284). Hydrogen emissions are also observed, consistent with the idea that precipitating protons and oxygen ions are responsible for part of the emission. The visible images from ISS contribute because they resolve the disk well. No auroral structures are seen. Rather, there is a very faint airglow seen on the limb between about 300 and 1000 km and a stronger intensity coming from the region of the haze at 300 km altitude. Although the limb glow is near the noise limit, the radial profile appears to be inconsistent with ionization profiles expected for precipitating electrons, protons, or oxygen ions which are expected to produce strong limb brightening. The stronger glow from the haze region was unexpected. Its origin is not understood but deeply-penetrating cosmic ray ionization and chemiluminescence are candidates that deserve additional scrutiny. . Part of this work was performed by the Jet Propulsion Lab, Cal. Inst. of Tech. under contract with the National Aeronautics and Space Administration.

  10. Apollo 16 far ultraviolet imagery of the polar auroras, tropical airglow belts, and general airglow

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Page, T.

    1976-01-01

    Far-ultraviolet imagery of the earth in the wavelength ranges from 1050 to 1600 A and from 1250 to 1600 A was obtained from the lunar surface during the Apollo 16 mission on Apr. 21, 1972. The images have an angular resolution of about 2 arcmin (230-km linear resolution) and have been quantitatively analyzed to obtain absolute intensities and spatial distributions of the polar auroras (both wavelength ranges), the day and night airglow, and tropical airglow belts (1250-A to 1600-A wavelength range). The observations are consistent with previous results obtained from the OGO-4 spacecraft, but they have also provided details on the spatial distributions of the various emissions over an entire hemisphere at a single time. A general night airglow, at least in the Northern Hemisphere, is indicated.

  11. Observation of the June 22, 2015 G4 storm by HiT&MiS: an Echelle Spectrograph for Auroral and Airglow Studies

    NASA Astrophysics Data System (ADS)

    Aryal, S.; Hewawasam, K.; Maguire, R.; Chakrabarti, S.; Cook, T.; Martel, J.; Baumgardner, J. L.

    2015-12-01

    Observation of the June 22, 2015 G4 storm by HiT&MiS: an Echelle Spectrograph for Auroral and Airglow Studies Saurav Aryal1 , Kuravi Hewawasam1, Ryan Maguire1, Supriya Chakrabarti1, Timothy Cook1, Jason Martel1 and Jeffrey L Baumgardner2, (1) University of Massachusetts Lowell, Lowell, MA, United States, (2)Boston University, Boston, MA, United StatesA High-Throughput and Multi-slit Imaging Spectrograph (HiT&MIS) has been developed by our group. The spectrograph uses an echelle grating that operates at high dispersion orders (28-43) such that extended sources for airglow and auroral emissions can be observed at high resolution (about 0.02 nm). By using four slits (instead of the conventional one slit setup), with the appropriate foreoptics it images extended emissions along a long field of view of about 0.1° × 50°. It observes spectral regions around six prominent atmospheric emission lines (HI 656.3 nm, HI 486.1 nm, OI 557.7 nm, OI 630.0 nm, OI 777.4 nm and N+2 427.8 nm) using order sorting interference filters at the entrance slits and a filter mosaic on an image plane. We present observations from the instrument during the June 22, 2015 G4 storm. OI 557.7 nm (green line) and OI 630.0 nm (red line) showed strong brightness enhancements that lasted throughout the night from 8 P.M June 22, 2015 to 3 AM June 23,2015 when compared to the same times after the storm had passed.

  12. OI 630.0 nm Night Airglow Observations during the Geomagnetic Storm on November 20, 2003 at Kolhapur (P43)

    NASA Astrophysics Data System (ADS)

    Sharma, A. K.; et al.

    2006-11-01

    sharma_ashokkumar@yahoo.com The ground based photometric observations of OI 630 nm emission line have been carried out from Kolhapur station (Geog. Lat.16.8˚N, Geo. Long 74.2˚E), India during the period of the largest geomagnetic storm of the solar cycle 23 which occurred on 20 November 2003, with minimum Dst index 472 nT occurring around mid-night hours. We observed that on 19 November 2003 which was geomagnetically quiet day, the airglow activity of OI 630 nm emission was subdued and it was decreasing monotonically. However, on the night of November 20, 2003 the enhancement is observed during geomagnetic storm due to the increased electron density at the altitude of the F region which is related to the downward transport of electron from the plasmasphere to the F-region. Airglow intensity at OI 630.0 nm showed increase around midnight on November 21, 2003 but comparatively on a smaller scale. On this night the DST index was about 100 nT. This implies that the effect of the geomagnetic storm persisted on that night also. These observations have been explained by the penetration magnetospheric electric field to the low latitude region and the subsequent modulation of meridional wind during the magnetic disturbance at night.

  13. Propagation direction of the nighttime mesospheric gravity waves in the OH airglow images at Tromsø, Norway in winter 2009

    NASA Astrophysics Data System (ADS)

    Oyama, S.; Shiokawa, K.; Suzuki, S.; Nozawa, S.; Otsuka, Y.; Tsutsumi, M.; Hall, C. M.; Meek, C.; Manson, A. H.

    2010-12-01

    An important aspect of the wind dynamics in the mesosphere is to know characteristics of the atmospheric gravity waves, such as propagation direction, zonal and meridional wavenumbers, horizontal wavelength, apparent phase speed, and intensity perturbation amplitude, because it is widely known that the atmospheric gravity waves transport momentum from the lower atmosphere to the mesosphere and the lower thermosphere. Statistical analysis of the OH airglow images measured with all-sky cooled-CCD imagers at low and middle latitudes suggest seasonal, latitudinal dependencies of the wave characteristics. In particular, the wave propagation direction shows clear seasonal variations dependent on latitudes and may also be on longitudes. For example, northward or northeastward propagations are predominant in summer at Rikubetsu (43.5°N, 143.8°E) and the MU radar site (34.9°N, 136.1°E), Japan; but westward and southwestward propagation are predominant in winter at Rikubetsu and the MU radar site, respectively. Another statistical result at equatorial region suggests that eastward and westward directions are predominant in winter and summer, respectively, at Kototabang (0.2°S, 100.3°E), although the propagation direction can be found in all directions. These seasonal, geographical dependencies of the wave propagation direction are controlled by wind filtering, ducting processes, and relative location to the wave source in the lower atmosphere. A new all-sky airglow imager (imager #12 of the Optical Mesosphere Thermosphere Imagers (OMTIs)) was installed at the Ramfjordmoen research station in Norway (69.6°N, 19.2°E) in January 2009. The imager has a filter wheel to programmatically select one of the six optical filters (557.7 nm, 630.0 nm, OH band (720-1000 nm), 589.3 nm, 572.5 nm, and 732.0 nm) for one exposure interval. This study focuses on the OH airglow images to study the mesospheric gravity waves in winter. The gravity waves predominantly propagate north

  14. An observation of polar auroral and airglow from the ISIS-II spacecraft.

    NASA Technical Reports Server (NTRS)

    Shepherd, G. G.; Anger, C. D.; Brace, L. H.; Maier, E. J.; Burrows, J. R.; Heikkila, W. J.; Hoffman, J.; Whitteker, J. H.

    1973-01-01

    This is a preliminary but comprehensive report on coordinated data obtained with the ISIS-II spacecraft, fourth in the ISIS series, launched 1 April 1971, into a near circular 1400 km orbit. The capabilities of the ISIS-I spacecraft have been extended in a number of ways, including the global mapping of the 3914, 5577 and 6300 A emissions. Data obtained during a 30-min pass over the south pole depict the nightside oval and polar cap, as well as mid-latitude airglow effects; these data are described and discussed.

  15. Distribution of atomic oxygen in the upper atmosphere deduced from Ogo 6 airglow observations.

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Guenther, B.; Thomas, R. J.

    1973-01-01

    The atomic oxygen distribution as a function of altitude between 80 and 120 km and as a function of latitude has been deduced from Ogo 6 557.7-nm airglow photometer data obtained between August 1969 and April 1970. The results indicate that the density ranges from 15 to 50 billion per cu cm at 120 km; that there is a semiannual variation by a factor of 3 in the global average density near 100 km in phase with the satellite drag semiannual effect; and that large latitudinal variations occur with maximums between 40 and 60 deg in the winter hemisphere and sometimes deep minimums in the tropics. The implication of these results for meridional and vertical transport patterns is discussed.

  16. OH(v=1 to 9) Relative Population Levels Inferred from VIRTIS/Rosetta Airglow Observations in the Earth's Atmosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Migliorini, A.; Gerard, J. C.; Soret, L.; Piccioni, G.; Capaccioni, F.; Filacchione, G.; Snels, M.

    2015-08-01

    On its way to the comet 67P/Churyumov-Gerasimenko, the Rosetta spacecraft performed three flybys with the Earth, in March 2005, November 2007 and November 2009. The last one was quite suitable to observe the nightside of our planet. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board Rosetta was especially adapted to study the hydroxyl nightglow emissions in the infrared spectral range. The OH v=1,2 sequences were measured simultaneously. We thus investigate the relative population levels of the v=1 to 9 vibrational levels at the same time. Results, obtained using our simple 1-dimension model, are presented for the relative population levels; in particular, the value of level v=1 is derived for the first time, relative to levels up to 9. The vibrational population decreases with increasing vibrational quantum number. Our results are in satisfactorily agreement with previous observations and models developed for mid-latitudes conditions. They favor the models where sudden death deactivation by atomic oxygen is the major process controlling the vibrational population. The observed behavior results to be distinctly different than the OH airglow observations made in the Venus atmosphere with the VIRTIS instrument on board Venus Express, where quenching by CO2 seems to occur with collisional cascades. The authors thank ESA, ASI and all the national space agencies, which support the Rosetta mission (Grants: ASI-INAF I/062/08/0 and ASI-INAF I/050/10/0).

  17. Cassini UVIS Observations of Titan Ultraviolet Airglow Spectra with Laboratory Modeling from Electron- and Proton-Excited N2 Emission Studies

    NASA Astrophysics Data System (ADS)

    Ajello, J. M.; West, R. A.; Malone, C. P.; Gustin, J.; Esposito, L. W.; McClintock, W. E.; Holsclaw, G. M.; Stevens, M. H.

    2011-12-01

    Joseph M. Ajello, Robert A. West, Rao S. Mangina Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 Charles P. Malone Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 & Department of Physics, California State University, Fullerton, CA 92834 Michael H. Stevens Space Science Division, Naval Research Laboratory, Washington, DC 20375 Jacques Gustin Laboratoire de Physique Atmosphérique et Planétaire, Université de Liège, Liège, Belgium A. Ian F. Stewart, Larry W. Esposito, William E. McClintock, Gregory M. Holsclaw Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303 E. Todd Bradley Department of Physics, University of Central Florida, Orlando, FL 32816 The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including three eclipse observations from 2009 through 2010. The 77 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions (lifetimes less than ~100 μs), including the Lyman-Birge-Hopfield (LBH) band system, arising from photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2). The altitude of peak UV emission on the limb of Titan during daylight occurred inside the thermosphere/ionosphere (near 1000 km altitude). However, at night on the limb, the same emission features, but much weaker in intensity, arise in the lower atmosphere below 1000 km (lower thermosphere, mesosphere, haze layer) extending downwards to near the surface at ~300 km, possibly resulting from proton- and/or heavier ion-induced emissions as well as secondary-electron-induced emissions. The eclipse observations are unique. UV emissions were observed during only one of the three eclipse events, and no Vegard-Kaplan (VK) or LBH emissions were seen. Through regression analysis using

  18. Solar Cycle Dependence Of Temperature, Odd-Oxygen, Odd-Hydrogen, And Airglow In The Mesopause Region Observed By SABER

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Hunt, L. A.; Mertens, C. J.; Marshall, T.; Russell, J. M.; Thompson, R. E.; Gordley, L. L.

    2013-12-01

    We present the first consistent, global set of temperature, pressure, odd-oxygen, odd-hydrogen and airglow measurements in the mesopause region spanning a complete solar cycle. The measurements are derived from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA TIMED satellite. These data clearly indicate the influence of solar variability on the atmosphere structure and composition. In general, the values of most parameters decrease with decreasing solar activity. However, odd-hydrogen is observed to increase with decreasing solar activity. While the data indicate a direct relation between solar activity and atmospheric response, the role of dynamical variability in modulating the direct solar response has not yet been investigated, particularly on regional scales (e.g.,tropical, mid-latitude, or polar). We describe the SABER observations in detail and discuss how they can be used with general circulation models to assess the coupled role of dynamics and solar variability in determining the overall atmospheric response.

  19. Lightning induced brightening in the airglow layer

    SciTech Connect

    Boeck, W.L. ); Vaughan, O.H. Jr.; Blakeslee, R. ); Vonnegut, B. ); Brook, M. )

    1992-01-24

    This report describes a transient luminosity observed at the altitude of the airglow layer (about 95 km) in coincidence with a lightning flash in a tropical oceanic thunderstorm directly beneath it. This event provides new evidence of direct coupling between lightning and ionospheric events. This luminous event in the ionosphere was the only one of its kind observed during an examination of several thousand images of lightning recorded under suitable viewing conditions with Space Shuttle cameras. Several possible mechanisms and interpretations are discussed briefly.

  20. Gravity Wave Energetics Determined From Coincident Space-Based and Ground-Based Observations of Airglow Emissions

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Significant progress was made toward the goals of this proposal in a number of areas during the covered period. Section 5.1 contains a copy of the originally proposed schedule. The tasks listed below have been accomplished: (1) Construction of space-based observing geometry gravity wave model. This model has been described in detail in the paper accompanying this report (Section 5.2). It can simulate the observing geometry of both ground-based, and orbital instruments allowing comparisons to be made between them. (2) Comparisons of relative emission intensity, temperatures, and Krassovsky's ratio for space- and ground-based observing geometries. These quantities are used in gravity wave literature to describe the effects of the waves on the airglow. (3) Rejection of Bates [1992], and Copeland [1994] chemistries for gravity wave modeling purposes. Excessive 02(A(sup 13)(Delta)) production led to overproduction of O2(b(sup 1)(Sigma)), the state responsible for the emission of O2. Atmospheric band. Attempts were made to correct for this behavior, but could not adequately compensate for this. (4) Rejection of MSX dataset due to lack of coincident data, and resolution necessary to characterize the waves. A careful search to identify coincident data revealed only four instances, with only one of those providing usable data. Two high latitude overpasses and were contaminated by auroral emissions. Of the remaining two mid-latitude coincidences, one overflight was obscured by cloud, leaving only one ten minute segment of usable data. Aside from the statistical difficulties involved in comparing measurements taken in this short period, the instrument lacks the necessary resolution to determine the vertical wavelength of the gravity wave. This means that the wave cannot be uniquely characterized from space with this dataset. Since no observed wave can be uniquely identified, model comparisons are not possible.

  1. Spatial and temporal behavior of atomic oxygen determined by Ogo 6 airglow observations

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Guenther, B.; Thomas, R. J.

    1974-01-01

    Maps are produced of the atomic oxygen density near 97 km showing a strong variation in latitude, longitude, universal time, and time of year. These densities are deduced from atomic oxygen green nightglow observations carried out from Ogo 6. Meridional wind patterns needed to support the asymmetries observed in local oxygen production and loss rates are deduced.

  2. SABER Observations of the OH Meinel Airglow Variability Near the Mesopause

    NASA Technical Reports Server (NTRS)

    Marsh, Daniel R.; Smith, Anne K.; Mlynczak, Martin G.

    2005-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, one of four on board the TIMED satellite, observes the OH Meinel emission at 2.0 m that peaks near the mesopause. The emission results from reactions between members of the oxygen and hydrogen chemical families that can be significantly affected by mesopause dynamics. In this study we compare SABER measurements of OH Meinel emission rates and temperatures with predictions from a 3-dimensional chemical dynamical model. In general, the model is capable of reproducing both the observed diurnal and seasonal OH Meinel emission variability. The results indicate that the diurnal tide has a large effect on the overall magnitude and temporal variation of the emission in low latitudes. This tidal variability is so dominant that the seasonal cycle in the nighttime emission depends very strongly on the local time of the analysis. At higher latitudes, the emission has an annual cycle that is due mainly to transport of oxygen by the seasonally reversing mean circulation.

  3. ISUAL side-way observations of the OI(1D) night airglows

    NASA Astrophysics Data System (ADS)

    Chiang, C.; Chang, T.; Lin, C.; Rajesh, P.; Liu, J.; Chen, A. B.; Su, H.; Hsu, R.

    2008-12-01

    Recently, ISUAL/FORMOSAT-2 Satellite has devoted more observation time to investigate the OI(1D) nightglow from the sideway, which provides the first comprehensive survey of 630.0nm emission in the pre- midnight sector at F layer. It is found that the OI(1D) nightglow enhancement exhibited remarkable seasonal variations. In this study, we want to highlight the following three points. First, semiannual anomaly and winter anomaly existed in the form of the brightening emission in the region of equatorial anomaly. Second, the data indicates that the tidally enhanced regions show significant longitudinal variability. Third, the latitudinal variability of OI(1D) nightglow can be contributed to both the Equatorial Ionization Anomaly (EIA) effect and the upward propagation tides.

  4. Near-infrared oxygen airglow from the Venus nightside

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Meadows, V. S.; Allen, D. A.; Bezard, B.; Debergh, C.; Maillard, J.-P.

    1992-01-01

    Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.

  5. Heater-induced ionization inferred from spectrometric airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Miceli, R. J.; Varney, R. H.; Schlatter, N.; Huba, J. D.

    2013-12-01

    Spectrographic airglow measurements were made during an ionospheric modification experiment at HAARP on March 12, 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert [1968, 1970], we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with significant induced ionization in view of the spatial intermittency of the airglow.

  6. HF-induced airglow structure as a proxy for ionospheric irregularity detection

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.

    2013-12-01

    The High Frequency Active Auroral Research Program (HAARP) heating facility allows scientists to test current theories of plasma physics to gain a better understanding of the underlying mechanisms at work in the lower ionosphere. One powerful technique for diagnosing radio frequency interactions in the ionosphere is to use ground-based optical instrumentation. High-frequency (HF), heater-induced artificial airglow observations can be used to diagnose electron energies and distributions in the heated region, illuminate natural and/or artificially induced ionospheric irregularities, determine ExB plasma drifts, and measure quenching rates by neutral species. Artificial airglow is caused by HF-accelerated electrons colliding with various atmospheric constituents, which in turn emit a photon. The most common emissions are 630.0 nm O(1D), 557.7 nm O(1S), and 427.8 nm N2+(1NG). Because more photons will be emitted in regions of higher electron energization, it may be possible to use airglow imaging to map artificial field-aligned irregularities at a particular altitude range in the ionosphere. Since fairly wide field-of-view imagers are typically deployed in airglow campaigns, it is not well-known what meter-scale features exist in the artificial airglow emissions. Rocket data show that heater-induced electron density variations, or irregularities, consist of bundles of ~10-m-wide magnetic field-aligned filaments with a mean depletion depth of 6% [Kelley et al., 1995]. These bundles themselves constitute small-scale structures with widths of 1.5 to 6 km. Telescopic imaging provides high resolution spatial coverage of ionospheric irregularities and goes hand in hand with other observing techniques such as GPS scintillation, radar, and ionosonde. Since airglow observations can presumably image ionospheric irregularities (electron density variations), they can be used to determine the spatial scale variation, the fill factor, and the lifetime characteristics of

  7. Equatorial airglow and the ionospheric geomagnetic anomaly.

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Reed, E. I.; Troy, B. E., Jr.; Blamont, J. E.

    1973-01-01

    Ogo 4 observations of the O I (6300-A) emissions have revealed a global pattern hitherto undetected from the ground-based observations. It is seen that the postsunset emission of O I (6300 A) in October 1967 is very asymmetrical with respect to the geomagnetic equator in certain longitude regions and shows poor correlation with the electron density measured simultaneously from the same spacecraft. This asymmetry is less marked in the UV airglow, O I (1356 A), which appears to vary as the square of the maximum electron density in the F region. The horizon scan data of the 6300-A airglow reveal that the latitudinal asymmetry is associated with asymmetry in the height of the O I (6300-A) emission and hence with the altitude of the F2 peak. From the correlative studies of the airglow and the ionospheric measurements the mechanisms of the UV and the 6300 A emissions are discussed in terms of the processes involving radiative and dissociative recombination. Theoretical expressions are developed which relate the airglow data to the ionospheric parameters.

  8. Gravity wave observations using an all-sky imager network

    NASA Astrophysics Data System (ADS)

    Wrasse, Cristiano Max; Almeida, Lazaro M.; Abalde Guede, Jose Ricardo; Fagundes, Paulo Roberto; Nicoli Candido, Claudia Maria; Alves Bolzan, Maurício José; Guarnieri, Fernando; Messias Almeida, Lazaro

    Gravity waves in the mesosphere were observed by airglow all-sky imager network of the UNI- VAP at São José dos Campos (23o S, 45o W), Braśpolis (22o S, 45o W) and Palmas (10o S, 48o W), a e o Brazil. Gravity wave characteristics like morphology, horizontal wavelength, period, phase speed and propagation direction will be analysed and discussed. The results will be compared with other observation sites in Brazil. Wave directionality will also be discussed in terms of wave sources and wind filtering.

  9. Comparison of rotational temperature derived from ground-based OH airglow observations with TIMED/SABER to evaluate the Einstein coefficients

    NASA Astrophysics Data System (ADS)

    Liu, Weijun; Xu, Jiyao; Smith, A. K.; Yuan, Wei

    2015-11-01

    Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, and 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient data sets. The kinetic temperature from Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics/Sounding the Atmosphere by Broadband Emission of Radiation (SABER) is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient data sets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of the vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient data sets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive their ratios from ground-based OH spectra and SABER temperatures statistically using 3 years of data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.

  10. Airglow Intensities and the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Garstang, R. H.

    1997-05-01

    Some time ago we reported (Bull AAS 27,1213,1995) on an analysis of a series of measurements of night sky brightness published by Walker (1988). Those measures were made at San Benito Mountain in California over a period of about 12 years. We have made minor improvements to our analysis and present our final results. We took each observed brightness measurement, and subtracted from it in turn our estimated contributions of light pollution, zodiacal light and faint star background. Allowances were made for nightly extinction coefficients. The remainder is the contribution of the airglow to the sky brightness. The airglow intensities, which are integrals over the B and V photometric bands, show good correlations with the Ottawa 10.7 cm solar flux intensities. We are performing a similar analysis on night sky brightnesses measured at Kitt Peak by Pilachowski and colleagues (PASP 101,707,1989) to strengthen our deduced correlations.

  11. Analysis of close conjunctions between dayside polar cap airglow patches and flow channels by all-sky imager and DMSP

    NASA Astrophysics Data System (ADS)

    Wang, Boyi; Nishimura, Yukitoshi; Lyons, Larry R.; Zou, Ying; Carlson, Herbert C.; Frey, Harald U.; Mende, Stephen B.

    2016-09-01

    Recent imager and radar observations in the nightside polar cap have shown evidence that polar cap patches are associated with localized flow channels. To understand how flow channels propagate from the dayside auroral oval into the polar cap, we use an all-sky imager in Antarctica and DMSP (F13, F15, F16, F17 and F18) to determine properties of density and flows associated with dayside polar cap patches. We identified 50 conjunction events during the southern winter seasons of 2007-2011. In a majority (45) of events, longitudinally narrow flow enhancements directed anti-sunward are found to be collocated with the patches, have velocities (up to a few km/s) substantially larger than the large-scale background flows (~500 m/s) and have widths comparable to patch widths (~400 km). While the patches start with poleward moving auroral forms (PMAFs) as expected, many PMAFs propagate azimuthally away from the noon over a few hours of MLT, resulting in formation of polar cap patches quite far away from the noon, as early as ~6 MLT. The MLT separation from the noon is found to be proportional to the IMF |By|. Fast polar cap flows of >~1500 m/s are predominantly seen during large IMF |By| and small |Bz|. The presence of fast, anti-sunward flow channels associated with the polar cap patches suggests that the flow channels form in the dayside auroral oval through transient reconnection and can be the source of flow channels propagating into the polar cap.

  12. Observations of Natural and Artificial Airglow in the Mesosphere at the 56äaN latitude

    NASA Astrophysics Data System (ADS)

    Kagan, L. M.; Nicolls, M. J.; Kelley, M. C.

    In a recent paper Kagan et al Phys Rev Lett 9494 9 095004 2005 we have reported vibrationally excited OH 9-3 Meinel band emissions generated by high-power radiowaves launched by the Sura facility in Russia 56 10 r N 44 20 r E The key in these observations is that the light detected in a 2 nm wide filter centered on 630 nm was seen 1-2 s after launching radiowaves This short response and the behavior of the 630-nm emission intensity during the heating cycle rule out the 630 nm emission from atomic oxygen Several minutes after on the same night and with the same 630 0 -1 -nm filter we observed a natural phenomenon seen as an intensity depletion stretched in the east-west direction to the north of the Sura facility Next night we observed the similar event with two filters 557 7 -1 - and 630 0 -1 -nm accompanied by weak gravity wave activity There were tropospheric clouds part of the night but for the clear sky conditions the abovementioned natural phenomenon reminded mesospheric bores First reported by Taylor et al Geophys Res Lett 22 20 2849-2852 1995 as a spectacular gravity wave event this phenomenon was attributed to an internal undular bore in mesosphere by Dewan and Picard J Geophys Res 103 D6 6295-6305 1998 who later outlined the necessary conditions for mesospheric bores Dewan and Picard J Geophys Res 106 D3 2921-2927 2001 The hydroxyl and OI 557 7 nm emissions naturally occur centered on 87 km and 95 km

  13. Artificial airglow excited by high-power radio waves.

    PubMed

    Bernhardt, P A; Duncan, L M; Tepley, C A

    1988-11-18

    High-power electromagnetic waves beamed into the ionosphere from ground-based transmitters illuminate the night sky with enhanced airglow. The recent development of a new intensified, charge coupled-device imager made it possible to record optical emissions during ionospheric heating. Clouds of enhanced airglow are associated with large-scale plasma density cavities that are generated by the heater beam. Trapping and focusing of electromagnetic waves in these cavities produces accelerated electrons that collisionally excite oxygen atoms, which emit light at visible wavelengths. Convection of plasma across magnetic field lines is the primary source for horizontal motion of the cavities and the airglow enhancements. During ionospheric heating experiments, quasi-cyclic formation, convection, dissipation and reappearance of the cavites comprise a major source of long-term variability in plasma densities during ionospheric heating experiments.

  14. Recent observations of dynamic variations of the thermosphere and ionosphere by the Optical Mesosphere Thermosphere Imagers (OMTIs)

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Otsuka, Yuichi; Oyama, Shin-ichiro; Lakshmi Narayanan, Viswanathan; Ceren Moral, Aysegul

    2016-07-01

    The Optical Mesosphere Thermosphere Imagers (OMTIs) consist of fourteen all-sky cooled-CCD imagers, five Fabry-Perot interferometers (FPIs), three meridian scanning photometers, and four airglow temperature photometers. They measure two-dimensional pattern, Doppler wind, and temperature through airglow emissions from oxygen (wavelength: 557.7 nm) and OH (near infrared band) in the mesopause region (80-100 km) and from oxygen (630.0 nm) in the thermosphere/ionosphere (200-300 km). They are in automatic operation at 14 stations at Australia, Indonesia, Thailand, far-east Russia, Japan, Canada, Hawaii, Norway, and Nigeria. Station information and quick look plots are available at http://stdb2.stelab.nagoya-u.ac.jp/omti/. In this presentation we show recent observations of the dynamical variations of the thermosphere and ionosphere observed by OMTIs at various latitudes from the equator to the auroral zone.

  15. Multi-wavelength imaging photometer for the topside observation of gravity waves

    SciTech Connect

    Mende, S.B.; Swenson, G.R.; Hecht, J.H.

    1994-12-31

    An imaging instrument is being developed for the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. This instrument images the small, few km scale structure of the earth airglow. The measurement permits the remote sensing of the temperature and intensity fluctuations produced by atmospheric gravity waves propagating through the mesopause region. Instrument modules look in the nadir direction to observe the fine structure of the airglow. Other modules look at the limb in the satellite orbit plane to monitor the limb altitude profiles. The measurement is performed by observing the rotational temperature of the O{sub 2}(0,0) band at 762 nm in nadir and limb. The waves also modulate the airglow intensity and the instrument will record the modulations of the O{sub 2}(0,0), O{sub 2}(0,1) and OH emissions in the nadir. The nadir channels of the instrument use a wide angle telecentric imager in which the distortion of the image is closely controlled so that the motion of the satellite can be compensated during the extended integration time by Time Delayed Integration (TDI) mode of scanning of the CCD. The TDI method requires the CCD pixel columns to be aligned parallel with the orbital velocity vector and the shifting of the rows to be synchronized with the satellite motion. Through TDI scanning the imager can stare at a target at atmospheric altitude for an extended exposure duration. Each telecentric instrument module contains a single filter, and adjacent wavelength bands are imaged simultaneously by passing the light through the filter at different angles. The limb imagers use CCD-s in the frame transfer mode.

  16. Tether-Induced Airglow: Collisionless Effects

    NASA Technical Reports Server (NTRS)

    Mishin, E. V.; Khazanov, G. V.

    2006-01-01

    Martinez-Sanchez and Sanmartin [1997] showed that a bare conducting tether can be used as a source of an energetic electron beam. Interacting with the E region atmosphere, the beam should produce airglow thus making possible to deduce the neutral density on a continuous basis. Fujii et al. [2005] suggested that this idea be tested in a specially-designed sounding rocket experiment. We show that collisionless beam-plasma interactions (BPI) complement direct impact, leading to appreciable green-line (557.7 nm) emissions in the F region. In the E region, BPI develops near the entry in the valley, resulting in a narrow layer of strongly-elevated and airglow. Besides, neutralizing electric currents carried by ionospheric electrons in the valley can become unstable or even insufficient to compensate the beam current. Developing plasma waves inhibit neutralizing currents. In the extreme case, the beam might be locked in the valley (the 'virtual cathode'). In addition to optical observations, these effects can also be observed by radiophysical means.

  17. Morphology of OH Meinel Band Emissions Observed by SABER/TIMED: Implication for Comparison and Interpretation of groundbased OH Airglow Observations

    NASA Astrophysics Data System (ADS)

    Yee, J. H.

    2015-12-01

    The OH Meinel band emissions of various vibrational manifolds have been observed for many decades by groundbased optical instruments to study the changes of atmospheric properties near the mesopause region. These include the temporal and spatial variablities of atmospheric temperature and composition at the emission region near 87 km and processes responsible for the observed changes. Much of our previous and current knowledge of dynamical processes (i.e. tides and waves), thermal properties (i.e. inter-annual cycles), and decadal-scale changes (i.e. solar cycle and human-induced) in the mesosphere have been gained from these important observations. Groundbased measurements, however, are constrained to limited locations, cloud-free and dark nights (local time) with very poor vertical resolution. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the TIMED satellite has provided nearly 14 years of continuous observations of OH (5-3, 4-2) 1.6 μm and OH (9-7, 8-6) 2.0 μm Meinel band emissions. Most importantly, it has provided over one solar cycle long of well temporally and spatially sampled OH emissions with excellent vertical resolution. In this paper, we will present the morphological properties of the OH emissions at 1.6 μm and 2.0 μm observed by SABER and discuss the implication for satellite/ground measurement comparisons and the interpretation of past and future groundbased OH observations.

  18. Mesoscale field-aligned irregularity structures (FAIs) of airglow associated with medium-scale traveling ionospheric disturbances (MSTIDs)

    NASA Astrophysics Data System (ADS)

    Sun, Longchang; Xu, Jiyao; Wang, Wenbin; Yue, Xinan; Yuan, Wei; Ning, Baiqi; Zhang, Donghe; Meneses, F. C.

    2015-11-01

    In this paper, we report the evolution (generation, amplification, and dissipation) of optically observed mesoscale field-aligned irregularity structures (FAIs) (~150 km) associated with a medium-scale traveling ionospheric disturbance (MSTID) event. There have not been observations of mesoscale FAIs of airglow before. The mesoscale FAIs were generated in an airglow-depleted front of southwestward propagating MSTIDs that were simultaneously observed by an all-sky imager, a GPS monitor, and a digisonde around Xinglong (40.4°N, 30.5° magnetic latitude), China, on 17/18 February 2012. A normalized cross-correlation method has been used to obtain the velocities of mesoscale FAIs and MSTIDs. The mesoscale FAIs had an obvious northwestward relative velocity to main-body MSTIDs (about 87.0 m/s on average). The direction of this relative velocity was roughly parallel to the depleted fronts. Furthermore, the evolution of the mesoscale FAIs was mostly controlled by the intensity of the depleted fronts. Occurred in a highly elevated ionosphere that had a total electron content depletion associated with large negative airglow perturbations (-25%), the mesoscale FAIs grew rapidly when they experienced southeastward wind, which had a speed of about 100 m/s and were measured by a Fabry-Perot interferometer. A northeastward polarization electric field within a depleted airglow front can play a controlling role in the development of the mesoscale FAIs. The electric field can significantly elevate the ionosphere and move the mesoscale FAIs northwestward by the E × B drift. The processes for the generation and development of the polarization electric field and the mesoscale FAIs, however, need further study.

  19. Horizontal structure and propagation characteristics of mesospheric gravity waves observed by Antarctic Gravity Wave Imaging/Instrument Network (ANGWIN), using a 3-D spectral analysis technique

    NASA Astrophysics Data System (ADS)

    Matsuda, Takashi S.; Nakamura, Takuji; Murphy, Damian; Tsutsumi, Masaki; Moffat-Griffin, Tracy; Zhao, Yucheng; Pautet, Pierre-Dominique; Ejiri, Mitsumu K.; Taylor, Michael

    2016-07-01

    ANGWIN (Antarctic Gravity Wave Imaging/Instrument Network) is an international airglow imager/instrument network in the Antarctic, which commenced observations in 2011. It seeks to reveal characteristics of mesospheric gravity waves, and to study sources, propagation, breaking of the gravity waves over the Antarctic and the effects on general circulation and upper atmosphere. In this study, we compared distributions of horizontal phase velocity of the gravity waves at around 90 km altitude observed in the mesospheric airglow imaging over different locations using our new statistical analysis method of 3-D Fourier transform, developed by Matsuda et al. (2014). Results from the airglow imagers at four stations at Syowa (69S, 40E), Halley (76S, 27W), Davis (69S, 78E) and McMurdo (78S, 156E) out of the ANGWIN imagers have been compared, for the observation period between April 6 and May 21 in 2013. In addition to the horizontal distribution of propagation and phase speed, gravity wave energies have been quantitatively compared, indicating a smaller GW activity in higher latitude stations. We further investigated frequency dependence of gravity wave propagation direction, as well as nightly variation of the gravity wave direction and correlation with the background wind variations. We found that variation of propagation direction is partly due to the effect of background wind in the middle atmosphere, but variation of wave sources could play important role as well. Secondary wave generation is also needed to explain the observed results.

  20. Correlated measurements of mesospheric density and near infrared airglow

    NASA Astrophysics Data System (ADS)

    Moreels, G.; Pautet, D.; Faivre, M.; Keckhut, P.; Hauchecorne, A.

    A program aimed at simultaneously measuring the mesospheric density and the evolution with time of the near IR emission at the mesopause level was initiated in July 2000 and July 2001. The atmospheric density is measured along a vertical line using the Rayleigh scattering lidar located at Observatoire de Haute Provence (OHP). The near IR emission, mainly due to OH, is measured along a slant path from the Pic de Château-Renard (Hautes-Alpes, altitude 2989 m). The field of view of the CCD camera encompasses an area located vertically above OHP. Rayleigh scattering by air molecules is much less efficient than fluorescence by alkaline atoms. Therefore, the lidar data could only be retrieved with a one-hour time resolution at altitudes of 65, 70, 72.5 and 75 km. The time resolution for the airglow intensity measurement was equal to three minutes. The temporal evolution over the 5-hour duration of the night appears as opposite in the density up to 75 km and in the near IR airglow. The airglow shows around 23h30 a minimum intensity about 28% lower than its maximum value. During the first part of the night the intensity decreases. During the second part, it increases. The increase during the second part cannot be explained by the evolution of the atmospheric chemical system. Given the variation in opposite phases of the air density and of the emission, it is suggested that the near IR airglow is a semi-direct tracer of the density variations at the mesopause level, the air molecules being effective quenchers of the excited OH radicals. The excitation and quenching rates will therefore be discussed. Two short movie films showing the airglow waves coming across the observation field of view will be presented.

  1. Dynamical-chemical model of fluctuations in the OH airglow driven by migrating tides, stationary tides, and planetary waves

    SciTech Connect

    Walterscheid, R.L.; Schubert, G.

    1995-09-01

    The theory of tidally driven fluctuations in the OH airglow, generalized to account for emission from an extended layer, is applied to airglow fluctuations due to both migrating and zonally symmetric tides and free traveling planetary (Rossby) waves. Krassovsky`s ratio {eta}{sub E} (the ratio of normalized airglow fluctuation intensity to normalized temperature fluctuation) is evaluated for a suite of tidal modes and for the traveling planetary waves. Values of {eta}{sub E} are distinct enough to allow for identification of a variety of tidal modes and planetary waves in airglow observations. The theory predicts that airglow observations at very high latitude should contain prominent signatures of zonally symmetric tidal modes with periods of 6,8, and 12 hours. 32 refs., 4 figs., 3 tabs.

  2. Airglow events visible to the naked eye

    NASA Technical Reports Server (NTRS)

    Peterson, A. W.

    1979-01-01

    During IR photographic airglow observations covering several years, three naked-eye events have been recorded. Two of these are moving luminous acoustic-gravity-wave groups of some 10-15-km wavelength, which occur near high lunar tide in the atmosphere. The events appear quickly, endure 0.5-1 h, then fade. Visible photos of two events appear enhanced, while little enhancement is present in the IR photos, although the structures are well correlated. If these events are due to OH, it is suggested that some unrecognized mechanism, perhaps a gravity wave interaction, enhances the visible transitions of the OH over the IR transitions. If the events are due to an unrecognized continuum emitter, perhaps NO, its emission must occur at the same height as the OH. Spectra seem to be the only reasonable approach to solving this problem.

  3. Implementation of a High-Altitude Balloon Payload to Study Thermospheric Wind Speeds through Redline Airglow Emissions of Atomic Oxygen at 630 nm via a Split-field Etalon Doppler Imager Utilizing a Fabry-Perot Interferometer.

    NASA Astrophysics Data System (ADS)

    Terry, L. B.; Fullmer, R.; Swenson, C.; Marchant, A.; Hooser, P.; Victors, J.; Muchmore, K.; Yin, L.

    2015-12-01

    Little data exists on the wind velocity characteristics of the upper atmosphere. The Red Line Air Glow Experiment is designed to measure the relative density and velocity of the thermosphere at altitudes approximately ranging between 250 and 350 km. To accomplish this, a Split-Field Etalon Imager will make doppler shift interferometry measurements of the oxygen redline at 630 nm wavelength airglow a using a high altitude balloon platform floating at 36 km. The imager collects up to 10 images per hour. Velocity resolution is within a 5 m/s. The Etalon is thermally controlled to within 1 deg C to achieve this goal. The pointing direction of the sensor is determined post-filght using GPS, IMU and three sun imaging sensors. An experimental star camera is included with a potential pointing accuracy of under 5 arc-min. The instrument first flew from Fort Sumner N,M., on August 26, 2014. Due to the short duration (3.5 hours) of the data collection period on this flight, a second flight was requested and awarded, to take place around September 10, 2015. This flight will allow for data collection over a 24 hour period. Both flight results will be included in the final presentation. This project was designed and built by an undergraduate team including students from physics, aerospace, electrical and mechanical engineering and management at both Utah State University and the University of Maryland Eastern Shores as a NASA's Undergraduate Student Instrument Project (USIP).

  4. Implementation of a High-Altitude Balloon Payload to Study Thermospheric Wind Speeds through Redline Airglow Emissions of Atomic Oxygen at 630 nm via a Split-field Etalon Doppler Imager Utilizing a Fabry-Perot Interferometer.

    NASA Astrophysics Data System (ADS)

    Terry, L. B.; Hooser, P.; Victors, J.; Muchmore, K.; Yin, L.; Fullmer, R.; Marchant, A.; Mogavero, M.; Dingwell, B.; Tuttle, J.; Swenson, C.; Polidan, J.; English, M.

    2014-12-01

    Little data exists on the wind velocity characteristics of the upper atmosphere. The Red Line Air Glow Experiment is designed to measure the relative density and velocity of the thermosphere at altitudes approximately ranging between 250 and 350 km. To accomplish this, a Split-Field Etalon Imager will make doppler shift interferometry measurements of the oxygen redline at 630 nm wavelength airglow a using a high altitude balloon platform floating at 36 km. The imager collects up to 10 images per hour. Velocity resolution is within a 5 m/s. The Etalon is thermally controlled to within 1 deg C to achieve this goal. The pointing direction of the sensor is determined post-filght using GPS, IMU and three sun imaging sensors. An experimental star camera is included with a potential pointing accuracy of under 5 arc-min. The instrument is currently scheduled for flight from Fort Sumner N,M., on August 15, 2014. Flight results will be included in the final presentation. This project was designed and built by an undergraduate team including students from physics, aerospace, electrical and mechanical engineering and management at both Utah State University and the University of Maryland Eastern Shores as a NASA's Undergraduate Student Instrument Project (USIP). .

  5. The Venus nitric oxide night airglow: Model calculations based on the Venus thermospheric general circulation model

    SciTech Connect

    Bougher, S.W. ); Gerard, J.C. ); Stewart, A.I.F.; Fesen, C.G. )

    1990-05-01

    Pioneer Venus (PV) orbiter ultraviolet spectrometer (OUVS) images of the nightside airglow in the (0, 1) {delta} band of nitric oxide showed a maximum whose average location was at 0200 local solar time just south of the equator. The average airglow brightness calculated over a portion of the nightside for 35 early orbits during the Pioneer Venus mission was a factor of 4 lower than this maximum. Recent recalibration of the PV OUVS instrument and reanalysis of the data yield new values for this statistical maximum (1.9 {plus minus} 0.6 kR) and the nightside average (400-460 {plus minus} 120 R) nightglow. This emission is produced by radiative recombination of N and O atoms transported from their source on the dayside to the nightside by the Venus thermospheric circulation. The Venus Thermospheric General Circulation Model (VTGCM) has been extended to incorporate odd nitrogen chemistry in order to examine the dynamical and chemical processes required to give rise to this emission. Its predictions of dayside N atom densities are also compared with empirical models based on Pioneer Venus measurements. Calculations are presented corresponding to OUVS data taken during solar maximum. The average production of nitrogen atoms on the dayside is about 9.0 {times} 10{sup 9} atoms cm{sup {minus}2} s{sup {minus}1}. Approximately 30% of this dayside source is required for transport to the nightside to yield the observed dark-disk nightglow features. The statistical location and intensity of the bright spot are well reproduced, as well as the altitude of the airglow layer. The importance of the large-scale transport and eddy diffusion on the global N({sup 4}S) distribution is also evaluated.

  6. The EUV Airglow of Titan: Production and Loss of N2 c'4(0) - X

    NASA Technical Reports Server (NTRS)

    Stevens, Michael H.

    2001-01-01

    The N(2) Carroll-Yoshino (CY) c'(4) X (0,0) and (0,1) Rydberg bands between 95 and 99 nm were reported to be the most prominent EUV emission features in Voyager 1 ultraviolet spectrometer (UVS) airglow spectra from Titan's atmosphere. Although c'(4) is strongly excited by photoelectron impact, the (0,0) band is optically thick near peak production, so a multiple-scattering model is employed to calculate (0,v) nadir-viewing intensities. The model accounts for all known loss processes and quantifies the redistribution of photons to (0,v is greater than 0). Results show 7.6 R of (0,1) intensity, in agreement with reported observations (5-10 R), and 0.2 R of (0,0), in spectacular disagreement with reported observations (6-10 R). Nadir-viewing intensities of all other expected NI multiplets and N2 bands in the brightest portion of the EUV airglow spectrum (92.0-101.5 nm) are also calculated using photodissociative ionization of N(2) and photoelectron impact on N(2). It is found that NI multiplets and N(2) bands near (0,0) and unresolved by the UVS combine to produce 8.3 R, consistent with that reported for (0,0) and indicating that it was misidentified in previous analyses. The Ultraviolet Imaging Spectrograph (UVIS) on Cassini should unambiguously distinguish any (0,0) intensity from the brightest features nearby.

  7. Model studies of time-dependent ducting for high-frequency gravity waves and associated airglow responses in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Yu, Yonghui

    wave spectra and hence causes noticeable azimuthal variations at higher altitudes. In addition to the spectral analysis applied previously the wave action has been used to interpret the energy coupling between the waves and the mean flow among some atmospheric regions, where the waves are suspected to extract energy from the mean flow at some altitudes and release it to other altitudes. The fifth chapter is a concrete and substantial step connecting theoretical studies and realistic observations through nonlinearly coupling wave dynamic model with airglow chemical reactions. Simulated O (1S) (557.7 nm) airglow images are provided so that they can be compared with observational airglow images. These simulated airglow brightness variations response accordingly with minor species density fluctuations, which are due to propagating and ducting nonlinear gravity waves within related airglow layers. The thermal and wind structures plus the seasonal and geographical variabilities could significantly influence the observed airglow images. By control modeling studies the simulations can be used to collate with concurrent observed data, so that the incoherencies among them could be very useful to discover unknown physical processes behind the observed wave scenes.

  8. Extensive MRO CRISM Observations of 1.27 micron O2 Airglow in Mars Polar Night and Their Comparison to MRO MCS Temperature Profiles and LMD GCM Simulations

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Sandor, Brad J.; Wolff, Michael J.; Smith, Michael Doyle; Lefevre, Franck; Madeleine, Jean-Baptiste; Forget, Francois; Murchie, Scott L.; Seelos, Frank P.; Seelos, Kim D.; Nair, Hari A.; Toigo, Anthony D.; Humm, David; Kass, David M.; Kleinbahl, Armin; Heavens, Nicholas

    2012-01-01

    The Martian polar night distribution of 1.27 micron (0-0) band emission from O2 singlet delta [O2(1Delta(sub g))] is determined from an extensive set of Mars Reconnaissance Orbiter (MRO) Compact Reconnaissance Imaging Spectral Mapping (CRISM) limb scans observed over a wide range of Mars seasons, high latitudes, local times, and longitudes between 2009 and 2011. This polar nightglow reflects meridional transport and winter polar descent of atomic oxygen produced from CO2 photodissociation. A distinct peak in 1.27 micron nightglow appears prominently over 70-90NS latitudes at 40-60 km altitudes, as retrieved for over 100 vertical profiles of O2(1Delta(sub g)) 1.27 micron volume emission rates (VER). We also present the first detection of much (x80+/-20) weaker 1.58 micron (0-1) band emission from Mars O2(1Delta(sub g)). Co-located polar night CRISM O2(1Delta(sub g)) and Mars Climate Sounder (MCS) (McCleese et al., 2008) temperature profiles are compared to the same profiles as simulated by the Laboratoire de Météorologie Dynamique (LMD) general circulation/photochemical model (e.g., Lefèvre et al., 2004). Both standard and interactive aerosol LMD simulations (Madeleine et al., 2011a) underproduce CRISM O2(1Delta(sub g)) total emission rates by 40%, due to inadequate transport of atomic oxygen to the winter polar emission regions. Incorporation of interactive cloud radiative forcing on the global circulation leads to distinct but insufficient improvements in modeled polar O2(1Delta(sub g)) and temperatures. The observed and modeled anti-correlations between temperatures and 1.27 mm band VER reflect the temperature dependence of the rate coefficient for O2(1Delta(sub g)) formation, as provided in Roble (1995).

  9. Ground-satellite conjugate observations of low-latitude travelling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ceren Moral, Aysegul; Shiokawa, Kazuo; Otsuka, Yuichi; Suzuki, Shin; Liu, Huixin; Yatini, Clara

    2016-07-01

    Equatorial travelling ionospheric disturbances (TIDs) are studied by using three CHAMP satellite overpasses on ground-based 630-nm airglow images. The airglow images are obtained from Kototabang (KTB), Indonesia (geographic coordinates: 0.2S, 100.3E, geomagnetic latitude: 10.6S). From 7-year data from October 2002 to October 2009, April 30, 2006 (event 1), September 28, 2006 (event 2) and April 12, 2004 (event 3) are the only TID events found in both ground and satellite measurements. They show southward-moving structures in 630-nm airglow images. The events 1 and 2 are single pulse with horizontal scales of ~500-1000 km and event 3 show three wave fronts with horizontal scale sizes of 500-700 km. For events 1 and 3, the neutral density in CHAMP shows out-of-phase variations with the airglow intensity, while event 2 is in-phase. For event 1, the relation between electron density and airglow intensity is out of phase, while relationships of event 2 and 3 are unclear. These unclear relationships suggest that ionospheric plasma variation is not the cause of the TIDs. In the case if gravity waves in the thermosphere is the source of the observed TIDs, in-phase and out-of-phase relationships of neutral density and airglow intensity can be explained by different vertical wavelengths of the gravity wave. We estimate possible vertical wavelengths for those events using observed wave parameters and modeled neutral winds.

  10. Synthetic spectra for the Arizona Airglow Experiment

    SciTech Connect

    Johnston, J.E.; Hatfield, D.B.; Broadfoot, A.L.

    1994-12-31

    The Arizona Airglow Experiment (GLO) is a panchromatic Intensified CCD (ICCD) spectrograph, bore sighted with 12 monochromatic imagers. The spectrograph provides continuous spectral coverage from 1150 {angstrom} to 11,000 {angstrom} with a resolution of 5 {angstrom} to 20 {angstrom}. The spectrograph was designed to record simultaneously as much information as possible from a single column of gas. The resolution was selected to allow the determination of molecular emission vibrational and rotational structure. Molecular band emissions contain much more information than atomic lines, although interpretation of band emissions is more complicated. This complexity is due to the distribution of their energies over broad spectral ranges that overlap. The most productive method of interpreting molecular spectra is by modeling. The nature of the molecular transitions is well known, and synthetic spectra can be calculated to match the recorded spectrum accurately. Their knowledge of the transition probabilities allows accurate estimates of the intensity and shape of blended bands. It is the goal to synthesize all of the emissions recorded by the GLO as a tool to aid in detailed analysis of spectra. This work describes the approach used in calculating the synthetic spectra and references the source of parameters used for 14 band systems. This software utility will become a part of the GLO facility.

  11. Observations of the O2 atmospheric band nightglow by the High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Burrage, M. D.; Arvin, N.; Skinner, W. R.; Hays, P. B.

    1994-01-01

    During nighttime operation the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) measures both the horizontal wind field at about 94 km altitude and the limb brightness of the O2(b(sup 1) Sigma(sup +)(sub g) - Chi(cubed)Sigma(sup +)(sub g)) (0,0) atmospheric band airglow. The dominant feature of the observed emission is a latitudinal and local time dependence which is consistent with the (1,1) diurnal tidal mode. A survey of the available data set from November 1991 to July 1993 reveals a semiannual variation in the peak brightness observed at the equator, with maxima observed at the equinoxes and minima at the solstices. These results are consistent with the long-term variations in the diurnal tidal amplitudes detected in HRDI wind measurements.

  12. Measurements of the earth's airglow in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Waters, C. R.; Fishburne, E. S.

    1972-01-01

    A valuable by-product of the OAO-2 astronomy mission has been the first extensive set of measurements of the earth's airglow between 1000 and 3000 A. These measurements, made with the Wisconsin experiment package, provide clues to the structure and chemistry of the upper atmosphere. The most significant results from these observations are: (1) the detailed altitude profile of the emissions from the dark and sunlit earth limb; and (2) the confirmation of recent theories concerning the source of the dayglow radiation between 1350 and 1700 A.

  13. Nonlinear airglow signatures of ducted gravity waves in the mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Snively, J. B.; Hickey, M. P.; Taylor, M. J.

    2010-12-01

    Signatures of short-period gravity waves are detected frequently in airglow data, revealing typical horizontal wavelengths of ˜15-35 km and periods of ˜4-8 minutes [e.g., Simkhada et al., Ann. Geophys., 27, 3213, 2009]. Many of such waves are ducted within the mesosphere and lower thermosphere (MLT) region [e.g., Walterscheid and Hickey, 114, D19109, 2009], and typical airglow intensity perturbations suggest amplitudes on the order of a few to tens of Kelvin within the airglow layers. At these amplitudes, trapped small-scale waves may be intermittently subject to nonlinear dissipation, potentially contributing to the local small-scale dynamics and variability of the lower thermosphere. For exceptionally strong small-scale waves, nonlinear behavior may become detectable in airglow data, including examples of wave breakdown [e.g., Yamada et al., GRL, 28(11), 2153, 2001], or apparent bore formation [e.g., Smith et al., JGR, 108(A2), 1083, 2003]. For moderately strong gravity waves with principally-linear propagation characteristics, however, airglow signatures may also exhibit nonlinearity in the form of harmonics, due to strong perturbations of reacting minor species at steep gradients of density [Huang et al., JGR, 108(A5), 1173, 2003; Snively et al., JGR, In Press, 2010]. Two scenarios are investigated numerically, using a nonlinear photochemical-dynamical model to simulate ducted gravity wave perturbations to the hydroxyl airglow layer. First, signatures of ducted waves are considered that exhibit nonlinearity associated with the wave perturbations to minor species participating in the emission processes. In this case, the nonlinear signatures are not indicative of changes in the wave packet spectrum. Second, we consider signatures of ducted waves at sufficient amplitudes to exhibit nonlinear propagation as they approach dissipation. In this second case, observable nonlinearity in the airglow signatures arise simultaneously from the overall wave perturbation and

  14. A Climatology of Ripple Instabilities in the OH Airglow at Cerro Pachon, Chile

    NASA Astrophysics Data System (ADS)

    Gelinas, L. J.; Hecht, J. H.; Walterscheid, R. L.; Rudy, R. J.

    2015-12-01

    Airglow imaging provides a unique means by which to study many wave-related phenomena in the 80 to 100 km altitude regime. Observations reveal quasi-monochromatic disturbances associated with atmospheric gravity waves (AGWs) as well as small-scale instabilities often called ripples. Ripples are wavelike features that resemble AGWs in appearance, but have short horizontal wavelengths (<15 km) and short lifetimes (a few tens of minutes). The end product of the breakdown of ripples is turbulence, leading to increased eddy diffusion. Thus, ripple observations may help refine our understanding of the occurrence of turbulence in the upper Mesosphere and Lower Thermosphere. The Aerospace Corporation's Nightglow Imager (ANI) is located at the Andes Lidar Observatory near the crest of Cerro Pachon, Chile. ANI observes nighttime OH emission (near 1.6 microns) every 2 seconds over an approximate 73 degree field of view, which allows the study of AGW and ripple features over very short temporal and spatial scales. An automated wave detection algorithm is used to identify ripple and quasi monochromatic wave features in the ANI data. Ripples are characterized by their wavelength, orientation, drift speed and location in the image. Quasi-monochromatic waves are quantified by wavelength, wave period and propagation direction. We present a climatology of ripple instabilities at Chile, including comparisons to the background quasi-monochromatic wave field. Lidar and radar data are used to determine the background wind and temperatures, which allows comparisons between ripple observations and evanescent regions and potentially unstable regions identified by Richardson number.

  15. Single vs multi-level quenching of the hydroxyl airglow

    NASA Astrophysics Data System (ADS)

    Franzen, Christoph; Espy, Patrick J.; Hibbins, Robert; Djupvik, Anlaug Amanda

    2016-04-01

    The reaction in the upper mesosphere between atomic hydrogen and ozone results in hydroxyl (OH) that is produced in excited vibrational levels 6 through 9. The vibrationally excited OH radiates in a thin (~8 km thick) layer near 87 km, giving rise to the strong near infrared airglow emission that has been used for remote sensing of the mesopause region. The interpretation of the emission relies on accurate knowledge of the population and quenching of the upper states, and open questions remain as to whether the quenching takes place through single- or multi-quantum deactivation. Here we will demonstrate how high quality spectral observations of OH (9,7) and (8,6) airglow emissions are available as background measurements during standard K-band astronomical observations from the Nordic Optical Telescope (18°W, 29°N). These emissions have been analysed to ascertain the quenching of the upper vibrational populations. Together with a steady-state model of these emissions, an estimate of the ratio of single to multi-quantum quenching efficiency and the impact on the populations of the lower vibrational levels will be presented.

  16. Mesospheric sodium airglow emission: Modeling and first results over a mid-latitude

    NASA Astrophysics Data System (ADS)

    Bag, Tikemani; Krishna, M. V. Sunil; Singh, Vir

    2016-07-01

    Atmospheric sodium plays a very important role in the mesospheric chemistry and dynamics. We have developed a comprehensive model for mesospheric/thermospheric sodium airglow emission by incorporating all the known reaction mechanisms. The latest reaction rate coefficients and the related cross sections are obtained from the theoretical studies and experimental observations. The continuity equations are explicitly solved for the major species. Similarly, the steady-state approximation has been used for the intermediate and short lived minor species. The number densities from in-situ observations, NRLMSISE-00, and IRI-2012 have been successfully implemented to calculate the vertical volume emission rate. The modeled results compared to a good agreement with the measured profiles of Na airglow emission. The mesospheric sodium density shows a large day-to-day variability. The observed variations in the mesospheric sodium layer have been incorporated to obtain the variations in the sodium airglow intensities. The nocturnal variation of sodium airglow emissions are presented over a mid latitude location using this model.

  17. Vacuum ultraviolet instrumentation for solar irradiance and thermospheric airglow

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.

    1993-01-01

    A NASA sounding rocket experiment was developed to study the solar extreme ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far ultraviolet (FUV) were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University (Supriya Chakrabarti), but only the National Center for Atmospheric Research (NCAR)/University of Colorado (CU) four solar instruments and one airglow instrument are discussed here. The primary solar EUV instrument is a 1/4 meter Rowland circle EUV spectrograph which has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2 nm resolution. Another solar irradiance instrument is an array of six silicon XUV photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with about 15 nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc-seconds. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2 nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates. The one-dimensional and two-dimensional CODACON detectors were developed at CU by Dr. George Lawrence. The pre-flight and post-flight photometric calibrations were performed at our calibration laboratory and at the Synchrotron Ultraviolet

  18. Berkeley extreme-ultraviolet airglow rocket spectrometer - BEARS

    NASA Technical Reports Server (NTRS)

    Cotton, D. M.; Chakrabarti, S.

    1992-01-01

    The Berkeley EUV airglow rocket spectrometer (BEARS) instrument is described. The instrument was designed in particular to measure the dominant lines of atomic oxygen in the FUV and EUV dayglow at 1356, 1304, 1027, and 989 A, which is the ultimate source of airglow emissions. The optical and mechanical design of the instrument, the detector, electronics, calibration, flight operations, and results are examined.

  19. Functional characteristics of the OGO main body airglow photometer

    NASA Technical Reports Server (NTRS)

    Reed, E. I.; Fowler, W. B.; Blamont, J. E.

    1972-01-01

    The OGO-4 main body airglow photometer used a trialkali cathode photomultiplier to sense light at selected wavelengths between 2500 and 6300A corresponding to important emissions in the aurora and night airglow at emission rates ranging from a few rayleighs to about 200 kilorayleighs. The optical, electronic, and mechanical systems are described in terms of their functional characteristics.

  20. A stereoscopic correlation method for measuring the altitude of the near infrared airglow layer

    NASA Astrophysics Data System (ADS)

    Faivre, M.; Pautet, D.; Moreels, G.; Clairemidi, J.; Colas, F.

    A program for determining the altitude of the barycenter of the near-infrared emssive layer at the mesopause level has been undertaken. The objective is to measure the two geometric parameters of the emissive layer: its altitude and thickness in order to correlate these values with the parameters of the dynamic processes that propagate at those altitudes. A first set of correlated observations was obtained in september 2000. Two cameras were set in simultaneous operation at Pic du Midi Observatory (Hautes-Pyrénées, altitude 2860 m) and at Pic de Château-Renard (Hautes-Alpes, altitude 2989 m). The azimuths of the lines of sight were opposite along the line that joined the two observation points. The star images were removed using a numerical filter. Then the perspective inversion method developed by Pautet (Applied Optics 41, 823-831, 2002) was used to provide images of the emissive layer as seen by a virtual camera located vertically above the observation sites. The intensity correlation coefficient is computed for matched pixel blocks. The results for the night of September 8-9, 2000 will be presented. In the region where the fields of view of the cameras superimpose, the altitude for the maximum of the airglow intensity is 87.3 km. This value is the mean value for the altitude determinations. The median value is the same: 87.3 km. The emissive layer profile is retrieved with a height resolution of 0.2 km. The layer thickness at half-maximum is 1.8 km with an asymetry coefficient equal to 0.2. The layer is located between the extreme altitudes of 85.4 and 89.9 km. In conclusion, a precise method for retrieving the near-IR airglow layer altitude with a precision of 0.2 km has been developed and will be used for measuring the altitude of the layer barycenter at different points of the wave field.

  1. Astronomical spectra as powerful source for airglow studies

    NASA Astrophysics Data System (ADS)

    Kausch, W.; Noll, S.; Unterguggenberger, S.; Proxauf, B.; Kimeswenger, S.

    2015-03-01

    Light from astronomical objects has to pass the Earth's atmosphere before it reaches ground-based telescopes. Thus, any observation taken with such facilities contains information on the chemical composition and the physical state of the atmosphere. In particular, optical and near-infrared spectra taken with such telescopes are well suited to study various airglow emissions arising in the upper atmosphere thanks to the small field-of-view of the telescopes, large mirror sizes, and the frequent usage of medium to high resolution spectrographs. We study data taken by two frequently used echelle spectrographs from the Very Large Telescope (VLT) of the European Southern Observatory at Cerro Paranal (Chile): UVES, operative since 1999, is a high-resolution (20000 R 110000) instrument covering the wavelength range from 300 to 1100 nm. Hence, several O2 band systems (Herzberg I+II, Chamberlain, atmospheric), the green and red OI lines ( 557 nm; 630 nm), the recently discovered FeO bands ( 550 to 720 nm), NaID ( 589 nm), and all hydroxyl bands up to OH(3-0) can be investigated. The high temporal coverage allows investigations for more than one solar cycle. The X-Shooter instrument is an echelle spectrograph which is able to take medium-resolution (3000 R 18000) spectra from 300 to 2480 nm within one shot. Therefore, it is well suited for a comprehensive study of OH, as it covers all bands with a vibrational level difference 2 (up to OH(9-7)) simultaneously, apart from the previously mentioned other lines and bands. X-Shooter was put into operation in 2009. In this presentation, we will give a review on the available spectra, their quality and time coverage. Moreover, we will illustrate the potential of the data for airglow studies by showing results

  2. Mars dayside temperature from airglow limb profiles : comparison with in situ measurements and models

    NASA Astrophysics Data System (ADS)

    Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.

    The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.

  3. A technique for the analysis of two-dimensional data Application to OI 5577 A airglow

    NASA Astrophysics Data System (ADS)

    Elphinstone, R.; Murphree, J. S.; Cogger, L. L.

    1986-03-01

    A method to determine whether a two-dimensional data set can be represented by two independent separable functions is demonstrated using both synthetic data and satellite observations of OI 5577 A airglow. For such cases when the functions are separable it is possible to identify the function in the presence of noise using an iterative procedure based on the properties of an equitable matrix. In the specific case of the airglow, the latitudinal and temporal variations are separable for the data set studied. The spatial structure shows a minimum near the equator, with maxima at 35 deg in the winter hemisphere and 25 deg in the summer hemisphere. The long-term temporal function shows maxima after the equinoxes, with minima near the solstice. A 12 month component has a maximum near day 300.

  4. Measurement of atomic oxygen and related airglows in the lower thermosphere

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Young, R. A.

    1981-01-01

    Instruments on board a sounding rocket were used to make simultaneous observations of atomic oxygen density and airglow emissions between 80 and 120 km. Atomic oxygen was measured with a resonance lamp and was found to have a peak density of 6 x 10 to the 11th at 94 km. Similar structure is seen in the oxygen density profile on both uplegs and downlegs. The following airglow emissions were measured by using vertical-viewing photometers: Herzberg I bands near 300 nm; O(1S) green line at 557.7 nm; background at 566 nm; O2(1 Delta g) bands at 1.27 microns; and OH (X 2 pi) Meinel bands near 1.7 microns.

  5. Equatorial Enhancement of the Nighttime OH Mesospheric Infrared Airglow

    NASA Technical Reports Server (NTRS)

    Baker, D. J.; Mlynczak, M. G.; Russell, J. M.

    2007-01-01

    Global measurements of the hydroxyl mesospheric airglow over an extended period of time have been made possible by the NASA SABER infrared sensor aboard the TIMED satellite which has been functioning since December of 2001. The orbital mission has continued over a significant portion of a solar cycle. Experimental data from SABER for several years have exhibited equatorial enhancements of the nighttime mesospheric OH (delta v = 2) airglow layer consistent with the high average diurnal solar flux. The brightening of the OH airglow typically means more H + O3 is being reacted. At both the spring and autumn seasonal equinoxes when the equatorial solar UV irradiance mean is greatest, the peak volume emission rate (VER) of the nighttime Meinel infrared airglow typically appears to be both significantly brighter plus lower in altitude by several kilometres at low latitudes compared with midlatitude findings.

  6. Venus Night Airglow Distibutions and Variability: NCAR VTGCM Simulations

    NASA Astrophysics Data System (ADS)

    Brecht, Amanda; Bougher, S.; Gerard, J.; Rafkin, S.; Foster, B.

    2008-09-01

    The National Center for Atmospheric Research (NCAR) thermospheric general circulation model for Venus (VTGCM) is producing results that are comparative to Pioneer Venus and Venus Express data. The model is a three dimensional model that can calculate temperatures, zonal winds, meridional winds, vertical winds, and concentration of specific species. The VTGCM can also compute the O2-IR and NO-UV night airglow intensity distributions. With a lower boundary set at 70 Km and a range of sensitivity tests, the VTGCM is able to show consistent set of results with the nightside temperature and the night airglows. These results can show possible controlling parameters of the O2-IR, NO-UV night airglow layers, and the nightside hot spot. Being able to understand the night airglow distribution and variability provides valuable insight into the changing circulation of Venus’ upper atmosphere and leads to an overall planetary perception of the atmospheric dynamics.

  7. Long-term Trends in Mesospheric Temperatures at high and low latitudes derived from OH airglow spectra of Kiruna FTS and Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Kim, Yongha; Kim, Jeong-Han; Kim, Gawon; Lee, Youngsun

    2016-07-01

    We have analyzed mesospheric temperatures from OH airglow measurements with Fourier Transform Spectrometer (FTS) in the period of 2003 - 2012 at Kiruna (67.9°N, 21.1°E). We also derived mesospheric temperatures from rotational emission lines of the OH airglow (8-3) band in the sky spectra of Sloan Digital Sky Survey (SDSS) in the period of 2000 - 2014. The main objective of SDSS is to make a detailed 3-dimensional map of the universe by observing images and spectra of various celestial objects at Apache Point Observatory (APO, 32°N 105°W). From both temperature sets we first estimated the solar responses of mesospheric temperatures to F10.7 variation and the seasonal variation of mesospheric temperatures. After removing the solar response, we found the long-term mesospheric temperature trends of -4 ˜-6.6 K/decade at Kiruna and -0.02 ± 0.7 K/decade at Apache Point. Our results indicate significant cooling trend at the high latitude but very little or no cooling at the low latitude. Although both trends are comparable and consistent with other studies, the temperature trend from SDSS spectra should be regarded as unique contribution to global monitoring of climate change because the SDSS project is completely independent of climate studies.

  8. Two-dimensional inversion technique for satellite airglow data

    NASA Technical Reports Server (NTRS)

    Fesen, C. G.; Hays, P. B.

    1982-01-01

    A technique is described which inverts satellite airglow data producing volume emission rates as functions of altitude and position. The inversion is applied to data obtained when the spacecraft spins in the orbital plane. The altitude and height resolutions are constrained by the geometry chosen to simplify the inversion. The limitations of the method and its implementation on data from the Visual Airglow Experiment onboard the Atmosphere Explorer satellite are discussed. Sample maps of brightness and volume emission rates are shown.

  9. Two-dimensional inversion technique for satellite airglow data.

    PubMed

    Fesen, C G; Hays, P B

    1982-10-15

    A technique is described which inverts satellite airglow data producing volume emission rates as functions of altitude and position. The inversion is applied to data obtained when the spacecraft spins in the orbital plane. The altitude and height resolutions are constrained by the geometry chosen to simplify the inversion. The limitations of the method and its implementation on data from the Visual Airglow Experiment onboard the Atmosphere Explorer satellite are discussed. Sample maps of brightness and volume emission rates are shown.

  10. Neutral thermospheric dynamics observed with two scanning Doppler imagers: 2. Vertical winds

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Conde, M.; McHarg, M. G.

    2012-03-01

    This article is the second in a series of three papers reporting on observations of the 630.0 nm thermospheric airglow emission by two spatially separated scanning Doppler imagers (SDI’s) in Alaska. In this article, line-of-sight wind measurements from these instruments in four common-volume regions lying along the great circle joining the two observatories have been used to derive estimates of the vertical wind in those common-volumes. These estimates are combined with the vertical winds measured directly in each of the station zeniths to resolve both the spatial and temporal variations of the vertical wind field. Data from four nights are presented as examples of the wave-like oscillations and frequently high spatial correlations that are observed. A statistical study of data from the full 19-night data set showed that the frequency of observing statistically significant correlation between vertical winds measured at separate locations decreased linearly with increasing separation. A linear fit to this trend indicated that for this particular location and orientation the largest separation over which statistically significant correlation would be expected to occur is approximately 540 km.

  11. HF-enhanced 4278-Å airglow: evidence of accelerated ionosphere electrons?

    NASA Astrophysics Data System (ADS)

    Fallen, C. T.; Watkins, B. J.

    2013-12-01

    We report calculations from a one-dimensional physics-based self-consistent ionosphere model (SCIM) demonstrating that HF-heating of F-region electrons can produce 4278-Å airglow enhancements comparable in magnitude to those reported during ionosphere HF modification experiments at the High-frequency Active Auroral Research Program (HAARP) observatory in Alaska. These artificial 'blue-line' emissions, also observed at the EISCAT ionosphere heating facility in Norway, have been attributed to arise solely from additional production of N2+ ions through impact ionization of N2 molecules by HF-accelerated electrons. Each N2+ ion produced by impact ionization or photoionization has a probability of being created in the N2+(1N) excited state, resulting in a blue-line emission from the allowed transition to its ground state. The ionization potential of N2 exceeds 18 eV, so enhanced impact ionization of N2 implies that significant electron acceleration processes occur in the HF-modified ionosphere. Further, because of the fast N2+ emission time, measurements of 4278-Å intensity during ionosphere HF modification experiments at HAARP have also been used to estimate artificial ionization rates. To the best of our knowledge, all observations of HF-enhanced blue-line emissions have been made during twilight conditions when resonant scattering of sunlight by N2+ ions is a significant source of 4278-Å airglow. Our model calculations show that F-region electron heating by powerful O-mode HF waves transmitted from HAARP is sufficient to increase N2+ ion densities above the shadow height through temperature-enhanced ambipolar diffusion and temperature-suppressed ion recombination. Resonant scattering from the modified sunlit region can cause a 10-20 R increase in 4278-Å airglow intensity, comparable in magnitude to artificial emissions measured during ionosphere HF-modification experiments. This thermally-induced artificial 4278-Å aurora occurs independently of any artificial

  12. Earth Observation Services Weather Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  13. Spectroscopy of the Cameron bands in the Mars airglow

    NASA Technical Reports Server (NTRS)

    Conway, R. R.

    1981-01-01

    Mars airglow spectra obtained by the ultraviolet spectrometer on board the Mariner 9 spacecraft were analyzed by using a high-resolution synthesis of the observed emissions. Bright limb observations were made of altitudes between 88 and 180 km of which the brightest features are the carbon monoxide Cameron bands in the wavelength region 1800-2600 A. The shape of these bands cannot be characterized by a single rotational temperature, but is best described by temperatures of 1600 K for lower J values and 10,000 K for higher J values. The observed zenith intensity of 16.7 kR is in good agreement with an excitation theory in which electron-impact dissociation is the most important mechanism. The observations suggest the value of the cross section for this process should be 7 x 10 to the -17th/sq cm. The first negative bands of CO(+) are not identified in the Mariner 9 spectra. This is consistent with the excitation theory for these bands.

  14. Neutral thermospheric dynamics observed with two scanning Doppler imagers: 3. Horizontal wind gradients

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Conde, M.; McHarg, M. G.

    2012-05-01

    This is the third and final article in a series of papers reporting on observations of the 630.0 nm thermospheric airglow emission by two spatially separated scanning Doppler imagers (SDI's) in Alaska. In this article, bistatic winds derived from the combined measurements of both instruments in a region of field-of-view overlap were used to derive local-scale maps of horizontal neutral wind gradients. Averaged over the bistatic ‘field-of-view’, these gradient estimates were compared with the monostatic gradient estimates routinely produced by the two SDI's. The key findings to emerge from this study include: 1) the bistatic gradient estimate agreed very well with monostatic estimates for the majority of the time which, given the very different methods involved in each technique, gives us great confidence in our ability to measure F-region neutral wind gradients; 2) the strongest gradient was that which describes the magnetic meridional shear of the zonal wind, which is driven by momentum deposition from convecting ions; 3) vortical flow was more often observed than divergent flow, and both types of flow showed systematic variations with magnetic local time; 4) viscous heating due to non-negligible gradients was on the order of 10-11 Wm-3 which, while small compared to typical F-region Joule heating rates, may be comparable to particle heating, and in a time-integrated sense may be an appreciable source of heating.

  15. Observers are consistent when rating image conspicuity.

    PubMed

    Cerf, Moran; Cleary, Daniel R; Peters, Robert J; Einhäuser, Wolfgang; Koch, Christof

    2007-11-01

    Human perception of an image's conspicuity depends on the stimulus itself and the observer's semantic interpretation. We investigated the relative contribution of the former, sensory-driven, component. Participants viewed sequences of images from five different classes-fractals, overhead satellite imagery, grayscale and colored natural scenes, and magazine covers-and graded each numerically according to its perceived conspicuity. We found significant consistency in this rating within and between observers for all image categories. In a subsequent recognition memory test, performance was significantly above chance for all categories, with the weakest memory for satellite imagery, and reaching near ceiling for magazine covers. When repeating the experiment after one year, ratings remained consistent within each observer and category, despite the absence of explicit scene memory. Our findings suggest that the rating of image conspicuity is driven by image-immanent, sensory factors common to all observers.

  16. Measurements of the Michigan Airglow Observatory from 1971 to 1973 at Ester Dome Alaska

    NASA Technical Reports Server (NTRS)

    Mcwatters, K. D.; Meriwether, J. W.; Hays, P. B.; Nagy, A. F.

    1973-01-01

    The Michigan Airglow Observatory (MAO) was located at Ester Dome Observatory, College, Alaska (latitude: 64 deg 53'N, longitude: 148 deg 03'W) since October, 1971. The MAO houses a 6-inch Fabry-Perot interferometer, a 2-channel monitoring photometer and a 4-channel tilting filter photometer. The Fabry-Perot interferometer was used extensively during the winter observing seasons of 1971-72 and 1972-73 to measure temperature and mass motions of the neutral atmosphere above approximately 90 kilometers altitude. Neutral wind data from the 1971-72 observing season as measured by observing the Doppler shift of the gamma 6300 A atomic oxygen emission line are presented.

  17. Observational and modelling study of mesospheric bores

    NASA Astrophysics Data System (ADS)

    Loughmiller, P. J.; Kelley, M. C.; Hickey, M. P.

    In studies of the dynamics of the upper atmosphere some of the most intriguing mesospheric phenomena observed high over the Hawaiian night skies are wall waves and internal bores These events are documented in airglow images taken by high performance all-sky CCD imaging systems operating on top of Haleakala Crater as part of the ongoing collaborative Maui - Mesosphere and Lower Thermosphere MALT campaign jointly sponsored by the National Science Foundation and the Air Force Office of Scientific Research Bolstered by the Maui-MALT dataset several theories now exist for mesospheric bores agreeing in principle that they are likely nonlinear structures spawned by gravity waves and propagating within a thermal inversion layer A new investigation will model optical emissions using a robust time-dependent chemical dynamics model to explore the airglow response to ducted gravity waves and in turn the geographical and vertical coupling relationships which may exist

  18. Influence of ground scattering on satellite auroral observations.

    PubMed

    Hays, P B; Anger, C D

    1978-06-15

    Satellite observations of the optical emission features in the aurora and nighttime airglow are usually contaminated by scattering from clouds and snow. It is shown here that this contamination can easily be removed when the emission layer is viewed against a surface of known albedo. The effect of the earth's curvature, parallax, and varying image angle are found to be significant but can be removed from the observation.

  19. Influence of ground scattering on satellite auroral observations

    NASA Technical Reports Server (NTRS)

    Hays, P. B.; Anger, C. D.

    1978-01-01

    Satellite observations of the optical emission features in the aurora and nighttime airglow are usually contaminated by scattering from clouds and snow. It is shown here that this contamination can easily be removed when the emission layer is viewed against a surface of known albedo. The effect of the earth's curvature, parallax, and varying image angle are found to be significant but can be removed from the observation.

  20. Observations of Dynamics in the High Arctic Mesopause Region and Thermosphere

    NASA Astrophysics Data System (ADS)

    Ward, William E.; Meek, Chris; Manson, Alan; Hocking, Wayne; Kristoffersen, Samuel; Wu, Qian; Vail, Christopher; Shepherd, Marianna

    2016-07-01

    The Dynamics of the Neutral Thermosphere project is a three site, multiple instrument observatory. The instruments are located in the Canadian Arctic at Resolute Bay (75 N, 95 W), Eureka (80 N, 85 W at the Polar Environment Atmospheric Research Laboratory) and Yellowknife (62 N, 114 W)and include meteor radars, high resolution interferometers, and all sky imagers. Measurements include wind, temperature and airglow irradiance at both sites. Inter-instrument and inter-site comparisons of time series are being undertaken and provide insights into the dynamical processes in the high Arctic mesopause region and thermosphere, and information on the various observing techniques. Differences between the daily wind variations are seen between the mesopause region and thermosphere. Studies are under way, to determine whether common tidal and gravity wave signatures can be observed at both sites and in the mesopause region and thermosphere. Airglow irradiance, winds and temperatures are observed with several different instruments and comparisons between the associated time series are revealing the consequences of the different observing processes. For example, Doppler shift wind measurements in airglow using interferometers are irradiance weighted averages of the wind in each airglow layer whereas the meteor radar provide wind profiles. Comparisons between the winds measured by these techniques do not always agree to the extent expected and detailed examinations of whether weighted averages of the meteor radar winds improve the comparisons are being undertaken. Irradiance time series taken with the all sky imagers, interferometers and a Spectral Airglow Temperature Imager (SATI) are being combined to provide more extensive coverage of the mesopause region. This paper will describe the instrument complement and the initial results of these comparisons.

  1. A study of oxygen 6300 Å airglow production through chemical modification of the nighttime ionosphere

    NASA Astrophysics Data System (ADS)

    Semeter, Joshua; Mendillo, Michael; Baumgardner, Jeffrey; Holt, John; Hunton, Donald E.; Eccles, Vincent

    1996-09-01

    The Release Experiments to Derive Airglow Inducing Reactions (RED AIR) conducted on April 3, 1989, and December 6, 1991, offer a unique set of observations for studying the specific processes associated with the production of the O(3P--1D) emission at 6300 Å. In these experiments, sounding rockets were used to place equal quantities of CO2 above and below hmax of the nocturnal F region. CO2 leads to 6300 Å emission by a three-step process: (1) CO2+O+->O2++CO, (2) O2++e-->O*+O, (3)O*->O+hν6300. Direct measurements of plasma parameters and indirect measurements of the neutral atmosphere densities were used in conjunction with the Fluid Element Simulation (FES) computer code to model the temporal and spatial evolution of the observed 6300 Å airglow enhancement and accompanying plasma depletion. Using the currently accepted set of reaction rates relevant to F region chemistry, the quantum yield of O(1D) from reaction (2) was found to have a mild altitude dependence, decreasing by 16% from 275 to 350 km. Since the initial vibrational distribution of the nascent O2+ was the same for the two releases, this result implies an altitude dependence in the quenching of O2+ vibrational states. Building on previous evidence that O2+ is vibrationally excited in the nighttime thermosphere, we further conclude that this vibrational distribution is altitude dependent. In terms of 6300 Å airglow production, the effect is manifested in an altitude dependence of f(1D). Additionally, quenching by O(3P) was found to contribute very little to the depopulation of the nascent O(1D), with Q0=0 giving the best fit to the RED AIR observations.

  2. Spaced sensor measurements of artificial airglow emission at 630 nm of ionosphere caused by ``Sura'' facility radiation in November 2013

    NASA Astrophysics Data System (ADS)

    Nasyrov, Igor; Grach, Savely; Gumerov, Rustam; Shindin, Alexey; Kogogin, Denis; Dementiev, Vladislav

    Some first results on simultaneous observation artificial airglow emission at 630 nm during HF pumping of the ionosphere by “Sura” facility from two spatial situated experimental sites are reported. The measurements of artificial airglow are usually conducted in red and green lines of atomic oxygen (the radiation of levels O((1) D) and O((1) S) under their excitation by electronic impact) with wave lengths of 630 and 557.7 nm and excitation energy of 1.96 and 4.17 eV accordingly. An enhancement of airglow intensity in the red line is related at present to the electron heating by powerful radio waves. The idea of the experiment was to estimate the heated volume three-dimensional structure and drift motion one. The experiment was carried out in November 2013 at the “Sura” radio facility, situated near Nizhny Novgorod, Russia (geographical coordinates 56.13(o) N, 46.10(o) E, geomagnetic field declination and inclination are ˜ 10.0(o) east and ˜ 71.5(o) , respectively). Conditions of ionosphere were checked by means of "Cady" ionosonde during “Sura” runs. According to the ionospheric conditions, on the 7(th) of November the “Sura” facility operated at frequency 4.540 MHz. At this frequency the effective radiated power was about 120MW. The HF beam width at the “Sura” facility is ˜ 12(o) . A square wave pump modulation of 5 min on, 5 min off, was used. Measurements were carried out in the period from 14:40 to 17:30 UTC. Optical imaging was performed on two spatial experimental sites: “Vasilsursk” (situated about 500 m from antenna system of “Sura” facility); “Raifa” (situated about 170 km from “Sura” facility at the Magnetic Observatory of Kazan Federal University, geographical coordinates 55.93(o) N, 48.75(o) E). They both were fitted out Peltier-cooled front-illuminated bare CCD cameras with 16-bit slow-scan read-out (S1C3). On “Vasilsursk” site the images were binned down to 256× 256 pixels in addition to cooling, in order

  3. Dynamics in the mesosphere and lower thermosphere in the high Arctic: Observations from the Polar Environment Atmospheric Research Laboratory

    NASA Astrophysics Data System (ADS)

    Ward, William E.; Meek, Chris; Shepherd, Marianna; Manson, Alan; Drummond, James; Cho, Young-Min; Kristoffersen, Samuel; Das, Uma; Vail, Christopher

    Observations of the dynamics of the mesosphere and lower thermosphere from the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, Canada (80N, 86W) were initiated in 2007. Over the past 7 winters, a suite of instruments has come on line and wind, temperature and airglow measurements from this observatory are now available (www.candac.ca). The instrumentation includes a meteor radar, a spectral airglow temperature imager, a field-widened Michelson interferometer and an all-sky imager. The radar provides hourly wind profiles from 82 to 97 km, and the other instruments provide information on temperature, wind, airglow brightness on a cadence of the order of a few minutes. Mesospheric airglow emissions observed include the oxygen green line, the O _{2} atmospheric band, hydroxyl and sodium. This set of instruments allows detailed analyses of the dynamical signatures over the observatory to be undertaken. Collaborations with observations from other stations and satellite instruments is being initiated. In this paper, the data set is described and interesting results from scientific studies undertaken at PEARL are summarized

  4. The D-Region Ledge at Nighttime: Why are Elves Collocated with the OH Meinel Band Airglow Layer?

    NASA Astrophysics Data System (ADS)

    Wu, Y. J.; Williams, E. R.; Hsu, R. R.

    2014-12-01

    The Imager of Sprite and Upper Atmosphere Lightning (ISUAL) onboard the Taiwanese satellite Formosat-2 has continuously observed transient luminous events (TLEs) within the +/-60 degree range of latitude for a decade since May 2004. The lightning electromagnetic pulse is responsible for Elves , the dominate TLE type which accounts for approximately 80% of the total TLE count according to the ISUAL global survey. By analyzing the limb-viewed images with a wavelength filter of 622.8-754nm, 72% of elves are found to be 'glued' to the OH Meinel band (~630nm) nightglow layer within its thickness of 8km, with the OH layer normally at an altitude of 87 km (Huang et al., 2010).This collocation of elves and airglow layer is frequently dismissed as coincidence, since the physical mechanisms for the formation of the two optical phenomena are macroscopically quite different. However, a common ingredient in the atmospheric chemistry is monatomic oxygen. O is needed to make O3 and ultimately hydroxyl OH, the main radiative species of the airglow layer. O is also needed to form nitric oxide NO, the species with the lowest known ionization potential (9.26 eV) in the D-region. Thomas (1990) has documented steep increases in O concentration in the 83-85 km altitude range and Hale (1985) has found steep increases in electrical conductivity in the 84-85 km range, both with rocket measurements. A great simplification of the nighttime ionosphere is the presence of a single photon energy—10.2 eV—Lyman-α, originating in monatomic H in the Earth's geocorona. A simple Chapman layer calculation for the altitude of maximum photo-dissociation of O2, using the measured absorption cross-section of O2 at the Lyman-α energy, shows an altitude of maximum O production at 85 km. Elve emission in the nitrogen first positive band is enhanced by the presence of free electrons from ionized NO, but too large a conductivity will lead to the exclusion of the radiation field from the lightning return

  5. Quantification of heterogeneity observed in medical images

    PubMed Central

    2013-01-01

    Background There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. Methods In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. Results We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. Conclusions These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity. PMID:23453000

  6. Fixing Images Observation Dates Thanks to Asteroids

    NASA Astrophysics Data System (ADS)

    Derriere, S.

    2015-09-01

    An important piece of metadata for any astronomical image is the date and time at which it was observed (and the exposure time). Unfortunately, the values of the observation epoch found in the FITS headers of digitized photographic plates, for example, are not always accurate. There can be many different sources of error: mistakes in the original observation log, errors when converting between different dates and time format (calendar date, Julian days, decimal years, etc.). We present in this paper an analysis of the different values that can be found for the observation epoch of several image sets in various metadata sources. We show how the presence of known asteroids in the field of view can be used to recover the correct time values with a good accuracy.

  7. Technique to retrieve solar EUV flux and neutral thermospheric O, O2, N2, and temperature from airglow measurements

    NASA Technical Reports Server (NTRS)

    Fennelly, J. A.; Germany, G. A.; Torr, D. G.; Richards, P. G.; Torr, M. R.

    1994-01-01

    We describe a method for retrieving neutral thermospheric composition and solar EUV flux from optical measurements of the O(+)(P-2) 732 nm and O(D-1) 630 nm airglow emissions. The parameters retrieved are the neutral temperature, the O, L2, and N2 density profiles, and a scaling factor for the solar EUV flux spectrum. The temperature, solar EUV flux scaling factor, and atomic oxygen density are first retrieved from the 732 nm emission, which are then used with the 630 nm emission to retrieve the O2 and N2 densities. Between the altitudes of 200 and 400 km the retrieval technique is able to statistically retrieve values to within 3.1% for thermospheric temperature, 3.3% for atomic oxygen, 2.3% for molecular oxygen, and 2.4% for molecular nitrogen. The solar EUV flux scaling factor has a retrieval error of 5.1%. We also present the results of retrievals using existing data taken from both groundbased and spacebased instruments. These include airglow data taken by the Visible Airglow Experiment on the Atmospheric Explorer spacecraft and the Imaging Spectrometric Observatory flown on the ATLAS 1 shuttle mission in 1992.

  8. Imaging radar observations of frozen Arctic lakes

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Bryan, M. L.; Weeks, W. F.

    1976-01-01

    A synthetic aperture imaging L-band radar flown aboard the NASA CV-990 remotely sensed a number of ice-covered lakes about 48 km northwest of Bethel, Alaska. The image obtained is a high resolution, two-dimensional representation of the surface backscatter cross section, and large differences in backscatter returns are observed: homogeneous low returns, homogeneous high returns and/or low returns near lake borders, and high returns from central areas. It is suggested that a low return indicates that the lake is frozen completely to the bottom, while a high return indicates the presence of fresh water between the ice cover and the lake bed.

  9. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  10. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  11. Imaging radar observations of Askja Caldera, Iceland

    NASA Technical Reports Server (NTRS)

    Malin, M. C.; Evans, D.; Elachi, C.

    1978-01-01

    A 'blind' test involving interpretation of computer-enhanced like- and cross-polarized radar images is used to evaluate the surface roughness of Askja Caldera, a large volcanic complex in central Iceland. The 'blind' test differs from earlier analyses of radar observations in that computer-processes images and both qualitative and quantitative analyses are used. Attention is given to photogeologic examination and subsequent survey-type field observations, along with aerial photography during the field trip. The results indicate that the 'blind' test of radar interpretation of the Askja volcanic area can be considered suitable within the framework of limitations of radar data considered explicitly from the onset. The limitations of the radar techniques can be eliminated by using oblique-viewing conditions to remove geometric distortions and slope effects.

  12. Tsunami remote sensing from and with satellites: observations and perspectives after Sumatra 2004 and Tohoku 2011.

    NASA Astrophysics Data System (ADS)

    Lognonne, Philippe; Makela, Jonathan J.; Astafyeva, Elvira; alam Kherani, Esfhan; Occhipinti, Giovanni; Rolland, Lucie; McCoy, Bob; Hebert, Helene; Coisson, Pierdavide; De Raucourt, Sebastien; Lamouroux, Julien

    2012-07-01

    With various observations following the Sumatra 2004 and Tohoku 2011 tsunamis, space observations have demonstrated their capability for the monitoring of the tsunami propagation in open ocean. Observations are very diverse and based on spaceborn optical high resolution imaging of the tsunami arrival on the coast, on the monitoring by space altimeters of the sea level displacement, but also on the ionospheric perturbation generated by the tsunami, detected by altimeters and GNSS receivers. New ground airglow observations performed in Hawaii for the Tohoku tsunami have furthermore opened new perspectives for real time observations from space, based on visible or UV airglow monitoring. We review the different observations and show that the most interesting perspectives are associated to the ionospheric observations, able to detect very small tsunamis in amplitudes and even to open perspective in the detection of possible slow slip precursors of the giant quakes. We illustrate these observations with transoceanic tsunamis of the last decade (Sumatra, 2004, Kuril, 2006, Samoa, 2009, Chili, 2010, Tohoku, 2011) and present the coupling mechanisms responsible for these observations. A special focus is given on the observations and modeling performed during the Tohoku 2011 tsunami, with observations from GPS ionospheric sounding over Japan and further in the Pacific ocean, with joint observation from GPS, Jason and airglow. We show that the first ionospheric signals generated by the rupture have been not only observed about 17 minutes before the arrival of the tsunami on the japanese east-coast, but also that a precursor signal has been generated before the earthquake, likely associated with a slow slip event which has triggered the giant earthquake. We also show that the ionospheric monitoring has been able to follow and image the propagation of the tsunami. We finally present the perspectives and focus on two different approaches and associated projects aiming to monitor

  13. Large storms: Airglow and related measurements. VLF observations, volume 4

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The data presented show the typical values and range of ionospheric and magnetospheric characteristics, as viewed from 1400 km with the ISIS 2 instruments. The definition of each data set depends partly on geophysical parameters and partly on satellite operating mode. Preceding the data set is a description of the organizational parameters and a review of the objectives and general characteristics of the data set. The data are shown as a selection from 12 different data formats. Each data set has a different selection of formats, but uniformity of a given format selection is preserved throughout each data set. Each data set consists of a selected number of passes, each comprising a format combination that is most appropriae for the particular data set. Description of ISIS 2 instruments are provided.

  14. An image stabilization system for solar observations

    NASA Astrophysics Data System (ADS)

    Sridharan, R.; Raja Bayanna, A.; Louis, Rohan Eugene; Kumar, Brajesh; Mathew, Shibu K.; Venkatakrishnan, P.

    2007-09-01

    An image stabilization system has been developed and demonstrated for solar observations in the visible wave-length at Udaipur Solar Observatory (USO) with a 15 cm Coudé-refractor. The softwa4re and hardware components of the system are similar to that of the low cost solar adaptive optics system developed for the 1.5 m McMath-Pierce solar telescope at Kitt Peak observatory for solar observations in the infrared. The first results presented. The system has a closed loop correction bandwidth in the range of 70 to 100 Hz. The root mean by a factor of 10 to 20. The software developes and key issues concerning optimum system performance have been addressed.

  15. Magnetic zenith enhancement of HF radio-induced airglow production at HAARP

    NASA Astrophysics Data System (ADS)

    Pedersen, T. R.; McCarrick, M.; Gerken, E.; Selcher, C.; Sentman, D.; Carlson, H. C.; Gurevich, A.

    2003-02-01

    Airglow production at various beam positions relative to the magnetic field was investigated as part of an optics campaign at HAARP in February 2002. Strong emissions up to several hundred Rayleigh at 630.0 nm and more than 50 R at 557.7 nm were produced in a small spot approximately 6° in diameter located near the magnetic zenith when the transmitter beam was directed up the magnetic field. This effect was observed hundreds of times over a wide range of frequencies and ionospheric conditions. The spot at HAARP appears on average just equatorward of the nominal magnetic field direction, deflects somewhat toward the beam center when the beam is scanned, and varies slightly in size with transmitter frequency. Red-to-green ratios as low as 3 were observed, with both wavelengths showing significant onset delay. Identifiable enhancements in red-line emission were produced down to 2 MW ERP in a power ramp experiment.

  16. Post sunset behavior of the 6300 A atomic oxygen airglow emission

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1976-01-01

    A theoretical model of the 6300 A OI airglow emission was developed based on the assumptions that both the charged and neutral portions of the Earth's upper atmosphere are in steady state conditions of diffusive equilibrium. Intensities of 6300 A OI emission line were calculated using electron density true height profiles from a standard C-4 ionosonde and exospheric temperatures derived from Fabry-Perot interferometer measurements of the Doppler broadened 6300 A emission line shape as inputs to the model. Reaction rate coefficient values, production mechanism efficiencies, solar radiation fluxes, absorption cross sections, and models of the neutral atmosphere were varied parametrically to establish a set of acceptable inputs which will consistently predict 6300 A emission intensities that closely agree with intensities observed during the post-sunset twilight period by an airglow observatory consisting of a Fabry-Perot interferometer and a turret photometer. Emission intensities that can only result from the dissociative recombination of molecular oxygen ions were observed during the latter portion of the observational period. Theoretical calculations indicate that contamination of the 6300 A OI emission should be on the order of or less than 3 percent; however, these results are very sensitive to the wavelengths of the individual lines and their intensities relative to the 6300 A OI intensity. This combination of a model atmosphere, production mechanism efficiencies, and quenching coefficient values was used when the dissociative photoexcitation and direct impact excitation processes were contributing to the intensity to establish best estimates of solar radiation fluxes in the Schumann--Runge continuum and associated absorption cross sections. Results show that the Jacchia 1971 model of the upper atmosphere combined with the Ackerman recommended solar radiation fluxes and associated absorption cross sections produces theoretically calculated intensities that more

  17. Low-latitude midnight brightness in 630.0 nm limb observations by FORMOSAT-2/ISUAL

    NASA Astrophysics Data System (ADS)

    Rajesh, P. K.; Chen, C. H.; Lin, C. H.; Liu, J. Y.; Huba, J. D.; Chen, A. B.; Hsu, R. R.; Chen, Y. T.

    2014-06-01

    This paper investigates the intense airglow brightness often observed in the 630.0 nm limb images taken using Imager of Sprites and Upper Atmospheric Lightnings (ISUAL), onboard FORMOSAT-2 satellite, where the tangent plane of the measurement falls in the local midnight sector. Most of the images show only single brightness, but in some cases there could be multiple peaks, which sometimes appears to be centered on geographic equator and in some cases falls on either sides of the magnetic equator. In order to understand such intense emission in the near-midnight hours, the observations are simulated using SAMI2 (SAMI2 is Another Model of the Ionosphere) model parameters based on the ISUAL viewing geometry. The simulations reproduced the measured airglow intensity pattern quite remarkably and suggested that the meridional neutral wind and the resulting plasma distribution are closely related with the observed brightness. The intensity and locations of the airglow brightness peaks could potentially be utilized to infer the strength of meridional neutral wind.

  18. Bayesian Analysis Of HMI Solar Image Observables And Comparison To TSI Variations And MWO Image Observables

    NASA Astrophysics Data System (ADS)

    Parker, D. G.; Ulrich, R. K.; Beck, J.

    2014-12-01

    We have previously applied the Bayesian automatic classification system AutoClass to solar magnetogram and intensity images from the 150 Foot Solar Tower at Mount Wilson to identify classes of solar surface features associated with variations in total solar irradiance (TSI) and, using those identifications, modeled TSI time series with improved accuracy (r > 0.96). (Ulrich, et al, 2010) AutoClass identifies classes by a two-step process in which it: (1) finds, without human supervision, a set of class definitions based on specified attributes of a sample of the image data pixels, such as magnetic field and intensity in the case of MWO images, and (2) applies the class definitions thus found to new data sets to identify automatically in them the classes found in the sample set. HMI high resolution images capture four observables-magnetic field, continuum intensity, line depth and line width-in contrast to MWO's two observables-magnetic field and intensity. In this study, we apply AutoClass to the HMI observables for images from May, 2010 to June, 2014 to identify solar surface feature classes. We use contemporaneous TSI measurements to determine whether and how variations in the HMI classes are related to TSI variations and compare the characteristic statistics of the HMI classes to those found from MWO images. We also attempt to derive scale factors between the HMI and MWO magnetic and intensity observables. The ability to categorize automatically surface features in the HMI images holds out the promise of consistent, relatively quick and manageable analysis of the large quantity of data available in these images. Given that the classes found in MWO images using AutoClass have been found to improve modeling of TSI, application of AutoClass to the more complex HMI images should enhance understanding of the physical processes at work in solar surface features and their implications for the solar-terrestrial environment. Ulrich, R.K., Parker, D, Bertello, L. and

  19. Global temperature distributions from OGO-6 6300 A airglow measurements

    NASA Technical Reports Server (NTRS)

    Blamont, J. E.; Luton, J. M.; Nisbet, J. S.

    1974-01-01

    The OGO-6 6300 A airglow temperature measurements have been used to develop models of the global temperature distributions under solstice and equinox conditions for the altitude region from 240 to 300 km and for times ranging from dawn in this altitude region to shortly after sunset. The distributions are compared with models derived from satellite orbital decay and incoherent scatter sounding. The seasonal variation of the temperature as a function of latitude is shown to be very different from that derived from static diffusion models with constant boundary conditions.

  20. Image Processing of Vega-Tv Observations

    NASA Astrophysics Data System (ADS)

    Möhlmann, D.; Danz, M.; Elter, G.; Mangold, T.; Rubbert, B.; Weidlich, U.; Lorenz, H.; Richter, G.

    1986-12-01

    Different algorithms, used to identify real structures in the near-nucleus TV-images of the VEGA-spacecrafts are described. They refer mainly to image-restauration, noise-reduction and different methods of texture analysis. The resulting images, showing first indications for structure of the surface of P/Halley, are discussed shortly.

  1. Earth Observation Services (Image Processing Software)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.

  2. Medium-scale traveling ionospheric disturbances observed with the SuperDARN Hokkaido radar, all-sky imager, and GPS network and their relation to concurrent sporadic E irregularities

    NASA Astrophysics Data System (ADS)

    Ogawa, T.; Nishitani, N.; Otsuka, Y.; Shiokawa, K.; Tsugawa, T.; Hosokawa, K.

    2009-03-01

    We present midlatitude medium-scale traveling ionospheric disturbances (MSTIDs) observed with a Super Dual Auroral Radar Network (SuperDARN) HF radar at around 10 MHz in Hokkaido, Japan, in combination with a 630-nm all-sky imager and a GPS network (GEONET) that provides total electron content (TEC) data. MSTIDs propagating southward from high latitudes are detected at first with the HF radar and then with the imager and GEONET. We analyze two MSTID events, one in winter (event 1) and the other in summer (event 2), to find that MSTIDs appear simultaneously, at least, at 55°-25°N. It is shown that nighttime MSTIDs propagate toward the southwest over a horizontal distance of about 4000 km, and daytime MSTIDs do so toward the southeast. Daytime radar echoes are due to ground/sea surface (GS) scatter, while nighttime echoes in event 1 return from 15-m-scale F region field-aligned irregularities (FAIs) and those in event 2 are due to GS scatter. Doppler velocities of the nighttime F region FAI echoes in event 1 are negative (motion away from the radar) within strong echo regions and are positive (motion toward the radar) within weak echo regions. This fact suggests that the strong (weak) echoes return from suppressed (enhanced) airglow/TEC areas, in line with previous observations over central Japan. The nighttime MSTIDs in events 1 and 2 are often accompanied by concurrent coherent echoes from FAIs in sporadic E (E s ) layers. The E s echo areas in event 2 rather coincide with suppressed airglow/TEC areas in the F region that are connected with the echo areas along the geomagnetic field, indicating the existence of E and F region coupling at night.

  3. Technique to retrieve solar EUV flux and neutral thermospheric O, O{sub 2}, N{sub 2} and temperature from airglow measurements

    SciTech Connect

    Fennelly, J.A.; Germany, G.A.; Torr, D.G.; Richards, P.G.; Torr, M.R.

    1994-12-31

    The authors describe a method for retrieving neutral thermospheric composition and solar EUV flux from optical measurements of the O+({sup 2}P) 732 nm and O({sup 1}D) 630 nm airglow emissions. The parameters retrieved are the neutral temperature, the O, O{sub 2}, and N{sub 2} density profiles, and a scaling factor for the solar EUV flux spectrum. The temperature, solar EUV flux scaling factor, and atomic oxygen density are first retrieved from the 732 nm emission, which are then used with the 630 nm emission to retrieve the O{sub 2} and N{sub 2} densities. Between the altitudes of 200 and 400 km the retrieval technique is able to statistically retrieve values to within 3.1% for thermospheric temperature, 3.3% for atomic oxygen, 2.3% for molecular oxygen, and 2.4% for molecular nitrogen. The solar EUV flux scaling factor has a retrieval error of 5.1%. They also present the results of retrievals using existing data taken from both groundbased and spacebased instruments. These include airglow data taken by the Visible Airglow Experiment on the Atmosphere Explorer spacecraft and the Imaging Spectrometric Observatory flown on the ATLAS 1 shuttle mission in 1992.

  4. Multi-Instrument Observations of an MSTID over Arecibo Observatory

    NASA Technical Reports Server (NTRS)

    Klenzing, J. H.; Seker, I.; Pfaff, R. F.; Rowland, D. E.; Fung, S. F.; Mathews, J. D.

    2011-01-01

    The Penn State All-Sky Imager (PSASI) at Arecibo Observatory provides planar horizontal context to the vertical ionospheric profiles obtained by the Incoherent Seatter Radar (TSR). Electric field measurements from the Communication/Navigation Outage Forecast System (C/NOFS) satellite are mapped down geomagnetic field lines to the height of the airglow layer; allowing multi-instrument studies of field-aligned irregularities with radar, imager, and satellite. A Medium-Scale Traveling Ionospheric Disturbance (MSTID) was observed during such a conjunction near the December solstice of 2009.

  5. Doppler Ducting of Quasi-Ripple Wave Events in the Mesospheric OH and O2 Airglow Emissions

    NASA Astrophysics Data System (ADS)

    Simkhada, D. B.; Taylor, M. J.; Franke, S. J.

    2007-12-01

    Short-lived (< 40 min) ripple events are common and well documented phenomena in the mesospheric airglow emissions. Recent coordinated studies have determined that these small-scale wave patterns are primarily due to instabilities processes as indicated by their Richardson number (Ri < 0.25, dynamic and Ri < 0, convective instability). These events are contrasted by the frequent occurrence of well-defined, much larger scale wave patterns, termed bands that are mainly associated with the passage of freely propagating short- period (< 1 hour) gravity waves through the upper mesosphere. Here we present new coordinated imaging and meteor radar measurements of spatially extensive ripple-like events that outwardly appear to be ripple but are not directly due to instability processes. The measurements were obtained as a part of the joint NSF/AFOSR Maui-MALT program using the Utah State University Mesospheric Temperature Mapper (MTM) sequentially sampling the OH and O2 airglow emissions centered at 87 and 94 km, respectively, and the University of Illinois meteor radar providing hourly wind measurements over the altitude range of 80-100 km. Using two years of data 2003-2004, we have identified 20 quasi-ripple events where the background wind measurements clearly show the events to be strongly Doppler ducted (or evanescent) in nature. These relatively rare events provide important new information on the dynamics of wave ducting at mesospheric heights.

  6. Calibration of the Berkeley EUV Airglow Rocket Spectrometer

    NASA Technical Reports Server (NTRS)

    Cotton, Daniel M.; Chakrabarti, Supriya; Siegmund, Oswald

    1989-01-01

    The Berkeley Extreme-ultraviolet Airglow Rocket Spectrometer (BEARS), a multiinstrument sounding rocket payload, made comprehensive measurements of the earth's dayglow. The primary instruments consisted of two near-normal Rowland mount spectrometers: one channel to measure several atomic oxygen features at high spectral resolution (about 1.5 A) in the band passes 980-1040 and 1300-1360 A, and the other to measure EUV dayglow and the solar EUV simultaneously in a much broader bandpass (250-1150 A) at moderate resolution (about 10 A). The payload also included a hydrogen Lyman-alpha photometer to monitor the solar irradiance and goecoronal emissions. The instrument was calibrated at the EUV calibration facility at the University of California at Berkeley, and was subsequently launched successfully on September 30, 1988 aboard a four-stage experimental sounding rocket, Black Brant XII flight 12.041 WT. The calibration procedure and resulting data are presented.

  7. Airglow measurement looking downward from orbit at selected darker fields of view

    NASA Astrophysics Data System (ADS)

    Croft, T. A.

    1982-03-01

    It is pointed out that many sources of airglow are below the more desirable satellite attitudes. However, the conventional airglow sensors must look either upward or toward the limb. The feasibility to measure airglow when looking downward from a satellite is considered, taking into account an approach involving the collection and analysis of the light which emanates from the most dark regions near nadir. An investigation is conducted regarding the possibility to implement the considered approach by making use of two satellite systems, each of which measures radiance in the nadir region at midnight. The two systems include the Atmospheric Explorer (AE) and satellites of the Defense Meteorological Satellite Program (DMSP). The results of the investigation are evaluated and details for a suitable procedure of airglow measurements are discussed.

  8. The BAA Observers' Workshops: Imaging comets

    NASA Astrophysics Data System (ADS)

    Mobberley, M. P.

    2003-10-01

    Imaging comets, especially from the UK, used to be nothing less than a battle against the insensitivity of photographic film and the inevitable arrival of cloud on those crucial moon-free nights when a bright comet was close to perihelion. In recent years the situation has changed considerably. On the positive side modern CCDs are twenty times more light-sensitive than the best photographic emulsions, and image processing is far easier than messing around for hours with revolting chemicals in a darkroom. On the negative side the modern lives of working people leave little room for learning new skills and the stress of the modern working day leaves little enthusiasm for a night-time battle with clouds and unfriendly equipment. This author firmly believes that well-thought-out observatories and patient perseverance are the key to achieving success where imaging comets is concerned. Basically, anyone who has learned to use a computer can learn to take good comet images; it is all a question of surmounting the various hurdles in a systematic fashion.

  9. Upper atmospheric processes as measured by collocated Lidar, infrasound, radiometer and airglow measurements

    NASA Astrophysics Data System (ADS)

    Le Pichon, A.; Blanc, E.; Assink, J. D.; Ceranna, L.; Pilger, C.; Ross, O.; Keckhut, P.; Hauchecorne, A.; Schmidt, C.; Bittner, M.; Wuest, S.; Rüfenacht, R.; Kaempfer, N.; Smets, P.

    2013-12-01

    To better initialize weather forecasting systems, a key challenge is to understand stratosphere-resolving climate models. The ARISE project (http://arise-project.eu/) aims to design a novel infrastructure integrating different atmospheric observation networks to accurately recover the vertical structure of the wind and temperature from the ground to the mesosphere. This network includes Lidar and mesospheric airglow observations, complemented by continuous infrasound measurements. Together with additional ground-based wind radar system, such complementary techniques help to better describe the interaction between atmospheric layers from the ground to the mesosphere and the influence of large scale waves on the atmospheric dynamics. Systematic comparisons between these observations and the ECMWF upper wind and temperature models (http://www.ecmwf.int/) have been performed at the OHP site (Haute-Provence Observatory, France). The main results are outlined below. - Systematic comparisons between Lidar soundings (NDACC, http://ndacc-lidar.org/) and ECMWF highlight differences increasing with altitude. Below 50 km altitude, differences are as large as 20°K. In average, the temperature appears to be overestimated by ~5 m/s in the stratosphere and underestimated by ~10 m/s in the mesopause. - Comparisons with collocated infrasound measurements provide additional useful integrated information about the structure of the stratospheric waveguide. Below 0.5 Hz, most infrasound signals originate from ocean swells in the North Atlantic region. As expected, since most long-range propagating signals travel in the stratospheric waveguide, improved detection capability occurs downwind. Deviations from this trend are either related to short time-scale variability of the atmosphere (e.g., large-scale planetary waves, stratospheric warming effects), or can be explained by changes in the nature of the source. We investigate possible correlation between unexpected propagation paths and

  10. Spatial and Temporal Stability of Airglow Measured in the Meinel Band Window at 1191.3 nm

    NASA Astrophysics Data System (ADS)

    Nguyen, Hien T.; Zemcov, Michael; Battle, John; Bock, James J.; Hristov, Viktor; Korngut, Phillip; Meek, Andrew

    2016-09-01

    We report on the temporal and spatial fluctuations in the atmospheric brightness in the narrow band between Meinel emission lines at 1191.3 nm using a λ/Δλ = 320 near-infrared instrument. We present the instrument design and implementation, followed by a detailed analysis of data taken over the course of a night from Table Mountain Observatory. At low airmasses, the absolute sky brightness at this wavelength is found to be 5330 ± 30 nW m-2 sr-1, consistent with previous measurements of the inter-band airglow at these wavelengths. This amplitude is larger than simple models of the continuum component of the airglow emission at these wavelengths, confirming that an extra emissive or scattering component is required to explain the observations. We perform a detailed investigation of the noise properties of the data and find no evidence for a noise component associated with temporal instability in the inter-line continuum. This result demonstrates that in several hours of ˜100 s integrations the noise performance of the instrument does not appear to significantly degrade from expectations, giving a proof of concept that near-infrared line intensity mapping may be feasible from ground-based sites.

  11. Spatial and Temporal Stability of Airglow Measured in the Meinel Band Window at 1191.3 nm

    NASA Astrophysics Data System (ADS)

    Nguyen, Hien T.; Zemcov, Michael; Battle, John; Bock, James J.; Hristov, Viktor; Korngut, Phillip; Meek, Andrew

    2016-09-01

    We report on the temporal and spatial fluctuations in the atmospheric brightness in the narrow band between Meinel emission lines at 1191.3 nm using a λ/Δλ = 320 near-infrared instrument. We present the instrument design and implementation, followed by a detailed analysis of data taken over the course of a night from Table Mountain Observatory. At low airmasses, the absolute sky brightness at this wavelength is found to be 5330 ± 30 nW m‑2 sr‑1, consistent with previous measurements of the inter-band airglow at these wavelengths. This amplitude is larger than simple models of the continuum component of the airglow emission at these wavelengths, confirming that an extra emissive or scattering component is required to explain the observations. We perform a detailed investigation of the noise properties of the data and find no evidence for a noise component associated with temporal instability in the inter-line continuum. This result demonstrates that in several hours of ∼100 s integrations the noise performance of the instrument does not appear to significantly degrade from expectations, giving a proof of concept that near-infrared line intensity mapping may be feasible from ground-based sites.

  12. Imaging radar polarization signatures - Theory and observation

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob J.; Zebker, Howard A.; Elachi, Charles

    1987-01-01

    Radar polarimetry theory is reviewed, and comparison between theory and experimental results obtained with an imaging radar polarimeter employing two orthogonally polarized antennas is made. Knowledge of the scattering matrix permits calculation of the scattering cross section of a scatterer for any transmit and receive polarization combination, and a new way of displaying the resulting scattering cross section as a function of polarization is introduced. Examples of polarization signatures are presented for several theoretical models of surface scattering, and these signatures are compared with experimentally measured polarization signatures. The coefficient of variation, derived from the polarization signature, may provide information regarding the amount of variation in scattering properties for a given area.

  13. Imaging artificial satellites: An observational challenge

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Hill, D. C.

    2016-10-01

    According to the Union of Concerned Scientists, as of the beginning of 2016 there are 1381 active satellites orbiting the Earth, and the United States' Space Surveillance Network tracks about 8000 manmade orbiting objects of baseball-size and larger. NASA estimates debris larger than 1 cm to number more than half a million. The largest ones can be seen by eye—unresolved dots of light that move across the sky in minutes. For most astrophotographers, satellites are annoying streaks that can ruin hours of work. However, capturing a resolved image of an artificial satellite can pose an interesting challenge for a student, and such a project can provide connections between objects in the sky and commercial and political activities here on Earth.

  14. An Amateur's Guide to Observing and Imaging the Heavens

    NASA Astrophysics Data System (ADS)

    Morison, Ian

    2014-06-01

    Foreword; Acknowledgments; Prologue: a tale of two scopes; 1. Telescope and observing fundamentals; 2. Refractors; 3. Binoculars and spotting scopes; 4. The Newtonian telescope and its derivatives; 5. The Cassegrain telescope and its derivatives - Schmidt-Cassegrains and Maksutovs; 6. Telescope maintenance, collimation and star testing; 7. Telescope accessories: finders, eyepieces and bino-viewers; 8. Telescope mounts: alt/az and equatorial with their computerised variants; 9. The art of visual observing; 10. Visual observations of the Moon and planets; 11. Imaging the Moon and planets with DSLRs and web-cams; 12. Observing and imaging the Sun in white light and H-alpha; 13. Observing with an astro-video camera to 'see' faint objects; 14. Deep sky imaging with standard and H-alpha modified DSLR cameras; 15. Deep sky imaging with cooled CCD cameras; 16. Auto-guiding techniques and equipment; 17. Spectral studies of the Sun, stars and galaxies; 18. Improving and enhancing images in Photoshop; Index.

  15. Airglow continuum emission in the visible wavelength regime

    NASA Astrophysics Data System (ADS)

    Unterguggenberger, S.; Noll, S.; Kausch, W.; Proxauf, B.; Kimeswenger, S.

    2015-03-01

    To probe dynamics and chemistry of the atmosphere at high altitudes ( 80-100 km), we need to understand airglow line and continuum emission. Accounting for the continuum emission is harder than for the emission lines. Gaining knowledge of the upper atmospheric continuum emission needs e.g. a proper subtraction of the other continuum components, and a very good subtraction of the other emission lines which requires a high spectral resolution. In this study, we want to focus on FeO continuum emission. FeO emits in the wavelength range from 0.5 to 0.72 m and probes an altitude of about 89 km. The altitude of the emission peak lies between those of OH (87 km) and NaD (92 km). Fe and Na are linked by their source, meteors, and their common reactant O3, which holds also for OH emission. Lidar and limb sounding studies provide measurements about the continuum contribution of the FeO and Fe density in the upper atmosphere, but for a more detailed analysis in terms of emission structure and variability a ground-based high resolution and high signal-to-noise spectrum would be preferable.

  16. Simulations of airglow variations induced by the CO2 increase and solar cycle variation from 1980 to 1991

    NASA Astrophysics Data System (ADS)

    Huang, Tai-Yin

    2016-09-01

    Airglow intensity and Volume Emission Rate (VER) variations induced by the increase of CO2 gas concentration and F10.7 variation (used as a proxy for the 11-year solar cycle variation) were investigated for the period from 1980 to 1991, encompassing a full solar cycle. Two airglow models are used to simulate the induced variations of O(1S) greenline, O2(0,1) atmospheric band , and OH(8,3) airglow for this study. The results show that both the airglow intensities and peak VERs correlate positively with the F10.7 solar cycle variation and display a small linear trend due to the increase of CO2 gas concentration. The solar-cycle induced airglow intensity variations show that O(1S) greenline has the largest variation (~26%) followed by the O2(0,1) atmospheric band (~23%) and then OH(8,3) airglow (~8%) over the 11 year timespan. The magnitudes of the induced airglow intensity variations by the increase of CO2 gas concentration are about an order of magnitude smaller than those by the F10.7 solar cycle variation. In general, the F10.7 solar cycle variation and CO2 increase do not seem to systematically alter the VER peak altitude of the airglow emissions, though the OH(8,3) VER peak altitude moves up slightly during the years when the F10.7 value falls under 100 SFU.

  17. The new Arecibo Observatory Remote Airglow Facility in Culebra Island, Puerto Rico: current status and future projects

    NASA Astrophysics Data System (ADS)

    Santos, P. T.; Kerr, R. B.; Robles, E.; Garzon, D. P.

    2012-12-01

    The concept of having the Arecibo Observatory Remote Airglow Observatory (AO-RAF) at Culebra island became apparent a couple of years ago as a solution to mitigate the ever cumulative quantity of cloud, fog, and rain that has distressed observations at the Arecibo Observatory during major optical campaigns and observations. Culebra Island (18.33° N 65.33° W) is situated approximately 27 km east of the main island of Puerto Rico, with dimensions of about 11 km long and 5 km wide. A statistical analysis and comparison of cloud cover, precipitation and humidity over Puerto Rico and adjacent islands showed that Culebra is the best site with optimal weather conditions for the optical experiments due to its geographical characteristics. This work presents the initial projects to the AO-RAF as well the future development.

  18. Thermospheric winds and temperatures above Mawson, Antarctica, observed with an all-sky imaging, Fabry-Perot spectrometer

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Conde, M.; Dyson, P.; Davies, T.; Kosch, M. J.

    2009-05-01

    A new all-sky imaging Fabry-Perot spectrometer has been installed at Mawson station (67°36' S, 62°52' E), Antarctica. This instrument is capable of recording independent spectra from many tens of locations across the sky simultaneously. Useful operation began in March 2007, with spectra recorded on a total of 186 nights. Initial analysis has focused on the large-scale daily and average behavior of winds and temperatures derived from observations of the 630.0 nm airglow line of atomic oxygen, originating from a broad layer centered around 240 km altitude, in the ionospheric F-region. The 1993 Horizontal Wind Model (HWM93), NRLMSISE-00 atmospheric model, and the Coupled Thermosphere/Ionosphere Plasmasphere (CTIP) model were used for comparison. During the geomagnetically quiet period studied, observed winds and temperatures were generally well modelled, although temperatures were consistently higher than NRLMSISE-00 predicted, by up to 100 K. CTIP temperatures better matched our data, particularly later in the night, but predicted zonal winds which were offset from those observed by 70-180 ms-1 westward. During periods of increased activity both winds and temperatures showed much greater variability over time-scales of less than an hour. For the active night presented here, a period of 45 min saw wind speeds decrease by around 180 ms-1, and temperatures increase by approximately 100 K. Active-period winds were poorly modelled by HWM93 and CTIP, although observed median temperatures were in better agreement with NRLMSISE-00 during such periods. Average behavior was found to be generally consistent with previous studies of thermospheric winds above Mawson. The collected data set was representative of quiet geomagnetic and solar conditions. Geographic eastward winds in the afternoon/evening generally continued until around local midnight, when winds turned equatorward. Geographic meridional and zonal winds in the afternoon were approximately 50 ms-1 weaker than

  19. Observational and Modeling Study of Mesopheric Bores

    NASA Astrophysics Data System (ADS)

    Loughmiller, P.; Kelley, M.; Hickey, M.

    In our studies of the dynamics of the upper atmosphere, some of the most intriguing mesospheric phenomena we observe high over the Hawaiian night skies are internal bores. These events affecting chemiluminescence are documented in monochromatic airglow images taken by high performance all-sky CCD imaging systems operating at the Maui Space Surveillance Site on top of Haleakala Crater. Data is collected as part of the ongoing, collaborative Maui - Mesosphere and Lower Thermosphere (MALT) campaign, jointly sponsored by the National Science Foundation and the Air Force Office of Scientific Research. Bolstered by the Maui-MALT dataset, several theories now exist for mesospheric bores, agreeing in principle that they are likely nonlinear structures spawned by gravity waves and propagating within ducted waveguide regions, such as thermal inversion layers. A new investigation will model optical emissions using a robust, time-dependent, chemical dynamics model to explore the airglow response to ducted gravity waves and, in turn, the geographical and vertical coupling relationships which may exist.

  20. Preliminary Analysis of Images from the Thermospheric Temperature Image on Fast, Affordable, Science and Technology Satellite (FASTSAT)

    NASA Technical Reports Server (NTRS)

    Rodriquez, Marcello; Jones, Sarah; Mentzell, Eric; Gill, Nathaniel

    2011-01-01

    The Thermospheric Temperature Imager (TTI) on Fast, Affordable, Science and Technology SATellite (FASTSAT) measures the upper atmospheric atomic oxygen emission at 135.6 nm and the molecular nitrogen LBH emission at 135.4 nm to determine the atmospheric O/N2 density ratio. Observations of variations in this thermospheric ratio correspond to electron density variations in the ionosphere. The TTI design makes use of a Fabry-Perot interferometer to measure Doppler widened atmospheric emissions to determine neutral atmospheric temperature from low Earth orbit. FASTSAT launched November 10, 2010 and TTI is currently observing geomagnetic signatures in the aurora and airglow. This work is supported by NASA.

  1. Laboratory studies on the excitation and collisional deactivation of metastable atoms and molecules in the aurora and airglow

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.

    1974-01-01

    The aeronomy group at the University of Pittsburgh is actively engaged in a series of coordinated satellite, sounding rocket, and laboratory studies designed to expand and clarify knowledge of the physics and chemistry of planetary atmospheres. Three major discoveries have been made that will lead ultimately to a complete and dramatic revision of our ideas on the ionospheres of Mars, Venus, and the Earth and on the origin of their vacuum ultraviolet airglows. The results have already suggested a new generation of ionosphere studies which probably can be carried out best by laser heterodyning techniques. Laboratory studies have also identified, for the first time, the physical mechanism responsible for the remarkable nitric oxide buildup observed in some auroral arcs. This development is an important break-through in auroral physics, and has military ramifications of considerable interest to the Department of Defense. This work may also shed some light on related NO and atomic nitrogen problems in the mesosphere.

  2. Solar Energy Deposition Rates in the Mesosphere Derived from Airglow Measurements: Implications for the Ozone Model Deficit Problem

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Garcia, Rolando R.; Roble, Raymond G.; Hagan, Maura

    2000-01-01

    We derive rates of energy deposition in the mesosphere due to the absorption of solar ultraviolet radiation by ozone. The rates are derived directly from measurements of the 1.27-microns oxygen dayglow emission, independent of knowledge of the ozone abundance, the ozone absorption cross sections, and the ultraviolet solar irradiance in the ozone Hartley band. Fifty-six months of airglow data taken between 1982 and 1986 by the near-infrared spectrometer on the Solar-Mesosphere Explorer satellite are analyzed. The energy deposition rates exhibit altitude-dependent annual and semi-annual variations. We also find a positive correlation between temperatures and energy deposition rates near 90 km at low latitudes. This correlation is largely due to the semiannual oscillation in temperature and ozone and is consistent with model calculations. There is also a suggestion of possible tidal enhancement of this correlation based on recent theoretical and observational analyses. The airglow-derived rates of energy deposition are then compared with those computed by multidimensional numerical models. The observed and modeled deposition rates typically agree to within 20%. This agreement in energy deposition rates implies the same agreement exists between measured and modeled ozone volume mixing ratios in the mesosphere. Only in the upper mesosphere at midlatitudes during winter do we derive energy deposition rates (and hence ozone mixing ratios) consistently and significantly larger than the model calculations. This result is contrary to previous studies that have shown a large model deficit in the ozone abundance throughout the mesosphere. The climatology of solar energy deposition and heating presented in this paper is available to the community at the Middle Atmosphere Energy Budget Project web site at http://heat-budget.gats-inc.com.

  3. Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain

    SciTech Connect

    Leng, Shuai; Yu, Lifeng; Zhang, Yi; McCollough, Cynthia H.; Carter, Rickey; Toledano, Alicia Y.

    2013-08-15

    Purpose: The purpose of this study was to investigate the correlation between model observer and human observer performance in CT imaging for the task of lesion detection and localization when the lesion location is uncertain.Methods: Two cylindrical rods (3-mm and 5-mm diameters) were placed in a 35 × 26 cm torso-shaped water phantom to simulate lesions with −15 HU contrast at 120 kV. The phantom was scanned 100 times on a 128-slice CT scanner at each of four dose levels (CTDIvol = 5.7, 11.4, 17.1, and 22.8 mGy). Regions of interest (ROIs) around each lesion were extracted to generate images with signal-present, with each ROI containing 128 × 128 pixels. Corresponding ROIs of signal-absent images were generated from images without lesion mimicking rods. The location of the lesion (rod) in each ROI was randomly distributed by moving the ROIs around each lesion. Human observer studies were performed by having three trained observers identify the presence or absence of lesions, indicating the lesion location in each image and scoring confidence for the detection task on a 6-point scale. The same image data were analyzed using a channelized Hotelling model observer (CHO) with Gabor channels. Internal noise was added to the decision variables for the model observer study. Area under the curve (AUC) of ROC and localization ROC (LROC) curves were calculated using a nonparametric approach. The Spearman's rank order correlation between the average performance of the human observers and the model observer performance was calculated for the AUC of both ROC and LROC curves for both the 3- and 5-mm diameter lesions.Results: In both ROC and LROC analyses, AUC values for the model observer agreed well with the average values across the three human observers. The Spearman's rank order correlation values for both ROC and LROC analyses for both the 3- and 5-mm diameter lesions were all 1.0, indicating perfect rank ordering agreement of the figures of merit (AUC) between the

  4. Preliminary observations from the Auroral and Ionospheric Remote Sensing imager

    NASA Astrophysics Data System (ADS)

    Meng, Ching I.; Huffman, Robert E.

    1987-09-01

    The scientific objectives and the instrumentation of the Polar BEAR's Auroral and Ionospheric Remote Sensing (AIRS) experiment are described together with the techniques employed for global imaging and the results of preliminary observations. The AIRS four-color imager covers selected wavelengths in the visible/near UV and vacuum UV (VUV) ranges. The AIRS experiment also has advantages of narrow 3.0-nm VUV bandpath imaging, not possible with the use of interference filters, and of three alternative modes of operation (imaging, spectrometer, or photometer), possible by controlling the scan mirror and the spectrometer gridding motor. Because of the satellite's high altitude (about 1000 km), most of the auroral oval can be imaged.

  5. CONCAM All-Sky Maps of Airglow and Opacity

    NASA Astrophysics Data System (ADS)

    Nemiroff, R. J.; Shamir, L.; CONCAM Collaboration

    2003-12-01

    A major goal of the global CONtinuous CAMera (CONCAM) network is to support astronomical observing sites with real-time all-sky images and information. To date, this aim has been fulfilled mostly by CONCAM's role as an optical cloud monitor -- creating rapid ground-truth fisheye images that can be visually inspected so that real-time observing decisions can be made. These images are available immediately over the web through http://concam.net/, where they are also archived The high quality of raw CONCAM data, however, allows us to go further and build a data pipeline from which automated stellar photometry can be done for a few hundred of the brightest stars. When combined with CONCAM all-sky brightness data, we show that a simultaneous solution for sky opacity and emissivity is possible at stellar positions. These data can then be interpolated into all-sky maps. With current CONCAM3 equipment, maps with a broadband accuracy of about 0.25 magnitudes for altitudes above 25 degrees is demonstrated. Such maps might contribute to a more quantitative assessment of the brightness, clarity, and variability of the night sky background above the world's largest telescopes both in real time and in subsequent data reduction. Progress on creating these maps as part of the CONCAM data processing pipeline will be discussed.

  6. Application of MCM image construction to IRAS comet observations

    NASA Technical Reports Server (NTRS)

    Schlapfer, Martin F.; Walker, Russell G.

    1994-01-01

    There is a wealth of IRAS comet data, obtained in both the survey and pointed observations modes. However, these measurements have remained largely untouched due to difficulties in removing instrumental effects from the data. We have developed a version of the Maximum Correlation Method for Image Construction algorithm (MCM) which operates in the moving coordinate system of the comet and properly treats both real cometary motion and apparent motion due to spacecraft parallax. This algorithm has been implemented on a 486/33 PC in FORTRAN and IDL codes. Preprocessing of the IRAS CRDD includes baseline removal, deglitching, and removal of long tails due to dielectric time constants of the detectors. The resulting images are virtually free from instrumental effects and have the highest possible spatial resolution consistent with the data sampling. We present examples of high resolution IRAS images constructed from survey observations of Comets P/Tempel 1 and P/Tempel 2, and pointed observations of IRAS-Araki-Alcock.

  7. Conjugate Studies Using C/NOFS and All-sky Imagers in the American Sector

    NASA Astrophysics Data System (ADS)

    Martinis, C. R.; Burke, W. J.; Gentile, L. C.; Sullivan, C.

    2015-12-01

    Data from the Coupled Ion-Neutral Dynamics Investigation (CINDI) and the Vector Electric Field Instrument (VEFI) onboard the Communication/Navigation Outage Forecasting System (C/NOFS) satellite are compared with 630.0 nm airglow data from all-sky imagers located outside the satellite's orbital path. The comparison is done by mapping the trajectory coordinates along magnetic field lines to the peak emission height of the 630.0 nm airglow. We present a study of medium scale traveling ionospheric disturbances (MSTIDs) in the American sector. Coincident variations in in-situ electric field and ion density, and ground-based airglow measurements show similar behavior, an indication that perturbations are occurring along the entire field line. The potential energy source region is investigated by computing Poynting fluxes. This study shows the importance of complementing remote sensing with in-situ observations of large scale structures at midlatitudes and that this type of comparison can provide insight at locations along a field line where no measurements are available.

  8. Tests of scanning model observers for myocardial SPECT imaging

    NASA Astrophysics Data System (ADS)

    Gifford, H. C.; Pretorius, P. H.; Brankov, J. G.

    2009-02-01

    Many researchers have tested and applied human-model observers as part of their evaluations of reconstruction methods for SPECT perfusion imaging. However, these model observers have generally been limited to signal-known- exactly (SKE) detection tasks. Our objective is to formulate and test scanning model observers that emulate humans in detection-localization tasks involving perfusion defects. Herein, we compare several models based on the channelized nonprewhitening (CNPW) observer. Simulated Tc-99m images of the heart with and without defects were created using a mathematical anthropomorphic phantom. Reconstructions were performed with an iterative algorithm and postsmoothed with a 3D Gaussian filter. Human and model-observer studies were conducted to assess the optimal number of iterations and the smoothing level of the filter. The human-observer study was a multiple-alternative forced-choice (MAFC) study with five defects. The CNPW observer performed the MAFC study, but also performed an SKE-but-variable (SKEV) study and a localization ROC (LROC) study. A separate LROC study applied an observer based on models of human search in mammograms. The amount of prior knowledge about the possible defects differed for these four model-observer studies. The trend was towards improved agreement with the human observers as prior knowledge decreased.

  9. Sparsity-driven ideal observer for computed medical imaging systems

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.

    2015-03-01

    The Bayesian ideal observer (IO) has been widely advocated to guide hardware optimization. However, except for special cases, computation of the IO test statistic is computationally burdensome and requires an appropriate stochastic object model that may be difficult to determine in practice. Modern reconstruction methods, referred to as sparse reconstruction methods, exploit the fact that objects of interest typically possess sparse representations and have proven to be highly effective at reconstructing images from under-sampled measurement data. Moreover, in computed imaging approaches that employ compressive sensing concepts, imaging hardware and image reconstruction are innately coupled technologies. In this work, we propose a sparsity-driven IO (SD-IO) to guide the optimization of data acquisition parameters for modern computed imaging systems. The SD-IO employs a variational Bayesian inference method to estimate the posterior distribution and calculates an approximate likelihood ratio analytically as its test statistic. Since it assumes knowledge of low-level statistical properties of the object that are related to sparsity, the SD-IO exploits the same statistical information regarding the object that is utilized by highly effective sparse image reconstruction methods. Preliminary simulation results are presented to demonstrate the feasibility of the SD-IO calculation.

  10. Automated detection of meteors in observed image sequence

    NASA Astrophysics Data System (ADS)

    Šimberová, Stanislava; Suk, Tomáš

    2015-12-01

    We propose a new detection technique based on statistical characteristics of images in the video sequence. These characteristics displayed in time enable to catch any bright track during the whole sequence. We applied our method to the image datacubes that are created from camera pictures of the night sky. Meteor flying through the Earth's atmosphere leaves a light trail lasting a few seconds on the sky background. We developed a special technique to recognize this event automatically in the complete observed video sequence. For further analysis leading to the precise recognition of object we suggest to apply Fourier and Hough transformations.

  11. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  12. Observational and Modeling Study of Mesopheric Bores

    NASA Astrophysics Data System (ADS)

    Loughmiller, P.; Hickey, M.; Franke, S.; Kelley, M.

    In mid-ladtitude studies of the dynamics of the mesosphere and lower thermosphere, some of the most intriguing phenomena observed high over the Hawaiian night skies are internal bores. These events affecting chemiluminescence are documented in monochromatic airglow images taken by high performance all-sky CCD imaging systems operating at the Maui Space Surveillance Site on top of Haleakala Crater. Data continues to be collected as part of the ongoing, collaborative Maui - Mesosphere and Lower Thermosphere (MALT) campaign, jointly sponsored by the National Science Foundation and the Air Force Office of Scientific Research. Bolstered by the Maui-MALT dataset, several theories now exist for mesospheric bores, agreeing in principle that they are likely nonlinear structures spawned by gravity waves and propagating within ducted waveguide regions. We investigate these plausible theories using a multi-instrument 2 approach, looking for correlation between bores and thermal inversion layers or wind shears, both potential guiding structures for lateral, geographic bore propagation.

  13. Coupling between tsunamis and ionosphere: ground-based and space-based observation opportunities

    NASA Astrophysics Data System (ADS)

    Coisson, Pierdavide; Makela, Jonathan J.; Occhipinti, Giovanni; Astafyeva, Elvira; alam Kherani, Esfhan; Lognonne, Philippe

    2012-07-01

    Large scale phenomena as tsunamis propagating through the ocean excite gravity waves that can reach ionospheric heights. The coupling between the ground/ocean and the atmosphere up to the ionosphere opens the possibility to observe in the upper atmosphere the effects of the propagation of tsunamis. During all recent major tsunami events ionospheric waves have been observed by ground GPS networks, satellite altimeters and, recently, also by an airglow imager. During the tsunami event of 11 March 2011 an all-sky camera in Hawaii observes the Internal Gravity Waves (IGW) during about one-and-a-half hours before the arrival of the, while it was crossing the Pacific Ocean in that region. Collocated ionospheric measurements were also done with GNSS sounding and Jason satellite. We present results of assessment studies of ground-based and space-based ionospheric remote sensing for tsunami propagation monitoring. We analyze the cases of airglow imager, Over-The-Horizon (OTH) radar, GPS, radio occultation and GNSS reflectometry. We describe modeling results of IGW excited by a realistic tsunami propagation model through the ocean near Hawaii. The model includes the propagation of the gravity wave in the atmosphere, the coupling between neutral and charged particles in the ionosphere and the production of the airglow emission at 630.0 nm. Synthetic all-sky images are calculated by integration of the emission along rays from the camera location to though the airglow layer. Additional ground-based observations could be provided by (OTH) radars, which operate in High Frequency (HF) band and can be used to monitor the bottomside ionosphere. Synthetic radar measurements computed using HF numerical ray-tracing confirm the possibility to detect IGW excited by tsunamis. The large coverage of OTH radar and its sensitivity to low-altitude plasma anomalies provides a wide range of observation. Additionally, we analyze the capabilities of space-based radio occultation and GNSS

  14. High-speed imaging system for observation of discharge phenomena

    NASA Astrophysics Data System (ADS)

    Tanabe, R.; Kusano, H.; Ito, Y.

    2008-11-01

    A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.

  15. Difference image analysis of defocused observations with CSTAR

    SciTech Connect

    Oelkers, Ryan J.; Macri, Lucas M.; Wang, Lifan; Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel; Cui, Xiangqun; Gong, Xuefei; Qiang, Liu; Yang, Huigen; Yuan, Xiangyan; Zhou, Xu; Feng, Long-Long; Zhu, Zhenxi; Pennypacker, Carl R.; York, Donald G.

    2015-02-01

    The Chinese Small Telescope ARray carried out high-cadence time-series observations of 27 square degrees centered on the South Celestial Pole during the Antarctic winter seasons of 2008–2010. Aperture photometry of the 2008 and 2010 i-band images resulted in the discovery of over 200 variable stars. Yearly servicing left the array defocused for the 2009 winter season, during which the system also suffered from intermittent frosting and power failures. Despite these technical issues, nearly 800,000 useful images were obtained using g, r, and clear filters. We developed a combination of difference imaging and aperture photometry to compensate for the highly crowded, blended, and defocused frames. We present details of this approach, which may be useful for the analysis of time-series data from other small-aperture telescopes regardless of their image quality. Using this approach, we were able to recover 68 previously known variables and detected variability in 37 additional objects. We also have determined the observing statistics for Dome A during the 2009 winter season; we find the extinction due to clouds to be less than 0.1 and 0.4 mag for 40% and 63% of the dark time, respectively.

  16. Imaging Observations of a Very High Frequency Type II Burst

    NASA Astrophysics Data System (ADS)

    White, S. M.; Mercier, C.; Bradley, R.; Bastian, T.; Kerdraon, A.; Pick, M.

    2006-05-01

    A remarkable Type II burst was detected by the high-frequency system of the Green Bank Solar Radio Burst Spectrometer on 2005 November 14. The harmonic branch of the Type II extended up to 800 MHz, making it one of the highest frequency Type II bursts ever detected, but it failed to propagate to heights corresponding to frequencies below 100 MHz. At such high frequencies, it implies the formation of a shock relatively low in the corona. No coronal mass ejection was evident in the LASCO data for this east limb event. It is one of the few Type II bursts to be observable at every frequency of observation of the Nancay Radio Heliograph (164-432 MHz). Here we present analysis of images of the event, including simultaneous imaging of the fundamental and harmonic branches.

  17. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, Kozo; Boardsen, Scott A.; Garcia, Leonard N.; Green, James L.; Matsumoto, Hiroshi; Reinisch, Bodo W.

    2010-01-01

    We report IMAGE and Geotail simultaneous observations of a terrestrial myriametric radio burst (TMRB) detected on August 19, 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50 kHz), suggesting a fan beam-like emission pattern from a single discrete source. Analysis and comparisons with existing TMR radiations strongly suggest that the TMRB is a distinct emission perhaps resulting from dayside magnetic reconnection instigated by northward interplanetary field condition.

  18. Retinex Image Processing: Improved Fidelity To Direct Visual Observation

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.

    1996-01-01

    Recorded color images differ from direct human viewing by the lack of dynamic range compression and color constancy. Research is summarized which develops the center/surround retinex concept originated by Edwin Land through a single scale design to a multi-scale design with color restoration (MSRCR). The MSRCR synthesizes dynamic range compression, color constancy, and color rendition and, thereby, approaches fidelity to direct observation.

  19. High spectral resolution imager for solar induced fluorescence observation

    NASA Astrophysics Data System (ADS)

    Barducci, A.; Guzzi, D.; Lastri, C.; Marcoionni, P.; Nardino, V.; Pippi, I.; Raimondi, V.; Sandri, P.

    2011-11-01

    The use of high-resolution imagers for determination of solar-induced fluorescence of natural bodies by observing the infilling of Fraunhofer lines has been frequently adopted as a tool for vegetation characterization. The option to perform those measurements from airborne platforms was addressed in the past. In-field observations gave evidence of the main requirements for an imaging spectrometer to be used for Sun-induced fluorescence measurements such as high spectral resolution and fine radiometric accuracy needed to resolve the shape of observed Fraunhofer lines with a high level of accuracy. In this paper, some solutions for the design of a high spectral resolution push-broom imaging spectrometer for Sun-induced fluorescence measurements are analysed. The main constraints for the optical design are a spectral resolution better than 0.01 nm and a wide field of view. Due to the fine instrumental spectral resolution, bidimensional focal plane arrays characterized by high quantum efficiency, low read-out noise, and high sensitivity are requested. The development of a lightweight instrument is a benefit for aerospace implementations of this technology. First results coming from laboratory measurements and optical simulations are presented and discussed taking into account their feasibility.

  20. X-ray phase imaging-From static observation to dynamic observation-

    SciTech Connect

    Momose, A.; Yashiro, W.; Olbinado, M. P.; Harasse, S.

    2012-07-31

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase images and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.

  1. A Framework for Fast Image Deconvolution With Incomplete Observations.

    PubMed

    Simoes, Miguel; Almeida, Luis B; Bioucas-Dias, Jose; Chanussot, Jocelyn

    2016-11-01

    In image deconvolution problems, the diagonalization of the underlying operators by means of the fast Fourier transform (FFT) usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. In this paper, we propose a new deconvolution framework for images with incomplete observations that allows us to work with diagonalized convolution operators, and therefore is very fast. We iteratively alternate the estimation of the unknown pixels and of the deconvolved image, using, e.g., an FFT-based deconvolution method. This framework is an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge tapering. It can be used with any fast deconvolution method. We give an example in which a state-of-the-art method that assumes periodic boundary conditions is extended, using this framework, to unknown boundary conditions. Furthermore, we propose a specific implementation of this framework, based on the alternating direction method of multipliers (ADMM). We provide a proof of convergence for the resulting algorithm, which can be seen as a "partial" ADMM, in which not all variables are dualized. We report experimental comparisons with other primal-dual methods, where the proposed one performed at the level of the state of the art. Four different kinds of applications were tested in the experiments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing, all with unknown boundaries.

  2. A Framework for Fast Image Deconvolution With Incomplete Observations.

    PubMed

    Simoes, Miguel; Almeida, Luis B; Bioucas-Dias, Jose; Chanussot, Jocelyn

    2016-11-01

    In image deconvolution problems, the diagonalization of the underlying operators by means of the fast Fourier transform (FFT) usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. In this paper, we propose a new deconvolution framework for images with incomplete observations that allows us to work with diagonalized convolution operators, and therefore is very fast. We iteratively alternate the estimation of the unknown pixels and of the deconvolved image, using, e.g., an FFT-based deconvolution method. This framework is an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge tapering. It can be used with any fast deconvolution method. We give an example in which a state-of-the-art method that assumes periodic boundary conditions is extended, using this framework, to unknown boundary conditions. Furthermore, we propose a specific implementation of this framework, based on the alternating direction method of multipliers (ADMM). We provide a proof of convergence for the resulting algorithm, which can be seen as a "partial" ADMM, in which not all variables are dualized. We report experimental comparisons with other primal-dual methods, where the proposed one performed at the level of the state of the art. Four different kinds of applications were tested in the experiments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing, all with unknown boundaries. PMID:27576251

  3. Center determination for trailed sources in astronomical observation images

    NASA Astrophysics Data System (ADS)

    Du, Jun Ju; Hu, Shao Ming; Chen, Xu; Guo, Di Fu

    2014-11-01

    Images with trailed sources can be obtained when observing near-Earth objects, such as small astroids, space debris, major planets and their satellites, no matter the telescopes track on sidereal speed or the speed of target. The low centering accuracy of these trailed sources is one of the most important sources of the astrometric uncertainty, but how to determine the central positions of the trailed sources accurately remains a significant challenge to image processing techniques, especially in the study of faint or fast moving objects. According to the conditions of one-meter telescope at Weihai Observatory of Shandong University, moment and point-spread-function (PSF) fitting were chosen to develop the image processing pipeline for space debris. The principles and the implementations of both two methods are introduced in this paper. And some simulated images containing trailed sources are analyzed with each technique. The results show that two methods are comparable to obtain the accurate central positions of trailed sources when the signal to noise (SNR) is high. But moment tends to fail for the objects with low SNR. Compared with moment, PSF fitting seems to be more robust and versatile. However, PSF fitting is quite time-consuming. Therefore, if there are enough bright stars in the field, or the high astronometric accuracy is not necessary, moment is competent. Otherwise, the combination of moment and PSF fitting is recommended.

  4. Similarities Between RF- and Lightning-Induced Airglow in the Upper Atmosphere

    NASA Astrophysics Data System (ADS)

    Sentman, D. D.; Wescott, E. M.; Stenbaek-Nielsen, H. C.; Moudry, D. R.; Sao Sabbas, F. T.

    2002-12-01

    Recent experiments in Alaska using the HAARP and HIPAS high power RF transmitters have succeeded in artificially generating oxygen neutral and molecular nitrogen ion emissions, or artificial airglow, in the ionosphere. An apparently different type of transient airglow generated by lightning, in the form of sprites and elves in the mesosphere and lower ionosphere, has been extensively studied in recent years. Despite occurring in vastly different atmospheric regimes, these seemingly disparate forms of optical emissions, one derived from artificial modification of the ionosphere and the other from natural thunderstorm processes, share a common underlying microphysical description based on electron heating by RF and quasi-DC electric fields, respectively, accompanied by impact excitation of ambient neutrals and subsequent optical relaxation and quenching of excited species. The theoretical description of these processes has its roots in work described by Zel'dovich and Raizer on the microphysics of shock waves and high temperature gasses. This work was subsequently adapted by Gurevich, Papadopoulis and coworkers to describe high power microwave interactions with the stratosphere. Extended to include nonlinear plasma interactions, it is the basis for understanding the effects of intense RF waves on the ionosphere, including creation of airglow, from high power transmitters currently operating in Alaska, Sweden and Russia. Pasko and coworkers have successfully adapted these theories to conditions appropriate to lightning impulse interactions with the upper atmosphere to describe the basic breakdown and streamer processes associated with sprite production. Thus, sprites and RF-induced airglow theories share a common set of concepts at the microphysical level and a common theoretical language. This talk outlines areas of especially strong overlap, and describes some possible high power RF ionospheric interaction experiments that could be performed to help study

  5. First Intrinsic Anisotropy Observations With the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Padin, S.; Cartwright, J. K.; Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Holzapfel, W. L.; Myers, S. T.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We present the first results of observations of the intrinsic anisotropy of the cosmic microwave background radiation with the Cosmic Background Imager from a site at 5080 in altitude in northern Chile. Our observations show a sharp decrease in C_l in the range l = 400 - 1500. Such a decrease in power at high l is one of the fundamental predictions of the standard cosmological model, and these are the first observations which cover a broad enough 1-range to show this decrease in a single experiment. The power, C_l, at l approximately 600 is higher than measured by Boomerang and Maxima, with the differences being significant at the 2.7sigma and 1.9sigma levels, respectively. The C_l we have measured enable us to place limits on the density parameter, Omega(tot) <= 0.4 or Omega(tot) >= 0.7 (90% confidence).

  6. Continuing Studies in Support of Ultraviolet Observations of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Clark, John

    1997-01-01

    This program was a one-year extension of an earlier Planetary Atmospheres program grant, covering the period 1 August 1996 through 30 September 1997. The grant was for supporting work to complement an active program observing planetary atmospheres with Earth-orbital telescopes, principally the Hubble Space Telescope (HST). The recent concentration of this work has been on HST observations of Jupiter's upper atmosphere and aurora, but it has also included observations of Io, serendipitous observations of asteroids, and observations of the velocity structure in the interplanetary medium. The observations of Jupiter have been at vacuum ultraviolet wavelengths, including imaging and spectroscopy of the auroral and airglow emissions. The most recent HST observations have been at the same time as in situ measurements made by the Galileo orbiter instruments, as reflected in the meeting presentations listed below. Concentrated efforts have been applied in this year to the following projects: The analysis of HST WFPC 2 images of Jupiter's aurora, including the Io footprint emissions. We have performed a comparative analysis of the lo footprint locations with two magnetic field models, studied the statistical properties of the apparent dawn auroral storms on Jupiter, and found various other repeated patterns in Jupiter's aurora. Analysis and modeling of airglow and auroral Ly alpha emission line profiles from Jupiter. This has included modeling the aurora] line profiles, including the energy degradation of precipitating charged particles and radiative transfer of the emerging emissions. Jupiter's auroral emission line profile is self-absorbed, since it is produced by an internal source, and the resulting emission with a deep central absorption from the overlying atmosphere permits modeling of the depth of the emissions, plus the motion of the emitting layer with respect to the overlying atmospheric column from the observed Doppler shift of the central absorption. By contrast

  7. Improved SOT (Hinode mission) high resolution solar imaging observations

    NASA Astrophysics Data System (ADS)

    Goodarzi, H.; Koutchmy, S.; Adjabshirizadeh, A.

    2015-08-01

    We consider the best today available observations of the Sun free of turbulent Earth atmospheric effects, taken with the Solar Optical Telescope (SOT) onboard the Hinode spacecraft. Both the instrumental smearing and the observed stray light are analyzed in order to improve the resolution. The Point Spread Function (PSF) corresponding to the blue continuum Broadband Filter Imager (BFI) near 450 nm is deduced by analyzing (i) the limb of the Sun and (ii) images taken during the transit of the planet Venus in 2012. A combination of Gaussian and Lorentzian functions is selected to construct a PSF in order to remove both smearing due to the instrumental diffraction effects (PSF core) and the large-angle stray light due to the spiders and central obscuration (wings of the PSF) that are responsible for the parasitic stray light. A Max-likelihood deconvolution procedure based on an optimum number of iterations is discussed. It is applied to several solar field images, including the granulation near the limb. The normal non-magnetic granulation is compared to the abnormal granulation which we call magnetic. A new feature appearing for the first time at the extreme- limb of the disk (the last 100 km) is discussed in the context of the definition of the solar edge and of the solar diameter. A single sunspot is considered in order to illustrate how effectively the restoration works on the sunspot core. A set of 125 consecutive deconvolved images is assembled in a 45 min long movie illustrating the complexity of the dynamical behavior inside and around the sunspot.

  8. OBSERVATIONS OF RECONNECTING FLARE LOOPS WITH THE ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Warren, Harry P.; Sheeley, Neil R. Jr.; O'Brien, Casey M.

    2011-12-01

    Perhaps the most compelling evidence for the role of magnetic reconnection in solar flares comes from the supra-arcade downflows that have been observed above many post-flare loop arcades. These downflows are thought to be related to highly non-potential field lines that have reconnected and are propagating away from the current sheet. We present new observations of supra-arcade downflows taken with the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). The morphology and dynamics of the downflows observed with AIA provide new evidence for the role of magnetic reconnection in solar flares. With these new observations we are able to measure downflows originating at larger heights than in previous studies. We find, however, that the initial velocities measured here ({approx}144 km s{sup -1}) are well below the Alfven speed expected in the lower corona, and consistent with previous results. We also find no evidence that the downflows brighten with time, as would be expected from chromospheric evaporation. These observations suggest that simple two-dimensional models cannot explain the detailed observations of solar flares.

  9. Analyzing Serendipitous Asteroid Observations in Imaging Data using PHOTOMETRYPIPELINE

    NASA Astrophysics Data System (ADS)

    Ard, Christopher; Mommert, Michael; Trilling, David E.

    2016-10-01

    Asteroids are nearly ubiquitous in the night sky, making them present in the majority of imaging data taken every night. Serendipitous asteroid observations represent a treasure trove to Solar System researchers: accurate positional measurements of asteroids provide important constraints on their sometimes highly uncertain orbits, whereas calibrated photometric measurements can be used to establish rotational periods, intrinsic colors, or photometric phase curves.We present an add-on to the PHOTOMETRYPIPELINE (PP, github.com/mommermi/photometrypipeline, see Poster presentation 123.42) that identifies asteroids that have been observed serendipitously and extracts astrometry and calibrated photometry for these objects. PP is an open-source Python 2.7 software suite that provides image registration, aperture photometry, photometric calibration, and target identification with only minimal human interaction.Asteroids are identified based on approximate positions that are pre-calculated for a range of dates. Using interpolated coordinates, we identify potential asteroids that might be in the observed field and query their exact positions and positional uncertainties from the JPL Horizons system. The method results in robust astrometry and calibrated photometry for all asteroids in the field as a function of time. Our measurements will supplement existing photometric databases of asteroids and improve their orbits.We present first results using this procedure based on imaging data from the Vatican Advanced Technology Telescope.This work was done in the framework of NAU's REU summer program that is supported by NSF grant AST-1461200. PP was developed in the framework of the "Mission Accessible Near-Earth Object Survey" (MANOS) and is supported by NASA SSO grants NNX15AE90G and NNX14AN82G.

  10. Observing submesoscale currents from high resolution surface roughness images

    NASA Astrophysics Data System (ADS)

    Rascle, N.; Chapron, B.; Nouguier, F.; Mouche, A.; Ponte, A.

    2015-12-01

    At times, high resolution sea surface roughness variations can provide stunning details of submesoscale upper ocean dynamics. As interpreted, transformations of short scale wind waves by horizontal current gradients are responsible for those spectacular observations. Here we present tow major advances towards the quantitative interpretation of those observations. First, we show that surface roughness variations mainly trace two particular characteristics of the current gradient tensor, the divergence and the strain in the wind direction. Local vorticity and shear in the wind direction should not affect short scale roughness distribution and would not be detectable. Second, we discuss the effect of the viewing direction using sets of quasi-simultaneous sun glitter images, taken from different satellites to provide different viewing configurations. We show that upwind and crosswind viewing observations can be markedly different. As further confirmed with idealized numerical simulations, this anisotropy well traces surface current strain area, while more isotropic contrasts likely trace areas dominated by surface divergence conditions. These findings suggest the potential to directly observe surface currents at submesoscale by using high resolution roughness observations at multiple azimuth viewing angles.

  11. MOLECULAR AND IONIZED HYDROGEN IN 30 DORADUS. I. IMAGING OBSERVATIONS

    SciTech Connect

    Yeh, Sherry C. C.; Seaquist, Ernest R.; Matzner, Christopher D.; Pellegrini, Eric W.

    2015-07-10

    We present the first fully calibrated H{sub 2} 1–0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H{sub 2}-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H{sub 2}, Brγ, CO, and 8 μm emission, the H{sub 2} to Brγ line ratio, and Cloudy models, we find that the H{sub 2} emission is formed inside the PDRs of 30 Doradus, 2–3 pc to the ionization front of the H ii region, in a relatively low-density environment <10{sup 4} cm{sup −3}. Comparisons with Brγ, 8 μm, and CO emission indicate that H{sub 2} emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  12. Bayesian Analysis of Hmi Images and Comparison to Tsi Variations and MWO Image Observables

    NASA Astrophysics Data System (ADS)

    Parker, D. G.; Ulrich, R. K.; Beck, J.; Tran, T. V.

    2015-12-01

    We have previously applied the Bayesian automatic classification system AutoClass to solar magnetogram and intensity images from the 150 Foot Solar Tower at Mount Wilson to identify classes of solar surface features associated with variations in total solar irradiance (TSI) and, using those identifications, modeled TSI time series with improved accuracy (r > 0.96). (Ulrich, et al, 2010) AutoClass identifies classes by a two-step process in which it: (1) finds, without human supervision, a set of class definitions based on specified attributes of a sample of the image data pixels, such as magnetic field and intensity in the case of MWO images, and (2) applies the class definitions thus found to new data sets to identify automatically in them the classes found in the sample set. HMI high resolution images capture four observables-magnetic field, continuum intensity, line depth and line width-in contrast to MWO's two observables-magnetic field and intensity. In this study, we apply AutoClass to the HMI observables for images from June, 2010 to December, 2014 to identify solar surface feature classes. We use contemporaneous TSI measurements to determine whether and how variations in the HMI classes are related to TSI variations and compare the characteristic statistics of the HMI classes to those found from MWO images. We also attempt to derive scale factors between the HMI and MWO magnetic and intensity observables.The ability to categorize automatically surface features in the HMI images holds out the promise of consistent, relatively quick and manageable analysis of the large quantity of data available in these images. Given that the classes found in MWO images using AutoClass have been found to improve modeling of TSI, application of AutoClass to the more complex HMI images should enhance understanding of the physical processes at work in solar surface features and their implications for the solar-terrestrial environment.Ulrich, R.K., Parker, D, Bertello, L. and

  13. First Radio Burst Imaging Observation From Mingantu Ultrawide Spectral Radioheliograph

    NASA Astrophysics Data System (ADS)

    Yan, Yihua; Chen, Linjie; Yu, Sijie; CSRH Team

    2015-08-01

    Radio imaging spectroscopy over wide range wavelength in dm/cm-bands will open new windows on solar flares and coronal mass ejections by tracing the radio emissions from accelerated electrons. The Chinese Spectral Radioheliograph (CSRH) with two arrays in 400MHz-2GHz /2-15GHz ranges with 64/532 frequency channels have been established in Mingantu Observing Station, Inner Mongolia of China, since 2013 and is in test observations now. CSRH is renamed as MUSER (Mingantu Ultrawide SpEctral Radioheliograph) after it's accomplishment We will introduce the progress and current status of CSRH. Some preliminary results of CSRH will be presented.On 11 Nov2014, the first burst event was registered by MUSER-I array at 400MHz-2GHz waveband. According to SGD event list there was a C-class flare peaked at 04:49UT in the disk center and the radio bursts around 04:22-04:24UT was attributed to this flare. However, MUSER-I image observation of the burst indicates that the radio burst peaked around 04:22UT was due to the eruption at the east limb of the Sun and connected to a CME appeared in that direction about 1 hour later. This demonstrate the importance of the spectroscopy observation of the solar radio burst.Acknowledgement: The CSRH team includes Wei Wang, Zhijun Chen, Fei Liu, Lihong Geng and Jian Zhang and CSRH project is supported by National Major Scientific Equipment R&D Project ZDYZ2009-3. The research was also supported by NSFC grants (11433006, 11221063), MOST grant (MOST2011CB811401), CAS Pilot-B Project (XDB09000000) and Marie Curie PIRSES- GA-295272-RADIOSUN.

  14. Image quality in CT: From physical measurements to model observers.

    PubMed

    Verdun, F R; Racine, D; Ott, J G; Tapiovaara, M J; Toroi, P; Bochud, F O; Veldkamp, W J H; Schegerer, A; Bouwman, R W; Giron, I Hernandez; Marshall, N W; Edyvean, S

    2015-12-01

    Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.

  15. Image quality in CT: From physical measurements to model observers.

    PubMed

    Verdun, F R; Racine, D; Ott, J G; Tapiovaara, M J; Toroi, P; Bochud, F O; Veldkamp, W J H; Schegerer, A; Bouwman, R W; Giron, I Hernandez; Marshall, N W; Edyvean, S

    2015-12-01

    Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment. PMID:26459319

  16. Processing Earth Observing images with Ames Stereo Pipeline

    NASA Astrophysics Data System (ADS)

    Beyer, R. A.; Moratto, Z. M.; Alexandrov, O.; Fong, T.; Shean, D. E.; Smith, B. E.

    2013-12-01

    ICESat with its GLAS instrument provided valuable elevation measurements of glaciers. The loss of this spacecraft caused a demand for alternative elevation sources. In response to that, we have improved our Ames Stereo Pipeline (ASP) software (version 2.1+) to ingest satellite imagery from Earth satellite sources in addition to its support of planetary missions. This enables the open source community a free method to generate digital elevation models (DEM) from Digital Globe stereo imagery and alternatively other cameras using RPC camera models. Here we present details of the software. ASP is a collection of utilities written in C++ and Python that implement stereogrammetry. It contains utilities to manipulate DEMs, project imagery, create KML image quad-trees, and perform simplistic 3D rendering. However its primary application is the creation of DEMs. This is achieved by matching every pixel between the images of a stereo observation via a hierarchical coarse-to-fine template matching method. Matched pixels between images represent a single feature that is triangulated using each image's camera model. The collection of triangulated features represents a point cloud that is then grid resampled to create a DEM. In order for ASP to match pixels/features between images, it requires a search range defined in pixel units. Total processing time is proportional to the area of the first image being matched multiplied by the area of the search range. An incorrect search range for ASP causes repeated false positive matches at each level of the image pyramid and causes excessive processing times with no valid DEM output. Therefore our system contains automatic methods for deducing what the correct search range should be. In addition, we provide options for reducing the overall search range by applying affine epipolar rectification, homography transform, or by map projecting against a prior existing low resolution DEM. Depending on the size of the images, parallax, and image

  17. Degradation of near infrared and shortwave infrared imager performance due to atmospheric scattering of diffuse night illumination.

    PubMed

    Vollmerhausen, Richard

    2013-07-20

    On moonless nights, airglow is the primary source of natural ground illumination in the near infrared and shortwave infrared spectral bands. Therefore, night vision imagers operating in these spectral bands view targets that are diffusely illuminated. Aerosol scattering of diffuse airglow illumination causes atmospheric path radiance and that radiance causes increased imager noise. These phenomena and their quantification are described in this paper. PMID:23872754

  18. Mesospheric gravity waves and ionospheric plasma bubbles observed during the COPEX campaign

    NASA Astrophysics Data System (ADS)

    Paulino, I.; Takahashi, H.; Medeiros, A. F.; Wrasse, C. M.; Buriti, R. A.; Sobral, J. H. A.; Gobbi, D.

    2011-07-01

    During the Conjugate Point Experiment (COPEX) campaign performed at Boa Vista (2.80∘N;60.70∘W, dip angle21.7∘N) from October to December 2002, 15 medium-scale gravity waves in the OHNIR airglow images were observed. Using a Keogram image analysis, we estimate their parameters. Most of the waves propagate to Northwest, indicating that their main sources are Southeast of Boa Vista. Quasi-simultaneous plasma bubble activities in the OI 630 nm images were observed in seven cases. The distances between the bubble depletions have a linear relationship with the wavelengths of the gravity waves observed in the mesosphere, which suggests a direct contribution of the mesospheric medium-scale gravity waves in seeding the equatorial plasma bubbles.

  19. A method for determining the drift velocity of plasma depletions in the equatorial ionosphere using far-ultraviolet spacecraft observations: initial results

    NASA Astrophysics Data System (ADS)

    England, S. L.; Immel, T. J.; Park, S. H.; Frey, H. U.; Mende, S. B.

    2007-12-01

    The Far-Ultraviolet Imager (IMAGE-FUV) on-board the NASA IMAGE satellite has been used to observe plasma depletions in the nightside equatorial ionosphere. Observations from periods around spacecraft apogee, during which equatorial regions are visible for several hours, have allowed the velocity of these plasma depletions to be determined. A new method for determining the velocity of these depletions using an image analysis technique, Tracking Of Airglow Depletions (TOAD), has been developed. TOAD allows the objective identification and tracking of depletions. The automation of this process has also allowed for the tracking of a greater number of depletions than previously achieved without requiring any human input, which shows that TOAD is suitable for use with large data sets and for future routine monitoring of the ionosphere from space. Furthermore, this allows the drift velocities of each depletion to be determined as a function of magnetic latitude as well as local time. Previous ground-based airglow observations from a small number of locations have indicated that the drift velocities of depletions may vary rapidly with magnetic latitude. Here we shall present the first results from TOAD of this shear in drift velocities from our global sample of depletion drift velocities.

  20. Images of Bottomside Irregularities Observed at Topside Altitudes

    NASA Technical Reports Server (NTRS)

    Burke, William J.; Gentile, Louise C.; Shomo, Shannon R.; Roddy, Patrick A.; Pfaff, Robert F.

    2012-01-01

    We analyzed plasma and field measurements acquired by the Communication/ Navigation Outage Forecasting System (C/NOFS) satellite during an eight-hour period on 13-14 January 2010 when strong to moderate 250 MHz scintillation activity was observed at nearby Scintillation Network Decision Aid (SCINDA) ground stations. C/NOFS consistently detected relatively small-scale density and electric field irregularities embedded within large-scale (approx 100 km) structures at topside altitudes. Significant spectral power measured at the Fresnel (approx 1 km) scale size suggests that C/NOFS was magnetically conjugate to bottomside irregularities similar to those directly responsible for the observed scintillations. Simultaneous ion drift and plasma density measurements indicate three distinct types of large-scale irregularities: (1) upward moving depletions, (2) downward moving depletions, and (3) upward moving density enhancements. The first type has the characteristics of equatorial plasma bubbles; the second and third do not. The data suggest that both downward moving depletions and upward moving density enhancements and the embedded small-scale irregularities may be regarded as Alfvenic images of bottomside irregularities. This interpretation is consistent with predictions of previously reported theoretical modeling and with satellite observations of upward-directed Poynting flux in the low-latitude ionosphere.

  1. Instrument for the monochromatic observation of all sky auroral images.

    PubMed

    Mende, S B; Eather, R H; Aamodt, E K

    1977-06-01

    To investigate the dynamics of auroras and faint upper atmospheric emissions, a new type of imaging instrument was developed. The instrument is a wide field of view, narrow-spectral-band imaging system using an intensified S.E.C. TV camera in a time exposure mode. Pictures were taken at very low light levels of a few photons per exposure per resolution element. These pictures are displayed in the form of a pseudocolor presentation in which the color represents spectral ratios of two of the observed auroral spectral emission features. The spectral ratios play an important part in the interpretation of auroral particle dynamics. A digital picture processing facility is also part of the system which enables the digital manppulation of the pictures at standard TV rates. As an example, hydrogen auroras can be displayed having been corrected for nonspectral background by subtracting a picture obtained by a suitable background filter. The instrumentation was calibrated in the laboratory and was used in several field xperiments. Elaborate exposure sequences were developed to extend the dynamic range and to cover the large range of auroral brightnesses in a fairly linear manner. PMID:20168774

  2. Instrument for the monochromatic observation of all sky auroral images.

    PubMed

    Mende, S B; Eather, R H; Aamodt, E K

    1977-06-01

    To investigate the dynamics of auroras and faint upper atmospheric emissions, a new type of imaging instrument was developed. The instrument is a wide field of view, narrow-spectral-band imaging system using an intensified S.E.C. TV camera in a time exposure mode. Pictures were taken at very low light levels of a few photons per exposure per resolution element. These pictures are displayed in the form of a pseudocolor presentation in which the color represents spectral ratios of two of the observed auroral spectral emission features. The spectral ratios play an important part in the interpretation of auroral particle dynamics. A digital picture processing facility is also part of the system which enables the digital manppulation of the pictures at standard TV rates. As an example, hydrogen auroras can be displayed having been corrected for nonspectral background by subtracting a picture obtained by a suitable background filter. The instrumentation was calibrated in the laboratory and was used in several field xperiments. Elaborate exposure sequences were developed to extend the dynamic range and to cover the large range of auroral brightnesses in a fairly linear manner.

  3. Observing and recording instantaneous images on ATM television monitors

    NASA Technical Reports Server (NTRS)

    Patterson, N. P.; Delamere, W. A.; Tousey, R.

    1977-01-01

    A persistent image-converter device was utilized to make visible to the astronaut solar images that were isolated, instantaneous flashes on the ATM TV monitors. In addition, these instantaneous images, as well as normal TV images, were recorded with a Polaroid SX-70 camera for study by the astronauts.

  4. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, KoZo; Kojima, Hirotsugu; Boardson, Scott A.; Garcia, Leonard N.; Matsumoto, Hiroshi; Green, James L.; Reinisch, Bodo W.

    2013-01-01

    We report the simultaneous detection of a terrestrial myriametric radio burst (TMRB) by IMAGE and Geotail on 19 August 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50kHz). Comparisons with all known nonthermal myriametric radiation components reveal that the TMRB might be a distinct radiation with a source that is unrelated to the previously known radiation. Considerations of beaming from spin-modulation analysis and observing satellite and source locations suggest that the TMRB may have a fan beamlike radiation pattern emitted by a discrete, dayside source located along the poleward edge of magnetospheric cusp field lines. TMRB responsiveness to IMF Bz and By orientations suggests that a possible source of the TMRB could be due to dayside magnetic reconnection instigated by northward interplanetary field condition.

  5. BATMAN flies: a compact spectro-imager for space observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane

    2014-08-01

    BATMAN flies is a compact spectro-imager based on MOEMS for generating reconfigurable slit masks, and feeding two arms in parallel. The FOV is 25 x 12 arcmin2 for a 1m telescope, in infrared (0.85-1.7μm) and 500-1000 spectral resolution. Unique science cases for Space Observation are reachable with this deep spectroscopic multi-survey instrument: deep survey of high-z galaxies down to H=25 on 5 deg2 with continuum detection and all z>7 candidates at H=26.2 over 5 deg2; deep survey of young stellar clusters in nearby galaxies; deep survey of the Kuiper Belt of ALL known objects down to H=22. Pathfinder towards BATMAN in space is already running with ground-based demonstrators.

  6. Multitemporal observations of sugarcane by TerraSAR-X images.

    PubMed

    Baghdadi, Nicolas; Cresson, Rémi; Todoroff, Pierre; Moinet, Soizic

    2010-01-01

    The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island (located in the Indian Ocean). Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height and NDVI (Normalized Difference Vegetation Index). The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). Results also showed that the co-polarizations channels (HH and VV) were well correlated. High correlation between SAR signal and NDVI calculated from SPOT-4/5 images was observed. TerraSAR data showed that after strong rains the soil contribution to the backscattering of sugarcane fields can be important for canes with heights of terminal visible dewlap (htvd) less than 50 cm (total cane heights around 155 cm). This increase in radar signal after strong rains could involve an ambiguity between young and mature canes. Indeed, the radar signal on TerraSAR images acquired in wet soil conditions could be of the same order for fields recently harvested and mature sugarcane fields, making difficult the detection of cuts. Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidence angles of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired

  7. Galileo imaging observations of Lunar Maria and related deposits

    NASA Astrophysics Data System (ADS)

    Greeley, Ronald; Kadel, Steven D.; Williams, David A.; Gaddis, Lisa R.; Head, James W.; McEwen, Alfred S.; Murchie, Scott L.; Nagel, Engelbert; Neukum, Gerhard; Pieters, Carle M.; Sunshine, Jessica M.; Wagner, Roland; Belton, Michael J. S.

    The Galileo spacecraft imaged parts of the western limb and far side of the Moon in December 1990. Ratios of 0.41/0.56 μm filter images from the Solid State Imaging (SSI) experiment provided information on the titanium content of mare deposits; ratios of the 0.76/0.99 μm images indicated 1 μm absorptions associated with Fe2+ in mafic minerals. Mare ages were derived from crater statistics obtained from Lunar Orbiter images. Results on mare compositions in western Oceanus Procellarum and the Humorum basin are consistent with previous Earth-based observations, thus providing confidence in the use of Galileo data to extract compositional information. Mare units in the Grimaldi and Riccioli basins range in age from 3.25 to 3.48 Ga and consist of medium- to medium-high titanium (<4 to 7% TiO2) content lavas. The Schiller-Zucchius basin shows a higher 0.76/0.99 μm ratio than the surrounding highlands, indicating a potentially higher mafic mineral content consistent with previous interpretations that the area includes mare deposits blanketed by highland ejecta and light plains materials. The oldest mare materials in the Orientale basin occur in south-central Mare Orientale and are 3.7 Ga old; youngest mare materials are in Lacus Autumni and are 2.85 Ga old; these units are medium- to medium-high titanium (<4 to 7% TiO2) basalts. Thus, volcanism was active in Orientale for 0.85 Ga, but lavas were relatively constant in composition. Galileo data suggest that Mendel-Rydberg mare is similar to Mare Orientale; cryptomare are present as well. Thus, the mare lavas on the western limb and far side (to 178°E) are remarkably uniform in composition, being generally of medium- to medium-high titanium content and having relatively low 0.76/0.99 μm ratios. This region of the Moon is between two postulated large impact structures, the Procellarum and the South Pole-Aitken basins, and may have a relatively thick crust. In areas underlain by an inferred thinner crust, i.e., zones

  8. Earth Observing-1 Advanced Land Imager: Imaging Performance On-Orbit

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.

    2002-01-01

    This report analyzes the on-orbit imaging performance of the Advanced Land Imager (ALI) on the Earth Observing-1 satellite. The pre-flight calibrations are first summarized. The methods used to reconstruct and geometrically correct the image data from this push-broom sensor are described. The method used here does not refer to the position and attitude telemetry from the spacecraft. Rather, it is assumed that the image of the scene moves across the focal plane with a constant velocity, which can be ascertained from the image data itself. Next, an assortment of the images so reconstructed is presented. Color images sharpened with the 10-m panchromatic band data are shown, and the algorithm for producing them from the 30-m multispectral data is described. The approach taken for assessing spatial resolution is to compare the sharpness of features in the on-orbit image data with profiles predicted on the basis of the pre-flight calibrations. A large assortment of bridge profiles is analyzed, and very good fits to the predicted shapes are obtained. Lunar calibration scans are analyzed to examine the sharpness of the edge-spread function at the limb of the moon. The darkness of the space beyond the limb is better for this purpose than anything that could be simulated on the ground. From these scans, we find clear evidence of scattering in the optical system, as well as some weak ghost images. Scans of planets and stars are also analyzed. Stars are useful point sources of light at all wavelengths, and delineate the point-spread functions of the system. From a quarter-speed scan over the Pleiades, we find that the ALI can detect 6th magnitude stars. The quality of the reconstructed images verifies the capability of the ALI to produce Landsat-type multi spectral data. The signal-to-noise and panchromatic spatial resolution are considerably superior to those of the existing Landsat sensors. The spatial resolution is confirmed to be as good as it was designed to be.

  9. Observations of field line resonance with global auroral images

    NASA Astrophysics Data System (ADS)

    Liou, K.; Takahashi, K.

    2013-12-01

    We report results from a detailed analysis of an auroral luminosity pulsation event in the Pc 5 range associated with auroral breakup using Polar ultraviolet imager data and magnetic field observations from the ground-based CARISMA magnetometer array and in space by the GOES 8 satellite. It is found that (1) the auroral pulsation appeared predominantly at frequencies around ~0.9 mHz and ~1.8 mHz in the midnight sector centered at the onset (~2100 magnetic local time (MLT)), (2) the longitudinal extent of the auroral pulsation is wider (~12 h in MLT) for the lower-frequency mode and is much narrower for the higher-frequency mode (~3 h in MLT), (3) both auroral and ground magnetic field data show latitudinal wave amplitude and phase shift structures consistent with the field-line resonance (FLR) theory, (4) magnetic field measurements from GOES 8, which was near the onset location, also show two spectral peaks at ~0.9 mHz in the compressional component and at ~2.1 mHz in the poloidal component. It is suggested the observed Pc 5 ULF waves are FLRs produced by the onset-associated magnetic field dipolarization.

  10. Comparison of theories for gravity wave induced fluctuations in airglow emissions

    NASA Technical Reports Server (NTRS)

    Walterscheid, R. L.; Schubert, G.; Hickey, M. P.

    1994-01-01

    A comparison is undertaken of theories for the gravity wave induced fluctuations in the intensity of airglow emissions and the associated temperature of the source region. The comparison is made in terms of Krassovsky's ratio eta(sub E) for a vertically extended emission region (eta(sub E) is the ratio of the vertically integrated normalized intensity perturbation to the vertically integrated intensity-weighted temperature perturbation). It is shown that the formulas for eta(sub E) in the works by Tarasick and Hines (1990) and Schubert et al. (1991) are in agreement for the case of an inviscid atmosphere. The calculation of eta(sub E) using the theory of Tarasick and Hines (1990) requires determination of their function chi; we show that chi is simply related to the 'single-level' Krassovsky's ratio eta of Schubert et al. (1991). The general relationship between chi and eta is applied to a simple chemical-dynamical model of the O2 atmospheric airglow and the altitude dependence of these quantities is evaluated for nonsteady state chemistry. Though the Tarasick and Hines (1990) formula for eta(sub E) does not explicitly depend on the scale heights of the minor constituents involved in airglow chemistry, eta(sub E) implicitly depends upon these scale heights through its dependences on chemical production and loss contained in chi. We demonstrate this dependence of eta(sub E) for the OH nightglow on atomic oxygen scale height by direct numerical evaluation of eta(sub E) in this case the dependence originates in the chemical production of perturbed ozone.

  11. Monitoring Saturn's Upper Atmosphere Density Variations Using Helium 584 Å Airglow

    NASA Astrophysics Data System (ADS)

    Parkinson, Chris

    2016-10-01

    The study of He 584 Å brightness of Saturn is interesting as the EUV planetary airglow have the potential to yield useful information about mixing and other important parameters in its thermosphere. Resonance scattering of sunlight by He atoms is the principal source of the planetary emission of He 585 Å. The helium is embedded in an absorbing atmosphere of H2 and since it is heavier than the background atmosphere, it's concentration falls off rapidly above the homopause. The scattering region (i.e. where the absorption optical depth in H2 is < ~1) generally lies well above the homopause. As the eddy diffusion coefficient, Kzz, increases in the middle atmosphere, relatively more helium is mixed into the scattering region and thus the reflected intensity increases. The principal parameter involved in determining the He 584 Å albedo are the He volume mixing ratio, f, well below the homopause, and Kzz, (which will generally be a function of altitude), the solar He 584 Å flux and line shape, and the atmospheric temperature profile. The main science objective discussed is the estimation of the helium mixing ratio in the lower atmosphere. Specifically, He emissions come from above the homopause where τ =1 in H2 and therefore the interpretation depends mainly on two parameters: He mixing ratio of the lower atmosphere and Kzz. The occultations of Koskinen et al (2015) give Kzz with an accuracy that has never been possible before and the combination of occultations and airglow therefore provide estimates of the mixing ratio in the lower atmosphere. We have made these estimates at several locations that can be reasonably studied with both occultations and airglow and then average the results. Our results point to a greatly improved estimate of the mixing ratio of He in the upper atmosphere and below. The second topic addressed is regarding constraining the dynamics in the atmosphere by using the estimate of the He mixing ratio from the main objective. Once we have an

  12. Miniature imaging photometer. Phase 2. Technical report

    SciTech Connect

    Eather, R.H.; Lance, C.A.

    1990-07-15

    Progress is presented in the design and fabrication of a miniature imaging photometer for aurora and airglow studies. Detailed descriptions are presented of present status of optical design and fabrication, detector selection and detector housing fabrication, electronics and control system design and prototyping, selection of image analysis hardware and software, and control software development.

  13. Ionospheric and Thermospheric Imaging from Geosynchronous Orbit

    NASA Astrophysics Data System (ADS)

    McCoy, R. P.; Wood, K.; Dymond, K. F.; Thonnard, S. E.; Cannon, K.; Makela, J.

    2001-12-01

    The Office of Naval Research is sponsoring the development of an ultraviolet imaging system to test the concept of real-time synoptic observations of the ionosphere and thermosphere from geosynchronous orbit. The observational hardware consists of two ultraviolet telescopes mounted to a two-axis gimbal to measure airglow radiances on the disk and limb of the Earth. A far-ultraviolet telescope will use a filter wheel with filters to image atomic oxygen emission at 130.4 nm, 135.6 nm, and molecular nitrogen emission at 143.0 nm. An extreme-ultraviolet telescope will image the oxygen ion airglow at 83.4 nm. The oxygen emission measurements will be used to infer nightside ionospheric total electron content (TEC) on the disk and electron density profiles on the limb. On the dayside the oxygen ion measurements will be used to determine electron density profiles, and the oxygen and nitrogen measurements will be used to infer thermospheric neutral density profiles on the limb and O/N2 ratios on the disk. The telescope fields of view cover a 1000 km x 1000 km region with 10 km x 10 km resolution. A goal for nightside TEC measurements is to obtain images with 100 second integrations and to be able to track ionospheric irregularities in real time as "weather systems". Ratios of oxygen nightglow measurements will be used to explore the possibility of providing three dimensional measurements of the ionosphere. These telescopes will be mounted aboard an Air Force Space Test Program satellite which will be launched into geosynchronous orbit over the continental U. S. for about year and then moved over the Indian Ocean for an additional seven years.

  14. Observations and modeling of the coupled latitude-altitude patterns of equatorial plasma depletions

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Zesta, Eftyhia; Shodhan, Sheela; Sultan, Peter J.; Doe, Richard; Sahai, Yogeshwar; Baumgardner, Jeffrey

    2005-09-01

    The equatorial ionosphere is host to the most dramatic and enigmatic plasma instability mechanism in the geospace environment. Equatorial spread F (ESF) was discovered in early ionosonde measurements and interpreted theoretically using Rayleigh-Taylor theory. Subsequent diagnostic and modeling advances have improved substantially our understanding of ESF onset and evolution and its associated effects on the ionosphere throughout the low-latitude domain. The degree to which ESF mechanisms penetrate into the lower midlatitudes is a topic of current study, a reverse of the familiar concept of high-to-low latitude coupling for space weather phenomena. Optical diagnostic systems, first ground based and now space based, reveal the presence of ESF structures via images of airglow depletions that are aligned in the approximately north-south direction spanning the geomagnetic equator. Ground-based all-sky camera systems used to capture the two-dimensional horizontal patterns of airglow depletions are the main source of observations showing that ESF processes intrude to midlatitudes in the L ˜ 1.5 domain. In this paper we review the process of mapping airglow depletions along geomagnetic field lines to the equatorial plane, hence defining the maximum apex heights achieved. A case study comparison of simultaneous radar backscatter data from Kwajalein with optical data from Wake Island, sites that share common magnetic meridians in the Pacific section, confirms the utility of the approach and its applicability to sites at other longitudes. Modeling studies based on buoyancy arguments using flux tube-integrated mean density values versus L shell apex heights show that instability-induced plasma depletions starting at F layer bottomside heights easily reach altitudes above 2000 km in the equatorial plane, implying that ESF intrusions to lower midlatitudes should be a relatively frequent occurrence.

  15. Lightning Imaging Sensor (LIS) for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Christian, Hugh J.; Blakeslee, Richard J.; Goodman, Steven J.

    1992-01-01

    Not only are scientific objectives and instrument characteristics given of a calibrated optical LIS for the EOS but also for the Tropical Rainfall Measuring Mission (TRMM) which was designed to acquire and study the distribution and variability of total lightning on a global basis. The LIS can be traced to a lightning mapper sensor planned for flight on the GOES meteorological satellites. The LIS consists of a staring imager optimized to detect and locate lightning. The LIS will detect and locate lightning with storm scale resolution (i.e., 5 to 10 km) over a large region of the Earth's surface along the orbital track of the satellite, mark the time of occurrence of the lightning, and measure the radiant energy. The LIS will have a nearly uniform 90 pct. detection efficiency within the area viewed by the sensor, and will detect intracloud and cloud-to-ground discharges during day and night conditions. Also, the LIS will monitor individual storms and storm systems long enough to obtain a measure of the lightning flashing rate when they are within the field of view of the LIS. The LIS attributes include low cost, low weight and power, low data rate, and important science. The LIS will study the hydrological cycle, general circulation and sea surface temperature variations, along with examinations of the electrical coupling of thunderstorms with the ionosphere and magnetosphere, and observations and modeling of the global electric circuit.

  16. Satellite observations and instrumentation for imaging energetic neutral atoms

    NASA Astrophysics Data System (ADS)

    Voss, Henry D.; Mobilia, Joseph; Collin, Henry L.; Imhof, William L.

    1992-06-01

    Direct measurements of energetic neutral atoms (ENA) and ions have been obtained with the cooled solid state detectors on the low altitude (220 km) three-axis stabilized S81-1/SEEP satellite and on the spinning 400 km X 5.5 Re CRRES satellite. During magnetic storms ENA and ion precipitation (E > 10 keV) is evident over the equatorial region from the LE spectrometer on the SEEP payload (ONR 804). The spinning motion of the CRRES satellite allows for simple mapping of the magnetosphere using the IMS-HI (ONR 307-8-3) neutral spectrometer. This instrument covers the energy range from 20 to 1000 keV and uses a 7 kG magnetic field to screen out protons less than about 50 MeV. ENA and the resulting low- altitude ion belt have been observed with the IMS-HI instrument. Recently, an advanced spectrometer (SEPS) has been developed to image electrons, ions, and neutrals on the despun platform of the POLAR satellite (approximately 1.8 X 9 Re) for launch in the mid-90's as part of the NASA ISTP/GGS program. For this instrument a 256 element solid state pixel array has been developed that interfaces to 256 amplifier strings using a custom 16 channel microcircuit chip. In addition, this instrument features a motor controlled iris wheel and anticoincidence electronics.

  17. Advanced mesospheric temperature mapper for high-latitude airglow studies.

    PubMed

    Pautet, P-D; Taylor, M J; Pendleton, W R; Zhao, Y; Yuan, T; Esplin, R; McLain, D

    2014-09-10

    Over the past 60 years, ground-based remote sensing measurements of the Earth's mesospheric temperature have been performed using the nighttime hydroxyl (OH) emission, which originates at an altitude of ∼87  km. Several types of instruments have been employed to date: spectrometers, Fabry-Perot or Michelson interferometers, scanning-radiometers, and more recently temperature mappers. Most of them measure the mesospheric temperature in a few sample directions and/or with a limited temporal resolution, restricting their research capabilities to the investigation of larger-scale perturbations such as inertial waves, tides, or planetary waves. The Advanced Mesospheric Temperature Mapper (AMTM) is a novel infrared digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band (at ∼1.5  μm) to create intensity and temperature maps of the mesosphere around 87 km. The data are obtained with an unprecedented spatial (∼0.5  km) and temporal (typically 30″) resolution over a large 120° field of view, allowing detailed measurements of wave propagation and dissipation at the ∼87  km level, even in the presence of strong aurora or under full moon conditions. This paper describes the AMTM characteristics, compares measured temperatures with values obtained by a collocated Na lidar instrument, and presents several examples of temperature maps and nightly keogram representations to illustrate the excellent capabilities of this new instrument. PMID:25321674

  18. SWIR Hemispherical Air-Glow Plotting System SHAPS

    NASA Astrophysics Data System (ADS)

    Gonglewski, John D.; Myers, Michael M.; Dayton, David C.; Fertig, Gregory; Allen, Jeffrey; Nolasco, Rudolph; Maia, Franscisco

    2010-10-01

    It is well known that luminance from photo-chemical reactions of hydroxyl ions in the upper atmosphere (~85 km altitude) produces a significant amount of night time radiation in the short wave infra-red (SWIR) band of wave length 0.9 to 1.7 μm. Numerous studies of these phenomena have demonstrated that the irradiance shows significant temporal and spatial variations in the night sky. Changes in weather patterns, seasons, sun angle, moonlight, etc have the propensity to alter the SWIR air glow irradiance pattern. By performing multiple SWIR measurements a mosaic representation of the celestial hemisphere was constructed and used to investigate these variations over time and space. The experimental setup consisted of two sensors, an InGaAs SWIR detector and a visible astronomical camera, co-located and bore sighted on an AZ-EL gimbal. This gimbal was programmed to view most of the sky using forty five discrete azimuth and elevation locations. The dwell time at each location was 30 seconds with a total cycle time of less than 30 minutes. The visible astronomical camera collected image data simultaneous with the SWIR camera in order to distinguish SWIR patterns from clouds. Data was reduced through batch processing producing polar representations of the sky irradiance as a function of azimuth, elevation, and time. These spatiotemporal variations in the irradiance, both short and long term, can be used to validate and calibrate physical models of atmospheric chemistry and turbulence. In this paper we describe our experimental setup and present some results of our measurements made over several months in a rural marine environment on the Island of Kauai Hawaii.

  19. Ideal-observer computation in medical imaging with use of Markov-chain Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Kupinski, Matthew A.; Hoppin, John W.; Clarkson, Eric; Barrett, Harrison H.

    2003-03-01

    The ideal observer sets an upper limit on the performance of an observer on a detection or classification task. The performance of the ideal observer can be used to optimize hardware components of imaging systems and also to determine another observer's relative performance in comparison with the best possible observer. The ideal observer employs complete knowledge of the statistics of the imaging system, including the noise and object variability. Thus computing the ideal observer for images (large-dimensional vectors) is burdensome without severely restricting the randomness in the imaging system, e.g., assuming a flat object. We present a method for computing the ideal-observer test statistic and performance by using Markov-chain Monte Carlo techniques when we have a well-characterized imaging system, knowledge of the noise statistics, and a stochastic object model. We demonstrate the method by comparing three different parallel-hole collimator imaging systems in simulation.

  20. Curiosity's Mars Hand Lens Imager (MAHLI): Inital Observations and Activities

    NASA Technical Reports Server (NTRS)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Robinson, M. L.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Bean, K. M.; Beegle, L. W.; Carsten, J. L.; Collins, C. L.; Cooper, B.; Deen, R. G.; Gupta, S.

    2013-01-01

    MAHLI (Mars Hand Lens Imager) is a 2-megapixel focusable macro lens color camera on the turret on Curiosity's robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology of geologic materials at Curiosity's Gale robotic field site. MAHLI acquires focused images at working distances of 2.1 cm to infinity; for reference, at 2.1 cm the scale is 14 microns/pixel; at 6.9 cm it is 31 microns/pixel, like the Spirit and Opportunity Microscopic Imager (MI) cameras.

  1. Gemini planet imager observational calibrations VII: on-sky polarimetric performance of the Gemini planet imager

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Sloane J.; Millar-Blanchaer, Max; Perrin, Marshall D.; Graham, James R.; Fitzgerald, Michael P.; Maire, Jérôme; Ingraham, Patrick; Savransky, Dmitry; Macintosh, Bruce A.; Thomas, Sandrine J.; Chilcote, Jeffrey K.; Draper, Zachary H.; Song, Inseok; Cardwell, Andrew; Goodsell, Stephen J.; Hartung, Markus; Hibon, Pascale; Rantakyrö, Fredrik; Sadakuni, Naru

    2014-07-01

    We present on-sky polarimetric observations with the Gemini Planet Imager (GPI) obtained at straight Cassegrain focus on the Gemini South 8-m telescope. Observations of polarimetric calibrator stars, ranging from nearly un- polarized to strongly polarized, enable determination of the combined telescope and instrumental polarization. We find the conversion of Stokes I to linear and circular instrumental polarization in the instrument frame to be I --> (QIP, UIP, PIP, VIP) = (-0.037 +/- 0.010%, +0.4338 +/- 0.0075%, 0.4354 +/- 0.0075%, -6.64 +/- 0.56%). Such precise measurement of instrumental polarization enables ~0.1% absolute accuracy in measurements of linear polarization, which together with GPI's high contrast will allow GPI to explore scattered light from circumstellar disk in unprecedented detail, conduct observations of a range of other astronomical bodies, and potentially even study polarized thermal emission from young exoplanets. Observations of unpolarized standard stars also let us quantify how well GPI's differential polarimetry mode can suppress the stellar PSF halo. We show that GPI polarimetry achieves cancellation of unpolarized starlight by factors of 100-200, reaching the photon noise limit for sensitivity to circumstellar scattered light for all but the smallest separations at which the calibration for instrumental polarization currently sets the limit.

  2. Novel Stimulated Electromagnetic Emission Observations with Artificial Airglow Using RF Excitation with HAARP

    NASA Astrophysics Data System (ADS)

    Briczinski, S. J., Jr.; Bernhardt, P. A.; Siefring, C. L.; Michell, R.; Hampton, D. L.; Watkins, B. J.; Bristow, W. A.

    2014-12-01

    Neutral hydrogen plays an important role in determining the state of the plasmasphere and its response to forcing from geomagnetic storms. Hydrogen's solar cycle variation is counterintuitive: there is more hydrogen at solar minimum at 300 km that there is at solar maximum. Similarly there is more hydrogen in winter than in summer and hydrogen density maximizes in the morning. In this presentation we describe these variations and consider some possible causes for them.

  3. Meridional neutral winds in the thermosphere at Arecibo Simultaneous incoherent scatter and airglow observations

    NASA Astrophysics Data System (ADS)

    Burnside, R. G.; Walker, J. C. G.; Behnke, R. A.

    1983-04-01

    The possibility of using incoherent scatter radar measurements to calculate the meridional neutral wind velocity at Arecibo, Puerto Rico, has been demonstrated by Behnke and Harper (1973) and Behnke and Kohl (1974). The present study extends this earlier work, whose calculations were restricted to the height of the F layer peak. The study is restricted to the nighttime and covers the region from 250 to 480 km. Sufficient data have been obtained to demonstrate clearly seasonal variations in the meridional neutral wind velocity. Attention is given to incoherent scatter measurements, neutral wind measurements, the diffusion calculation, a diffusion velocity comparison, and vertical profiles of the meridional wind.

  4. T he Analysis of the seasonal variations of equatorial plasma bubble, occurrence observed from Oukaimeden Observatory, Morroco

    NASA Astrophysics Data System (ADS)

    Amine, Lagheryeb; Zouhair, Benkhaldoun; Jonathan, Makela; Mohamed, Kaab; Aziza, Bounhir; Brian, Hardin; Dan, Fisher; Tmuthy, Duly

    2016-04-01

    T he Analysis of the seasonal variations of equatorial plasma bubble, occurrence using the 630.0 nm airglow images collected by the PICASSO imager deployed at the Oukkaimden observatory in Morocco. Data have been taken since November 2013 to december 2015. We show the monthly average of appearance of EPBs. A maximum probability for bubble development is seen in the data in January and between late February and early March. We also observe that there are a maximum period of appearance where the plasma is observed (3-5 nights successivies) and we will discuss its connection with the solar activity in storm time. Future analysis will compare the probability of bubble occurrence in our site with the data raised in other observation sites.

  5. Observations of Beta Pictoris b with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Chilcote, J.; Graham, J.; Barman, T.; Fitzgerald, M.; Larkin, J.; Macintosh, B.; Bauman, B.; Burrows, A.; Cardwell, A.; De Rosa, R.; Dillon, D.; Doyon, R.; Dunn, J.; Erikson, D.; Gavel, D.; Goodsell, S.; Hartung, M.; Hibon, P.; Ingraham, P.; Kalas, P.; Konopacky, Q.; Maire, J.; Marchis, F.; Marley, M.; Mcbride, J.; Millar-Blanchaer, M.; Morzinski, K.; Norton, A.; Oppenheimer, B.; Palmer, D.; Patience, J.; Pueyo, L.; Rantakyro, F.; Sadakuni, N.; Saddlemyer, L.; Savransky, D.; Serio, A.; Soummer, R.; Sivaramakrishnan, A.; Song, I.; Thomas, S.; Wallace, K.; Wiktorowicz, S.; Wolff, S.

    2014-09-01

    Using the recently installed Gemini Planet Imager (GPI), we present measurements of the planetary companion to the nearby young star beta Pic. GPI is a facility class instrument located at Gemini South designed to image and provide low-resolution spectra of Jupiter sized, self-luminous planetary companions around young nearby stars. We present the current imaged spectrum and atmospheric models of the planet based upon GPI's R ˜50 integral field spectrograph. Further, we present a joint analysis of the GPI and NACO astrometry, and the Snellen et al. (2014) radial velocity measurement of beta Pic b that provides the first constraint on the argument of periastron, providing a causal link to the infalling, evaporating bodies.

  6. Lunar and Planetary Science XXXV: Image Processing and Earth Observations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Expansion in Geographic Information Services for PIGWAD; 2) Modernization of the Integrated Software for Imagers and Spectrometers; 3) Science-based Region-of-Interest Image Compression; 4) Topographic Analysis with a Stereo Matching Tool Kit; 5) Central Avra Valley Storage and Recovery Project (CAVSARP) Site, Tucson, Arizona: Floodwater and Soil Moisture Investigations with Extraterrestrial Applications; 6) ASE Floodwater Classifier Development for EO-1 HYPERION Imagery; 7) Autonomous Sciencecraft Experiment (ASE) Operations on EO-1 in 2004; 8) Autonomous Vegetation Cover Scene Classification of EO-1 Hyperion Hyperspectral Data; 9) Long-Term Continental Areal Reduction Produced by Tectonic Processes.

  7. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore R.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1992-08-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  8. Dust Transport and Deposition Observed from the Terra-Moderate Image Spectrometer (MODIS) Space Observations

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2004-01-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 plus or minus 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 plus or minus 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  9. Advanced scanners and imaging systems for earth observations. [conferences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.

  10. Cassini Imaging Science Subsystem observations of Titan's south polar cloud

    NASA Astrophysics Data System (ADS)

    West, R. A.; Del Genio, A. D.; Barbara, J. M.; Toledo, D.; Lavvas, P.; Rannou, P.; Turtle, E. P.; Perry, J.

    2016-05-01

    In May of 2012 images of Titan obtained by the Cassini Imaging Science Subsystem (ISS) showed a newly-formed cloud patch near the southern pole. The cloud has unusual morphology and texture suggesting that it is formed by condensation at an altitude much higher than expected for any of the known organics in Titan's atmosphere. We measured the altitude to be 300 ± 10 km from images when the feature was on the limb. Limb images suggest that the initial stages of the formation began in late 2011. It was just visible in images obtained in 2014 but is not expected to be visible in the future due to enveloping darkness as the season progresses. The feature has a slightly different color than the surrounding haze. Its optical thickness is near 2 at 889 nm wavelength and the particle imaginary refractive index must be less than 5 × 10-4 at that wavelength. Wind vectors derived from a time series show that it is rotating about a center offset by 4.5° from Titan's solid-body spin axis, consistent with that found from the temperature field by Achterberg et al. (Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A. [2008a]. Icarus 197, 549-555) and subsequent measurements. The feature rotates at an angular velocity near the rate expected for transport of angular momentum from the low latitudes to the pole. The clumpy texture of the feature resembles that of terrestrial cloud fields undergoing open cell convection, an unusual configuration initiated by downwelling.

  11. A procedure for the extraction of airglow features in the presence of strong background radiation

    NASA Astrophysics Data System (ADS)

    Swift, W. R.; Torr, D. G.; Hamilton, C.; Dougani, H.; Torr, M. R.

    1990-09-01

    A technique is developed that can be used to derive the total intensity of band emissions from twilight airglow measurements when the basic spectral signature of the band to be considered is known. The method is designed to automatically extract total band or line intensities of a signal imbedded in background radiation several orders of magnitude greater in brightness. It is shown that the technique developed can reliably measure the intensity of both weak and strong band and line emissions in the presence of strong twilight background radiation. The method of extraction is shown as part of a general purpose spectral analysis program written in VAX FORTRAN. This extraction procedure has been used successfully on emissions of Fel, Ca(+), N2(+) (1N) (0-0) and (0-1), OH in the near UV. OI red (630nm) and green (558nm) lines in the visible, and the OH Meinel bands and O(+) (2P) 732 nm in the near IR.

  12. Observation angle and plane characterisation for ISAR imaging of LEO space objects

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Fu, Tuo; Chen, Defeng; Gao, Meiguo

    2016-07-01

    For inverse synthetic aperture radar (ISAR) imaging of low Earth orbit (LEO) space objects, examining the variations in the image plane of the object over the entire visible arc period allows more direct characterisation of the variations in the object imaging. In this study, the ideal turntable model was extended to determine the observation geometry of near-circular LEO objects. Two approximations were applied to the observation model to calculate the image plane's normal and observation angles for near-circular orbit objects. One approximation treats the orbit of the space object as a standard arc relative to the Earth during the radar observation period, and the other omits the effect of the rotation of the Earth on the observations. First, the closed-form solution of the image plane normal in various attitude-stabilisation approaches was determined based on geometric models. The characteristics of the image plane and the observation angle of the near-circular orbit object were then analysed based on the common constraints of the radar line-of-sight (LOS). Subsequently, the variations in the image plane and the geometric constraints of the ISAR imaging were quantified. Based on the image plane's normal, the rotational angular velocity of the radar LOS was estimated. The cross-range direction of the ISAR image was then calibrated. Three-dimensional imaging was then reconstructed based on dual station interferometry. Finally, simulations were performed to verify the result of the three-dimensional interferometric reconstruction and to calculate the reconstruction's precision errors.

  13. Global Observation Information Networking: Using the Distributed Image Spreadsheet (DISS)

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    1999-01-01

    The DISS and many other tools will be used to present visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI Onyx Graphics-Supercomputers are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science and used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  14. Planetary instrument definition and development program: 'Miniature Monochromatic Imager'

    NASA Technical Reports Server (NTRS)

    Broadfoot, A. L.

    1991-01-01

    The miniature monochromatic imager (MMI) development work became the basis for the preparation of several instruments which were built and flown on the shuttle STS-39 as well as being used in ground based experiments. The following subject areas are covered: (1) applications of the ICCD to airglow and auroral measurements and (2) a panchromatic spectrograph with supporting monochromatic imagers.

  15. CIPS/AIM Observation of Polar Mesospheric Cloud Structures and NOGAPS-ALPHA Analysis of the Environment in Which These Structures Form

    NASA Astrophysics Data System (ADS)

    Thurairajah, B.; Bailey, S. M.; Siskind, D. E.; Lumpe, J. D.; Nielsen, K.; Randall, C. E.; Taylor, M. J.; Russell, J.

    2010-12-01

    The Cloud Imaging and Particle Size (CIPS) experiment on the Aeronomy of Ice in the Mesosphere (AIM) spacecraft images Polar Mesospheric Clouds (PMCs) using four cameras, each operating with a 15 nm passband centered at 265 nm. CIPS has provided images of PMCs containing numerous structures including the presence of 'ice voids'. These ice voids appear as a nearly circular ice free region with dark centers that are sometimes surrounded by an ice ring arc. Ice voids are also structurally similar to tropospheric cloud features and concentric gravity wave structures observed in the mesospheric airglow region. We document CIPS observations of ice voids during the Northern Hemisphere 2007 PMC season. We use the Naval Research Laboratory's Navy Operational Global Atmospheric Prediction System (NOGAPS) Advanced Level Physics and High Altitude (ALPHA) model to analyze what these ice voids can tell us about the mesospheric environment in which they form and what possible connections there may be with the lower atmosphere.

  16. Stellar Imager (SI) - Observing the Universe in High Definition

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Karovska, M.; Schrijver, C. J.; SI Development Team

    2009-01-01

    Stellar Imager (http://hires.gsfc.nasa.gov/si/) is a space-based, UV/Optical Interferometer (UVOI) with over 200x HST's resolution. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new "discovery space" for Astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates, and Life, 2) Magnetic and Accretion Processes and their roles in the Origin and Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei, and 4) Exo-Solar Planet Transits and Disks. The SI mission is targeted for the mid 2020's - thus significant technology development in the upcoming decade is critical to enabling it and future space-based sparse aperture telescope and distributed spacecraft missions. The key technology needs include: 1) precision formation flying of many spacecraft, 2) precision metrology over km-scales, 3) closed-loop control of many-element, sparse optical arrays, 4) staged-control systems with very high dynamic ranges (nm to km-scale). It is critical that the importance of timely development of these capabilities is called out in the upcoming Astrophysics and Heliophysics Decadal Surveys, to enable the flight of such missions in the following decade. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan. It is a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen) and has also been recommended for further study in the 2008 NRC interim report on missions potentially enabled or enhanced by an Ares V launch, although an incrementally-deployed version could be launched using smaller rockets.

  17. Stellar Imager - Observing the Universe in High Definition

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2009-01-01

    Stellar Imager (SI) is a space-based, UV Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new 'discovery space' for Astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates. and Life, 2) Magnetic and Accretion Processes and their roles in the Origin and Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. The SI mission is targeted for the mid 2020's - thus significant technology development in the upcoming decade is critical to enabling it and future spacebased sparse aperture telescope and distributed spacecraft missions. The key technology needs include: 1) precision formation flying of many spacecraft, 2) precision metrology over km-scales, 3) closed-loop control of many-element, sparse optical arrays, 4) staged-control systems with very high dynamic ranges (nm to km-scale). It is critical that the importance of timely development of these capabilities is called out in the upcoming Astrophysics and Heliophysics Decadal Surveys, to enable the flight of such missions in the following decade. S1 is a 'Landmark/Discovery Mission' in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan. It is a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen) and has also been recommended for further study in the 2008 NRC interim report on missions potentially enabled enhanced by an Ares V' launch, although a incrementally-deployed version could be launched using smaller rockets.

  18. Imaging-based observational databases for clinical problem solving: the role of informatics.

    PubMed

    Bui, Alex A T; Hsu, William; Arnold, Corey; El-Saden, Suzie; Aberle, Denise R; Taira, Ricky K

    2013-01-01

    Imaging has become a prevalent tool in the diagnosis and treatment of many diseases, providing a unique in vivo, multi-scale view of anatomic and physiologic processes. With the increased use of imaging and its progressive technical advances, the role of imaging informatics is now evolving--from one of managing images, to one of integrating the full scope of clinical information needed to contextualize and link observations across phenotypic and genotypic scales. Several challenges exist for imaging informatics, including the need for methods to transform clinical imaging studies and associated data into structured information that can be organized and analyzed. We examine some of these challenges in establishing imaging-based observational databases that can support the creation of comprehensive disease models. The development of these databases and ensuing models can aid in medical decision making and knowledge discovery and ultimately, transform the use of imaging to support individually-tailored patient care.

  19. Gemini Planet Imager: From Integration And Test To Planning Observations

    NASA Astrophysics Data System (ADS)

    Thomas, Sandrine; Macintosh, B.; Palmer, D.; Saddlemyer, L.; Wallace, J. K.; Gavel, D.; Larkin, J.; Graham, J.; Doyon, R.; Oppenheimer, B.; GOODSell, S.; GPI Team

    2012-01-01

    Achieving higher contrast is an ongoing theme in exoplanet imaging, both from earth and from space. Next-generation instruments such as the Gemini Planet Imager and SPHERE are designed to achieve contrast ratios of 106 - 107 from the ground; this requires very good static and dynamic wavefront correction as well as very good coronagraphic control of diffraction. GPI is a facility instrument, now in integration and test at the Laboratory for Adaptive Optics in Santa Cruz California. Its first light on the 8-m Gemini South telescope is expected by the end of 2012. GPI combines a high density MEMS deformable mirror (1700 subapertures), an apodized-pupil Lyot coronagraph and a high-accuracy IR interferometer calibration system. The instrument is a near-infrared integral field spectrograph (IFS) that will allow detection and characterization of self-luminous extrasolar planets at planet/star contrast ratios of 10-7. One additional feature of the IFS is a polarimetric mode to characterize scattered light from disks. We will discuss the status of the integration and test happening at the University of Santa Cruz California and discuss its scientific capabilities.

  20. Observation of image transfer and phase conjugation in stimulated down-conversion.

    PubMed

    Ribeiro, P H; Caetano, D P; Almeida, M P; Huguenin, J A; dos Santos, B C; Khoury, A Z

    2001-09-24

    We observe experimentally the transfer of angular spectrum and image formation in the process of stimulated parametric down-conversion. Images and interference patterns can be transferred from either the pump or the auxiliary laser beams to the stimulated down-converted one. The stimulated field propagates as the complex conjugate of the auxiliary laser. The phase conjugation is observed through intensity pattern measurements.

  1. Three mars years: Viking lander 1 imaging observations

    USGS Publications Warehouse

    Arvidson, R. E.; Guinness, E.A.; Moore, H.J.; Tillman, J.; Wall, S.D.

    1983-01-01

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.

  2. Three Mars years - Viking Lander 1 imaging observations

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Guinness, E. A.; Moore, H. J.; Tillman, J.; Wall, S. D.

    1983-01-01

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3.3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohension of the undisturbed surface material.

  3. Observing temperature fluctuations in humans using infrared imaging

    PubMed Central

    Liu, Wei-Min; Meyer, Joseph; Scully, Christopher G.; Elster, Eric; Gorbach, Alexander M.

    2013-01-01

    In this work we demonstrate that functional infrared imaging is capable of detecting low frequency temperature fluctuations in intact human skin and revealing spatial, temporal, spectral, and time-frequency based differences among three tissue classes: microvasculature, large sub-cutaneous veins, and the remaining surrounding tissue of the forearm. We found that large veins have stronger contractility in the range of 0.005-0.06 Hz compared to the other two tissue classes. Wavelet phase coherence and power spectrum correlation analysis show that microvasculature and skin areas without vessels visible by IR have high phase coherence in the lowest three frequency ranges (0.005-0.0095 Hz, 0.0095-0.02 Hz, and 0.02-0.06 Hz), whereas large veins oscillate independently. PMID:23538682

  4. Radiometric Calibration of the Earth Observing System's Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Slater, Philip N. (Principal Investigator)

    1997-01-01

    The work on the grant was mainly directed towards developing new, accurate, redundant methods for the in-flight, absolute radiometric calibration of satellite multispectral imaging systems and refining the accuracy of methods already in use. Initially the work was in preparation for the calibration of MODIS and HIRIS (before the development of that sensor was canceled), with the realization it would be applicable to most imaging multi- or hyper-spectral sensors provided their spatial or spectral resolutions were not too coarse. The work on the grant involved three different ground-based, in-flight calibration methods reflectance-based radiance-based and diffuse-to-global irradiance ratio used with the reflectance-based method. This continuing research had the dual advantage of: (1) developing several independent methods to create the redundancy that is essential for the identification and hopefully the elimination of systematic errors; and (2) refining the measurement techniques and algorithms that can be used not only for improving calibration accuracy but also for the reverse process of retrieving ground reflectances from calibrated remote-sensing data. The grant also provided the support necessary for us to embark on other projects such as the ratioing radiometer approach to on-board calibration (this has been further developed by SBRS as the 'solar diffuser stability monitor' and is incorporated into the most important on-board calibration system for MODIS)- another example of the work, which was a spin-off from the grant funding, was a study of solar diffuser materials. Journal citations, titles and abstracts of publications authored by faculty, staff, and students are also attached.

  5. Observation of moist convection in Jupiter's atmosphere. Galileo Imaging Team

    PubMed

    Gierasch; Ingersoll; Banfield; Ewald; Helfenstein; Simon-Miller; Vasavada; Breneman; Senske

    2000-02-10

    The energy source driving Jupiter's active meteorology is not understood. There are two main candidates: a poorly understood internal heat source and sunlight. Here we report observations of an active storm system possessing both lightning and condensation of water. The storm has a vertical extent of at least 50 km and a length of about 4,000 km. Previous observations of lightning on Jupiter have revealed both its frequency of occurrence and its spatial distribution, but they did not permit analysis of the detailed cloud structure and its dynamics. The present observations reveal the storm (on the day side of the planet) at the same location and within just a few hours of a lightning detection (on the night side). We estimate that the total vertical transport of heat by storms like the one observed here is of the same order as the planet's internal heat source. We therefore conclude that moist convection-similar to large clusters of thunderstorm cells on the Earth-is a dominant factor in converting heat flow into kinetic energy in the jovian atmosphere. PMID:10688191

  6. Improving Resolution and Depth of Astronomical Observations via Modern Mathematical Methods for Image Analysis

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Ottaviani, D.; Fontana, A.; Merlin, E.; Pilo, S.; Falcone, M.

    2015-09-01

    In the past years modern mathematical methods for image analysis have led to a revolution in many fields, from computer vision to scientific imaging. However, some recently developed image processing techniques successfully exploited by other sectors have been rarely, if ever, experimented on astronomical observations. We present here tests of two classes of variational image enhancement techniques: "structure-texture decomposition" and "super-resolution" showing that they are effective in improving the quality of observations. Structure-texture decomposition allows to recover faint sources previously hidden by the background noise, effectively increasing the depth of available observations. Super-resolution yields an higher-resolution and a better sampled image out of a set of low resolution frames, thus mitigating problematics in data analysis arising from the difference in resolution/sampling between different instruments, as in the case of EUCLID VIS and NIR imagers.

  7. Highly varying daytime sodium airglow emissions over an equatorial station: a case study based on the measurements using a grating monochromator

    NASA Astrophysics Data System (ADS)

    Hossain, Md Mosarraf; Vineeth, Chandrashekheran Nair; Sumod, Sukumaran Nair Geetha Kumari; Pant, Tarun Kumar

    2014-12-01

    A case study is performed to investigate the probable reasons behind substantial daytime sodium (Na) D1 airglow intensity (589.6 nm) variations measured using a ground-based monochromator during the three near consecutive days of February 2007 from Trivandrum (8.5°N, 77°E), India. The roles of both the resonance fluorescence and the chemistry have been considered in this study. It appears that fluorescence plays only a minor role towards the observed five to nine times of large intensity variations among these days. From investigations on the role of chemistry, it seems that through the Chapman chemical scheme, Na abundance contribute favorably, while the O3 concentrations and the ambient temperature do not play any role as such for the observed intensity variations. From further investigations, it transpires that because of pressure differences (approximately 0.0002 to 0.0003 hPa/day) in the emitting altitude region among these days, the variations in collisional quenching of excited NaO*(A2Σ+) (first excited electronic state of NaO that produces D line) contribute considerably towards the observed intensity variations. From consideration of all the possible factors, it appears that whereas resonance fluorescence plays only a minor role, chemistry has contributed to greater extent towards the observed significant intensity differences among these days.

  8. Perception Of Moving Holographic Images While Observer Is In Motion

    NASA Astrophysics Data System (ADS)

    Frey, Allan H.

    1984-05-01

    Current methods of driver training have been criticized for a lack of realistic on-road accident avoidance training. using holography, one can create, with equipment located on the car, three-dimensional vehicles and people that actually appear to be on the road. The three-dimensional images are realistic, not ghost-like; they can be made to approach, recede, or move laterally on the road. They do not appear to be on the windshield. These properties give holography its unique value for driver training and testing, as well as provide a new spectrum of display capabilities. We created and used, on the road, a pre-prototype holographic driver training and testing system. Through the development and testing of the pre-prototype, we were able to assess the utility of holography in this application and identify problems to be resolved in developing an operational system. We found good user acceptance, even with this exploratory system, and identified a number of the factors that will be of importance in an operational system. Many related applications clearly exist with this new technology which has been developing exponentially in the last few years.

  9. Data processing assessment for the Lunar Geoscience Observer imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Irigoyen, R. E.; Liaw, H. M.

    1988-01-01

    On the Lunar Geoscience Observer project, a Visible and Infrared Mapping Spectrometer instrument has been proposed. This instrument will have science data input rates in the hundreds of kilobits per second (kbps) and an average telemetry output data rate of 4 kbps. Techniques that can be used to reduce the throughput of the instrument are editing, summing and averaging, data compression, data preprocessing, pattern recognition and snapshot data taking. Due to instrument limitations in the buffer memory size and processing speeds, a careful selection of the available techniques must be made.

  10. Radiometric calibration of the Earth observing system's imaging sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1987-01-01

    Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.

  11. ALMA and the Future of Millimeter Imaging Observations

    NASA Astrophysics Data System (ADS)

    Wilner, David J.

    2016-01-01

    The Nearby Young Moving Groups sample the critical age when primordial disks around stars complete their transformation into planetary systems with associated debris. Millimeter wavelengths provide direct access to cool material in these circumstellar disks. The high angular resolution of interferometry at these long wavelengths enables resolved observations of solids in an optically thin regime, as well as the thermal, chemical, and dynamical structure of gas, if present. In this contribution, I briefly review the evolving landscape of millimeter telescopes, with emphasis on the revolutionary capabilities of the new international Atacama Large Millimeter/submillimeter Array (ALMA) and describe pertinent early science results.

  12. High resolution reconstruction of solar prominence images observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Xiang, Yong-yuan; Liu, Zhong; Jin, Zhen-yu

    2016-11-01

    A high resolution image showing fine structures is crucial for understanding the nature of solar prominence. In this paper, high resolution imaging of solar prominence on the New Vacuum Solar Telescope (NVST) is introduced, using speckle masking. Each step of the data reduction especially the image alignment is discussed. Accurate alignment of all frames and the non-isoplanatic calibration of each image are the keys for a successful reconstruction. Reconstructed high resolution images from NVST also indicate that under normal seeing condition, it is feasible to carry out high resolution observations of solar prominence by a ground-based solar telescope, even in the absence of adaptive optics.

  13. Accounting for anatomical noise in search-capable model observers for planar nuclear imaging.

    PubMed

    Sen, Anando; Gifford, Howard C

    2016-01-01

    Model observers intended to predict the diagnostic performance of human observers should account for the effects of both quantum and anatomical noise. We compared the abilities of several visual-search (VS) and scanning Hotelling-type models to account for anatomical noise in a localization receiver operating characteristic (LROC) study involving simulated nuclear medicine images. Our VS observer invoked a two-stage process of search and analysis. The images featured lesions in the prostate and pelvic lymph nodes. Lesion contrast and the geometric resolution and sensitivity of the imaging collimator were the study variables. A set of anthropomorphic mathematical phantoms was imaged with an analytic projector based on eight parallel-hole collimators with different sensitivity and resolution properties. The LROC study was conducted with human observers and the channelized nonprewhitening, channelized Hotelling (CH) and VS model observers. The CH observer was applied in a "background-known-statistically" protocol while the VS observer performed a quasi-background-known-exactly task. Both of these models were applied with and without internal noise in the decision variables. A perceptual search threshold was also tested with the VS observer. The model observers without inefficiencies failed to mimic the average performance trend for the humans. The CH and VS observers with internal noise matched the humans primarily at low collimator sensitivities. With both internal noise and the search threshold, the VS observer attained quantitative agreement with the human observers. Computational efficiency is an important advantage of the VS observer.

  14. Imaging Analysis of Near-Field Recording Technique for Observation of Biological Specimens

    NASA Astrophysics Data System (ADS)

    Moriguchi, Chihiro; Ohta, Akihiro; Egami, Chikara; Kawata, Yoshimasa; Terakawa, Susumu; Tsuchimori, Masaaki; Watanabe, Osamu

    2006-07-01

    We present an analysis of the properties of an imaging based on a near-field recording technique in comparison with simulation results. In the system, the optical field distributions localized near the specimens are recorded as the surface topographic distributions of a photosensitive film. It is possible to observe both soft and moving specimens, because the system does not require a scanning probe to obtain the observed image. The imaging properties are evaluated using fine structures of paramecium, and we demonstrate that it is possible to observe minute differences of refractive indices.

  15. Generalization Evaluation of Machine Learning Numerical Observers for Image Quality Assessment.

    PubMed

    Kalayeh, Mahdi M; Marin, Thibault; Brankov, Jovan G

    2013-06-01

    In this paper, we present two new numerical observers (NO) based on machine learning for image quality assessment. The proposed NOs aim to predict human observer performance in a cardiac perfusion-defect detection task for single-photon emission computed tomography (SPECT) images. Human observer (HumO) studies are now considered to be the gold standard for task-based evaluation of medical images. However such studies are impractical for use in early stages of development for imaging devices and algorithms, because they require extensive involvement of trained human observers who must evaluate a large number of images. To address this problem, numerical observers (also called model observers) have been developed as a surrogate for human observers. The channelized Hotelling observer (CHO), with or without internal noise model, is currently the most widely used NO of this kind. In our previous work we argued that development of a NO model to predict human observers' performance can be viewed as a machine learning (or system identification) problem. This consideration led us to develop a channelized support vector machine (CSVM) observer, a kernel-based regression model that greatly outperformed the popular and widely used CHO. This was especially evident when the numerical observers were evaluated in terms of generalization performance. To evaluate generalization we used a typical situation for the practical use of a numerical observer: after optimizing the NO (which for a CHO might consist of adjusting the internal noise model) based upon a broad set of reconstructed images, we tested it on a broad (but different) set of images obtained by a different reconstruction method. In this manuscript we aim to evaluate two new regression models that achieve accuracy higher than the CHO and comparable to our earlier CSVM method, while dramatically reducing model complexity and computation time. The new models are defined in a Bayesian machine-learning framework: a channelized

  16. Generalization Evaluation of Machine Learning Numerical Observers for Image Quality Assessment

    PubMed Central

    Kalayeh, Mahdi M.; Marin, Thibault; Brankov, Jovan G.

    2014-01-01

    In this paper, we present two new numerical observers (NO) based on machine learning for image quality assessment. The proposed NOs aim to predict human observer performance in a cardiac perfusion-defect detection task for single-photon emission computed tomography (SPECT) images. Human observer (HumO) studies are now considered to be the gold standard for task-based evaluation of medical images. However such studies are impractical for use in early stages of development for imaging devices and algorithms, because they require extensive involvement of trained human observers who must evaluate a large number of images. To address this problem, numerical observers (also called model observers) have been developed as a surrogate for human observers. The channelized Hotelling observer (CHO), with or without internal noise model, is currently the most widely used NO of this kind. In our previous work we argued that development of a NO model to predict human observers' performance can be viewed as a machine learning (or system identification) problem. This consideration led us to develop a channelized support vector machine (CSVM) observer, a kernel-based regression model that greatly outperformed the popular and widely used CHO. This was especially evident when the numerical observers were evaluated in terms of generalization performance. To evaluate generalization we used a typical situation for the practical use of a numerical observer: after optimizing the NO (which for a CHO might consist of adjusting the internal noise model) based upon a broad set of reconstructed images, we tested it on a broad (but different) set of images obtained by a different reconstruction method. In this manuscript we aim to evaluate two new regression models that achieve accuracy higher than the CHO and comparable to our earlier CSVM method, while dramatically reducing model complexity and computation time. The new models are defined in a Bayesian machine-learning framework: a channelized

  17. The advantages of using a Lucky Imaging camera for observations of microlensing events

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe; Rahvar, Sohrab; Dominik, Martin; Hundertmark, Markus

    2016-05-01

    In this work, we study the advantages of using a Lucky Imaging camera for the observations of potential planetary microlensing events. Our aim is to reduce the blending effect and enhance exoplanet signals in binary lensing systems composed of an exoplanet and the corresponding parent star. We simulate planetary microlensing light curves based on present microlensing surveys and follow-up telescopes where one of them is equipped with a Lucky Imaging camera. This camera is used at the Danish 1.54-m follow-up telescope. Using a specific observational strategy, for an Earth-mass planet in the resonance regime, where the detection probability in crowded fields is smaller, Lucky Imaging observations improve the detection efficiency which reaches 2 per cent. Given the difficulty of detecting the signal of an Earth-mass planet in crowded-field imaging even in the resonance regime with conventional cameras, we show that Lucky Imaging can substantially improve the detection efficiency.

  18. Development of Fluorescence Imaging Lidar for Boat-Based Coral Observation

    NASA Astrophysics Data System (ADS)

    Sasano, Masahiko; Imasato, Motonobu; Yamano, Hiroya; Oguma, Hiroyuki

    2016-06-01

    A fluorescence imaging lidar system installed in a boat-towable buoy has been developed for the observation of reef-building corals. Long-range fluorescent images of the sea bed can be recorded in the daytime with this system. The viability of corals is clear in these fluorescent images because of the innate fluorescent proteins. In this study, the specifications and performance of the system are shown.

  19. Image enhancement on the INVIS integrated night vision surveillance and observation system

    NASA Astrophysics Data System (ADS)

    Dijk, Judith; Schutte, Klamer; Toet, Alexander; Hogervorst, Maarten

    2010-04-01

    We present the design and first field trial results of the INVIS integrated night vision surveillance and observation system, in particular for the image enhancement techniques implemented. The INVIS is an all-day-andnight all-weather navigation and surveillance tool, combining three-band cameras. We present a processing pipeline for this system. The image quality of all individual sensor signals is enhanced through Dynamic Noise Reduction and Dynamic Super Resolution. The quality of the thermal image can be enhanced through Scene-Based Non-Uniformity Correction (SBNUC). The images are fused using natural tone mapping techniques. The contrast in the image can be improved using Local Adaptive Contrast Enhancement, applied before or after the tone mapping. These results show that the image enhancement techniques have an added value for image fusion systems.

  20. Design of a practical model-observer-based image quality assessment method for x-ray computed tomography imaging systems.

    PubMed

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A

    2016-07-01

    The use of a channelization mechanism on model observers not only makes mimicking human visual behavior possible, but also reduces the amount of image data needed to estimate the model observer parameters. The channelized Hotelling observer (CHO) and channelized scanning linear observer (CSLO) have recently been used to assess CT image quality for detection tasks and combined detection/estimation tasks, respectively. Although the use of channels substantially reduces the amount of data required to compute image quality, the number of scans required for CT imaging is still not practical for routine use. It is our desire to further reduce the number of scans required to make CHO or CSLO an image quality tool for routine and frequent system validations and evaluations. This work explores different data-reduction schemes and designs an approach that requires only a few CT scans. Three different kinds of approaches are included in this study: a conventional CHO/CSLO technique with a large sample size, a conventional CHO/CSLO technique with fewer samples, and an approach that we will show requires fewer samples to mimic conventional performance with a large sample size. The mean value and standard deviation of areas under ROC/EROC curve were estimated using the well-validated shuffle approach. The results indicate that an 80% data reduction can be achieved without loss of accuracy. This substantial data reduction is a step toward a practical tool for routine-task-based QA/QC CT system assessment.

  1. The need for hard X-ray imaging observations at the next solar maximum

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1988-01-01

    Canonical models of solar hard X-ray bursts; associated length and time scales; the adequacies and inadequacies of previous observations; theoretical modeling predictions; arcsecond imaging of solar hard X-rays are outlined.

  2. Solar measurements from the Airglow-Solar Spectrometer Instrument (ASSI) on the San Marco 5 satellite

    NASA Technical Reports Server (NTRS)

    Woods, Thomas N.

    1994-01-01

    The analysis of the solar spectral irradiance from the Airglow-Solar Spectrometer Instrument (ASSI) on the San Marco 5 satellite is the focus for this research grant. A pre-print copy of the paper describing the calibrations of and results from the San Marco ASSI is attached to this report. The calibration of the ASSI included (1) transfer of photometric calibration from a rocket experiment and the Solar Mesosphere Explorer (SME), (2) use of the on-board radioactive calibration sources, (3) validation of the ASSI sensitivity over its field of view, and (4) determining the degradation of the spectrometers. We have determined that the absolute values for the solar irradiance needs adjustment in the current proxy models of the solar UV irradiance, and the amount of solar variability from the proxy models are in reasonable agreement with the ASSI measurements. This research grant also has supported the development of a new solar EUV irradiance proxy model. We expected that the magnetic flux is responsible for most of the heating, via Alfen waves, in the chromosphere, transition region, and corona. From examining time series of solar irradiance data and magnetic fields at different levels, we did indeed find that the chromospheric emissions correlate best with the large magnetic field levels.

  3. Numerical surrogates for human observers in myocardial motion evaluation from SPECT image

    PubMed Central

    Marin, Thibault; Kalayehis, Mahdi M.; Parages, Felipe M.; Brankov, Jovan G.

    2014-01-01

    In medical imaging, the gold standard for image-quality assessment is a task-based approach in which one evaluates human observer performance for a given diagnostic task (e.g., detection of a myocardial perfusion or motion defect). To facilitate practical task-based image-quality assessment, model observers are needed as approximate surrogates for human observers. In cardiac-gated SPECT imaging, diagnosis relies on evaluation of the myocardial motion as well as perfusion. Model observers for the perfusion-defect detection task have been studied previously, but little effort has been devoted toward development of a model observer for cardiac-motion defect detection. In this work describe two model observers for predicting human observer performance in detection of cardiac-motion defects. Both proposed methods rely on motion features extracted using previously reported deformable mesh model for myocardium motion estimation. The first method is based on a Hotelling linear discriminant that is similar in concept to that used commonly for perfusion-defect detection. In the second method, based on relevance vector machines (RVM) for regression, we compute average human observer performance by first directly predicting individual human observer scores, and then using multi reader receiver operating characteristic (ROC) analysis. Our results suggest that the proposed RVM model observer can predict human observer performance accurately, while the new Hotelling motion-defect detector is somewhat less effective. PMID:23981533

  4. Model observer design for detecting multiple abnormalities in anatomical background images

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Markey, Mia K.; Park, Subok

    2016-03-01

    As psychophysical studies are resource-intensive to conduct, model observers are commonly used to assess and optimize medical imaging quality. Existing model observers were typically designed to detect at most one signal. However, in clinical practice, there may be multiple abnormalities in a single image set (e.g., multifocal and multicentric breast cancers (MMBC)), which can impact treatment planning. Prevalence of signals can be different across anatomical regions, and human observers do not know the number or location of signals a priori. As new imaging techniques have the potential to improve multiple-signal detection (e.g., digital breast tomosynthesis may be more effective for diagnosis of MMBC than planar mammography), image quality assessment approaches addressing such tasks are needed. In this study, we present a model-observer mechanism to detect multiple signals in the same image dataset. To handle the high dimensionality of images, a novel implementation of partial least squares (PLS) was developed to estimate different sets of efficient channels directly from the images. Without any prior knowledge of the background or the signals, the PLS channels capture interactions between signals and the background which provide discriminant image information. Corresponding linear decision templates are employed to generate both image-level and location-specific scores on the presence of signals. Our preliminary results show that the model observer using PLS channels, compared to our first attempts with Laguerre-Gauss channels, can achieve high performance with a reasonably small number of channels, and the optimal design of the model observer may vary as the tasks of clinical interest change.

  5. Spatio-temporal Hotelling observer for signal detection from image sequences

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.; Rodríguez, Jeffrey J.

    2010-01-01

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  6. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  7. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    SciTech Connect

    Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun Wang, Kaige

    2015-04-27

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  8. A New Display Format Relating Azimuth-Scanning Radar Data and All-Sky Images in 3-D

    NASA Technical Reports Server (NTRS)

    Swartz, Wesley E.; Seker, Ilgin; Mathews, John D.; Aponte, Nestor

    2010-01-01

    Here we correlate features in a sequence of all-sky images of 630 nm airglow with the three-dimensional (3-D) structure of electron densities in the F region above Arecibo. Pairs of 180 azimuth scans (using the Gregorian and line feeds) of the two-beam incoherent scatter radar (ISR) have been plotted in cone pictorials of the line-of-sight electron densities. The plots include projections of the 630 nm airglow onto the ground using the same spatial scaling as for the ISR data. Selected sequential images from the night of 16-17 June 2004 correlate ionospheric plasma features with scales comparable to the ISR density-cone diameter. The entire set of over 100 images spanning about eight hours is available as a movie. The correlation between the airglow and the electron densities is not unexpected, but the new display format shows the 3-D structures better than separate 2-D plots in latitude and longitude for the airglow and in height and time for the electron densities. Furthermore, the animations help separate the bands of airglow from obscuring clouds and the star field.

  9. Observer assessment of multi-pinhole SPECT geometries for prostate cancer imaging: a simulation study

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Sen, Anando; Gifford, Howard C.

    2014-03-01

    SPECT imaging using In-111 ProstaScint is an FDA-approved method for diagnosing prostate cancer metastases within the pelvis. However, conventional medium-energy parallel-hole (MEPAR) collimators produce poor image quality and we are investigating the use of multipinhole (MPH) imaging as an alternative. This paper presents a method for evaluating MPH designs that makes use of sampling-sensitive (SS) mathematical model observers for tumor detectionlocalization tasks. Key to our approach is the redefinition of a normal (or background) reference image that is used with scanning model observers. We used this approach to compare different MPH configurations for the task of small-tumor detection in the prostate and surrounding lymph nodes. Four configurations used 10, 20, 30, and 60 pinholes evenly spaced over a complete circular orbit. A fixed-count acquisition protocol was assumed. Spherical tumors were placed within a digital anthropomorphic phantom having a realistic Prostascint biodistribution. Imaging data sets were generated with an analytical projector and reconstructed volumes were obtained with the OSEM algorithm. The MPH configurations were compared in a localization ROC (LROC) study with 2D pelvic images and both human and model observers. Regular and SS versions of the scanning channelized nonprewhitening (CNPW) and visual-search (VS) model observers were applied. The SS models demonstrated the highest correlations with the average human-observer results

  10. Objectively measuring signal detectability, contrast, blur and noise in medical images using channelized joint observers

    NASA Astrophysics Data System (ADS)

    Goossens, Bart; Luong, Hiêp; Platiša, Ljiljana; Philips, Wilfried

    2013-03-01

    To improve imaging systems and image processing techniques, objective image quality assessment is essential. Model observers adopting a task-based quality assessment strategy by estimating signal detectability measures, have shown to be quite successful to this end. At the same time, costly and time-consuming human observer experiments can be avoided. However, optimizing images in terms of signal detectability alone, still allows a lot of freedom in terms of the imaging parameters. More specifically, fixing the signal detectability defines a manifold in the imaging parameter space on which different "possible" solutions reside. In this article, we present measures that can be used to distinguish these possible solutions from each other, in terms of image quality factors such as signal blur, noise and signal contrast. Our approach is based on an extended channelized joint observer (CJO) that simultaneously estimates the signal amplitude, scale and detectability. As an application, we use this technique to design k-space trajectories for MRI acquisition. Our technique allows to compare the different spiral trajectories in terms of blur, noise and contrast, even when the signal detectability is estimated to be equal.

  11. Observational Signatures of Planets in Protoplanetary Disks: Spiral Arms Observed in Scattered Light Imaging Can be Induced by Planets

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Zhu, Zhaohuan; Rafikov, Roman R.; Stone, James M.

    2015-08-01

    Using 3D global hydro simulations coupled with radiative transfer calculations, we study the appearance of density waves induced by giant planets in direct imaging observations at near-infrared wavelengths. We find that a 6{M}{{J}} planet in a typical disk around a 1{M}⊙ star can produce prominent and detectable spiral arms both interior and exterior to its orbit. The inner arms have (1) two well separated arms in roughly m = 2 symmetry, (2) exhibit ˜10°-15° pitch angles, (3) ˜180°-270° extension in the azimuthal direction, and (4) ˜ 150 % surface brightness enhancement, all broadly consistent with observed spiral arms in the SAO 206462 and MWC 758 systems. The outer arms cannot explain observations as they are too tightly wound given typical disk scale height. We confirm previous results that the outer density waves excited by a 1{M}{{J}} planet exhibit low contrast in the IR and are practically not detectable. We also find that 3D effects of the waves are important. Compared to isothermal models, density waves in adiabatic disks exhibit weaker contrast in surface density but stronger contrast in scattered light images, due to a more pronounced vertical structure in the former caused by shock heating and maybe hydraulic jump effect. To drive observed pairs of arms with an external companion on a circular orbit, a massive planet, possibly a brown dwarf, is needed at around [r˜ 0\\buildrel{\\prime\\prime}\\over{.} 7, {PA}˜ 10^\\circ ] (position angle PA from north to east) in SAO 206462 and [r˜ 0\\buildrel{\\prime\\prime}\\over{.} 6, {PA}˜ 10^\\circ ] in MWC 758. Their existence may be confirmed by direct imaging planet searches.

  12. IMAGE EUV Observation of a Radially, Bifurcated Plasmapause: First Observations of a Possible Standing ULF Waveform in the Inner Magnetosphere

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Gallagher, D. L.; Avanov, L. A.

    2003-01-01

    We present EUV observations of the plasmasphere-plasmapause from 19:38-22:11 UT on 28 June 2000 characterized by the presence of bifurcated radial enhancements of the He(+) plasma distribution in the nighside sector. These features remain stable throughout the period of observation and are found to co-rotate at 67% of the expected rate. Two-dimensional simulation of the plasmasphere assuming the presence of field lines resonances at L = 1.8 and 2.5 suggest that the organization of the outer plasmasphere and plasmapause is the result convective motion driven by a standing ULF-wave. Preliminary analysis of ground-based magnetometer data provided by the IMAGE magnetometer network during the period of EUV observation indicates the presence of a discrete spectrum of field line resonances extending down to 0.68-mHz.

  13. Observer performance assessment of JPEG-compressed high-resolution chest images

    NASA Astrophysics Data System (ADS)

    Good, Walter F.; Maitz, Glenn S.; King, Jill L.; Gennari, Rose C.; Gur, David

    1999-05-01

    The JPEG compression algorithm was tested on a set of 529 chest radiographs that had been digitized at a spatial resolution of 100 micrometer and contrast sensitivity of 12 bits. Images were compressed using five fixed 'psychovisual' quantization tables which produced average compression ratios in the range 15:1 to 61:1, and were then printed onto film. Six experienced radiologists read all cases from the laser printed film, in each of the five compressed modes as well as in the non-compressed mode. For comparison purposes, observers also read the same cases with reduced pixel resolutions of 200 micrometer and 400 micrometer. The specific task involved detecting masses, pneumothoraces, interstitial disease, alveolar infiltrates and rib fractures. Over the range of compression ratios tested, for images digitized at 100 micrometer, we were unable to demonstrate any statistically significant decrease (p greater than 0.05) in observer performance as measured by ROC techniques. However, the observers' subjective assessments of image quality did decrease significantly as image resolution was reduced and suggested a decreasing, but nonsignificant, trend as the compression ratio was increased. The seeming discrepancy between our failure to detect a reduction in observer performance, and other published studies, is likely due to: (1) the higher resolution at which we digitized our images; (2) the higher signal-to-noise ratio of our digitized films versus typical CR images; and (3) our particular choice of an optimized quantization scheme.

  14. Metal Retrievals in the Mesosphere and lower Thermosphere by remote Sensing of Airglow with SCIAMACHY/Envisat

    NASA Astrophysics Data System (ADS)

    Langowski, M.; von Savigny, C.; Sinnhuber, M.; Aikin, A. C.; Burrows, J. P.

    2013-12-01

    Meteors entering the earth atmosphere containing metals ablate in an altitude of approximately 100 km due to frictional heating. The ablated metals undergo a series of chemical processes, which finally leads to a formation of metal layers between 85-95 km and metal ion layers 5 to 15 km above the metal layer. Although the densities of the metals and their ions are only in the magnitude of a few thousands of particles per cubic centimeter, they strongly emit airglow radiation due to their strong absorption cross sections and oscillator strength. This Airglow can be detected e.g. by grating spectrometers and the the density of the metals and ions can be obtained by inversion of a radiative transfer model. Since the Mesosphere and lower Thermosphere can hardly be accessed by in-situ measurement, as ballons fly to low and satellites typically too high and rockets to sparsly, the airglow emission of the metals and ions is one of the few means in this region to obtain information about transport and wave activities. Furthermore the total meteoric input to earth, which is quite uncertain in a range from 2 to 300 t/day can be estimated from the densties in the metal layers. We present metal and ion retrievals from SCIAMACHY/Envisat which is a satellite based grating spectrometer with a wavelength range of 230 to 2300 nm. The presented results are retrieved from the limb MLT states scanning the atmosphere with tangent altitudes from 50 to 150 km every 2 weeks for one day of data since 2008 until 2012.

  15. Image-domain sampling properties of the Hotelling Observer in CT using filtered back-projection

    NASA Astrophysics Data System (ADS)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2015-03-01

    The Hotelling Observer (HO),1 along with its channelized variants,2 has been proposed for image quality evaluation in x-ray CT.3,4 In this work, we investigate HO performance for a detection task in parallel-beam FBP as a function of two image-domain sampling parameters, namely pixel size and field-of-view. These two parameters are of central importance in adapting HO methods to use in CT, since the large number of pixels in a single image makes direct computation of HO performance for a full image infeasible in most cases. Reduction of the number of image pixels and/or restriction of the image to a region-of-interest (ROI) has the potential to make direct computation of HO statistics feasible in CT, provided that the signal and noise properties lead to redundant information in some regions of the image. For small signals, we hypothesize that reduction of image pixel size and enlargement of the image field-of-view are approximately equivalent means of gaining additional information relevant to a detection task. The rationale for this hypothesis is that the backprojection operation in FBP introduces long range correlations so that, for small signals, the reconstructed signal outside of a small ROI is not linearly independent of the signal within the ROI. In this work, we perform a preliminary investigation of this hypothesis by sweeping these two sampling parameters and computing HO performance for a signal detection task.

  16. Comparing Auroral Far Ultraviolet Images and Coincident Ionosonde Observations of the Auroral E Region

    NASA Astrophysics Data System (ADS)

    Knight, H. K., Jr.; Galkin, I. A.; Reinisch, B. W.

    2014-12-01

    Comparisons are being made between auroral ionospheric E region parameters derived from two types of observations: satellite-based far ultraviolet (FUV) imagers and ground-based ionosondes. The FUV imagers are: 1) NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics Global Ultraviolet Imager (TIMED/GUVI) and 2) DMSP's Special Sensor Ultraviolet Spectrographic Imager (SSUSI). The ionosondes are five high latitude Digisondes included in the Global Ionospheric Radio Observatory (GIRO) (Reinisch and Galkin, EPS, 2011). The purpose of the comparisons is to determine whether auroral FUV remote sensing algorithms that derive E region parameters from Lyman-Birge-Hopfield (LBH) emissions are biased in the presence of proton aurora. Earlier comparisons between FUV images and in situ auroral particle flux observations (e.g., Knight et al., JGR, 2012) indicate that proton aurora is much more efficient than electron aurora in producing LBH emission, and to be consistent with these findings the FUV-ionosonde comparisons would have to show that auroral FUV-derived NmE (maximum E region electron density) is biased high in the presence of proton precipitation. The advantage of making comparisons with Digisonde observations of the E region (as opposed to incoherent scatter radar) is that Digisondes remain in operation continuously over extended periods of time (i.e. years) and record observations every few minutes, making it possible to gather large numbers of FUV image-coincident observations for statistical studies. The subject of how to interpret auroral E region traces in ionograms has not been studied much up to now, however, and we are making progress in that area. We have found that a modified version of the rules from Piggott and Rawer, U.R.S.I. Handbook of Ionogram Interpretation and Reduction(1972) gives a large number of usable ionograms and good correlation with auroral FUV observations. The figure shows an example of an auroral FUV image with the locations

  17. Comparison of the channelized Hotelling and human observers for lesion detection in hepatic SPECT imaging

    NASA Astrophysics Data System (ADS)

    King, Michael A.; de Vries, Daniel J.; Soares, Edward J.

    1997-04-01

    The relative rankings of the channelized Hotelling model observer were compared to those of the human observers for the task of detecting 'hot' tumors in simulated hepatic SPECT slices. The signal-to-noise ratios (SNRs) were determined using eighty images for each of three slice locations. The acquisition and processing strategies investigated were: (1) imaging solely primary photons, (2) imaging primary plus scatter within a 20% symmetric energy window for Tc-99m, (3) imaging with primary plus an elevated amount of scatter, (4) energy-spectrum-based scatter compensation of the primary plus scatter acquisitions, and (5) energy-spectrum-based scatter compensation of the acquisitions with an elevated amount of scatter. Both square non-overlapping channels (SQR), and overlapping difference- of-Gaussian channels (DOG) were incorporated into the Hotelling model observer. When the scatter compensation results were excluded, both channelized Hotelling model observers exhibited a strong correlation with the rankings of the human-observers. With the inclusion of the scatter compensation results, only with the DOG model observer was the null-hypothesis of no correlation rejected at the p equals 0.05 level. It is concluded that further investigation of the channel model used with the Hotelling observer is indicated to determine if better correlation can be obtained.

  18. An assessment of OH airglow interference on the remote sensing of stratospheric HCl via limb sounding in the near-I.R.

    NASA Technical Reports Server (NTRS)

    Mergenthaler, J. L.; Kumer, J. B.

    1986-01-01

    Chemiluminescent emission from the formation of vibrationally excited OH at an altitude of approximately 85 km presents a barrier to earth-limb measurements of NIR emissions originating in the stratosphere. High-resolution measured spectra of OH airglow have not been reported, and thus it is difficult to assess its impact on moderately-high-resolution earth-limb spectroscopy capable of looking between strong OH lines. Low-resolution rocketborne spectrometer earth-limb measurements of OH airglow are mathematically inverted to recover vibrational-state populations that are used to simulate a higher resolution spectrum in the neighbourhood of 2843/cm. Implications for remote sensing HCl are presented.

  19. Calibration and validation by professional observers of the Mission-Quality criterion for imaging systems design.

    PubMed

    Kattnig, Alain P; Primot, Jérôme

    2008-03-31

    Imaging systems comparisons remains today a sensitive subject because of the difficulty to merge radiometric and spatial dimensions into a single, easy to use, parameter. By leaning explicitly on professional image users and their requirements we show how to build such a criterion, called Mission-Quality. A specific observation campaign is described and its results are used to calibrate and carry first proof of the criterion adequacy.

  20. Performance of PHOTONIS' low light level CMOS imaging sensor for long range observation

    NASA Astrophysics Data System (ADS)

    Bourree, Loig E.

    2014-05-01

    Identification of potential threats in low-light conditions through imaging is commonly achieved through closed-circuit television (CCTV) and surveillance cameras by combining the extended near infrared (NIR) response (800-10000nm wavelengths) of the imaging sensor with NIR LED or laser illuminators. Consequently, camera systems typically used for purposes of long-range observation often require high-power lasers in order to generate sufficient photons on targets to acquire detailed images at night. While these systems may adequately identify targets at long-range, the NIR illumination needed to achieve such functionality can easily be detected and therefore may not be suitable for covert applications. In order to reduce dependency on supplemental illumination in low-light conditions, the frame rate of the imaging sensors may be reduced to increase the photon integration time and thus improve the signal to noise ratio of the image. However, this may hinder the camera's ability to image moving objects with high fidelity. In order to address these particular drawbacks, PHOTONIS has developed a CMOS imaging sensor (CIS) with a pixel architecture and geometry designed specifically to overcome these issues in low-light level imaging. By combining this CIS with field programmable gate array (FPGA)-based image processing electronics, PHOTONIS has achieved low-read noise imaging with enhanced signal-to-noise ratio at quarter moon illumination, all at standard video frame rates. The performance of this CIS is discussed herein and compared to other commercially available CMOS and CCD for long-range observation applications.

  1. Observation of hydrofluoric acid burns on osseous tissues by means of terahertz spectroscopic imaging.

    PubMed

    Baughman, William E; Yokus, Hamdullah; Balci, Soner; Wilbert, David Shawn; Kung, Patrick; Kim, Seongsin Margaret

    2013-07-01

    Terahertz technologies have gained great amount of attention for biomedical imaging and tissue analysis. In this study, we utilize terahertz imaging to study the effects of hydrofluoric acid on both compact bone tissue and cartilage. We compare the differences observed in the exposure for formalin fixed and raw, dried, tissue as well as those resulting from a change in hydrofluoric (HF) concentration. Measurements are performed with THz-TDS, and a variety of spectroscopic-based image reconstruction techniques are utilized to develop contrast in the features of interest.

  2. The potential of pigeons as surrogate observers in medical image perception studies

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Levenson, Richard M.; Navarro, Victor; Wasserman, Edward A.

    2016-03-01

    Assessment of medical image quality and how changes in image appearance impact performance are critical but assessment can be expensive and time-consuming. Could an animal (pigeon) observer with well-known visual skills and documented ability to distinguish complex visual stimuli serve as a surrogate for the human observer? Using sets of whole slide pathology (WSI) and mammographic images we trained pigeons (cohorts of 4) to detect and/or classify lesions in medical images. Standard training methods were used. A chamber equipped with a 15' display with a resistive touchscreen was used to display the images and record responses (pecks). Pigeon pellets were dispensed for correct responses. The pigeons readily learned to distinguish benign from malignant breast cancer histopathology in WSI (mean % correct responses rose 50% to 85% over 15 days) and generalized readily from 4X to 10X and 20X magnifications; to detect microcalcifications (mean % correct responses rose 50% to over 85% over 25 days); to distinguish benign from malignant breast masses (3 of 4 birds learned this task to around 80% and 60% over 10 days); and ignore compression artifacts in WSI (performance with uncompressed slides averaged 95% correct; 15:1 and 27:1 compression slides averaged 92% and 90% correct). Pigeons models may help us better understand medical image perception and may be useful in quality assessment by serving as surrogate observers for certain types of studies.

  3. Observations of a Breakdown of a Mountain Wave Near 84 km Altitude Over Cerro Pachon Chile from the Andes Lidar Observatory

    NASA Astrophysics Data System (ADS)

    Hecht, J. H.; Gelinas, L. J.; Rudy, R. J.; Walterscheid, R. L.; Taylor, M. J.; Pautet, P. D.; Fritts, D. C.; Smith, S. M.; Franke, S. J.; Mlynczak, M. G.

    2015-12-01

    Mountain waves are produced by flow over orography. They propagate almost vertically, and are characterized by nearly zero velocity phase speed. The altitude to which they typically propagate is not well documented. They are thought to mainly dissipate by absorption in a critical layer although large-amplitude wave breakdown is also thought to occur. There have been almost no direct observations of the breakdown of mountain waves in the upper mesosphere and lower thermosphere. The region over Cerro Pachon Chile (a 2715 meter mountain in the Andes where large astronomical telescopes are located) is especially favorable to the production of mountain waves. In 2009 Smith and colleagues reported on the first observations of such waves propagating into the mesopause region (85 to 95 km) from El Leoncito Argentina, where waves over Cerro Pachon could be seen using airglow observations. The Aerospace Corporation's Nightglow Imager (ANI) is located at the Andes Lidar Observatory near the crest of Cerro Pachon. ANI observes nighttime OH emission (near 1.6 microns) every 2 seconds over an approximate 73 degree field of view. ANI had previously been used to the breakdown of Kelvin-Helmholtz instability features not associated with a specific gravity wave. Here we present OH airglow observations, originating near 84 km, from 22 UT to 3 UT on 8/9 July 2012 that show the breakdown of a mountain wave into instability features that subsequently dissipate into turbulence. These multi-hour observations provide the most detailed images to date of the breakdown of a mountain wave. The causes for, and the results of, the breakdown of this mountain wave are discussed.

  4. Lava flow surface textures - SIR-B radar image texture, field observations, and terrain measurements

    NASA Technical Reports Server (NTRS)

    Gaddis, Lisa R.; Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1990-01-01

    SIR-B images, field observations, and small-scale (cm) terrain measurements are used to study lave flow surface textures related to emplacement processes of a single Hawaiian lava flow. Although smooth pahoehoe textures are poorly characterized on the SIR-B data, rougher pahoehoe types and the a'a flow portion show image textures attributed to spatial variations in surface roughness. Field observations of six distinct lava flow textural units are described and used to interpret modes of emplacement. The radar smooth/rough boundary between pahoehoe and a'a occurs at a vertical relief of about 10 cm on this lava flow. While direct observation and measurement most readily yield information related to lava eruption and emplacement processes, analyses of remote sensing data such as those acquired by imaging radars and altimeters can provide a means of quantifying surface texture, identifying the size and distribution of flow components, and delineating textural unit boundaries.

  5. Computational assessment of mammography accreditation phantom images and correlation with human observer analysis

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.

    2015-03-01

    Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.

  6. Spaceborne radar observations: A guide for Magellan radar-image analysis

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Blom, R. G.; Crisp, J. A.; Elachi, Charles; Farr, T. G.; Saunders, R. Stephen; Theilig, E. E.; Wall, S. D.; Yewell, S. B.

    1989-01-01

    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high

  7. Observations of Io's Active Volcanoes from IRTF: Imaging and Occultation Lightcurves

    NASA Astrophysics Data System (ADS)

    Rathbun, J. A.; Spencer, J. R.

    2014-12-01

    We have been observing Ionian volcanism from NASA's Infrared Telescope Facility (IRTF) for more than two decades. The frequency of our observations increases dramatically when spacecraft are observing Io in order to complement the data returned by the spacecraft. The Japanese Space Agency's (JAXA) Hisaki (Sprint-A) mission recently observd the Jupiter system from earth orbit, monitoring the Io Plasma Torus and Jovian aurora. In order to investigate the possible influence of Io volcanism on the torus, we observed Io's volcanoes from the IRTF in Hawaii between September 2013 and May 2014. We imaged Io at 2.2, 3.5, and 4.8 microns in eclipse and reflected sunlight. We also observed Io during occultation by Jupiter, which allows us to locate and characterize individual volcanic eruptions, with greater spatial accuracy, on the Jupiter-facing hemisphere. The 2013 3.5 micron images of a sunlit Io showed no obvious bright volcanic features. However, further increases in spatial resolution is possible with shift-and-add processing of short exposure images. Preliminary occultation lightcurves from 2013 show moderate levels of activity at Kaneheliki/Janus and Loki, the two volcanic centers most often observed in occultation lightcurves. Loki was much brighter in 2013 than during the New Horizons flyby in 2007, but not as bright as during the Galileo era (see figure). From February 2014 through May 2014, due to a planned upgrade on the SPEX instrument and an unplanned required repair on the NSFCam2 instrument (both of which we have used previously), we exclusively used the CSHELL instrument as an imager. Unfortunately, CSHELL was not designed for imaging and has limited spatial resolution and photometric precision, complicating image analysis.

  8. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations and numerical simulations

    NASA Technical Reports Server (NTRS)

    Darouzet, Fabien; DeKeyser, Johan; Decreau, Pierrette; Gallagher, Dennis; Pierrard, Viviane; Lemaire, Joseph; Dandouras, Iannis; Matsui, Hiroshi; Dunlop, Malcolm; Andre, Mats

    2005-01-01

    Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles can be derived from the plasma frequency and/or from the spacecraft potential (note that the electron spectrometer is usually not operating inside the plasmasphere); ion velocity is also measured onboard these satellites (but ion density is not reliable because of instrumental limitations). The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 minutes; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations for 3 plume events and compare CLUSTER in-situ data (panel A) with global images of the plasmasphere obtained from IMAGE (panel B), and with numerical simulations for the formation of plumes based on a model that includes the interchange instability mechanism (panel C). In particular, we study the geometry and the orientation of plasmaspheric plumes by using a four-point analysis method, the spatial gradient. We also compare several aspects of their motion as determined by different methods: (i) inner and outer plume boundary velocity calculated from time delays of this boundary observed by the wave experiment WHISPER on the four spacecraft, (ii) ion velocity derived from the ion spectrometer CIS onboard CLUSTER, (iii) drift velocity measured by the electron drift instrument ED1 onboard CLUSTER and (iv) global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.

  9. Monte Carlo Radiative Transfer Modeling of Lightning Observed in Galileo Images of Jupiter

    NASA Technical Reports Server (NTRS)

    Dyudine, U. A.; Ingersoll, Andrew P.

    2002-01-01

    We study lightning on Jupiter and the clouds illuminated by the lightning using images taken by the Galileo orbiter. The Galileo images have a resolution of 25 km/pixel and axe able to resolve the shape of the single lightning spots in the images, which have full widths at half the maximum intensity in the range of 90-160 km. We compare the measured lightning flash images with simulated images produced by our ED Monte Carlo light-scattering model. The model calculates Monte Carlo scattering of photons in a ED opacity distribution. During each scattering event, light is partially absorbed. The new direction of the photon after scattering is chosen according to a Henyey-Greenstein phase function. An image from each direction is produced by accumulating photons emerging from the cloud in a small range (bins) of emission angles. Lightning bolts are modeled either as points or vertical lines. Our results suggest that some of the observed scattering patterns axe produced in a 3-D cloud rather than in a plane-parallel cloud layer. Lightning is estimated to occur at least as deep as the bottom of the expected water cloud. For the six cases studied, we find that the clouds above the lightning are optically thick (tau > 5). Jovian flashes are more regular and circular than the largest terrestrial flashes observed from space. On Jupiter there is nothing equivalent to the 30-40-km horizontal flashes which axe seen on Earth.

  10. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images

    PubMed Central

    Levenson, Richard M.; Krupinski, Elizabeth A.; Navarro, Victor M.; Wasserman, Edward A.

    2015-01-01

    Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)—which share many visual system properties with humans—can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds’ histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task—namely, classification of suspicious mammographic densities (masses)—the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds’ successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools. PMID:26581091

  11. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images.

    PubMed

    Levenson, Richard M; Krupinski, Elizabeth A; Navarro, Victor M; Wasserman, Edward A

    2015-01-01

    Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)-which share many visual system properties with humans-can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds' histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task-namely, classification of suspicious mammographic densities (masses)-the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds' successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools. PMID:26581091

  12. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images.

    PubMed

    Levenson, Richard M; Krupinski, Elizabeth A; Navarro, Victor M; Wasserman, Edward A

    2015-01-01

    Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)-which share many visual system properties with humans-can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds' histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task-namely, classification of suspicious mammographic densities (masses)-the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds' successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools.

  13. A stereo matching model observer for stereoscopic viewing of 3D medical images

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Markey, Mia K.; Muralidlhar, Gautam S.

    2014-03-01

    Stereoscopic viewing of 3D medical imaging data has the potential to increase the detection of abnormalities. We present a new stereo model observer inspired by the characteristics of stereopsis in human vision. Given a stereo pair of images of an object (i.e., left and right images separated by a small displacement), the model observer rst nds the corresponding points between the two views, and then fuses them together to create a 2D cyclopean view. Assuming that the cyclopean view has extracted most of the 3D information presented in the stereo pair, a channelized Hotelling observer (CHO) can be utilized to make decisions. We conduct a simulation study that attempts to mimic the detection of breast lesions on stereoscopic viewing of breast tomosynthesis projection images. We render voxel datasets that contain random 3D power-law noise to model normal breast tissues with various breast densities. 3D Gaussian signal is added to some of the datasets to model the presence of a breast lesion. By changing the separation angle between the two views, multiple stereo pairs of projection images are generated for each voxel dataset. The performance of the model is evaluated in terms of the accuracy of binary decisions on the presence of the simulated lesions.

  14. Image enhancement filters significantly improve reading performance for low vision observers

    NASA Technical Reports Server (NTRS)

    Lawton, T. B.

    1992-01-01

    As people age, so do their photoreceptors; many photoreceptors in central vision stop functioning when a person reaches their late sixties or early seventies. Low vision observers with losses in central vision, those with age-related maculopathies, were studied. Low vision observers no longer see high spatial frequencies, being unable to resolve fine edge detail. We developed image enhancement filters to compensate for the low vision observer's losses in contrast sensitivity to intermediate and high spatial frequencies. The filters work by boosting the amplitude of the less visible intermediate spatial frequencies. The lower spatial frequencies. These image enhancement filters not only reduce the magnification needed for reading by up to 70 percent, but they also increase the observer's reading speed by 2-4 times. A summary of this research is presented.

  15. The SWAP EUV imager onboard PROBA2: 3 years of observations

    NASA Astrophysics Data System (ADS)

    West, Matthew; Berghmans, David; Seaton, Daniel

    The Sun Watcher with Active Pixels and Image Processing (SWAP) imager is an EUV solar telescope on board ESA's Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54x54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. The SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS-APS detector. I will present what has been learnt from 3 years of SWAP operations, the advantages of the CMOS detector and SWAPs setup, and a few unique PROBA2/SWAP observations.

  16. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  17. The Sheath Transport Observer for the Redistribution of Mass (STORM) Image

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael; Sibeck, David G.; Porter, F. Scott; Carter, J. A.; Cravens, Thomas; Omidi, N.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2008-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversy surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  18. The Sheath Transport Observer for the Redistribution of Mass (STORM) Imager

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Sibeck, David G.; Porter, F. Scott; Burch, J.; Carter, J. A.; Cravens, Thomas; Kuntz, Kip; Omidi, N.; Read, A.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2010-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversies surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  19. Moderate resolution imaging spectroradiometer (MODIS) and observations of the land surface

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Toll, D. L.; Lawrence, W. T.

    1992-01-01

    The moderate resolution imaging spectroradiometer (MODIS) is a NASA facility instrument that is being designed for flight on the Earth Observing System (EOS) series of missions. It is designed to measure biophysical states and dynamics of the land, atmosphere, and ocean. Plans are required for use of other instruments that will be accompanying MODIS on the EOS missions, such as the High-Resolution Imaging Spectrometer (HIRIS) and the Multi-angle Imaging Spectro-Radiometer (MISR). The HIRIS instrument, a spectrometer operating in the visible to shortwave infrared parts of the spectrum, would be employed in combination with the MODIS to understand the impact of sampling the spectrum and the effects of land cover mixtures within the MODIS pixel. The MISR will help in understanding the effects of anisotropy in reflected solar radiation. Both instruments will work in combination with MODIS to better quantify the effects of the atmosphere on observations of surface properties.

  20. Toward realistic and practical ideal observer (IO) estimation for the optimization of medical imaging systems.

    PubMed

    He, Xin; Caffo, Brian S; Frey, Eric C

    2008-10-01

    The ideal observer (IO) employs complete knowledge of the available data statistics and sets an upper limit on observer performance on a binary classification task. However, the IO test statistic cannot be calculated analytically, except for cases where object statistics are extremely simple. Kupinski have developed a Markov chain Monte Carlo (MCMC) based technique to compute the IO test statistic for, in principle, arbitrarily complex objects and imaging systems. In this work, we applied MCMC to estimate the IO test statistic in the context of myocardial perfusion SPECT (MPS). We modeled the imaging system using an analytic SPECT projector with attenuation, distant-dependent detector-response modeling and Poisson noise statistics. The object is a family of parameterized torso phantoms with variable geometric and organ uptake parameters. To accelerate the imaging simulation process and thus enable the MCMC IO estimation, we used discretized anatomic parameters and continuous uptake parameters in defining the objects. The imaging process simulation was modeled by precomputing projections for each organ for a finite number of discretely-parameterized anatomic parameters and taking linear combinations of the organ projections based on continuous sampling of the organ uptake parameters. The proposed method greatly reduces the computational burden and allows MCMC IO estimation for a realistic MPS imaging simulation. We validated the proposed IO estimation technique by estimating IO test statistics for a large number of input objects. The properties of the first- and second-order statistics of the IO test statistics estimated using the MCMC IO estimation technique agreed well with theoretical predictions. Further, as expected, the IO had better performance, as measured by the receiver operating characteristic (ROC) curve, than the Hotelling observer. This method is developed for SPECT imaging. However, it can be adapted to any linear imaging system.

  1. Wide-field direct CCD observations supporting the Astro-1 Space Shuttle mission's Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Angione, Ron; Talbert, Freddie; Cheng, K.-P.; Smith, Eric; Stecher, Theodore P.

    1993-01-01

    Wide field direct CCD observations are being obtained to support and complement the vacuum-ultraviolet (VUV) images provided by Astro's Ultraviolet Imaging Telescope (UIT) during a Space Shuttle flight in December 1990. Because of the wide variety of projects addressed by UIT, the fields observed include (1) galactic supernova remnants such as the Cygnus Loop and globular clusters such as Omega Cen and M79; (2) the Magellanic Clouds, M33, M81, and other galaxies in the Local Group; and (3) rich clusters of galaxies, principally the Perseus cluster and Abell 1367. Ground-based observations have been obtained for virtually all of the Astro-1 UIT fields. The optical images allow identification of individual UV sources in each field and provide the long baseline in wavelength necessary for accurate analysis of UV-bright sources. To facilitate use of our optical images for analysis of UIT data and other projects, we plan to archive them, with the UIT images, at the National Space Science Data Center (NSSDC), where they will be universally accessible via anonymous FTP. The UIT, one of three telescopes comprising the Astro spacecraft, is a 38-cm f/9 Ritchey-Chretien telescope on which high quantum efficiency, solar-blind image tubes are used to record VUV images on photographic film. Five filters with passbands centered between 1250A and 2500A provide both VUV colors and a measurement of extinction via the 2200A dust feature. The resulting calibrated VUV pictures are 40 arcminutes in diameter at 2.5 arcseconds resolution. The capabilities of UIT, therefore, complement HST's WFPC: the latter has 40 times greater collecting area, while UIT's usable field has 170 times WFPC's field area.

  2. IMAGING AND SPECTROSCOPIC OBSERVATIONS OF MAGNETIC RECONNECTION AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE

    SciTech Connect

    Tian, Hui; Reeves, Katharine K.; Raymond, John C.; Chen, Bin; Murphy, Nicholas A.; Li, Gang; Guo, Fan; Liu, Wei

    2014-12-20

    Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfvén speed. Yet, spectroscopic observations of such outflows, especially the downflows, are extremely rare. With observations of the newly launched Interface Region Imaging Spectrograph (IRIS), we report the detection of a greatly redshifted (∼125 km s{sup –1} along the line of sight) Fe XXI 1354.08 Å emission line with a ∼100 km s{sup –1} nonthermal width at the reconnection site of a flare. The redshifted Fe XXI feature coincides spatially with the loop-top X-ray source observed by RHESSI. We interpret this large redshift as the signature of downward-moving reconnection outflow/hot retracting loops. Imaging observations from both IRIS and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory also reveal the eruption and reconnection processes. Fast downward-propagating blobs along these loops are also found from cool emission lines (e.g., Si IV, O IV, C II, Mg II) and images of AIA and IRIS. Furthermore, the entire Fe XXI line is blueshifted by ∼260 km s{sup –1} at the loop footpoints, where the cool lines mentioned above all exhibit obvious redshift, a result that is consistent with the scenario of chromospheric evaporation induced by downward-propagating nonthermal electrons from the reconnection site.

  3. Mesospheric nightglow spectral survey taken by the ISO spectral spatial imager on ATLAS 1

    NASA Technical Reports Server (NTRS)

    Owens, J. K.; Torr, D. G.; Torr, M. R.; Chang, T.; Fennelly, J. A.; Richards, P. G.; Morgan, M. F.; Baldridge, T. W.; Fellows, C. W.; Dougani, H.

    1993-01-01

    This paper reports the first comprehensive spectral survey of the mesospheric airglow between 260 and 832 nm taken by the Imaging Spectrometric Observatory on the ATLAS 1 mission. We select data taken in the spectral window between 275 and 300 nm to determine the variation with altitude of the Herzberg I bands originating from the vibrational levels v-prime = 3 to 8. These data provide the first spatially resolved spectral measurements of the system. The data are used to demonstrate that to within an uncertainty of +/- 10 percent, the vibrational distribution remains invariant with altitude. The deficit reported previously for the v-prime = 5 level is not observed although there is a suggestion of depletion in v-prime = 6. The data could be used to place tight constraints on the vibrational dependence of quenching rate coefficients, and on the abundance of atomic oxygen.

  4. Mesospheric nightglow spectral survey taken by the ISO spectral spatial imager on Atlas 1

    NASA Technical Reports Server (NTRS)

    Owens, J. K.; Torr, D. G.; Torr, M. R.; Chang, T.; Fennelly, J. A.; Richards, P. G.; Morgan, M. F.; Baldridge, T. W.; Dougani, H.; Swift, W.

    1993-01-01

    This paper reports the first comprehensive spectral survey of the mesospheric airglow between 260 and 832 nm taken by the Imaging Spectrometric Observatory (ISO) on the ATLAS I mission. We select data taken in the spectral window between 275 and 300 nm to determine the variation with altitude of the Herzberg I bands originating from the vibrational levels v' = 3 to 8. These data provide the first spatially resolved spectral measurements of the system. The data are used to demonstrate that to within an uncertainty of + 10%, the vibrational distribution remains invariant with altitude. The deficit reported previously for the v' = 5 level is not observed although there is a suggestion of depletion in v' = 6. The data could be used to place tight constraints on the vibrational dependence of quenching rate coefficients, and on the abundance of atomic oxygen.

  5. Optical observation, image-processing, and detection of space debris in geosynchronous Earth orbit

    NASA Astrophysics Data System (ADS)

    Oda, Hiroshi; Kurosaki, Hirohisa; Yanagisawa, Toshifumi; Tagawa, Makoto

    We report on optical observations and an efficient detection method of space debris in the geosynchronous Earth orbit (GEO). We operate our new Australia Remote Observatory (ARO) where an 18 cm optical telescope with a charged-coupled device (CCD) camera covering a 3.14-degree field of view is used for GEO debris survey, and analyse datasets of successive CCD images using the line detection method (Yanagisawa and Nakajima 2005). In our operation, the exposure time of each CCD image is set to be 3 seconds, and the time interval of each images is about 4.7 seconds. We can detect faint signals (down to about 1.8 sigma of background noise) by applying the line detection method to 18 CCD images. As a result, we detected about 300 GEO objects up to magnitude of 14 among 5 nights data, and found that a certain amount of our detections are new objects that are not contained in the two-line-element (TLE) data provided by the U.S. Strategic Command (USSTRATCOM). We conclude that our ARO posses a high efficiency detection of GEO objects despite the use of comparatively-inexpensive observation and analysis system. We also describe the image-processing method specialised for the detection of GEO objects (not for usual astronomical objects like stars) in this paper.

  6. Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images

    SciTech Connect

    Tsekenis, S. A.; McCann, H.; Tait, N.

    2015-03-15

    We present a novel framework and experimental method for the quantification of spatial resolution of a tomography system. The framework adopts the “black box” view of an imaging system, considering only its input and output. The tomography system is locally stimulated with a step input, viz., a sharp edge. The output, viz., the reconstructed images, is analysed by Fourier decomposition of their spatial frequency components, and the local limiting spatial resolution is determined using a cut-off threshold. At no point is an observer involved in the process. The framework also includes a means of translating the quantification region in the imaging space, thus creating a spatially resolved map of objectively quantified spatial resolution. As a case-study, the framework is experimentally applied using a gaseous propane phantom measured by a well-established chemical species tomography system. A spatial resolution map consisting of 28 regions is produced. In isolated regions, the indicated performance is 4-times better than that suggested in the literature and varies by 57% across the imaging space. A mechanism based on adjacent but non-interacting beams is hypothesised to explain the observed behaviour. The mechanism suggests that, as also independently concluded by other methods, a geometrically regular beam array maintains maximum objectivity in reconstructions. We believe that the proposed framework, methodology, and findings will be of value in the design and performance evaluation of tomographic imaging arrays and systems.

  7. Supernova Remnants and Nucleosynthesis (fos 30): Augmentation Cycle 2 Observations - Imaging

    NASA Astrophysics Data System (ADS)

    Davidsen, Arthur

    1991-07-01

    Overall program: UV and optical spectra of four supernova remnants (SNRs) will be used to study a number of problems related to abundances, grain destruction, interstellar medium properties and physical conditions in SNR shocks. Representatives of three of the main classes of SNRs (Crab-nebula like, Balmer-line and "normal") will be studied in the LMC, where reasonably low reddening permits UV observations. An oxygen-rich SNR in NGC 4449 will be observed, taking advantage of the small FOS slits to isolate the SNR from surrounding H II emission. Two M33 SNRs that were previously part of this proposal have been dropped due to time limitations. This proposal is augmented time to obtain early acq images of two LMC remnants and spectra of N49, which had early acq images in Cy. 0. NOTE: SPECTROSCOPY AND IMAGING ORIGINALLY IN THE CYCLE 2 PROPOSAL 4108 HAVE BEEN SPLIT BY STSCI INTO TWO SEPARATE PROPOSALS TO ALLOW FOR SCHEDULING OF CYCLE 2 EARLY ACQ IMAGING ( THIS PROPOSAL ) SINCE CYCLE 2 SPECTROSCOPY DEPENDS ON MEASUREMENT OF EARLY ACQ IMAGING OF OTHER TARGETS FROM EARLIER CYCLES.

  8. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation, Imaging, Observations, and Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2005-01-01

    This report presents particle formation observations and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Hydrogen was frozen into particles in liquid helium, and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. These newly analyzed data are from the test series held on February 28, 2001. Particle sizes from previous testing in 1999 and the testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed: microparticles and delayed particle formation. These experiment image analyses are some of the first steps toward visually characterizing these particles, and they allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  9. Investigation of Interpolation for Solar Irradiation in Non-Observed Point Based on Satellite Images

    NASA Astrophysics Data System (ADS)

    Shinoda, Yukio; Fujisawa, Sei; Seki, Tomomichi

    Penetrating the Photovoltaic Power Generation System (PV) on an enormous scale over a next decade has some crucial problems which affect on, for example, power grid stabilization and operation including existing power stations for electric power utilities. It would be therefore important for future operation to estimate power output generated by PV in advance. We focus on interpolation using observed solar irradiation (SI) and brightness of pixel on a satellite visible image for estimating SI even in non-observed point. Our results by single regression analysis between observed SI and brightness on a satellite image as cloudiness show that a shift of highest determination coefficient on each hour would represent solar movement and this higher determination coefficient would indicate a position which SI and cloud would cross. Finally assessment of error in this interpolation shows enough accuracy at least in daytime period, which is important for electricity utilities.

  10. Optical Observation, Image-processing, and Detection of Space Debris in Geosynchronous Earth Orbit

    NASA Astrophysics Data System (ADS)

    Oda, H.; Yanagisawa, T.; Kurosaki, H.; Tagawa, M.

    2014-09-01

    We report on optical observations and an efficient detection method of space debris in the geosynchronous Earth orbit (GEO). We operate our new Australia Remote Observatory (ARO) where an 18 cm optical telescope with a charged-coupled device (CCD) camera covering a 3.14-degree field of view is used for GEO debris survey, and analyse datasets of successive CCD images using the line detection method (Yanagisawa and Nakajima 2005). In our operation, the exposure time of each CCD image is set to be 3 seconds (or 5 seconds), and the time interval of CCD shutter open is about 4.7 seconds (or 6.7 seconds). In the line detection method, a sufficient number of sample objects are taken from each image based on their shape and intensity, which includes not only faint signals but also background noise (we take 500 sample objects from each image in this paper). Then we search a sequence of sample objects aligning in a straight line in the successive images to exclude the noise sample. We succeed in detecting faint signals (down to about 1.8 sigma of background noise) by applying the line detection method to 18 CCD images. As a result, we detected about 300 GEO objects up to magnitude of 15.5 among 5 nights data. We also calculate orbits of objects detected using the Simplified General Perturbations Satellite Orbit Model 4(SGP4), and identify the objects listed in the two-line-element (TLE) data catalogue publicly provided by the U.S. Strategic Command (USSTRATCOM). We found that a certain amount of our detections are new objects that are not contained in the catalogue. We conclude that our ARO and detection method posse a high efficiency detection of GEO objects despite the use of comparatively-inexpensive observation and analysis system. We also describe the image-processing specialized for the detection of GEO objects (not for usual astronomical objects like stars) in this paper.

  11. Asteroid (4179) Toutatis size determination via optical images observed by the Chang'e-2 probe

    NASA Astrophysics Data System (ADS)

    Liu, P.; Huang, J.; Zhao, W.; Wang, X.; Meng, L.; Tang, X.

    2014-07-01

    This work is a physical and statistical study of the asteroid (4179) Toutatis using the optical images obtained by a solar panel monitor of the Chang'e-2 probe on Dec. 13, 2012 [1]. In the imaging strategy, the camera is focused at infinity. This is specially designed for the probe with its solar panels monitor's principle axis pointing to the relative velocity direction of the probe and Toutatis. The imaging strategy provides a dedicated way to resolve the size by multi-frame optical images. The inherent features of the data are: (1) almost no rotation was recorded because of the 5.41-7.35 Earth-day rotation period and the small amount of elapsed imaging time, only minutes, make the object stay in the images in a fixed position and orientation; (2) the sharpness of the upper left boundary and the vagueness of lower right boundary resulting from the direction of SAP (Sun-Asteroid-Probe angle) cause a varying accuracy in locating points at different parts of Toutatis. A common view is that direct, accurate measurements of asteroid shapes, sizes, and pole positions are now possible for larger asteroids that can be spatially resolved using the Hubble Space Telescope or large ground-based telescopes equipped with adaptive optics. For a quite complex planetary/asteroid probe study, these measurements certainly need continuous validation via a variety of ways [2]. Based on engineering parameters of the probe during the fly-by, the target spatial resolving and measuring procedures are described in the paper. Results estimated are optical perceptible size on the flyby epoch under the solar phase angles during the imaging. It is found that the perceptible size measured using the optical observations and the size derived from the radar observations by Ostro et al.~in 1995 [3], are close to one another.

  12. VLBI observations of SN 2011dh: imaging of the youngest radio supernova

    NASA Astrophysics Data System (ADS)

    Martí-Vidal, I.; Tudose, V.; Paragi, Z.; Yang, J.; Marcaide, J. M.; Guirado, J. C.; Ros, E.; Alberdi, A.; Pérez-Torres, M. A.; Argo, M. K.; van der Horst, A. J.; Garrett, M. A.; Stockdale, C. J.; Weiler, K. W.

    2011-11-01

    We report on the VLBI detection of supernova SN 2011dh at 22 GHz using a subset of the EVN array. The observations took place 14 days after the discovery of the supernova, thus resulting in a VLBI image of the youngest radio-loud supernova ever. We provide revised coordinates for the supernova with milli-arcsecond precision, linked to the ICRF. The recovered flux density is a factor ~2 below the EVLA flux density reported by other authors at the same frequency and epoch of our observations. This discrepancy could be due to extended emission detected with the EVLA or to calibration problems in the VLBI and/or EVLA observations.

  13. Qualities of sequential chromospheric brightenings observed in Hα and UV images

    SciTech Connect

    Kirk, Michael S.; Balasubramaniam, K. S.; Jackiewicz, Jason; McAteer, R. T. James

    2014-12-01

    Chromospheric flare ribbons observed in Hα appear well-organized when first examined: ribbons impulsively brighten, morphologically evolve, and exponentially decay back to pre-flare levels. Upon closer inspection of the Hα flares, there is often a significant number of compact areas brightening in concert with the flare eruption but are spatially separated from the evolving flare ribbon. One class of these brightenings is known as sequential chromospheric brightenings (SCBs). SCBs are often observed in the immediate vicinity of erupting flares and are associated with coronal mass ejections. In the past decade there have been several previous investigations of SCBs. These studies have exclusively relied upon Hα images to discover and analyze these ephemeral brightenings. This work employs the automated detection algorithm of Kirk et al. to extract the physical qualities of SCBs in observations of ground-based Hα images and complementary Atmospheric Imaging Assembly images in He II, C IV, and 1700 Å. The metadata produced in this tracking process are then culled using complementary Doppler velocities to isolate three distinguishable types of SCBs. From a statistical analysis, we find that the SCBs at the chromospheric Hα layer appear earlier and last longer than their corresponding signatures measured in AIA. From this multi-layer analysis, we infer that SCBs are spatially constrained to the mid-chromosphere. We also derive an energy budget to explain SCBs which have a postulated energy of not more than 0.01% of the total flare energy.

  14. DYNAMICS OF ON-DISK PLUMES AS OBSERVED WITH THE INTERFACE REGION IMAGING SPECTROGRAPH, THE ATMOSPHERIC IMAGING ASSEMBLY, AND THE HELIOSEISMIC AND MAGNETIC IMAGER

    SciTech Connect

    Pant, Vaibhav; Mazumder, Rakesh; Banerjee, Dipankar; Panditi, Vemareddy; Dolla, Laurent; Prasad, S. Krishna

    2015-07-01

    We examine the role of small-scale transients in the formation and evolution of solar coronal plumes. We study the dynamics of plume footpoints seen in the vicinity of a coronal hole using the Atmospheric Imaging Assembly (AIA) images, the Helioseismic and Magnetic Imager magnetogram on board the Solar Dynamics Observatory and spectroscopic data from the Interface Region Imaging Spectrograph (IRIS). Quasi-periodic brightenings are observed in the base of the plumes and are associated with magnetic flux changes. With the high spectral and spatial resolution of IRIS, we identify the sources of these oscillations and try to understand what role the transients at the footpoints can play in sustaining the coronal plumes. IRIS “sit-and-stare” observations provide a unique opportunity to study the evolution of footpoints of the plumes. We notice enhanced line width and intensity, and large deviation from the average Doppler shift in the line profiles at specific instances, which indicate the presence of flows at the footpoints of plumes. We propose that outflows (jet-like features) as a result of small-scale reconnections affect the line profiles. These jet-like features may also be responsible for the generation of propagating disturbances (PDs) within the plumes, which are observed to be propagating to larger distances as recorded from multiple AIA channels. These PDs can be explained in terms of slow magnetoacoustic waves.

  15. Dayside Proton Aurora: Comparisons between Global MHD Simulations and Image Observations

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Fuselier, S. A.; Petrinec, S.; Frey, H. U.; Burch, J. L.

    2003-01-01

    The IMAGE mission provides a unique opportunity to evaluate the accuracy of current global models of the solar wind interaction with the Earth's magnetosphere. In particular, images of proton auroras from the Far Ultraviolet Instrument (FUV) onboard the IMAGE spacecraft are well suited to support investigations of the response of the Earth's magnetosphere to interplanetary disturbances. Accordingly, we have modeled two events that occurred on June 8 and July 28, 2000, using plasma and magnetic field parameters measured upstream of the bow shock as input to three-dimensional magnetohydrodynamic (MHD) simulations. This paper begins with a discussion of images of proton auroras from the FUV SI-12 instrument in comparison with the simulation results. The comparison showed a very good agreement between intensifications in the auroral emissions measured by FUV SI-12 and the enhancement of plasma flows into the dayside ionosphere predicted by the global simulations. Subsequently, the IMAGE observations are analyzed in the context of the dayside magnetosphere's topological changes in magnetic field and plasma flows inferred from the simulation results. Finding include that the global dynamics of the auroral proton precipitation patterns observed by IMAGE are consistent with magnetic field reconnection occurring as a continuous process while the iMF changes in direction and the solar wind dynamic pressure varies. The global simulations also indicate that some of the transient patterns observed by IMAGE are consistent with sporadic reconnection processes. Global merging patterns found in the simulations agree with the antiparallel merging model. though locally component merging might broaden the merging region, especially in the region where shocked solar wind discontinuities first reach the magnetopause. Finally, the simulations predict the accretion of plasma near the bow shock in the regions threaded by newly open field lines on which plasma flows into the dayside

  16. Curiosity's Mars Hand Lens Imager (MAHLI): Sol 0-179 activities, observations, range and scale characterization

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Yingst, R. A.; MSL Science Team

    2013-09-01

    During the Curiosity rover's first six months on Mars, images acquired by the Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) provided critical observations that were used to distinguish a silt/clay-stone from sandstone; interrogate and document the physical properties of an eolian sand deposit and a silt/clay-stone rock in support of sample collection efforts; support robotic arm engineering, tool placement, and wheel position and condition; and contribute to the overall geologic investigation of rocks exposed and only thinly coated with dust in northern Gale crater, Mars.

  17. Earth observation photo taken by JPL with the Shuttle Imaging Radar-A

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Earth observation photo taken by the Jet Propulsion Laboratory (JPL) with the Shuttle Imaging Radar-A (SIR-A). This image shows a 50 by 100 kilometer (30 by 60 mile) area of the Imperial Valley in Southern California and neighboring Mexico. The checkered patterns represent agricultural fields where different types of crops in different stages of growth are cultivated. The very bright areas are (top left to lower right) the U.S. towns of Brawley, Imperial, El Centro, Calexico and the Mexican city of Mexicali. The bright L-shaped line (upper right) is the All-American water canal.

  18. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  19. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    SciTech Connect

    Eck, Brendan L.; Fahmi, Rachid; Miao, Jun; Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun; Wilson, David L.

    2015-10-15

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit

  20. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    PubMed Central

    Eck, Brendan L.; Fahmi, Rachid; Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun; Miao, Jun; Wilson, David L.

    2015-01-01

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, PC. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit and

  1. Interactions between Coronal Mass Ejections Viewed in Coordinated Imaging and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian; Martinez-Oliveros, Juan C.; Bale, Stewart D.; Lin, Robert P.; Harrison, Richard A.; Temmer, Manuela; Webb, David F.; Odstrcil, Dusan

    2013-01-01

    The successive coronal mass ejections (CMEs) from 2010 July 30 - August 1 present us the first opportunity to study CME-CME interactions with unprecedented heliospheric imaging and in situ observations from multiple vantage points. We describe two cases of CME interactions: merging of two CMEs launched close in time and overtaking of a preceding CME by a shock wave. The first two CMEs on August 1 interact close to the Sun and form a merged front, which then overtakes the July 30 CME near 1 AU, as revealed by wide-angle imaging observations. Connections between imaging observations and in situ signatures at 1 AU suggest that the merged front is a shock wave, followed by two ejecta observed at Wind which seem to have already merged. In situ measurements show that the CME from July 30 is being overtaken by the shock at 1 AU and is significantly compressed, accelerated and heated. The interaction between the preceding ejecta and shock also results in variations in the shock strength and structure on a global scale, as shown by widely separated in situ measurements from Wind and STEREO B. These results indicate important implications of CME-CME interactions for shock propagation, particle acceleration and space weather forecasting.

  2. Structural anomalies in undoped Gallium Arsenide observed in high resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.; Brown, M.

    1988-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  3. INTERACTIONS BETWEEN CORONAL MASS EJECTIONS VIEWED IN COORDINATED IMAGING AND IN SITU OBSERVATIONS

    SciTech Connect

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian; Martinez-Oliveros, Juan C.; Bale, Stuart D.; Lin, Robert P.; Harrison, Richard A.; Temmer, Manuela; Webb, David F.; Odstrcil, Dusan

    2012-02-20

    The successive coronal mass ejections (CMEs) from 2010 July 30 to August 1 present us the first opportunity to study CME-CME interactions with unprecedented heliospheric imaging and in situ observations from multiple vantage points. We describe two cases of CME interactions: merging of two CMEs launched close in time and overtaking of a preceding CME by a shock wave. The first two CMEs on August 1 interact close to the Sun and form a merged front, which then overtakes the July 30 CME near 1 AU, as revealed by wide-angle imaging observations. Connections between imaging observations and in situ signatures at 1 AU suggest that the merged front is a shock wave, followed by two ejecta observed at Wind which seem to have already merged. In situ measurements show that the CME from July 30 is being overtaken by the shock at 1 AU and is significantly compressed, accelerated, and heated. The interaction between the preceding ejecta and shock also results in variations in the shock strength and structure on a global scale, as shown by widely separated in situ measurements from Wind and STEREO B. These results indicate important implications of CME-CME interactions for shock propagation, particle acceleration, and space weather forecasting.

  4. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES

    SciTech Connect

    Johannsen, Tim; Psaltis, Dimitrios E-mail: dpsaltis@email.arizona.ed

    2010-07-20

    According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate or oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of {approx}10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a {approx}< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.

  5. Applying Observational Methods to Images of a Simulated High-Redshift Universe

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Scannapieco, E.; Thacker, R.; Windhorst, R. A.

    2011-01-01

    Flexible Image Transport (FITS) images produced from numerical cosmological simulations of dark and baryonic matter are analyzed using Source Extractor (SExtractor), a tool frequently used in observational image analysis. The goal is to assist the interpretation of simulation by better understanding how simulation data might appear in the observational domain. The simulation model, based on Gadget-2 (Springel and Hernquist, 2003) includes gas heating, cooling and star formation. The stellar components of the model are processed by the Bruzual-Charlot (BC03) stellar population models to produce SEDs (Spectral Energy Distributions). These are then folded with different infrared filters, including selected filters from WFC3 and the proposed Near Infrared Camera (NIRCam) for the James Webb Space Telescope (JWST). The simulation data are taken at different redshifts from z 4 to 11, re-sized according to their comoving distances, converted to FITS format files and combined with noise to simulate instrument and background effects. The images are then analyzed with SExtractor to find groupings which are identified as galaxies or galaxy building blocks. Photometry is performed on these objects using SExtractor to extract luminosity functions in the emitted rest frames. Initially, minimal noise levels are used to allow fine details of the model to be "observed.” More realistic sky background levels are then added to estimate the effect of artifacts of observation. We use these models to predict the faint-end Schechter slope evolution alpha(z). We compare these models to the most recent Hathi et al. (2010, ApJ, 720, 1708 ) data, and find good agreement in the faint end slope evolution: predicted alpha (7>z>5) = -1.7 to -1.8, observed alpha (z>5) = -1.75 .

  6. Use of dust storm observations on satellite images to identify areas vulnerable to severe wind erosion

    USGS Publications Warehouse

    Breed, C.S.; McCauley, J.F.

    1986-01-01

    Blowing dust is symptomatic of severe wind erosion and deterioration of soils in areas undergoing dessication and/or devegetation. Dust plumes on satellite images can commonly be traced to sources in marginally arable semiarid areas where protective lag gravels or vegetation have been removed and soils are dry, as demonstrated for the Portales Valley, New Mexico. Images from Landsat and manned orbiters such as Skylab and the Space Shuttle are useful for illustrating the regional relations of airborne dust plumes to source areas. Geostationary satellites such as GOES are useful in tracking the time-histories of episodic dust storms. These events sometimes go unrecognized by weather observers and are the precursors of long-term land degradation trends. In areas where soil maps and meteorological data are inadequate, satellite images provide a means for identifying problem areas where measures are needed to control or mitigate wind erosion. ?? 1986 D. Reidel Publishing Company.

  7. Local Force Interactions and Image Contrast Reversal on Graphite Observed with Noncontact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur; Goetzen, Jan; Altman, Eric; Schwarz, Udo

    Surface interactions of graphene-based nanostructures remain a topic of considerable interest in nanotechnology. Similarly, tip-dependent imaging contrasts have attracted attention as they allow conclusions to be made about the surface's chemical structure and local reactivity. In this talk, we present noncontact atomic force microscopy data recorded in the attractive regime on highly oriented pyrolytic graphite that reveals image contrast reversal for the first time. While larger tip-sample separations feature bright spots on atomic sites, the maximum of the tip-sample interaction flips to the hollow site positions upon further approach, which represents the contrast predominantly observed in previous studies during attractive-mode imaging. This cross over of the local chemical interaction is confirmed in force spectroscopy experiments. The results will be discussed in light of recent theoretical simulations that have predicted the occurrence of such contrast reversal for specific tip terminations.

  8. Observations of barium ion jets in the magnetosphere using Doppler imaging systems and very sensitive imaging systems using imaging photon detectors

    NASA Technical Reports Server (NTRS)

    Rees, D.; Conboy, J.; Heinz, W.; Heppner, J. P.

    1985-01-01

    Observations of four shaped charge releases from rockets launched from Alaska are described. Results demonstrate that imaging and Doppler imaging instruments, based on exploiting the imaging photon detector, provide additional insight into the motion and development of low intensity targets such as the fast ion jets produced by shaped charge releases. It is possible to trace the motion of fast ion jets to very great distances, of the order of 50,000 km, outward along the Earth's magnetic field, when the conditions are suitable for the outward (upward) motion and/or acceleration of such ion jets. It is shown that ion jets, which fade below the lower sensitivity threshold of previous instruments, do not always disappear. There is no evidence of an abrupt field-aligned shear-type acceleration.

  9. The global ultraviolet imager (GUVI) for the NASA TIMED mission

    SciTech Connect

    Christensen, A.B.; Walterscheid, R.L.; Ross, M.N.

    1994-12-31

    The Global Ultraviolet Imager (GUVI) investigation is designed to provide quantitative observations and interpretation of the Earth`s airglow and auroral emissions in support of the NASA Thermosphere, Ionosphere, Mesosphere, Energy and Dynamics (TIMED) mission. It will address TIMED objectives dealing with energetics, dynamics, and the specification of state variables. The instrument will provide multiple-wavelength, simultaneous ``monochromatic`` images of the far-ultraviolet emission (115 to 180 nm) using a scan mirror to sweep the instantaneous field of view of a spectrographic imager through an arc of up to 140{degree} aligned perpendicular to the orbit plane of the spacecraft. The instantaneous field of view is 11.8{degree} by 0.37{degree} (adjustable) along the slit and perpendicular to the slit, respectively. The field of view is mapped to a two-dimensional image plane with up to 64 spatial pixels by 160 spectral pixels of spectral width 0.4 nm per pixel. Binning of pixels can be performed along both the spatial and spectral axes of the array to reduce the demands on the downlink telemetry. The f/3 Rowland circle scanning spectrographic imager is outfitted with a toroidal grating ruled at 1,200 grooves per millimeter. The fore-optics consist of a plane scanning mirror and an off-axis parabolic telescope. The detector is a photon-counting microchannel plate with a wedge and strip anode mounted in a sealed tube.

  10. Examining Periodic Solar-Wind Density Structures Observed in the SECCHI Heliospheric Imagers

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Spence, Harlan E.; Vourlidas, Angelos; Howard, Russell

    2010-01-01

    We present an analysis of small-scale, periodic, solar-wind density enhancements (length scales as small as approximately equals 1000 Mm) observed in images from the Heliospheric Imager (HI) aboard STEREO-A. We discuss their possible relationship to periodic fluctuations of the proton density that have been identified at 1 AU using in-situ plasma measurements. Specifically, Viall, Kepko, and Spence examined 11 years of in-situ solar-wind density measurements at 1 AU and demonstrated that not only turbulent structures, but also nonturbulent, periodic density structures exist in the solar wind with scale sizes of hundreds to one thousand Mm. In a subsequent paper, Viall, Spence, and Kasper analyzed the alpha-to-proton solar-wind abundance ratio measured during one such event of periodic density structures, demonstrating that the plasma behavior was highly suggestive that either temporally or spatially varying coronal source plasma created those density structures. Large periodic density structures observed at 1 AU, which were generated in the corona, can be observable in coronal and heliospheric white-light images if they possess sufficiently high density contrast. Indeed, we identify such periodic density structures as they enter the HI field of view and follow them as they advect with the solar wind through the images. The smaller, periodic density structures that we identify in the images are comparable in size to the larger structures analyzed in-situ at 1 AU, yielding further evidence that periodic density enhancements are a consequence of coronal activity as the solar wind is formed.

  11. Observation of image pair creation and annihilation from superluminal scattering sources

    PubMed Central

    Clerici, Matteo; Spalding, Gabriel C.; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M.; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2016-01-01

    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena. PMID:27152347

  12. Observation of image pair creation and annihilation from superluminal scattering sources.

    PubMed

    Clerici, Matteo; Spalding, Gabriel C; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2016-04-01

    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena. PMID:27152347

  13. Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment

    PubMed Central

    David, Simon; Visvikis, Dimitris; Roux, Christian; Hatt, Mathieu

    2011-01-01

    In Positron Emission Tomography (PET) imaging, an early therapeutic response is usually characterized by variations of semi-quantitative parameters restricted to maximum SUV measured in PET scans during the treatment. Such measurements do not reflect overall tumour volume and radiotracer uptake variations. The proposed approach is based on multi-observation image analysis for merging several PET acquisitions to assess tumour metabolic volume and uptake variations. The fusion algorithm is based on iterative estimation using stochastic expectation maximization (SEM) algorithm. The proposed method was applied to simulated and clinical follow-up PET images. We compared the multi-observation fusion performance to threshold-based methods, proposed for the assessment of the therapeutic response based on functional volumes. On simulated datasets, the adaptive threshold applied independently on both images led to higher errors than the ASEM fusion and on the clinical datasets, it failed to provide coherent measurements for four patients out of seven due to aberrant delineations. The ASEM method demonstrated improved and more robust estimation of the evaluation leading to more pertinent measurements. Future work will consist in extending the methodology and applying it to clinical multi-tracers datasets in order to evaluate its potential impact on the biological tumour volume definition for radiotherapy applications. PMID:21846937

  14. Potential for observing and discriminating impact craters and comparable volcanic landforms on Magellan radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.

    1989-01-01

    Observations of small terrestrial craters by Seasat synthetic aperture radar (SAR) at high resolution (approx. 25 m) and of comparatively large Venusian craters by Venera 15/16 images at low resolution (1000 to 2000 m) and shorter wavelength show similarities in the radar responses to crater morphology. At low incidence angles, the responses are dominated by large scale slope effects on the order of meters; consequently it is difficult to locate the precise position of crater rims on the images. Abrupt contrasts in radar response to changing slope (hence incidence angle) across a crater produce sharp tonal boundaries normal to the illumination. Crater morphology that is radially symmetrical appears on images to have bilateral symmetry parallel to the illumination vector. Craters are compressed in the distal sector and drawn out in the proximal sector. At higher incidence angles obtained with the viewing geometry of SIR-A, crater morphology appears less compressed on the images. At any radar incidence angle, the distortion of a crater outline is minimal across the medial sector, in a direction normal to the illumination. Radar bright halos surround some craters imaged by SIR-A and Venera 15 and 16. The brightness probably denotes the radar response to small scale surface roughness of the surrounding ejecta blankets. Similarities in the radar responses of small terrestrial impact craters and volcanic craters of comparable dimensions emphasize the difficulties in discriminating an impact origin from a volcanic origin in the images. Similar difficulties will probably apply in discriminating the origin of small Venusian craters, if they exist. Because of orbital considerations, the nominal incidence angel of Magellan radar at the center of the imaging swath will vary from about 45 deg at 10 deg N latitude to about 16 deg at the north pole and at 70 deg S latitude. Impact craters and comparable volcanic landforms will show bilateral symmetry parallel to the illumination

  15. Demonstration of Imaging Fourier Transform Spectrometer (FTS) Performance for Planetary and Geostationary Earth Observing

    NASA Technical Reports Server (NTRS)

    Revercomb, Henry E.; Sromovsky, Lawrence A.; Fry, Patrick M.; Best, Fred A.; LaPorte, Daniel D.

    2001-01-01

    The combination of massively parallel spatial sampling and accurate spectral radiometry offered by imaging FTS makes it extremely attractive for earth and planetary remote sensing. We constructed a breadboard instrument to help assess the potential for planetary applications of small imaging FTS instruments in the 1 - 5 micrometer range. The results also support definition of the NASA Geostationary Imaging FTS (GIFTS) instrument that will make key meteorological and climate observations from geostationary earth orbit. The Planetary Imaging FTS (PIFTS) breadboard is based on a custom miniaturized Bomen interferometer that uses corner cube reflectors, a wishbone pivoting voice-coil delay scan mechanism, and a laser diode metrology system. The interferometer optical output is measured by a commercial infrared camera procured from Santa Barbara Focalplane. It uses an InSb 128x128 detector array that covers the entire FOV of the instrument when coupled with a 25 mm focal length commercial camera lens. With appropriate lenses and cold filters the instrument can be used from the visible to 5 micrometers. The delay scan is continuous, but slow, covering the maximum range of +/- 0.4 cm in 37.56 sec at a rate of 500 image frames per second. Image exposures are timed to be centered around predicted zero crossings. The design allows for prediction algorithms that account for the most recent fringe rate so that timing jitter produced by scan speed variations can be minimized. Response to a fixed source is linear with exposure time nearly to the point of saturation. Linearity with respect to input variations was demonstrated to within 0.16% using a 3-point blackbody calibration. Imaging of external complex scenes was carried out at low and high spectral resolution. These require full complex calibration to remove background contributions that vary dramatically over the instrument FOV. Testing is continuing to demonstrate the precise radiometric accuracy and noise characteristics.

  16. Characteristics of the mirror image of precipitation observed by TRMM precipitation radar

    NASA Astrophysics Data System (ADS)

    Li, Ji; Nakamura, Kenji

    2000-12-01

    Mirror image is a virtual image of precipitation below the ocean surface when we use an airborne or a spaceborne radar to view the rainfall over ocean. It is due to a double reflection, that is energy reflected form the sea surface goes to the precipitation and back to the radar via a second reflection at sea surface. We investigated the mirror image characteristics using TRMM Precipitation Radar data and found: 1) The radar can detect the mirror image clearly over the ocean, 2) the mirror image echo corresponds well to the direct rain echo at nadir and near nadir incidence angle, 3) in a weak rain region, mirror echo intensity is nearly proportional to the direct echo power except near noise level, 4) in the strong rain region, rain attenuation effect clearly appears, and 5) the ratio of mirror echo power to direct echo power is affected by the rain attenuation which varies with the bright band height and the range of the target rain from surface. Further, we performed a simple simulation in order to confirm the above characteristics. The signal fluctuation, noise contamination, rain attention and surface cross section are taken into account in the simulation, and the results of simulation confirmed the observation results.

  17. IMAGE-EUV Observation of Large Scale Standing Wave Pattern in the Nightside Plasmasphere

    NASA Technical Reports Server (NTRS)

    Six, N. Frank (Technical Monitor); Gallagher, D. L.; Adrian, M. L.; Sandel, B. R.

    2002-01-01

    We present analyses of a nightside plasmaspheric pattern of bifurcated, filamentary He(+) 30.4-nm emission enhancements observed by IMAGE EUV between approximately 19:40-22:13 UT on 28 June 2000 that indicate the presence of a large-scale, global ULF standing wave pattern. Analysis of coincident IMAGE magnetometer chain data reveals that these ULF waves extend across the magnetic latitude-longitude range of the chain and possess multiple spectral features between 0.6-5-mHz (3-30 minute period). Additionally, analysis of ACE SWE data reveals similarly structured spectral components in the solar wind. Collectively, these analyses lead to the conclusion that the observed large-scale ULF wave pattern is the result of solar wind pressure pulses 'ringing' the inner-magnetosphere.

  18. Ultrafast imaging of electronic relaxation in n-propylbenzene: Direct observation of intermediate state

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhu; Gerber, Thomas; Radi, Peter; Knopp, Gregor

    2015-10-01

    The ultrafast dynamics of the second singlet electronically excited state (S2) in n-propylbenzene has been investigated by femtosecond time-resolved photoelectron imaging coupled with photofragmentation spectroscopy. The intermediate state for the deactivation of the S2 state is observed by transient photoelectron kinetic energy distributions and photoelectron angular distributions. An ultrafast electronic relaxation process on timescale of the fitted ∼50 fs was observed in the S2 state by time-resolved photoelectron imaging and it is attributed to the S1 ← S2 internal conversion (IC). The time constant of 1.23 (±0.2) ps is determined for the further deactivation of the intermediate S1 state.

  19. High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and ɛ Eridani

    NASA Astrophysics Data System (ADS)

    Janson, Markus; Quanz, Sascha P.; Carson, Joseph C.; Thalmann, Christian; Lafrenière, David; Amara, Adam

    2015-02-01

    Stars with debris disks are intriguing targets for direct-imaging exoplanet searches, owing both to previous detections of wide planets in debris disk systems, and to commonly existing morphological features in the disks themselves that may be indicative of a planetary influence. Here we present observations of three of the most nearby young stars, which are also known to host massive debris disks: Vega, Fomalhaut, and ɛ Eri. The Spitzer Space Telescope is used at a range of orientation angles for each star to supply a deep contrast through angular differential imaging combined with high-contrast algorithms. The observations provide the opportunity to probe substantially colder bound planets (120-330 K) than is possible with any other technique or instrument. For Vega, some apparently very red candidate point sources detected in the 4.5 μm image remain to be tested for common proper motion. The images are sensitive to ~2 Mjup companions at 150 AU in this system. The observations presented here represent the first search for planets around Vega using Spitzer. The upper 4.5 μm flux limit on Fomalhaut b could be further constrained relative to previous data. In the case of ɛ Eri, planets below both the effective temperature and the mass of Jupiter could be probed from 80 AU and outward, although no such planets were found. The data sensitively probe the regions around the edges of the debris rings in the systems where planets can be expected to reside. These observations validate previous results showing that more than an order of magnitude improvement in performance in the contrast-limited regime can be acquired with respect to conventional methods by applying sophisticated high-contrast techniques to space-based telescopes, thanks to the high degree of PSF stability provided in this environment.

  20. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  1. THE STRUCTURE OF A SELF-GRAVITATING PROTOPLANETARY DISK AND ITS IMPLICATIONS FOR DIRECT IMAGING OBSERVATIONS

    SciTech Connect

    Muto, Takayuki

    2011-09-20

    We consider the effects of self-gravity on the hydrostatic balance in the vertical direction of a gaseous disk and discuss the possible signature of the self-gravity that may be captured by direct imaging observations of protoplanetary disks in the future. In this paper, we consider a vertically isothermal disk in order to isolate the effects of self-gravity. The specific disk model we consider in this paper is the one with a radial surface density gap, at which the Toomre's Q-parameter of the disk varies rapidly in the radial direction. We calculate the vertical structure of the disk including the effects of self-gravity. We then calculate the scattered light and the dust thermal emission. We find that if the disk is massive enough and the effects of self-gravity come into play, a weak bump-like structure at the gap edge appears in the near-infrared (NIR) scattered light, while no such bump-like structure is seen in the submillimeter (sub-mm) dust continuum image. The appearance of the bump is caused by the variation of the height of the surface in the NIR wavelength. If such a bump-like feature is detected in future direct imaging observations, combined with sub-mm observations, it will give us useful information about the physical states of the disk.

  2. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    NASA Astrophysics Data System (ADS)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  3. Atmospheric correction of Earth-observation remote sensing images by Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Hadjit, Hanane; Oukebdane, Abdelaziz; Belbachir, Ahmad Hafid

    2013-10-01

    In earth observation, the atmospheric particles contaminate severely, through absorption and scattering, the reflected electromagnetic signal from the earth surface. It will be greatly beneficial for land surface characterization if we can remove these atmospheric effects from imagery and retrieve surface reflectance that characterizes the surface properties with the purpose of atmospheric correction. Giving the geometric parameters of the studied image and assessing the parameters describing the state of the atmosphere, it is possible to evaluate the atmospheric reflectance, and upward and downward transmittances which take part in the garbling data obtained from the image. To that end, an atmospheric correction algorithm for high spectral resolution data over land surfaces has been developed. It is designed to obtain the main atmospheric parameters needed in the image correction and the interpretation of optical observations. It also estimates the optical characteristics of the Earth-observation imagery (LANDSAT and SPOT). The physics underlying the problem of solar radiation propagations that takes into account multiple scattering and sphericity of the atmosphere has been treated using Monte Carlo techniques.

  4. Expanding Imaging Capabilities for Microfluidics: Applicability of Darkfield Internal Reflection Illumination (DIRI) to Observations in Microfluidics

    PubMed Central

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics. PMID:25748425

  5. Expanding imaging capabilities for microfluidics: applicability of darkfield internal reflection illumination (DIRI) to observations in microfluidics.

    PubMed

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics.

  6. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    SciTech Connect

    Gravel, D.

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  7. Observing Electrokinetic Janus Particle-Channel Wall Interaction Using Microparticle Image Velocimetry.

    PubMed

    Boymelgreen, Alicia; Yossifon, Gilad

    2015-08-01

    Three-dimensional/two-component microparticle image velocimetry is used to examine the hydrodynamic flow patterns around metallodielectric Janus particles 15 μm in diameter adjacent to insulating and conducting walls. Far from the walls, the observed flow patterns are in good qualitative agreement with previous experimental and analytical models. However, close to the conducting wall, strong electrohydrodynamic flows are observed at low frequencies, which result in fluid being injected toward the particle. The proximity of the metallic hemisphere to the conducting wall is also shown to produce a localized field gradient, which results in dielectrophoretic trapping of 300 nm polystyrene particles across a broad range of frequencies.

  8. The Venus nitric oxide night airglow - Model calculations based on the Venus Thermospheric General Circulation Model

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Gerard, J. C.; Stewart, A. I. F.; Fessen, C. G.

    1990-05-01

    The mechanism responsible for the Venus nitric oxide (0,1) delta band nightglow observed in the Pioneer Venus Orbiter UV spectrometer (OUVS) images was investigated using the Venus Thermospheric General Circulation Model (Dickinson et al., 1984), modified to include simple odd nitrogen chemistry. Results obtained for the solar maximum conditions indicate that the recently revised dark-disk average NO intensity at 198.0 nm, based on statistically averaged OUVS measurements, can be reproduced with minor modifications in chemical rate coefficients. The results imply a nightside hemispheric downward N flux of (2.5-3) x 10 to the 9th/sq cm sec, corresponding to the dayside net production of N atoms needed for transport.

  9. The Venus nitric oxide night airglow - Model calculations based on the Venus Thermospheric General Circulation Model

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Gerard, J. C.; Stewart, A. I. F.; Fesen, C. G.

    1990-01-01

    The mechanism responsible for the Venus nitric oxide (0,1) delta band nightglow observed in the Pioneer Venus Orbiter UV spectrometer (OUVS) images was investigated using the Venus Thermospheric General Circulation Model (Dickinson et al., 1984), modified to include simple odd nitrogen chemistry. Results obtained for the solar maximum conditions indicate that the recently revised dark-disk average NO intensity at 198.0 nm, based on statistically averaged OUVS measurements, can be reproduced with minor modifications in chemical rate coefficients. The results imply a nightside hemispheric downward N flux of (2.5-3) x 10 to the 9th/sq cm sec, corresponding to the dayside net production of N atoms needed for transport.

  10. The Galileo Imaging Team plan for observing the satellites of Jupiter

    NASA Astrophysics Data System (ADS)

    Carr, M. H.; Belton, M. J. S.; Bender, K.; Breneman, H.; Greeley, R.; Head, J. W.; Klaasen, K. P.; McEwen, A. S.; Moore, J. M.; Murchie, S.; Pappalardo, R. T.; Plutchak, J.; Sullivan, R.; Thornhill, G.; Veverka, J.

    1995-09-01

    The Galileo spacecraft carries a 1500-nm focal length camera with a 800×800 CCD detector that will provide images with a spatial resolution of 10 μrad/pixel. The spacecraft will fly by Io at the time of Jupiter Orbit Insertion (JOI) and, subsequently, while in Jupiter's orbit, will have a total of 10 close passes by Europa, Ganymede, and Callisto. These close passes, together with more distant encounters, will be used by the imaging experiment primarily to obtain high-resolution coverage of selected targets, to fill gaps left in the Voyager coverage, to extend global color coverage of each satellite, and to follow changes in the volcanic activity of Io. The roughly 390 Mbit allocated for imaging during the tour will be distributed among several hundred frames compressed by factors that range from 1 to possibly as high as 50. After obtaining high-resolution samples during the initial Io encounter at JOI, roughly 10% of imaging resources are devoted to near-terminator mapping of Io's topography at 2- to 10-km resolution, monitoring color and albedo changes of the Ionian surface, and monitoring plume activity. Observations of Europa range in resolution from several kilometers per pixel to 10 m/pixel. The objectives of Europa are (1) to determine the nature, origin, and age of the tectonic features, (2) to determine the nature, rates, and sequence of resurfacing events, (3) to assess the satellite's cratering history, and (4) to map variations in spectral and photometric properties. Europa was poorly imaged by Voyager, so the plan includes a mix of high- and low-resolution sequences to provide context. The imaging objectives at Ganymede are (1) to characterize any volcanism, (2) to determine the nature and timing of any tectonic activity, (3) to determine the history of formation and degradation of impact craters, and (4) to determine the nature of the surface materials. Because Ganymede was well imaged by Voyager, most of the resources at Ganymede are devoted to

  11. New color images of transient luminous events from dedicated observations on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Rubanenko, Lior; Mezuman, Keren; Elhalel, Gal; Pariente, Meidad; Glickman-Pariente, Maya; Ziv, Baruch; Takahashi, Yukihiro; Inoue, Tomohiro

    2013-09-01

    During July-August 2011, Expedition 28/29 JAXA astronaut Satoshi Furukawa conducted TLE observations from the International Space Station in conjunction with the “Cosmic Shore” program produced by NHK. An EMCCD normal video-rate color TV camera was used to conduct directed observations from the Earth-pointing Cupola module. The target selection was based on the methodology developed for the MEIDEX sprite campaign on board the space shuttle Columbia in January 2003 (Ziv et al., 2004). The observation geometry was pre-determined and uploaded daily to the ISS with pointing options to limb, oblique or nadir, based on the predicted location of the storm with regards to the ISS. The pointing angle was rotated in real-time according to visual eyesight by the astronaut. We present results of 10 confirmed TLEs: 8 sprites, 1 sprite halo and 1 gigantic jet, out of <2 h of video. Sprites tend to appear in a single frame simultaneously with maximum lightning brightness. Unique images (a) from nadir of a sprite horizontally displaced form the lightning light and (b) from the oblique view of a sprite halo, enable the calculation of dimensions and volumes occupied by these TLEs. Since time stamping on the ISS images was accurate within 1 s, matching with ELF and WWLLN data for the parent lightning location is limited. Nevertheless, the results prove that the ISS is an ideal platform for lightning and TLE observations, and careful operational procedures greatly enhance the value of observation time.

  12. GOES imager visible-to-infrared channel registration using star observations

    NASA Astrophysics Data System (ADS)

    Chu, Donald; Baucom, Jeanette G.; Baltimore, Perry; Bremer, James C.

    2003-11-01

    Due to optical misalignment, visible and infrared channels of the Geostationary Operational Environmental Satellite (GOES) I-M Imager may not be properly registered. This "co-registration" error is currently estimated by comparing groups of visible and infrared observation residuals from the GOES Orbit and Attitude Tracking System (OATS). To make the channel-to-channel comparison more direct, it was proposed to compare individual observations rather than groups of observations. This has already been done for landmarks but not for stars. Stars would help determine nighttime co-registration when visible landmarks are not available. Although most stars in the GOES catalog are not detectable in the shortwave infrared channel, many are. Because stars drift west-to-east across the detectors and because of their high observation frequency, stars provide good east-west co-registration information. Due to the large detector fields-of-view, stars do not provide much information about north-south co-registration.

  13. Initial Observations and Activities of Curiosity's Mars Hand Lens Imager (MAHLI) at the Gale Field Site

    NASA Astrophysics Data System (ADS)

    Aileen Yingst, R.; Edgett, Kenneth; MSL Science Team

    2013-04-01

    the dust and sand obscuration, the observables are unclear —grains 300-500 µm size in the Bathurst Inlet images and 300-500 µm-sized rhombus-shaped crystals in the rock, Jake Matijevic have been observed by some workers. Sand and granules (as well as dust), exhibiting a variety of colors, shapes, and other grain attributes, were deposited on rover hardware during descent. As noted above, sand as well as dust also mantles the rocks observed by MAHLI; in one case the cohesive properties of this material was demonstrated by the presence of a "micro landslide" on a rock named Burwash. At the Rocknest sand shadow, a variety of coarse to very coarse sand grains of differing color, shape, luster, angularity, and roundness were observed, including glassy spheroids and ellipsoids (perhaps formed from impact melt droplets) and clear, translucent grains. The fine to very fine sands sieved (≤ 150 µm) and delivered to the rover's observation tray exhibited at least four distinct grain types, including clear, translucent crystal fragments.

  14. IRAC Snapshot Imaging of Massive-Cluster Gravitational Lenses Observed by the Herschel Lensing Survey

    NASA Astrophysics Data System (ADS)

    Egami, Eiichi; Rawle, Timothy; Cava, Antonio; Clement, Benjamin; Dessauges-Zavadsky, Miroslava; Ebeling, Harald; Kneib, Jean-Paul; Perez-Gonzalez, Pablo; Richard, Johan; Rujopakarn, Wiphu; Schaerer, Daniel; Walth, Gregory

    2015-10-01

    Using the Herschel Space Observatory, our team has been conducting a large survey of the fields of massive galaxy clusters, 'The Herschel Lensing Survey (HLS)' (PI: Egami; 419 hours). The main scientific goal is to penetrate the confusion limit of Herschel by taking advantage of the strong gravitational lensing power of these massive clusters and study the population of low-luminosity and/or high-redshift dusty star-forming galaxies that are beyond the reach of field Herschel surveys. In the course of this survey, we have obtained deep PACS (100/160 um) and SPIRE (250/350/500 um) images for 54 clusters (HLS-deep) as well as shallower (but nearly confusion-limited) SPIRE images for 527 clusters (HLS-snapshot). The goal of this proposal is to obtain shallow (500 sec/band) 3.6/4.5 um images of 266 cluster fields that have been observed by the HLS-snapshot survey but do not have any corresponding IRAC data. The HLS-snapshot SPIRE images are deep enough to detect a large number of sources in the target cluster fields, many of which are distant star-forming galaxies lensed by the foreground clusters, and the large sample size of HLS-snapshot promises a great potential for making exciting discoveries. Yet, these Herschel images would be of limited use if we could not identify the counterparts of the Herschel sources accurately and efficiently. The proposed IRAC snapshot program will greatly enhance the utility of these Herschel data, and will feed powerful gound observing facilities like ALMA and NOEMA with interesting targets to follow up.

  15. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  16. The Anisotropy of the Microwave Background to l=3500: Mosaic Observations with the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Pearson, T. J.; Mason, B. S.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J. L.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Using the Cosmic Background Imager, a 13-element interferometer array operating in the 26-36 GHz frequency band, we have observed 40 deg (sup 2) of sky in three pairs of fields, each approximately 145 feet x 165 feet, using overlapping pointings: (mosaicing). We present images and power spectra of the cosmic microwave background radiation in these mosaic fields. We remove ground radiation and other low-level contaminating signals by differencing matched observations of the fields in each pair. The primary foreground contamination is due to point sources (radio galaxies and quasars). We have subtracted the strongest sources from the data using higher-resolution measurements, and we have projected out the response to other sources of known position in the power-spectrum analysis. The images show features on scales approximately 6 feet-15 feet, corresponding to masses approximately 5-80 x 10(exp 14) solar mass at the surface of last scattering, which are likely to be the seeds of clusters of galaxies. The power spectrum estimates have a resolution delta l approximately 200 and are consistent with earlier results in the multipole range l approximately less than 1000. The power spectrum is detected with high signal-to-noise ratio in the range 300 approximately less than l approximately less than 1700. For 1700 approximately less than l approximately less than 3000 the observations are consistent with the results from more sensitive CBI deep-field observations. The results agree with the extrapolation of cosmological models fitted to observations at lower l, and show the predicted drop at high l (the "damping tail").

  17. Probing the functions of contextual modulation by adapting images rather than observers

    PubMed Central

    Webster, Michael A.

    2014-01-01

    Countless visual aftereffects have illustrated how visual sensitivity and perception can be biased by adaptation to the recent temporal context. This contextual modulation has been proposed to serve a variety of functions, but the actual benefits of adaptation remain uncertain. We describe an approach we have recently developed for exploring these benefits by adapting images instead of observers, to simulate how images should appear under theoretically optimal states of adaptation. This allows the long-term consequences of adaptation to be evaluated in ways that are difficult to probe by adapting observers, and provides a common framework for understanding how visual coding changes when the environment or the observer changes, or for evaluating how the effects of temporal context depend on different models of visual coding or the adaptation processes. The approach is illustrated for the specific case of adaptation to color, for which the initial neural coding and adaptation processes are relatively well understood, but can in principle be applied to examine the consequences of adaptation for any stimulus dimension. A simple calibration that adjusts each neuron’s sensitivity according to the stimulus level it is exposed to is sufficient to normalize visual coding and generate a host of benefits, from increased efficiency to perceptual constancy to enhanced discrimination. This temporal normalization may also provide an important precursor for the effective operation of contextual mechanisms operating across space or feature dimensions. To the extent that the effects of adaptation can be predicted, images from new environments could be “pre-adapted” to match them to the observer, eliminating the need for observers to adapt. PMID:25281412

  18. Gemini Planet Imager Observations of the AU Microscopii Debris Disk: Asymmetries within One Arcsecond

    NASA Astrophysics Data System (ADS)

    Wang, Jason J.; Graham, James R.; Pueyo, Laurent; Nielsen, Eric L.; Millar-Blanchaer, Max; De Rosa, Robert J.; Kalas, Paul; Ammons, S. Mark; Bulger, Joanna; Cardwell, Andrew; Chen, Christine; Chiang, Eugene; Chilcote, Jeffrey K.; Doyon, René; Draper, Zachary H.; Duchêne, Gaspard; Esposito, Thomas M.; Fitzgerald, Michael P.; Goodsell, Stephen J.; Greenbaum, Alexandra Z.; Hartung, Markus; Hibon, Pascale; Hinkley, Sasha; Hung, Li-Wei; Ingraham, Patrick; Larkin, James E.; Macintosh, Bruce; Maire, Jerome; Marchis, Franck; Marois, Christian; Matthews, Brenda C.; Morzinski, Katie M.; Oppenheimer, Rebecca; Patience, Jenny; Perrin, Marshall D.; Rajan, Abhijith; Rantakyrö, Fredrik T.; Sadakuni, Naru; Serio, Andrew; Sivaramakrishnan, Anand; Soummer, Rémi; Thomas, Sandrine; Ward-Duong, Kimberly; Wiktorowicz, Sloane J.; Wolff, Schuyler G.

    2015-10-01

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1″ (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side at similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1″ when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ∼50 mas between 0.″4 and 1.″2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ∼4 MJup planets at 4 AU. We detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.

  19. Gemini Planet Imager observations of the AU Microscopii debris disk: Asymmetries within one arcsecond

    SciTech Connect

    Wang, Jason J.; Graham, James R.; Pueyo, Laurent; Nielsen, Eric L.; Millar-Blanchaer, Max; De Rosa, Robert J.; Kalas, Paul; Ammons, S. Mark; Bulger, Joanna; Cardwell, Andrew; Chen, Christine; Chiang, Eugene; Chilcote, Jeffrey K.; Doyon, René; Draper, Zachary H.; Duchêne, Gaspard; Fitzgerald, Michael P.; Goodsell, Stephen J.; Greenbaum, Alexandra Z.; Hartung, Markus; Hibon, Pascale; Hinkley, Sasha; Hung, Li -Wei; Ingraham, Patrick; Larkin, James E.; Macintosh, Bruce; Maire, Jerome; Marchis, Franck; Marois, Christian; Matthews, Brenda C.; Morzinski, Katie M.; Oppenheimer, Rebecca; Patience, Jenny; Perrin, Marshall D.; Rajan, Abhijith; Rantakyrö, Fredrik T.; Sadakuni, Naru; Serio, Andrew; Sivaramakrishnan, Anand; Soummer, Rémi; Thomas, Sandrine; Ward-Duong, Kimberly; Wiktorowicz, Sloane J.; Wolff, Schuyler G.

    2015-09-23

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1'' (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side at similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1'' when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ~50 mas between 0farcs4 and 1farcs2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ~4 MJup planets at 4 AU. Lastly, we detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.

  20. Gemini Planet Imager observations of the AU Microscopii debris disk: Asymmetries within one arcsecond

    DOE PAGES

    Wang, Jason J.; Graham, James R.; Pueyo, Laurent; Nielsen, Eric L.; Millar-Blanchaer, Max; De Rosa, Robert J.; Kalas, Paul; Ammons, S. Mark; Bulger, Joanna; Cardwell, Andrew; et al

    2015-09-23

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1'' (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1'' when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ~50 mas between 0farcs4 and 1farcs2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ~4 MJup planets at 4 AU. Lastly, we detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less

  1. GEMINI PLANET IMAGER OBSERVATIONS OF THE AU MICROSCOPII DEBRIS DISK: ASYMMETRIES WITHIN ONE ARCSECOND

    SciTech Connect

    Wang, Jason J.; Graham, James R.; De Rosa, Robert J.; Kalas, Paul; Chiang, Eugene; Duchêne, Gaspard; Pueyo, Laurent; Chen, Christine; Greenbaum, Alexandra Z.; Nielsen, Eric L.; Millar-Blanchaer, Max; Ammons, S. Mark; Bulger, Joanna; Cardwell, Andrew; Goodsell, Stephen J.; Chilcote, Jeffrey K.; Doyon, René; Draper, Zachary H.; Esposito, Thomas M.; Fitzgerald, Michael P.; and others

    2015-10-01

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1″ (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side at similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1″ when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ∼50 mas between 0.″4 and 1.″2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ∼4 M{sub Jup} planets at 4 AU. We detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.

  2. IMAGE Observations of Sounder Stimulated and Naturally Occurring Fast Z mode Cavity Noise

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Taylor, C.; Reddy, A.

    2015-12-01

    We report first observations of sounder stimulated and naturally occurring fast Z mode (ZM) cavity noise detected by the Radio Plasma Imager (RPI) on the IMAGE satellite. The fast Z mode cavity noise is a banded, structure-less radio emission trapped inside fast Z mode cavities, which are characterized by a minimum (fz,min) in fast Z mode cut-off frequency (fz) along a geomagnetic field line [Gurnett et al., JGR, 1983]. Fast Z mode waves reflect at fz ~ f, where f is the wave frequency. Waves in the frequency range fz,min < f < fz,max, where fz,max is the maximum fz above fz,min altitude, are trapped within the cavity as they bounce back and forth between reflection altitudes (fz ~ f) above and below the fz,min altitude. These trapped waves will be observed by a satellite passing through the cavity. The observed cavity noise lower cutoff is at the local Z mode cut-off frequency (fz,Sat) and the upper cut-off is presumably close to fz,max. The cavity noise is observed typically inside the plasmasphere. Comparison of cavity noise as observed on the plasmagram obtained during active sounding with that observed on the dynamic spectra obtained from the interspersed passive wave measurements indicate that the cavity noise is either stimulated by transmissions from the sounder (RPI) or is of natural origin. The sounder stimulated noise is often accompanied by fast Z mode echoes. The naturally occurring cavity noise is observed on both the plasmagram and the dynamic spectra. We believe the stimulated cavity noise is generated due to scattering from small-scale irregularities of waves transmitted by RPI. One potential candidate for the source of naturally occurring Z mode cavity noise is the ring current electrons that can generate fast ZM waves via higher order cyclotron resonance [Nishimura et al., Earth Planets Space, 2007].

  3. Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast.

    PubMed

    Chen, L; Boone, J M; Abbey, C K; Hargreaves, J; Bateni, C; Lindfors, K K; Yang, K; Nosratieh, A; Hernandez, A; Gazi, P

    2015-04-21

    The objective of this study was to compare the lesion detection performance of human observers between thin-section computed tomography images of the breast, with thick-section (>40 mm) simulated projection images of the breast. Three radiologists and six physicists each executed a two alterative force choice (2AFC) study involving simulated spherical lesions placed mathematically into breast images produced on a prototype dedicated breast CT scanner. The breast image data sets from 88 patients were used to create 352 pairs of image data. Spherical lesions with diameters of 1, 2, 3, 5, and 11 mm were simulated and adaptively positioned into 3D breast CT image data sets; the native thin section (0.33 mm) images were averaged to produce images with different slice thicknesses; average section thicknesses of 0.33, 0.71, 1.5 and 2.9 mm were representative of breast CT; the average 43 mm slice thickness served to simulate simulated projection images of the breast.The percent correct of the human observer's responses were evaluated in the 2AFC experiments. Radiologists lesion detection performance was significantly (p < 0.05) better in the case of thin-section images, compared to thick section images similar to mammography, for all but the 1 mm lesion diameter lesions. For example, the average of three radiologist's performance for 3 mm diameter lesions was 92% correct for thin section breast CT images while it was 67% for the simulated projection images. A gradual reduction in observer performance was observed as the section thickness increased beyond about 1 mm. While a performance difference based on breast density was seen in both breast CT and the projection image results, the average radiologist performance using breast CT images in dense breasts outperformed the performance using simulated projection images in fatty breasts for all lesion diameters except 11 mm. The average radiologist performance outperformed that of the average physicist observer, however trends

  4. Low-altitude image striations associated with bottomside equatorial spread F: Observations and theory

    SciTech Connect

    Vickrey, J.F.; Kelley, M.C.; Pfaff, R.; Goldman, S.R.

    1984-05-01

    Ionspheric plasma instabilities are usually discussed in terms of local parameters. However, because electric fields of scale size lambda> or approx. =1 km map along magnetic field lines, plasma populations far away from a locally unstable region may be affected by the instability process and vice versa. We present observations of electron density variations in the F/sub 1/ region of the ionosphere at two locations near the magnetic equator. Oscillations in electron number density that were confined to a narrow wavelength regime were observed in a region of the ionosphere with a very weak vertical density gradient. Since magnetic flux tube interchange instabilities cannot create structure in such an environment we suggest that these are ''images'' of instabilities occurring elsewhere along the magnetic field line. A simple steady state theory of image formation is developed that is in good agreement with the observations. Moreover, this theory predicts a scale size dependent ''effective diffusion'' process in the F region that may dominate over classical cross-field diffusion at kilometer scale sizes. Such a scale size dependent diffusion process is required to explain recent scintillation observations of decaying equatorial plumes.

  5. Detection of facilities in satellite imagery using semi-supervised image classification and auxiliary contextual observables

    SciTech Connect

    Harvey, Neal R; Ruggiero, Christy E; Pawley, Norma H; Brumby, Steven P; Macdonald, Brian; Balick, Lee; Oyer, Alden

    2009-01-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervised assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.

  6. Lunar absolute reflectance as observed by Chang'E-1 Imaging Interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Ling, ZongCheng; Liu, JianZhong; Wu, ZhongChen; Li, Bo; Ni, YuHeng

    2015-08-01

    Lunar absolute reflectance, which describes the fraction of solar radiation reflected by the Moon, is fundamental for the Chang'E-1 Imaging Interferometer (IIM) to map lunar mineralogical and elemental distributions. Recent observations made by the Spectral Irradiance Monitor (SIM) onboard the Solar Radiation and Climate Experiment (SORCE) spacecraft indicate that temporal variation in the solar radiation might have non-negligible influence on reflectance calculation, and the SIM measurements are different from the two previously used solar irradiances, i.e., ATLAS3 and Newkur. To provide reliable science results, we examined solar irradiance variability with the SIM daily observations, derived lunar absolute reflectances from the IIM 2A radiance with the SIM, ATLAS3 and Newkur data, and compared them with the Chandrayaan-1 Moon Mineralogy Mapper (M3), the Robotic Lunar Observatory (ROLO) and the Kaguya Multispectral Imager (MI) results. The temporal variability of the SIM solar irradiance is 0.25%-1.1% in the IIM spectral range, and less than 0.2% during the IIM observations. Nevertheless, the differences between the SIM measurements and the ATLAS3 and Newkur data can respectively rise up to 8% and 5% at particular IIM bands, resulting in discrepancy between which might affect compositional mapping. The IIM absolute reflectance we derived for the Moon using the SIM data, except for the last two bands, is consistent with the ROLO and the MI observations, although it is lower.

  7. HIRIS - NASAS's High-Resolution Imaging Spectrometer for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1992-01-01

    Modern Earth science is beginning to examine interactions among the different terrestrial components at all temporal and spatial scales. Such a global perspective requires an integrated remote-sensing program, the Earth Observing System (EOS), which uses instruments throughout the electromagnetic spectrum to collect data about the Earth's surface, oceans and atmosphere over a range of selected scales. At the finest scales, we will require instruments capable of detailed sampling both spatially and spectrally. We have designed the High-Resoulution Imaging Spectrometer (HIRIS) to acquire simultaneous images in 192 spectral bands in the dominant wavelengths of the solar spectrum, 0.4 to 2.5 micrometers, at a spectral sampling interval of 10 nm. The ground instantaneous field of view (GIFOV) will be 30 m over a 24 km swath. A pointing capability will allow image acquisition up to +52 deg/-30 deg down track and +/-45 deg or more cross-track. Thus we will be able to study surface spectral bidirectional reflectance properties and variations in atmospheric attenuation with viewing angle. The cross-track pointing will also allow multiple viewing opportunities during one 16-day orbital revisit cycle, so that any part of the Earth may be imaged in a two-day period.

  8. The effects of disk and dust structure on observed polarimetric images of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Min, M.; Canovas, H.; Mulders, G. D.; Keller, C. U.

    2012-01-01

    Context. Imaging polarimetry is a powerful tool for imaging faint circumstellar material. It is a rapidly developing field with great promise for diagnostics of both the large-scale structures and the small-scale details of the scattering particles. Aims: For a correct analysis of observations we need to fully understand the effects of dust particle parameters, as well as the effects of the telescope, atmospheric seeing, and assumptions about the data reduction and processing of the observed signal. Here we study the major effects of dust particle structure, size-dependent grain settling, and instrumental properties. Methods: We performed radiative transfer modeling using different dust particle models and disk structures. To study the influence of seeing and telescope diffraction we ran the models through an instrument simulator for the ExPo dual-beam imaging polarimeter mounted at the 4.2 m William Herschel Telescope (WHT). Results: Particle shape and size have a strong influence on the brightness and detectability of the disks. In the simulated observations, the central resolution element also contains contributions from the inner regions of the protoplanetary disk besides the unpolarized central star. This causes the central resolution element to be polarized, making simple corrections for instrumental polarization difficult. This effect strongly depends on the spatial resolution, so adaptive optics systems are needed for proper polarization calibration. Conclusions: We find that the commonly employed homogeneous sphere model gives results that differ significantly from more realistic models. For a proper analysis of the wealth of data available now or in the near future, one must properly take the effects of particle types and disk structure into account. The observed signal depends strongly on the properties of these more realistic models, thus providing a potentially powerful diagnostic. We conclude that it is important to correctly understand telescope

  9. A Decameter Stationary Type IV Burst in Imaging Observations on 2014 September 6

    NASA Astrophysics Data System (ADS)

    Koval, Artem; Stanislavsky, Aleksander; Chen, Yao; Feng, Shiwei; Konovalenko, Aleksander; Volvach, Yaroslav

    2016-08-01

    First-of-its-kind radio imaging of a decameter solar stationary type IV radio burst has been presented in this paper. On 2014 September 6 the observations of type IV burst radio emission were carried out with the two-dimensional heliograph based on the Ukrainian T-shaped radio telescope (UTR-2), together with other telescope arrays. Starting at ˜09:55 UT and for ˜3 hr, the radio emission was kept within the observational session of UTR-2. The interesting observation covered the full evolution of this burst, “from birth to death.” During the event lifetime, two C-class solar X-ray flares with peak times 11:29 UT and 12:24 UT took place. The time profile of this burst in radio has a double-humped shape that can be explained by injection of energetic electrons, accelerated by the two flares, into the burst source. According to the heliographic observations, we suggest that the burst source was confined within a high coronal loop, which was part of a relatively slow coronal mass ejection. The latter has been developed for several hours before the onset of the event. Through analysis of about 1.5 × 106 heliograms (3700 temporal frames with 4096 images in each frame that correspond to the number of frequency channels), the radio burst source imaging shows a fascinating dynamical evolution. Both space-based (GOES, SDO, SOHO, STEREO) data and various ground-based instrumentation (ORFEES, NDA, RSTO, NRH) records have been used for this study.

  10. Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images

    SciTech Connect

    Richard, Samuel; Siewerdsen, Jeffrey H.

    2008-11-15

    Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index (d{sup '}) and area under the receiver operating characteristic (A{sub Z}). Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of A{sub Z} as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance.

  11. MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Al-Hamdan, M.; Crosson, W.; Limaye, A.; McCracken, J.; Meyer, P.; Richeson, J.; Sims, W.; Srinivasan, K.; Varnevas, K.

    2010-01-01

    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo.

  12. In vivo Observation of Tree Drought Response with Low-Field NMR and Neutron Imaging

    PubMed Central

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-01-01

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. These results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment. PMID:27200037

  13. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE PAGES

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-05-06

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  14. Could Post-Sunset Ionospheric Irregularities be Predicted Using OI 630.0nm Daytime Airglow?

    NASA Astrophysics Data System (ADS)

    Chakrabarti, S.; Pallamraju, D.; Araya, J.; Baumgardner, J.; Pedersen, T.

    2001-05-01

    Although there is a broad understanding of the Equatorial Spread F (ESF) generation mechanism and their occurrence morphology, there exists an uncertainty in their day-to-day occurrence. Even in the so-called `ESF season' when the ionospheric and thermospheric conditions on different days are similar, the ESF occurrence cannot be predicted with confidence. Scientifically, this is an important missing element in our understanding of plasma instabilities at low latitudes and from a societal viewpoint its importance cannot be overstated. Using ground-based ionosonde measurements Raghavarao and colleagues demonstrated the existence of a precursor to the ESF in terms of the Appleton anomaly development. They proposed that the strong development of the daytime Appleton anomaly seems to 'prepare' the ionosphere for the ESF. Subsequently, Sridharan, Pallamraju and colleagues used 630.0nm atomic oxygen dayglow emissions to follow the evolution of the Appleton anomaly over a wide latitude range from a single location. We have developed a high-resolution imaging spectrograph called HIRISE (High Resolution Imaging Spectrograph using Echelle grating), capable of making daytime optical measurements from ground. HIRISE has been successfully used to obtain the first ever ground based measurements of daytime cusp in OI 630.0nm (Pallamraju et al., These Proceedings). In this talk we will report on a campaign we undertook during the ESF season in Chile. The primary purpose of this experiment was to explore the relationship between OI 630.0nm morphology and ESF development. We compared predictions of ESF occurrence based on our optical data with independent ground based HF Radar observations for 18 days when both measurements were available. Our results, obtained at larger latitude coverage than the Indian measurements, appear to support the previous results although, significant differences remain.

  15. Observables Processing for the Helioseismic and Magnetic Imager Instrument on the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Couvidat, S.; Schou, J.; Hoeksema, J. T.; Bogart, R. S.; Bush, R. I.; Duvall, T. L.; Liu, Y.; Norton, A. A.; Scherrer, P. H.

    2016-08-01

    NASA's Solar Dynamics Observatory (SDO) spacecraft was launched 11 February 2010 with three instruments onboard, including the Helioseismic and Magnetic Imager (HMI). After commissioning, HMI began normal operations on 1 May 2010 and has subsequently observed the Sun's entire visible disk almost continuously. HMI collects sequences of polarized filtergrams taken at a fixed cadence with two 4096 × 4096 cameras, from which are computed arcsecond-resolution maps of photospheric observables that include line-of-sight velocity and magnetic field, continuum intensity, line width, line depth, and the Stokes polarization parameters [I, Q, U, V]. Two processing pipelines have been implemented at the SDO Joint Science Operations Center (JSOC) at Stanford University to compute these observables from calibrated Level-1 filtergrams, one that computes line-of-sight quantities every 45 seconds and the other, primarily for the vector magnetic field, that computes averages on a 720-second cadence. Corrections are made for static and temporally changing CCD characteristics, bad pixels, image alignment and distortion, polarization irregularities, filter-element uncertainty and nonuniformity, as well as Sun-spacecraft velocity. We detail the functioning of these two pipelines, explain known issues affecting the measurements of the resulting physical quantities, and describe how regular updates to the instrument calibration impact them. We also describe how the scheme for computing the observables is optimized for actual HMI observations. Initial calibration of HMI was performed on the ground using a variety of light sources and calibration sequences. During the five years of the SDO prime mission, regular calibration sequences have been taken on orbit to improve and regularly update the instrument calibration, and to monitor changes in the HMI instrument. This has resulted in several changes in the observables processing that are detailed here. The instrument more than satisfies all

  16. Observables Processing for the Helioseismic and Magnetic Imager Instrument on the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Couvidat, S.; Schou, J.; Hoeksema, J. T.; Bogart, R. S.; Bush, R. I.; Duvall, T. L.; Liu, Y.; Norton, A. A.; Scherrer, P. H.

    2016-08-01

    NASA's Solar Dynamics Observatory (SDO) spacecraft was launched 11 February 2010 with three instruments onboard, including the Helioseismic and Magnetic Imager (HMI). After commissioning, HMI began normal operations on 1 May 2010 and has subsequently observed the Sun's entire visible disk almost continuously. HMI collects sequences of polarized filtergrams taken at a fixed cadence with two 4096 × 4096 cameras, from which are computed arcsecond-resolution maps of photospheric observables that include line-of-sight velocity and magnetic field, continuum intensity, line width, line depth, and the Stokes polarization parameters [ I, Q, U, V]. Two processing pipelines have been implemented at the SDO Joint Science Operations Center (JSOC) at Stanford University to compute these observables from calibrated Level-1 filtergrams, one that computes line-of-sight quantities every 45 seconds and the other, primarily for the vector magnetic field, that computes averages on a 720-second cadence. Corrections are made for static and temporally changing CCD characteristics, bad pixels, image alignment and distortion, polarization irregularities, filter-element uncertainty and nonuniformity, as well as Sun-spacecraft velocity. We detail the functioning of these two pipelines, explain known issues affecting the measurements of the resulting physical quantities, and describe how regular updates to the instrument calibration impact them. We also describe how the scheme for computing the observables is optimized for actual HMI observations. Initial calibration of HMI was performed on the ground using a variety of light sources and calibration sequences. During the five years of the SDO prime mission, regular calibration sequences have been taken on orbit to improve and regularly update the instrument calibration, and to monitor changes in the HMI instrument. This has resulted in several changes in the observables processing that are detailed here. The instrument more than satisfies all

  17. (21) Lutetia spectrophotometry from Rosetta-OSIRIS images and comparison to ground-based observations

    NASA Astrophysics Data System (ADS)

    Magrin, S.; La Forgia, F.; Pajola, M.; Lazzarin, M.; Massironi, M.; Ferri, F.; da Deppo, V.; Barbieri, C.; Sierks, H.; Osiris Team

    2012-06-01

    Here we present some preliminary results on surface variegation found on (21) Lutetia from ROSETTA-OSIRIS images acquired on 2010-07-10. The spectrophotometry obtained by means of the two cameras NAC and WAC (Narrow and Wide Angle Cameras) is consistent with ground based observations, and does not show surface diversity above the data error bars. The blue and UV images (shortward 500 nm) may, however, indicate a variegation of the optical properties of the asteroid surface on the Baetica region (Sierks et al., 2011). We also speculate on the contribution due to different illumination and to different ground properties (composition or, more probably, grain size diversity). In particular a correlation with geologic units independently defined by Massironi et al. (2012) is evident, suggesting that the variegation of the ground optical properties is likely to be real.

  18. Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast

    PubMed Central

    Chen, L; Boone, JM; Abbey, CK; Hargreaves, J; Bateni, C; Lindfors, KK; Yang, K; Nosratieh, A; Hernandez, A; Gazi, P

    2015-01-01

    Objectives The objective of this study was to compare the lesion detection performance of human observers between thin-section computed tomography images of the breast, with thick-section (>40 mm) simulated projection images of the breast. Methods Three radiologists and six physicists each executed a two alterative force choice (2AFC) study involving simulated spherical lesions placed mathematically into breast images produced on a prototype dedicated breast CT scanner. The breast image data sets from 88 patients were used to create 352 pairs of image data. Spherical lesions with diameters of 1, 2, 3, 5, and 11 mm were simulated and adaptively positioned into 3D breast CT image data sets; the native thin section (0.33 mm) images were averaged to produce images with different slice thicknesses; average section thicknesses of 0.33 mm, 0.71 mm, 1.5 mm, and 2.9 mm were representative of breast CT; the average 43 mm slice thickness served to simulate simulated projection images of the breast. Results The percent correct of the human observer’s responses were evaluated in the 2AFC experiments. Radiologists lesion detection performance was significantly (p<0.05) better in the case of thin-section images, compared to thick section images similar to mammography, for all but the 1 mm lesion diameter lesions. For example, the average of three radiologist’s performance for 3 mm diameter lesions was 92 % correct for thin section breast CT images while it was 67 % for the simulated projection images. A gradual reduction in observer performance was observed as the section thickness increased beyond about 1 mm. While a performance difference based on breast density was seen in both breast CT and the projection image results, the average radiologist performance using breast CT images in dense breasts outperformed the performance using simulated projection images in fatty breasts for all lesion diameters except 11 mm. The average radiologist performance outperformed that of the

  19. The Imager for Sprites and Upper Atmospheric Lightning (ISUAL)

    NASA Astrophysics Data System (ADS)

    Frey, H. U.; Mende, S. B.; Harris, S. E.; Heetderks, H.; Takahashi, Y.; Su, H.-T.; Hsu, R.-R.; Chen, A. B.; Fukunishi, H.; Chang, Y.-S.; Lee, L.-C.

    2016-08-01

    The Imager for Sprites and Upper Atmospheric Lightning (ISUAL) was the first specifically dedicated instrument to observe lightning-induced transient luminous events (TLE): sprites, elves, halos, and gigantic jets from space. The Imager is an intensified CCD system operating in the visible wavelength region with a filter wheel to select from six positions with filters. The Imager has a 5° × 20° (vertical times horizontal) field of view. The spectrophotometer (SP) is populated with six photometers with individual filters for emissions from the far ultraviolet to the near infrared. An array photometer with two channels operating in the blue and red provides altitude profiles of the emission over 16 altitude bins each. The Associated Electronics Package (AEP) controls instrument functions and interfaces with the spacecraft. ISUAL was launched 21 May 2004 into a Sun-synchronous 890 km orbit on the Formosat-2 satellite and has successfully been collecting data ever since. ISUAL is running on the nightside of the orbit and is pointed to the east of the orbit down toward the limb. The instrument runs continuously and writes data to a circular buffer. Whenever the SP detects a sudden signal increase above a preset threshold, a trigger signal is generated that commands the system to keep the data for about 400 ms starting from ~50 ms before the trigger. Over its lifetime of ~11 years the system recorded thousands of TLE and also successfully observed aurora and airglow.

  20. All Sky Imager Network for Science and Education

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Kendall, E. A.; Zalles, D. R.; Baumgardner, J. L.; Marshall, R. A.; Kaltenbacher, E.

    2012-12-01

    A new all sky imager network for space weather monitoring and education outreach has been developed by SRI International. The goal of this program is to install sensitive, low-light all-sky imagers across the continental United States to observe upper atmospheric airglow and aurora in near real time. While aurora borealis is often associated with the high latitudes, during intense geomagnetic storms it can extend well into the continental United States latitudes. Observing auroral processes is instrumental in understanding the space weather, especially in the times of increasing societal dependence on space-based technologies. Under the THEMIS satellite program, Canada has installed a network of all-sky imagers across their country to monitor aurora in real-time. However, no comparable effort exists in the United States. Knowledge of the aurora and airglow across the entire United States in near real time would allow scientists to quickly assess the impact of a geomagnetic storm in concert with data from GPS networks, ionosondes, radars, and magnetometers. What makes this effort unique is that we intend to deploy these imagers at high schools across the country. Selected high-schools will necessarily be in rural areas as the instrument requires dark night skies. At the commencement of the school year, we plan to give an introductory seminar on space weather at each of these schools. Science nuggets developed by SRI International in collaboration with the Center for GeoSpace Studies and the Center for Technology in Learning will be available for high school teachers to use during their science classes. Teachers can use these nuggets as desired within their own curricula. We intend to develop a comprehensive web-based interface that will be available for students and scientific community alike to observe data across the network in near real time and also to guide students towards complementary space weather data sets. This interface will show the real time extent of

  1. "Observing and Analyzing" Images from a Simulated High-Redshift Universe

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Windhorst, Rogier A.; Scannapieco, Evan; Thacker, Robert J.

    2015-09-01

    We investigate the high-redshift evolution of the rest-frame UV-luminosity function (LF) of galaxies via hydrodynamical cosmological simulations, coupled with an emulated observational astronomy pipeline that provides a direct comparison with observations. We do this by creating mock images and synthetic galaxy catalogs of ≈100 arcmin-2 fields from the numerical model at redshifts ≈4.5 to 10.4. We include the effects of dust extinction and the point-spread function (PSF) for the Hubble WFC3 camera for comparison with space observations. We also include the expected zodiacal background to predict its effect on space observations, including future missions such as the James Webb Space Telescope (JWST). When our model catalogs are fitted to Schechter function parameters, we predict that the faint-end slope (α) of the LF evolves as α = -1.16-0.12z over the redshift range z ≈ 4.5-7.7, in excellent agreement with observations from, e.g., Hathi and coworkers. However, for redshifts z ≈ 6-10.4, α(z) appears to display a shallower evolution, α = -1.79-0.03z. Augmenting the simulations with more detailed physics—specifically stellar winds and supernovae (SN)—produces similar results. The model shows an overproduction of galaxies, especially at faint magnitudes, compared with the observations, although the discrepancy is reduced when dust extinction is taken into account.

  2. Initial lunar calibration observations by the EO-1 Hyperion imaging spectrometer

    USGS Publications Warehouse

    Kieffer, H.H.; Jarecke, P.; Pearlman, Jay; ,

    2002-01-01

    The Moon provides an exo-atmospheric radiance source that can be used to determine trends in instrument radio-metric responsivity with high precision. Lunar observations can also be used for absolute radiometric calibration; knowledge of the radiometric scale will steadily improve through independent study of lunar spectral photometry and with sharing of the Moon as a calibration target by increasing numbers of spacecraft, each with its own calibration history. EO-1 calibration includes periodic observation of the Moon by all three of its instruments. Observations are normally made with a phase angle of about 7 degrees (or about 12 hours from the time of Full Moon). Also, SeaWiFS has been making observations at such phase angles for several years, and observations of the Moon by instrument pairs, even if at different times, can be used to transfer absolute calibration. A challenge for EO-1 is pointing to include the entire full Moon in the narrow Hyperion scan. Three Hyperion observations in early 2001 covering an order-of-magnitude difference in lunar irradiance show good agreement for responsivity; the SWIR detector has undergone some changes in responsivity. Small discrepancies of calibration with wavelength could be smoothed using the Moon as a source. Off-axis scattered light response and cross-track response variations can be assessed using the lunar image.

  3. Singular vectors of a linear imaging system as efficient channels for the ideal observer in detection tasks involving non-Gaussian distributed lumpy images

    NASA Astrophysics Data System (ADS)

    Witten, Joel M.; Park, Subok; Myers, Kyle J.

    2008-03-01

    The Bayesian ideal observer sets an upper bound for diagnostic performance of an imaging system in binary detection tasks. Thus, this observer should be used for image quality assessment whenever possible. However, it is difficult to compute ideal-observer performance because the probability density functions of the data, required for the observer, are often unknown in tasks involving complex backgrounds. Furthermore, the dimension of the integrals that need to be calculated for the observer is huge. To attempt to reduce the dimensionality of the problem, and yet still approximate ideal-observer performance, a channelized-ideal observer (CIO) with Laguerre-Gauss channels was previously investigated for detecting a Gaussian signal at a known location in non-Gaussian lumpy images. While the CIO with Laguerre-Gauss channels had, in some cases, approximated ideal-observer performance, there was still a gap between the mean performance of the ideal observer and the CIO. Moreover, it is not clear how to choose efficient channels for the ideal observer. In the current work, we investigate the use of singular vectors of a linear imaging system as efficient channels for the ideal observer in the same tasks. Singular value decomposition of the imaging system is performed to obtain its singular vectors. Singular vectors most relevant to the signal and background images are chosen as candidate channels. Results indicate that the singular vectors are not only more efficient than Laguerre-Gauss channels, but are also highly efficient for the ideal observer. The results further demonstrate that singular vectors strongly associated with the signal-only image are the most efficient channels.

  4. HARPS-N: software path from the observation block to the image

    NASA Astrophysics Data System (ADS)

    Sosnowska, D.; Lodi, M.; Gao, X.; Buchschacher, N.; Vick, A.; Guerra, J.; Gonzalez, M.; Kelly, D.; Lovis, C.; Pepe, F.; Molinari, E.; Cameron, A. C.; Latham, D.; Udry, S.

    2012-09-01

    HARPS North is the twin of the HARPS (High Accuracy Radial velocity for Planetary Search) spectrograph operating in La Silla (Chile) recently installed on the TNG in La Palma observatory and used to follow-up, the "hot" candidates delivered by the Kepler satellite. HARPS-N is delivered with its own software that completely integrates with the TNG control system. A special care has been dedicated to develop tools that will assist the astronomers during the whole process of taking images: from the observation schedule to the raw image acquisition. All these tools are presented in the paper. In order to provide a stable and reliable system, the software has been developed keeping in mind concepts like failover and high-availability. HARPS-N is made of heterogeneous systems, from normal computer to real-time systems, that's why the standard message queue middleware (ActiveMQ) was chosen to provide the communications between different processes. The path of operations starting with the Observation Blocks and ending with the FITS frames is fully automated and could allow, in the future, the completely remote observing runs optimized for the time and quality constraints.

  5. Imaging and Spectral Observations of Quasi-periodic Pulsations in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Li, D.; Ning, Z. J.; Zhang, Q. M.

    2015-07-01

    We explore the quasi-periodic pulsations (QPPs) in a solar flare observed by Fermi Gamma-ray Burst Monitor, Solar Dynamics Observatory, Solar Terrestrial Relations Observatory, and Interface Region Imaging Spectrograph (IRIS) on 2014 September 10. QPPs are identified as the regular and periodic peaks on the rapidly varying components, which are the light curves after removing the slowly varying components. The QPPs display only three peaks at the beginning on the hard X-ray emissions, but 10 peaks on the chromospheric and coronal line emissions, and more than seven peaks (each peak corresponds to a type III burst on the dynamic spectra) at the radio emissions. A uniform quasi-period of about 4 minutes is detected among them. AIA imaging observations exhibit that the 4-minute QPPs originate from the flare ribbon and tend to appear on the ribbon front. IRIS spectral observations show that each peak of the QPPs tends to a broad line width and a red Doppler velocity at C i, O iv, Si iv, and Fe xxi lines. Our findings indicate that the QPPs are produced by the non-thermal electrons that are accelerated by the induced quasi-periodic magnetic reconnections in this flare.

  6. IMAGING AND SPECTRAL OBSERVATIONS OF QUASI-PERIODIC PULSATIONS IN A SOLAR FLARE

    SciTech Connect

    Li, D.; Ning, Z. J.; Zhang, Q. M.

    2015-07-01

    We explore the quasi-periodic pulsations (QPPs) in a solar flare observed by Fermi Gamma-ray Burst Monitor, Solar Dynamics Observatory, Solar Terrestrial Relations Observatory, and Interface Region Imaging Spectrograph (IRIS) on 2014 September 10. QPPs are identified as the regular and periodic peaks on the rapidly varying components, which are the light curves after removing the slowly varying components. The QPPs display only three peaks at the beginning on the hard X-ray emissions, but 10 peaks on the chromospheric and coronal line emissions, and more than seven peaks (each peak corresponds to a type III burst on the dynamic spectra) at the radio emissions. A uniform quasi-period of about 4 minutes is detected among them. AIA imaging observations exhibit that the 4-minute QPPs originate from the flare ribbon and tend to appear on the ribbon front. IRIS spectral observations show that each peak of the QPPs tends to a broad line width and a red Doppler velocity at C i, O iv, Si iv, and Fe xxi lines. Our findings indicate that the QPPs are produced by the non-thermal electrons that are accelerated by the induced quasi-periodic magnetic reconnections in this flare.

  7. Image enhancement filters in CCTVs significantly improve reading performance for low-vision observers

    NASA Astrophysics Data System (ADS)

    Lawton, Teri B.

    1992-08-01

    As people age, so do their photoreceptors. If the visual system has been exposed to sufficient UV radiation combined with other precursors for age-related maculopathies (ARM), then a large number of photoreceptors in central vision stop functioning when the person reaches their late sixties and early seventies. There are channels in the visual system tuned to different bands, approximately one octave, of spatial frequencies. In low vision observers with ARM, the loss of central vision causes a loss in channels sensitive to spatial frequencies above 8 to 10 cyc/deg. Therefore, for ARM observers, words must be magnified to read normal text. I have developed image enhancement filters that compensate for the low vision observer's losses in contrast sensitivity to intermediate and high spatial frequencies. These filters automatically enhance the text displayed on closed-circuit TVs (CCTVs) and render the text in shades of gray more easily perceivable than black and white text. These filters work by boosting the amplitude of the less visible intermediate spatial frequencies more than the lower spatial frequencies. Not only do these image enhancement filters reduce the magnification needed for reading by up to 70%, they also increase the speed that can be used to read text two to four times. A short summary of this research is presented.

  8. Obtaining coincident image observations for Mission to Planet Earth science data return

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.; Farrell, James P.

    1994-01-01

    One objective of the Mission to Planet Earth (MTPE) program involves comparing data from various instruments on multiple spacecraft to obtain a total picture of the Earth's systems. To correlate image data from instruments on different spacecraft, these spacecraft must be able to image the same location on the Earth at approximately the same time. Depending on the orbits of the spacecraft involved, complicated operational details must be considered to obtain such observations. If the spacecraft are in similar orbits, close formation flying or synchronization techniques may be used to assure coincident observations. If the orbits are dissimilar, the launch time of the second satellite may need to be restricted in order to align its orbit with that of the first satellite launched. This paper examines strategies for obtaining coincident observations for spacecraft in both similar and dissimilar orbits. Although these calculations may be performed easily for coplanar spacecraft, the non-coplanar case involves additional considerations which are incorporated into the algorithms presented herein.

  9. Two Types of Aurora on Mars as Observed by MAVEN's Imaging UltraViolet Spectrograph

    NASA Astrophysics Data System (ADS)

    Schneider, N. M.; Deighan, J.; Jain, S.; Stiepen, A.; Stewart, I. F.; Larson, D. E.; Mitchell, D. L.; Mazelle, C. X.; Lee, C.; Lillis, R. J.; Evans, J. S.; Brain, D. A.; Stevens, M. H.; McClintock, W. E.; Chaffin, M.; Crismani, M. M. J.; Holsclaw, G. M.; Lefèvre, F.; Lo, D.; Clarke, J. T.; Montmessin, F.; Jakosky, B. M.

    2015-12-01

    The Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft has detected two distinct types of auroral emission on Mars. First, we report the discovery of a low altitude, diffuse aurora spanning much of Mars' northern hemisphere coincident with a solar energetic particle outburst. IUVS observed northerly latitudes during late December 2014, detecting auroral emission in virtually all nightside observations for ~5 days spanning virtually all geographic longitudes. The vertical profile showed emission down to ~70 km altitude (1 microbar), deeper than confirmed at any other planet. The onset and duration of emission coincide with the observed arrival of solar energetic particles up to 200 keV precipitating directly and deeply into the atmosphere. Preliminary modeling of the precipitation, energy deposition and spectral line emission yields good matches to the observations. These observations represent a new class of planetary auroras produced in the Martian middle atmosphere. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit aurora more globally than Earth. Second, we confirm the existence of small patches of discrete aurora near crustal magnetic fields in Mars' southern hemisphere, as observed previously by SPICAM on Mars Express (Bertaux et al., Nature, 435, 790-794 (2005)). IUVS observed southern latitudes in July and August 2015, detecting discrete auroral emission in ~1% of suitable observations. Limb scans resolved both vertically and along-slit indicate this type of auroral emission was patchy on the scale of ~40 km, and located at higher altitudes ~140 km. The higher altitudes imply a lower energy of precipitating particles. The mix of spectral emissions also differed signficiantly from the discrete aurora, indicating different excitation and quenching processes. We will discuss the observed properties of the aurora and associated charged particle precipitation, as well as the broader implications of this high

  10. Two Types of Aurora on Mars as Observed by MAVEN's Imaging UltraViolet Spectrograph

    NASA Astrophysics Data System (ADS)

    Schneider, Nicholas M.; Deighan, J.; Jain, S. K.; Stiepen, A.; Larson, D.; Mitchell, D. L.; Lee, C. O.; Lillis, R.; Brain, D.; McClintock, W. E.; Chaffin, M. S.; Crismani, M.; Holsclaw, G. M.; Jakosky, B. M.; Mazelle, C.; Evans, J. S.; Stewart, A. I. F.; Stevens, M. H.; Clarke, J. T.; Montmessin, F.; Lefevre, F.; Lo, D.

    2015-11-01

    The Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft has detected two distinct types of auroral emission on Mars. First, we report the discovery of a low altitude, diffuse aurora spanning much of Mars’ northern hemisphere coincident with a solar energetic particle outburst. IUVS observed northerly latitudes during late December 2014, detecting auroral emission in virtually all nightside observations for ~5 days spanning virtually all geographic longitudes. The vertical profile showed emission down to ~70 km altitude (1 microbar), deeper than confirmed at any other planet. The onset and duration of emission coincide with the observed arrival of solar energetic particles up to 200 keV precipitating directly and deeply into the atmosphere. Preliminary modeling of the precipitation, energy deposition and spectral line emission yields good matches to the observations. These observations represent a new class of planetary auroras produced in the Martian middle atmosphere. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit aurora more globally than Earth.Second, we confirm the existence of small patches of discrete aurora near crustal magnetic fields in Mars' southern hemisphere, as observed previously by SPICAM on Mars Express (Bertaux et al., Nature, 435, 790-794 (2005)). IUVS observed southern latitudes in July and August 2015, detecting discrete auroral emission in ~1% of suitable observations. Limb scans resolved both vertically and along-slit indicate this type of auroral emission was patchy on the scale of ~40 km, and located at higher altitudes ~140 km. The higher altitudes imply a lower energy of precipitating particles. The mix of spectral emissions also differed signficiantly from the diffuse aurora, indicating different excitation and quenching processes.We will discuss the observed properties of the aurora and associated charged particle precipitation, as well as the broader implications of this high

  11. Ultraviolet imaging telescope and optical emission-line observations of H II regions in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Cheng, K.-P.; Bohlin, Ralph C.; Cornett, Robert H.; Hintzen, P. M. N.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1995-01-01

    Images of the type Sab spiral galaxy M81 were obtained in far-UV and near-UV bands by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission of 1990 December. Magnitudes in the two UV bands are determined for 52 H II regions from the catalog of Petit, Sivan, & Karachentsev (1988). Fluxes of the H-alpha and H-beta emission lines are determined from CCD images. Extinctions for the brightest H II regions are determined from observed Balmer decrements. Fainter H II regions are assigned the average of published radio-H-alpha extinctions for several bright H II regions. The radiative transfer models of Witt, Thronson, & Capuano (1992) are shown to predict a relationship between Balmer Decrement and H-alpha extinction consistent with observed line and radio fluxes for the brightest 7 H II regions and are used to estimate the UV extinction. Ratios of Lyman continuum with ratios predicted by model spectra computed for initial mass function (IMF) slope equal to -1.0 and stellar masses ranging from 5 to 120 solar mass. Ages and masses are estimated by comparing the H-alpha and far-UV fluxes and their ratio with the models. The total of the estimated stellar masses for the 52 H II regions is 1.4 x 10(exp 5) solar mass. The star-formation rate inferred for M81 from the observed UV and H-alpha fluxes is low for a spiral galaxy at approximately 0.13 solar mass/yr, but consistent with the low star-formation rates obtained by Kennicutt (1983) and Caldwell et al. (1991) for early-type spirals.

  12. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  13. Atomic oxygen on the Venus nightside: Global distribution deduced from airglow mapping

    NASA Astrophysics Data System (ADS)

    Soret, L.; Gérard, J.-C.; Montmessin, F.; Piccioni, G.; Drossart, P.; Bertaux, J.-L.

    2012-02-01

    The Visible and Infra-Red Thermal Imaging Spectrometer (VIRTIS) instrument on board the Venus Express spacecraft has measured the O 2(a 1Δ) nightglow distribution at 1.27 μm in the Venus mesosphere for more than two years. Nadir observations have been used to create a statistical map of the emission on Venus nightside. It appears that the statistical 1.6 MR maximum of the emission is located around the antisolar point. Limb observations provide information on the altitude and on the shape of the emission layer. We combine nadir observations essentially covering the southern hemisphere, corrected for the thermal emission of the lower atmosphere, with limb profiles of the northern hemisphere to generate a global map of the Venus nightside emission at 1.27 μm. Given all the O 2(a 1Δ) intensity profiles, O 2(a 1Δ) and O density profiles have been calculated and three-dimensional maps of metastable molecular and atomic oxygen densities have been generated. This global O density nightside distribution improves that available from the VTS3 model, which was based on measurements made above 145 km. The O 2(a 1Δ) hemispheric average density is 2.1 × 10 9 cm -3, with a maximum value of 6.5 × 10 9 cm -3 at 99.2 km. The O density profiles have been derived from the nightglow data using CO 2 profiles from the empirical VTS3 model or from SPICAV stellar occultations. The O hemispheric average density is 1.9 × 10 11 cm -3 in both cases, with a mean altitude of the peak located at 106.1 km and 103.4 km, respectively. These results tend to confirm the modeled values of 2.8 × 10 11 cm -3 at 104 km and 2.0 × 10 11 cm -3 at 110 km obtained by Brecht et al. [Brecht, A., Bougher, S.W., Gérard, J.-C., Parkinson, C.D., Rafkin, S., Foster, B., 2011a. J. Geophys. Res., in press] and Krasnopolsky [Krasnopolsky, V.A., 2010. Icarus 207, 17-27], respectively. Comparing the oxygen density map derived from the O 2(a 1Δ) nightglow observations, it appears that the morphology is very

  14. Cool Transition Region Loops Observed by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Huang, Zhenghua; Xia, Lidong; Li, Bo; Madjarska, Maria S.

    2015-09-01

    We report on the first Interface Region Imaging Spectrograph (IRIS) study of cool transition region loops, a class of loops that has received little attention in the literature. A cluster of such loops was observed on the solar disk in active region NOAA11934, in the Si iv 1402.8 Å spectral raster and 1400 Å slit-jaw images. We divide the loops into three groups and study their dynamics. The first group comprises relatively stable loops, with 382-626 km cross-sections. Observed Doppler velocities are suggestive of siphon flows, gradually changing from -10 km s-1 at one end to 20 km s-1 at the other end of the loops. Nonthermal velocities of 15 ˜ 25 km s-1 were determined. Magnetic cancellation with a rate of 1015 Mx s-1 is found at the blueshifted footpoints. These physical properties suggest that these loops are impulsively heated by magnetic reconnection, and the siphon flows play an important role in the energy redistribution. The second group corresponds to two footpoints rooted in mixed-magnetic-polarity regions, where magnetic cancellation with a rate of 1015 Mx s-1 and explosive-event line profiles with enhanced wings of up to 200 km s-1 were observed. In the third group, interaction between two cool loop systems is observed. Evidence for magnetic reconnection between the two loop systems is reflected in the explosive-event line profiles and magnetic cancellation with a rate of 3× {10}15 Mx s-1 observed in the corresponding area. The IRIS has provided opportunity for in-depth investigations of cool transition region loops. Further numerical experiments are crucial for understanding their physics and their roles in the coronal heating processes.

  15. In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphene

    PubMed Central

    Pan, C.-T.; Hinks, J. A.; Ramasse, Q. M.; Greaves, G.; Bangert, U.; Donnelly, S. E.; Haigh, S. J.

    2014-01-01

    Ion irradiation has been observed to induce a macroscopic flattening and in-plane shrinkage of graphene sheets without a complete loss of crystallinity. Electron diffraction studies performed during simultaneous in-situ ion irradiation have allowed identification of the fluence at which the graphene sheet loses long-range order. This approach has facilitated complementary ex-situ investigations, allowing the first atomic resolution scanning transmission electron microscopy images of ion-irradiation induced graphene defect structures together with quantitative analysis of defect densities using Raman spectroscopy. PMID:25284688

  16. In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphene.

    PubMed

    Pan, C-T; Hinks, J A; Ramasse, Q M; Greaves, G; Bangert, U; Donnelly, S E; Haigh, S J

    2014-01-01

    Ion irradiation has been observed to induce a macroscopic flattening and in-plane shrinkage of graphene sheets without a complete loss of crystallinity. Electron diffraction studies performed during simultaneous in-situ ion irradiation have allowed identification of the fluence at which the graphene sheet loses long-range order. This approach has facilitated complementary ex-situ investigations, allowing the first atomic resolution scanning transmission electron microscopy images of ion-irradiation induced graphene defect structures together with quantitative analysis of defect densities using Raman spectroscopy. PMID:25284688

  17. Use of the Hotelling observer to optimize image reconstruction in digital breast tomosynthesis.

    PubMed

    Sánchez, Adrian A; Sidky, Emil Y; Pan, Xiaochuan

    2016-01-01

    We propose an implementation of the Hotelling observer that can be applied to the optimization of linear image reconstruction algorithms in digital breast tomosynthesis. The method is based on considering information within a specific region of interest, and it is applied to the optimization of algorithms for detectability of microcalcifications. Several linear algorithms are considered: simple back-projection, filtered back-projection, back-projection filtration, and [Formula: see text]-tomography. The optimized algorithms are then evaluated through the reconstruction of phantom data. The method appears robust across algorithms and parameters and leads to the generation of algorithm implementations which subjectively appear optimized for the task of interest. PMID:26702408

  18. Observations of the quasi 2-day wave from the High Resolution Doppler Imager on UARS

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Hays, P. B.; Skinner, W. R.; Marshall, A. R.; Burrage, M. D.; Lieberman, R. S.; Ortland, D. A.

    1993-01-01

    A strong westward traveling oscillation, with a period of 2 days and zonal wave number 3, is observed in the mesospheric and lower thermospheric winds from the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS). The important events happen in January, July, and September/October, of which the occurrence in January is the strongest with an amplitude over 60 m/s. Detailed analyses for the periods of January 1992 and January 1993 reveal a cause-and-effect relationship in the wave developing process at 95 km. The global structures of the wave amplitude and phase are also presented.

  19. Earth Observing-1 Advanced Land Imager: Dark Current and Noise Characterization and Anomalous Detectors

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.

  20. Use of digital images to observe forest phenology and drought stress

    NASA Astrophysics Data System (ADS)

    Ahrends, H. E.; Etzold, S.; Eugster, W.; Buchmann, N.; Jeanneret, F.; Wanner, H.

    2009-04-01

    Phenological data that complement research studies of climate impacts on ecosystems need to be estimated with both temporal and spatial accuracy. Forest phenology can be monitored by satellite, but the realism of remote sensing products such as the NDVI (Normalized Difference Vegetation Index) still heavily depends on ground based validation data. Ground based data is often observer-biased and the number of observations strongly varies in time and space. Recent studies have demonstrated the successful application of digital camera images for spring phenological monitoring in ecosystem studies. Objective of the present study therefore was to test the application of digital images from standard RGB-cameras for regional monitoring and modelling the seasonality of forest physiology and for detecting species-specific reactions on environmental impacts such as drought. A digital camera was mounted on the uppermost platform of a fluxtower at the CarboEurope site Lägeren (northern Switzerland). Daily images of the mixed forest from four years were used to derive the timing of greenup, leaf maturity, senescence and dormancy of two different tree species (beech and ash) between 2005 and 2008. Based on the image color values a vegetation index was computed. Time series of the vegetation index were jointly analyzed with standard meteorological data and eddy covariance measurements of ecosystem carbon dioxide and water vapour exchange. Generally the observation of phenologial phases was successful but complex for the end of the vegetation period, e.g. due to early leaf coloring caused by summer heat, and a less pronounced starting date of leaf senescence compared with spring greenup. Spring CO2 flux characteristics could be explained by leaf emergence dates of dominant tree species. A drought period in 2006 influenced index values for beech but not for the highly drought-tolerant ash trees. Phenological data showed significant correlation with carbon dioxide exchange

  1. Spectral and Imaging Observations of a White-light Solar Flare in the Mid-infrared

    NASA Astrophysics Data System (ADS)

    Penn, Matt; Krucker, Säm; Hudson, Hugh; Jhabvala, Murzy; Jennings, Don; Lunsford, Allen; Kaufmann, Pierre

    2016-03-01

    We report high-resolution observations at mid-infrared wavelengths of a minor solar flare, SOL2014-09-24T17:50 (C7.0), using Quantum Well Infrared Photodetector cameras at an auxiliary of the McMath-Pierce telescope. The flare emissions, the first simultaneous observations in two mid-infrared bands at 5.2 and 8.2 μ {{m}} with white-light and hard X-ray coverage, revealed impulsive time variability with increases on timescales of ˜4 s followed by exponential decay at ˜10 s in two bright regions separated by about 13\\prime\\prime . The brightest source is compact, unresolved spatially at the diffraction limit (1\\_\\_AMP\\_\\_farcs;72 at 5.2 μ {{m}}). We identify the IR sources as flare ribbons also seen in white-light emission at 6173 Å observed by SDO/HMI, with twin hard X-ray sources observed by Reuven Ramaty High Energy Solar Spectroscopic Imager, and with EUV sources (e.g., 94 Å) observed by SDO/AIA. The two infrared points have nearly the same flux density (fν, W m-2 Hz) and extrapolate to a level of about an order of magnitude below that observed in the visible band by HMI, but with a flux of more than two orders of magnitude above the free-free continuum from the hot (˜15 MK) coronal flare loop observed in the X-ray range. The observations suggest that the IR emission is optically thin; this constraint and others suggest major contributions from a density less than about 4× {10}13 cm-3. We tentatively interpret this emission mechanism as predominantly free-free emission in a highly ionized but cool and rather dense chromospheric region.

  2. Imaging observations of Jupiter's sodium magneto-nebula during the ULYSSES encounter

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Flynn, Brian; Baumgardner, Jeffrey

    1992-09-01

    Jupiter's great sodium nebula represents the largest visible structure traversed by the Ulysses spacecraft during its encounter with the planet in February 1992. Ground-based imaging conducted on Mount Haleakala, Hawaii, revealed a nebula that extended to at least +/- 300 Jovian radii; it was somewhat smaller in scale and less bright than previously observed. Analysis of observations and results of modeling studies suggest reduced volcanic activity on the moon Io, higher ion temperatures in the plasma torus, lower total plasma content in the torus, and fast neutral atomic clouds along the Ulysses inbound trajectory through the magnetosphere. Far fewer neutrals were encountered by the spacecraft along its postencounter, out-of-ecliptic trajectory.

  3. Mars' Active Surface: Observing Changes with Orthorectified HiRISE Images

    NASA Astrophysics Data System (ADS)

    Mattson, S.; McEwen, A. S.; Ojha, L.; Bridges, N. T.; Kirk, R. L.; Howington-Kraus, E.; Mogk, N.

    2012-12-01

    Active processes on Mars have been observed and documented with high resolution images from orbit. The HiRISE camera, operating on MRO since 2006, acquires images of the surface of Mars at up to 25 cm pixel scale, and has stereo capability. The use of HiRISE stereo images to produce digital terrain models (DTMs) allows for orthorectification of the stereo pair and other images targeted over the same area. HiRISE DTMs typically have 1 or 2 m horizontal resolution with vertical precision on the order of 10's of cm. DTM production with HiRISE requires that the source stereo pair has similar lighting and minimal surface differences. However, there is no similar requirement for orthorectifying other images taken of the same area. Changes on the surface can then be measured accurately in the orthoimages as topographic distortions have been minimized. Time sequences of surface changes can be constructed from a series of orthoimages, providing essential data for understanding their rate and magnitude. Some of the current areas of study using HiRISE DTMs and orthoimages include recurring slope lineae (RSL) (McEwen et al., Science 333, 740, 2011), dune and ripple migration (Bridges et al., Nature 485, 339, 2012), seasonal frost changes, and gully activity. In some cases, DTMs from before and after significant surface movement can be compared to measure volumetric changes. The demand for HiRISE DTMs and orthoimages has led to advances in techniques for their production and analysis. Improved image processing and terrain editing tools result in better DTMs and orthoimages, as well as minimize the time required to produce them. We present here ongoing work to refine these techniques and develop new methods for generating orthoimage sequences, including orthorectification of the HiRISE 3-band color strip. Results are illustrated using series of orthoimages over dunes, RSL sites and other areas of Martian surface activity. HiRISE DTMs and orthoimages are released to the Planetary

  4. Conjugate Observations of Optical Aurora with POLAR Satellite and Ground Based Imagers in Antarctica

    NASA Technical Reports Server (NTRS)

    Mende, S. H.; Frey, H.; Vo, H.; Geller, S. P.; Doolittle, J. H.; Spann, J. F., Jr.

    1998-01-01

    Operation of the ultraviolet imager on the POLAR satellite permits the observation of Aurora Borealis in daylight during northern summer. With optical imagers in the Automatic Geophysical Observatories (AGO-s) large regions of the oval of Aurora Australis can be observed simultaneously during the southern winter polar night. This opportunity permits conducting a systematic study of the properties of auroras on opposite ends of the same field line. It is expected that simultaneously observed conjugate auroras occurring on closed field lines should be similar to each other in appearance because of the close connection between the two hemispheres through particle scattering and mirroring processes. On open or greatly distorted field lines there is no a priori expectation of similarity between conjugate auroras. To investigate the influence of different IMF conditions on auroral behavior we have examined conjugate data for periods of southward IMF. Sudden brightening and subsequent poleward expansions are observed to occur simultaneously in both hemispheres. The POLAR data show that sudden brightening are initiated at various local time regions. When the local time of this region is in the field of view of the AGO station network then corresponding brightening is also found to occur in the southern hemisphere. Large features such as substorm induced westward propagation and resulting auroral brightening seem to occur simultaneously on conjugate hemispheres. The widely different view scales make it difficult to make unique identification of individual auroral forms in the POLAR and in the ground based data but in a general sense the data is consistent with conjugate behavior.

  5. Surface Wind Vector and Rain Rate Observation Capability of Future Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy; Atlas, Robert; Bailey, M. C.; Black, Peter; El-Nimri, Salem; Hood, Robbie; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; Uhlhorn, Eric

    2009-01-01

    The Hurricane Imaging Radiometer (HIRAD) is the next-generation Stepped Frequency Microwave Radiometer (SFMR), and it will offer the capability of simultaneous wide-swath observations of both extreme ocean surface wind vector and strong precipitation from either aircraft (including UAS) or satellite platforms. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce valid wind observations under hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered by precipitation. The SFMR i s a proven aircraft remote sensing system for simultaneously observing extreme ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. The first version of the instrument will be a single polarization system for wind speed and rain rate, with a dual-polarization system to follow for wind vector capability. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by NASA s Instrument Incubator Program. A brassboard (laboratory) version of the instrument has been completed and successfully tested in a test chamber. Development of the aircraft instrument is underway, with flight testing planned for the fall of 2009. Preliminary Observing System Simulation Experiments (OSSEs) show that HIRAD will have a significant positive impact on surface wind analyses as either a new aircraft or satellite sensor. New off-nadir data collected in 2008 by SFMR that affirms the ability of this measurement technique to obtain wind speed data at non-zero incidence angle will

  6. The deep structure of the Western Pyrenees: constraints from tomographic imaging, field and marine geological observations

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Manatschal, Gianreto; Chevrot, Sébastien; Mohn, Geoffroy

    2015-04-01

    Knowledge of magma-poor rifted margin architecture has significantly evolved over the past decades. Refraction seismic data combined with drill-hole observations unravelled the velocity structure and lithological assemblages of the most distal part of continental rifted margins. Present-day models of continental rifted margins include the occurrence of hyperextended domains consisting in extremely thinned continental crust and/or exhumed subcontinental mantle as described at many rifted margins. Studies in mountain belts revealed that remnants of hyperextended domains could also be identified in internal parts of collisional orogens. Integrating recent developments in the understanding of rifted margins in the study of mountain building processes, in particular the importance of the reactivation of inherited rift structures is therefore essential and may result in alternative interpretations of the lithospheric scale structure of collisional orogens. In this contribution, we focus on the western part of the Pyrenean orogen that resulted from the inversion of a complex Late Jurassic to Mid Cretaceous rift system. The transition from preserved oceanic and rift domains to the west (in the offshore Bay of Biscay) to their complete inversion in the east provides simultaneous access to seismically imaged and exposed parts of a hyperextended rift system. Based on a multi-scale dataset that combines sub-surface data (field and drill-hole observations) with tomographic imaging (PYROPE experiment) and integrating new concepts derived from the study of present-day rifted margins, we investigate the lithospheric-scale architecture of the Western Pyrenees. Our results suggest that the imaged north-dipping crustal root may correspond to the former exhumed mantle and hyperthinned domains that have been subducted/underthrust at the onset of convergence. This interpretation contrasts with the classical assumption that the crustal root is made of lower crustal rocks. This

  7. Statistical correlation of low-altitude ENA emissions with geomagnetic activity from IMAGE/MENA observations

    NASA Astrophysics Data System (ADS)

    Mackler, D. A.; Jahn, J.-M.; Perez, J. D.; Pollock, C. J.; Valek, P. W.

    2016-03-01

    Plasma sheet particles transported Earthward during times of active magnetospheric convection can interact with exospheric/thermospheric neutrals through charge exchange. The resulting Energetic Neutral Atoms (ENAs) are free to leave the influence of the magnetosphere and can be remotely detected. ENAs associated with low-altitude (300-800 km) ion precipitation in the high-latitude atmosphere/ionosphere are termed low-altitude emissions (LAEs). Remotely observed LAEs are highly nonisotropic in velocity space such that the pitch angle distribution at the time of charge exchange is near 90°. The Geomagnetic Emission Cone of LAEs can be mapped spatially, showing where proton energy is deposited during times of varying geomagnetic activity. In this study we present a statistical look at the correlation between LAE flux (intensity and location) and geomagnetic activity. The LAE data are from the MENA imager on the IMAGE satellite over the declining phase of solar cycle 23 (2000-2005). The SYM-H, AE, and Kp indices are used to describe geomagnetic activity. The goal of the study is to evaluate properties of LAEs in ENA images and determine if those images can be used to infer properties of ion precipitation. Results indicate a general positive correlation to LAE flux for all three indices, with the SYM-H showing the greatest sensitivity. The magnetic local time distribution of LAEs is centered about midnight and spreads with increasing activity. The invariant latitude for all indices has a slightly negative correlation. The combined results indicate LAE behavior similar to that of ion precipitation.

  8. Observing the Invisible through Imaging Mass Spectrometry, a Window into the Metabolic Exchange Patterns of Microbes

    PubMed Central

    Gonzalez, David J.; Xu, Yuquan; Yang, Yu-Liang; Esquenazi, Eduardo; Liu, Wei-Ting; Edlund, Anna; Duong, Tram; Du, Liangcheng; Molnár, István; Gerwick, William H.; Jensen, Paul R.; Fischbach, Michael; Liaw, Chih-Chuang; Straight, Paul; Nizet, Victor; Dorrestein, Pieter C.

    2012-01-01

    Many microbes can be cultured as single-species communities. Often, these colonies are controlled and maintained via the secretion of metabolites. Such metabolites have been an invaluable resource for the discovery of therapeutics (e.g. penicillin, taxol, rapamycin, epothilone). In this article, written for a special issue on imaging mass spectrometry, we show that MALDI-imaging mass spectrometry can be adapted to observe, in a spatial manner, the metabolic exchange patterns of a diverse array of microbes, including thermophilic and mesophilic fungi, cyanobacteria, marine and terrestrial actinobacteria, and pathogenic bacteria. Dependent on media conditions, on average and based on manual analysis, we observed 11.3 molecules associated with each microbial IMS experiment, which was split nearly 50:50 between secreted and colony-associated molecules. The spatial distributions of these metabolic exchange factors are related to the biological and ecological functions of the organisms. This work establishes that MALDI-based IMS can be used as a general tool to study a diverse array of microbes. Furthermore the article forwards the notion of the IMS platform as a window to discover previously unreported molecules by monitoring the metabolic exchange patterns of organisms when grown on agar substrates. PMID:22641157

  9. Application of a multiscale maximum entropy image restoration algorithm to HXMT observations

    NASA Astrophysics Data System (ADS)

    Guan, Ju; Song, Li-Ming; Huo, Zhuo-Xi

    2016-08-01

    This paper introduces a multiscale maximum entropy (MSME) algorithm for image restoration of the Hard X-ray Modulation Telescope (HXMT), which is a collimated scan X-ray satellite mainly devoted to a sensitive all-sky survey and pointed observations in the 1–250 keV range. The novelty of the MSME method is to use wavelet decomposition and multiresolution support to control noise amplification at different scales. Our work is focused on the application and modification of this method to restore diffuse sources detected by HXMT scanning observations. An improved method, the ensemble multiscale maximum entropy (EMSME) algorithm, is proposed to alleviate the problem of mode mixing exiting in MSME. Simulations have been performed on the detection of the diffuse source Cen A by HXMT in all-sky survey mode. The results show that the MSME method is adapted to the deconvolution task of HXMT for diffuse source detection and the improved method could suppress noise and improve the correlation and signal-to-noise ratio, thus proving itself a better algorithm for image restoration. Through one all-sky survey, HXMT could reach a capacity of detecting a diffuse source with maximum differential flux of 0.5 mCrab. Supported by Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (XDA04010300) and National Natural Science Foundation of China (11403014)

  10. ATMOSPHERIC IMAGING ASSEMBLY OBSERVATIONS OF CORONAL LOOPS: CROSS-FIELD TEMPERATURE DISTRIBUTIONS

    SciTech Connect

    Schmelz, J. T.; Jenkins, B. S.; Pathak, S.

    2013-06-10

    We construct revised response functions for the Atmospheric Imaging Assembly (AIA) using the new atomic data, ionization equilibria, and coronal abundances available in CHIANTI 7.1. We then use these response functions in multithermal analysis of coronal loops, which allows us to determine a specific cross-field temperature distribution without ad hoc assumptions. Our method uses data from the six coronal filters and the Monte Carlo solutions available from our differential emission measure (DEM) analysis. The resulting temperature distributions are not consistent with isothermal plasma. Therefore, the observed loops cannot be modeled as single flux tubes and must be composed of a collection of magnetic strands. This result is now supported by observations from the High-resolution Coronal Imager, which show fine-scale braiding of coronal strands that are reconnecting and releasing energy. Multithermal analysis is one of the major scientific goals of AIA, and these results represent an important step toward the successful achievement of that goal. As AIA DEM analysis becomes more straightforward, the solar community will be able to take full advantage of the state-of-the-art spatial, temporal, and temperature resolution of the instrument.

  11. Application of a multiscale maximum entropy image restoration algorithm to HXMT observations

    NASA Astrophysics Data System (ADS)

    Guan, Ju; Song, Li-Ming; Huo, Zhuo-Xi

    2016-08-01

    This paper introduces a multiscale maximum entropy (MSME) algorithm for image restoration of the Hard X-ray Modulation Telescope (HXMT), which is a collimated scan X-ray satellite mainly devoted to a sensitive all-sky survey and pointed observations in the 1-250 keV range. The novelty of the MSME method is to use wavelet decomposition and multiresolution support to control noise amplification at different scales. Our work is focused on the application and modification of this method to restore diffuse sources detected by HXMT scanning observations. An improved method, the ensemble multiscale maximum entropy (EMSME) algorithm, is proposed to alleviate the problem of mode mixing exiting in MSME. Simulations have been performed on the detection of the diffuse source Cen A by HXMT in all-sky survey mode. The results show that the MSME method is adapted to the deconvolution task of HXMT for diffuse source detection and the improved method could suppress noise and improve the correlation and signal-to-noise ratio, thus proving itself a better algorithm for image restoration. Through one all-sky survey, HXMT could reach a capacity of detecting a diffuse source with maximum differential flux of 0.5 mCrab. Supported by Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (XDA04010300) and National Natural Science Foundation of China (11403014)

  12. Observations of the light echoes from SN 1987A using the Astro-1 Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Crotts, Arlin P. S.; Landsman, Wayne B.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    We present the results from images taken from the region of the light echoes around SN 1987A, as acquired on the first flight of the Astro-1 Ultraviolet Imaging Telescope (UIT). They indicate a weighted-average UV echo surface brightness of about 3 x 10 exp -18 ergs/s sq cm A sq arcsec. This is consistent with earlier results obtained by the IUE when scaled by the optical surface brightness of the two different echoes observed. These results indicate that the UV flux emitted by shock from core collapse penetrating the stellar surface cannot be as strong as that predicted by a large class of theoretical models (cited herein), or that previous results on the optical scattering of echoing dust do not apply to these clouds. Prospects for a more accurate measurements once the echoes have propagated to other regions and a background measurements can be obtained with UIT are discussed. They indicate that a more accurate determination of the above results is probable with another epoch of UIT observations.

  13. A method for determining the drift velocity of plasma depletions in the equatorial ionosphere using far-ultraviolet spacecraft observations

    NASA Astrophysics Data System (ADS)

    Park, S. H.; England, S. L.; Immel, T. J.; Frey, H. U.; Mende, S. B.

    2007-11-01

    The Far-Ultraviolet Imager (IMAGE-FUV) on board the NASA IMAGE satellite has been used to observe plasma depletions in the nightside equatorial ionosphere. Observations from periods around spacecraft apogee, during which equatorial regions are visible for several hours, have allowed the velocity of these plasma depletions to be determined. A new method for determining the velocity of these depletions using an image analysis technique, Tracking Of Airglow Depletions (TOAD), has been developed. TOAD allows the objective identification and tracking of depletions. The automation of this process has also allowed for the tracking of a greater number of depletions than previously achieved without requiring any human input, which shows that TOAD is suitable for use with large data sets and for future routine monitoring of the ionosphere from space. Furthermore, this automation allows the drift velocities of each bubble to be determined as a function of magnetic latitude, which will give us the capability of retrieving geophysically important parameters such as the electric field, which are believed to vary rapidly with magnetic latitude.

  14. Twin mesospheric bores observed over Brazilian equatorial region

    NASA Astrophysics Data System (ADS)

    Medeiros, A. F.; Paulino, I.; Taylor, M. J.; Fechine, J.; Takahashi, H.; Buriti, R. A.; Lima, L. M.; Wrasse, C. M.

    2016-01-01

    Two consecutive mesospheric bores were observed simultaneously by two all-sky cameras on 19 December 2006. The observations were carried out in the northeast of Brazil at two different stations: São João do Cariri (36.5° W, 7.4° S) and Monteiro (37.1° W, 7.9° S), which are by about 85 km apart. The mesospheric bores were observed within an interval of ˜ 3 h in the NIR OH and OI557.7 nm airglow emissions. Both bores propagated to the east and showed similar characteristics. However, the first one exhibited a dark leading front with several trailing waves behind and progressed into a brighter airglow region, while the second bore, observed in the OH layer, was comprised of several bright waves propagating into a darker airglow region. This is the first paper to report events like these, called twin mesospheric bores. The background of the atmosphere during the occurrence of these events was studied by considering the temperature profiles from the TIMED/SABER satellite and wind from a meteor radar.

  15. Microwave, soft and hard X-ray imaging observations of two solar flares

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Erskine, F. T.; Schmahl, E. J.; Machado, M. E.; Rovira, M. G.

    1984-01-01

    A set of microwave and hard X-ray observations of two flares observed simultaneously with the Very Large Array (VLA) and the Solar Maximum Mission Hard X-ray Imaging Spectrometer (SMM-HXIS) are presented. The LVA was used at 6 cm to map the slowly varying and burst components in three neighboring solar active regions (Boulder Nos. 2522, 2530, and 2519) from approximately 14:00 UT until 01:00 UT on June 24-25, 1980. Six microwave bursts less than 30 sfu were observed, and for the strongest of these, two-dimensional 'snapshot' (10 s) maps with spatial resolution of 5 in. were synthesized. HXIS data show clear interconnections between regions 2522 and 2530. The X-ray observations present a global picture of flaring activity, while the VLA data show the complexity of the small magnetic structures associated with the impulsive phase phenomena. It is seen that energy release did not occur in a single isolated magnetic structure, but over a large area of intermingled loop structures.

  16. CHROMOSPHERIC AND CORONAL OBSERVATIONS OF SOLAR FLARES WITH THE HELIOSEISMIC AND MAGNETIC IMAGER

    SciTech Connect

    Martínez Oliveros, Juan-Carlos; Krucker, Säm; Hudson, Hugh S.; Saint-Hilaire, Pascal; Bain, Hazel; Lindsey, Charles; Bogart, Rick; Couvidat, Sebastien; Scherrer, Phil; Schou, Jesper

    2014-01-10

    We report observations of white-light ejecta in the low corona, for two X-class flares on 2013 May 13, using data from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory. At least two distinct kinds of sources appeared (chromospheric and coronal), in the early and later phases of flare development, in addition to the white-light footpoint sources commonly observed in the lower atmosphere. The gradual emissions have a clear identification with the classical loop-prominence system, but are brighter than expected and possibly seen here in the continuum rather than line emission. We find the HMI flux exceeds the radio/X-ray interpolation of the bremsstrahlung produced in the flare soft X-ray sources by at least one order of magnitude. This implies the participation of cooler sources that can produce free-bound continua and possibly line emission detectable by HMI. One of the early sources dynamically resembles {sup c}oronal rain{sup ,} appearing at a maximum apparent height and moving toward the photosphere at an apparent constant projected speed of 134 ± 8 km s{sup –1}. Not much literature exists on the detection of optical continuum sources above the limb of the Sun by non-coronagraphic instruments and these observations have potential implications for our basic understanding of flare development, since visible observations can in principle provide high spatial and temporal resolution.

  17. Plasma distribution in Mercury's magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations

    NASA Astrophysics Data System (ADS)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-04-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10 months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of ~3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  18. Plasma Distribution in Mercury's Magnetosphere Derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer Observations

    NASA Technical Reports Server (NTRS)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-01-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of approximately 3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  19. Characteristics of Mesospheric Gravity Waves Observed in the Central Region of Brazil

    NASA Astrophysics Data System (ADS)

    Wrasse, Cristiano Max; Messias Almeida, Lazaro; Abalde Guede, Jose Ricardo; Valentin Bageston, José; Pillat, Valdir G.; Lima, Washington L. C.

    Gravity waves observations were carried out at Palmas (10.16o S, 48.26o W) Brazil, between September 2007 and December 2008, using an all-sky airglow imager to measure the OH emis-sion. The gravity waves were divided in two groups following they morphology as band and ripples type waves. The main characteristics of the band type waves are: horizontal wavelength between 10-35 km; observed period raging from 5 to 25 minutes; observed phase speed between 5-60 m/s. Preferential propagation directions of the bands are northward and southward, show-ing a clear anisotropy. For the ripples the main wave parameters are: horizontal wavelength ranging between 5 and 15 km; observed period mainly distributed between 5 and 15 minutes and horizontal phase velocity from 5 to 30 m/s. The ripples showed the same anisotropy as in the preferential propagation direction as the band type waves. The gravity wave characteristics observed at Palmas were compared with other observations carried out in Brazil, showing simi-lar features. In order to explain the seasonal variation of the wave propagation direction, maps of Outgoing Longwave Radiation (ORL) were used to locate regions with intense deep con-vection (OLR < 220 W.m-2 ) in the lower atmosphere. During summer and autumn the wave sources regions are well correlated with deep convection areas located at west and northwest of Palmas.

  20. Observations and temperatures of Io's Pele Patera from Cassini and Galileo spacecraft images

    USGS Publications Warehouse

    Radebaugh, J.; McEwen, A.S.; Milazzo, M.P.; Keszthelyi, L.P.; Davies, A.G.; Turtle, E.P.; Dawson, D.D.

    2004-01-01

    Pele has been the most intense high-temperature hotspot on Io to be continuously active during the Galileo monitoring from 1996-2001. A suite of characteristics suggests that Pele is an active lava lake inside a volcanic depression. In 2000-2001, Pele was observed by two spacecraft, Cassini and Galileo. The Cassini observations revealed that Pele is variable in activity over timescales of minutes, typical of active lava lakes in Hawaii and Ethiopia. These observations also revealed that the short-wavelength thermal emission from Pele decreases with rotation of Io by a factor significantly greater than the cosine of the emission angle, and that the color temperature becomes more variable and hotter at high emission angles. This behavior suggests that a significant portion of the visible thermal emission from Pele comes from lava fountains within a topographically confined lava body. High spatial resolution, nightside images from a Galileo flyby in October 2001 revealed a large, relatively cool (< 800 K) region, ringed by bright hotspots, and a central region of high thermal emission, which is hypothesized to be due to fountaining and convection in the lava lake. Images taken through different filters revealed color temperatures of 1500 ?? 80 K from Cassini ISS data and 1605 ?? 220 and 1420 ?? 100 K from small portions of Galileo SSI data. Such temperatures are near the upper limit for basaltic compositions. Given the limitations of deriving lava eruption temperature in the absence of in situ measurement, it is possible that Pele has lavas with ultramafic compositions. The long-lived, vigorous activity of what is most likely an actively overturning lava lake in Pele Patera indicates that there is a strong connection to a large, stable magma source region. ?? 2003 Elsevier Inc. All rights reserved.

  1. The observation of Martian dune migration using very high resolution image analysis and photogrammetric data processing

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Yun, Hyewon; Kim, Younghwi; Baik, Hyunseob

    2016-04-01

    Although the origins and processes of Martian aeolian features, especially dunes, have not been fully identified yet, it has been better understood by the orbital observation method which has led to the identification of Martian dune migration such as a case in Nili Patera (Bridges, 2012), and the numerical model employing advanced computational fluid dynamics (Jackson et al., 2015). Specifically, the recent introduction of very high-resolution image products, such as 25 cm-resolution HiRISE imagery and its precise photogrammetric processor, allows us to trace the estimated, although tiny, dune migration over the Martian surface. In this study, we attempted to improve the accuracy of active dune migration measurements by 1) the introduction of very high resolution ortho images and stereo analysis based on the hierarchical geodetic control (Kim and Muller, 2009) for better initial point settings; 2) positioning error removal throughout polynomial image control; and 3) the improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Consequently, this scheme not only measured Martian dune migration more precisely, but it will further achieve the extension of 3D observations combining stereo analysis and photoclinometry. The established algorithms have been tested using the HiRISE time series images over several dune fields, such as the Kaiser, Procter, and Wirtz craters, which were reported by the Mars Global Digital Dune Database (Hayward et al., 2013). The detected dune migrations were significantly larger than previously reported values and slightly correlated with the wind directions estimated by Martian Climate Database (Bingham et al., 2003). The outcomes in our study will be demonstrated with the quantified values in 2D and volumetric direction. In the future, the method will be further applied to the dune fields in the Mars Global dune database comprehensively and

  2. New Space Shuttle Observations of Transient Luminous Events During the MEIDEX

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Price, C.; Israelevitch, P.; Devir, A.; Moalem, M.; Ziv, B.; Levin, Z.; Joseph, J.

    2003-12-01

    The Mediterranean Israeli Dust Experiment (MEIDEX) was conducted on-board the space shuttle Columbia during its last mission in January 2003. Nocturnal observations with a multispectral CCD video camera were targeted above thunderstorms near the Earth's limb, with the aim or recording Transient Luminous Events (TLEs) in the mesosphere. Most of our nighttime observations were conducted in the SE-Pacific (Australia and Papua-New Guinea), equatorial Africa, the southern Indian Ocean and South America. Relevant inputs and information on the active storms during a specific orbit were uplinked to the crew daily. The necessary shuttle attitude maneuvers were deduced based on the use of (almost) real-time IR satellite images and VLF lightning location data that were available on the Internet. In order to enhance the probability of success of each observation, the astronauts were instructed to visually observe lightning activity (easily discernable from the shuttle) and to direct the gimbaled camera toward these regions. A total of more than 8 hours of video obtained during the MEIDEX was saved, and it includes a considerable amount of new sprite data. Most events were captured at ranges 1600-1900 km from the shuttle, using the red filter (665nm). The results suggest the occurrence rate of sprites and elves over oceanic and continental storms may be higher than earlier estimates. Strong enhancements of the brightness of the airglow layer above lightning flashes were observed, with lateral dimensions on the order of 400-500 km. It is assumed that these may be Elves observed edge-on, though it may also be a new type of airglow enhancement. The calculated brightness of these events is in the range 2.2-8.8 MR. This phenomena seems to be widespread and is probably a manifestation of the interaction between lightning EMP and QE fields and the lower nocturnal ionosphere. A unique observation from space of the Congo basin in Africa caught a chain of events where in the span of less

  3. Observations of Brine Pool Surface Characteristics and Internal Structure Through Remote Acoustic and Structured Light Imaging

    NASA Astrophysics Data System (ADS)

    Smart, C.; Roman, C.; Michel, A.; Wankel, S. D.

    2015-12-01

    Observations and analysis of the surface characteristics and internal structure of deep-sea brine pools are currently limited to discrete in-situ observations. Complementary acoustic and structured light imaging sensors mounted on a remotely operated vehicle (ROV) have demonstrated the ability systematically detect variations in surface characteristics of a brine pool, reveal internal stratification and detect areas of active hydrocarbon activity. The presented visual and acoustic sensors combined with a stereo camera pair are mounted on the 4000m rated ROV Hercules (Ocean Exploration Trust). These three independent sensors operate simultaneously from a typical 3m altitude resulting in visual and bathymetric maps with sub-centimeter resolution. Applying this imaging technology to 2014 and 2015 brine pool surveys in the Gulf of Mexico revealed acoustic and visual anomalies due to the density changes inherent in the brine. Such distinct changes in acoustic impedance allowed the high frequency 1350KHz multibeam sonar to detect multiple interfaces. For instance, distinct acoustic reflections were observed at 3m and 5.5m below the vehicle. Subsequent verification using a CDT and lead line indicated the acoustic return from the brine surface was the signal at 3m, while a thicker muddy and more saline interface occurred at 5.5m, the bottom of the brine pool was not located but is assumed to be deeper than 15m. The multibeam is also capable of remotely detecting emitted gas bubbles within the brine pool, indicative of active hydrocarbon seeps. Bubbles associated with these seeps were not consistently visible above the brine while using the HD camera on the ROV. Additionally, while imaging the surface of brine pool the structured light sheet laser became diffuse, refracting across the main interface. Analysis of this refraction combined with varying acoustic returns allow for systematic and remote detection of the density, stratification and activity levels within and

  4. Creation of an ensemble of simulated cardiac cases and a human observer study: tools for the development of numerical observers for SPECT myocardial perfusion imaging

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael; Pretorius, P. Hendrik; Gifford, Howard C.; Licho, Robert; Joffe, Samuel; McGuiness, Matthew; Mehurg, Shannon; Zacharias, Michael; Brankov, Jovan G.

    2012-02-01

    Our previous Single Photon Emission Computed Tomography (SPECT) myocardial perfusion imaging (MPI) research explored the utility of numerical observers. We recently created two hundred and eighty simulated SPECT cardiac cases using Dynamic MCAT (DMCAT) and SIMIND Monte Carlo tools. All simulated cases were then processed with two reconstruction methods: iterative ordered subset expectation maximization (OSEM) and filtered back-projection (FBP). Observer study sets were assembled for both OSEM and FBP methods. Five physicians performed an observer study on one hundred and seventy-nine images from the simulated cases. The observer task was to indicate detection of any myocardial perfusion defect using the American Society of Nuclear Cardiology (ASNC) 17-segment cardiac model and the ASNC five-scale rating guidelines. Human observer Receiver Operating Characteristic (ROC) studies established the guidelines for the subsequent evaluation of numerical model observer (NO) performance. Several NOs were formulated and their performance was compared with the human observer performance. One type of NO was based on evaluation of a cardiac polar map that had been pre-processed using a gradient-magnitude watershed segmentation algorithm. The second type of NO was also based on analysis of a cardiac polar map but with use of a priori calculated average image derived from an ensemble of normal cases.

  5. Observation sequences and onboard data processing of Planet-C

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Imamura, T.; Nakamura, M.; Ishi, N.; Ueno, M.; Hihara, H.; Abe, T.; Yamada, T.

    Planet-C or VCO Venus Climate Orbiter will carry 5 cameras IR1 IR 1micrometer camera IR2 IR 2micrometer camera UVI UV Imager LIR Long-IR camera and LAC Lightning and Airglow Camera in the UV-IR region to investigate atmospheric dynamics of Venus During 30 hr orbiting designed to quasi-synchronize to the super rotation of the Venus atmosphere 3 groups of scientific observations will be carried out i image acquisition of 4 cameras IR1 IR2 UVI LIR 20 min in 2 hrs ii LAC operation only when VCO is within Venus shadow and iii radio occultation These observation sequences will define the scientific outputs of VCO program but the sequences must be compromised with command telemetry downlink and thermal power conditions For maximizing science data downlink it must be well compressed and the compression efficiency and image quality have the significant scientific importance in the VCO program Images of 4 cameras IR1 2 and UVI 1Kx1K and LIR 240x240 will be compressed using JPEG2000 J2K standard J2K is selected because of a no block noise b efficiency c both reversible and irreversible d patent loyalty free and e already implemented as academic commercial software ICs and ASIC logic designs Data compression efficiencies of J2K are about 0 3 reversible and 0 1 sim 0 01 irreversible The DE Digital Electronics unit which controls 4 cameras and handles onboard data processing compression is under concept design stage It is concluded that the J2K data compression logics circuits using space

  6. A Method to Retrieve Rainfall Rate Over Land from TRMM Microwave Imager Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Over tropical land regions, rain rate maxima in mesoscale convective systems revealed by the Precipitation Radar (PR) flown on the Tropical Rainfall Measuring Mission (TRMM) satellite are found to correspond to thunderstorms, i.e., Cbs. These Cbs are reflected as minima in the 85 GHz brightness temperature, T85, observed by the TRMM Microwave Imager (TMI) radiometer. Because the magnitude of TMI observations do not discriminate satisfactorily convective and stratiform rain, we developed here a different TMI discrimination method. In this method, two types of Cbs, strong and weak, are inferred from the Laplacian of T85 at minima. Then, to retrieve rain rate, where T85 is less than 270 K, a weak (background) rain rate is deduced using T85 observations. Furthermore, over a circular area of 10 km radius centered at the location of each T85 minimum, an additional Cb component of rain rate is added to the background rain rate. This Cb component of rain rate is estimated with the help of (T19-T37) and T85 observations. Initially, our algorithm is calibrated with the PR rain rate measurements from 20 MCS rain events. After calibration, this method is applied to TMI data taken from several tropical land regions. With the help of the PR observations, we show that the spatial distribution and intensity of rain rate over land estimated from our algorithm are better than those given by the current TMI-Version-5 Algorithm. For this reason, our algorithm may be used to improve the current state of rain retrievals on land.

  7. Role of Seed Coat in Imbibing Soybean Seeds Observed by Micro-magnetic Resonance Imaging

    PubMed Central

    Koizumi, Mika; Kikuchi, Kaori; Isobe, Seiichiro; Ishida, Nobuaki; Naito, Shigehiro; Kano, Hiromi

    2008-01-01

    Background and Aims Imbibition of Japanese soybean (Glycine max) cultivars was studied using micro-magnetic resonance imaging (MRI) in order to elucidate the mechanism of soaking injury and the protective role of the seed coat. Methods Time-lapse images during water uptake were acquired by the single-point imaging (SPI) method at 15-min intervals, for 20 h in the dry seed with seed coat, and for 2 h in seeds with the seed coat removed. The technique visualized water migration within the testa and demonstrated the distortion associated with cotyledon swelling during the very early stages of water uptake. Key Results Water soon appeared in the testa and went around the dorsal surface of the seed from near the raphe, then migrated to the hilum region. An obvious protrusion was noted when water reached the hypocotyl and the radicle, followed by swelling of the cotyledons. A convex area was observed around the raphe with the enlargement of the seed. Water was always incorporated into the cotyledons from the abaxial surfaces, leading to swelling and generating a large air space between the adaxial surfaces. Water uptake greatly slowed, and the internal structures, veins and oil-accumulating tissues in the cotyledons developed after the seed stopped expanding. When the testa was removed from the dry seeds before imbibition, the cotyledons were severely damaged within 1·5 h of water uptake. Conclusions The activation of the water channel seemed unnecessary for water entry into soybean seeds, and the testa rapidly swelled with steeping in water. However, the testa did not regulate the water incorporation in itself, but rather the rate at which water encountered the hypocotyl, the radicle, and the cotyledons through the inner layer of the seed coat, and thus prevented the destruction of the seed tissues at the beginning of imbibition. PMID:18565982

  8. Neutral thermospheric dynamics observed with two scanning Doppler imagers: 1. Monostatic and bistatic winds

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Conde, M.; McHarg, M. G.

    2012-03-01

    Doppler-shift measurements of the thermospheric 630.0 nm emission recorded by two spatially separated imaging Fabry-Perot spectrometers in Alaska have been combined to infer F region horizontal wind vectors at approximately 75 locations across their overlapping fields-of-view. These “bistatic” horizontal wind estimates rely only on an assumption regarding the local vertical wind (and assume a common observing volume), and thus represent a more direct measurement of the wind than do the monostatic (single-station) vector wind fields routinely inferred by these instruments. Here we present comparisons between both the independently derived monostatic wind fields from each instrument and the bistatic wind estimates inferred in their common observing volumes. Data are presented from observations on three nights during 2010. Two principal findings have emerged from this study. First, the monostatic technique was found to be capable of estimating the actual large-scale wind field reliably under a large range of geophysical conditions, and is well suited to applications requiring only a large-scale, ‘big picture’ approximation of the wind flow. Secondly, the bistatic (or tristatic) technique is essential for applications requiring detailed knowledge of the small-scale behavior of the wind, as for example is required when searching for gravity waves.

  9. ULTRAVIOLET AND EXTREME-ULTRAVIOLET EMISSIONS AT THE FLARE FOOTPOINTS OBSERVED BY ATMOSPHERE IMAGING ASSEMBLY

    SciTech Connect

    Qiu Jiong; Longcope, Dana W.; Liu Wenjuan; Sturrock, Zoe; Klimchuk, James A.

    2013-09-01

    A solar flare is composed of impulsive energy release events by magnetic reconnection, which forms and heats flare loops. Recent studies have revealed a two-phase evolution pattern of UV 1600 A emission at the feet of these loops: a rapid pulse lasting for a few seconds to a few minutes, followed by a gradual decay on timescales of a few tens of minutes. Multiple band EUV observations by the Atmosphere Imaging Assembly further reveal very similar signatures. These two phases represent different but related signatures of an impulsive energy release in the corona. The rapid pulse is an immediate response of the lower atmosphere to an intense thermal conduction flux resulting from the sudden heating of the corona to high temperatures (we rule out energetic particles due to a lack of significant hard X-ray emission). The gradual phase is associated with the cooling of hot plasma that has been evaporated into the corona. The observed footpoint emission is again powered by thermal conduction (and enthalpy), but now during a period when approximate steady-state conditions are established in the loop. UV and EUV light curves of individual pixels may therefore be separated into contributions from two distinct physical mechanisms to shed light on the nature of energy transport in a flare. We demonstrate this technique using coordinated, spatially resolved observations of UV and EUV emissions from the footpoints of a C3.2 thermal flare.

  10. Ultraviolet and Extreme-Ultraviolet Emissions at the Flare Footpoints Observed by Atmosphere Imaging Assembly

    NASA Technical Reports Server (NTRS)

    Qiu, Jiong; Sturrock, Zoe; Longcope, Dana W.; Klimchuk, James A.; Liu, Wen-Juan

    2013-01-01

    A solar flare is composed of impulsive energy release events by magnetic reconnection, which forms and heats flare loops. Recent studies have revealed a two-phase evolution pattern of UV 1600 A emission at the feet of these loops: a rapid pulse lasting for a few seconds to a few minutes, followed by a gradual decay on timescales of a few tens of minutes. Multiple band EUV observations by the Atmosphere Imaging Assembly further reveal very similar signatures. These two phases represent different but related signatures of an impulsive energy release in the corona. The rapid pulse is an immediate response of the lower atmosphere to an intense thermal conduction flux resulting from the sudden heating of the corona to high temperatures (we rule out energetic particles due to a lack of significant hard X-ray emission). The gradual phase is associated with the cooling of hot plasma that has been evaporated into the corona. The observed footpoint emission is again powered by thermal conduction (and enthalpy), but now during a period when approximate steady-state conditions are established in the loop. UV and EUV light curves of individual pixels may therefore be separated into contributions from two distinct physical mechanisms to shed light on the nature of energy transport in a flare.We demonstrate this technique using coordinated, spatially resolved observations of UV and EUV emissions from the footpoints of a C3.2 thermal flare.

  11. New Observations of Molecular Nitrogen by the Imaging Ultraviolet Spectrograph on MAVEN

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Evans, J. S.; Schneider, Nicholas M.; Stewart, A. I. F.; Deighan, Justin; Jain, Sonal K.; Crismani, Matteo M. J.; Stiepen, Arnaud; Chaffin, Michael S.; McClintock, William E.; Holsclaw, Greg M.; Lefevre, Franck; Montmessin, Franck; Lo, Daniel Y.; Clarke, John T.; Bougher, Stephen W.; Jakosky, Bruce M.

    2015-11-01

    The Martian ultraviolet dayglow provides information on the basic state of the Martian upper atmosphere. The Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission has observed Mars at mid and far-UV wavelengths since its arrival in September 2014. In this work, we describe a linear regression method used to extract components of UV spectra from IUVS limb observations and focus in particular on molecular nitrogen (N2) photoelectron excited emissions. We identify N2 Lyman-Birge-Hopfield (LBH) emissions for the first time at Mars and we also confirm the tentative identification of N2 Vegard-Kaplan (VK) emissions. We compare observed VK and LBH limb radiance profiles to model results between 90 and 210 km. Finally, we compare retrieved N2 density profiles to general circulation (GCM) model results. Contrary to earlier analyses using other satellite data that indicated N2 densities were a factor of three less than predictions, we find that N2 abundances exceed GCM results by about a factor of two at 130 km but are in agreement at 150 km.

  12. Global Ultraviolet Imager (GUVI) for the NASA Thermosphere-Ionsphere-Mesosphere Energetics and Dynamics (TIMED) mission

    NASA Astrophysics Data System (ADS)

    Christensen, Andrew B.; Walterscheid, Richard L.; Ross, Martin N.; Meng, Ching-I.; Paxton, Larry J.; Anderson, Donald E.; Crowley, Geoffrey; Avery, Susan K.; Craven, John D.; Meier, Robert R.; Strickland, Douglas J.

    1994-09-01

    The global ultraviolet imager (GUVI) investigation is designed to provide quantitative observations and interpretation of the Earth's airglow and auroral emissions in support of the NASA thermosphere, ionosphere, mesosphere, energy and dynamics (TIMED) mission. It addresses TIMED objectives dealing with energetics, dynamics, and the specification of state variables. The instrument provides multiple-wavelength, simultaneous `monochromatic' images of the far-ultraviolet emission (115 to 180 nm) using a scan mirror to sweep the instantaneous field of view of a spectrographic imager through an arc of up to 140 degree(s) aligned perpendicular to the orbit plane of the spacecraft. The instantaneous field of view is 11.8 degree(s) by 0.37 degree(s) (adjustable) along the slit and perpendicular to the slit, respectively. The field of view is mapped to a two-dimensional image plane with up to 64 spatial pixels by 160 spectral pixels of spectral width 0.4 nm per pixel. Binning of pixels can be performed along both the spatial and spectral axes of the array to reduce the demands on the downlink telemetry. The f/3 Rowland circle scanning spectrographic imager is outfitted with a toroidal grating ruled at 1200 grooves per millimeter. The fore-optics consists of a plane scanning mirror and an off-axis parabolic telescope. The detector is a photon-counting microchannel plate with a wedge and strip anode mounted in a sealed tube.

  13. Placental mesenchymal dysplasia: chronological observation of placental images during gestation and review of the literature.

    PubMed

    Ohira, Satoshi; Ookubo, Nao; Tanaka, Kyoko; Takatsu, Akiko; Kobara, Hisanori; Kikuchi, Norihiko; Ohya, Ayumi; Kanai, Makoto; Shiozawa, Tanri

    2013-01-01

    Placental mesenchymal dysplasia (PMD) is characterized by multiple hypoechoic vesicles which are similar to molar changes in the placenta; however, the process of such morphological changes of PMD during pregnancy has not been fully understood. We performed a review of all PMD cases published in English and identified 49 articles including 110 cases. With regard to the gestational age at which the multicystic pattern was seen, approximately 70% of cases were diagnosed at 13-20 weeks of gestation. Another characteristic feature of PMD is varicose dilation of fetal chorionic vessels. As many as 90% of cases were diagnosed as placenta with dilated fetal chorionic vessels in the third trimester. We also report a case of PMD which was found at 10 weeks of gestation according to ultrasonic molar patterns. Serial observations of the placenta using ultrasound and magnetic resonance imaging revealed that multicystic lesions became smaller after 23 weeks. In contrast, dilated placental vessels on the fetal side became apparent at 38 weeks. The present review highlights that placental vesicular lesions of PMD may precede dilation of fetal chorionic vessels during pregnancy. It also indicates the potential of a gradual reduction in size of PMD's placental vesicular lesions by serial study of placental images.

  14. Observing molecular dynamics with time-resolved 3D momentum imaging

    NASA Astrophysics Data System (ADS)

    Sturm, F. P.; Wright, T.; Bocharova, I.; Ray, D.; Shivaram, N.; Cryan, J.; Belkacem, A.; Weber, T.; Dörner, R.

    2014-05-01

    Photo-excitation and ionization trigger rich dynamics in molecular systems which play a key role in many important processes in nature such as vision, photosynthesis or photoprotection. Observing those reactions in real-time without significantly disturbing the molecules by a strong electric field has been a great challenge. Recent experiments using Time-of-Flight and Velocity Map Imaging techniques have revealed important information on the dynamics of small molecular systems upon photo-excitation. We have developed an apparatus for time-resolved momentum imaging of electrons and ions in all three spatial dimensions that employs two-color femtosecond laser pulses in the vacuum and extreme ultraviolet (VUV, XUV) for probing molecular dynamics. Our COLTRIMS style reaction microscope can measure electrons and ions in coincidence and reconstruct the momenta of the reaction fragments in 3D. We use a high power 800 nm laser in a loose focusing geometry gas cell to efficinetly drive High Harmonic Generation. The resulting photon flux is sufficient to perform 2-photon pump-probe experiments using VUV and XUV pulses for both pump and probe. With this setup we investigate non-Born-Oppenheimer dynamics in small molecules such as C2H4 and CO2 on a femtosecond time scale. Supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  15. Airborne multiangle spectropolarimetric imager (AirMSPI) observations over California during NASA's polarimeter definition experiment (PODEX)

    NASA Astrophysics Data System (ADS)

    Diner, David J.; Garay, Michael J.; Kalashnikova, Olga V.; Rheingans, Brian E.; Geier, Sven; Bull, Michael A.; Jovanovic, Veljko M.; Xu, Feng; Bruegge, Carol J.; Davis, Ab; Crabtree, Karlton; Chipman, Russell A.

    2013-09-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an ultraviolet/visible/near-infrared pushbroom camera mounted on a single-axis gimbal to acquire multiangle imagery over a +/-67° along-track range. The instrument flies aboard NASA's high-altitude ER-2 aircraft, and acquires Earth imagery with ~10 m spatial resolution across an 11- km wide swath. Radiance data are obtained in eight spectral bands (355, 380, 445, 470, 555, 660, 865, 935 nm). Dual photoelastic modulators (PEMs), achromatic quarter-wave plates, and wire-grid polarizers also enable imagery of the linear polarization Stokes components Q and U at 470, 660, and 865 nm. During January-February 2013, AirMSPI data were acquired over California as part of NASA's Polarimeter Definition Experiment (PODEX), a field campaign designed to refine requirements for the future Aerosol-Cloud-Ecosystem (ACE) satellite mission. Observations of aerosols, low- and mid-level cloud fields, cirrus, aircraft contrails, and clear skies were obtained over the San Joaquin Valley and the Pacific Ocean during PODEX. Example radiance and polarization images are presented to illustrate some of the instrument's capabilities.

  16. Preferential Isomer Formation Observed in H3+ + CO by Crossed Beam Imaging

    PubMed Central

    2016-01-01

    The proton transfer reaction H3+ + CO is one of the cornerstone chemical processes in the interstellar medium. Here, the dynamics of this reaction have been investigated using crossed beam velocity map imaging. Formyl product cations are found to be predominantly scattered into the forward direction irrespective of the collision energy. In this process, a high amount of energy is transferred to internal product excitation. By fitting a sum of two distribution functions to the measured internal energy distributions, the product isomer ratio is extracted. A small HOC+ fraction is obtained at a collision energy of 1.8 eV, characterized by an upper limit of 24% with a confidence level of 84%. At lower collision energies, the data indicate purely HCO+ formation. Such low values are unexpected given the previously predicted efficient formation of both HCO+ and HOC+ isomers for thermal conditions. This is discussed in light of the direct reaction dynamics that are observed. PMID:27352138

  17. Flash x-ray radiography using imaging plates for the observation of hypervelocity objects

    SciTech Connect

    Mizusako, F.; Ogasawara, K.; Kondo, K.; Saito, F.; Tamura, H.

    2005-02-01

    Flash x-ray radiography was conducted using imaging plates (IP) to observe high-speed thermal spray jets and debris clouds produced from hypervelocity impact. The radiographs of the spray jets or debris cloud shadows on the IPs were analyzed to estimate the distribution of mass per unit area, i.e., Areal mass density, due to the distribution of the intensities of stimulated emissions from the IPs. The wide dynamic range of the IPs led to the detection of an Areal mass density one hundred times as large as the minimum Areal mass density and the very detailed densities. The availability of the IPs for the flash x-ray radiography of a high-speed thermal spray jet and a hypervelocity-impact-produced debris cloud was demonstrated.

  18. Longitudinal structure in atomic oxygen concentrations observed with WINDII on UARS. [Wind Imaging Interferometer

    NASA Technical Reports Server (NTRS)

    Shepherd, G. G.; Thuillier, G.; Solheim, B. H.; Chandra, S.; Cogger, L. L.; Duboin, M. L.; Evans, W. F. J.; Gattinger, R. L.; Gault, W. A.; Herse, M.

    1993-01-01

    WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, began atmospheric observations on September 28, 1991 and since then has been collecting data on winds, temperatures and emissions rates from atomic, molecular and ionized oxygen species, as well as hydroxyl. The validation of winds and temperatures is not yet complete, and scientific interpretation has barely begun, but the dominant characteristic of these data so far is the remarkable structure in the emission rate from the excited species produced by the recombination of atomic oxygen. The latitudinal and temporal variability has been noted before by many others. In this preliminary report on WINDII results we draw attention to the dramatic longitudinal variations of planetary wave character in atomic oxygen concentration, as reflected in the OI 557.7 nm emission, and to similar variations seen in the Meine1 hydroxyl band emission.

  19. Assessing image quality and dose reduction of a new x-ray computed tomography iterative reconstruction algorithm using model observers

    SciTech Connect

    Tseng, Hsin-Wu Kupinski, Matthew A.; Fan, Jiahua; Sainath, Paavana; Hsieh, Jiang

    2014-07-15

    Purpose: A number of different techniques have been developed to reduce radiation dose in x-ray computed tomography (CT) imaging. In this paper, the authors will compare task-based measures of image quality of CT images reconstructed by two algorithms: conventional filtered back projection (FBP), and a new iterative reconstruction algorithm (IR). Methods: To assess image quality, the authors used the performance of a channelized Hotelling observer acting on reconstructed image slices. The selected channels are dense difference Gaussian channels (DDOG).A body phantom and a head phantom were imaged 50 times at different dose levels to obtain the data needed to assess image quality. The phantoms consisted of uniform backgrounds with low contrast signals embedded at various locations. The tasks the observer model performed included (1) detection of a signal of known location and shape, and (2) detection and localization of a signal of known shape. The employed DDOG channels are based on the response of the human visual system. Performance was assessed using the areas under ROC curves and areas under localization ROC curves. Results: For signal known exactly (SKE) and location unknown/signal shape known tasks with circular signals of different sizes and contrasts, the authors’ task-based measures showed that a FBP equivalent image quality can be achieved at lower dose levels using the IR algorithm. For the SKE case, the range of dose reduction is 50%–67% (head phantom) and 68%–82% (body phantom). For the study of location unknown/signal shape known, the dose reduction range can be reached at 67%–75% for head phantom and 67%–77% for body phantom case. These results suggest that the IR images at lower dose settings can reach the same image quality when compared to full dose conventional FBP images. Conclusions: The work presented provides an objective way to quantitatively assess the image quality of a newly introduced CT IR algorithm. The performance of the

  20. Cool transition region loops observed by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Xia, L.; Li, B.; Madjarska, M. S.

    2015-12-01

    An important class of loops in the solar atmosphere, cool transition region loops, have received little attention mainly due to instrumental limitations. We analyze a cluster of these loops in the on-disk active region NOAA 11934 recorded in a Si IV 1402.8 Å spectral raster and 1400Å slit-jaw (SJ) images taken by the Interface Region Imaging Spectrograph. We divide these loops into three groups and study their dynamics, evolution and interaction.The first group comprises geometrically relatively stable loops, which are finely scaled with 382~626 km cross-sections. Siphon flows in these loops are suggested by the Doppler velocities gradually changing from -10 km/s (blue-shifts) in one end to 20 km/s (red-shifts) in the other. Nonthermal velocities from 15 to 25 km/s were determined. The obtained physical properties suggest that these loops are impulsively heated by magnetic reconnection occurring at the blue-shifted footpoints where magnetic cancellation with a rate of 1015 Mx/s is found. The released magnetic energy is redistributed by the siphon flows. The second group corresponds to two active footpoints rooted in mixed-magnetic-polarity regions. Magnetic reconnection in both footpoints is suggested by explosive-event line profiles with enhanced wings up to 200 km/s and magnetic cancellation with a rate of ~1015 Mx/s. In the third group, an interaction between two cool loop systems is observed. Mixed-magnetic polarities are seen in their conjunction area where explosive-event line profiles and magnetic cancellation with a rate of 3×1015 Mx/s are found. This is a clear indication that magnetic reconnection occurs between these two loop systems. Our observations suggest that the cool transition region loops are heated impulsively most likely by sequences of magnetic reconnection events.

  1. Plasmaspheric Density Troughs: Global IMAGE EUV Observations and Analysis via Global Core Plasma Modeling

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Gallagher, D. L.; Green, J. L.; Sandel, B. R.; Six, N. Frank (Technical Monitor)

    2002-01-01

    To date, the IMAGE EUV camera has observed several plasmaspheric density trough features inside the plasmapause under a wide range of geomagnetic activity. From the perspective of EUV, a density trough feature appears as a channel of diminished pixel counts which spans a width of L-shell (DELTA L) and magnetic local time (MLT) inside the plasmapause. Plasmaspheric density troughs are found to be morphologically complex possessing considerable spatial and temporal variability. We present an analysis of the evolution of trough DELTA L and MLT extent as functions of associated D (sub ST) and K (sub p) history. Trough features range in size from 0.16 less than or equal to DELTA L less than or equal to 1.2 with azimuthal extent from 1500 less than or equal to MLT less than or equal to 1200. All cases of plasmaspheric density troughs studied to date appear to have evolved as a result of the inner edge of the afternoon/evening plasma drainage plume being wrapped around through the nightside plasmasphere. The structure of plasmaspheric density trough features is further probed by analyzing simulated EUV images produced by forward modeling artificially introduced regions of depleted density into both static and dynamic global core plasmaspheric models. Forward modeling suggests that (1) L-shell refilling of density troughs during storm recovery can be modeled as filling from the ionosphere toward the equator (i.e., bottom-up refilling), and (2) that an erosion process is operating within flux tubes beyond the outer L-shell wall of the observed density troughs.

  2. Extended radar observations with the frequency radar domain interferometric imaging (FII) technique

    NASA Astrophysics Data System (ADS)

    Luce, H.; Yamamoto, M.; Fukao, S.; Crochet, M.

    2001-07-01

    In this paper, we present high-resolution observations obtained with the Middle and Upper Atmosphere (MU) radar (Shigaraki, Japan, /34.85°N, /136.10°E) using the frequency radar domain interferometric imaging (FII) technique. This technique has recently been introduced for improving the range resolution capabilities of the mesosphere-stratosphere-troposphere (MST) radars which are limited by their minimum pulse length. The Fourier-based imaging, the Capon method have been performed with 5 equally spaced frequencies between 46.25 and 46.75MHz and with an initial range resolution of 300m. These results have been compared firstly to results obtained using the frequency domain interferometry (FDI) technique with Δf=0.5MHz and, secondly, to results from a classical Doppler beam swinging (DBS) mode applied with a range resolution of 150m. Thin echoing structures could be tracked owing to the improved radar range resolution and some complex structures possibly related to Kelvin Helmholtz instabilities have been detected. Indeed, these structures appeared within the core of a wind shear and were associated with intense vertical wind fluctuations. Moreover, a well-defined thin echo layer was found in an altitude range located below the height of the wind shear. The radar observations have not been fully interpreted yet because the radar configuration was not adapted for this kind of study and because of the lack of complementary information provided by other techniques when the interesting echoing phenomena occurred. However, the results confirm the high potentialities of the FII technique for the study of atmospheric dynamics at small scales.

  3. HEATING SIGNATURES IN THE DISK COUNTERPARTS OF SOLAR SPICULES IN INTERFACE REGION IMAGING SPECTROGRAPH OBSERVATIONS

    SciTech Connect

    Rouppe van der Voort, L.; De Pontieu, B.; Pereira, T. M. D.; Carlsson, M.; Hansteen, V.

    2015-01-20

    We use coordinated observations with the Interface Region Imaging Spectrograph (IRIS) and the Swedish 1 m Solar Telescope to identify the disk counterpart of type II spicules in upper-chromospheric and transition region (TR) diagnostics. These disk counterparts were earlier identified through short-lived asymmetries in chromospheric spectral lines: rapid blue- or red-shifted excursions (RBEs or RREs). We find clear signatures of RBEs and RREs in Mg II h and k, often with excursions of the central h3 and k3 absorption features in concert with asymmetries in co-temporal and co-spatial Hα spectral profiles. We find spectral signatures for RBEs and RREs in C II 1335 and 1336 Å and Si IV 1394 and 1403 Å spectral lines and interpret this as a sign that type II spicules are heated to at least TR temperatures, supporting other recent work. These C II and Si IV spectral signals are weaker for a smaller network region than for more extended network regions in our data. A number of bright features around extended network regions observed in IRIS slit-jaw imagery SJI 1330 and 1400, recently identified as network jets, can be clearly connected to Hα RBEs and/or RREs in our coordinated data. We speculate that at least part of the diffuse halo around network regions in the IRIS SJI 1330 and 1400 images can be attributed to type II spicules with insufficient opacity in the C II and Si IV lines to stand out as single features in these passbands.

  4. Upstream drivers of poleward moving auroral forms by satellite-imager coordinated observations

    NASA Astrophysics Data System (ADS)

    Wang, B.; Nishimura, T.; Lyons, L. R.; Angelopoulos, V.; Frey, H. U.; Mende, S. B.

    2015-12-01

    Poleward moving auroral forms (PMAFs) are observed near the dayside poleward auroral oval boundary. PMAFs are thought to be an ionospheric signature of dayside reconnection and flux transfer events. PMAFs tend to occur when the IMF is southward. Although a limited number of PMAFs has been found in association with IMF southward turning, events without appreciable changes in IMF have also been reported. While those PMAFs could be triggered spontaneously, many of the past studies used solar wind measurements far away from the bow shock nose and may have used inaccurate time shift or missed small-scale structures in the solar wind. To examine how often PMAFs are triggered by upstream structures using solar wind measurements close to the bow shock nose, we use the AGO all sky imager in Antarctic and THEMIS B and C satellites in 2008, 2009 and 2011. We identified 24 conjunction events, where at least one of the THEMIS satellites is in the solar wind and the AGO imager is located within 3 MLT from the THEMIS MLT. We found that, in 14 out of 24 conjunction events, PMAFs occur soon after IMF southward turning, indicating that IMF southward turning could be the major triggering of PMAFs. Interestingly, among these 14 cases, there are 7 cases with different IMF structures between THEMIS B/C and OMNI, which obtained IMF information from WIND and ACE. And the larger correlation coefficients between PMAFs and IMFs observed by THMEIS B/C than OMNI present the advantages of THEMIS B/C. Among the 10 cases without correlating with IMF structures, PMAFs in two events are shown to have good correlation with reflected ions in the foreshock. Based on all the conjunction events we identified, IMF southward turning is the major trigger of PMAFs and reflected ions have minor effects. The rest of the cases could be spontaneous PMAFs, although foreshock activities, even if exists, may be missed due to the IMF orientation.

  5. Ideal and visual-search observers: accounting for anatomical noise in search tasks with planar nuclear imaging

    NASA Astrophysics Data System (ADS)

    Sen, Anando; Gifford, Howard C.

    2015-03-01

    Model observers have frequently been used for hardware optimization of imaging systems. For model observers to reliably mimic human performance it is important to account for the sources of variations in the images. Detection-localization tasks are complicated by anatomical noise present in the images. Several scanning observers have been proposed for such tasks. The most popular of these, the channelized Hotelling observer (CHO) incorporates anatomical variations through covariance matrices. We propose the visual-search (VS) observer as an alternative to the CHO to account for anatomical noise. The VS observer is a two-step process which first identifies suspicious tumor candidates and then performs a detailed analysis on them. The identification of suspicious candidates (search) implicitly accounts for anatomical noise. In this study we present a comparison of these two observers with human observers. The application considered is collimator optimization for planar nuclear imaging. Both observers show similar trends in performance with the VS observer slightly closer to human performance.

  6. Climatology of the O+ temperatures over Arecibo for the historical deep solar minimum using Incoherent Scatter Radar and airglow data.

    NASA Astrophysics Data System (ADS)

    Santos, P. T.; Brum, C. G. M.; Kerr, R.; Noto, J.

    2014-12-01

    At Arecibo Observatory (AO) a comprehensive description of the ionosphere and thermosphere environment is achieved by the synergy between the Incoherent Scatter Radar (ISR) and the optical instruments nested on site. An example of this synergy is present in his work where optical and radar techniques were reconciled in order to obtain the O+ temperature variability for 2008 and 2009. During this period, a historical deep solar minimum condition was registered with a remarkable absence of sunspots for a long period (translated into a decreasing in the EUV-UV irradiance). This particular feature implies in an important tool to investigate the variability of O+ temperature, once that any variation can be related to season (modulated by the neutral atmosphere) and/or another modulator different than solar energy input. The OII 7320 Å twilight airglow data used in this work were obtained during new moon periods using a high-spectral resolution Fabry-Perot Interferometer (FPI) with CCD array detection. The FPI was configured with 0.9 cm plate spacing, which produced a free spectral range of 0.298Å and a spectral resolution of 0.03Å, sufficient to sample line width temperatures as low as 500K. A very narrow 3Å Full Width at Half Maximum (FWHM) three-cavity interference filter was also used.

  7. The Reporting of Observational Clinical Functional Magnetic Resonance Imaging Studies: A Systematic Review

    PubMed Central

    Guo, Qing; Parlar, Melissa; Truong, Wanda; Hall, Geoffrey; Thabane, Lehana; McKinnon, Margaret; Goeree, Ron; Pullenayegum, Eleanor

    2014-01-01

    Introduction Complete reporting assists readers in confirming the methodological rigor and validity of findings and allows replication. The reporting quality of observational functional magnetic resonance imaging (fMRI) studies involving clinical participants is unclear. Objectives We sought to determine the quality of reporting in observational fMRI studies involving clinical participants. Methods We searched OVID MEDLINE for fMRI studies in six leading journals between January 2010 and December 2011.Three independent reviewers abstracted data from articles using an 83-item checklist adapted from the guidelines proposed by Poldrack et al. (Neuroimage 2008; 40: 409–14). We calculated the percentage of articles reporting each item of the checklist and the percentage of reported items per article. Results A random sample of 100 eligible articles was included in the study. Thirty-one items were reported by fewer than 50% of the articles and 13 items were reported by fewer than 20% of the articles. The median percentage of reported items per article was 51% (ranging from 30% to 78%). Although most articles reported statistical methods for within-subject modeling (92%) and for between-subject group modeling (97%), none of the articles reported observed effect sizes for any negative finding (0%). Few articles reported justifications for fixed-effect inferences used for group modeling (3%) and temporal autocorrelations used to account for within-subject variances and correlations (18%). Other under-reported areas included whether and how the task design was optimized for efficiency (22%) and distributions of inter-trial intervals (23%). Conclusions This study indicates that substantial improvement in the reporting of observational clinical fMRI studies is required. Poldrack et al.'s guidelines provide a means of improving overall reporting quality. Nonetheless, these guidelines are lengthy and may be at odds with strict word limits for publication; creation of a

  8. Simultaneous observations of atmospheric tides from combined in situ and remote observations at Mars from the MAVEN spacecraft

    NASA Astrophysics Data System (ADS)

    England, Scott L.; Liu, Guiping; Withers, Paul; Yiǧit, Erdal; Lo, Daniel; Jain, Sonal; Schneider, Nicholas M.; Deighan, Justin; McClintock, William E.; Mahaffy, Paul R.; Elrod, Meredith; Benna, Mehdi; Jakosky, Bruce M.

    2016-04-01

    We report the observations of longitudinal variations in the Martian thermosphere associated with nonmigrating tides. Using the Neutral Gas Ion Mass Spectrometer (NGIMS) and the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft, this study presents the first combined analysis of in situ and remote observations of atmospheric tides at Mars for overlapping volumes, local times, and overlapping date ranges. From the IUVS observations, we determine the altitude and latitudinal variation of the amplitude of the nonmigrating tidal signatures, which is combined with the NGIMS, providing information on the compositional impact of these waves. Both the observations of airglow from IUVS and the CO2 density observations from NGIMS reveal a strong wave number 2 signature in a fixed local time frame. The IUVS observations reveal a strong latitudinal dependence in the amplitude of the wave number 2 signature. Combining this with the accurate CO2 density observations from NGIMS, this would suggest that the CO2 density variation is as high as 27% at 0-10° latitude. The IUVS observations reveal little altitudinal dependence in the amplitude of the wave number 2 signature, varying by only 20% from 160 to 200 km. Observations of five different species with NGIMS show that the amplitude of the wave number 2 signature varies in proportion to the inverse of the species scale height, giving rise to variation in composition as a function of longitude. The analysis and discussion here provide a roadmap for further analysis as additional coincident data from these two instruments become available.

  9. Direct observation of extrasolar planets and the development of the gemini planet imager integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Chilcote, Jeffrey Kaplan

    This thesis is focused on the development and testing of a new instrument capable of finding and characterizing recently-formed Jupiter-sized planets orbiting other stars. To observe these planets, I present the design, construction and testing of the Gemini Planet Imager (GPI) Integral Field Spectrograph (IFS). GPI is a facility class instrument for the Gemini Observatory with the primary goal of directly detecting young Jovian planets. The GPI IFS utilizes an infrared transmissive lenslet array to sample a rectangular 2.7 x 2.7 arcsecond field of view and provide low-resolution spectra across five bands between 1 and 2.5 mum. The dispersing element can be replaced with a Wollaston prism to provide broadband polarimetry across the same five filter bands. The IFS construction was based at the University of California, Los Angeles in collaboration with the Universite de Montreal, Immervision and Lawrence Livermore National Laboratory. I will present performance results, from in-lab testing, of the Integral Field Spectrograph (IFS) for the Gemini Planet Imager (GPI). The IFS is a large, complex, cryogenic, optical system requiring several years of development and testing. I will present the design and integration of the mechanical and optical performance of the spectrograph optics. The IFS passed its pre-ship review in 2011 and was shipped to University of California, Santa Cruz for integration with the remaining sub-systems of GPI. The UCLA built GPI IFS was integrated with the rest of GPI and is delivering high quality spectral datacubes of GPI's coronagraphic field. Using the NIRC2 instrument located at the Keck Observatory, my collaborators and I observed the planetary companion to beta Pictoris in L' (3.5--4.1mum). Observations taken in the fall of 2009 and 2012 are used to find the location and inclination of the planet relative to the massive debris disk orbiting beta Pictoris. We find that the planet's orbit has a position angle on the sky of 211

  10. A method to analyse observer disagreement in visual grading studies: example of assessed image quality in paediatric cerebral multidetector CT images.

    PubMed

    Ledenius, K; Svensson, E; Stålhammar, F; Wiklund, L-M; Thilander-Klang, A

    2010-07-01

    The purpose was to demonstrate a non-parametric statistical method that can identify and explain the components of observer disagreement in terms of systematic disagreement as well as additional individual variability, in visual grading studies. As an example, the method was applied to a study where the effect of reduced tube current on diagnostic image quality in paediatric cerebral multidetector CT (MDCT) images was investigated. Quantum noise, representing dose reductions equivalent to steps of 20 mA, was artificially added to the raw data of 25 retrospectively selected paediatric cerebral MDCT examinations. Three radiologists, blindly and randomly, assessed the resulting images from two different levels of the brain with regard to the reproduction of high- and low-contrast structures and overall image quality. Images from three patients were assessed twice for the analysis of intra-observer disagreement. The intra-observer disagreement in test-retest assessments could mainly be explained by a systematic change towards lower image quality the second time the image was reviewed. The inter-observer comparisons showed that the paediatric radiologist was more critical of the overall image quality, while the neuroradiologists were more critical of the reproduction of the basal ganglia. Differences between the radiologists regarding the extent to which they used the whole classification scale were also found. The statistical method used was able to identify and separately measure a presence of bias apart from additional individual variability within and between the radiologists which is, at the time of writing, not attainable by any other statistical approach suitable for paired, ordinal data.

  11. Cooperative scheduling of imaging observation tasks for high-altitude airships based on propagation algorithm.

    PubMed

    Chuan, He; Dishan, Qiu; Jin, Liu

    2012-01-01

    The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible. PMID:23365522

  12. Compact Reconnaissance Imaging Spectrometer Observations of Water Vapor and Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Clancy, R. Todd; Murchie, Scott L.

    2009-01-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft began taking observations in September 2006 and has now collected more than a full Martian year of data. Retrievals performed using the near-infrared spectra obtained by CRISM are used to characterize the seasonal and spatial variation of the column abundance of water vapor and the column-averaged mixing ratio of carbon monoxide. CRISM retrievals show nominal behavior in water vapor during northern hemisphere spring and summer with maximum abundance reaching 50 precipitable micrometers. Water vapor abundance during the southern hemisphere spring and summer appears significantly reduced compared to observations by other instruments taken during previous years. The CRISM retrievals show the seasonally and globally averaged carbon monoxide mixing ratio to be 700 ppm, but with strong seasonal variations at high latitudes. The summertime near-polar carbon monoxide mixing ratio falls to 200 ppm in the south and 400 ppm in the north as carbon dioxide sublimates from the seasonal polar ice caps and dilutes noncondensable species including carbon monoxide. At low latitudes, the carbon monoxide mixing ratio varies in response to the mean seasonal cycle of surface pressure.

  13. Light walls around sunspots observed by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Hou, Y. J.; Li, T.; Yang, S. H.; Zhang, J.

    2016-05-01

    Context. The Interface Region Imaging Spectrograph (IRIS) mission provides high-resolution observations of the chromosphere and transition region. Using these data, some authors have reported the new finding of light walls above sunspot light bridges. Aims: We try to determine whether the light walls exist somewhere else in active regions in addition to the light bridges. We also examine how the material of these walls evolves. Methods: Employing six months of (from 2014 December to 2015 June) high tempo-spatial data from the IRIS, we find many light walls either around sunspots or above light bridges. Results: For the first time, we report one light wall near an umbral-penumbral boundary and another along a neutral line between two small sunspots. The former light wall has a multilayer structure and is associated with the emergence of positive magnetic flux in the ambient negative field. The latter light wall is associated with a filament activation, and the wall body consists of the filament material, which flowed to a remote plage region with a negative magnetic field after the light wall disappeared. Conclusions: These new observations reveal that these light walls are multilayer and multithermal structures that occur along magnetic neutral lines in active regions. Movies associated to Figs. 1-4 are available in electronic form at http://www.aanda.org

  14. Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves

    NASA Astrophysics Data System (ADS)

    Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-05-01

    Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.

  15. Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves.

    PubMed

    Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-05-01

    Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile. PMID:27203323

  16. Cooperative Scheduling of Imaging Observation Tasks for High-Altitude Airships Based on Propagation Algorithm

    PubMed Central

    Chuan, He; Dishan, Qiu; Jin, Liu

    2012-01-01

    The cooperative scheduling problem on high-altitude airships for imaging observation tasks is discussed. A constraint programming model is established by analyzing the main constraints, which takes the maximum task benefit and the minimum cruising distance as two optimization objectives. The cooperative scheduling problem of high-altitude airships is converted into a main problem and a subproblem by adopting hierarchy architecture. The solution to the main problem can construct the preliminary matching between tasks and observation resource in order to reduce the search space of the original problem. Furthermore, the solution to the sub-problem can detect the key nodes that each airship needs to fly through in sequence, so as to get the cruising path. Firstly, the task set is divided by using k-core neighborhood growth cluster algorithm (K-NGCA). Then, a novel swarm intelligence algorithm named propagation algorithm (PA) is combined with the key node search algorithm (KNSA) to optimize the cruising path of each airship and determine the execution time interval of each task. Meanwhile, this paper also provides the realization approach of the above algorithm and especially makes a detailed introduction on the encoding rules, search models, and propagation mechanism of the PA. Finally, the application results and comparison analysis show the proposed models and algorithms are effective and feasible. PMID:23365522

  17. Registering parameters and granules of wave observations: IMAGE RPI success story

    NASA Astrophysics Data System (ADS)

    Galkin, I. A.; Charisi, A.; Fung, S. F.; Benson, R. F.; Reinisch, B. W.

    2015-12-01

    Modern metadata systems strive to help scientists locate data relevant to their research and then retrieve them quickly. Success of this mission depends on the organization and completeness of metadata. Each relevant data resource has to be registered; each content has to be described; each data file has to be accessible. Ultimately, data discoverability is about the practical ability to describe data content and location. Correspondingly, data registration has a "Parameter" level, at which content is specified by listing available observed properties (parameters), and a "Granule" level, at which download links are given to data records (granules). Until recently, both parameter- and granule-level data registrations were accomplished at NASA Virtual System Observatory easily by listing provided parameters and building Granule documents with URLs to the datafile locations, usually those at NASA CDAWeb data warehouse. With the introduction of the Virtual Wave Observatory (VWO), however, the parameter/granule concept faced a scalability challenge. The wave phenomenon content is rich with descriptors of the wave generation, propagation, interaction with propagation media, and observation processes. Additionally, the wave phenomenon content varies from record to record, reflecting changes in the constituent processes, making it necessary to generate granule documents at sub-minute resolution. We will present the first success story of registering 234,178 records of IMAGE Radio Plasma Imager (RPI) plasmagram data and Level 2 derived data products in ESPAS (near-Earth Space Data Infrastructure for e-Science), using the VWO-inspired wave ontology. The granules are arranged in overlapping display and numerical data collections. Display data include (a) auto-prospected plasmagrams of potential interest, (b) interesting plasmagrams annotated by human analysts or software, and (c) spectacular plasmagrams annotated by analysts as publication-quality examples of the RPI science

  18. Dynamics of Piton de la Fournaise volcano observed by passive image interferometry with multiple references

    NASA Astrophysics Data System (ADS)

    Sens-Schönfelder, Christoph; Pomponi, Eraldo; Peltier, Aline

    2014-04-01

    Activity of Piton de la Fournaise (PdF) volcano in La Réunion Island modifies the seismic velocities within the edifice. Using the 2010 and 2011 data from a network of 21 seismic stations in the vicinity of PdF, changes of seismic velocities are investigated using passive image interferometry, i.e. interferometry of seismic noise correlations. As noise correlations change significantly over time in response to volcanic activity, a method is presented that allows us to measure continuous long term velocity changes with high and constant accuracy by using multiple periods as reference. A long term velocity increase is found that averages about 0.25% per year. This trend is superimposed by short term changes that exhibit a clear connection with summit seismo-tectonic earthquakes indicating the effect of volcanic activity. Characteristic signatures of velocity changes are identified for post-eruptive periods of deflation that show an increase of velocity associated with subsidence observed by GPS. Periods of pre-eruptive inflation are characterized by decreasing velocity. Seismic crises can be associated with either increasing or decreasing velocity depending on whether the magma movement leads to deflation due to an eruption emptying the shallow plumbing system or to inflation caused by a non-eruptive intrusion. With a simple assumption about the spatial sensitivity of the measurements both processes are found to have the strongest effect in the central summit area of the volcano which also shows the strongest surface displacements during the time investigated here. We do not observe a dependence of the velocity change on the location of the erupting fissures, instead the distribution of changes for the three inflation periods and the two eruptions are similar indicating that the velocity changes observed here reflect the dynamics of a shallow magma reservoir rather than the effect of the eruption at the surface.

  19. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect

    Tripathi, Durgesh; Mason, Helen E.; Klimchuk, James A.

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  20. Wideband very large array observations of A2256. I. Continuum, rotation measure, and spectral imaging

    SciTech Connect

    Owen, Frazer N.; Rau, Urvashi; Bhatnagar, Sanjay; Kogan, Leonid; Rudnick, Lawrence; Jean Eilek

    2014-10-10

    We report new observations of A2256 with the Karl G. Jansky Very Large Array (VLA) at frequencies between 1 and 8 GHz. These observations take advantage of the 2:1 bandwidths available during a single observation to study the spectral index, polarization, and rotation measure as well as using the associated higher sensitivity per unit time to image total intensity features down to ∼0.''5 resolution. We find that the Large Relic, which dominates the cluster, is made up of a complex of filaments that show correlated distributions in intensity, spectral index, and fractional polarization. The rotation measure varies across the face of the Large Relic but is not well correlated with the other properties of the source. The shape of individual filaments suggests that the Large Relic is at least 25 kpc thick. We detect a low surface brightness arc connecting the Large Relic to the Halo and other radio structures, suggesting a physical connection between these features. The center of the F-complex is dominated by a very steep-spectrum, polarized, ring-like structure, F2, without an obvious optical identification, but the entire F-complex does have interesting morphological similarities to the radio structure of NGC 1265. Source C, the Long Tail, is unresolved in width near the galaxy core and is ≲ 100 pc in diameter there. This morphology suggests either that C is a one-sided jet or that the bending of the tails takes place very near the core, consistent with the parent galaxy having undergone extreme stripping. Overall it seems that many of the unusual phenomena can be understood in the context of A2256 being near the pericenter of a slightly off-axis merger between a cluster and a smaller group. Given the lack of evidence for a strong shock associated with the Large Relic, other models should be considered, such as reconnection between two large-scale magnetic domains.

  1. IMAGING OBSERVATIONS OF QUASI-PERIODIC PULSATIONS IN SOLAR FLARE LOOPS WITH SDO/AIA

    SciTech Connect

    Su, J. T.; Mao, X. J.; Shen, Y. D.; Liu, Y.

    2012-08-20

    Quasi-periodic pulsations (QPPs) of flaring emission with periods from a few seconds to tens of minutes have been widely detected from radio bands to {gamma}-ray emissions. However, in the past the spatial information of pulsations could not be utilized well due to the instrument limits. We report here imaging observations of the QPPs in three loop sections during a C1.7 flare with periods of P = 24 s-3 minutes by means of the extreme-ultraviolet 171 A channel of the Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory. We confirm that the QPPs with the shortest period of 24 s were not of an artifact produced by the Nyquist frequency of the AIA 12 s cadence. The QPPs in the three loop sections were interconnected and closely associated with the flare. The detected perturbations propagated along the loops at speeds of 65-200 km s{sup -1}, close to those of acoustic waves in them. The loops were made up of many bright blobs arranged in alternating bright and dark changes in intensity (spatial periodical distribution) with the wavelengths 2.4-5 Mm (as if they were magnetohydrodynamic waves). Furthermore, in the time-distance diagrams, the detected perturbation wavelengths of the QPPs are estimated to be {approx}10 Mm, which evidently do not fit the above ones of the spatial periodic distributions and produce a difference of a factor of 2-4 with them. It is suggested that the short QPPs with periods P < 60 s were possibly sausage-mode oscillations and the long QPPs with periods P > 60 s were the higher (e.g., >2nd) harmonics of slow magnetoacoustic waves.

  2. EVIDENCE FOR WIDESPREAD COOLING IN AN ACTIVE REGION OBSERVED WITH THE SDO ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-07-01

    A well-known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times than hotter channels. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions (ARs). Is this cooling pattern a common property of AR coronal plasma, or does it only occur in unique circumstances, locations, and times? The new Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data provide a wonderful opportunity to answer this question systematically for an entire AR. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hr of images of AR 11082 observed on 2010 June 19. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the AR including the diffuse emission between loops for the entire 24 hr duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hr time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than {approx}0.8 MK. This suggests that the bulk of the emitting coronal plasma in this AR is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  3. Mesio-distal tooth angulation in elderly with many remaining teeth observed by 3-D imaging.

    PubMed

    Fuma, Asuka; Motegi, Etsuko; Fukagawa, Hiroko; Nomura, Mayumi; Kano, Masataka; Sueishi, Kenji; Okano, Shigeru

    2010-01-01

    Few studies have investigated the morphologic characteristics of teeth, dental arches and occlusion in elderly persons with many remaining teeth. The purpose of this study was to establish a method of measurement using 3-D imaging to investigate tooth angulation in the elderly from the orthodontic point of view. The dental casts of 20 elderly persons with many remaining teeth were digitized with a 3-D laser scanner (VMS-100F, UNISN INC., Osaka, Japan) to construct 3-D images. The mesio-distal angulation of each tooth was then measured with analytical software (SURFLACER, UNISN INC. and IMAGEWARE 12, UGS PLM Solutions, MO, USA). The occlusal plane formed by the incisal edge of the central incisor and distal buccal cusp tip of the first molar on either side was used as a reference plane for measurements. Mesio-distal tooth angulation (indicated in degrees) of maxillary teeth in this subjects averaged 1.26 for central incisors, 5.46 for lateral incisors, 7.84 for canines, 6.59 for first premolars, 5.78 for second premolars, 1.64 for first molars and -4.17 for second molars. Average values for mandibular teeth were 0.91 for central incisors, 2.35 for lateral incisors, 7.04 for canines, 8.76 for first premolars, 10.44 for second premolars, 7.33 for first molars and 12.67 for second molars. There was no statistical difference between the data in man and women except maxillary second molar (p<0.05). Mesial angulation in the mandibular arch showed a progressive increase from the anterior to the posterior. However, this tendency was not observed in the maxillary arch.

  4. Intrinsic parameters of periodic waves observed in the OI6300 over Brazilian equatorial region

    NASA Astrophysics Data System (ADS)

    Medeiros, Amauri; Buriti, Ricardo; Paulino, Igo; Meriwether, John; Takahashi, Hisao; Maranhão, Glelson

    2016-07-01

    Using two Fabry-Perot interferometers (FPIs) deployed at São João do Cariri (36.5oW, 7.4oS) and Cajazeiras (38.6oW and 6.9oS ) and an all sky imager installed at São João do Cariri, the intrinsic parameters of 23 periodic waves, observed in the OI630.0 nm airglow layer, were estimated and studied. The observed horizontal parameters of these waves were estimated using two-dimensional Fourier analysis. In order to estimate the intrinsic parameters, simultaneous horizontal winds measurements performed by the FPI were used. The results show that the observed parameters of the waves were quite similar to the previous observation, indicating the sources of these waves are not changing along the time. The horizontal wavelengths were mostly found between 90 and 180 km, intrinsic periods ranged from 12 to 36 min and horizontal intrinsic phase speed from 50 to 200 ms-1. Furthermore, the wind was blowing almost perpendicular to the propagation direction of these waves, suggesting that the wind is as important factor to the filtering process of these waves in the lower thermosphere.

  5. Multiple-view spectrally resolved x-ray imaging observations of polar-direct-drive implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Mancini, R. C.; Johns, H. M.; Joshi, T.; Mayes, D.; Nagayama, T.; Hsu, S. C.; Baumgaertel, J. A.; Cobble, J.; Krasheninnikova, N. S.; Bradley, P. A.; Hakel, P.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Tregillis, I. L.; Wysocki, F. J.

    2014-12-01

    We present spatially, temporally, and spectrally resolved narrow- and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight, including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to laser imprinting and zero-order hydrodynamics. Equatorial-view images show a "double bun" structure that is consistent with synthetic images obtained from post-processing 2D and 3D radiation-hydrodynamic simulations of the experiment. Polar-view images show a pentagonal, petal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of PDD OMEGA implosions not previously observed. Differences are noted with respect to a PDD experiment performed at National Ignition Facility.

  6. Multiple-view spectrally resolved x-ray imaging observations of polar-direct-drive implosions on OMEGA

    SciTech Connect

    Mancini, R. C.; Johns, H. M.; Joshi, T.; Mayes, D.; Nagayama, T.; Hsu, S. C.; Baumgaertel, J. A.; Cobble, J.; Krasheninnikova, N. S.; Bradley, P. A.; Hakel, P.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Tregillis, I. L.; Wysocki, F. J.

    2014-12-15

    We present spatially, temporally, and spectrally resolved narrow- and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight, including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to laser imprinting and zero-order hydrodynamics. Equatorial-view images show a “double bun” structure that is consistent with synthetic images obtained from post-processing 2D and 3D radiation-hydrodynamic simulations of the experiment. Polar-view images show a pentagonal, petal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of PDD OMEGA implosions not previously observed. Differences are noted with respect to a PDD experiment performed at National Ignition Facility.

  7. IMAGE EUV Observations and Modeling of the Plasmaspheric Density Trough Associated with the 24 May 2000 Geomagnetic Storm

    NASA Technical Reports Server (NTRS)

    Adrian, M.L.; Gallagher, D. L.; Green, J. L.; Sandel, B. R.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The IMAGE EUV imager observed a plasmaspheric density trough in association with a geomagnetically active period on 24 May 2000. At EUV wavelengths, this density trough appeared as an Archimedes spiral extending from Earth's shadow to approximately 1800 MLT. We present an analysis of this density trough using simulated EUV images. Observational EUV images are subjected to edge analysis to establish the plasmapause L-shell and the location of the density trough in terms of L-shell, MLT extent, and radial width. The plasmaspheric density distribution is modeled using both static and dynamic models for the plasmasphere. The background plasmasphere is then numerically simulated using the 4-parameter plasmaspheric density model contained within the Global Core Plasma Model (GCPM) [Gallagher et al., 20001 and the Dynamic Global Core Plasma Model (DGCPM). Simulated EUV images of the model plasmasphere are produced once an artificial density depletion, matching the observed MLT extent and width, has been removed. Once the azimuthal extent and width of the trough have been simulated, the depth of the artificial density depletion is iteratively adjusted to produce simulated EUV images that approximate observation. The results of this analysis and discussion of possible origins for this density trough will be presented.

  8. Deep Imaging Observations of the Lupus 3 Cloud: Dark Cloud Revealed as Infrared Reflection Nebula

    NASA Astrophysics Data System (ADS)

    Nakajima, Yasushi; Nagata, Tetsuya; Sato, Shuji; Nagayama, Takahiro; Nagashima, Chie; Kato, Daisuke; Kurita, Mikio; Kawai, Toshihide; Tamura, Motohide; Nakaya, Hidehiko; Sugitani, Koji

    2003-03-01

    We carried out deep imaging observations of the Lupus 3 dark cloud in near-infrared J, H, and Ks bands. An area of ~8'×8' was observed, which corresponds to a projected area of ~0.4×0.4 pc at the distance of the cloud, ~150 pc. Lupus 3 showed itself as a near-infrared nebula that has a surface brightness higher than the adjacent sky at all the three wavelengths. In a JHKs color composite image (blue, green, and red are assigned to J, H, and Ks, respectively), three dark red cores are surrounded by a blue halo. The surface brightness was measured with 5 σ limiting magnitudes of J=21.6, H=21.3, and Ks=20.6 mag arcsec-2. The appearance of the nebula depends on the wavelength. In the J band, dark cores are surrounded by a brighter halo, while in the Ks band, the dark cores of the J band are bright except for the central part of two of the cores. The appearance in the H band is intermediate between those of the J and Ks bands, having dark cores surrounded by local maxima of the surface brightness and decreased surface brightness farther out. The surface brightness is J=20.6, H=19.8, and Ks=19.4 mag arcsec-2 at the maximum in each band. Photometry of the point sources was done with 10 σ limiting magnitudes of J=20.1, H=18.8, and Ks=17.7. We constructed an extinction map of the background stars, using the H-K color of 1974 sources and the standard reddening law of Rieke & Lebofsky. The maximum value for the extinction is AV=47 mag. There are three local maxima of the extinction with AV>~30 mag, which we consider to be dense cores. Their positions agree with the cores identified with the surface brightness appearance. The surface brightness and its relationship with the extinction are understood in terms of scattering of starlight by dust. The values of the maximum surface brightness can be explained by scattering of starlight by dust in the cloud if we adopt a model of grain size distribution by Weingartner & Draine.

  9. Hailstreak Occurrence and Persistence Observed With AVHRR NDVI Image Time Series

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Ratcliffe, I. C.

    2002-12-01

    Hail is a major cause of crop loss and property damage in the United States. Hailstreaks are columns of hail that have swept the ground. The abrupt devegetation of the land surface by hailstreaks can have significant biogeophysical consequences. Changes in the surface energy balance and local wind fields can give rise to 'inland sea-breeze' phenomenon that may serve to trigger convection. We investigated the relationship between hail occurrences and the appearance and persistence of hailstreaks in composited image time series. Due to abrupt changes in vegetation density, hailstreaks can be identified in Normalized Difference Vegetation Index (NDVI) imagery. To enhance detection of hailstreaks, ΔNDVI images were generated from a standard set of biweekly maximum AVHRR NDVI composites for the conterminous US produced by the USGS EROS Data Center. These data have a nominal spatial resolution of 1 km. Overlaying the digitized point locations of the National Weather Service reports of hail onto the ΔNDVI imagery, hailstreaks were identified as dark areas coincident with or proximate to hail reports. From 1990-1999, 112 events of significant hailstreaks were observed. Hailstreaks appear mostly in the Great Plains states of Nebraska, Kansas, and the Dakotas, with significant clusters in Minnesota, Iowa, and Texas. The hailstreaks ranged in length from 9 to 367 km (median=66 km; mean=82 km) and in area from 21 to 8443 sq km (median=408 sq km; mean=707 sq km). A total of 79,227 sq km of vegetation were impacted by hailstreaks during the 1990s; however, this estimate is a lower bound due to the compositing process that selects for maximum NDVI. The seasonality of hailstreaks peaked in summer (69%), with 58% appearing in June or July. More hailstreaks appeared in the spring (26%) than in autumn (5%). Observed hailstreak persistence ranged from 9 to 95 d (median=34 d; mean=37 d; mode=28 d). Hailstreak persistence was a complex function of seasonal timing of the event

  10. The unusual phase curve of Titan's surface observed by Huygens’ Descent Imager/Spectral Radiometer

    NASA Astrophysics Data System (ADS)

    Schröder, S. E.; Keller, H. U.

    2009-12-01

    The Descent Imager/Spectral Radiometer onboard Huygens observed Titan's surface through the atmospheric methane windows [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., See, C., 2008. A model of Titan's aerosols based on measurements made inside the atmosphere. Planet. Space Sci. 56, 669-707]. Infrared spectra obtained during the last stage of the descent, for which the atmospheric contribution is negligible, show that the reflectance of the surface around the sit increases with decreasing solar phase angle. Combining these with a spectrum reconstructed from reflected lamp light [Schröder, S.E., Keller, H.U., 2008. The reflectance spectrum of Titan's surface at the Huygens landing site determined by the Descent Imager/Spectral Radiometer. Planet. Space Sci. 56, 753-769] reveals a strong increase in reflectance towards zero phase angle: the opposition surge. Both shadow hiding and coherent backscatter are required to fit the phase curve with the Hapke [2002. Bidirectional Reflectance Spectroscopy 5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering. Icarus 157, 523-534] model. We find the particle phase function below 60∘ phase angle to be close to isotropic, which is highly unusual for the surfaces of planetary bodies. A terrain with similar scattering properties has been identified on Triton [Lee, P., Helfenstein, P., Veverka, J., McCarthy, D., 1992. Anomalous-scattering region on Triton. Icarus 99, 82-97], and a connection with the tholins thought to be present on both worlds seems plausible. Indeed, tholin laboratory analogs are found to scatter in similar fashion [Lüthi, 2008. Remote sensing of the surface of Titan: Photometric properties, comparison with analogues, and future microscopic observations. Ph.D. Thesis, Philosophisch-naturwissenschaftlichen Fakultät, Universität Bern]. We conclude that Titan's unusual phase curve is consistent w