Inpainting using airy diffusion
NASA Astrophysics Data System (ADS)
Lorduy Hernandez, Sara
2015-09-01
One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.
Bohmian trajectories of Airy packets
Nassar, Antonio B.; Miret-Artés, Salvador
2014-09-15
The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.
Airy beam optical parametric oscillator
NASA Astrophysics Data System (ADS)
Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.
2016-05-01
Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).
Airy beam optical parametric oscillator
Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.
2016-01-01
Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582
Airy beam optical parametric oscillator.
Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K
2016-05-04
Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).
Generation of electron Airy beams.
Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady
2013-02-21
Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.
Intensity-symmetric Airy beams.
Vaveliuk, P; Lencina, Alberto; Rodrigo, Jose A; Martnez-Matos, Ó
2015-03-01
Theoretical, numerical, and experimental research on a novel family of Airy beams in rectangular coordinates having a symmetric transverse pattern of light intensity is presented. The intensity-symmetric Airy beams include both the symmetric Airy beam whose field amplitude is an even function of the transverse coordinates and the antisymmetric Airy beam whose field amplitude is an odd function of such coordinates. The theoretical foundations are based on the relationship of the symmetries of the spectral phase with the cosine and sine Fourier transforms. These beams are analyzed in a propagation range also including the region preceding the Fourier plane. These beams exhibit autofocusing, collapse, self-bending, and reversal propagation. Moreover, the intensity distribution is strongly asymmetric with respect to the Fourier plane. All these peculiar features were not reported for other classes of paraxial beams in a rectangular frame. The experimental generation of intensity-symmetric Airy beams is demonstrated supporting the theoretical predictions. Possible applications in planar waveguide writing and optical trapping are also discussed.
Terahertz circular Airy vortex beams.
Liu, Changming; Liu, Jinsong; Niu, Liting; Wei, Xuli; Wang, Kejia; Yang, Zhengang
2017-06-20
Vortex beams have received considerable research interests both in optical and millimeter-wave domain since its potential to be utilized in the wireless communications and novel imaging systems. Many well-known optical beams have been demonstrated to carry orbital angular momentum (OAM), such as Laguerre-Gaussian beams and high-order Bessel beams. Recently, the radially symmetric Airy beams that exhibit an abruptly autofocusing feature are also demonstrated to be capable of carrying OAM in the optical domain. However, due to the lack of efficient devices to manipulate terahertz (THz) beams, it could be a challenge to demonstrate the radially symmetric Airy beams in the THz domain. Here we demonstrate the THz circular Airy vortex beams (CAVBs) with a 0.3-THz continuous wave through 3D printing technology. Assisted by the rapidly 3D-printed phase plates, individual OAM states with topological charge l ranging from l = 0 to l = 3 and a multiplexed OAM state are successfully imposed into the radially symmetric Airy beams. We both numerically and experimentally investigate the propagation dynamics of the generated THz CAVBs, and the simulations agree well with the observations.
Shen, Ming; Gao, Jinsong; Ge, Lijuan
2015-01-01
We investigate the spatially optical solitons shedding from Airy beams and anomalous interactions of Airy beams in nonlocal nonlinear media by means of direct numerical simulations. Numerical results show that nonlocality has profound effects on the propagation dynamics of the solitons shedding from the Airy beam. It is also shown that the strong nonlocality can support periodic intensity distribution of Airy beams with opposite bending directions. Nonlocality also provides a long-range attractive force between Airy beams, leading to the formation of stable bound states of both in-phase and out-of-phase breathing Airy solitons which always repel in local media. PMID:25900878
Hybrid Airy plasmons with dynamically steerable trajectories.
Li, Rujiang; Imran, Muhammad; Lin, Xiao; Wang, Huaping; Xu, Zhiwei; Chen, Hongsheng
2017-01-26
With their intriguing diffraction-free, self-accelerating, and self-healing properties, Airy plasmons show promise for use in the trapping, transporting, and sorting of micro-objects, imaging, and chip scale signal processing. However, high dissipative loss and lack of dynamical steerability restrict the implementation of Airy plasmons in these applications. Here we reveal hybrid Airy plasmons for the first time by taking a hybrid graphene-based plasmonic waveguide in the terahertz (THz) domain as an example. Due to coupling between optical modes and plasmonic modes, the hybrid Airy plasmons can have large propagation lengths and effective transverse deflections, where the transverse waveguide confinements are governed by the hybrid modes with moderate quality factors. Meanwhile, the propagation trajectories of the hybrid Airy plasmons are dynamically steerable by changing the chemical potential of graphene. These hybrid Airy plasmons may promote the further discovery of non-diffracting beams along with the emerging developments of optical tweezers and tractor beams.
Acoustic non-diffracting Airy beam
Lin, Zhou; Guo, Xiasheng Tu, Juan; Ma, Qingyu; Wu, Junru; Zhang, Dong
2015-03-14
The acoustic non-diffracting Airy beam as its optical counterpart has unique features of self-bending and self-healing. The complexity of most current designs handicaps its applications. A simple design of an acoustic source capable of generating multi-frequency and broad-band acoustic Airy beam has been theoretically demonstrated by numerical simulations. In the design, a piston transducer is corrugated to induce spatial phase variation for transducing the Airy function. The piston's surface is grooved in a pattern that the width of each groove corresponds to the half wavelength of Airy function. The resulted frequency characteristics and its dependence on the size of the piston source are also discussed. This simple design may promote the wide applications of acoustic Airy beam particularly in the field of medical ultrasound.
Spatiotemporal dynamics of counterpropagating Airy beams
Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine
2015-01-01
We analyse theoretically the spatiotemporal dynamics of two incoherent counterpropagating Airy beams interacting in a photorefractive crystal under focusing conditions. For a large enough nonlinearity strength the interaction between the two Airy beams leads to light-induced waveguiding. The stability of the waveguide is determined by the crystal length, the nonlinearity strength and the beam’s intensities and is improved when comparing to the situation using Gaussian beams. We further identify the threshold above which the waveguide is no longer static but evolves dynamically either time-periodically or even chaotically. Above the stability threshold, each Airy-soliton moves erratically between privileged output positions that correspond to the spatial positions of the lobes of the counterpropagating Airy beam. These results suggest new ways of creating dynamically varying waveguides, optical logic gates and chaos-based computing. PMID:26315530
Ultrafast Airy beam optical parametric oscillator
Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.
2016-01-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910
Ultrafast Airy beam optical parametric oscillator.
Apurv Chaitanya, N; Kumar, S Chaitanya; Aadhi, A; Samanta, G K; Ebrahim-Zadeh, M
2016-08-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm.
Ultrafast Airy beam optical parametric oscillator
NASA Astrophysics Data System (ADS)
Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.
2016-08-01
We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm.
Airy, Sir George Biddell (1801-92)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A brilliant Cambridge mathematician (Senior Wrangler 1823, i.e. leader of the graduating mathematics class), Airy became the seventh Astronomer Royal in 1835 after a brief period as Lucasian Professor at Cambridge. His output was prodigious, and he published nearly 400 scientific papers and 150 reports on various scientific issues, such as the gauge of railways, spectacles to correct astigmatism,...
Generation of attenuation-compensating Airy beams.
Preciado, Miguel A; Dholakia, Kishan; Mazilu, Michael
2014-08-15
We present an attenuation-corrected "nondiffracting" Airy beam. The correction factor can be adjusted to deliver a beam that exhibits an adjustable exponential intensity increase or decrease over a finite distance. A digital micromirror device that shapes both amplitude and phase is used to experimentally verify the propagation of these beams through air and partially absorbing media.
Negative propagation effect in nonparaxial Airy beams.
Vaveliuk, Pablo; Martinez-Matos, Oscar
2012-11-19
Negative propagation is an unusual effect concerning the local sign change in the Poynting vector components of an optical beam under free propagation. We report this effect for finite-energy Airy beams in a subwavelength nonparaxial regime. This effect is due to a coupling process between propagating and evanescent plane waves forming the beam in the spectral domain and it is demonstrated for a single TE or TM mode. This is contrary to what happens for vector Bessel beams and vector X-waves, for which a complex superposition of TE and TM modes is mandatory. We also show that evanescent waves cannot contribute to the energy flux density by themselves such that a pure evanescent Airy beam is not physically realizable. The break of the shape-preserving and diffraction-free properties of Airy beams in a nonparaxial regime is exclusively caused by the propagating waves. The negative propagation effect in subwavelength nonparaxial Airy beams opens new capabilities in optical traps and tweezers, optical detection of invisibility cloacks and selective on-chip manipulation of nanoparticles.
Airy acoustical-sheet spinner tweezers
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2016-09-01
The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in
Airy beam self-focusing in a photorefractive medium
Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine
2016-01-01
The unique bending and shape-preserving properties of optical Airy beams offer a large range of applications in for example beam routing, optical waveguiding, particle manipulation and plasmonics. In these applications and others, the Airy beam may experience nonlinear light-matter interactions which in turn modify the Airy beam properties and propagation. A well-known example is light self-focusing that leads to the formation of spatial soliton. Here, we unveil experimentally the self-focusing properties of a 1D-Airy beam in a photorefractive crystal under focusing conditions. The transient evolution involves both self-bending and acceleration of the initially launched Airy beam due to the onset of an off-shooting soliton and the resulting nonlocal refractive index perturbation. Both the transient and stationary self-focusing properties can be tuned by varying the bias electric field, the injected Airy beam power and the background illumination. PMID:27731356
Airy beam self-focusing in a photorefractive medium
NASA Astrophysics Data System (ADS)
Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine
2016-10-01
The unique bending and shape-preserving properties of optical Airy beams offer a large range of applications in for example beam routing, optical waveguiding, particle manipulation and plasmonics. In these applications and others, the Airy beam may experience nonlinear light-matter interactions which in turn modify the Airy beam properties and propagation. A well-known example is light self-focusing that leads to the formation of spatial soliton. Here, we unveil experimentally the self-focusing properties of a 1D-Airy beam in a photorefractive crystal under focusing conditions. The transient evolution involves both self-bending and acceleration of the initially launched Airy beam due to the onset of an off-shooting soliton and the resulting nonlocal refractive index perturbation. Both the transient and stationary self-focusing properties can be tuned by varying the bias electric field, the injected Airy beam power and the background illumination.
Creating Airy beams employing a transmissive spatial light modulator.
Latychevskaia, Tatiana; Schachtler, Daniel; Fink, Hans-Werner
2016-08-01
We present a detailed study of two novel methods for shaping the light optical wavefront by employing a transmissive spatial light modulator (SLM). Conventionally, optical Airy beams are created by employing SLMs in the so-called all-phase mode. In the first method, a numerically simulated lens phase distribution is loaded directly onto the SLM, together with the cubic phase distribution. An Airy beam is generated at the focal plane of the numerical lens. We provide for the first time, to the best of our knowledge, quantitative properties of the formed Airy beam. We derive the formula for deflection of the intensity maximum of the so-formed Airy beam, which is different from the quadratic deflection typical of Airy beams. We cross-validate the derived formula by both simulations and experiment. The second method is based on the fact that a system consisting of a transmissive SLM sandwiched between two polarizers can create a transmission function with negative values. This observation alone has the potential for various other wavefront modulations where the transmission function requires negative values. As an example for this method, we demonstrate that a wavefront can be modulated by passing the SLM system with transmission function with negative values by loading an Airy function distribution directly onto the SLM. Since the Airy function is a real-valued function but also with negative values, an Airy beam can be generated by direct transfer of the Airy function distribution onto such an SLM system. In this way, an Airy beam is generated immediately behind the SLM. As both new methods do not employ a physical lens, the two setups are more compact than conventional setups for creating Airy beams. We compare the performance of the two novel methods and the properties of the created Airy beams.
Nonclassicality of vortex Airy beams in the Wigner representation
Chen Ruipin; Ooi, C. H. Raymond
2011-10-15
The Wigner distribution function (WDF) of a vortex Airy beam is calculated analytically. The WDF provides intuitive pictures of the intriguing features of vorticity in phase space. The nonclassical property of the vortex Airy beam and the Airy beam is analyzed through the negative parts of the WDF. The study shows that destructive interference of certain classical waves can mimic nonclassical lights such as those due to quantum effects.
Autobiography of Sir George Biddell Airy
NASA Astrophysics Data System (ADS)
Airy, George Biddell; Airy, Wilfred
2010-06-01
Preface; 1. Personal sketch of George Biddell Airy; 2. From his birth to his taking his B.A. degree; 3. At Trinity College, Cambridge; 4. At Cambridge Observatory; 5. At Greenwich Observatory, 1836-1846; 6. At Greenwich Observatory, 1846-1856; 7. At Greenwich Observatory, 1856-1866; 8. At Greenwich Observatory, 1866-1876; 9. At Greenwich Observatory to his resignation in 1881; 10. At the White House, Greewich, to his death; Appendix: List of printed papers; Index.
Reversed Airy Gaussian and Airy Gaussian vortex light bullets in harmonic potential
NASA Astrophysics Data System (ADS)
Peng, Xi; Peng, Yulian; Zhang, Liping; Li, Dongdong; Deng, Dongmei
2017-05-01
By solving the normalized dimensionless linear Schrödinger-like equation with harmonic potential analytically, we have studied the spatiotemporal Airy Gaussian (AiG) and Airy Gaussian vortex (AiGV) light bullets. The AiG light bullets are composed of the chirped Airy functions in temporal domain and the AiG functions in spatial domain, while AiGV light bullets are AiG light bullets carrying the vortex. By selecting the negative or positive linear chirp we can obtain decelerating or accelerating light bullets, respectively. Combing effects from harmonic potential with the negative quadratic chirp, we can study reversed light bullets in both spatial and temporal domains.
The structure of Airy's stress function in multiply connected regions
NASA Technical Reports Server (NTRS)
Grioli, Giusippe
1951-01-01
In solving two-dimensional problems using Airy's stress function for multiply connected regions, the form of the function depends on the dislocations and boundary forces present. The structure of Airy's function is shown to consist of a part expressible in terms of boundary forces and a part expressible in the manner of Poincare. Meanings of the constants occurring in Poincare's expression are discussed.
Evaluation of the AIRIS Standoff Hyperspectral Imaging System
2011-01-01
6,600 3. DESCRIPTION OF THE AIRIS SENSOR The AIRIS-WAD technical concept is based on the insertion of a tunable Fabry - Perot interferometer (etalon...CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U 17. LIMITATION OF ABSTRACT UL 18. NUMBER OF PAGES 2 A 19a. NAME OF RESPONSIBLE PERSON
Dynamic control of collapse in a vortex Airy beam.
Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing
2013-01-01
Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam.
Dynamic Control of Collapse in a Vortex Airy Beam
Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing
2013-01-01
Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858
Airy structure in 16O+14C nuclear rainbow scattering
NASA Astrophysics Data System (ADS)
Ohkubo, S.; Hirabayashi, Y.
2015-08-01
The Airy structure in 16 O +14 C rainbow scattering is studied with an extended double-folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic realistic wave functions for 16 O by using a density-dependent nucleon-nucleon force. The experimental angular distributions at EL=132 , 281, and 382.2 MeV are well reproduced by the calculations. By studying the energy evolution of the Airy structure, the Airy minimum around θ =76∘ in the angular distribution at EL=132 MeV is assigned as the second-order Airy minimum A 2 in contrast to the recent literature which assigns it as the third order A 3 . The Airy minima in the 90∘ excitation function is investigated in comparison with well-known 16 O +16 O and 12 C +12 C systems. Evolution of the Airy structure into the molecular resonances with the 16 O +14 C cluster structure in the low-energy region around Ec .m .=30 MeV is discussed. It is predicted theoretically for the first time for a non-4 N 16O +14 C system that Airy elephants in the 90∘ excitation function are present.
Accelerating Airy beams in the presence of inhomogeneities
NASA Astrophysics Data System (ADS)
Besieris, Ioannis M.; Shaarawi, Amr M.; Zamboni-Rached, Michel
2016-06-01
Studies have already been made of accelerating Airy beams in the presence of deterministic inhomogeneities, illustrating, in particular, that the inherent self-healing properties of such beams are preserved. The cases of a range-dependent linear transverse potential and a converging GRIN structure (harmonic oscillator) have been examined thoroughly. Examples will be given in this article of novel accelerating Airy beams in the presence of five other types of potential functions. Three of the resulting exact analytical solutions have a common salient characteristic property: they are constructed using the free-space accelerating Airy beam solution as a seed.
Plasmonic Airy beam generated by in-plane diffraction.
Li, L; Li, T; Wang, S M; Zhang, C; Zhu, S N
2011-09-16
We report an experimental realization of a plasmonic Airy beam, which is generated thoroughly on a silver surface. With a carefully designed nanoarray structure, such Airy beams come into being from an in-plane propagating surface plasmon polariton wave, exhibiting nonspreading, self-bending, and self-healing properties. Besides, a new phase-tuning method based on nonperfectly matched diffraction processes is proposed to generate and modulate the beam almost at will. This unique plasmonic Airy beam as well as the generation method would significantly promote the evolutions in in-plane surface plasmon polariton manipulations and indicate potential applications in lab-on-chip photonic integrations.
Efficient and accurate computation of the incomplete Airy functions
NASA Technical Reports Server (NTRS)
Constantinides, E. D.; Marhefka, R. J.
1993-01-01
The incomplete Airy integrals serve as canonical functions for the uniform ray optical solutions to several high-frequency scattering and diffraction problems that involve a class of integrals characterized by two stationary points that are arbitrarily close to one another or to an integration endpoint. Integrals with such analytical properties describe transition region phenomena associated with composite shadow boundaries. An efficient and accurate method for computing the incomplete Airy functions would make the solutions to such problems useful for engineering purposes. In this paper a convergent series solution for the incomplete Airy functions is derived. Asymptotic expansions involving several terms are also developed and serve as large argument approximations. The combination of the series solution with the asymptotic formulae provides for an efficient and accurate computation of the incomplete Airy functions. Validation of accuracy is accomplished using direct numerical integration data.
Propagation of sharply autofocused ring Airy Gaussian vortex beams.
Chen, Bo; Chen, Chidao; Peng, Xi; Peng, Yulian; Zhou, Meiling; Deng, Dongmei
2015-07-27
Controlling the focal length and the intensity of the optical focus in the media is an important task. Here we investigate the propagation properties of the sharply autofocused ring Airy Gaussian vortex beams numerically and some numerical experiments are performed. We introduce the distribution factor b into the initial beams, and discuss the influences for the beams. With controlling the factor b, the beams that tend to a ring Airy vortex beam with the smaller value, or a hollow Gaussian vortex beam with the larger one. By a choice of initial launch condition, we find that the number of topological charge of the incident beams, as well as its size, greatly affect the focal intensity and the focal length of the autofocused ring Airy Gaussian vortex beams. Furthermore, we show that the off-axis autofocused ring Airy Gaussian beams with vortex pairs can be implemented.
Controllable Airy-like beams induced by tunable phase patterns
NASA Astrophysics Data System (ADS)
Li, D.; Qian, Y.
2016-01-01
We propose and experimentally observe a novel family of Airy-like beams. First, we theoretically investigate the physical generation of our proposed controllable Airy-like beams by introducing a rotation angle factor into the phase function, which can regulate and flexibly control the beam wavefront. Meanwhile we can also readily control the main lobes of these beams to follow appointed parabolic trajectories using the rotation angle factor. We also demonstrate that the controllable Airy-like beams lack the properties of being diffraction-free and self-healing. The experiments are performed and the results are in accord with the theoretical simulations. We believe that the intriguing characteristics of our proposed Airy-like beams could provide more degrees of freedom, and are likely to give rise to new applications and lend versatility to the emerging field.
NASA Astrophysics Data System (ADS)
Chapman, A.
2012-01-01
One major research development in the history of astronomy, pioneered in particular by the SHA, is a shift from the concern with what the ÔgiantsÕ, such as Galileo or Newton, achieved to an examination of the wider spectrum of astronomical personnel. And one rich field of inquiry here is that body of men, and later of women, who earned their livings as assistant astronomers. It is, in fact, an abundantly documented area, including figures employed in Grand Amateur, university, and civic observatories, though without doubt the richest and longest-running body of data pertaining to what might be called the ÔAstronomersÕ GentlemenÕ comes from the archives of the Royal Observatory, Greenwich, especially for the years 1835 to 1881, when Sir George Biddell Airy was Astronomer Royal.
Continuum Statistics of the Airy2 Process
NASA Astrophysics Data System (ADS)
Corwin, Ivan; Quastel, Jeremy; Remenik, Daniel
2013-01-01
We develop an exact determinantal formula for the probability that the Airy_2 process is bounded by a function g on a finite interval. As an application, we provide a direct proof that {sup({A}2(x)-x^2)} is distributed as a GOE random variable. Both the continuum formula and the GOE result have applications in the study of the end point of an unconstrained directed polymer in a disordered environment. We explain Johansson's (Commun. Math. Phys. 242(1-2):277-329, 2003) observation that the GOE result follows from this polymer interpretation and exact results within that field. In a companion paper (Moreno Flores et al. in Commun. Math. Phys. 2012) these continuum statistics are used to compute the distribution of the endpoint of directed polymers.
Propagation of an Airy beam through the atmosphere.
Ji, Xiaoling; Eyyuboğlu, Halil T; Ji, Guangming; Jia, Xinhong
2013-01-28
In this paper, the effect of thermal blooming of an Airy beam propagating through the atmosphere is examined, and the effect of atmospheric turbulence is not considered. The changes of the intensity distribution, the centroid position and the mean-squared beam width of an Airy beam propagating through the atmosphere are studied by using the four-dimensional (4D) computer code of the time-dependent propagation of Airy beams through the atmosphere. It is shown that an Airy beam can't retain its shape and the structure when the Airy beam propagates through the atmosphere due to thermal blooming except for the short propagation distance, or the short time, or the low beam power. The thermal blooming results in a central dip of the center lobe, and causes the center lobe to spread and decrease. In contrast with the center lobe, the side lobes are less affected by thermal blooming, such that the intensity maximum of the side lobe may be larger than that of the center lobe. However, the cross wind can reduce the effect of thermal blooming. When there exists the cross wind velocity vx in x direction, the dependence of centroid position in x direction on vx is not monotonic, and there exists a minimum, but the centroid position in y direction is nearly independent of vx.
Vessel extraction using the Buckmaster-Airy filter
NASA Astrophysics Data System (ADS)
Sanchez, Valentina
2016-05-01
A new and powerful technique for vessel extraction from biomedical images using the so called Buckmaster- Airy Filter is designed, prototyped and tested. The design, the prototyping and the testing were performed using computer algebra software, specifically the Maple package ImageTools. Some preliminary experiments were performed ant the results were excellent. Our new technique is based on partial differential equations.. Specifically two dimensional Airy diffusion equation and the two dimensional Buckmaster equation were used for designing the new Buckmaster-Airy Filter. Such new filter is able to enhance the quality of an image, producing simultaneously noise elimination, but without altering the edges of the image. The new Bukmaster-Airy filter is applied to the target image via discrete convolution. The results of some experiments of vessel extraction will be presented; and some lines for future research such as the possible implementation of the Buckmaster-Airy Filter as a new plugging for the program ImageJ, will be proposed.
Improved Intrapulse Raman Scattering Control via Asymmetric Airy Pulses
NASA Astrophysics Data System (ADS)
Hu, Yi; Tehranchi, Amirhossein; Wabnitz, Stefan; Kashyap, Raman; Chen, Zhigang; Morandotti, Roberto
2015-02-01
We experimentally demonstrate the possibility of tuning the frequency of a laser pulse via the use of an Airy pulse-seeded soliton self-frequency shift. The intrinsically asymmetric nature of Airy pulses, typically featured by either leading or trailing oscillatory tails (relatively to the main lobe), is revealed through the nonlinear generation of both a primary and a secondary Raman soliton self-frequency shift, a phenomenon which is driven by the soliton fission processes. The resulting frequency shift can be carefully controlled by using time-reversed Airy pulses or, alternatively, by applying an offset to the cubic phase modulation used to generate the pulses. When compared with the use of conventional chirped Gaussian pulses, our technique brings about unique advantages in terms of both efficient frequency tuning and feasibility, along with the generation and control of multicolor Raman solitons with enhanced tunability. Our theoretical analysis agrees well with our experimental observations.
Nonparaxial diffraction analysis of Airy and SAiry beams.
Carretero, Luis; Acebal, Pablo; Blaya, Salvador; García, Celia; Fimia, Antonio; Madrigal, Roque; Murciano, Angel
2009-12-07
We theoretically analyze Airy beams by solving the exact vectorial Helmholtz equation using boundary conditions at a diffraction aperture. As result, the diffracted beams are obtained in the whole space; thus, we demonstrate that the parabolic trajectories are larger than those previously reported, showing that the Airy beams start to form before the Fourier plane. We also demonstrate the possibility of using a new type of Airy beams (SAiry beams) with finite energy that can be generated at the focal plane of the lens due to diffraction by a circular aperture of a spherical wave modified by a cubic phase. The finite energy ensured by the principle of conservation of energy of a diffracted beam.
On the asymptotic evolution of finite energy Airy wave functions.
Chamorro-Posada, P; Sánchez-Curto, J; Aceves, A B; McDonald, G S
2015-06-15
In general, there is an inverse relation between the degree of localization of a wave function of a certain class and its transform representation dictated by the scaling property of the Fourier transform. We report that in the case of finite energy Airy wave packets a simultaneous increase in their localization in the direct and transform domains can be obtained as the apodization parameter is varied. One consequence of this is that the far-field diffraction rate of a finite energy Airy beam decreases as the beam localization at the launch plane increases. We analyze the asymptotic properties of finite energy Airy wave functions using the stationary phase method. We obtain one dominant contribution to the long-term evolution that admits a Gaussian-like approximation, which displays the expected reduction of its broadening rate as the input localization is increased.
Photorefractive and computational holography in the experimental generation of Airy beams
NASA Astrophysics Data System (ADS)
Suarez, Rafael A. B.; Vieira, Tarcio A.; Yepes, Indira S. V.; Gesualdi, Marcos R. R.
2016-05-01
In this paper, we present the experimental generation of Airy beams via computational and photorefractive holography. Experimental generation of Airy beams using conventional optical components presents several difficulties and a practically infeasible. Thus, the optical generation of Airy beams has been made from the optical reconstruction of a computer generated hologram implemented by a spatial light modulator. In the photorefractive holography technique, being used for the first time to our knowledge, the hologram of an Airy beam is constructed (recorded) and reconstructed (read) optically in a nonlinear photorefractive medium. The Airy beam experimental realization was made by a setup of computational and photorefractive holography using a photorefractive Bi12 TiO20 crystal as holographic recording medium. Airy beams and Airy beam arrays were obtained experimentally in accordance with the predicted theory; with excellent prospects for applications in optical trapping and optical communications systems.
Optimal control of the ballistic motion of Airy beams.
Hu, Yi; Zhang, Peng; Lou, Cibo; Huang, Simon; Xu, Jingjun; Chen, Zhigang
2010-07-01
We demonstrate the projectile motion of two-dimensional truncated Airy beams in a general ballistic trajectory with controllable range and height. We show that the peak beam intensity can be delivered to any desired location along the trajectory as well as repositioned to a given target after displacement due to propagation through disordered or turbulent media.
Quantitative study on propagation and healing of Airy beams under experimental conditions.
Zhuang, Fei; Zhu, Ziyi; Margiewicz, Jessica; Shi, Zhimin
2015-03-01
We investigate the propagation and healing of Airy beams in two dimensions that are obtainable under practical experimental conditions. We introduce an intensity similarity factor to quantitatively describe how an Airy beam retains its original shape. Based on such a figure of merit, we define a shape-retaining distance to quantify how far an Airy beam can keep the shape of its main lobe upon propagation and a healing distance to quantify how soon an initially partially blocked Airy beam can restore its main lobe profile. We perform an analysis on how these two distances scale with experimental parameters. We further use an interference picture to interpret the healing phenomenon of an Airy beam. Our work can serve as a guideline for quantitative performance analysis for applications of Airy beams and can be extended to other special beams in a straightforward fashion.
Propagation of an Airy beam with a spiral phase.
Chu, Xiuxiang
2012-12-15
The propagation of an Airy beam with a spiral phase is studied. The centroid position and spread of the beam are investigated analytically for different topological charges. Study shows that the centroid position of the Airy beam with a spiral phase keeps moving during propagation. The motion with positive topological charge is in the direction opposite to that with negative topological charge. The speed of the motion of the centroid position is proportional to the topological charge and the normalized distance. From the variation of the second moment of the beam, we can also see that the beam spread is speeded up by the spiral phase during propagation. The speed of the beam spread is proportional to the square of the topological charge.
Stable and unstable Airy-related caustics and beams
NASA Astrophysics Data System (ADS)
Berry, M. V.
2017-05-01
Optical beams with an underlying caustic structure are stable under perturbation if the caustics belong to the catastrophe-theory classification; otherwise they are unstable. The original Airy beam in two spatial dimensions, with its curved caustic, is stable in this sense. But the separable Airy-product beam in three-dimensions is unstable: under separability-breaking perturbation, it unfolds into the hyperbolic umbilic diffraction catastrophe, which is stable. By including initial phase factors, a variety of new exact solutions of the paraxial wave equation can be generated, corresponding to Pearcey and higher-catastrophe beams with stable caustics, and with the associated diffraction catastrophes appearing in their canonical forms or as deformations of these.
Propagation of Airy Gaussian vortex beams in uniaxial crystals
NASA Astrophysics Data System (ADS)
Weihao, Yu; Ruihuang, Zhao; Fu, Deng; Jiayao, Huang; Chidao, Chen; Xiangbo, Yang; Yanping, Zhao; Dongmei, Deng
2016-04-01
The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108, 11374107, 10904041, and 11547212), the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province, China, the CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, the National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 2015093), and the Science and Technology Projects of Guangdong Province, China (Grant No. 2013B031800011).
Multi-focus of modulated polarized Airy beam
NASA Astrophysics Data System (ADS)
Zhao, Hongyang; Lin, Jie; Tan, Jiubin; Jin, Peng
2016-07-01
The focusing performance of a modulated polarized Airy beam is explored by using the Richards and Wolf vectorial diffraction model in a high numerical aperture system. The multiple foca appeared on the focal plane or along the optical axis when a complex amplitude modulating function was introduced. Two focusing spots with long-focal-depth were additionally observed due to the Airy beam and complex amplitude modulation. The distance between the focuses were changed from 1.15λ to 3.56λ with FWHM of 0.9λ for one-dimensional linear polarized incident beam and from 1.15λ to 3.64λ for two-dimensional beam. The multiple focusing spots are expected to apply in the field of optical trapping and particle acceleration.
Production of accelerating quad Airy beams and their optical characteristics.
Ren, Zhijun; Wu, Qiong; Shi, Yile; Chen, Chen; Wu, Jiangmiao; Wang, Hui
2014-06-16
Based on a geometric caustic argument and diffraction catastrophe theory, we generate a novel form of accelerating beams using a symmetric 3/2 phase-only pattern. Such beams can be called accelerating quad Airy beams (AQABs) because they look very much like four face-to-face combined Airy beams. Optical characteristics of AQABs are subsequently investigated. The research results show that the beams have axial-symmetrical and centrosymmetrical transverse intensity patterns and quasi-diffraction-free propagation features for their four main lobes while undergoing transverse shift along parabolic trajectories. Moreover, we also demonstrate that AQABs possess self-construction ability when local areas are blocked. The unique optical properties of these beams will make them useful tools for future scientific applications.
Image edge enhancement using Airy spiral phase filter.
Zhou, Yi; Feng, Shaotong; Nie, Shouping; Ma, Jun; Yuan, Caojin
2016-10-31
The isotropic and anisotropic image edge enhancements by employing Airy spiral phase filters are proposed and demonstrated. The coherent spread functions of the image systems are derived from transmittance functions of their corresponding filters. In the isotropic method, the distributions of the coherent spread function with the radius of the main ring ρ_{0 }and the scaled parameter w_{0} are numerically analyzed. It is found that the width of the main lobe determining the resolution decreases with the increased ρ_{0}, and the amplitudes of the side lobes connecting with the contrast fluctuate with w_{0}. Compared with the existing spiral phase filters, higher contrast and resolution can be achieved by adjusting the two parameters in the Airy spiral phase filter. Moreover, an off-axis Airy spiral phase filter by controlling the center position (ρ_{0},ϕ_{1}) is designed and employed to implement anisotropic edge enhancement. In the experiments, two methods of image edge enhancement have been verified by using the amplitude-contrast and phase-contrast objects.
The Airy phase in oceanic Rayleigh and Scholte waves
NASA Astrophysics Data System (ADS)
Dorman, L. M.
2010-12-01
Both oceanic Rayleigh waves and seafloor Scholte waves frequently exhibit a prominent Airy phase because the amplitude reduction by geometric spreading is reduced for this arrival. Scholte waves travel as waves trapped by the low shear velocities of the seafloor, and contain detailed information about the mechanical properties of the surficial material. Although it is possible to model Scholte waves by waveform fitting (Nolet and Dorman, GJRAS, 1996) much Scholte wave data is not of such purity to allow fitting by a laterally uniform model, which is at the present limit of what can be easily synthesized. The next best thing to waveform systhesis is matching the observed group velocity to a synthetic one. In the many cases for Scholte waves, the group slowness maximum of the prominent Airy peak is easily interpretable as the slowness of a thin surficial layer of low velocity (the top few meters). In the case of oceanic Rayleigh waves, the Airy phase is caused by a slowness minimum in group slowness which has a particularly simple form, being well-matched to an upward-open parabola in a plot of slowness vs frequency. This can provide a good match over a frequency range of a factor of three (Savage, JGR, 1969). While this representation provides a simple and accurate parameterization, to the observations this seems not to say anything simple about the earth models which produce it. The data kernels for the observations do not have particularly simple forms and extend over the top 50km or so.
Interaction of Airy-Gaussian beams in saturable media
NASA Astrophysics Data System (ADS)
Zhou, Meiling; Peng, Yulian; Chen, Chidao; Chen, Bo; Peng, Xi; Deng, Dongmei
2016-08-01
Based on the nonlinear Schrödinger equation, the interactions of the two Airy-Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy-Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy-Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 10904041), the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation (Grant No. SYBZZXM201227), and the Foundation of Cultivating Outstanding Young Scholars (“Thousand, Hundred, Ten” Program) of Guangdong Province, China. CAS Key Laboratory of Geospace Environment, University of Science and Technology of China.
Self-accelerating Airy-Ince-Gaussian and Airy-Helical-Ince-Gaussian light bullets in free space.
Peng, Yulian; Chen, Bo; Peng, Xi; Zhou, Meiling; Zhang, Liping; Li, Dongdong; Deng, Dongmei
2016-08-22
The evolution of the three-dimensional (3D) self-accelerating Airy-Ince-Gaussian (AiIG) and Airy-Helical-Ince-Gaussian (AiHIG) light bullets is investigated by solving the (3+1)D linear spatiotemporal evolution equation of an optical field analytically. As far as we know, the numerical experimental demonstrations of the Ince-Gaussian (IG) and Helical-Ince-Gaussian (HIG) beams in various modes are first developed to study the evolution characteristics of the different 3D spatiotemporal light bullets. A conclusion can be drawn that the different photoelastics, pulse stacked, boundary, elliptical ring and physically separated in-line vortices can be achieved by adjusting the ellipticity, the evolution distance and the mode-number of light bullets.
Generation of vortex circular Airy beam through binary amplitude digital hologram
NASA Astrophysics Data System (ADS)
Fang, Zhao-Xiang; Ren, Yu-Xuan; Lu, Rong-De
2016-02-01
Airy beam is a kind of wavepacket existing in the form of photons, electrons, and plasmonics. Well known as diffraction-free beam, optical Airy beam tends to accelerate in transverse space with a parabolic trajectory, and exhibits self-healing property when partially blocked. Those properties have attracted a great deal of research interests and applications. Circular Airy beam, exhibiting cylindrically symmetric intensity pattern and abruptly autofocusing characteristics in the linear media, is a variant of Airy-like wave. Optical vortex, on the other hand, is a kind of phase singularity. We present to shape the autofocusing Airy beam with a vortex phase structure, which was realized through the binary amplitude modulation with a digital micromirror device (DMD). Each mirror on the DMD could be electronically addressed to situate at either of the two solid positional states corresponding to on and off. Shaping the light into a specific mode requires the calculation of the amplitude pattern for display on the DMD. By reshaping individual DMD pixels into giant pixels, the complex field of the vortex Airy beam could be encoded with a super-pixel method. The propagation property of the vortex Airy beam was investigated through numerical simulation for different topological charges. Furthermore, the propagation characteristics of this beam in free space were verified and discussed through the experiments. We anticipate that the proposed vortex Airy beam in particle trapping, biological field and optical communications. This method with DMD can also be used to generate other beams with different characteristics.
Dynamic propagation of symmetric Airy pulses with initial chirps in an optical fiber
NASA Astrophysics Data System (ADS)
Shi, Xiaohui; Huang, Xianwei; Deng, Yangbao; Tan, Chao; Bai, Yanfeng; Fu, Xiquan
2017-09-01
We analytically and numerically investigate the propagation dynamics of initially chirped symmetric Airy pulses in an optical fiber. The results show that the positive chirps act to promote the interference in generating a focal point on the propagation axis, while the negative chirps tend to suppress the focusing effect, as compared to conventional unchirped symmetric Airy pulses. The numerical results demonstrate that the linear propagation of chirped symmetric Airy pulses depend considerably on the chirp parameter and the primary lobe position. In the anomalous dispersion region, positively chirped symmetric Airy pulses first undergo an initial compression, and reach a foci due to the opposite acceleration, and then experience a lossy inversion transformation, and come to the opposite facing focal position. The impact of truncation coefficient and Kerr nonlinearity on the chirped symmetric Airy pulses propagation is also disclosed separately.
Impacts of cross-phase modulation on modulation instability of Airy pulses
NASA Astrophysics Data System (ADS)
Cheng, Yingkai; Fu, Xiquan; Bai, Yanfeng
2016-10-01
The modulation instability (MI) of Airy pulses with the influence of cross-phase modulation is studied based on the coupled nonlinear Schrödinger equations in nonlinear media. The main lobe of Airy pulses can be manifested as breakup of MI under interaction with higher power pumped solitons, although the power of Airy pulses is small. By comparing the main lobe's gain spectrum of MI, the gain spectrum has gradually improved with the increase of power of pumped solitons. The gain spectrum of MI of the main lobe is inversely proportional to the truncation coefficient, and then it gradually approaches to that of Gauss pulses with the truncation coefficient increasing to 1. For the side lobes of Airy pulses, there are similar MI but smaller gain spectrum than the main lobe when the pumped solitons is overlapping with corresponding ones of Airy pulses.
Nonlinear evolution of Airy-like beams generated by modulated waveguide arrays.
Cao, Zheng; Tan, Qinggui; Li, Xiaojun; Qi, Xinyuan
2016-08-20
We numerically study the formation of modulated waveguide generated Airy-like beams and their subsequent evolution in homogeneous medium. The results show that the Airy-like beams could be generated from narrow Gaussian beams propagating in one-dimensional transverse separation modulated unbent, cosine bent, or logarithm bent waveguide arrays, respectively. The waveguide-generated Airy-like beams maintain their characteristics when propagating without nonlinearity or under the self-defocusing nonlinearity in homogeneous medium, while the beams are distorted under the self-focusing nonlinearity. The deformation depends on the waveguide bending and the outgoing angles of the Airy-like beams. Our results provide a new way to generate and manipulate the Airy-like beam.
Abrupt polarization transition of vector autofocusing Airy beams.
Liu, Sheng; Wang, Meirong; Li, Peng; Zhang, Peng; Zhao, Jianlin
2013-07-15
We experimentally and theoretically study the abrupt polarization transitions of vector autofocusing Airy beams associated with the spin-orbit interactions. It is shown that when the topological charges of the polarization and the attached spiral phase are equal in number, the local polarizations undergo an abrupt transition from linear to circular polarizations at the focal point, and the associated orbital angular momentum partially converts into the spin of photons. The experimental results are theoretically explained from the far-field properties of the beams in terms of Hankel transformations.
>From alexander of aphrodisias to young and airy
NASA Astrophysics Data System (ADS)
Jackson, J. D.
1999-10-01
A didactic discussion of the physics of rainbows is presented, with some emphasis on the history, especially the contributions of Thomas Young nearly 200 years ago. We begin with the simple geometrical optics of Descartes and Newton, including the reasons for Alexander's dark band between the main and secondary bows. We then show how dispersion produces the familiar colorful spectacle. Interference between waves emerging at the same angle, but traveling different optical paths within the water drops, accounts for the existence of distinct supernumerary rainbows under the right conditions (small drops, uniform in size). Young's and Airy's contributions are given their due.
Higher-Order Airy Scaling in Deformed Dyck Paths
NASA Astrophysics Data System (ADS)
Haug, Nils; Olde Daalhuis, Adri; Prellberg, Thomas
2017-03-01
We introduce a deformed version of Dyck paths (DDP), where additional to the steps allowed for Dyck paths, `jumps' orthogonal to the preferred direction of the path are permitted. We consider the generating function of DDP, weighted with respect to their half-length, area and number of jumps. This represents the first example of an exactly solvable two-dimensional lattice vesicle model showing a higher-order multicritical point. Applying the generalized method of steepest descents, we see that the associated two-variable scaling function is given by the logarithmic derivative of a generalized (higher-order) Airy integral.
Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path.
Yin, Xia; Zhang, Licheng
2016-07-01
Polarization of light has many applications in quantum information processing, including quantum teleportation and dense coding. In this paper, we investigate the polarization fluctuations of Airy beams propagating in a slant turbulent channel under the "few-photon" limit. Using the quantum Stokes parameters and the quantum degree of polarization, we demonstrate that the degree of polarization of Airy beams increases significantly with the large number of the detection photons, and a higher photon-number level can retain the stability of polarization. Numerical simulations show that the longer propagation distance and the stronger turbulence will lead to less oscillatory behaviors and a decrease in the polarization degree of Airy beams, but a bigger exponential truncation factor will cause an increase in the polarization degree of Airy beams. In contrast with Gaussian beams, the degree of polarization of Airy beams is less affected by atmospheric turbulence and propagation distance under the same conditions, which means that Airy beams possess a resilient ability against turbulence-induced perturbations. These results indicate that Airy beams have great potential for applications in long-distance free-space optical communications to improve the performance of a polarization-encoded free-space quantum communication system.
Generalized Airy functions for use in one-dimensional quantum mechanical problems
NASA Technical Reports Server (NTRS)
Eaves, J. O.
1972-01-01
The solution of the one dimensional, time independent, Schroedinger equation in which the energy minus the potential varies as the nth power of the distance is obtained from proper linear combinations of Bessel functions. The linear combinations called generalized Airy functions, reduce to the usual Airy functions Ai(x) and Bi(x) when n equals 1 and have the same type of simple asymptotic behavior. Expressions for the generalized Airy functions which can be evaluated by the method of generalized Gaussian quadrature are obtained.
AIRY: a complete tool for the simulation and the reconstruction of astronomical images
NASA Astrophysics Data System (ADS)
La Camera, Andrea; Carbillet, Marcel; Olivieri, Chiara; Boccacci, Patrizia; Bertero, Mario
2012-07-01
The Software Package AIRY (acronym for Astronomical Image Restoration in interferometrY) is a software tool designed to perform simulation and/or deconvolution of images of Fizeau interferometers as well as of any kind of optical telescopes. AIRY is written in IDL and is a Software Package of the CADS Problem Solving Environment (PSE): it is made of a set of modules, each one representing a specific task. We present here the last version of the software, arrived at its sixth release after 10 years of development. This version of AIRY summarizes the work done in recent years by our group, both on AIRY and on AIRY-LN, the version of the software dedicated to the image restoration of LINC-NIRVANA (LN), the Fizeau interferometer of the Large Binocular Telescope (LBT). AIRY v.6.0 includes a renewed deconvolution module implementing regularizations, accelerations, and stopping criteria of standard algorithms, such as OSEM and Richardson-Lucy. Several modules of AIRY have been improved and, in particular, the one used for the extraction and extrapolatioThe Software Package AIRY (acronym for Astronomical Image Restoration in interferometrY) is a software tool designed to perform simulation and/or deconvolution of images of Fizeau interferometers as well as of any kind of optical telescopes. AIRY is written in IDL and is a Software Package of the CAOS Problem Solving Environment (PSE): it is made of a set of modules, each one representing a speci_c task. We present here the last version of the software, arrived at its sixth release after 10 years of development. This version of AIRY summarizes the work done in recent years by our group, both on AIRY and on AIRY-LN, the version of the software dedicated to the image restoration of LINC-NIRVANA (LN), the Fizeau interferometer of the Large Binocular Telescope (LBT). AIRY v.6.0 includes a renewed deconvolution module implementing regularizations, accelerations, and stopping criteria of standard algorithms, such as OSEM and
NASA Technical Reports Server (NTRS)
Constantinides, E. D.; Marhefka, R. J.
1992-01-01
The incomplete Airy integrals serve as canonical functions for the uniform ray optical solutions to several high frequency scattering and diffraction problems that involve a class of integrals characterized by two stationary points that are arbitrarily close to one another or to an integration endpoint. Integrals of such analytical properties describe transition region phenomena associated with composite shadow boundaries. An efficient and accurate method for computing the incomplete Airy functions would make the solutions to such problems useful for engineering purposes. Here, a convergent series solution form for the incomplete Airy functions is derived. Asymptotic expansions involving several terms were also developed and serve as large argument approximations. The combination of the series solution form with the asymptotic formulae provides for an efficient and accurate computation of the incomplete Airy functions. Validation of accuracy is accomplished using direct numerical integration data.
Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam
Wen, Wei; Chu, Xiuxiang
2015-09-15
The self-healing ability during propagation process is one of the most important properties of non-diffracting beams. This ability has crucial advantages to light sheet-based microscopy to reduce scattering artefacts, increase the quality of the image and enhance the resolution of microscopy. Based on similarity between two infinite-dimensional complex vectors in Hilbert space, the ability to a Bessel–Gaussian beam and an Airy beam have been studied and compared. Comparing the evolution of the similarity of Bessel–Gaussian beam with Airy beam under the same conditions, we find that Bessel–Gaussian beam has stronger self-healing ability and is more stable than that of Airy beam. To confirm this result, the intensity profiles of Bessel–Gaussian beam and Airy beam with different similarities are numerically calculated and compared.
Propagation of Airy-Gaussian beams in a chiral medium
NASA Astrophysics Data System (ADS)
Deng, Fu; Yu, Weihao; Huang, Jiayao; Zhao, Ruihuang; Lin, Jiong; Deng, Dongmei
2016-04-01
We have expressed and investigated the propagation of Airy-Gaussian beams (AiGBs) in a chiral medium analytically. It is shown that AiGBs split into two components, i.e., the left circularly polarized (LCP) beams and the right circularly polarized (RCP) beams, which have a different propagation trajectory and are affected by the chiral parameter γ and the distribution factor χ 0. It is found that the LCP beams accelerate faster than the RCP beams during propagation, and are influenced by the chiral parameter. With an increase in the chiral parameter, the acceleration of the LCP beams increases, but that of the RCP beams decreases. So, it is significant that we can control the self-acceleration of AiGBs by varying the chiral parameter and the distribution factor.
Generating self-accelerating Airy beams using a digital micromirror device
NASA Astrophysics Data System (ADS)
Xu, Qinwei; Wang, Yongdong; Siew, Shi Yong; Lin, Jiao; Zhang, Yilei
2014-10-01
We report a new approach for generating an Airy beam by using a digital micromirror device (DMD) and a holographic technique where the DMD loads the desired hologram. Unique characteristics of an Airy beam, such as the non-diffraction and self-acceleration properties, were demonstrated to prove the successful construction of this type of waveform. Experimental results showed good agreement with theoretical calculations. This approach can also be used to generate other special beams.
Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing
2015-01-01
Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories. PMID:26626737
Zhang, Yiqi; Belić, Milivoj R; Zhang, Lei; Zhong, Weiping; Zhu, Dayu; Wang, Ruimin; Zhang, Yanpeng
2015-04-20
We study periodic inversion and phase transition of normal, displaced, and chirped finite energy Airy beams propagating in a parabolic potential. This propagation leads to an unusual oscillation: for half of the oscillation period the Airy beam accelerates in one transverse direction, with the main Airy beam lobe leading the train of pulses, whereas in the other half of the period it accelerates in the opposite direction, with the main lobe still leading - but now the whole beam is inverted. The inversion happens at a critical point, at which the beam profile changes from an Airy profile to a Gaussian one. Thus, there are two distinct phases in the propagation of an Airy beam in the parabolic potential - the normal Airy and the single-peak Gaussian phase. The length of the single-peak phase is determined by the size of the decay parameter: the smaller the decay, the smaller the length. A linear chirp introduces a transverse displacement of the beam at the phase transition point, but does not change the location of the point. A quadratic chirp moves the phase transition point, but does not affect the beam profile. The two-dimensional case is discussed briefly, being equivalent to a product of two one-dimensional cases.
Propagation of an Airy-Gaussian beam in uniaxial crystals
NASA Astrophysics Data System (ADS)
Zhou, Mei-Ling; Chen, Chi-Dao; Chen, Bo; Peng, Xi; Peng, Yu-Lian; Deng, Dong-Mei
2015-12-01
Under the paraxial approximation, the analytical propagation expression of an Airy-Gaussian beam (AiGB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the AiGB is given for different ratios of the extraordinary index to the ordinary refractive index. It has been found that the continuity and the self-bending effect of AiGB become weaker when the ratio increases. From the figure of the maximum intensity of AiGB, one can see that the maximum intensity is not monotone decreasing due to the anisotropic effect of the crystals. The intensity distribution of AiGB in different distribution factors is shown. The AiGB converges toward a Gaussian beam as the distribution factor increases. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 10904041), the Foundation for the Author of Guangdong Provincial Excellent Doctoral Dissertation, China (Grant No. SYBZZXM201227), the Foundation of Cultivating Outstanding Young Scholars (“Thousand, Hundred, Ten” Program) of Guangdong Province in China, and the Fund from the Key Laboratory of Geospace Environment, University of Science and Technology of China, Chinese Academy of Sciences.
Airy pattern approximation of a phased microphone array response to a rotating point source.
Debrouwere, Maarten; Angland, David
2017-02-01
Deconvolution of phased microphone array source maps is a commonly applied technique in order to improve the dynamic range and resolution of beamforming. Most deconvolution algorithms require a point spread function (PSF). In this work, it is shown that the conventional definition of the PSF, based on steering vectors, is changed when the source is rotating. The effect of rotation results in an increase in the resolution and aperture of the array. The concept of virtual array positions created by source rotation is used to derive an approximation of the PSF based on an Airy pattern. The Airy pattern approximation is suitable for use in deconvolution of rotating source maps as it is more accurate and computationally less expensive than the conventional PSF definition. The proposed Airy pattern approximation was tested with both CLEAN and DAMAS deconvolution algorithms. On the same hardware, it was significantly faster when compared to the conventional definition. The limitations of the Airy pattern approximation are shown in a synthesized broadband test case with a high dynamic range. However, in most practical beamforming applications, the proposed Airy pattern approximated PSF for deconvolution is a suitable option considering its accuracy and speed.
Evolution of the ring Airy Gaussian beams with a spiral phase in the Kerr medium
NASA Astrophysics Data System (ADS)
Chen, Bo; Chen, Chidao; Peng, Xi; Peng, Yulian; Zhou, Meiling; Deng, Dongmei; Guo, Hong
2016-05-01
Nonlinear optical phenomena are of great practical interest in optics. The evolution of ring Airy Gaussian beams with a spiral phase in the nonlinear Kerr medium is investigated using the nonlinear Schrödinger equation. Numerical simulations indicate that the distribution factor b can influence the formation of the ring Airy Gaussian beams. Results show that the beams can be oscillating, and the light filament can be achieved under appropriate laser input power. On the other hand, the evolution of the ring Airy Gaussian beams with a spiral phase in the nonlinear Kerr medium can be implemented, and the numerical simulations of the holographic generation of the ring Airy Gaussian vortex beams propagated in the medium demonstrate that the vortex can be preserved along the propagation. The Poynting vector shows that the energy flow of the ring Airy Gaussian beams flows in the opposite direction on both sides of the focus plane; however, for beams with a spiral phase, the flow direction remains the same; the energy flow can rotate in opposite directions on both sides of the focal plane.
Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain.
Zhang, Qi; Tan, Chaohua; Huang, Guoxiang
2016-02-19
We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.
Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Wu, Zhen-Kun; Li, Peng; Gu, Yu-Zong
2017-10-01
We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.
Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain
Zhang, Qi; Tan, Chaohua; Huang, Guoxiang
2016-01-01
We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system. PMID:26891795
Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain
NASA Astrophysics Data System (ADS)
Zhang, Qi; Tan, Chaohua; Huang, Guoxiang
2016-02-01
We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system.
Bose-Einstein condensation of {alpha} particles and Airy structure in nuclear rainbow scattering
Ohkubo, S.; Hirabayashi, Y.
2004-10-01
It is shown that the dilute density distribution of {alpha} particles in nuclei can be observed in the Airy structure in nuclear rainbow scattering. We have analyzed {alpha}+{sup 12}C rainbow scattering to the 0{sub 2}{sup +} (7.65 MeV) state of {sup 12}C in a coupled-channel method with the precise wave functions for {sup 12}C. It is found that the enhanced Airy oscillations in the experimental angular distributions for the 0{sub 2}{sup +} state is caused by the dilute density distribution of this state in agreement for the idea of Bose-Einstein condensation of the three alpha particles.
Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength.
Morris, J E; Mazilu, M; Baumgartl, J; Cizmár, T; Dholakia, K
2009-07-20
We generate a broadband "white light" Airy beam and characterize the dependence of the beam properties on wavelength. Experimental results are presented showing that the beam's deflection coefficient and its characteristic length are wavelength dependent. In contrast the aperture coefficient is not wavelength dependent. However, this coefficient depends on the spatial coherence of the beam. We model this behaviour theoretically by extending the Gaussian-Schell model to describe the effect of spatial coherence on the propagation of Airy beams. The experimental results are compared to the model and good agreement is observed.
Propagation properties of the accelerating beams generated by discrete Airy-Vortex phase mask
NASA Astrophysics Data System (ADS)
Han, Kun; Ji, Kaiwen; Zhang, Guoquan; Qi, Xinyuan
2017-06-01
We present a novel type of accelerating beam generated by a discrete Airy-Vortex phase mask based on the digital holographic technology. The study shows that the main lobe and the side lobes of such beam rotate with different angular momentums and the whole beam evolves into two separated Airy-like beams in the far field. The intensity distribution of the main lobe and the side lobes in the near field can be modulated by tuning the topological gradient ΔL 1 and ΔL independently. The propagation path of the main lobe follows a parabolic trajectory. The experimental results are consistent with the numerical simulations.
Nonparaxial scalar Airy light-sheets and their higher-order spatial derivatives
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-02-01
Based on the angular spectrum decomposition method in plane waves, a generalized nonparaxial analytical solution for the electric field of a transverse electric Airy light-sheet including its spatial derivatives is formulated and presented. The beam-shape coefficients are expressed by an improper integral, which includes the generation of evanescent waves. The radiated component of the field is computed, and the cross-sectional plots display unique features of the nonparaxial Airy light-sheet and its higher-order derivatives. The results find important applications in predicting/computing the optical scattering, radiation force, and torque on an object using the multipole expansion method in cylindrical coordinates and particle dynamics.
Widely varying giant Goos-Hänchen shifts from Airy beams at nonlinear interfaces.
Chamorro-Posada, Pedro; Sánchez-Curto, Julio; Aceves, Alejandro B; McDonald, Graham S
2014-03-15
We present a numerical study of the giant Goos-Hänchen shifts (GHSs) obtained from an Airy beam impinging on a nonlinear interface. To avoid any angular restriction associated with the paraxial approximation, the analysis is based on the nonlinear Helmholtz equation. We report the existence of nonstandard nonlinear GHSs displaying an extreme sensitivity to the input intensity and the existence of multiple critical values. These intermittent and oscillatory regimes can be explained in terms of competition between critical coupling to a surface mode and soliton emission from the refracted beam component and how this interplay varies with localization of the initial Airy beam.
Propagation of an Airy-Gaussian-Vortex beam in a chiral medium
NASA Astrophysics Data System (ADS)
Hua, Sen; Liu, Youwen; Zhang, Huijie; Tang, Liangzun; Feng, Yunxcai
2017-04-01
Based on the Huygens diffraction integral, the analytical expressions of electric field distribution of the Airy-Gaussian-Vortex (AiGV) beam in a chiral medium are derived, and its propagation properties are investigated. With increasing the value of chiral parameter γ, the parabolic deflection of the LCP light increases and the RCP light decreases respectively. For the first-order AiGV beam with only one positive or negative optical vortex (OV), a half-moon-shaped intensity profile can be observed because of overlap of the OV and the Airy main lobe, and then the main lobe will be reconstructed and the vortex could be recovered after the overlap position. The intensity distribution of AiGV beam, the deflection trajectories of central positions of Airy beam and OV under different competing parameters between Gaussian and Airy terms have been studied. Furthermore, for the second-order counterrotating AiGV beam with positive and negative vortexes, it could be considered the superposition of two first-order AiGV beams with respective positive and negative vortexes. Two vortexes can regenerate during propagation and the intensity distribution the AiGV beam in the far zone can be controlled by adjusting the coordinates of two vortexes.
Reflection and refraction of an Airy beam at a dielectric interface.
Chremmos, Ioannis D; Efremidis, Nikolaos K
2012-06-01
Reflection and refraction of a finite-power Airy beam at the interface between two dielectric media are investigated analytically and numerically. The formulation takes into account the paraxial nature of the optical beams to derive convenient field evolution equations in coordinate frames moving along Snell's refraction and reflection axes. Through numerical simulations, the self-accelerating dynamics of the Airy-like refracted and reflected beams are observed. Of special interest are the cases of critical incidence at Brewster and total-internal-reflection (TIR) angles. In the former case, we find that the reflected beam achieves self-healing, despite the severe suppression of a part of its spectrum, while, in the latter case, the beam remains nearly unaffected except for the Goos-Hänchen shift. The self-accelerating quality persists even if the beam is trapped by multiple TIRs inside a dielectric film. The grazing incidence of an Airy beam at the interface between two media with close refractive indices is also investigated, revealing that the interface can act as a filter depending on the beam scale and tilt. We finally consider reverse refraction and perfect imaging of an Airy beam into a left-handed medium.
Integral representations for products of Airy functions Part 2. Cubic products
NASA Astrophysics Data System (ADS)
Reid, W. H.
Integral representations are obtained for some cubic products of the Airy functions Ai(z) and Bi(z). These integral representations are of the Laplace contour type but they involve the modified Bessel functions of order 16. From these results it is then possible to evaluate a number of definite integrals involving such cubic products.
Schlichting, A.; Sproessig, W.
2008-09-01
We study versions of a generalized Teodorescu transform. In the 2-dimensional case we can describe the asymptotic behaviour by the help of modified Bessel functions. In 3-dimensional case we only have an upper estimate. Such estimates are necessary to prove the convergence of a semi-discretization method for a higher-dimensional analogue of an equation of Airy's type.
Airy wave packet for a particle in a time-dependent linear potential
NASA Astrophysics Data System (ADS)
Berrehail, Mounira; Benchiheub, Nadjet
2017-01-01
We studied the quantum motion of a particle in the presence of a time-dependent linear potential by using an operator invariant that is quadratic in p and linear in x within the framework of the Lewis-Riesenfeld invariant. The special invariant operator in this work is demonstrated to be Hermitian operator that has an Airy wave packet as its eigenfunctions.
Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz
Aadhi, A.; Sharma, Varun; Chaitanya, N. Apurv; Samanta, G. K.
2017-01-01
We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz. PMID:28262823
Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz.
Aadhi, A; Sharma, Varun; Chaitanya, N Apurv; Samanta, G K
2017-03-06
We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz.
Anomalous change of Airy disk with changing size of spherical particles
NASA Astrophysics Data System (ADS)
Pan, Linchao; Zhang, Fugen; Meng, Rui; Xu, Jie; Zuo, Chenze; Ge, Baozhen
2016-02-01
Use of laser diffraction is considered as a method of reliable principle and mature technique in measurements of particle size distributions. It is generally accepted that for a certain relative refractive index, the size of the scattering pattern (also called Airy disk) of spherical particles monotonically decreases with increasing particle size. This fine structure forms the foundation of the laser diffraction method. Here we show that the Airy disk size of non-absorbing spherical particles becomes larger with increasing particle size in certain size ranges. To learn more about this anomalous change of Airy disk (ACAD), we present images of Airy disk and curves of Airy disk size versus particle size for spherical particles of different relative refractive indices by using Mie theory. These figures reveal that ACAD occurs periodically for non-absorbing particles and will disappear when the absorbing efficiency is higher than certain value. Then by using geometrical optics (GO) approximation, we derive the analytical formulae for the bounds of the size ranges where ACAD occurs. From the formulae, we obtain laws of ACAD as follows: (1) for non-absorbing particles, ACAD occurs periodically, and when the particle size tends to infinity, the period tends to a certain value. As the relative refractive index increases, (2) the particle size ranges where ACAD occurs shift to smaller values, (3) the period of ACAD becomes smaller, and (4) the width of the size ranges where ACAD occurs becomes narrower. In addition, we can predict from the formulae that ACAD also exists for particles whose relative refractive index is smaller than 1.
Multi-gigahertz, femtosecond Airy beam optical parametric oscillator pumped at 78 MHz
NASA Astrophysics Data System (ADS)
Aadhi, A.; Sharma, Varun; Chaitanya, N. Apurv; Samanta, G. K.
2017-03-01
We report a high power ultrafast Airy beam source producing femtosecond pulses at multi-gigahertz (GHz) repetition rate (RR). Based on intra-cavity cubic phase modulation of an optical parametric oscillator (OPO) designed in high harmonic cavity configuration synchronous to a femtosecond Yb-fiber laser operating at 78 MHz, we have produced ultrafast 2D Airy beam at multi-GHz repetition rate through the fractional increment in the cavity length. While small (<1 mm) crystals are used in femtosecond OPOs to take the advantage of broad phase-matching bandwidth, here, we have exploited the extended phase-matching bandwidth of a 50-mm long Magnesium-oxide doped periodically poled LiNbO3 (MgO:PPLN) crystal for efficient generation of ultrafast Airy beam and broadband mid-IR radiation. Pumping the MgO:PPLN crystal of grating period, Λ = 30 μm and crystal temperature, T = 100 °C using a 5-W femtosecond laser centred at 1064 nm, we have produced Airy beam radiation of 684 mW in ~639 fs (transform limited) pulses at 1525 nm at a RR of ~2.5 GHz. Additionally, the source produces broadband idler radiation with maximum power of 510 mW and 94 nm bandwidth at 3548 nm in Gaussian beam profile. Using an indirect method (change in cavity length) we estimate maximum RR of the Airy beam source to be ~100 GHz.
Wavelength estimation by using the Airy disk from a diffraction pattern with didactic purposes
NASA Astrophysics Data System (ADS)
Rivera-Ortega, Uriel; Pico-Gonzalez, Beatriz
2016-01-01
In this paper a simple and easy to implement method that uses the Airy disk generated from a Fraunhofer diffraction pattern due to a circular aperture will be used to estimate the wavelength of the illuminating laser source. This estimation is based on the measurement of the Airy disk diameter, whose approximation is directly proportional to the wavelength of the light source and to the distance between the aperture and the image plane; and inversely proportional to the diameter of the aperture. Due to the characteristics and versatility of the present proposal, this is perfectly suitable for use in graduate or undergraduate physics laboratories, or even in classrooms for educational and/or demonstrative purposes.
A compact Airy beam light sheet microscope with a tilted cylindrical lens.
Yang, Zhengyi; Prokopas, Martynas; Nylk, Jonathan; Coll-Lladó, Clara; Gunn-Moore, Frank J; Ferrier, David E K; Vettenburg, Tom; Dholakia, Kishan
2014-10-01
Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies on complex programming of spatial light modulators or specialized, custom made, optical elements. Here we present a straightforward and low-cost modification to the traditional light-sheet setup, based on the open-access light-sheet microscope OpenSPIM, to achieve Airy light-sheet illumination. This brings wide field single-photon light-sheet imaging to a broader range of endusers. Fluorescent microspheres embedded in agarose and a zebrafish larva were imaged to demonstrate how such a microscope can have a minimal footprint and cost without compromising on imaging quality.
Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors
NASA Astrophysics Data System (ADS)
Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong
2016-10-01
We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.
Periodic Airy process and equilibrium dynamics of edge fermions in a trap
NASA Astrophysics Data System (ADS)
Doussal, Pierre Le; Majumdar, Satya N.; Schehr, Grégory
2017-08-01
We establish an exact mapping between (i) the equilibrium (imaginary time) dynamics of non-interacting fermions trapped in a harmonic potential at temperature T = 1 / β and (ii) non-intersecting Ornstein-Uhlenbeck (OU) particles constrained to return to their initial positions after time β. Exploiting the determinantal structure of the process we compute the universal correlation functions both in the bulk and at the edge of the trapped Fermi gas. The latter corresponds to the top path of the non-intersecting OU particles, and leads us to introduce and study the time-periodic Airy2 process, A2b (u) , depending on a single parameter, the period b. The standard Airy2 process is recovered for b = + ∞. We discuss applications of our results to the real time quantum dynamics of trapped fermions.
Three-dimensional ultrashort optical Airy beams in an inhomogeneous medium with carbon nanotubes
NASA Astrophysics Data System (ADS)
Zhukov, Alexander V.; Bouffanais, Roland; Belonenko, Mikhail B.; Dvuzhilov, Ilya S.
2017-03-01
In this Letter, we consider the problem of the dynamics of propagation of three-dimensional optical pulses (a.k.a. light bullets) with an Airy profile through a heterogeneous environment of carbon nanotubes. We show numerically that such beams exhibit sustained and stable propagation. Moreover, we demonstrate that by varying the density modulation period of the carbon nanotubes one can indirectly control the pulse velocity, which is a particularly valuable feature for the design and manufacturing of novel pulse delay devices.
Scattering of Airy elastic sheets by a cylindrical cavity in a solid.
Mitri, F G
2017-11-01
The prediction of the elastic scattering by voids (and cracks) in materials is an important process in structural health monitoring, phononic crystals, metamaterials and non-destructive evaluation/imaging to name a few examples. Earlier analytical theories and numerical computations considered the elastic scattering by voids in plane waves of infinite extent. However, current research suggesting the use of (limited-diffracting, accelerating and self-healing) Airy acoustical-sheet beams for non-destructive evaluation or imaging applications in elastic solids requires the development of an improved analytical formalism to predict the scattering efficiency used as a priori information in quantitative material characterization. Based on the definition of the time-averaged scattered power flow density, an analytical expression for the scattering efficiency of a cylindrical empty cavity (i.e., void) encased in an elastic medium is derived for compressional and normally-polarized shear-wave Airy beams. The multipole expansion method using cylindrical wave functions is utilized. Numerical computations for the scattering energy efficiency factors for compressional and shear waves illustrate the analysis with particular emphasis on the Airy beam parameters and the non-dimensional frequency, for various elastic materials surrounding the cavity. The ratio of the compressional to the shear wave speed stimulates the generation of elastic resonances, which are manifested as a series of peaks in the scattering efficiency plots. The present analysis provides an improved method for the computations of the scattering energy efficiency factors using compressional and shear-wave Airy beams in elastic materials as opposed to plane waves of infinite extent. Copyright © 2017 Elsevier B.V. All rights reserved.
Light sheet based on one-dimensional Airy beam generated by single cylindrical lens
NASA Astrophysics Data System (ADS)
Cao, Zhaolou; Zhai, Chunjie; Li, Jinhua; Xian, Fenglin; Pei, Shixin
2017-06-01
We report on a novel method of generating light sheet with extended depth of field based on one-dimensional Airy beam by the use of single cylindrical lens. In the method, coma is intentionally introduced into the system by oblique illumination to approximate a cubic phase mask. Experimental studies were presented to validate this method. This technique can be easily applied to current light sheet generators where cylindrical lens is used, as only tilt of the cylindrical lens is needed.
Moments Match between the KPZ Equation and the Airy Point Process
NASA Astrophysics Data System (ADS)
Borodin, Alexei; Gorin, Vadim
2016-10-01
The results of Amir-Corwin-Quastel, Calabrese-Le Doussal-Rosso, Dotsenko, and Sasamoto-Spohn imply that the one-point distribution of the solution of the KPZ equation with the narrow wedge initial condition coincides with that for a multiplicative statistics of the Airy determinantal random point process. Taking Taylor coefficients of the two sides yields moment identities. We provide a simple direct proof of those via a combinatorial match of their multivariate integral representations.
Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus
Fang, Zhao-Xiang; Gong, Lei; Ren, Yu-Xuan; Vaveliuk, Pablo; Chen, Yue; Lu, Rong-De
2015-11-28
Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.
NASA Astrophysics Data System (ADS)
Akemann, G.; Bender, M.
2010-10-01
We consider a family of chiral non-Hermitian Gaussian random matrices in the unitarily invariant symmetry class. The eigenvalue distribution in this model is expressed in terms of Laguerre polynomials in the complex plane. These are orthogonal with respect to a non-Gaussian weight including a modified Bessel function of the second kind, and we give an elementary proof for this. In the large n limit, the eigenvalue statistics at the spectral edge close to the real axis are described by the same family of kernels interpolating between Airy and Poisson that was recently found by one of the authors for the elliptic Ginibre ensemble. We conclude that this scaling limit is universal, appearing for two different non-Hermitian random matrix ensembles with unitary symmetry. As a second result we give an equivalent form for the interpolating Airy kernel in terms of a single real integral, similar to representations for the asymptotic kernel in the bulk and at the hard edge of the spectrum. This makes its structure as a one-parameter deformation of the Airy kernel more transparent.
Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus
NASA Astrophysics Data System (ADS)
Fang, Zhao-Xiang; Ren, Yu-Xuan; Gong, Lei; Vaveliuk, Pablo; Chen, Yue; Lu, Rong-De
2015-11-01
Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.
NASA Astrophysics Data System (ADS)
Nylk, Jonathan; McCluskey, Kaley; Aggarwal, Sanya; Tello, Javier A.; Dholakia, Kishan
2017-02-01
Light-sheet microscopy (LSM) has received great interest for fluorescent imaging applications in biomedicine as it facilitates three-dimensional visualisation of large sample volumes with high spatiotemporal resolution whilst minimising irradiation of, and photo-damage to the specimen. Despite these advantages, LSM can only visualize superficial layers of turbid tissues, such as mammalian neural tissue. Propagation-invariant light modes have played a key role in the development of high-resolution LSM techniques as they overcome the natural divergence of a Gaussian beam, enabling uniform and thin light-sheets over large distances. Most notably, Bessel and Airy beam-based light-sheet imaging modalities have been demonstrated. In the single-photon excitation regime and in lightly scattering specimens, Airy-LSM has given competitive performance with advanced Bessel-LSM techniques. Airy and Bessel beams share the property of self-healing, the ability of the beam to regenerate its transverse beam profile after propagation around an obstacle. Bessel-LSM techniques have been shown to increase the penetration-depth of the illumination into turbid specimens but this effect has been understudied in biologically relevant tissues, particularly for Airy beams. It is expected that Airy-LSM will give a similar enhancement over Gaussian-LSM. In this paper, we report on the comparison of Airy-LSM and Gaussian-LSM imaging modalities within cleared and non-cleared mouse brain tissue. In particular, we examine image quality versus tissue depth by quantitative spatial Fourier analysis of neural structures in virally transduced fluorescent tissue sections, showing a three-fold enhancement at 50 μm depth into non-cleared tissue with Airy-LSM. Complimentary analysis is performed by resolution measurements in bead-injected tissue sections.
The software package AIRY 7.0: new efficient deconvolution methods for post-adaptive optics data
NASA Astrophysics Data System (ADS)
La Camera, Andrea; Carbillet, Marcel; Prato, Marco; Boccacci, Patrizia; Bertero, Mario
2016-07-01
The Software Package AIRY (acronym of Astronomical Image Restoration in interferometrY) is a complete tool for the simulation and the deconvolution of astronomical images. The data can be a post-adaptive-optics image of a single dish telescope or a set of multiple images of a Fizeau interferometer. Written in IDL and freely downloadable, AIRY is a package of the CAOS Problem-Solving Environment. It is made of different modules, each one performing a specific task, e.g. simulation, deconvolution, and analysis of the data. In this paper we present the last version of AIRY containing a new optimized method for the deconvolution problem based on the scaled-gradient projection (SGP) algorithm extended with different regularization functions. Moreover a new module based on our multi-component method is added to AIRY. Finally we provide a few example projects describing our multi-step method recently developed for deblurring of high dynamic range images. By using AIRY v.7.0, users have a powerful tool for simulating the observations and for reconstructing their real data.
Nylk, Jonathan; McCluskey, Kaley; Aggarwal, Sanya; Tello, Javier A; Dholakia, Kishan
2016-10-01
We have investigated the effect of Airy illumination on the image quality and depth penetration of digitally scanned light-sheet microscopy in turbid neural tissue. We used Fourier analysis of images acquired using Gaussian and Airy light-sheets to assess their respective image quality versus penetration into the tissue. We observed a three-fold average improvement in image quality at 50 μm depth with the Airy light-sheet. We also used optical clearing to tune the scattering properties of the tissue and found that the improvement when using an Airy light-sheet is greater in the presence of stronger sample-induced aberrations. Finally, we used homogeneous resolution probes in these tissues to quantify absolute depth penetration in cleared samples with each beam type. The Airy light-sheet method extended depth penetration by 30% compared to a Gaussian light-sheet.
Nylk, Jonathan; McCluskey, Kaley; Aggarwal, Sanya; Tello, Javier A.; Dholakia, Kishan
2016-01-01
We have investigated the effect of Airy illumination on the image quality and depth penetration of digitally scanned light-sheet microscopy in turbid neural tissue. We used Fourier analysis of images acquired using Gaussian and Airy light-sheets to assess their respective image quality versus penetration into the tissue. We observed a three-fold average improvement in image quality at 50 μm depth with the Airy light-sheet. We also used optical clearing to tune the scattering properties of the tissue and found that the improvement when using an Airy light-sheet is greater in the presence of stronger sample-induced aberrations. Finally, we used homogeneous resolution probes in these tissues to quantify absolute depth penetration in cleared samples with each beam type. The Airy light-sheet method extended depth penetration by 30% compared to a Gaussian light-sheet. PMID:27867712
Cottrell, Don M; Davis, Jeffrey A; Berg, Cassidy A; Freeman, Christopher Li
2014-04-01
There is great interest in Airy beams because they appear to propagate in a curved path. These beams are usually generated by inserting a cubic phase mask onto the input plane of a Fourier transform system. Here, we utilize a fast Fresnel diffraction algorithm to easily derive both the propagation dynamics and the Gouy phase shift for these beams. The trajectories of these beams can be modified by adding additional linear and quadratic phase terms onto the cubic phase mask. Finally, we have rewritten the equations regarding the propagating Airy beams completely in laboratory coordinates for use by experimentalists. Experimental results are included. We expect that these results will be of great importance in applications of Airy beams.
Proposal and design of Airy-based rocket pulses for invariant propagation in lossy dispersive media.
Preciado, Miguel A; Sugden, Kate
2012-12-01
A novel (to our knowledge) kind of Airy-based pulse with an invariant propagation in lossy dispersive media is proposed. The basic principle is based on an optical energy trade-off between different parts of the pulse caused by the chromatic dispersion, which is used to compensate the attenuation losses of the propagation medium. Although the ideal concept of the proposed pulses implies infinite pulse energy, the numerical simulations show that practical finite energy pulses can be designed to obtain a partially invariant propagation over a finite distance of propagation.
Test drilling and aquifer test in the Marburg schist near Mount Airy, Frederick County, Maryland
Meyer, Gerald
1955-01-01
This memorandum summarizes briefly the data obtained by test drilling and in an aquifer test at Mount Airy, Md. The tests were a part of the State - Federal cooperative study of the ground-water resources of Frederick County, and it is intended that a more complete analysis of the test data will be included in a future report describing the ground-water resource of Frederick County. The purpose of this memorandum is to make the test data immediately available to the general public. Mount Airy is located along the Carroll-Frederick County boundary bout 2 miles north of the intersection of U.S. Highway 40 with the county boundary. Its population is approximately 1,000. The municipal well field, consisting of two drilled wells (fig. 1) is in a valley about one-half mile west of the center of Mount Airy, within about 400 feet of a small stream, and north of Prospect Road. Well 1, about 40 feet north of Prospect Road, is 125 feet deep, 8 inches in diameter, and reportedly yielded 265 gallons per minute (gpm) in 1947 and 201 gpm in a half hour test in March 1955. The writer determined during the tests described in this memorandum that the well has about 34 feet of casing. Well 2, 85 feet north of well 1, is 96 feet deep, 8 inches in diameter, and reportedly yielded 120 gpm in 1947 and 127 gpm in a half hour test in March 1955. The wells are equipped with deep-well turbine pumps powered by electric motors. Cenorally only well 1 is used, and it is pumped for only a few short intervals each day to meet the water requirements of the town (about 75,000 - 80,000 gallons daily). The reported yields of these wells are considerably higher than the average for crystalline-rock wells in the Piedmont of Maryland. The test drilling was done under contract with Edward I. Brown, well driller, between May 3 and May 12, 1955. Water-supply facilities of the town of Mount Airy were kindly made available for the aquifer tests from May 22 to May 30, 1955. The pumping tests consisted of a
Results of the Pronghorn field test using passive infrared spectroradiometers: CATSI and AIRIS
NASA Astrophysics Data System (ADS)
Jensen, James O.; Theriault, Jean-Marc; Bradette, Claude; Gittins, Christopher M.; Marinelli, William J.
2002-08-01
The Pronghorn Field Tests were held at the Nevada Test Site for a two-week period in June 2001. Two passive infrared sensors were tested for inclusion into the Joint Service Wide Area Detection Program. The Adaptive InfraRed Imaging Spectroradiometer (AIRIS) and Compact Atmospheric Sounding Interferometer (CATSI) systems were tested with good results. This field test was a joint effort between the US (SBCCOM) and Canada (DREV). Various chemicals were detected and quantified from a distance of 1.5 kilometers. Passive ranging of Chemical Plumes was demonstrated.
Results from the Pronghorn field test using passive infrared spectroradiometers-CATSI and AIRIS
NASA Astrophysics Data System (ADS)
Jensen, James O.; Theriault, Jean-Marc; Bradette, Claude; Gittins, Christopher M.; Marinelli, William J.
2002-02-01
The Pronghorn Field Tests were held at the Nevada Test Site for a two-week period in June 2001. Two passive infrared sensors were tested for inclusion into the Joint Service Wide Area Detection Program. The Adaptive InfraRed Imaging Spectroradiometer (AIRIS) and Compact ATmospheric Sounding Interferometer (CATSI) systems were tested with good results. This field test was a joint effort between the U.S (SBCCOM) and Canada (DREV). Various chemicals were detected and quantified from a distance of 1.5 kilometers. Passive ranging of Chemical Plumes was demonstrated.
Controllable accelerating and decelerating Airy-elegant-Laguerre-Gaussian wave packets in free space
NASA Astrophysics Data System (ADS)
Zhang, Xiaping
2017-05-01
The propagation of three-dimensional controllably accelerating and decelerating Airy-elegant-Laguerre-Gaussian (CAiELG) wave packets in free space is investigated theoretically and numerically by solving the (3+1)D Schrödinger equation in cylindric coordinates. The CAiELG wave packets are constructed with the Airy pulses with the initial velocity in temporal domain and the elegant-Laguerre-Gaussian beams in space domain. Decelerating and accelerating AiELG wave packets are obtained by selecting different initial velocities. The initial velocities can be determined by incident angle and directions. According to the intensity distribution of CAiELG wave packets at the propagating section, two special types of wave packets are accessed: one type is ring shaped with the modulation depth q=1 and another type is necklace shaped with q=0. The direction of the energy flow of CAiELG wave packets is kept away from the center during propagation, and their Poynting vector snapshots at different propagating distances are shown.
Chirped Airy-Gaussian beam in a medium with a parabolic potential
NASA Astrophysics Data System (ADS)
Zhang, Liping; Deng, Fu; Peng, Yulian; Chen, Bo; Peng, Xi; Li, Dongdong; Deng, Dongmei
2017-01-01
By solving the normalized dimensionless linear parabolic (Schrödinger-like) equations in the paraxial approximation, we can obtain the analytic solutions of the chirped Airy-Gaussian (CAiG) beam in a medium with a parabolic potential. We study the propagation properties of the finite energy CAiG beam in a parabolic potential and the influence of the distribution factor and the chirped factor on the CAiG beam. The propagation of the CAiG beam changes drastically with the distribution factor increasing: the CAiG beam tends to the chirped Airy beam when the distribution factor is very small; while as the distribution factor increases further, the CAiG beam tends to the chirped Gaussian beam. At the same time, the CAiG beam with a chirp has big changes when the chirped factor is increasing: the multi-peak structure is not obvious, the accelerated velocity and the peak intensity are larger, but the period does not change; when the CAiG beam has a quadratic chirp, the maximum intensity of the CAiG beam becomes smaller and the envelope is gradually smoother with the increasing of the chirped factor.
Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Li, Yuanyuan; Zhang, Yanpeng
2014-03-24
We investigate numerically interactions between two in-phase or out-of-phase Airy beams and nonlinear accelerating beams in Kerr and saturable nonlinear media in one transverse dimension. We discuss different cases in which the beams with different intensities are launched into the medium, but accelerate in opposite directions. Since both the Airy beams and nonlinear accelerating beams possess infinite oscillating tails, we discuss interactions between truncated beams, with finite energies. During interactions we see solitons and soliton pairs generated that are not accelerating. In general, the higher the intensities of interacting beams, the easier to form solitons; when the intensities are small enough, no solitons are generated. Upon adjusting the interval between the launched beams, their interaction exhibits different properties. If the interval is large relative to the width of the first lobes, the generated soliton pairs just propagate individually and do not interact much. However, if the interval is comparable to the widths of the maximum lobes, the pairs strongly interact and display varied behavior.
Experimental study on the propagation characteristics of ring Airy Gaussian vortex beams
NASA Astrophysics Data System (ADS)
Chen, Musheng; Huang, Sujuan; Shao, Wei; Liu, Xianpeng
2017-08-01
The auto-focusing and auto-healing profiles of linearly polarized ring Airy Gaussian vortex (RAiGV) beams in linear media are investigated experimentally based on spatial light modulators and computer-generated holograms. It is found that the parameters of incident beams greatly affect the auto-focusing profiles of RAiGV. The focal length increases as the radius of the primary ring, scaling factor and waist radius increases, and the focal length decreases slightly as topological charges increase. The peak intensity at focal point increases with the increasing topological charges and waist radius, or with the decreasing scaling factor and the radius of the primary ring. The phase singularity of the RAiGV beams remains unchanged during propagation. The RAiGV beams also exhibit remarkable resilience against perturbations and tend to reconstruct its intensity sharp. Meanwhile, the abruptly auto-focusing property can be controlled by blocking few inner or outer rings of the RAiGV beams. These studies provide useful insight in the study of Airy vortex beam and its further applications.
Airy-averaged gradient corrections for two-dimensional fermion gases
NASA Astrophysics Data System (ADS)
Trappe, Martin-Isbjörn; Len, Yink Loong; Ng, Hui Khoon; Englert, Berthold-Georg
2017-10-01
Building on the discussion in Trappe et al. (2016), we present a systematic derivation of gradient corrections to the kinetic-energy functional and the one-particle density, in particular for two-dimensional systems. We derive the leading gradient corrections from a semiclassical expansion based on Wigner's phase space formalism and demonstrate that the semiclassical kinetic-energy density functional at zero temperature cannot be evaluated unambiguously. In contrast, a density-potential functional description that effectively incorporates interactions provides unambiguous gradient corrections. Employing an averaging procedure that involves Airy functions, thereby partially resumming higher-order gradient corrections, we facilitate a smooth transition of the particle density into the classically forbidden region of arbitrary smooth potentials. We find excellent agreement of the semiclassical Airy-averaged particle densities with the exact densities for very low but finite temperatures, illustrated for a Fermi gas with harmonic potential energy. We furthermore provide criteria for the applicability of the semiclassical expansions at low temperatures. Finally, we derive a well-behaved ground-state kinetic-energy functional, which improves on the Thomas-Fermi approximation.
NASA Astrophysics Data System (ADS)
Konobeeva, Natalia N.; Belonenko, Mikhail B.
2017-01-01
Propagation of few-cycle optical Airy pulse through the array of semiconductor carbon nanotubes (CNTs) is considered. CNTs are supposed to contain multilevel impurities. In our study, we have neglected transitions between the valence and the conduction bands. As a result, we have revealed the dependence of the pulse form on the parameters of energy.
Quantum oscillations in the kinetic energy density: Gradient corrections from the Airy gas
NASA Astrophysics Data System (ADS)
Lindmaa, Alexander; Mattsson, Ann E.; Armiento, Rickard
2014-03-01
We show how one can systematically derive exact quantum corrections to the kinetic energy density (KED) in the Thomas-Fermi (TF) limit of the Airy gas (AG). The resulting expression is of second order in the density variation and we demonstrate how it applies universally to a certain class of model systems in the slowly varying regime, for which the accuracy of the gradient corrections of the extended Thomas-Fermi (ETF) model is limited. In particular we study two kinds of related electronic edges, the Hermite gas (HG) and the Mathieu gas (MG), which are both relevant for discussing periodic systems. We also consider two systems with finite integer particle number, namely non-interacting electrons subject to harmonic confinement as well as the hydrogenic potential. Finally we discuss possible implications of our findings mainly related to the field of functional development of the local kinetic energy contribution.
Fractional calculus transmutation for the Airy WKB solutions and Stokes phenomenon
NASA Astrophysics Data System (ADS)
Kiryakova, Virginia
2016-12-01
We apply the transmutation method to give a new explanation of the Stokes phenomenon for the Airy differential equation and of the change of the coeffcients in its asymptotic solutions for large values of argument in different parts of the complex plane. As a transmutation operator, a Weyl type fractional order integral is used. But this scheme is a special case of the so-called Poisson- Sonine-Dimovski transmutation operators related to the hyper-Bessel differential equations of arbitrary integer order, and of the generalized fractional calculus operators related to differential equations of fractional multi-order and their solutions, including a number of special functions. We analyze also the previous results of other authors and suggest some perspectives to use the same method in more general cases.
Predicting the past: ancient eclipses and Airy, Newcomb, and Huxley on the authority of science.
Stanley, Matthew
2012-06-01
Greek historical accounts of ancient eclipses were an important, if peculiar, focus of scientific attention in the nineteenth century. Victorian-era astronomers tried to correct the classical histories using scientific methods, then used those histories as data with which to calibrate their lunar theories, then rejected the histories as having any relevance at all. The specific dating of these eclipses--apparently a simple exercise in celestial mechanics--became bound up with tensions between scientific and humanistic approaches to the past as well as with wider social debates over the power and authority of science in general. The major figures discussed here, including G. B. Airy, Simon Newcomb, and T. H. Huxley, argued that the critical question was whether science could speak authoritatively about the past. To them, the ability of science to talk about the past indicated its power to talk about the future; it was also the fulcrum of fierce boundary disputes among science, history, and religion.
Ismail, Nur; Kores, Cristine Calil; Geskus, Dimitri; Pollnau, Markus
2016-07-25
We systematically characterize the Fabry-Pérot resonator. We derive the generic Airy distribution of a Fabry-Pérot resonator, which equals the internal resonance enhancement factor, and show that all related Airy distributions are obtained by simple scaling factors. We analyze the textbook approaches to the Fabry-Pérot resonator and point out various misconceptions. We verify that the sum of the mode profiles of all longitudinal modes is the fundamental physical function that characterizes the Fabry-Pérot resonator and generates the Airy distribution. Consequently, the resonator losses are quantified by the linewidths of the underlying Lorentzian lines and not by the measured Airy linewidth. Therefore, we introduce the Lorentzian finesse which provides the spectral resolution of the Lorentzian lines, whereas the usually considered Airy finesse only quantifies the performance of the Fabry-Pérot resonator as a scanning spectrometer. We also point out that the concepts of linewidth and finesse of the Airy distribution of a Fabry-Pérot resonator break down at low reflectivity. Furthermore, we show that a Fabry-Pérot resonator has no cut-off resonance wavelength. Finally, we investigate the influence of frequency-dependent mirror reflectivities, allowing for the direct calculation of its deformed mode profiles.
NASA Astrophysics Data System (ADS)
Gil, Amparo; Segura, Javier; Temme, Nico M.
2003-04-01
The use of a uniform Airy-type asymptotic expansion for the computation of the modified Bessel functions of the third kind of imaginary orders (Kia(x)) near the transition point x=a, is discussed. In A. Gil et al., Evaluation of the modified Bessel functions of the third kind of imaginary orders, J. Comput. Phys. 17 (2002) 398-411, an algorithm for the evaluation of Kia(x) was presented, which made use of series, a continued fraction method and nonoscillating integral representations. The range of validity of the algorithm was limited by the singularity of the steepest descent paths near the transition point. We show how uniform Airy-type asymptotic expansions fill the gap left by the steepest descent method.
On the joint distribution of the maximum and its position of the Airy2 process minus a parabola
NASA Astrophysics Data System (ADS)
Baik, Jinho; Liechty, Karl; Schehr, Grégory
2012-08-01
The maximal point of the Airy2 process minus a parabola is believed to describe the scaling limit of the end-point of the directed polymer in a random medium. This was proved to be true for a few specific cases. Recently, two different formulas for the joint distribution of the location and the height of this maximal point were obtained, one by Moreno Flores, Quastel, and Remenik, and the other by Schehr. The first formula is given in terms of the Airy function and an associated operator, and the second formula is expressed in terms of the Lax pair equations of the Painlevé II equation. We give a direct proof that these two formulas are the same.
Plume Aerosol Size Distribution Modeling and Comparisons to PrAIRie2005 Field Study Data
NASA Astrophysics Data System (ADS)
Cho, S.; Liggio, J.; Makar, P.; Li, S.; Racinthe, J.
2006-12-01
As part of the analysis phase of the PrAIRie2005 field study, the effects of different Edmonton-area emission sources on local air-quality are being examined. Four large coal-fired power-plants are located to the West of the city. Here, the effects of these power-plants on urban and regional air-quality will be examined, using both plume and regional air-quality models. During the last few decades, coal-fired power plants have been found to be as a major source of pollution, affecting public-health. According to NACEC (North American Commission for Environmental Corporation, 2001)'s report, 46 of the top 50 air polluters in North America were power plants. The importance of such sources has resulted in several attempts to improve understanding of the basic formation mechanisms of plume particulate matter. Sulphur dioxide contributes to acidifying emissions and to the production of secondary acidic aerosols that have been linked to a number of serious human health problems, acid rain and visibility (Seinfeld and Pandis, 1998; Hidy, 1984; Wilson and McMurray, 1981). Primary particulate matter originating directly from coal-fired power plants may also increase secondary particulate mass by providing a surface for sulphuric acid absorption . Environment Canada's PrAIRie2005 field study between August 12th and September 7th, 2005 included overflights and downwind measurements near the Edmonton powerplants (Wabamun, Sundance, Keephills and Genesee). The data collected consisted of particle size distributions, ozone, NOX, total mass and the chemical composition of fine particles. In order to investigate and improve our understanding of the formation mechanisms and physical properties of power-plant-generated aerosols in the Edmonton area, the Plume Aerosol Microphysical (PAM) model has been employed. This model accounts for gas-phase chemistry, aerosol microphysical processes (i.e. homogeneous/heterogeneous nucleation, condensation/evaporation and coagulation) and
NASA Astrophysics Data System (ADS)
Nayak, M.; Garrick-Bethell, I.; Hemingway, D.
2014-12-01
Lunar swirls are enigmatic high-albedo surface markings co-located with magnetic anomalies. The existence of mini-magnetospheres has been proposed as a formation mechanism, making small-scale magnetic field interactions with the solar wind of interest. Using data from the Lunar Prospector, Clementine, and Advanced Composition Explorer missions, we develop three metrics for the identification of mini-magnetospheres: 1) presence of coherent magnetism at low altitude for magnetic field measurements taken in the solar wind; 2) directional field distortions that are correlated with changes in incident solar wind azimuth; 3) intensification of total field strength. These metrics are applied to four lunar magnetic anomalies with various reflectances and magnetic field strengths, ranging from fully developed swirls (Reiner-Gamma, Airy) to diffuse albedo patches which may or may not be swirls (Descartes, Crozier). Specifically, we compare magnetic field measurements in the solar wind to source magnetization models constructed from observations in the lunar wake and Earth's magnetotail. By applying these criteria, we confirm previous findings of magnetosphere-like phenomena at Reiner-Gamma. We also find evidence of these phenomena at Descartes and Airy, and propose that mini-magnetospheres may exist here. At Airy, very large upwind distortions are observed, comparable to the length scale of the anomaly itself. At Reiner-Gamma and Descartes, this distortion is significantly smaller, yet the average field strengths are higher, implying that the scale of distortion is linked to the anomaly's field strength. Interestingly, at Crozier, the weakest anomaly considered, we do not observe this distortion. However, we do observe evidence of field intensification at high solar wind pressures (16 nPa). While Descartes and Reiner-Gamma are among the strongest anomalies on the Moon, and both exhibit magnetospheric properties, only Reiner-Gamma shows a well-developed swirl pattern
NASA Astrophysics Data System (ADS)
Liu, Weiwei; Lu, Yao; Gong, Lei; Chu, Xiuxiang; Xue, Guosheng; Ren, Yuxuan; Zhong, Mincheng; Wang, Ziqiang; Zhou, Jinhua; Li, Yinmei
2016-07-01
A symmetric Airy beam (SAB) autofocuses during free space propagation. Such autofocusing SAB is useful in optical manipulation and biomedical imaging. However, its inherently limited autofocusing property may degrade the performance of the SAB in those applications. To enhance the autofocus, a symmetric apodization mask was proposed to regulate the SAB. In combination with the even cubic phase that shapes the SAB, this even exponential function mask with an adjustable parameter regulates the contribution of different frequency spectral components to the SAB. The propagation properties of this new amplitude modulated SAB (AMSAB) were investigated both theoretically and experimentally. Simulation shows that the energy distribution and autofocusing property of an AMSAB can be adjusted by the exponential amplitude modulation. Especially, the beam energy will be more concentrated in the central lobe once the even cubic phase is modulated by the mask with a higher proportion of high-frequency spectral components. Consequently, the autofocusing property and axial gradient force of AMSABs are efficiently enhanced. The experimental generation and characterization for AMSABs were implemented by modulating the collimated beam with a phase-only spatial light modulator. The experimental results well supported the theoretical predictions. With the ability to enhance the autofocus, the proposed exponential apodization modulation will make SAB more powerful in various applications, including optical trapping, fluorescence imaging and particle acceleration.
Propagation properties of Airy-Gaussian vortex beams through the gradient-index medium.
Zhao, Ruihuang; Deng, Fu; Yu, Weihao; Huang, Jiayao; Deng, Dongmei
2016-06-01
Propagation of Airy-Gaussian vortex (AiGV) beams through the gradient-index medium is investigated analytically and numerically with the transfer matrix method. Deriving the analytic expression of the AiGV beams based on the Huygens diffraction integral formula, we obtain the propagate path, intensity and phase distributions, and the Poynting vector of the first- and second-order AiGV beams, which propagate through the paraxial ABCD system. The ballistic trajectory is no longer conventional parabolic but trigonometric shapes in the gradient-index medium. Especially, the AiGV beams represent the singular behavior at the propagation path and the light intensity distribution. The phase distribution and the Poynting vector exhibit in reverse when the AiGV beams through the singularity. As the order increases, the main lobe of the AiGV beams is gradually overlapped by the vortex core. Further, the sidelobe weakens when the AiGV beams propagate nearly to the singularity. Additionally, the figure of the Poynting vector of the AiGV beams proves the direction of energy flow corresponding to the intensity distribution. The vortex of the second-order AiGV beams is larger, and the propagation velocity is faster than that of the first order.
NASA Astrophysics Data System (ADS)
Zhi, Dong; Tao, Rumao; Zhou, Pu; Ma, Yanxing; Wu, Wuming; Wang, Xiaolin; Si, Lei
2017-03-01
A new ring Airy Gaussian (RAiG) vortex beam generation method by coherent combination of Gaussian beam array has been proposed. To validate the feasibility of this method, the propagation properties of the RAiG vortex beam and the coherent combining beam in vacuum have been studied and analyzed. From the comparisons of the intensity distributions and phase patterns along the propagation path, we can conclude that the coherent combining beam has the same properties as those of the ideal RAiG vortex beam. So this method can be used to obtain RAiG vortex beam in practice. Then the general analytical expression of the root-mean-square (RMS) beam width of the RAiG vortex beam, which is appropriately generated by coherent combining method, through anisotropic non-Kolmogorov turbulence has been derived. The influence of anisotropic turbulence on RMS beam width of the generated RAiG vortex beam has been numerically calculated. This generation method has good appropriation to the ideal RAiG vortex beam and is very useful for deriving the analytical expression of propagation properties through a random media. The conclusions are useful in practical applications, such as laser communication and remote sensing systems.
The interaction of Airy waves and solitons in a three-wave system
NASA Astrophysics Data System (ADS)
Mayteevarunyoo, Thawatchai; Malomed, Boris A.
2017-08-01
We employ the generic three-wave system, with the {χ }(2) interaction between two components of the fundamental frequency (FF) wave and the second-harmonic (SH) wave, to consider the collisions of truncated Airy waves (TAWs) and three-wave solitons in a setting which is not available in other nonlinear systems. The advantage of this is that single-wave TAWs, carried by either one of the FF components, are not distorted by the nonlinearity and are stable, three-wave solitons being stable too in the same system. The collision between mutually symmetric TAWs, carried by the different FF components, transforms them into a set of solitons, the number of which decreases with the increase of the total power. The TAW absorbs an incident small-power soliton, and a high-power soliton absorbs the TAW. Between these limits, the collision with an incident soliton converts the TAW into two solitons, with a remnant of the TAW attached to one of them, or leads to the formation of a complex TAW-soliton bound state. At large velocities, the collisions become quasi-elastic.
Pang, Zihao; Deng, Dongmei
2017-06-12
We investigate the propagation properties and the radiation forces of Airy Gaussian vortex (AiGV) beams in a harmonic potential analytically and numerically in this paper. Obtaining the propagation expression of AiGV beams by solving the dimensionless linear (2+1) D Schrödinger equation in a harmonic potential, we perform the track, the intensity and phase distributions, the propagation shapes, the energy flow and the angular momentum of AiGV beams in a harmonic potential with the method of numerical simulations. The trajectory acting like a cosine curve is shown. Periodic inversion and phase oscillation are demonstrated during propagation. The influence of the distribution factor and the vortex factor on the propagation of AiGV beams in a harmonic potential are discussed. Likewise, the motion of the Poynting vector and the angular momentum is elucidated respectively. As for the radiation forces, we explore the gradient and scattering forces on Rayleigh dielectric particles induced by AiGV beams. In particular, it's found that the value of the scattering force is approximately seven orders of magnitude larger than that of the gradient force during the propagation in a harmonic potential.
NASA Astrophysics Data System (ADS)
Perkins, Adam
2001-12-01
In the absence of a scientific civil service the governments of Victoria's reign had few public servants to consult when it came to the requirement for specialist scientific and technological advice - and this was at the height of the industrial revolution when the enormous changes wrought were affecting the whole population of Britain. So governments turned to one man of cast-iron probity and unparalleled credentials: George Airy. Though his formal scientific training was in mathematics and astronomy, not the engineering and thermodynamics that the industrial age might have called for, Airy gave of his time and energy to the full. But what were the purposes of the commissions? When did they sit? Who ran the Royal Observatory in Airy's absence? Only recently have the original papers in the RGO Archives been plumbed in any depth and the answers to these questions make an intriguing story.
NASA Astrophysics Data System (ADS)
Mirab, Hadi; Fathi, Reza; Jahangiri, Vahid; Ettefagh, Mir Mohammad; Hassannejad, Reza
2015-12-01
One of the new methods for powering low-power electronic devices at sea is a wave energy harvesting system. In this method, piezoelectric material is employed to convert the mechanical energy of sea waves into electrical energy. The advantage of this method is based on avoiding a battery charging system. Studies have been done on energy harvesting from sea waves, however, considering energy harvesting with random JONSWAP wave theory, then determining the optimum values of energy harvested is new. This paper does that by implementing the JONSWAP wave model, calculating produced power, and realistically showing that output power is decreased in comparison with the more simple airy wave model. In addition, parameters of the energy harvester system are optimized using a simulated annealing algorithm, yielding increased produced power.
Strehl-constrained reconstruction of post-adaptive optics data and the Software Package AIRY, v. 6.1
NASA Astrophysics Data System (ADS)
Carbillet, Marcel; La Camera, Andrea; Deguignet, Jérémy; Prato, Marco; Bertero, Mario; Aristidi, Éric; Boccacci, Patrizia
2014-08-01
We first briefly present the last version of the Software Package AIRY, version 6.1, a CAOS-based tool which includes various deconvolution methods, accelerations, regularizations, super-resolution, boundary effects reduction, point-spread function extraction/extrapolation, stopping rules, and constraints in the case of iterative blind deconvolution (IBD). Then, we focus on a new formulation of our Strehl-constrained IBD, here quantitatively compared to the original formulation for simulated near-infrared data of an 8-m class telescope equipped with adaptive optics (AO), showing their equivalence. Next, we extend the application of the original method to the visible domain with simulated data of an AO-equipped 1.5-m telescope, testing also the robustness of the method with respect to the Strehl ratio estimation.
PrAIRie2005 and the Effect of Boundary Layer Mixing on Regional and Urban Air- Quality
NASA Astrophysics Data System (ADS)
Makar, P. A.; Wiens, B.; Stroud, C.; Cho, S.; Brook, J.; Strawbridge, K.; Anlauf, K.; Liggio, J.; Li, S.; Bottenheim, J.; Moran, M.; Gong, W.; Gong, S.; Crevier, L.
2006-12-01
The PrAIRie2005 field study took place during the summer of 2005 over and around the city of Edmonton, Alberta, Canada. Multiple scientific measurement platforms, guided by regional air-quality models operating in forecast mode, were deployed. Data was collected in answer to the study's main hypothesis that poor air- quality events within the city of Edmonton result from to local emissions as opposed to regional long-range transport. Two instrumented small aircraft were flown along pre-set flight paths located on weather forecast model grids, measuring ozone, NOx, particle size (FSSP and PCASP), particle composition (AMS, filters), and gaseous VOCs (canister samples). Four ground-based mobile laboratories were deployed upwind, downwind and within the city limits to determine surface concentrations of ozone, particulate matter, their precursors, and their distribution in the atmosphere. Gas and particle composition and particle distributions were determined in Environment Canada's CRUISER and CAMML mobile laboratories, and Alberta Environment's MAML laboratory, while Environment Canada's RASCAL was used to determine particle layering and boundary layer height through the use of LIDAR. Environment Canada's AURAMS and CHRONOS regional air-quality models were used in forecast mode during the field study to aid in the choice of flight plans and measurement activities at the ground-based sites. In addition to the standard operational version of AURAMS, a test version, making use of a modified weather forecast model in which emissions of anthropogenic heat were incorporated into the surface radiative balance was also employed. Post-study analysis of both model and measurements suggests that: (a) The details of parameterizations for vertical mixing employed in regional air-quality models may have a crucial impact on their accuracy at the horizontal and vertical regional / urban interface, and (b) The city of Edmonton is sometimes subject to a unique set of meteorological
Suhendi, Endi; Syariati, Rifki; Noor, Fatimah A.; Khairurrijal; Kurniasih, Neny
2014-03-24
We modeled a tunneling current in a p-n junction based on armchair graphene nanoribbons (AGNRs) by using an Airy function approach (AFA) and a transfer matrix method (TMM). We used β-type AGNRs, in which its band gap energy and electron effective mass depends on its width as given by the extended Huckel theory. It was shown that the tunneling currents evaluated by employing the AFA are the same as those obtained under the TMM. Moreover, the calculated tunneling current was proportional to the voltage bias and inversely with temperature.
NASA Astrophysics Data System (ADS)
Wu, Zhenkun; Gu, Yuzong
2016-12-01
The propagation of two-dimensional beams is analytically and numerically investigated in strongly nonlocal nonlinear media (SNNM) based on the ABCD matrix. The two-dimensional beams reported in this paper are described by the product of the superposition of generalized Laguerre-Gaussian (LG), Hermite-Gaussian (HG), Bessel-Gaussian (BG), and circular Airy (CA) beams, carrying an orbital angular momentum (OAM). Owing to OAM and the modulation of SNNM, we find that the propagation of these two-dimensional beams exhibits complete rotation and periodic inversion: the spatial intensity profile first extends and then diminishes, and during the propagation the process repeats to form a breath-like phenomenon.
NASA Astrophysics Data System (ADS)
Suhendi, Endi; Syariati, Rifki; Noor, Fatimah A.; Kurniasih, Neny; Khairurrijal
2014-03-01
We modeled a tunneling current in a p-n junction based on armchair graphene nanoribbons (AGNRs) by using an Airy function approach (AFA) and a transfer matrix method (TMM). We used β-type AGNRs, in which its band gap energy and electron effective mass depends on its width as given by the extended Huckel theory. It was shown that the tunneling currents evaluated by employing the AFA are the same as those obtained under the TMM. Moreover, the calculated tunneling current was proportional to the voltage bias and inversely with temperature.
Al Sdran, N.; Maiz, F.
2016-06-15
The numerical solutions of the time independent Schrödinger equation of different one-dimensional potentials forms are sometime achieved by the asymptotic iteration method. Its importance appears, for example, on its efficiency to describe vibrational system in quantum mechanics. In this paper, the Airy function approach and the Numerov method have been used and presented to study the oscillator anharmonic potential V(x) = Ax{sup 2α} + Bx{sup 2}, (A>0, B<0), with (α = 2) for quadratic, (α =3) for sextic and (α =4) for octic anharmonic oscillators. The Airy function approach is based on the replacement of the real potential V(x) by a piecewise-linear potential v(x), while, the Numerov method is based on the discretization of the wave function on the x-axis. The first energies levels have been calculated and the wave functions for the sextic system have been evaluated. These specific values are unlimited by the magnitude of A, B and α. It’s found that the obtained results are in good agreement with the previous results obtained by the asymptotic iteration method for α =3.
Huang, Jiayao; Liang, Zijie; Deng, Fu; Yu, Weihao; Zhao, Ruihuang; Chen, Bo; Yang, Xiangbo; Deng, Dongmei
2015-11-01
The propagation of right-hand circularly polarized Airy-Gaussian beams (RHCPAiGBs) through slabs of right-handed materials (RHMs) and left-handed materials (LHMs) is investigated analytically and numerically with the transfer matrix method. An approximate analytical expression for the RHCPAiGBs passing through a paraxial ABCD optical system is derived on the basis of the Huygens diffraction integral formula. The intensity and the phase distributions of the RHCPAiGBs through RHMs and LHMs are demonstrated. The influence of the parameter χ_{0} on the propagation of RHCPAiGBs through RHM and LHM slabs is investigated. The RHCPAiGBs possess transverse-momentum currents, which shows that the physics underlying this intriguing accelerating effect is that of the combined contributions of the transverse spin and transverse orbital currents. Additionally, we go a step further to explore the radiation force including the gradient force and scattering force of the RHCPAiGBs.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Guan, Jian; Deng, Fu; Deng, Dongmei; Huang, Jiawei
2016-12-01
By using the transfer matrix method, the propagation of the first-order and the second-order Airy vortex (AiV) beams through strongly nonlocal nonlinear medium is exhibited. Based on the Huygens diffraction integral formula, we derive the analytical expressions of the first-order and the second-order AiV beams propagate through the paraxial ABCD system and present corresponding characteristic parameters such as propagation path, intensity, phase distributions, beam centers, the Poynting vector and angular momentum (AM) density flow. The propagation trajectory is periodical and looks like a sine wave. The AiV beam focuses two times in one period. The phase, energy flow and AM density flow distribution show a reversal when the beam propagates near the focusing point. Additionally, as the order increased, the vortex of the second-order AiV beam is stronger.
NASA Astrophysics Data System (ADS)
Cheng, Ke; Jiao, Liyang; Zhong, Xianqiong
2016-05-01
Based on the vector angular spectrum representation and stationary phase method, the analytical far-field vectorial expressions of radial noncanonical vortex Airy beam arrays (NVAiBAs) and radial noncanonical vortex Gaussian beam arrays (NVGBAs) are derived, and used to investigate their far-field vectorial properties, e.g. center optical vortices and energy fluxes of these corresponding beams, where the effect of noncanonical strength, topological charge, initial phase index and the number of beamlet on far-field vectorial properties of these corresponding beams is emphasized, respectively. The results show that the topological charge of center optical vortices in the far field is equal to initial phase index for the case of the radial NVAiBAs, whereas for radial NVGBAs the topological charge not only lies on initial phase index, but also is closely related to the odevity and sign of optical vortices embedded in beamlet, where mathematical analysis is made to explain the topological charge of center optical vortices, and the limitation of the number of beamlet to the topological charge of center optical vortices is also discussed. In addition, energy fluxes of radial NVAiBAs and NVGBAs exhibit different space orientations by controlling noncancial strength and present larger dark zones by increasing topological charge of beamlet, respectively. Finally, the relationship between the center optical vortices and energy fluxes of radial NVAiBAs and NVGBAs in even or odd N beamlets is also revealed, respectively.
Yan, Xu; Guo, Lixin; Cheng, Mingjian; Li, Jiangting; Huang, Qingqing; Sun, Ridong
2017-06-26
The probability densities of orbital angular momentum (OAM) modes of the autofocusing Airy beam (AAB) carrying power-exponent-phase vortex (PEPV) after passing through the weak anisotropic non-Kolmogorov turbulent atmosphere are theoretically formulated. It is found that the AAB carrying PEPV is the result of the weighted superposition of multiple OAM modes at differing positions within the beam cross-section, and the mutual crosstalk among different OAM modes will compensate the distortion of each OAM mode and be helpful for boosting the anti-jamming performance of the communication link. Based on numerical calculations, the role of the wavelength, waist width, topological charge and power order of PEPV in the probability density distribution variations of OAM modes of the AAB carrying PEPV is explored. Analysis shows that a relatively small beam waist and longer wavelength are good for separating the detection regions between signal OAM mode and crosstalk OAM modes. The probability density distribution of the signal OAM mode does not change obviously with the topological charge variation; but it will be greatly enhanced with the increase of power order. Furthermore, it is found that the detection region center position of crosstalk OAM mode is an emergent property resulting from power order and topological charge. Therefore, the power order can be introduced as an extra steering parameter to modulate the probability density distributions of OAM modes. These results provide guidelines for the design of an optimal detector, which has potential application in optical vortex communication systems.
Makarov, V A; Petnikova, V M; Shuvalov, V V
2013-10-31
We have analysed self-similar solutions to the propagation problem of a slit beam with a plane wavefront in a linear medium and in a photorefractive crystal with diffusion nonlinearity. It is shown that in the latter case, despite the presence of the nonlinear term in the wave equation, the linear superposition principle holds true for the solutions of this class due to saturation. At the same time, the mirror symmetry violation of the wave equation for the transverse coordinate in the nonlinear case and the requirement to the spatial localisation modify one of the localised partial solutions (Airy beam) to the corresponding linear problem and prohibit the existence of other solutions of this class. (laser beams)
Korda, V. Yu.; Molev, A. S.; Klepikov, V. F.; Korda, L. P.
2009-02-15
We present the results of the model-independent analysis of Airy structures in the {sup 16}O+{sup 12}C and {sup 16}O+{sup 16}O elastic scattering differential cross sections at 13-22 MeV/nucleon. The analysis has been performed with help of a procedure based on the application of the evolutionary algorithm, which enables us to extract the nuclear part of the scattering matrix S{sub N}(l) as a complex function of angular momentum directly from the scattering data. Contrary to the commonly used model approaches, our procedure gives the better fits and leads to the S{sub N}(l) representations defined by the moduli and the nuclear phases exhibiting smooth monotonic dependencies on l.
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2016-10-01
Stemming from the law of the conservation of energy in an elastic medium, this work extends the scope of the previous analysis for a scatterer immersed in a nonviscous liquid [F. G. Mitri, Ultrasonics 62, 20-26 (2015)] to the case of a (viscous) fluid circular cylinder cross-section encased in a homogeneous, isotropic, elastic matrix. Analytical expressions for the absorption, scattering, and extinction efficiencies (or cross-sections) are derived for "elastic-sheets" (i.e., finite beams in 2D propagating in elastic media) of arbitrary wavefront, in contrast to the ideal case of plane waves of infinite extent. The mathematical expressions are formulated in generalized partial-wave series expansions in cylindrical coordinates involving the beam-shape coefficients of finite elastic-sheet beams with arbitrary wavefront, and the scattering coefficients of the fluid cylinder encased in the elastic matrix. The analysis shows that in elastodynamic scattering, both the scattered L-wave as well as the scattered T-wave contribute to the time-averaged scattered efficiency (or power). However, the extinction efficiency only depends on the scattering coefficients characterizing the same type (L or T) as the incident wave. Numerical computations for the (non-dimensional energy) efficiency factors such as the absorption, scattering, and extinction efficiencies of a circular cylindrical viscous fluid cavity embedded in an elastic aluminum matrix are performed for nonparaxial focused Gaussian and Airy elastic-sheet beams with arbitrary longitudinal and transverse normally-polarized (shear) wave incidences in the Rayleigh and resonance regimes. A series of elastic resonances are manifested in the plots of the efficiencies as the non-dimensional size parameters for the L- and T-waves are varied. As the beam waist for the nonparaxial Gaussian beam increases, the plane wave result is recovered, while for a tightly focused wavefront, some of the elastic resonances can be suppressed
NASA Astrophysics Data System (ADS)
Cho, S.; Makar, P. A.; Lee, W. S.; Herage, T.; Liggio, J.; Li, S. M.; Wiens, B.; Graham, L.
The effects of the accuracy of major-point source emissions input data on the predictions of a regional air-quality model (AURAMS) were investigated through a series of scenario simulations. The model domain and time period were chosen to correspond to that of PrAIRie2005, an air-quality field study with airborne and ground-based mobile measurement platforms that took place between August 12th and September 7th, 2005, over the city of Edmonton, Alberta, Canada. The emissions data from standard sources for three coal-fired power-plants located west (typically upwind) of the city were compared to the continuous emissions monitoring system (CEMS) taking place at the time of the study - the latter showed that the original emissions inventory data considerably overestimated NO x, SO 2, and primary particulate emissions during the study period. Further field investigation (stack sampling) in the fall of 2006 showed that the measured primary particle size distribution and chemical speciation for the emissions were strikingly different from the distribution and speciation originally used in the model. The measured emissions were used to scale existing emissions data in accord with the CEMS and in-stack measurements. The effects of these improvements to the emissions data were examined sequentially in nested AURAMS simulations (finest horizontal resolution 3 km), and were compared to airborne aerosol mass spectrometer (Aerodyne AMS) measurements of particle sulphate, and particle distributions from an airborne passive cavity aerosol spectrometer probe (PCASP). The emissions of SO 2 had the greatest impact on predicted PM 1 sulphate, while the primary particle size distribution and chemical speciation had a smaller role. The revised emissions data greatly improved the comparisons between observations and model values, though over-predictions of fine-mode sulphate still occur near the power-plants, with the use of the revised emissions data. The modified emissions also had a
Roberts, Jodie I; Beatty, Jennifer K; Peplowski, Michael A; Keough, Michael B; Yipp, Bryan G; Hollenberg, Morley D; Beck, Paul L
2015-12-04
The Leaders in Medicine (LIM) Program at the University of Calgary hosted its 6th Annual Research Symposium on November 14, 2014, showcasing the quality and breadth of work performed by students at the Cumming School of Medicine. Participation at this year's event was our most successful to date, with a total of six oral and 77 poster presentations during the afternoon symposium. For a detailed description of the work presented at the symposium, please see the Proceedings from the 6th Annual University of Calgary Leaders in Medicine Research Symposium published in this issue of Clinical and Investigative Medicine.
Atmospherics: A Look at the Earth's Airy Shell.
ERIC Educational Resources Information Center
Byalko, A. V.
1991-01-01
Describes differences in the composition, pressure, and temperature at distinct altitudes of the Earth's atmosphere from the point of view of physical laws. Discusses the genesis and importance of ozone, thermal radiation and the "layer cake" arrangement of the atmosphere, and solar energy in connection with thermal equilibrium. (JJK)
Atmospherics: A Look at the Earth's Airy Shell.
ERIC Educational Resources Information Center
Byalko, A. V.
1991-01-01
Describes differences in the composition, pressure, and temperature at distinct altitudes of the Earth's atmosphere from the point of view of physical laws. Discusses the genesis and importance of ozone, thermal radiation and the "layer cake" arrangement of the atmosphere, and solar energy in connection with thermal equilibrium. (JJK)
Pulse Capability of the AIRI Lead Chloride Electrode.
1979-11-01
DISCHARGE RATE ON PULSE BEHAVIOUR .. . 8 INFLUENCE OF PULSE LOAD ON PULSE BEHAVIOUR . ........... 10 CONCLUSION. ............................... 15 DESIGN OF A...source now in use is a seawater-activated battery in which the anode is a magnesium alloy and the cathode a silver chloride electrode. These batteries...in 3.25% NaCI (by weight) dissolved in distilled water. Temperatures ranged from 220 to 250. For the anode the magnesium alloy AZ61 was used (6
Two new cembranoids from the leaves of Croton longissimus Airy Shaw.
Kawakami, Susumu; Matsunami, Katsuyoshi; Otsuka, Hideaki; Lhieochaiphant, Duangporn; Lhieochaiphant, Sorasak
2013-04-01
Two new cembrane-type diterpenoids (1 and 2) along with five known compounds (3-7) were isolated from leaves of Croton longissimus collected in Thailand. Their structures were elucidated from spectroscopic evidence and compound 4 was found by HPLC analysis to be identical to oblongionoside B-a compound isolated from Croton oblongifolius-including the absolute configuration at the C-9 position.
No Time for the "Airy Fairy": Teacher Perspectives on Creative Writing in High Stakes Environments
ERIC Educational Resources Information Center
Frawley, Emily
2014-01-01
This paper discusses a research project undertaken to examine teachers' perceptions of creative writing in the senior English curriculum. It was a case study undertaken in a state high school in Melbourne under the Victorian Certificate of Education (VCE). The project investigated the challenges facing English teachers as they prepare students to…
Starch-based aerogels: airy materials from amylose-sodium palmitate inclusion complexes
USDA-ARS?s Scientific Manuscript database
Aerogels are a class of interesting low density porous materials prepared by replacing the water phase contained within a hydrogel with a gas phase while maintaining the three dimensional network structure of the gel. The investigation of starch and hydrocolloid-based aerogels has received attentio...
Controlling light in Airy and higher-order caustic photonic structures
NASA Astrophysics Data System (ADS)
Zannotti, Alessandro; Diebel, Falko; Rüschenbaum, Matthias; Denz, Cornelia
2017-06-01
Caustics form geometrically stable structures in light and are hierarchically categorized by the catastrophe theory. We embed higher-order cusp and swallowtail catastrophes in paraxial beams and investigate their dynamics. Utilizing high-intensity caustics that propagate on curved trajectories, we realize photonic caustic lattices in photosensitive media, and demonstrate waveguiding with a rich diversity of light guiding paths.
From Airy to Abbe: quantifying the effects of wide-angle focusing for scalar spherical waves
NASA Astrophysics Data System (ADS)
Calm, Yitzi M.; Merlo, Juan M.; Burns, Michael J.; Naughton, Michael J.
2017-10-01
Recent advances in optical microscopy have enabled imaging with spatial resolution beyond the diffraction limit. This limit is sometimes taken as one of several different criteria according to different conventions, including Rayleigh’s 0.61λ /NA, Abbe’s 0.5λ /NA, and Sparrow’s 0.47λ /NA. In this paper, we perform a parametric study, numerically integrating the scalar Kirchhoff diffraction integrals, and we propose new functional forms for the resolution limits derived from scalar focusing. The new expressions remain accurate under wide angle focusing, up to 90^\\circ . Our results could materially impact the design of high intensity focused ultrasound systems, and can be used as a qualitative guideline for the design of a particular type of planar optical element: the flat lens metasurface.
NASA Technical Reports Server (NTRS)
Brennan, K. F.; Summers, C. J.
1987-01-01
A theoretical study of resonant tunneling in multilayered heterostructures is presented based on an exact solution of the Schroedinger equation under the application of a constant electric field. By use of the transfer matrix approach, the transmissivity of the structure is determined as a function of the incident electron energy. The approach presented herein is easily extended to many layer structures where it is more accurate than other existing transfer matrix or Wentzel-Kramers-Brillouin (WKB) models. The transmission resonances are compared to the bound-state energies calculated for a finite square well under bias using either an asymmetric square-well model or the exact solution of an infinite square well under the application of an electric field. The results show good agreement with other existing models as well as with the bound-state energies. The calculations were then applied to a new superlattice structure, the variably spaced superlattice energy filter, which is designed such that under bias the spatial quantization levels fully align. Based on these calculations, a new class of resonant tunneling superlattice devices can be designed.
Aerosol Acidity and Charge Balance During PrAIRie2005: Aircraft Measurements and Model Results
NASA Astrophysics Data System (ADS)
Liggio, J.; Makar, P. A.; Li, S.; Stroud, C.; Brook, J.
2006-12-01
Aerosol acidity may be indicative of air mass processing, particularly when SO2 conversion to H2SO4 is an important source of aerosol mass. In such cases, aerosols formed closer to the original SO2 sources, such as power plants or petrochemical industries, are more likely to be acidic. In principal these aerosols may become progressively neutral as the air mass traverses over rural areas, where exposure to NH3 gas is likely more prevalent. Sulphate aerosols may also interact with gaseous biogenic volatile organic compounds, as has been suggested in recent laboratory experiments. The possible effects of aerosol aging on charge balance was explored during the PRAIRIE 2005 field campaign in Edmonton, Alberta, Canada from August 12th to September 7th 2005, as a potential measure of urban vs rural processing. During the study, a Cessna 207 equipped with an Aerosol Mass spectrometer (AMS), was flown over the urban Edmonton center and surrounding rural areas, while a second AMS was located at a ground-based site downwind of the city. Measurements of particulate SO4, NO3, and NH4 from the AMS, during 8 flights were used to determine their spatial distribution, and to determine the extent of particle acidity as given by a neutralization molar ratio. The neutralization ratios (charge balance) measured with the AMS was compared with that obtained from high resolution (15 and 5 km) model runs along the flight paths using a regional reaction-transport model, AURAMS. Of particular interest were events where air masses were processed over rural areas, and returned to the study region several days later. In principle, such events could result in a progression to more neutral aerosols upon their return, potentially observable in the AMS derived and modelled charge balance. The use of measured and modelled charge balance in these instances may lead to a better understanding of the role of the surrounding rural airshed in the processing of Edmonton's urban air masses. In addition, the accuracy of the current airshed models in predicting inorganic PM composition may also be assessed.
Psychometric Properties of the Affect Intensity and Reactivity Measure Adapted for Youth (AIR-Y)
ERIC Educational Resources Information Center
Jones, Rachel E.; Leen-Feldner, Ellen W.; Olatunji, Bunmi O.; Reardon, Laura E.; Hawks, Erin
2009-01-01
A valid and reliable instrument for measuring affect intensity does not exist for adolescents; such a measure may help to refine understanding of emotion among youths. The purpose of the current study was to evaluate the psychometric properties and clinical relevance of a measure of affect intensity adapted for youths. Two hundred five community…
No Time for the "Airy Fairy": Teacher Perspectives on Creative Writing in High Stakes Environments
ERIC Educational Resources Information Center
Frawley, Emily
2014-01-01
This paper discusses a research project undertaken to examine teachers' perceptions of creative writing in the senior English curriculum. It was a case study undertaken in a state high school in Melbourne under the Victorian Certificate of Education (VCE). The project investigated the challenges facing English teachers as they prepare students to…
2005-02-01
through the closely-coupled Fabry-Perot tunable filter, which is operated at ambient temperature. An integral Stirling -Cycle cryocooler maintains the...which about 70 watts is from the detector cryocooler and the remainder from the electronics. The sensor unit is air-cooled and uses a series of heat
Brooks, Ross
2015-01-01
The hegemony of the two-sex paradigm in the European scientific imagination and wider culture did not automatically equate to the hegemony of two discrete genders. In fact, two sexes facilitated a variety of gender choices: two singular and a number of double or otherwise intersexed (most commonly referred to as "hermaphrodite" or "bisexual" in its anatomical sense). This article explores some key British medical and allied scientific texts, with reference to associated Continental literature, as a means of illustrating the complexity of the two-sex paradigm and the unexpected transformation of gender possibilities that it helped produce through the early and middle decades of the nineteenth century. Discourses surrounding the first direct observations of the earliest development of fetal urinogenital anatomy were pivotal. The prevailing view that the incipient embryo was sexually undifferentiated (a paragon of the one-sex paradigm) was challenged by the Edinburgh anatomist Robert Knox, initially as he sought to bolster his professional reputation at the height of the Burke and Hare "body-snatching" scandal. Knox suggested that every embryo began life in an essentially dual-sexed state, an individual's sex anatomy depending on the greater or lesser development of component female and male structures. Greater clarification on the contested status of the homology-hermaphrodite distinction was achieved with the discovery of the early co-existence of the excretory duct of the Wolffian body (mesonephric duct) and the Müllerian duct (paramesonephric duct), an observation that made anatomical bisexuality difficult to ignore. The nineteenth-century's greatest champion of primordial hermaphroditism was Charles Darwin who was pivotal in phylogenizing the principle and establishing the premise that (in his own words) "Every man & woman is hermaphrodite," a foundation stone of late-nineteenth-century sexology.
ERIC Educational Resources Information Center
Berry, M. V.; Balazs, N. L.
1979-01-01
Explains properties of the Airy packet that show that quantum wave functions correspond to a family of orbits and not to a single particle. Introducing the Airy packet into elementary quantum mechanics courses is recommended. (HM)
Effects of Photon Noise on Unconstrained Minimization Techniques for Iterative Blind Deconvolution.
1994-12-01
the Airy disk, these zeros correspond to the radial points where the irradiance for an Airy function is zero. Sir George Biddell Airy (1801-1892) first...radial distance from the center of the array to the first zero in the true PSF, when the PSF is an Airy function. If the PSF remains constant for all...correlation of support region size with definable areas within the impulse response or true PSF. Since a single PSF in the form of an Airy function is used
East Europe Report: Political, Sociological and Military Affairs. No. 2149
1983-06-07
machinery. Piotr Abramowicz of the Ketrzyn Polan-Farel Electric Bulb Plant only broached one problem, but one of fundamental importance: the steel...Habilitatus Piotr Boron, the chairman of the Province PRON Council, director of the Clinic of Infectious Diseases at the Medical Academy; Danuta...teacher, employee of the Office of the Inspector General for Education and Upbringing; Waldemar Brzezinski , member of the Province PRON Council
1985-09-01
Continue an reer@e side it neceary and Identify by block tmobr) )The concept of the conventional Airy/ Heiskanen isostatic model is investi- gated from...shaped type, and a depth of compensation of about 24 km. A proof of equivalence of using a standard Airy/ Heiskanen model with a larger compensation...postulated. Although in some limited areas the Pratt/Hayford system seemed to prevail, the Airy/ Heiskanen system is now generally believed to model the
Determination of Local Empirical Covariance Functions from Residual Terrain Reduced Altimeter Data
1988-11-01
obtained in the three local areas respectively. Then residual terrain effects were computed from Airy- Heiskanen isostatic earth models using Fourier...idealized) model is the Airy- Heiskanen model ( Heiskanen and Moritz, 1967). This model is based on a floating theory, where the topography is...interface is correlated with the topography, which may justify the principle of an isostatic compensation at the crust/mantle interface. The Airy- Heiskanen
Generation of self-healing and transverse accelerating optical vortices
NASA Astrophysics Data System (ADS)
Wei, Bing-Yan; Chen, Peng; Ge, Shi-Jun; Duan, Wei; Hu, Wei; Lu, Yan-Qing
2016-09-01
Self-healing and transverse accelerating optical vortices are generated via modulating Gaussian beams through subsequent liquid crystal q-plate and polarization Airy mask. We analyze the propagation dynamics of these vortex Airy beams, and find that they possess the features of both optical vortices and Airy beams. Topological charges and characteristics of nondiffraction, self-healing, and transverse acceleration are experimentally verified. In addition, vortex Airy beams with both topological charge and radial index are demonstrated and mode switch among Gaussian, vortex, vector, Airy beams and their combinations can be acquired easily. Our design provides a flexible and highly efficient way to generate unique optical vortices with self-healing and transverse acceleration properties, and facilitates prospective applications in optics and photonics.
The two populations’ cellular automata model with predation based on the Penna model
NASA Astrophysics Data System (ADS)
He, Mingfeng; Lin, Jing; Jiang, Heng; Liu, Xin
2002-09-01
In Penna's single-species asexual bit-string model of biological ageing, the Verhulst factor has too strong a restraining effect on the development of the population. Danuta Makowiec gave an improved model based on the lattice, where the restraining factor of the four neighbours take the place of the Verhulst factor. Here, we discuss the two populations’ Penna model with predation on the planar lattice of two dimensions. A cellular automata model containing movable wolves and sheep has been built. The results show that both the quantity of the wolves and the sheep fluctuate in accordance with the law that one quantity increases while the other one decreases.
3. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 ...
3. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 SOUTHWEST ELEVATION - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA
1. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 ...
1. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 DOVE COTE AND DOLL HOUSE - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA
2. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 ...
2. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 SOUTHWEST ELEVATION - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA
5. Historic American Buildings Survey Richard Koch, Photographer, March, 1934 ...
5. Historic American Buildings Survey Richard Koch, Photographer, March, 1934 VIEW FROM NORTH WEST - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA
4. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 ...
4. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 FIREPLACE IN DOLL HOUSE - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA
Upper Mantle Q and Transmission Studies Using LASA and WWSS Data.
complicated than the Heiskanen , Pratt, or Airy mechanisms would suggest and extends well into the upper mantle. A long-range seismic refraction study along the axis of the Rocky Mountains supports a double M-discontinuity. (Author)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-06
... Robotics, Sherman Oaks, CA; Global Technical Systems, Virginia Beach, VA; Hurley IR, Mount Airy, MD; ICx Tactical Platforms, Forest Park, GA; Innovative Signal Analysis, Inc., Richardson, TX; Liquid Robotics...
Computer program for Bessel and Hankel functions
NASA Technical Reports Server (NTRS)
Kreider, Kevin L.; Saule, Arthur V.; Rice, Edward J.; Clark, Bruce J.
1991-01-01
A set of FORTRAN subroutines for calculating Bessel and Hankel functions is presented. The routines calculate Bessel and Hankel functions of the first and second kinds, as well as their derivatives, for wide ranges of integer order and real or complex argument in single or double precision. Depending on the order and argument, one of three evaluation methods is used: the power series definition, an Airy function expansion, or an asymptotic expansion. Routines to calculate Airy functions and their derivatives are also included.
Unveiling orbital angular momentum and acceleration of light beams and electron beams
NASA Astrophysics Data System (ADS)
Arie, Ady
Special beams, such as the vortex beams that carry orbital angular momentum (OAM) and the Airy beam that preserves its shape while propagating along parabolic trajectory, have drawn significant attention recently both in light optics and in electron optics experiments. In order to utilize these beams, simple methods are needed that enable to easily quantify their defining properties, namely the OAM for the vortex beams and the nodal trajectory acceleration coefficient for the Airy beam. Here we demonstrate a straightforward method to determine these quantities by astigmatic Fourier transform of the beam. For electron beams in a transmission electron microscope, this transformation is easily realized using the condenser and objective stigmators, whereas for light beam this can be achieved using a cylindrical lens. In the case of Laguerre-Gauss vortex beams, it is already well known that applying the astigmatic Fourier transformation converts them to Hermite-Gauss beams. The topological charge (and hence the OAM) can be determined by simply counting the number of dark stripes of the Hermite-Gauss beam. We generated a series of electron vortex beams and managed to determine the topological charge up to a value of 10. The same concept of astigmatic transformation was then used to unveil the acceleration of an electron Airy beam. The shape of astigmatic-transformed depends only on the astigmatic measure and on the acceleration coefficient. This method was experimentally verified by generating electron Airy beams with different known acceleration parameters, enabling direct comparison to the deduced values from the astigmatic transformation measurements. The method can be extended to other types of waves. Specifically, we have recently used it to determine the acceleration of an optical Airy beams and the topological charge of so-called Airy-vortex light beam, i.e. an Airy light beam with an embedded vortex. This work was supported by DIP and the Israel Science
NASA Astrophysics Data System (ADS)
Chapman, Allan
2003-06-01
A careful study of the detailed archives of the Victorian Royal Observatory makes it possible to build up a picture of the employment and working conditions not only of the astronomical staff who worked at Greenwich, but also of the labourers, watchmen, and gate porters. Indeed, the archives open up a window on to how the Observatory was run on a daily basis: how its non-scientific staff were recruited and paid, and what were their terms of employment. They also say a great deal about how Sir George Biddell Airy directed and controlled every aspect of the Observatory's life. Yet while Airy was a strict employer, he emerges as a man who was undoubtedly fair-minded and sometimes even generous to his non-scientific work-force. A study of the Observatory staff files also reveals the relationship between the Observatory labouring staff and the Airy family's domestic servants. And of especial interest is the robbery committed by William Sayers, the Airy family footman in 1868, bringing to light as it does Sir George and Lady Richarda Airy's views on crime and its social causes and consequences, the prison rehabilitation service in 1868, and their opinions on the reform of offenders. Though this paper is not about astronomy as such, it illuminates a fascinating interface where the world of astronomical science met and worked alongside the world of ordinary Victorian people within the walls of one of the nineteenth century's most illustrious astronomical institutions.
Li, Yixiang; Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou
2015-08-17
Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90(o)). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences.
Li, Yixiang; Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou
2015-01-01
Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90o). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences. PMID:26279478
Abnormal single or composite dissipative solitons generation
NASA Astrophysics Data System (ADS)
Zhong, Xianqiong; Liu, Dingyao; Cheng, Ke; Sheng, Jianan
2016-12-01
The evolution dynamics of the initial finite energy Airy pulses and Airy pulse pairs are numerically investigated in the cubic-quintic complex Ginzberg-Laudau equation governed dissipative system. Depending on different initial excitations and system parameters, abnormal double, triple, and quadruple composite dissipative solitons as well as single dissipative solitons can be observed. The composite dissipative solitons may consist of identical or different types of pulsating solitons. Moreover, the creeping solitons and the single ordinary pulsating solitons can even appear in the parameter regions where originally the other types of pulsating solitons exist. Besides, before evolving into each abnormal dissipative soliton, the initial finite energy Airy pulse or pulse pairs generally exhibit very interesting and unique early evolution behavior.
Image system analysis of human eye wave-front aberration on the basis of HSS
NASA Astrophysics Data System (ADS)
Xu, Ancheng
2017-07-01
Hartmann-Shack sensor (HSS) has been used in objective measurement of human eye wave-front aberration, but the research on the effects of sampling point size on the accuracy of the result has not been reported. In this paper, point spread function (PSF) of the whole system mathematical model was obtained via measuring the optical imaging system structure of human eye wave-front aberration measurement. The impact of Airy spot size on the accuracy of system was analyzed. Statistics study show that the geometry of Airy spot size of the ideal light source sent from eye retina formed on the surface of HSS is far smaller than the size of the HSS sample point image used in the experiment. Therefore, the effect of Airy spot on the precision of the system can be ignored. This study theoretically and experimentally justifies the reliability and accuracy of human eye wave-front aberration measurement based on HSS.
NASA Astrophysics Data System (ADS)
Li, Yixiang; Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou
2015-08-01
Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90o). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences.
New insights into the rainbow Part 1/2: Study on the physics of the supernumerary bows
NASA Astrophysics Data System (ADS)
Ricard, J. L.
2011-12-01
We have tested the basic assumptions of the Airy's theory. Surprisingly, they are only valid in a small angle close to the minimum deviation angle (less than 2 degrees). For instance in the supernumerary area, the Airy's theory has obvious flaws. In the Airy's model, two aspects of the diffraction are taken into account. Firstly, a phenomenon of interferences discovered by Young created by rays of light with different pathes through the droplets. Secondly, "simple diffraction" such as the one appearing on the both (shadowed and lighted) side of a straight edge. In this study, we show that the "simple diffraction" alone is enough for understanding the formation of the supernumerary arcs. Interferences contribute in fact only very little.
NASA Astrophysics Data System (ADS)
Nabila, Ezra; Noor, Fatimah A.; Khairurrijal
2017-07-01
In this study, we report an analytical calculation of electron transmittance and polarized tunneling current in a single barrier heterostructure of a metal-GaSb-metal by considering the Dresselhaus spin orbit effect. Exponential function, WKB method and Airy function were used in calculating the electron transmittance and tunneling current. A Transfer Matrix Method, as a numerical method, was utilized as the benchmark to evaluate the analytical calculation. It was found that the transmittances calculated under exponential function and Airy function is the same as that calculated under TMM method at low electron energy. However, at high electron energy only the transmittance calculated under Airy function approach is the same as that calculated under TMM method. It was also shown that the transmittances both of spin-up and spin-down conditions increase as the electron energy increases for low energies. Furthermore, the tunneling current decreases with increasing the barrier width.
Richard Christopher Carrington: Briefly Among the Great Scientists of His Time
NASA Astrophysics Data System (ADS)
Cliver, Edward W.; Keer, Norman C.
2012-09-01
We recount the life and career of Richard Christopher Carrington (1826 - 1875) and explore his pivotal relationship with Astronomer Royal George Biddell Airy. Carrington was the pre-eminent solar astronomer of the 19th century. During a ten year span, he determined the position of the Sun's rotation axis and made the following discoveries: i) the latitude variation of sunspots over the solar cycle, ii) the Sun's differential rotation, and iii) the first solar flare (with Hodgson). Due to the combined effects of family responsibilities, failure to secure a funded position in astronomy (reflecting Airy's influence), and ill health, Carrington's productive period ended when he was at the peak of his powers.
Non-linear PDEs for gap probabilities in random matrices and KP theory
NASA Astrophysics Data System (ADS)
Adler, M.; Cafasso, M.; van Moerbeke, P.
2012-12-01
Airy and Pearcey-like kernels and generalizations arising in random matrix theory are expressed as double integrals of ratios of exponentials, possibly multiplied with a rational function. In this work it is shown that such kernels are intimately related to wave functions for polynomial (Gelfand-Dickey) reductions or rational reductions of the KP-hierarchy; their Fredholm determinant also satisfies linear PDEs (Virasoro constraints), yielding, in a systematic way, non-linear PDEs for the Fredholm determinant of such kernels. Examples include Fredholm determinants giving the gap probability of some infinite-dimensional diffusions, like the Airy process, with or without outliers, and the Pearcey process, with or without inliers.
Optical characterization of a glass fibre with the use of low-coherent light (LED)
NASA Astrophysics Data System (ADS)
Świrniak, Grzegorz; Głomb, Grzegorz
2012-04-01
The aim of the paper is to discuss a non-invasive method for a glass fibre diameter characterization. The method involves scattering of low-coherent light in the vicinity of a primary rainbow. Theoretical considerations include discussion on complex as well as approximate models of the rainbow. A simple inverse model based on the Airy theory of rainbow is used to characterize a glass fibre diameter. The empirical analysis is mainly devoted to confirm the theoretical predictions and present some achievements in the formation and processing of the Airy rainbow with the use of high-power light emitting diode (LED).
Świrniak, Grzegorz; Głomb, Grzegorz; Mroczka, Janusz
2014-07-01
The aim of this paper is to discuss the possibility of a noninvasive, optical characterization of a transparent (glass) fiber on the basis of scattered light in the vicinity of a primary rainbow. Computational studies show that with the use of a spectrally adjusted incident beam of light, it is possible to form a rainbow with no strong nonlinearities typical for coherent light and that may be interpreted in terms of Airy's theory of rainbow. An inverse analysis is applied to obtain the fiber diameter with the help of a straightforward mathematical formula based on the Airy integral, corrected by comparison with the solution according to the complex angular momentum method.
Gouy phase shift of lens-generated quasi-nondiffractive beam
NASA Astrophysics Data System (ADS)
Zhai, Chunjie; Cao, Zhaolou
2017-08-01
Gouy phase shift (GPS) along geometrical rays of quasi-nondiffractive beam is studied by Fresnel diffraction to understand its phase behavior. Two typical quasi-nondiffractive beams, quasi-Bessel beam generated by axicon and quasi-Airy beam generated by cubic phase mask, were studied. Results show that those two beams have different kinds of GPS. While quasi-Airy beam follows general phenomenon of converging light wave where its phase change across focal line is -π, quasi-Bessel beam has phase change of -π/2 although it is two-dimensional.
Leidos Reclaims Defelice Cup at Annual Golf Tournament | Poster
By Ashley DeVine, Staff Writer Leidos Biomedical Research reclaimed the Defelice Cup trophy from NCI at the eighth annual Ronald H. Defelice golf tournament, held October 14. The final score was 15–7, with Leidos Biomed tying the series 4 to 4. Fourteen players on each team battled it out at Rattlewood golf course in Mount Airy, Md.
Comment on ''Solution of the Schroedinger equation for the time-dependent linear potential''
Bekkar, H.; Maamache, M.; Benamira, F.
2003-07-01
We present the correct way to obtain the general solution of the Schroedinger equation for a particle in a time-dependent linear potential following the approach used in the paper of Guedes [Phys. Rev. A 63, 034102 (2001)]. In addition, we show that, in this case, the solutions (wave packets) are described by the Airy functions.
Comment on ``Solution of the Schrödinger equation for the time-dependent linear potential''
NASA Astrophysics Data System (ADS)
Bekkar, H.; Benamira, F.; Maamache, M.
2003-07-01
We present the correct way to obtain the general solution of the Schrödinger equation for a particle in a time-dependent linear potential following the approach used in the paper of Guedes [Phys. Rev. A 63, 034102 (2001)]. In addition, we show that, in this case, the solutions (wave packets) are described by the Airy functions.
Leidos Reclaims Defelice Cup at Annual Golf Tournament | Poster
By Ashley DeVine, Staff Writer Leidos Biomedical Research reclaimed the Defelice Cup trophy from NCI at the eighth annual Ronald H. Defelice golf tournament, held October 14. The final score was 15–7, with Leidos Biomed tying the series 4 to 4. Fourteen players on each team battled it out at Rattlewood golf course in Mount Airy, Md.
Integrable operators and the squares of Hankel operators
NASA Astrophysics Data System (ADS)
Blower, Gordon
2008-04-01
Integrable operators arise in random matrix theory, where they describe the asymptotic eigenvalue distribution of large self-adjoint random matrices from the generalized unitary ensembles. This paper gives sufficient conditions for an integrable operator to be the square of a Hankel operator, and applies the condition to the Airy, associated Laguerre, modified Bessel and Whittaker functions.
ERIC Educational Resources Information Center
Biemiller, Lawrence
2007-01-01
Charles Carroll Jr. would be long forgotten but for a single notable accomplishment: he built an exceedingly handsome house. Begun in 1801 with money from his wealthy father-- Charles Carroll of Carrollton, the only Roman Catholic signer of the Declaration of Independence-- the Federal-style home has near-perfect proportions and airy rooms. The…
ERIC Educational Resources Information Center
Biemiller, Lawrence
2007-01-01
Charles Carroll Jr. would be long forgotten but for a single notable accomplishment: he built an exceedingly handsome house. Begun in 1801 with money from his wealthy father-- Charles Carroll of Carrollton, the only Roman Catholic signer of the Declaration of Independence-- the Federal-style home has near-perfect proportions and airy rooms. The…
FTIR-based airborne spectral imagery for target interrogation
NASA Astrophysics Data System (ADS)
Smithson, Tracy L.; St. Germain, Daniel; Nadeau, Denis
2007-09-01
DRDC Valcartier is continuing to developed infrared spectral imagery systems for a variety of military applications. Recently a hybrid airborne spectral imager / broadband imager system has been developed for ground target interrogation (AIRIS). This system employs a Fourier Transform Interferometer system coupled to two 8x8 element detector arrays to create spectral imagery in the region from 2.0 to 12 microns (830 to 5000 cm -1) at a spectral resolution of up to 1 cm -1. In addition, coupled to this sensor are three broadband imagers operating in the visible, mid-wave and long-wave infrared regions. AIRIS uses an on-board tracking capability to: dwell on a target, select multiple targets sequentially, or build a mosaic description of the environment around a specified target point. Currently AIRIS is being modified to include real-time spectral imagery calibration and application processing. In this paper the flexibility of the AIRIS system will be described, its concept of operation discussed and examples of measurements will be shown.
CAOS: Code for Adaptive Optics Systems
NASA Astrophysics Data System (ADS)
Carbillet, M.; Verinaud, C.; Femenia, B.; Riccardi, A.; Fini, L.
2011-06-01
The CAOS "system" (where CAOS stands for Code for Adaptive Optics Systems) is properly said a Problem Solving Environment (PSE). It is essentially composed of a graphical programming interface (the CAOS Application Builder) which can load different packages (set of modules). Current publicly distributed packages are the Software Package CAOS (the original adaptive optics package), the Software Package AIRY (an image-reconstruction-oriented package - AIRY stands for Astronomical Image Restoration with interferometrY), the Software Package PAOLAC (a simple CAOS interface for the analytic IDL code PAOLA developed by Laurent Jolissaint - PAOLAC stands for PAOLA within Caos), and a couple of private packages (not publicly distributed but restricted to the corresponding consortia): SPHERE (especially developed for the VLT planet finder SPHERE), and AIRY-LN (a specialized version of AIRY for the LBT instrument LINC-NIRVANA). Another package is also being developed: MAOS (that stands for Multiconjugate Adaptive Optics Simulations), developed for multi-reference multiconjugate AO studies purpose but still in a beta-version form.
Tracy-Widom at High Temperature
NASA Astrophysics Data System (ADS)
Allez, Romain; Dumaz, Laure
2014-09-01
We investigate the marginal distribution of the bottom eigenvalues of the stochastic Airy operator when the inverse temperature tends to . We prove that the minimal eigenvalue, whose fluctuations are governed by the Tracy-Widom law, converges weakly, when properly centered and scaled, to the Gumbel distribution. More generally we obtain the convergence in law of the marginal distribution of any eigenvalue with given index . Those convergences are obtained after a careful analysis of the explosion times process of the Riccati diffusion associated to the stochastic Airy operator. We show that the empirical measure of the explosion times converges weakly to a Poisson point process using estimates proved in Dumaz and Virág (Ann Inst H Poincaré Probab Statist 49(4):915-933, 2013). We further compute the empirical eigenvalue density of the stochastic Airy ensemble on the macroscopic scale when . As an application, we investigate the maximal eigenvalues statistics of -ensembles when the repulsion parameter when . We study the double scaling limit and argue with heuristic and numerical arguments that the statistics of the marginal distributions can be deduced following the ideas of Edelman and Sutton (J Stat Phys 127(6):1121-1165, 2007) and Ramírez et al. (J Am Math Soc 24:919-944, 2011) from our later study of the stochastic Airy operator.
Spherically symmetric inhomogeneous bianisotropic media: Wave propagation and light scattering
NASA Astrophysics Data System (ADS)
Novitsky, Andrey; Shalin, Alexander S.; Lavrinenko, Andrei V.
2017-05-01
We develop a technique for finding closed-form expressions for electromagnetic fields in radially inhomogeneous bianisotropic media, both the solutions of the Maxwell equations and material tensors being defined by the set of auxiliary two-dimensional matrices. The approach is applied to determine the scattering cross-sections by spherical particles, the fields inside which correspond to the Airy-exponential waves.
Mars, the Meridian, and Mert: The Quest for Martian Longitude
NASA Astrophysics Data System (ADS)
Archinal, B. A.; Caplinger, M.
2002-12-01
From the mid 1960?s until his passing last year, Merton Davies of RAND was closely involved in establishing and maintaining the fundamental coordinate system for Mars. This included the establishment of the location of a modern 0-degree or Prime Meridian for Mars. In the early 1970's, images of the Martian surface became available via the Mariner 9 spacecraft. In 1973 G. de Vaucouleurs, Davies, and F. Sturms, Jr. proposed (JGR, 78, 4395) that a small easily identifiable crater in the area of Sinus Meridiani - the previously accepted origin - be used to define the Meridian. H. Masursky, de Vaucouleurs, and Davies selected an ~500 m diameter crater to serve this purpose. They proposed a name of Airy-0 for the crater in honor of Sir George Airy, who installed the transit instrument at the Greenwich Observatory, which for many years defined the Prime Meridian of the Earth. In a photogrammetric adjustment of Mariner 9 images Davies (Photo. Eng., 39, 1297; JGR, 78, 4355) held the longitude of Airy-0 fixed at 0-degrees, and thereby tied the entire Martian coordinate system to this crater. Davies and colleagues at RAND continued through 2001 in revising this coordinate system. All the while, these improved coordinate systems continued to be tied to Airy-0 and provided revised values for W0, the angle relating surface longitudes to inertial space coordinates. In 2001, the NASA Mars Geodesy and Cartography Working Group, chaired by T. Duxbury, and having as members many scientists (representing e.g. NASA, USGS, Malin SSS, DLR) interested in Martian coordinate system problems, assessed all available information on the location of Airy-0. This included solutions from Davies and Colvin and others, an evaluation of spacecraft lander locations, a Mars Global Surveyor Mars Orbiter Camera (MOC) image of Airy-0, and MOLA data in the vicinity of Airy-0. A value of W0 = 176.630 degrees was adopted for use, and this value has now in turn been adopted by the IAU (Seidelmann et al., Cel
The Martian Prime Meridian -- Longitude 'Zero'
NASA Technical Reports Server (NTRS)
2001-01-01
[figure removed for brevity, see original site]
On Earth, the longitude of the Royal Observatory in Greenwich, England is defined as the 'prime meridian,' or the zero point of longitude. Locations on Earth are measured in degrees east or west from this position. The prime meridian was defined by international agreement in 1884 as the position of the large 'transit circle,' a telescope in the Observatory's Meridian Building. The transit circle was built by Sir George Biddell Airy, the 7th Astronomer Royal, in 1850. (While visual observations with transits were the basis of navigation until the space age, it is interesting to note that the current definition of the prime meridian is in reference to orbiting satellites and Very Long Baseline Interferometry (VLBI) measurements of distant radio sources such as quasars. This 'International Reference Meridian' is now about 100 meters east of the Airy Transit at Greenwich.)
For Mars, the prime meridian was first defined by the German astronomers W. Beer and J. H. Madler in 1830-32. They used a small circular feature, which they designated 'a,' as a reference point to determine the rotation period of the planet. The Italian astronomer G. V. Schiaparelli, in his 1877 map of Mars, used this feature as the zero point of longitude. It was subsequently named Sinus Meridiani ('Middle Bay') by Camille Flammarion.
When Mariner 9 mapped the planet at about 1 kilometer (0.62 mile) resolution in 1972, an extensive 'control net' of locations was computed by Merton Davies of the RAND Corporation. Davies designated a 0.5-kilometer-wide crater (0.3 miles wide), subsequently named 'Airy-0' (within the large crater Airy in Sinus Meridiani) as the longitude zero point. (Airy, of course, was named to commemorate the builder of the Greenwich transit.) This crater was imaged once by Mariner 9 (the 3rd picture taken on its 533rd orbit, 533B03) and once by the Viking 1 orbiter in 1978 (the 46th image on that spacecraft's 746th orbit
The Martian Prime Meridian -- Longitude 'Zero'
NASA Technical Reports Server (NTRS)
2001-01-01
[figure removed for brevity, see original site]
On Earth, the longitude of the Royal Observatory in Greenwich, England is defined as the 'prime meridian,' or the zero point of longitude. Locations on Earth are measured in degrees east or west from this position. The prime meridian was defined by international agreement in 1884 as the position of the large 'transit circle,' a telescope in the Observatory's Meridian Building. The transit circle was built by Sir George Biddell Airy, the 7th Astronomer Royal, in 1850. (While visual observations with transits were the basis of navigation until the space age, it is interesting to note that the current definition of the prime meridian is in reference to orbiting satellites and Very Long Baseline Interferometry (VLBI) measurements of distant radio sources such as quasars. This 'International Reference Meridian' is now about 100 meters east of the Airy Transit at Greenwich.)
For Mars, the prime meridian was first defined by the German astronomers W. Beer and J. H. Madler in 1830-32. They used a small circular feature, which they designated 'a,' as a reference point to determine the rotation period of the planet. The Italian astronomer G. V. Schiaparelli, in his 1877 map of Mars, used this feature as the zero point of longitude. It was subsequently named Sinus Meridiani ('Middle Bay') by Camille Flammarion.
When Mariner 9 mapped the planet at about 1 kilometer (0.62 mile) resolution in 1972, an extensive 'control net' of locations was computed by Merton Davies of the RAND Corporation. Davies designated a 0.5-kilometer-wide crater (0.3 miles wide), subsequently named 'Airy-0' (within the large crater Airy in Sinus Meridiani) as the longitude zero point. (Airy, of course, was named to commemorate the builder of the Greenwich transit.) This crater was imaged once by Mariner 9 (the 3rd picture taken on its 533rd orbit, 533B03) and once by the Viking 1 orbiter in 1978 (the 46th image on that spacecraft's 746th orbit
The Martian Prime Meridian -- Longitude "Zero"
2001-02-08
On Earth, the longitude of the Royal Observatory in Greenwich, England is defined as the "prime meridian," or the zero point of longitude. Locations on Earth are measured in degrees east or west from this position. The prime meridian was defined by international agreement in 1884 as the position of the large "transit circle," a telescope in the Observatory's Meridian Building. The transit circle was built by Sir George Biddell Airy, the 7th Astronomer Royal, in 1850. (While visual observations with transits were the basis of navigation until the space age, it is interesting to note that the current definition of the prime meridian is in reference to orbiting satellites and Very Long Baseline Interferometry (VLBI) measurements of distant radio sources such as quasars. This "International Reference Meridian" is now about 100 meters east of the Airy Transit at Greenwich.) For Mars, the prime meridian was first defined by the German astronomers W. Beer and J. H. Mädler in 1830-32. They used a small circular feature, which they designated "a," as a reference point to determine the rotation period of the planet. The Italian astronomer G. V. Schiaparelli, in his 1877 map of Mars, used this feature as the zero point of longitude. It was subsequently named Sinus Meridiani ("Middle Bay") by Camille Flammarion. When Mariner 9 mapped the planet at about 1 kilometer (0.62 mile) resolution in 1972, an extensive "control net" of locations was computed by Merton Davies of the RAND Corporation. Davies designated a 0.5-kilometer-wide crater (0.3 miles wide), subsequently named "Airy-0" (within the large crater Airy in Sinus Meridiani) as the longitude zero point. (Airy, of course, was named to commemorate the builder of the Greenwich transit.) This crater was imaged once by Mariner 9 (the 3rd picture taken on its 533rd orbit, 533B03) and once by the Viking 1 orbiter in 1978 (the 46th image on that spacecraft's 746th orbit, 746A46), and these two images were the basis of the martian
NASA Astrophysics Data System (ADS)
Koval'ová, Zuzana; Tarabová, Kataŕna; Hensel, Karol; Machala, Zdenko
2013-02-01
Cold air plasmas of DC and pulsed corona discharges: positive streamers and negative Trichel pulses were used for bio-decontamination of Streptococci biofilm and Bacillus cereus spores on polypropylene plastic surfaces. The reduction of bacterial population (evaluated as log10) in the biofilm on plastic surfaces treated by DC corona reached 2.4 logs with 10 min treatment time and 3.3 logs with 2 min treatment time with water spraying. The enhancement of plasma biocidal effects on the biofilm by electro-spraying of water through a hollow needle high-voltage electrode was investigated. No significant polarity effect was found with DC corona. Pulsed corona was demonstrated slightly more bactericidal for spores, especially in the negative polarity where the bacterial population reduction reached up to 2.2 logs at 10 min exposure time. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms
NASA Astrophysics Data System (ADS)
Mizeraczyk, Jerzy; Dors, Mirosław; Jasiński, Mariusz; Hrycak, Bartosz; Czylkowski, Dariusz
2013-02-01
This work was aimed at experimental investigations of deactivation of different types of microorganisms by using atmospheric pressure low-temperature microwave microplasma source (MmPS). The MmPS was operated at standard microwave frequency of 2.45 GHz. Its main advantages are simple and cheap construction, portability and possibility of penetrating into small cavities. The microplasma deactivation concerned two types of bacteria (Escherichia coli, Bacillus subtilis) and one fungus (Aspergillus niger). The quality as well as quantity tests were performed. The influence of the microorganism type, oxygen concentration, absorbed microwave power, microplasma treatment time and MmPS distance from the treated sample on the microorganism deactivation efficiency was investigated. All experiments were performed for Ar microplasma and Ar/O2 microplasma with up to 3% of O2. Absorbed microwave power was up to 50 W. The Ar flow rate was up to 10 L/min. The sample treatment time was up to 10 s. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
NASA Astrophysics Data System (ADS)
Nakamiya, Toshiyuki; Mitsugi, Fumiaki; Iwasaki, Yoichiro; Ikegami, Tomoaki; Tsuda, Ryoichi; Sonoda, Yoshito; Danuta Stryczewska, Henryka
2013-02-01
The phase modulation of transparent gas can be detected using Fraunhofer diffraction technique, which we call optical wave microphone (OWM). The OWM is suitable for the detection of sonic wave from audible sound to ultrasonic wave. Because this technique has no influence on sound field or electric field during the measurement, we have applied it to the sound detection for the electric discharges. There is almost no research paper that uses the discharge sound to examine the electrical discharge phenomenon. Two-dimensional visualization of the sound field using the OWM is also possible when the computerized tomography (CT) is combined. In this work, coplanar dielectric barrier discharge sin different gases of Ar, N2, He were characterized via the OWM as well as applied voltage and discharge current. This is the first report to investigate the influence of the type of the atmospheric gas on the two-dimensional sound field distribution for the coplanar dielectric barrier discharge using the OWM with CT. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
Generation of high pressure homogeneous dielectric barrier discharge in air
NASA Astrophysics Data System (ADS)
Osawa, Naoki; Takashi, Ami; Yoshioka, Yoshio; Hanaoka, Ryoichi
2013-02-01
We succeeded in generating an atmospheric pressure Townsend discharge (APTD) in air by using a simple DBD device that consists of alumina barriers and plane electrodes. So far, we applied the APTD to an ozonizer and found that the ozone generation efficiency was higher by the APTD mode than by the conventional DBD mode in larger specific input energy region. It is well known that an operation under an optimized high gas pressure is advantageous for efficient ozone generation from air. In this paper, we investigated whether the Townsend discharge (TD) in dry air in high pressure up to 0.17 MPa can be generated or not. From the observation results of current waveforms and discharge photographs, we found that (1) the discharge currents flow continuously and have only one peak in every half cycle in all gas pressure and (2) filamentary discharges are not recognized between barriers in all gas pressure. These features completely agree with the features of the APTD we reported. Therefore, we concluded that our TD can be generated even in dry air in the pressure range of 0.1 and 0.17 MPa. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
Hammad, Efat Abou-Fakhr; El-Mohtar, Choaa; Abou-Jawdah, Yusuf
2011-01-01
Leafhoppers (Hemiptera: Auchenorrhyncha: Cicadellidae) account for more than 80% of all “Auchenorrhynchous” vectors that transmit phytoplasmas. The leafhopper populations in two almond witches'-broom phytoplasma (AlmWB) infected sites: Tanboureet (south of Lebanon) and Bourj El Yahoudieh (north of Lebanon) were surveyed using yellow sticky traps. The survey revealed that the most abundant species was Asymmetrasca decedens, which represented 82.4% of all the leafhoppers sampled. Potential phytoplasma vectors in members of the subfamilies Aphrodinae, Deltocephalinae, and Megophthalminae were present in very low numbers including: Aphrodes makarovi, Cicadulina bipunctella, Euscelidius mundus, Fieberiella macchiae, Allygus theryi, Circulifer haematoceps, Neoaliturus transversalis, and Megophthalmus scabripennis. Allygus theryi (Horváth) (Deltocephalinae) was reported for the first time in Lebanon. Nested PCR analysis and sequencing showed that Asymmetrasca decedens, Empoasca decipiens, Fieberiella macchiae, Euscelidius mundus, Thamnottetix seclusis, Balclutha sp., Lylatina inexpectata, Allygus sp., and Annoplotettix danutae were nine potential carriers of AlmWB phytoplasma. Although the detection of phytoplasmas in an insect does not prove a definite vector relationship, the technique is useful in narrowing the search for potential vectors. The importance of this information for management of AlmWB is discussed. PMID:21864154
Ozone-mist spray sterilization for pest control in agricultural management
NASA Astrophysics Data System (ADS)
Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun
2013-02-01
We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
Oxidation of nitrogen oxide in hybrid plasma-catalytic reactors based on DBD and Fe2O3
NASA Astrophysics Data System (ADS)
Jõgi, Indrek; Erme, Kalev; Haljaste, Ants; Laan, Matti
2013-02-01
In the present study, Fe2O3 was used as catalyst for the removal of NO in a hybrid plasma- catalytic reactor. The catalyst was located either directly inside the hybrid plasma-catalytic reactor or in a separate catalytic reactor, which followed ozone producing and injecting plasma reactor. Ozone production in such a reactor was dependent on the state of the electrode surface. The fresh catalyst ensured an order of magnitude smaller ozone concentration in the outlet of the hybrid reactor. After a short treatment of the catalyst with NO2, its ability to destroy ozone diminished but was regained after heating of the reactor up to 100 °C. Similarly to earlier results obtained with TiO2, the removal of NO in the hybrid reactor with Fe2O3 was enhanced compared to that in an ordinary plasma reactor. In the ozone injection reactor, oxidation of NO to NO2 took place with considerably higher efficiency compared to the hybrid reactor. The use of catalyst in the ozonation stage further improved the oxidation of NO2 to N2O5. The time-dependence effects of NO removal during plasma and ozone oxidation were explained by reactions between NO2 adsorbed on surface, with surface-bound NO3 and gas phase NO as the reaction product. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
Plasma deposition of antimicrobial coating on organic polymer
NASA Astrophysics Data System (ADS)
Rżanek-Boroch, Zenobia; Dziadczyk, Paulina; Czajkowska, Danuta; Krawczyk, Krzysztof; Fabianowski, Wojciech
2013-02-01
Organic materials used for packing food products prevent the access of microorganisms or gases, like oxygen or water vapor. To prolong the stability of products, preservatives such as sulfur dioxide, sulfites, benzoates, nitrites and many other chemical compounds are used. To eliminate or limit the amount of preservatives added to food, so-called active packaging is sought for, which would limit the development of microorganisms. Such packaging can be achieved, among others, by plasma modification of a material to deposit on its surface substances inhibiting the growth of bacteria. In this work plasma modification was carried out in barrier discharge under atmospheric pressure. Sulfur dioxide or/and sodium oxide were used as the coating precursors. As a result of bacteriological studies it was found that sulfur containing coatings show a 16% inhibition of Salmonella bacteria growth and 8% inhibition of Staphylococcus aureus bacteria growth. Sodium containing coatings show worse (by 10%) inhibiting properties. Moreover, films with plasma deposited coatings show good sealing properties against water vapor. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
Free fatty acids degradation in grease trap purification using ozone bubbling and sonication
NASA Astrophysics Data System (ADS)
Piotr Kwiatkowski, Michal; Satoh, Saburoh; Fukuda, Shogo; Yamabe, Chobei; Ihara, Satoshi; Nieda, Masanori
2013-02-01
The oil and fat were treated at first by only ozone bubbling and it was confirmed that the collection efficiency of them became 98.4% when the aeration was used. It showed that the aeration method in a grease trap cleared the standard value of 90% and there was no worry on the oil and fat outflow from a grease trap. The characteristics of sonication process were studied for free fatty acids degradation. The free saturated fatty acids are the most hard-degradable compounds of the fats, oils and greases (FOGs) in the grease trap. The influence of various parameters such as immersion level of an ultrasound probe in the liquid and bubbling of various gases (Ar, O2, air, O3) on the sonochemical and energy efficiency of the sonication process was investigated. The most effective degradation treatment method for saturated free fatty acids was the combination of sonication and low flow rate argon bubbling. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.
Fourth Bionanotox and Applications Research Conference, 2009
NASA Astrophysics Data System (ADS)
Camp, Judy
2010-04-01
"Anticipating the future" seemed the common challenge for scientists attending the 4th BioNanoTox and Applications Research Conference in Little Rock, AR, October 21-22, 2009. Over 50 participants in multi-disciplines such as biology, chemistry, physics, medicine, medical diagnostics, computer science and informatics, nanotechnology, toxicology, and pharmaceutical science gathered to share their research data. From topics on water and food resources to space exploration to conservation to understanding biological activities and using instruments and computers that process enormous data, participants shared research approaches from different fields to find common themes in this integrated field. Presentations aimed at preventing the harmful effects of scientific discoveries to animals, humans, plants, and environment; at controlling infections; and at optimizing health care. The conference included addresses from Thomas Flammang, PhD, of the Food and Drug Administration, National Center for Toxicological Research in Jefferson, AR; Little Rock City Mayor Mark Stodola; and two keynote speakers. Keynote lectures by Danuta Leszczynska, PhD, from the Department of Civil and Environmental Engineering, Interdisciplinary Nanotoxicity Center, in Jackson, MS, and by Keith Cowan, PhD, from the Institute for Environmental Biotechnology in Grahamstown, South Africa, highlighted current trends and future challenges of nanoparticle research and of bioprocess technologies. Additionally, 25 graduate and undergraduate students presented research posters, resulting in valuable discussion among the varied participants; three student projects were selected for awards.
Dakhil, Hala A; Hammad, Efat Abou-Fakhr; El-Mohtar, Choaa; Abou-Jawdah, Yusuf
2011-01-01
Leafhoppers (Hemiptera: Auchenorrhyncha: Cicadellidae) account for more than 80% of all "Auchenorrhynchous" vectors that transmit phytoplasmas. The leafhopper populations in two almond witches'-broom phytoplasma (AlmWB) infected sites: Tanboureet (south of Lebanon) and Bourj El Yahoudieh (north of Lebanon) were surveyed using yellow sticky traps. The survey revealed that the most abundant species was Asymmetrasca decedens, which represented 82.4% of all the leafhoppers sampled. Potential phytoplasma vectors in members of the subfamilies Aphrodinae, Deltocephalinae, and Megophthalminae were present in very low numbers including: Aphrodes makarovi, Cicadulina bipunctella, Euscelidius mundus, Fieberiella macchiae, Allygus theryi, Circulifer haematoceps, Neoaliturus transversalis, and Megophthalmus scabripennis. Allygus theryi (Horváth) (Deltocephalinae) was reported for the first time in Lebanon. Nested PCR analysis and sequencing showed that Asymmetrasca decedens, Empoasca decipiens, Fieberiella macchiae, Euscelidius mundus, Thamnottetix seclusis, Balclutha sp., Lylatina inexpectata, Allygus sp., and Annoplotettix danutae were nine potential carriers of AlmWB phytoplasma. Although the detection of phytoplasmas in an insect does not prove a definite vector relationship, the technique is useful in narrowing the search for potential vectors. The importance of this information for management of AlmWB is discussed.
Accurate Thermal Stresses for Beams: Normal Stress
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Pilkey, Walter D.
2003-01-01
Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.
Accurate Thermal Stresses for Beams: Normal Stress
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Pilkey, Walter D.
2002-01-01
Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.
Accelerating Airy–Gauss–Kummer localized wave packets
Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi; Huang, Tingwen
2014-01-15
A general approach to generating three-dimensional nondiffracting spatiotemporal solutions of the linear Schrödinger equation with an Airy-beam time-dependence is reported. A class of accelerating optical pulses with the structure of Airy–Gauss–Kummer vortex beams is obtained. Our results demonstrate that the optical field contributions to the Airy–Gauss–Kummer accelerating optical wave packets of the cylindrical symmetry can be characterized by the radial and angular mode numbers. -- Highlights: •A general solution of 3D linear Schrödinger equation with an Airy time-dependence is reported. •We find that the Airy–Kummer spatiotemporal wave packets can carry infinite energy. •A class of the accelerating spatiotemporal optical pulses with special structures was found. •The spatiotemporal wave packets retain their energy features over several Rayleigh lengths.
NASA Astrophysics Data System (ADS)
Goyal, Amit; Raju, Thokala Soloman; Kumar, C. N.; Panigrahi, Prasanta K.
2016-04-01
We analytically explore optical rogue waves in a nonlinear graded-index waveguide, with spatially modulated dispersion, nonlinearity, and linear refractive-index. We study the evolution of first-order rogue wave and rogue wave triplet on Airy-Bessel, sech2, and tanh background beams, and reveal that the characteristics of RWs are well maintained while the amplitude of the first-order RW gets enhanced three times the maximum value of the Airy-Bessel and sech2 background beams and five times in the case of RW triplet. These results could be of great interest in realizing the RWs in experimentally realizable situations on small-amplitude background beams in nonlinear optics.
Self-reconstruction of diffraction-free and accelerating laser beams in scattering media
NASA Astrophysics Data System (ADS)
Ersoy, T.; Yalizay, B.; Akturk, S.
2012-12-01
We experimentally investigate propagation of laser beams with different intensity profiles in highly scattering media. We generate transverse laser amplitude profiles with Gaussian, Bessel and Airy function envelopes. We then propagate these beams through optical phantoms formed with variable density intralipid solutions. At the sample exit, we compare change in maximum intensities, as well as beam profile reconstruction. We show that self-reconstruction properties of Bessel and Airy beams bring about slower decrease in maximum intensity with increasing scatterer density. On the other hand, the beam profiles deteriorate faster, as compared to reference Gaussian beams. Slower decrease in the intensity can be attributed to the wavevector spectra providing a continuous flow of energy to the beam center, while beam deterioration is linked to total beam volume in the scattering medium. These results show that beam shaping methods can significantly enhance delivery of intense light deeper into turbid media, but this enhancement is compromised by stronger speckling of beam profiles.
On numerical solutions to the QCD ’t Hooft equation in the limit of large quark mass
Zubov, Roman; Prokhvatilov, Evgeni
2016-01-22
First we give a short informal introduction to the theory behind the ’t Hooft equation. Then we consider numerical solutions to this equation in the limit of large fermion masses. It turns out that the spectrum of eigenvalues coincides with that of the Airy differential equation. Moreover when we take the Fourier transform of eigenfunctions, they look like the corresponding Airy functions with appropriate symmetry. It is known that these functions correspond to solutions of a one dimensional Schrodinger equation for a particle in a triangular potential well. So we find the analogy between this problem and the ’t Hooft equation. We also present a simple intuition behind these results.
Geoid height versus topography for oceanic plateaus and swells
NASA Technical Reports Server (NTRS)
Sandwell, David T.; Mackenzie, Kevin R.
1989-01-01
Gridded geoid height data (Marsh et al.l, 1986) and gridded bathymetry data (Van Wykhouse, 1973) are used to estimate the average compensation depths of 53 oceanic swells and plateaus. The relationship between geoid height and topography is examined using Airy and thermal compensation models. It is shown that geoid height is linearly related to topography between wavelengths of 400 and 4000 m as predicted by isostatic compensation models. The geoid/topography ratio is dependent on the average depth of compensation. The intermediate geoid/topography ratios of most thermal swells are interpreted as a linear combination of the decaying thermal swell signature and that of the persisting Airy-compensated volcanic edifice.
Automatic Fourier transform and self-Fourier beams due to parabolic potential
Zhang, Yiqi; Liu, Xing; Belić, Milivoj R.; Zhong, Weiping; Petrović, Milan S.; Zhang, Yanpeng
2015-12-15
We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fourier transforms are the beams themselves.
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Bagherbandi, Mohammad
2011-10-01
The effects of topographic masses on satellite gradiometric data are large and in order to reduce the magnitude of these effects some compensation mechanisms should be considered. Here we use the isostatic hypotheses of Airy-Heiskanen and the recent Vening Meinesz-Moritz for compensating these effects and to smooth the data prior to their downward continuation to gravity anomaly. The second-order partial derivatives of extended Stokes' formula are used for the continuations over a topographically rough territory like Persia. The inversions are performed and compared based on two schemes of the remove-compute-restore technique and direct downward continuation. Numerical results show that the topographic-isostatic effect based on Vening Meinesz-Mortiz's hypothesis smoothes the data better than that based on Airy-Heiskanen's hypothesis. Also the quality of inversions of the smoothed data by this mechanism is twice better than that of the nonsmoothed ones.
Application of boundary integral method to elastic analysis of V-notched beams
NASA Technical Reports Server (NTRS)
Rzasnicki, W.; Mendelson, A.; Albers, L. U.
1973-01-01
A semidirect boundary integral method, using Airy's stress function and its derivatives in Green's boundary integral formula, is used to obtain an accurate numerical solution for elastic stress and strain fields in V-notched beams in pure bending. The proper choice of nodal spacing on the boundary is shown to be necessary to achieve an accurate stress field in the vicinity of the tip of the notch. Excellent agreement is obtained with the results of the collocation method of solution.
Alpha particle condensation in {sup 12}C and nuclear rainbow scattering
Ohkubo, S.; Hirabayashi, Y.
2008-05-12
It is shown that the large radius of the Hoyle state of {sup 12}C with a dilute density distribution in an {alpha} particle condensate can be clearly seen in the shift of the rainbow angle (therefore the Airy minimum) to a larger angle in {alpha}+{sup 12}C rainbow scattering at the high energy region and prerainbow oscillations in {sup 3}He+{sup 12}C scattering at the lower energy region.
Sensing of DNA by Graphene-on-Silicon FET Structures at DC and 101 GHz
2015-01-01
For each G in Fig. 2, T displays the oscillatory Airy-function behavior characteristic of all parallel-plate etalons (and Fabry – Perot resonators) with...method entails transfer of a low- pressure chemical vapor deposition (LPCVD)-prepared, monolayer graphene film oxide-pre-coated, high-resistivity silicon...reflectivity of the graphene interface. 2. Experiments Fig. 2(b) guided our design of the experimental sensor apparatus shown schematically in Fig. 3. It
What Brown saw and you can too
NASA Astrophysics Data System (ADS)
Pearle, Philip; Collett, Brian; Bart, Kenneth; Bilderback, David; Newman, Dara; Samuels, Scott
2010-12-01
A discussion of Robert Brown's original observations of particles ejected by pollen of the plant Clarkia pulchella undergoing what is now called Brownian motion is given. We consider the nature of those particles and how he misinterpreted the Airy disk of the smallest particles to be universal organic building blocks. Relevant qualitative and quantitative investigations with a modern microscope and with a "homemade" single lens microscope similar to Brown's are presented.
Multiscale Modeling of Ionospheric Irregularities
2014-10-22
Airy Gun’: self- accelerating solutions of the time-dependent Schrodinger equation Phys. Lett. A 377 33–8 [70] Mahalov A and Suslov S 2013 Wigner...function approach to oscillating solutions of the nonlinear Schrodinger equation J. Nonlin. Opt. Phys. Mater. 22 1350013 [71] Marbaix P H, Gallee O...Y., B. Kwon, A. Mahalov and T.B. Nguyen, 2014, Solution of Maxwell equations in media with multiple random interfaces, Int. Journal of Numerical
Earth's isostatic gravity anomaly field: Contributions to National Geodetic Satellite Program
NASA Technical Reports Server (NTRS)
Khan, M. A.
1973-01-01
On the assumption that the compensation for the topographic load is achieved in the manner of Airy-Heiskenenan hypothesis at a compensation depth of 30 kilometers, the spherical harmonic coefficients of the isostatic reduction potential U are computed. The degree power spectra of these coefficients are compared with the power spectra of the isostatic reduction coefficients given by Uotila. Results are presented in tabular form.
2012-03-07
Radiation Patterns Predicted and measured Beam Steering integration to Shadow Harvest Sensor Pod Lockheed Martin and OSU 29 DISTRIBUTION A...spatial filtering system, with an appropriate phase mask, can produce an Airy beam 18 DISTRIBUTION A: Approved for public release; distribution is...ES) arrays attain 7 dB realizable gain, 5 dB higher than any previous ES antenna . • Can be used to replace much larger Yagi antennas . • Paves
Test and Evaluation of a Pilot Two-Stage Precipitator for Jet Engine Test Cell Exhaust Gas Cleaning
1976-04-01
then available for emission control . A two- stage electrostatic precipitator was recommended as .j he most viable alternative to a concept then being...TEST AND EVALUATION OF A "PILOT TWO* STAGE PRECIPITATOR FOR JET ENGINE TEST CELL 0 EXHAUST GA, S CLEANING C44 NAVAL AIR REWORK FACILITY NAVAL AIR...is the release you requested in your telephone conversation of 20 July 1976 with the undersigned. Yourn very tru~ly, Head Specifications Branch a 21
Superresolved Imaging Using the Hartley Transform and a Hemispherical Object Space
1988-12-01
in the far field is a Bessel function - the intensity being later called an Airy pattern (6:419). In 1896, Lord John William Strutt Rayleigh ...April 1968). 13. Walker John G. "Optical Imaging with Resolution Exceeding the Rayleigh Criterion," Optica ACTA, 30: 1197-1202 (1983). 14. Joyce...for challenging my work; Bruce Hornsby, Pink Floyd and Rush for inspiration; and John T. Kelly, my father, for always asking me "Why?". Aoesifoln d/or
Precise evaluation of the Helmholtz equation for optical propagation.
Pond, John E; Sutton, George W
2015-01-01
A precise computational integration of the Helmholtz equation was performed for laser propagation of an electromagnetic wave with no approximations or linearization. This computation integration was performed using 64-bit processors. This is illustrated for a uniform monochromatic beam from a circular aperture that has a uniform intensity. It predicts many Arago spots and near-field intensity fluctuations for a large ratio of aperture size to wavelength and converges to the usual Airy pattern in the far field.
NASA Astrophysics Data System (ADS)
Krisch, J. P.; Glass, E. N.
2014-11-01
A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.
NASA Astrophysics Data System (ADS)
Luther, P.
In this bibliography a concise biographical chronology of the following astronomers is given: George Biddell Airy (1801 - 1892), Robert Stawell Ball (1840 - 1913), George Phillips Bond (1825 - 1865), William Cranch Bond (1789 - 1859), Agnes Mary Clerke (1842 - 1907), John Frederick William Herschel (1792 - 1871), Edward Singleton Holden (1846 - 1914), Joseph Norman Lockyer (1836 - 1920), Percival Lowell (1855 - 1916), Ormsby MacKnight Mitchel (1809 - 1862), Simon Newcomb (1835 - 1909), Richard Anthony Proctor (1837 - 1888), Mary Fairfax Greig Somerville (1780 - 1872).
Information Center Planning and Implementation Guide. Part B. Revision
1986-10-20
Systems Engineering Command Fort Belvoir, Virginia 22060-5456 U.S. Army Institute for Research in Management Information, Communications and Computer...GUIDE (Revision) Contract # DAEA26- 86- Q- 2010 COR. Dr. Michael Evans 0 October 20, 1986 Z,- PREFACE The Army Institute for Research in Management...Information, Communications, and Computer Sciences (AIRMICS) is the research arm o~f fli-. t. S. Army Information Systems Engineering Command,(ISEC). AIRI
Edge Scaling of the β-Jacobi Ensemble
NASA Astrophysics Data System (ADS)
Holcomb, Diane; Moreno Flores, Gregorio R.
2012-12-01
We study the scaling limit of the spectrum of the β-Jacobi ensemble at the soft edge and hard edge for general values of β. We show that the limiting point processes correspond respectively to the stochastic Airy and Bessel point processes introduced in Ramírez et al. (J. Am. Math. Soc. 24(4):919-944, 2011) and Ramírez and Rider (Commun. Math. Phys. 288(3):887-906, 2009).
NASA Astrophysics Data System (ADS)
Krisch, J. P.; Glass, E. N.
2014-10-01
A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.
Solving the {sup 12}C+{sup 12}C scattering puzzle: is there the '4th elephant'?
Demyanova, A. S.; Danilov, A. N.; Ogloblin, A. A.; Goncharov, S. A.; Bohlen, H. G.; Khlebnikov, S. V.; Tyurin, G. P.; Maslov, V. A.; Penionzkevich, Yu. E.; Sobolev, Yu. G.; Trzaska, W.
2010-04-30
Differential cross sections of the {sup 12}C+{sup 12}C and the {sup 13}C+{sup 12}C elastic scattering were measured at the projectile energies 240 MeV ({sup 12}C) and 250 MeV ({sup 13}C) up to the largest angles. The positions of the 1{sup st} Airy minima known from the former experiments were confirmed.
Solitons and the Inverse Scattering Transform
1980-01-01
the Airy equation ; it arises in certain problems in optics. Part (b) is the time - dependent Schr6dinger equation , with no potential. Part (c) is the...of these special nonlinear evolution equations are quite predictable, and can be computed explicitly (especially for large times ) once the initial data...ifferertial equations , even before time - dependence is brought into the picture! Fortunately, another miracle occurs, and there is a change of variables
Terahertz beam shaping with metasurface
NASA Astrophysics Data System (ADS)
He, Jingwen; Wang, Sen; Zhang, Yan
2016-11-01
Based on metasurface, two beam shapers are designed to modulate the wavefront of the terahertz beam. One of the beam shapers is THz ring-Airy beam generator and the other is THz four-focus lens. Each beam shaper is composed of a serious of C-shaped slot antennas, which can be used to modulate the phase and amplitude of the cross-polarized scattered wave. A THz holographic imaging system is utilized to measure the field of the generated beams. The ring- Airy beam shaper is designed by replacing both the phase and amplitude of its initial electric field with the corresponding antennas. In the experiment, an abrupt focus following a parabolic trajectory is subsequently observed. This method can be expanded to other wavebands, such as the visible band, in which the ring-Airy beam shaper can replace traditional computer-generated holography to avoid undesirable multiple diffraction orders. The phase distribution of the four-focus lens is obtained by using the Yang-Gu amplitude-phase retrieval algorithm and then encoded to the antennas. Both the focusing and imaging properties are demonstrated. A clear image can be obtained with a bandwidth of 110 GHz. This type of transmissive metasurface beam shaper serves as an attractive alternative to conventional diffractive optical elements based on its small size, ease of fabrication, and low cost.
Interface fluctuations for deposition on enlarging flat substrates
NASA Astrophysics Data System (ADS)
Carrasco, I. S. S.; Takeuchi, K. A.; Ferreira, S. C.; Oliveira, T. J.
2014-12-01
We investigate solid-on-solid models that belong to the Kardar-Parisi-Zhang (KPZ) universality class on substrates that expand laterally at a constant rate by duplication of columns. Despite the null global curvature, we show that all investigated models have asymptotic height distributions and spatial covariances in agreement with those expected for the KPZ subclass for curved surfaces. In 1 + 1 dimensions, the height distribution and covariance are given by the GUE Tracy-Widom distribution and the Airy2 process instead of the GOE and Airy1 foreseen for flat interfaces. These results imply that when the KPZ class splits into curved and flat subclasses, as conventionally considered, the expanding substrate may play a role equivalent to, or perhaps more important than, the global curvature. Moreover, the translational invariance of the interfaces evolving on growing domains allowed us to accurately determine, in 2 + 1 dimensions, the analog of the GUE Tracy-Widom distribution for height distribution and that of the Airy2 process for spatial covariance. Temporal covariance is also calculated and shown to be universal in each dimension and in each of the two subclasses. A logarithmic correction associated with the duplication of columns is observed and theoretically elucidated. Finally, crossover between regimes with fixed-size and enlarging substrates is also investigated.
Art form as an object of cognitive modeling (towards development of Vygotsky`s semiotic model)
Dmitriev, V.; Perlovsky, L.I.
1996-12-31
We suggest a further development of Vygotsky`s esthetic-semiotic model. First, we discuss Vygotsky`s model originally developed for the analysis of Ivan Bunin`s story {open_quotes}Light Breath{close_quotes}. Vygotsky analyzes formal methods used by Bunin to achieve a specific esthetic effect of {open_quote}lightness{close_quotes} while describing {open_quotes}dirty{close_quotes} events of everyday life. According to Vygotsky, this effect is achieved by ordering of events in a non-linear fashion. Vygotsky creams an airy pattern of smooth lines connecting events of story that he first orders linearly in time. And, he insists that this airy pattern creates an impression of airy lightness. In the language of semiotics, the esthetic effect is created by a specific structural organization of signs. Second, we present our critique of Vygotsky`s model. Although, we do not agree with Vygotsky`s sometimes moralistic judgements, and we consider the dynamics between inner personal values and received moral values to be more complicated than implied in his judgements, our critique in this paper is limited to the structure of his semiotic model. We emphasize that Vygotsky`s model does not explicitly account for a hierarchy of multiple levels of semiotic analysis. His analysis regularly slips from one level to another: (1) a lever of cognitive perception by a regular reader is confused with a level of creative genius of a writer; (2) {open_quotes}open{close_quotes} time of real world is mixed up with {open_quote}closed{close_quote} time of the story; (3) events are not organized by the hierarchy of their importance, nor in real world, nor in the inner model of the personages, nor in the story.
NASA Astrophysics Data System (ADS)
Dorman, L. M.; Schreiner, A.
2016-12-01
The seafloor plays an important role in the propagation ofseafloor noise because its low shear velocity forms a strongwaveguide and the high shear velocity gradient facilitatesconversion processes.In 2001 (JASA), O. A. Godin and D. M.F. Chapman studiedpropagation of interface (Scholte) waves in models with ashear speed profile with a power-law depth dependence.They analyzed of four datasets from shallow-watersites, which they fit well with two-parameter models.Furthermore, they show that the mode wavefunctions are self-similar.Data from the deep seafloor from seafloor sources observedby Ocean-Bottom Seismographs frequently exhibit afundamental mode ending in an Airy phase with a frequencyof a few Hertz. This is, of course, incompatiblewith self-similarity. Adjusting the power-law shear velocityprofile in the upper 5 meters of the seafloor however,can produce an Airy phase and thus match the observed data.In the case of data from the east flank of the Gorda Ridge,the basic power-law is cs(z) = c0 zν with c0 =30.7(z in meters and ν = 0.6) and fits the fundamentalmode Scholte dispersion relation, which is linear in slowness-frequency spacein the 0.5-2.0 Hz range. Increasing the velocityand reducing the depth gradient in the upper 5 meters of the modeproduces the observed Airy Phase.These data were generated by a few tens of kilograms of explosiveand were observedby ocean-bottom seismographs at ranges of a few hundred meters.
Isostatic compensation of equatorial highlands on Venus
NASA Technical Reports Server (NTRS)
Kucinskas, Algis B.; Turcotte, Donald L.
1994-01-01
Spherical harmonic models for Venus' global topography and gravity incorporating Magellan data are used to test isostatic compensation models in five 30 deg x 30 deg regions representative of the main classes of equatorial highlands. The power spectral density for the harmonic models obeys a power-law scaling with spectral slope Beta approximately 2 (Brown noise) for the topography and Beta approximately 3 (Kaula's law) for the geoid, similar to what is observed for Earth. The Venus topography spectrum has lower amplitudes than Earth's which reflects the dominant lowland topography on Venus. Observed degree geoid to topography ratios (GTRs) on Venus are significantly smaller than degree GTRs for uncompensated topography, indicative of substantial compensation. Assuming a global Airy compensation, most of the topography is compensated at depths greater than 100 km, suggesting a thick lithosphere on Venus. For each region considered we obtain a regional degree of compensation C from a linear regression of Bouguer anomaly versus Bouguer gravity data. Geoid anomaly (N) versus topography variation (h) data for each sample were compared, in the least-squares sense, to theoretical correlations for Pratt, Airy, and thermal thinning isostasy models yielding regional GTR, zero-elevation crustal thickness (H), and zero elevation thermal lithosphere thickness (y(sub L(sub 0)), respectively. We find the regional compensation to be substantial (C approximately 52-80%), and the h, N data correlations in the chosen areas can be explained by isostasy models applicable on the Earth and involving variations in crustal thickness (Airy) and/or lithospheric (thermal thinning) thickness. However, a thick crust and lithosphere (y(sub L(sub 0)) approximately 300 km) must be assumed for Venus.
A Geodetic View on Isostatic Models
NASA Astrophysics Data System (ADS)
Göttl, Franziska; Rummel, Reiner
2009-09-01
Before the background of more accurate and denser gravity data it is worthwhile to reassess geodetic isostasy. Currently, in geodesy isostatic models are primarily applied to gravity reduction as needed by geoid and gravity modeling. The selection of the isostatic model is based on four criteria: Isostatically reduced gravity anomalies should be (1) geophysically meaningful, (2) easy to compute, (3) small, smooth and therefore easy to interpolate and (4) the indirect effect, i.e. the change of potential and gravity due to isostatic mass replacement, should be small. In this study we analyze free air anomalies as well as isostatic anomalies based on the Airy-Heiskanen model and on the Pratt-Hayford model in regard to these criteria. Several facts suggest that free air anomalies are the most realistic type of isostatic anomalies. They reflect the actual isostatic compensation, are easy to compute and their indirect effect is negligibly small. However, they are not smooth due to the fact that local topographic loads are only partially compensated. Smoothness can be achieved by introducing either a mathematical low-pass filter or a hydrostatic isostatic model, such as the Airy-Heiskanen or the Pratt-Hayford model. In both cases the resulting isostatically reduced gravity anomalies fulfill all requirements. In order to improve the numerical efficiency, a new mathematical description of the Pratt-Hayford model is formulated. The level of smoothing with respect to free air anomalies is analyzed in global and regional contexts. It turns out that the mechanism of mass compensation in regions of large topographic loads is better described by the Airy-Heiskanen model, whereas the Pratt-Hayford model is more suitable for regions of deep ocean trenches.
A New Way to Demonstrate the Rainbow
NASA Astrophysics Data System (ADS)
Ivanov, Dragia Trifonov; Nikolov, Stefan Nikolaev
2016-11-01
The rainbow is a beautiful optical phenomenon that has fascinated humankind since antiquity. It is caused by a huge number of water droplets in the atmosphere illuminated by the Sun. Many noted physicists have contributed to the explanation of the rainbow. The wave theory of the rainbow was developed by George Airy, and modern descriptions are based on Mie scattering as developed by Gustav Mie. For educational purposes the simpler theory by Descartes, which is based solely on geometrical optics and is much more accessible, is used.
Rejoice in the hubris: useful things biologists could do for physicists
NASA Astrophysics Data System (ADS)
Austin, Robert H.
2014-10-01
Political correctness urges us to state how wonderful it is to work with biologists and how, just as the lion will someday lie down with the lamb, so will interdisciplinary work, where biologists and physicists are mixed together in light, airy buildings designed to force socialization, give rise to wonderful new science. But it has been said that the only drive in human nature stronger than the sex drive is the drive to censor and suppress, and so I claim that it is OK for physicists and biologists to maintain a wary distance from each other, so that neither one censors or suppresses the wild ideas of the other.
Improved coordinates of features in the vicinity of the Viking lander site on Mars
NASA Technical Reports Server (NTRS)
Davies, M. E.; Dole, S. H.
1980-01-01
The measurement of longitude of the Viking 1 landing site and the accuracy of the coordinates of features in the area around the landing site are discussed. The longitude must be measured photogrammatically from the small crater, Airy 0, which defines the 0 deg meridian on Mars. The computer program, GIANT, which was used to perform the analytical triangulations, and the photogrammetric computation of the longitude of the Viking 1 lander site are described. Improved coordinates of features in the vicinity of the Viking 1 lander site are presented.
NCI Holds on to Defelice Cup | Poster
NCI kept the Defelice Cup trophy this year after beating Leidos Biomedical Research, 15 to 9, at the 10th annual Ronald H. Defelice Golf Tournament held on Columbus Day. Sixteen players on each team battled it out at the yearly contractor vs. government tournament held at Rattlewood Golf Course in Mount Airy, Md. NCI leads the series 6–4. “The score was the highest NCI margin of victory in the 10-year series,” said Denny Dougherty, retired senior subcontracts advisor at what was formerly SAIC-Frederick. “The intensity of the annual competition has increased each year and has become...
Sutton, G W; Weiner, M M; Mani, S A
1976-09-01
Theoretical Fraunhofer diffraction patterns are presented for uniformly illuminated square apertures with noncentered square obscurations. The energy within a given subtended solid angle in the far field is calculated. It is shown that the cornered-off-axis obscuration provides much more far-field energy in a given spot size than the centered obscuration for the same clear aperture area and total energy, for example, 82% more far-field energy in the first Airy square for 50% obscuration, thus providing superior performance for practical systems.
Quantitative void characterization in structural ceramics using scanning laser acoustic microscopy
NASA Technical Reports Server (NTRS)
Roth, D. J.; Generazio, E. R.; Baaklini, G. Y.
1986-01-01
The ability of scanning laser acoustic microscopy (SLAM) to characterize artificially seeded voids in sintered silicon nitride structural ceramic specimens was investigated. Using trigonometric relationships and Airy's diffraction theory, predictions of internal void depth and size were obtained from acoustic diffraction patterns produced by the voids. Agreement was observed between actual and predicted void depths. However, predicted void diameters were generally much greater than actual diameters. Precise diameter predictions are difficult to obtain due to measurement uncertainty and the limitations of 100 MHz SLAM applied to typical ceramic specimens.
Experimental study of spatial coherence diffraction based on full-field coherence visualization.
Zhao, Juan; Wang, Wei
2014-10-01
A novel optical geometry for direct visualization of the optical coherence function is proposed. The diffractions of partially coherent light by apertures with various forms are experimentally investigated, and the full-field spatial coherence functions have been observed by using the proposed interferometric system. Similar to the well-known Airy disk stemming from optical diffraction, we studied the spatial coherence function near the coherence focal plane on the analogy of the Fraunhofer and Fresnel diffraction integrals. Following the conventional definitions for the optical resolutions in the optical imaging system, the lateral and longitudinal resolutions for spatial coherence imaging have been proposed.
1981-01-26
The final design of the Mount Airy Public Library is given. Incremental passive design costs are discussed. Performance and economic analyses are made and the results reported. The design process is thoroughly documented. Considerations discussed are: (1) building energy needs; (2) site energy potentials, (3) matching energy needs with site energy potentials, (4) design indicators for best strategies and concepts, (5) schematic design alternatives, (6) performance testing of the alternatives, (7) design selection, and (8) design development. Weather data and Duke Power electric rates are included. (LEW)
Viscoelastic relaxation of Enceladus's ice shell
NASA Astrophysics Data System (ADS)
Čadek, Ondřej; Běhounková, Marie; Tobie, Gabriel; Choblet, Gaël
2017-07-01
We propose a dynamic model relating the non-hydrostatic long-wavelength topography on Enceladus to loading at the base of the ice shell. In dynamic equilibrium, the surface topography induced by a bottom load is very close to that inferred for Airy isostasy. However, due to the small size of the moon the relaxation to equilibrium is significantly longer than the maximum Maxwell relaxation time. During the relaxation, the upper load/bottom load ratio can be either smaller than 1 or larger than 1, depending on the initial state and the loading history.
Fractional Schrödinger equation in optics.
Longhi, Stefano
2015-03-15
In quantum mechanics, the space-fractional Schrödinger equation provides a natural extension of the standard Schrödinger equation when the Brownian trajectories in Feynman path integrals are replaced by Levy flights. Here an optical realization of the fractional Schrödinger equation, based on transverse light dynamics in aspherical optical cavities, is proposed. As an example, a laser implementation of the fractional quantum harmonic oscillator is presented in which dual Airy beams can be selectively generated under off-axis longitudinal pumping.
Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009
2011-01-01
Saturn, and Uranus , reflecting the greater confidence in their accuracy. Expres- sions for the Sun and Earth are given to a similar precision as...0.004T W = 38.90 + 810.7939024d (e) Uranus α0 = 257.311 δ0 = −15.175 W = 203.81 − 501.1600928d (e) Neptune α0 = 299.36 + 0.70 sin N δ0 = 43.46 − 0.51 cos...defined by the central peak in the crater Ariadne (d) The 0◦ meridian is defined by the crater Airy-0 (e) The equations for W for Jupiter, Saturn, Uranus
Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements: 2006
2007-01-01
Additional decimal places are given in the expressions for Mercury, the Moon, Mars, Saturn, and Uranus , reflecting the greater confidence in their accuracy...Saturn α0 = 40.589− 0.036T δ0 = 83.537− 0.004T W = 38.90+ 810.7939024d (e) Uranus α0 = 257.311 δ0 = −15.175 W = 203.81− 501.1600928d (e) Neptune α0...crater Airy-0 (e) The equations forW for Jupiter, Saturn, Uranus andNeptune refer to the rotation of theirmagnetic fields (System III). On Jupiter, System
2011-08-16
operating at 1064 nm wavelength. The maximum pulse energy of the heater laser is 3.3 J. The heater pulses are combined with femtosecond igniter pulses...properties of the optical fiber where lasers pulses propagate. Figure 3: Top row, left: Temporal waveforms of the Airy pulse with -60,000 fs3...γ equals 105 (W·m)−1, and the zero dispersion wavelength of the fiber is 745 nm. The coupling efficiency of the shaped laser pulses into the fiber in
Asymptotic analysis of noisy fitness maximization, applied to metabolism & growth
NASA Astrophysics Data System (ADS)
De Martino, Daniele; Masoero, Davide
2016-12-01
We consider a population dynamics model coupling cell growth to a diffusion in the space of metabolic phenotypes as it can be obtained from realistic constraints-based modeling. In the asymptotic regime of slow diffusion, that coincides with the relevant experimental range, the resulting non-linear Fokker-Planck equation is solved for the steady state in the WKB approximation that maps it into the ground state of a quantum particle in an Airy potential plus a centrifugal term. We retrieve scaling laws for growth rate fluctuations and time response with respect to the distance from the maximum growth rate suggesting that suboptimal populations can have a faster response to perturbations.
The Greenland gravitational constant experiment.
NASA Astrophysics Data System (ADS)
Zumberge, M. A.; Ander, M. E.; Lautzenhiser, T. V.; Parker, R. L.; Aiken, C. L. V.; Gorman, M. R.; Nieto, M. M.; Cooper, A. P. R.; Ferguson, J. F.; Fisher, E.; Greer, J.; Hammer, P.; Hansen, B. L.; McMechan, G. A.; Sasagawa, G. S.; Sidles, C.; Stevenson, J. M.; Wirtz, J.
1990-09-01
An Airy-type geophysical experiment was conducted in a 2-km-deep hole in the Greenland ice cap at depths between 213 m and 1673 m to test for possible violations of Newton's inverse square law. Gravity measurements were made at eight depths in 183-m intervals with a LaCoste & Romberg borehole gravity meter. An anomalous variation in gravity totaling 3.87 mGal (3.87x10-5m/s2) in the depth interval of 1460 m was observed. This may be attributed either to a breakdown of Newtonian gravity or to unexpected density variations in the rock below the ice.
1986-01-01
DISTRIBUTION UNLIMITED .9 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES &.0V...studies are still 1I 2 r-equired to ttst tha, e ti eori s nd Letter exp ain te unom lies in these correlations and to determine if there are other yet...e~j . .ajs an important role in determining the -a -gei:./ a-I tumorgenicity of these molecules. Pre. i~’ai-ry zar:inogenicity tests have shown that
The thickness of Enceladus' crust and ocean as seen by Cassini
NASA Astrophysics Data System (ADS)
Trinh, A.; Rivoldini, A.; Beuthe, M.; Baland, R. M.; Van Hoolst, T.
2016-12-01
The librations of Enceladus are so large that the icy crust must be decoupled from the rocky bulk by a global-scale ocean (Thomas et al. 2016). New models of Airy-isostatic compensation (assuming minimum stress within the crust) and librations (including additional non-hydrostatic torques) can reconcile Cassini's gravity, topography, and libration observations over a consistent picture of the crust (see Rivoldini et al., this session). Here we sum up our current view of the thickness of Enceladus's crust and ocean from a joint Bayesian inversion of all three kinds of observations.
Calculating the energy spectrum of complex low-dimensional heterostructures in the electric field.
Khonina, Svetlana N; Volotovsky, Sergey G; Kharitonov, Sergey I; Kazanskiy, Nikolay L
2013-01-01
An algorithm for solving the steady-state Schrödinger equation for a complex piecewise-constant potential in the presence of the E-field is developed and implemented. The algorithm is based on the consecutive matching of solutions given by the Airy functions at the band boundaries with the matrix rank increasing by no more than two orders, which enables the characteristic solution to be obtained in the convenient form for search of the roots. The algorithm developed allows valid solutions to be obtained for the electric field magnitudes larger than the ground-state energy level, that is, when the perturbation method is not suitable.
Self-accelerating fronts in passively-mode-locked fiber lasers
NASA Astrophysics Data System (ADS)
Derevyanko, Stanislav A.
2017-01-01
We present a family of self-accelerating stable pulses propagating in optical fiber and connecting a slowly-modulated quasi-cw background to an unstable zero level. Such solutions represent a generalization of the self-accelerating Airy beams observed in the linear regime to a nonlinear dissipative system modeled by a standard complex cubic Ginzburg-Landau equation corresponding to linear gain and a (fast) saturable absorber. They can also be viewed as a generalization of the well-studied problem of pulled fronts to include acceleration.
Detection of stress concentrations around a defect by magnetic Barkhausen noise measurements
Mandal, K.; Dufour, D.; Sabet-Sharghi, R.; Sijgers, B.; Micke, D.; Krause, T.W.; Clapham, L.; Atherton, D.L.
1996-12-01
The stress distribution around a 50{percent} blind-hole pit in a steel pipe with a 9 mm wall has been studied using high-resolution magnetic Barkhausen noise (MBN) measurements. A magnetic disk read-head is used as the pick up coil in the MBN probe. The study shows a stress concentration factor of {approximately}2 at the defect edge perpendicular to the direction of applied stress and {approximately}{minus}0.6 at the edge parallel to the same. The experimental results are consistent with the analytical solutions obtained by the Airy{close_quote}s stress function approach. {copyright} {ital 1996 American Institute of Physics.}
The discoveries of Neptune and Triton.
NASA Astrophysics Data System (ADS)
Moore, P.
The story of the tracking-down of Neptune has been told many times, but even today there are still discrepancies in the various accounts, to say nothing of conflicting opinions. To some people, John Couch Adams is a shining hero and George Biddell Airy a black villain; to others it is Le Verrier who is the hero, and Adams an unimportant member of the supporting cast. Of course, all this is absurd. In the author's view, the true discoverers of Neptune were Johann Gottfried Galle and Heinrich D'Arrest.
Design, Construction, Testing and Evaluation of a Residential Ice Storage Air Conditioning System.
1982-11-01
FuseI.Size: 40 Amps Shipping Weight: 550 lbs. 19 Aok *l 4. - ’j-A .~ % --4. L 94 Table 9 Model PA�C Compressor 3 P Semi Hermetic Condensor Air... hermetic compressor , airI cooled condenser, drier, 2 evaporators, and thermostatic expansion valve refrigerant feed with a low side accumulator with...50% V •water. The tank provided storage for 12,730 pounds of ice. The system used a 25 ton compressor (rated 0 40"F suction) which would freeze the
Approximate Symmetry Reduction Approach: Infinite Series Reductions to the KdV-Burgers Equation
NASA Astrophysics Data System (ADS)
Jiao, Xiaoyu; Yao, Ruoxia; Zhang, Shunli; Lou, Sen Y.
2009-11-01
For weak dispersion and weak dissipation cases, the (1+1)-dimensional KdV-Burgers equation is investigated in terms of approximate symmetry reduction approach. The formal coherence of similarity reduction solutions and similarity reduction equations of different orders enables series reduction solutions. For the weak dissipation case, zero-order similarity solutions satisfy the Painlevé II, Painlevé I, and Jacobi elliptic function equations. For the weak dispersion case, zero-order similarity solutions are in the form of Kummer, Airy, and hyperbolic tangent functions. Higher-order similarity solutions can be obtained by solving linear variable coefficients ordinary differential equations.
NASA Astrophysics Data System (ADS)
Crowdy, Darren G.; Brzezicki, Samuel J.
2017-06-01
An analytical method to find the flow generated by the basic singularities of Stokes flow in a wedge of arbitrary angle is presented. Specifically, we solve a biharmonic equation for the stream function of the flow generated by a point stresslet singularity and satisfying no-slip boundary conditions on the two walls of the wedge. The method, which is readily adapted to any other singularity type, takes full account of any transcendental singularities arising at the corner of the wedge. The approach is also applicable to problems of plane strain/stress of an elastic solid where the biharmonic equation also governs the Airy stress function.
Generation of terahertz hollow beams by a photonic quasi-crystal flat lens
NASA Astrophysics Data System (ADS)
Feng, Bo; Liu, Exian; Wang, Ziming; Cai, Weicheng; Liu, Hongfei; Wang, Shuo; Liang, Taiyuan; Xiao, Wei; Liu, Jianjun
2016-06-01
We have designed a decagonal photonic quasi-crystal (PQC) flat lens, which turns an incident terahertz (THz) plane wave into a hollow beam easily and flexibly. The features of the THz hollow beam can be controlled by varying the parameters of a point defect in the center of the lens, i.e., the PQC flat lens can be used as a flexible tool for THz optical captivity or optical tweezer. The results showing that an airy disk, whose mean beam width is similar to the incident wavelength and power-in-the-bucket (PIB) is more than 96%, can be generated in the far field.
Metrology system for the Terrestrial Planet Finder Coronagraph
NASA Technical Reports Server (NTRS)
Shaklin, Stuart; Marchen, Luis; Zhao, Feng; Peters, Robert D.; Ho, Tim; Holmes, Buck
2004-01-01
The Terrestrial Planet Finder (TPF) employs an aggressive coronagraph designed to obtain better than 1e-10 contrast inside the third Airy ring. Minute changes in low-order aberration content scatter significant light at this position. One implication is the requirement to control low-order aberrations induced by motion of the secondary mirror relative to the primary mirror; sub-nanometer relative positional stability is required. We propose a 6-beam laser truss to monitor the relative positions of the two mirrors. The truss is based on laser metrology developed for the Space Interferometry Mission.
Catastrophe optics of sharp-edge diffraction.
Borghi, Riccardo
2016-07-01
A classical problem of diffraction theory, namely plane wave diffraction by sharp-edge apertures, is here reformulated from the viewpoint of the fairly new subject of catastrophe optics. On using purely geometrical arguments, properly embedded into a wave optics context, uniform analytical estimates of the diffracted wavefield at points close to fold caustics are obtained, within paraxial approximation, in terms of the Airy function and its first derivative. Diffraction from parabolic apertures is proposed to test reliability and accuracy of our theoretical predictions.
Disorder in the Sachdev-Ye-Kitaev model
NASA Astrophysics Data System (ADS)
Liu, Yizhuang; Nowak, Maciej A.; Zahed, Ismail
2017-10-01
We give qualitative arguments in support of the mesoscopic nature of the Sachdev-Ye-Kitaev (SYK) model in the regime with q2 / N ≪ 1 with N Majorana particles coupled by antisymmetric and random interactions of range q. Using a stochastic deformation of the SYK model, we show that its characteristic determinant obeys a viscid Burgers equation with a small spectral viscosity in the regime with q / N = 1 / 2. In particular, the stochastic evolution of the SYK model can be mapped exactly onto that of random matrix theory, with universal Airy oscillations at the edges.
Rejoice in the hubris: useful things biologists could do for physicists.
Austin, Robert H
2014-10-08
Political correctness urges us to state how wonderful it is to work with biologists and how, just as the lion will someday lie down with the lamb, so will interdisciplinary work, where biologists and physicists are mixed together in light, airy buildings designed to force socialization, give rise to wonderful new science. But it has been said that the only drive in human nature stronger than the sex drive is the drive to censor and suppress, and so I claim that it is OK for physicists and biologists to maintain a wary distance from each other, so that neither one censors or suppresses the wild ideas of the other.
Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons
NASA Astrophysics Data System (ADS)
Lei, Zeyu; Yang, Tian
2016-04-01
We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.
NASA Astrophysics Data System (ADS)
Niemi, Paul; McLeod, Roger
2006-03-01
Mc Leod predicts that in visual tasks with pupil diameter changes, a longer, quasimonochromatic wavelength interval is coincident with foveal cones, and rods. A shorter, partially overlapped interval separately aligns with extrafoveal cones. Wavelengths follow the Airy disk radius formula. Extended visual tasks of a type requiring shorter wavelengths, pair extrinsic eye muscles in inappropriate states, one in extension, the other in contraction, exceeding ``Hooke's law'' settings. Hysterisis prevents feedback-driven, self repair. The universal model for vision predicts myopia, hyperopia and presbyopia. Niemi can test and evaluate that model: repair needs triggering and facilitating demands of the possibly overridden feedback signals.
Variations in effective compensation depth across Aphrodite Terra, Venus
NASA Technical Reports Server (NTRS)
Herrick, Robert R.; Hall, Stuart A.; Bills, Bruce G.
1989-01-01
Topography and gravity data obtained by Pioneer Venus Orbiter have been used to estimate an effective depth of Airy compensation for each of 75 orbital arcs that provide fairly uniform areal coverage of Aphrodite Terra. A general increase in compensation depth is noted to the east, with the most rapid change occurring near 135 deg. Five distinctive regional patterns, four well defined peaks, and one interval of widely scattered and poorly constrained depths are found to be superimposed on this larger trend. It is noted that the maxima in compensation depth correlate well with regional topographic highs.
Prediction of noise field of a propfan at angle of attack
NASA Technical Reports Server (NTRS)
Envia, Edmane
1991-01-01
A method for predicting the noise field of a propfan operating at an angle of attack to the oncoming flow is presented. The method takes advantage of the high-blade-count of the advanced propeller designs to provide an accurate and efficient formula for predicting their noise field. The formula, which is written in terms of the Airy function and its derivative, provides a very attractive alternative to the use of numerical integration. A preliminary comparison shows rather favorable agreement between the predictions from the present method and the experimental data.
NASA Technical Reports Server (NTRS)
Davies, M. E.; Arthur, D. W. G.
1973-01-01
Methods and results are presented for primary and secondary triangulation of the Martian surface. The primary network is based on multiphotograph stereophotogrammetry in which the pictures are rotated around fixed centers; these centers are provided as spacecraft stations from the tracking data. The computations use the latest Mars spin axis determined by Mariner 9 experiments and the new first meridian passing through a small crater, Airy-O, seen on Mariner 9 imagery. The secondary triangulation is performed in the map plane using rectified pictures as map fragments, assumed to be of correct shape. Primary positions are given.
Hybrid pupil filter design using Bessel series
NASA Astrophysics Data System (ADS)
Ochoa, Noé Alcalá; García-Márquez, J.; González-Vega, A.
2011-09-01
We propose a simple method of designing pupil filters for transverse super-resolution. For this end we represent the amplitude Point Spread Function (PSF) as a series expansion, constructed from the Fourier transform of a basis of Bessel functions. With this representation we optimize the intensity PSF according to certain desired characteristics, such as a smaller disk diameter than the corresponding, clear aperture, Airy disk. It is proved that by using few basis functions, it is possible to design pupils with similar or better PSF characteristics than previously reported.
Spin-polarized transport through ZnMnSe/ZnSe/ZnBeSe heterostructures
NASA Astrophysics Data System (ADS)
Ming, Y.; Gong, J.; Zhang, R. Q.
2011-11-01
Using the transfer matrix method and Airy function, the spin-dependent tunneling through the ZnMnSe/ZnSe/ZnBeSe structure was investigated theoretically. The electron tunneling determined by the applied bias, external magnetic field, and spin orientations exhibited some interesting and complex features. It was found that the magnetic field could suppress the spin-up current, but enhance the spin-down current. Furthermore the spin-flip of current could be realized by changing the applied bias slightly. Therefore, it can be believed that our structure could behave as a good spin-filter.
NCI Holds on to Defelice Cup | Poster
NCI kept the Defelice Cup trophy this year after beating Leidos Biomedical Research, 15 to 9, at the 10th annual Ronald H. Defelice Golf Tournament held on Columbus Day. Sixteen players on each team battled it out at the yearly contractor vs. government tournament held at Rattlewood Golf Course in Mount Airy, Md. NCI leads the series 6–4. “The score was the highest NCI margin of victory in the 10-year series,” said Denny Dougherty, retired senior subcontracts advisor at what was formerly SAIC-Frederick. “The intensity of the annual competition has increased each year and has become...
Improved coordinates of features in the vicinity of the Viking lander site on Mars
NASA Astrophysics Data System (ADS)
Davies, M. E.; Dole, S. H.
1980-03-01
The measurement of longitude of the Viking 1 landing site and the accuracy of the coordinates of features in the area around the landing site are discussed. The longitude must be measured photogrammatically from the small crater, Airy 0, which defines the 0 deg meridian on Mars. The computer program, GIANT, which was used to perform the analytical triangulations, and the photogrammetric computation of the longitude of the Viking 1 lander site are described. Improved coordinates of features in the vicinity of the Viking 1 lander site are presented.
NASA Astrophysics Data System (ADS)
Bendahma, F.; Djelti, R.; Bentata, S.
2016-08-01
The aperiodic GaAs/AlxGa1-xAs superlattices (SL) with trimer disorder have been studied in this paper. The transfer-matrix technique and the exact Airy function formalism have been used to determine the miniband structure, the transmission coefficient, the resonance energy and resonant tunneling time (RTT). Although the disorder localizes the states on average, our numerical calculations show that the localization length of the states becomes more extended when the disorder is correlated (trimer case). We have also found that the RTT is of the order of several femtoseconds.
Model calculations of spectral transmission for the CLAES etalons
NASA Technical Reports Server (NTRS)
James, T. C.; Roche, A. E.; Kumer, J. B.
1989-01-01
This paper describes models for calculating spectral transmission for the Cryogenic-Limb-Array-Etalon-Spectrometer (CLAES) etalons. These models involve a convolution of the Airy function for a given thickness with the distribution of surface thicknesses, the effect of absorption in the substrate, and the field of view broadening as a function of etalon tilt angle. A comparison of model calculations with experimental transmission data for CLAES etalons centered at 3.52, 5.72, 8.0, and 11.86 microns showed that these models are able to provide a good description of the CLAES etalons.
Development of Nanomechanical Sensors for Breast Cancer Biomarkers
2005-06-01
Fretnlliotenl•lry Vacuntim 0 () 0 2.18 MHz Airi 7.$ juk.W/mr 26.2 IiN 2.29 nr -,0.9 MNITZ Wat-r (Mood) I rnikels 78.5 p*i 6&W8 nrm +-63 kMYz Glycc°ol 1.5 kg!fm...the nanowire surface is done by the application of a 2% APTES solution of methanol for 3 hours. After multiple rinsing of the device by methanol , the
Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons
Lei, Zeyu; Yang, Tian
2016-04-18
We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.
NASA Astrophysics Data System (ADS)
Rapp, Richard H.; Pavlis, Nikolaos
A method is presented for the estimation of a global gravity anomaly field using the combination of satellite-derived potential coefficient models and the coefficients implied by the Airy-Heiskanen topographic/isostatic potential (Rummel et al., 1988) from topographic models with a 30-km depth of compensation. Gravity anomalies calculated with this method are compared with a terrestrial 1 x 1 degree anomaly file where the anomaly standard deviations were less than 10 mgals. Using the GEM T1 model (Marsh et al., 1988) to degree 36, the rms anomaly discrepency was + or - 19 mgals, while the rms values for the terrestrial anomalies was + or - 28 mgals.
NASA Technical Reports Server (NTRS)
Rapp, Richard H.; Pavlis, Nikolaos
1989-01-01
A method is presented for the estimation of a global gravity anomaly field using the combination of satellite-derived potential coefficient models and the coefficients implied by the Airy-Heiskanen topographic/isostatic potential (Rummel et al., 1988) from topographic models with a 30-km depth of compensation. Gravity anomalies calculated with this method are compared with a terrestrial 1 x 1 degree anomaly file where the anomaly standard deviations were less than 10 mgals. Using the GEM T1 model (Marsh et al., 1988) to degree 36, the rms anomaly discrepency was + or - 19 mgals, while the rms values for the terrestrial anomalies was + or - 28 mgals.
Isostatic compensation of the Scandinavian mountains
NASA Astrophysics Data System (ADS)
Olesen, O.; Skilbrei, J. R.
2003-04-01
As yet, there is no generally accepted hypothesis that explains the Neogene uplift phase of the Scandinavian mountains. Gravity data provide means to study the mechanism of exhumation of these mountainous areas. Assuming that the region is close to isostatic equilibrium, these uplifted mountainous areas must be supported at depth by substantial volumes of low-density material within the crust or the mantle, or at the crust/mantle or lithosphere/asthenosphere interfaces. The former models represent a Pratt type isostacy model, while the two latter are consistent with an Airy-Heiskanen type model. The observed Bouguer gravity field has been compared with gravity responses from Airy roots at various depths below the Scandinavia mountains. The calculated gravity is most similar to the observed gravity field for low-density rocks at a shallow depth in northern Norway. The calculated RMS (root mean square) is lowest (25.0 mGal) for the 10 km Airy root model. This differs significantly from the southern mountains where the RMS is lowest (17.6 mGal) for the 45 km Airy root model. The latter must be partly supported by low-density rocks below the Moho. The Neogene uplift of southern Norway may therefore originate from low-density mantle rocks possibly linked to the Iceland hotspot. The Pratt type of isostasy is consequently deduced to be important for the isostatic compensation of the Scandinavian mountains. The results are in agreement with the conclusions of Riis (1996) and Lidmar-Bergström (1999) that the southern Norwegian plateau was partly uplifted in the Neogene, while the northern Scandinavian mountains originated mainly as a rift-shoulder in late Cretaceous to early Tertiary times. Hendriks &Andriessen (2002) reported that analyses of observed apatite fission track data along a profile from Lofoten into Sweden fits best with those expected from a retreating scarp model. References Hendriks, B.W.H. &Andriessen, P.A.M. 2002: Vertical movements on the Norwegian
Kardar-Parisi-Zhang universality class and the anchored Toom interface
NASA Astrophysics Data System (ADS)
Barkema, G. T.; Ferrari, P. L.; Lebowitz, J. L.; Spohn, H.
2014-10-01
We revisit the anchored Toom interface and use Kardar-Parisi-Zhang scaling theory to argue that the interface fluctuations are governed by the Airy1 process with the role of space and time interchanged. The predictions, which contain no free parameter, are numerically well confirmed for space-time statistics in the stationary state. In particular, the spatial fluctuations of the interface computed numerically agree well with those given by the GOE edge distribution of Tracy and Widom [Commun. Math. Phys. 177, 727 (1996), 10.1007/BF02099545].
Nonlinear steady-state coupling of LH waves
Ko, K.; Krapchev, V.B.
1981-02-01
The coupling of lower hybrid waves at the plasma edge by a two waveguide array with self-consistent density modulation is solved numerically. For a linear density profile, the governing nonlinear Klein-Gordon equation for the electric field can be written as a system of nonlinearly modified Airy equations in Fourier k/sub z/-space. Numerical solutions to the nonlinear system satisfying radiation condition are obtained. Spectra broadening and modifications to resonance cone trajectories are observed with increase of incident power.
Comparison of Coherent to Incoherent Detection at 2.09 Micrometers Using a Solid State Ladar System
1994-02-01
82 Figure 35: Incoherent detection with the bicycle reflector (glint) target. This data was taken on April 7, 1993 at 9: 20am . There...produced by solar backscatter PT transmitted power PX cumulative probability distribution PX log-normal density function qR radius of airy disk r radius...J( 4ERJ 2 "D IT(5.1.12) 0’-RlO0 51 where PT is the transmitted power, R is the range, 06 is the beam divergence, cr is the target cross section, D is
Localization of Nonlocal Symmetries and Symmetry Reductions of Burgers Equation
NASA Astrophysics Data System (ADS)
Wu, Jian-Wen; Lou, Sen-Yue; Yu, Jun
2017-05-01
The nonlocal symmetries of the Burgers equation are explicitly given by the truncated Painlevé method. The auto-Bäcklund transformation and group invariant solutions are obtained via the localization procedure for the nonlocal residual symmetries. Furthermore, the interaction solutions of the solition-Kummer waves and the solition-Airy waves are obtained. Supported by the Global Change Research Program China under Grant No. 2015CB953904, the National Natural Science Foundations of China under Grant Nos. 11435005, 11175092, and 11205092, Shanghai Knowledge Service Platform for Trustworthy Internet of Things under Grant No. ZF1213, and K. C. Wong Magna Fund in Ningbo University
Elastostatic bending of a bimaterial plate with a circular interface
NASA Astrophysics Data System (ADS)
Ogbonna, Nkem
2015-08-01
The elastostatic bending of an arbitrarily loaded bimaterial plate with a circular interface is analysed. It is shown that the deflections in the composite solid are directly related to the deflection in the corresponding homogeneous material by integral and differential operators. It is further shown that, by a simple transformation of elastic constants, the Airy stress function induced in the composite by a stretching singularity can be deduced from the deflection induced by a bending singularity. This result is significant for reduction of mathematical labour and for systematic construction of solutions for more complex structures with circular geometry.
Optical antenna gain. 2: receiving antennas.
Degnan, J J; Klein, B J
1974-10-01
Expressions are derived for the gain of a centrally obscured, circular optical antenna when used as the collecting and focusing optics in a laser receiver which include losses due to (1) blockage of the incoming light by the central obscuration, (2) the spillover of energy at the detector, and (3) the effect of local oscillator distribution in the case of heterodyne or homodyne detection. Numerical results are presented for direct detection and for three types of local oscillator distributions (uniform, Gaussian, and matched) in the case of heterodyne or homodyne detection. The results are presented in several graphs that allow the rapid evaluation of receiver gain for an arbitrary set of telescope and detector parameters. It is found that, for uniform illumination by the LO, the optimum SNR is obtained when the detector radius is approximately 0.74 times the Airy disk radius. The use of an optimized Gaussian (spot size = 0.46 times the Airy disk radius) improves the receiver gain by less than 1 dB. Theuse results are insensitive to the size of the central obscuration.
IRAN: interferometric remapped array nulling
NASA Astrophysics Data System (ADS)
Aristidi, Eric; Vakili, Farrokh; Abe, Lyu; Belu, Adrian; Lopez, Bruno; Lanteri, Henri; Schutz, A.; Menut, Jean-Luc
2004-10-01
This paper describes a method of beam-combination in the so-called hypertelescope imaging technique recently introduced by Labeyrie in optical interferometry. The method we propose is an alternative to the Michelson pupil reconfiguration that suffers from the loss of the classical object-image convolution relation. From elementary theory of Fourier optics we demonstrate that this problem can be solved by observing in a combined pupil plane instead of an image plane. The point-source intensity distribution (PSID) of this interferometric "image" tends towards a psuedo Airy disc (similar to that of a giant monolithic telescope) for a sufficiently large number of telescopes. Our method is applicable to snap-shot imaging of extended sources with a field comparable to the Airy pattern of single telescopes operated in a co-phased multi-aperture interferometric array. It thus allows to apply conveniently pupil plane coronagraphy. Our technique called Interferometric Remapped Array Nulling (IRAN) is particularly suitable for high dynamic imaging of extra-solar planetary companions, circumstellar nebulosities or extra-galactic objects where long baseline interferometry would closely probe the central regions of AGNs for instance.
Interferometric Remapped Array Nulling
NASA Astrophysics Data System (ADS)
Vakili, F.; Aristidi, E.; Abe, L.; Lopez, B.
2004-07-01
This paper describes a method of beam-combination in the so-called hypertelescope imaging technique recently introduced by Labeyrie in optical interferometry. The method we propose is an alternative to the Michelson pupil reconfiguration that suffers from the loss of the classical object-image convolution relation. From elementary theory of Fourier optics we demonstrate that this problem can be solved by reconfiguring images instead of pupils. Imaging is performed in a combined pupil-plane where the point-source intensity distribution (PSID by comparison to the more commonly quoted point-spread function, PSF) tends towards a pseudo Airy disc for a sufficiently large number of telescopes. Our method is applicable to snap-shot imaging of extended sources with a field limited to the Airy pattern of single telescopes operated in a co-phased multi-aperture interferometric array. It thus allows to apply conveniently pupil plane coronagraphy. Our technique called Interferometric Remapped Array Nulling (IRAN) is particularly suitable for high dynamic imaging of extra-solar planetary companions or extra-galactic objects where long baseline interferometry would closely probe the central regions of AGNs for instance. We also discuss the application of IRAN to improve the performances of imaging and/or nulling interferometers like the full-fledged VLTI array or the DARWIN space-borne mission.
Biological aerosol detection with combined passive-active infrared measurements
NASA Astrophysics Data System (ADS)
Ifarraguerri, Agustin I.; Vanderbeek, Richard G.; Ben-David, Avishai
2004-12-01
A data collection experiment was performed in November of 2003 to measure aerosol signatures using multiple sensors, all operating in the long-wave infrared. The purpose of this data collection experiment was to determine whether combining passive hyperspectral and LIDAR measurements can substantially improve biological aerosol detection performance. Controlled releases of dry aerosols, including road dust, egg albumin and two strains of Bacillus Subtilis var. Niger (BG) spores were performed using the ECBC/ARTEMIS open-path aerosol test chamber located in the Edgewood Area of Aberdeen Proving Grounds, MD. The chamber provides a ~ 20' path without optical windows. Ground truth devices included 3 aerodynamic particle sizers, an optical particle size spectrometer, 6 nephelometers and a high-volume particle sampler. Two sensors were used to make measurements during the test: the AIRIS long-wave infrared imaging spectrometer and the FAL CO2 LIDAR. The AIRIS and FAL data sets were analyzed for detection performance relative to the ground truth. In this paper we present experimental results from the individual sensors as well as results from passive-active sensor fusion. The sensor performance is presented in the form of receiver operating characteristic curves.
Improved detection and false alarm rejection for chemical vapors using passive hyperspectral imaging
NASA Astrophysics Data System (ADS)
Marinelli, William J.; Miyashiro, Rex; Gittins, Christopher M.; Konno, Daisei; Chang, Shing; Farr, Matt; Perkins, Brad
2013-05-01
Two AIRIS sensors were tested at Dugway Proving Grounds against chemical agent vapor simulants. The primary objectives of the test were to: 1) assess performance of algorithm improvements designed to reduce false alarm rates with a special emphasis on solar effects, and 3) evaluate performance in target detection at 5 km. The tests included 66 total releases comprising alternating 120 kg glacial acetic acid (GAA) and 60 kg triethyl phosphate (TEP) events. The AIRIS sensors had common algorithms, detection thresholds, and sensor parameters. The sensors used the target set defined for the Joint Service Lightweight Chemical Agent Detector (JSLSCAD) with TEP substituted for GA and GAA substituted for VX. They were exercised at two sites located at either 3 km or 5 km from the release point. Data from the tests will be presented showing that: 1) excellent detection capability was obtained at both ranges with significantly shorter alarm times at 5 km, 2) inter-sensor comparison revealed very comparable performance, 3) false alarm rates < 1 incident per 10 hours running time over 143 hours of sensor operations were achieved, 4) algorithm improvements eliminated both solar and cloud false alarms. The algorithms enabling the improved false alarm rejection will be discussed. The sensor technology has recently been extended to address the problem of detection of liquid and solid chemical agents and toxic industrial chemical on surfaces. The phenomenology and applicability of passive infrared hyperspectral imaging to this problem will be discussed and demonstrated.
Palik, E D; Boukari, H; Gammon, R W
1996-01-01
While investigating the instrumental function of a Fabry-Perot interferometer [Appl. Opt. 34, 58 (1995), we noticed some variation in finesse and contrast in the measured spectra when a 1.5-mm-diameter aperture was used at various spots within the standard 8-mm aperture. By comparing experimentally determined finesse versus contrast plots for many such spectra with calculated plots, we found spots on the plates that gave non-Airy-function line shapes over the entire order of interference, unlike the Airy line shape we determined previously by using the entire 8-mm aperture. We have reviewed several models that describe the effects of various types of surface defects, such as Gaussian-height distribution of roughness, curvature and tilt of plates, sinusoidal roughness, and asymmetrical roughness on the finesse and contrast. Our experimental results can be accounted for if we assume that the reflectivity is nonuniform over the Fabry-Perot plates and that there is some reasonable contribution that is due to Gaussian roughness, curvature, or tilt.
Centroids computation and point spread function analysis for reverse Hartmann test
NASA Astrophysics Data System (ADS)
Zhao, Zhu; Hui, Mei; Liu, Ming; Dong, Liquan; Kong, Linqqin; Zhao, Yuejin
2017-03-01
This paper studies the point spread function (PSF) and centroids computation methods to improve the performance of reverse Hartmann test (RHT) in poor conditions, such as defocus, background noise, etc. In the RHT, we evaluate the PSF in terms of Lommel function and classify it as circle of confusion (CoC) instead of Airy disk. Approximation of a CoC spot with Gaussian or super-Gaussian profile to identify its centroid forms the basis of centroids algorithm. It is also effective for fringe pattern while the segmental fringe is served as a 'spot' with an infinite diameter in one direction. RHT experiments are conducted to test the fitting effects and centroiding performances of the methods with Gaussian and super-Gaussian approximations. The fitting results show that the super-Gaussian obtains more reasonable fitting effects. The super-Gauss orders are only slightly larger than 2 means that the CoC has a similar profile with Airy disk in certain conditions. The results of centroids computation demonstrate that when the signal to noise ratio (SNR) is falling, the centroid computed by super-Gaussian method has a less shift and the shift grows at a slower pace. It implies that the super-Gaussian has a better anti-noise capability in centroid computation.
Fabrication and testing of a silicon immersion grating for infrared spectroscopy
Kuzmenko, P.J.; Ciarlo, D.R.; Stevens, C.G.
1994-07-25
Recent advances in silicon micromachining techniques (e.g. anisotropic etching) allow the fabrication of very coarse infrared echelle gratings. When used in immersion mode, the dispersion is increased proportionally to the refractive index. This permits a very significant reduction in the overall size of a spectrometer while maintaining the same resolution. We have fabricated a right triangular prism (30{times}60{times}67 mm with a rectangular entrance face 30{times}38 mm) from silicon with a grating etched into the face of the hypotenuse. The grating covers an area of 32 mm by 64 mm and has a 97.5 PM periodicity with a blaze angle of 63.4{sup o}. The groove surfaces are very smooth with a roughness of a few manometers. Random defects in the silicon are the dominant source of grating scatter ({approx} 12% at 3.39 {mu}m). We measure a grating ghost intensity of 1.2%. The diffraction peak is quite narrow, slightly larger than the Airy disc diameter at F/12. However due to wavefront aberrations, perhaps 15--20% of the diffracted power is in the peak with the rest distributed in a diameter roughly five times the Airy disc.
Holonomy, quantum mechanics and the signal-tuned Gabor approach to the striate cortex
NASA Astrophysics Data System (ADS)
Torreão, José R. A.
2016-02-01
It has been suggested that an appeal to holographic and quantum properties will be ultimately required for the understanding of higher brain functions. On the other hand, successful quantum-like approaches to cognitive and behavioral processes bear witness to the usefulness of quantum prescriptions as applied to the analysis of complex non-quantum systems. Here, we show that the signal-tuned Gabor approach for modeling cortical neurons, although not based on quantum assumptions, also admits a quantum-like interpretation. Recently, the equation of motion for the signal-tuned complex cell response has been derived and proven equivalent to the Schrödinger equation for a dissipative quantum system whose solutions come under two guises: as plane-wave and Airy-packet responses. By interpreting the squared magnitude of the plane-wave solution as a probability density, in accordance with the quantum mechanics prescription, we arrive at a Poisson spiking probability — a common model of neuronal response — while spike propagation can be described by the Airy-packet solution. The signal-tuned approach is also proven consistent with holonomic brain theories, as it is based on Gabor functions which provide a holographic representation of the cell’s input, in the sense that any restricted subset of these functions still allows stimulus reconstruction.
Experimental demonstration of 3D accelerating beam arrays.
Yu, Xianghua; Li, Runze; Yan, Shaohui; Yao, Baoli; Gao, Peng; Han, Guoxia; Lei, Ming
2016-04-10
Accelerating beams have attracted much attention in the frontiers of optical physics and technology owing to their unique propagation dynamics of nondiffracting, self-healing, and freely accelerating along curved trajectories. Such behaviors essentially arise from the particular phase factor occurring in their spatial frequency spectrum, e.g., the cubic phase associated to the spectrum of Airy beam. In this paper, we theoretically and experimentally demonstrate a sort of accelerating beam arrays, which are composed of spatially separated accelerating beams. By superimposing kinoforms of multifocal patterns into the spatial frequency spectrum of accelerating beams, different types of beam arrays, e.g., Airy beam arrays and two-main-lobe accelerating beam arrays, are generated and measured by scanning a reflection mirror near the focal region along the optical axis. The 3D intensity patterns reconstructed from the experimental data present good agreement with the theoretical counterparts. The combination of accelerating beams with optical beam arrays proposed here may find potential applications in various fields such as optical microscopes, optical micromachining, optical trapping, and so on.
Torreão, José R A
2015-10-01
A signal-tuned approach has been recently introduced for modeling stimulus-dependent cortical receptive fields. The approach is based on signal-tuned Gabor functions, which are Gaussian-modulated sinusoids whose parameters are obtained from a "tuning" signal. Given a stimulus to a cell, it is taken as the tuning signal for the Gabor function modeling the cell's receptive field, and the inner product of the stimulus and the stimulus-dependent field produces the cell's response. Here, we derive and solve the equation of motion for the signal-tuned complex cell response r(x,τ), where x and τ are receptive-field parameters: its center, and the delay with which it adapts to a change in input. The motion equation can be mapped onto the Schrödinger equation for a system with time-dependent imaginary mass and time-dependent complex potential, and yields a plane-wave solution and an Airy-packet solution. The plane-wave solution replicates responses previously obtained for temporally modulated and translating signals, and yields responses which seem compatible with apparent-motion effects, when the stimulus is a pair of alternating pulses. The Airy-packet solution can lead to long-range propagating responses.
Altimetry data and the elastic stress tensor of subduction zones
NASA Technical Reports Server (NTRS)
Caputo, M.
1985-01-01
The stress field in the lithosphere caused by the distribution of density anomalies associated to the geoidal undulations observed by the GEOS-3 and SEASAT Earth satellites in the Tonga region was studied. Different models of the lithosphere were generated with different assumptions on the density distribution and geometry, all generating a geoid profile almost identical to the observed one. The first model is the Airy isostatic hypothesis which consists of a crust of density 2.85 laying on a lithosphere of density 3.35. The models obtained with different compensation depths give residual shortwavelength anomalies of the order of several tens of mgal and several tens of meters geoidal undulations. It indicates that there is no isostasy of the Airy type in the Tonga region because the observed geoid has very smooth undulation of about 25 m over a distance of 2000 km. The Pratt isostatic hypothesis is used in a model consisting of a crust of variable density laying on a lithosphere of higher density. This model gives smaller residual anomalies but still shows that there is no isostasy of the Pratt type in the Tonga region because the observed geoidal undulation are much smaller and smoother than the residual undulations associated to the Pratt model of isostasy.
NASA Astrophysics Data System (ADS)
Eliasson, B.; Milikh, G.; Shao, X.; Mishin, E. V.; Papadopoulos, K.
2015-04-01
We have numerically investigated the development of strong Langmuir turbulence (SLT) and associated electron acceleration at different angles of incidence of ordinary (O) mode pump waves. For angles of incidence within the Spitze cone, the turbulence initially develops within the first maximum of the Airy pattern near the plasma resonance altitude. After a few milliseconds, the turbulent layer shifts downwards by about 1 km. For injections outside the Spitze region, the turning point of the pump wave is at lower altitudes. Yet, an Airy-like pattern forms here, and the turbulence development is quite similar to that for injections within the Spitze. SLT leads to the acceleration of 10-20 eV electrons that ionize the neutral gas thereby creating artificial ionospheric layers. Our numerical modeling shows that most efficient electron acceleration and ionization occur at angles between the magnetic and geographic zenith, where SLT dominates over weak turbulence. Possible effects of the focusing of the electromagnetic beam on magnetic field-aligned density irregularities and the finite heating beam width at the magnetic zenith are also discussed. The results have relevance to ionospheric heating experiments using ground-based, high-power radio transmitters to heat the overhead plasma, where recent observations of artificial ionization layers have been made.
Dual behavior of caustic optical beams facing obstacles
NASA Astrophysics Data System (ADS)
Vaveliuk, Pablo; Martínez-Matos, Óscar; Ren, Yu-Xuan; Lu, Rong-De
2017-06-01
A full propagation analysis on both fold-type and cusp-type caustic optical beams under various setups of obstructions is theoretically and experimentally performed. It is demonstrated that the self-healing property of caustic optical beams that include the famous Airy beam is a quite relative property. In fact, fold-type and cusp-type beams cannot only behave as self-healing beams by blocking the main intensity peak, but also behave as self-breaking ones in a nonintuitive manner: by blocking a lateral side of the beam without touching the central intensity peak. The regeneration and rupture processes of caustic beams follow a nonlocal propagation dynamic unlike the other conventional beams. Moreover, deep differences between fold and cusp caustic beams are pointed out once facing certain obstructions. The cusp-caustic beam can be broken down by the obstacle placed in a dark zone outside the caustic region, while the fold-type one remains unaltered. This beam rupture confirms the key role of a hidden propagating field in the shadow region for cusp beams that coexist with the evanescent one. The obtained results cast down the established idea that the Airy beam is a robust self-healing beam since any caustic beam can behave in a dual manner depending on the obstruction location. These facts open up different perspectives for the applications in which the self-healing properties of the beam are relevant.
The CAOS problem-solving environment: recent developments
NASA Astrophysics Data System (ADS)
Carbillet, Marcel; Desiderà, Gabriele; Augier, Evelyne; La Camera, Andrea; Riccardi, Armando; Boccaletti, Anthony; Jolissaint, Laurent; Ab Kabir, Diyana
2010-07-01
We present recent developments of the CAOS problem-solving environment (PSE), an IDL-based software tool whose original aim was to define and simulate as realistically as possible the behavior of a generic adaptive optics (AO) system -from the atmospheric propagation of light, to the sensing of the wave-front aberrations and the correction through a deformable mirror- but which results in a widely more general tool now. In fact, the different developments made through the last years result in a very versatile numerical tool complete of a global graphical interface (the CAOS Application Builder), a general utilities library (the CAOS Library), and different packages dedicated to a wide range of astronomical-optics-related scientific topics: the original package designed for end-to-end AO system simulations (the Software Package CAOS), an image simulation/ reconstruction package with interferometric capabilities (the Software Package AIRY), an extension of the latter specialized for the LBT instrument LINC-NIRVANA (the Software Package AIRY-LN), an ad hoc package dedicated to the VLT instrument SPHERE (the Software Package SPHERE), and an embedment of the analytical AO simulation code PAOLA (the Software Package PAOLAC).We present the status of the whole CAOS PSE, together with the most recent developments, and plans for the future of the overall tool.
Nuclear mean field and double-folding model of the nucleus-nucleus optical potential
NASA Astrophysics Data System (ADS)
Khoa, Dao T.; Phuc, Nguyen Hoang; Loan, Doan Thi; Loc, Bui Minh
2016-09-01
Realistic density dependent CDM3Yn versions of the M3Y interaction have been used in an extended Hartree-Fock (HF) calculation of nuclear matter (NM), with the nucleon single-particle potential determined from the total NM energy based on the Hugenholtz-van Hove theorem that gives rise naturally to a rearrangement term (RT). Using the RT of the single-nucleon potential obtained exactly at different NM densities, the density and energy dependence of the CDM3Yn interactions was modified to account properly for both the RT and observed energy dependence of the nucleon optical potential. Based on a local density approximation, the double-folding model of the nucleus-nucleus optical potential has been extended to take into account consistently the rearrangement effect and energy dependence of the nuclear mean-field potential, using the modified CDM3Yn interactions. The extended double-folding model was applied to study the elastic 12C+12C and 16O+12C scattering at the refractive energies, where the Airy structure of the nuclear rainbow has been well established. The RT was found to affect significantly the real nucleus-nucleus optical potential at small internuclear distances, giving a potential strength close to that implied by the realistic optical model description of the Airy oscillation.
Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi
2015-11-01
In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc.
Shaping non-diffracting beams with a digital micromirror device
NASA Astrophysics Data System (ADS)
Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De
2016-02-01
The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.
NASA Technical Reports Server (NTRS)
Haxby, W. F.; Turcotte, D. L.
1978-01-01
In regions of slowly varying lateral density changes, the gravity and geoid anomalies may be expressed as power series expansions in topography. Geoid anomalies in isostatically compensated regions can be directly related to the local dipole moment of the density-depth distribution. This relationship is used to obtain theoretical geoid anomalies for different models of isostatic compensation. The classical Pratt and Airy models give geoid height-elevation relationships differing in functional form but predicting geoid anomalies of comparable magnitude. The thermal cooling model explaining ocean floor subsidence away from mid-ocean ridges predicts a linear age-geoid height relationship of 0.16 m/m.y. Geos 3 altimetry profiles were examined to test these theoretical relationships. A profile over the mid-Atlantic ridge is closely matched by the geoid curve derived from the thermal cooling model. The observed geoid anomaly over the Atlantic margin of North America can be explained by Airy compensation. The relation between geoid anomaly and bathymetry across the Bermuda Swell is consistent with Pratt compensation with a 100-km depth of compensation.
NASA Astrophysics Data System (ADS)
Cadio, Cécilia; Saraswati, Anita; Cattin, Rodolphe; Mazzotti, Stéphane
2016-11-01
Estimating how topography is maintained provides insights into the different factors responsible for surface deformations and their relative roles. Here, we develop a new and simple approach to assess the degree of isostatic compensation of continental topography at regional scale from GOCE gravity gradients. We calculate the ratio between the radial gradient observed by GOCE and that calculated from topography only. From analytical and statistical formulations, simple relationships between this ratio and the degree of compensation are obtained under the Airy-Heiskanen isostasy hypothesis. Then, a value of degree of compensation at each point of study area can be easily deduced. We apply our method to the Alaska-Canada Cordillera and validate our results by comparison with a standard isostatic gravity anomaly model and additional geophysical information for this area. Both our GOCE-based results and the isostatic anomaly show that Airy-Heiskanen isostasy prevails for the Yukon Plateau whereas additional mechanisms are required to support topography below the Northwest Territories Craton and the Yakutat collision zone.
NASA Astrophysics Data System (ADS)
Garinger, L. P.; Black, R. A.; Walker, J. D.
2002-12-01
Processes controlling the relative timing and overall relationship between extension and magmatism are not well understood. Because buoyancy is the force that propels magma toward the earth's surface, the density contrast between the magma and the surrounding rock is a major control on ascent. Crustal density may be a primary control on the location and timing of volcanism, especially mafic eruptions. As a first step to understanding crustal densities, a comparative study of the Airy-Heiskanen and Pratt-Hayford isostatic correction models was done. These models showed that in some locations calculated crustal density values are sensitive to the isostatic correction technique used. For this reason, two alternative isostatic correction models were developed. A modified Airy-Heiskanen model used a map of the Moho depth instead of calculated crustal root values. A combined effect model also used the Moho map, assumed isostatic equilibrium, and calculated upper mantle density for additional Pratt-type compensation. Crustal and magma density modeling for late Tertiary Reveille and Pancake Range volcanic areas in the central Great Basin, south central Nevada, was also done. Iterative inversion of isostatically corrected gravity measurements provided density estimates for the crust. Densities of erupted volcanics (as magma) were calculated from the major element composition using a modified version of a computer program written by J. Wenner, (personal communication, 1999). Spatial correlation and trends between crustal density and magma density were accomplished using a Geographic Information System.
Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.
McKay, Jack A
2002-03-20
The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal.
Noor, Fatimah A. Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal
2015-04-16
In this paper, we discuss the electron transmittance and tunneling current in high-k-based-MOS capacitors with trapping charge by including the off-diagonal effective-mass tensor elements and the effect of coupling between transverse and longitudinal energies represented by an electron velocity in the gate. The HfSiO{sub x}N/SiO{sub 2} dual ultrathin layer is used as the gate oxide in an n{sup +} poly- Si/oxide/Si capacitor to replace SiO{sub 2}. The main problem of using HfSiO{sub x}N is the charge trapping formed at the HfSiO{sub x}N/SiO{sub 2} interface that can influence the performance of the device. Therefore, it is important to develop a model taking into account the presence of electron traps at the HfSiO{sub x}N/SiO{sub 2} interface in the electron transmittance and tunneling current. The transmittance and tunneling current in n{sup +} poly- Si/HfSiO{sub x}N/trap/SiO2/Si(100) capacitors are calculated by using Airy wavefunctions and a transfer matrix method (TMM) as analytical and numerical approaches, respectively. The transmittance and tunneling current obtained from the Airy wavefunction are compared to those computed by the TMM. The effects of the electron velocity on the transmittance and tunneling current are also discussed.
Diffraction of acoustic-gravity waves in the presence of a turning point.
Godin, Oleg A
2016-07-01
Acoustic-gravity waves (AGWs) in an inhomogeneous atmosphere often have caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Unlike acoustic waves and gravity waves in incompressible fluids, AGW fields in the vicinity of a caustic have never been systematically studied. Here, asymptotic expansions of acoustic gravity waves are derived in the presence of a turning point in a horizontally stratified, moving fluid such as the atmosphere. Sound speed and the background flow (wind) velocity are assumed to vary gradually with height, and slowness of these variations determines the large parameter of the problem. It is found that uniform asymptotic expansions of the wave field in the presence of a turning point can be expressed in terms of the Airy function and its derivative. The geometrical, or Berry, phase, which arises in the consistent Wentzel-Kramers-Brillouin approximation for AGWs, plays an important role in the caustic asymptotics. In the dominant term of the uniform asymptotic solution, the terms with the Airy function and its derivative are weighted by the cosine and sine of the Berry phase, respectively. The physical meaning and corollaries of the asymptotic solutions are discussed.
NASA Astrophysics Data System (ADS)
Bodzenta, Jerzy
2004-10-01
The 9th International Workshop on Photoacoustics and Photothermics was held in Szczyrk as a part of the 33rd Winter School on Molecular and Quantum Acoustics. Photoacoustic and Photothermal Workshops have been organized annually since 1996, by the Upper-Silesian Division of Polish Acoustical Society in co-operation with Institute of Physics, Silesian Technical University of Gliwice. Traditionally, the workshops take place in small towns in Beskidy Mountains. They always start on Thursday afternoon and end on Friday evening. The idea of these workshops is to give opportunities for direct contacts of scientists using photoacoustic and photothermal phenomena in their investigations. As a result participants are physicists, chemists and engineers interested in: theoretical backgrounds of photoacoustic and photothermal experiments, development of new measuring techniques, investigation of di?erent physical processes and determination of physical properties of various samples. So the thematic scope of the workshops is wide, but all contributions are connected with generation and propagation of non-stationary temperature fields. The workshop is a place where experienced researchers present review lectures, younger scientists and PhD students show their own, original results, and all of them have possibilities for discussions either during sessions or during informal meetings. These Proceedings contain 17 scientific papers. The most of them are printed versions of contributions presented during the 9th Workshop on Photoacoustics and Photothermics. One paper covers results showed in oral presentation and two posters. A few titles are slightly changed according to referee's suggestions. I would like to thank all participants for preparing manuscripts for these proceedings. Special thanks should be expressed for referees: Prof. Danuta Frackowiak, Prof. Robert E. Imhof, Dr. Kyril L. Muratikov, Prof. Antoni Śliwiński and Priv. Doz. Heinz-Günter Walther for their valuable
Proceedings from the 6th Annual University of Calgary Leaders in Medicine Research Symposium.
Roberts, Jodie I; Beatty, Jennifer K; Peplowski, Michael A; Keough, Michael B; Yipp, Bryan G; Hollenberg, Morley D; Beck, Paul L
2015-12-04
On November 14, 2014, the Leaders in Medicine (LIM) program at the Cumming School of Medicine, University of Calgary hosted its 6th Annual Research Symposium. Dr. Danuta Skowronski, Epidemiology Lead for Influenza and Emerging Respiratory Pathogens at the British Columbia Centre for Disease Control (BCCDC), was the keynote speaker and presented a lecture entitled "Rapid response research during emerging public health crises: influenza and reflections from the five year anniversary of the 2009 pandemic". The LIM symposium provides a forum for both LIM and non-LIM medical students to present their research work, either as an oral or poster presentation. There were a total of six oral presentations and 77 posters presented. The oral presentations included: Swathi Damaraju, "The role of cell communication and 3D Cell-Matrix environment in a stem cell-based tissue engineering strategy for bone repair"; Menglin Yang, "The proteolytic activity of Nepenthes pitcher fluid as a therapeutic for the treatment of celiac disease"; Amelia Kellar, "Monitoring pediatric inflammatory bowel disease - a retrospective analysis of transabdominal ultrasound"; Monica M. Faria-Crowder, "The design and application of a molecular profiling strategy to identify polymicrobial acute sepsis infections"; Waleed Rahmani, "Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla and modulate hair type"; and, Laura Palmer, "A novel role for amyloid beta protein during hypoxia/ischemia". The article on the University of Calgary Leaders in Medicine Program, "A Prescription that Addresses the Decline of Basic Science Education in Medical School," in a previous issue of CIM (2014 37(5):E292) provides more details on the program. Briefly, the LIM Research Symposium has the following objectives: (1) to showcase the impressive variety of projects undertaken by students in the LIM Program as well as University of Calgary medical students; (2) to encourage medical
The control network of Mars: April 1991
NASA Technical Reports Server (NTRS)
Davies, Merton E.; Rogers, Patricia G.
1991-01-01
The modern geodetic control network of Mars was first established based on Mariner 9 images with 1-2 km/pixel resolutions and covered almost the entire Martian surface. The introduction of higher resolution (10-200 meter/pixel) Viking Orbiter images greatly improved the accuracy and density of points in the control network. Analysis of the Viking Lander radio tracking data led to more accurate measurements of Mars' rotation period, spin axis direction, and the lander coordinates relative to the inertial reference frame. The prime meridian on Mars was defined by the Geodesy/Cartography Group of the Mariner 9 Television Team as the crater Airy-0, located about 5 degrees south of the equator. The Viking 1 Lander site was identified on a high resolution Viking frame. The control point measurements form the basis of a least squares solution determined by analytical triangulation after the pixel measurements are corrected for geometric distortions and converted to millimeter coordinates in the camera focal plane. Photogrammetric strips encircling Mars at the equator and at 60 degree north south were used to strengthen the overall net and improve the accuracy of the coordinates of points. In addition, photogrammetric strips along 0, 90, 180, and 270 degrees longitude to the Viking 1 Lander site have all significantly strengthened the control network. Most recently, photogrammetric strips were added to the net along 30 degrees north latitude between 0 and 180 degrees, and along 30 degrees between 180 and 360 degrees. The Viking 1 Lander site and Airy-0 are linked through photogrammetric strips occurring along the 0 degree meridian from Airy-0 to 65 degrees north, from that point through the Viking 1 Lander site to the equator, and along the equator to 180 degrees longitude. The Viking 1 lander site is thus a well calibrated area with coordinates of points accurate to approximately 200 meters relative to the J2000 inertial coordinate system. This will be a useful
The Glacial BuzzSaw, Isostasy, and Global Crustal Models
NASA Astrophysics Data System (ADS)
Levander, A.; Oncken, O.; Niu, F.
2015-12-01
The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward
Bending light via adiabatic optical transition in longitudinally modulated photonic lattices.
Han, Bin; Xu, Lei; Dou, Yiling; Xu, Jingjun; Zhang, Guoquan
2015-10-29
Bending light in a controllable way is desired in various applications such as beam steering, navigating and cloaking. Different from the conventional way to bend light by refractive index gradient, transformation optics or special beams through wavefront design such as Airy beams and surface plasmons, we proposed a mechanism to bend light via resonant adiabatic optical transition between Floquet-Bloch (FB) modes from different FB bands in longitudinally modulated photonic lattices. The band structure of longitudinally modulated photonic lattices was calculated by employing the concept of quasi-energy based on the Floquet-Bloch theory, showing the existence of band discontinuities at specific resonant points which cannot be revealed by the coupled-mode theory. Interestingly, different FB bands can be seamlessly connected at these resonant points in longitudinally modulated photonic lattices driven by adiabatically varying the longitudinal modulation period along the propagation direction, which stimulates the adiabatic FB mode transition between different FB bands.
NASA Technical Reports Server (NTRS)
Massman, William
1987-01-01
A semianalytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.
Quantum-classical correspondence for a particle in a homogeneous field
NASA Astrophysics Data System (ADS)
Singh, Sumita; Suman, Smriti P.; Singh, Vijay A.
2016-11-01
The correspondence principle provides a prescription to connect quantum physics to classical. It asserts that the physical quantities evaluated quantum mechanically approach their respective classical values for large quantum numbers. This has been shown for the pedagogically important cases of the particle in a box and a harmonic oscillator. However, a particle in a constant field has a wave function related to the Airy function and has at best been treated numerically. Employing energy eigenstates we obtain the expectation values of the position, the momentum and their moments upto fourth order, rigorously and without resorting to numerical or graphical techniques. We compare them with the corresponding classical values. We also examine the uncertainty product for the system.
Rainbow scattering in the gravitational field of a compact object
NASA Astrophysics Data System (ADS)
Dolan, Sam R.; Stratton, Tom
2017-06-01
We study the elastic scattering of a planar wave in the curved spacetime of a compact object such as a neutron star, via a heuristic model: a scalar field impinging upon a spherically symmetric uniform density star of radius R and mass M . For R
Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source
Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun Wang, Kaige
2015-04-27
It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.
Critical-current diffraction patterns of grain-boundary Josephson weak links
Peterson, R.L.; Ekin, J.W. )
1990-11-01
We discuss the diffraction patterns and other characteristics of the critical current as a function of magnetic field in grain-boundary Josephson barriers. Diffraction patterns occur not just for {ital SIS} junctions but for all types of Josephson links, including {ital SNS} junctions, which may be present at grain boundaries in high-{Tc} superconductors. We discuss the generality of the Airy diffraction pattern, which is expected to characterize grain-boundary barriers in bulk material more accurately than the Fraunhofer pattern. The transport critical-current density in many bulk, granular high-{ital T}{sub {ital c}} superconductors has a power-law dependence on very low magnetic fields, characteristic of averaged diffraction patterns, and cannot be fitted by an exponential magnetic-field dependence, which may result from the material properties of the barriers.
Anomalous behaviors of the Fraunhofer diffraction patterns for a class of partially coherent light.
Pu, Jixiong; Nemoto, Shojiro
2003-02-24
In this paper, we investigate the Fraunhofer diffraction of a class of partially coherent light diffracted by a circular aperture. It is shown that by the illumination of partially coherent light of the special spatial correlation function, the anomalous behaviors of the diffraction patterns are found. We find that the decrease of the spatial coherence of the light in the aperture leads to the drastic changes of the diffraction pattern. Specifically, when the light in the aperture is fully coherent, the diffraction pattern is just an Airy disc. However, as the coherence decreases, the diffraction pattern becomes an annulus, and the radius of the annulus increases with the decrease of the coherence. Flattened annuli can be achieved, when the parameters characterizing the correlation of the partially coherent light are chosen with suitable values. Potential applications of modulating the coherence to achieve desired diffraction patterns are discussed.
Geometrical-numerical approach to diffraction phenomena.
Bosch, S; Ferré-Borrull, J
2001-02-15
The calculation of diffracted fields is considered by means of a geometrical analysis of the incoming wave into semiperiodic zones in the aperture plane, followed by a numerical process for addition of the contributions corresponding to the semiperiodic zones. This general approach constitutes a novel interpretation of diffraction phenomena that permits exact evaluation of the mathematical expressions of diffraction theory and overcomes the limitations of any approximation. The method is illustrated by analysis of two important configuration in optics: the pinhole camera, for which we deduce the optimum radius for imaging, and the diffraction of a spherical converging wave through a circular aperture, from which we determine the limit of the validity of the Fraunhofer approximation (i.e., of the Airy pattern) and the influence of the obliquity factor.
Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source
NASA Astrophysics Data System (ADS)
Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige
2015-04-01
It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √{ N } -fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.
Generalized Jinc functions and their application to focusing and diffraction of circular apertures.
Cao, Qing
2003-04-01
A family of generalized Jinc functions is defined and analyzed. The zero-order one is just the traditional Jinc function. In terms of these functions, series-form expressions are presented for the Fresnel diffraction of a circular aperture illuminated by converging spherical waves or plane waves. The leading term is nothing but the Airy formula for the Fraunhofer diffraction of circular apertures, and those high-order terms are directly related to those high-order Jinc functions. The truncation error of the retained terms is also analytically investigated. We show that, for the illumination of a converging spherical wave, the first 19 terms are sufficient for describing the three-dimensional field distribution in the whole focal region.
Lieb-Liniger gas in a constant-force potential
Jukic, D.; Galic, S.; Buljan, H.; Pezer, R.
2010-08-15
We use Gaudin's Fermi-Bose mapping operator to calculate exact solutions for the Lieb-Liniger model in a linear (constant-force) potential (the constructed exact stationary solutions are referred to as the Lieb-Liniger-Airy wave functions). The ground-state properties of the gas in the wedgelike trapping potential are calculated in the strongly interacting regime by using Girardeau's Fermi-Bose mapping and the pseudopotential approach in the 1/c approximation (c denotes the strength of the interaction). We point out that quantum dynamics of Lieb-Liniger wave packets in the linear potential can be calculated by employing an N-dimensional Fourier transform as in the case of free expansion.
Photodetachment microscopy in time-dependent fields
NASA Astrophysics Data System (ADS)
Ambalampitiya, H.; Fabrikant, I. I.
2017-05-01
Photodetachment of negative ions in combined laser and low-frequency fields is investigated. The time-dependent Green's function method is used for calculation of electron flux at a macroscopic distance from the photodetachment source, typical for a photodetachment microscopy experiment. In calculating the electron flux, we use the stationary phase method for the time integral, equivalent to the semiclassical approximation, to compute the time-dependent wave function. The stationary points t1(i ), i =1 ,...,n correspond to time instances of launching of classical trajectories arriving at the detector at a given spacetime point (r ,t ) . The number of trajectories n contributing to the electron flux at any point in the classically allowed spacetime domain can be controlled by varying the switching interval of the high-frequency laser which initiates the photodetachment process. The divergences inherent in the electron flux in the semiclassical treatment are removed by using the uniform Airy approximation near the caustics.
Three-dimensional coherence of light speckles: Experiment
Magatti, D.; Gatti, A.; Ferri, F.
2009-05-15
We provide an experimental detailed study of the three-dimensional coherence properties of light speckles produced by different tunable pseudothermal sources. Our findings confirm the theoretical prediction of the companion article [A. Gatti et al., Phys. Rev. A 78, 063806 (2008)], according to which the longitudinal coherence of the speckles is ruled by ordinary diffraction laws only in the deep-Fresnel zone close to the source, deviates from this behavior in the Fresnel zone, and tends to become infinite when approaching the Fraunhofer zone. A quantitative comparison with theory is presented for Gaussian speckles in all the three regimes and for Airy speckles in the deep-Fresnel zone. Potential applications to three-dimensional imaging techniques are briefly discussed.
Beam-shaping via femtosecond laser-modified optical fibre end faces
NASA Astrophysics Data System (ADS)
Ioannou, A.; Polis, M.; Lacraz, A.; Theodosiou, A.; Kalli, K.
2016-04-01
We present the results of investigations regarding laser micro-structuring of single mode optical fibres by direct access of the fibre end face and compare this with inscription in planar samples. We combine a high numerical aperture objective and femtosecond laser radiation at visible wavelengths to examine the spatial limits of direct writing and structuring at the surface of the optical fibre. We realise a number of interesting devices from one- and two-dimensional grating structures, to Bessel, Airy and vortex beam generators. We show the versatility of this simple but effective inscription method, where we demonstrate classic multiple slit diffraction patterns and patterns for non-diffracting beams, confirming that the flexible direct write method using femtosecond lasers can be to produce binary masks that can lead to beam shaping using a method that is applicable to all types of planar samples and through fine control of laser parameters to multi-mode and singlemode optical fibres.
NASA Technical Reports Server (NTRS)
Head, James W.
1990-01-01
Processes of crustal formation and evolution are examined, and the role of crustal thickness variation in the production of topography is assessed. Evidence for crustal composition, age, average crustal thickness, and total crustal volume on Venus is reviewed. It is shown that the present crustal volume of Venus is comparable to that of the present earth. The geologic evidence for variations in crustal thickness on Venus are outlined, and specific examples of regions of apparent crustal thickening are assessed. These observations are compared to a simple model of Airy isostasy using global Venus topography and the end-member hypothesis (that the topography of Venus could result solely from crustal thickness variations). Models to account for these observations are proposed.
Composition measurements of binary mixture droplets by rainbow refractometry
Wilms, J.; Weigand, B
2007-04-10
So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.
Nuclear rainbow in elastic scattering of {sup 9}Be nuclei
Glukhov, Yu. A. Ogloblin, A. A.; Artemov, K. P.; Rudakov, V. P.
2010-01-15
A systematic investigation of the elastic scattering of the {sup 9}Be nucleus, which is among themost loosely bound stable nuclei was performed.Differential cross sections for elastic {sup 9}Be + {sup 16}O scattering were measured at a c.m. energy of 47.5 MeV (beam of 132-MeV {sup 16}O nuclei). Available data at different energy values and data for neighboring nuclei were included in our analysis. As a result, the very fact of rainbow scattering was reliably established for the first time in systems involving {sup 9}Be. In addition, the analysis in question made it possible to identify Airy minima and to determine unambiguously the nucleus-nucleus potential with a high probability.
Plate stability by boundary element method
Elzein, A.; Brebbia, C.A.; Orszag, S.A.
1991-12-31
As indicated by the title, this publication is devoted to the application of the Boundary Element Method (BEM) to the analysis of elastic plastes subjected to inplane forces. Three classes of plate problems associated with the buckling phenomenon are considered, viz: The state of plane stress, buckling of plates caused by edge loads, and moderately large deflections of slightly warped plates. The first (introductory) chapter gives an historical background and the behavior, theory, and analyses of plates. Chapter 2 briefly comments on the phenomenon of buckling and clearly presents the universal expressions and equations of the linear and nonlinear theories established by Kirchhoff for thin plates. A prominent place is assigned to the airy plane-stress function introduced into the nonlinear flexural theory of plates by A Foeppl and Th von Karman.
Ballistic front dynamics after joining two semi-infinite quantum Ising chains
NASA Astrophysics Data System (ADS)
Perfetto, Gabriele; Gambassi, Andrea
2017-07-01
We consider two semi-infinite quantum Ising chains initially at thermal equilibrium at two different temperatures and subsequently joined by an interaction between their end points. Transport properties such as the heat current are determined by the dynamics of the left- and right-moving fermionic quasiparticles which characterize the ensuing unitary dynamics. Within the so-called semiclassical space-time scaling limit we extend known results by determining the full space and time dependence of the density and current of energy and of fermionic quasiparticles. Upon approaching the edge of the propagating front, these quantities as well as the two-point correlation function display qualitatively different behaviors depending on the transverse field of the chain being critical or not. While in the latter case corrections to the leading behavior are described, as expected, by the Airy kernel, in the former a novel scaling form emerges with universal features.
Spatial filtering of atmospheric decorrelation from wavefronts for interferometry
NASA Astrophysics Data System (ADS)
Prasad, Sudhakar; Loos, Gary
1993-06-01
For aperture diameters greatly exceeding the Fried parameter r0, the spatial frequency spectrum of an atmospherically degraded wavefront extends out to frequencies much greater than the Airy disk size characterizing a clean wavefront diffracting at the aperture. One may use a low-pass spatial filter like a pinhole to reject selectively the high spatial frequencies in a degraded wavefront and thereby dramatically increase its spatial coherence. We show that although a simple filter like a pinhole reduces the power throughput, that power reduction is in a sense more than made up for by the improved spatial coherence of the wavefronts. By analyzing a two-aperture Michelson stellar interferometer, which is the simplest aperture-synthesis array, we demonstrate a clear improvement of the performance of the interferometer when spatial filters are used.
Red rainbows at sunset/sunrise
NASA Astrophysics Data System (ADS)
Ricard, J. L.
2016-12-01
The rainbow model deveeloped at CEPAL is based on the Airy theory. The outputs show that a pure red rainbow could only observed from a hill or a mountain when the sun is below the horizon. When the sun is on the horizon, there should be a juxtaposition of a red band on the outside and of a yellow band on the inside (upper figures). However, observers report pure red bows at sea level (lower left figure). In these rare cases, it is possible to still see the sun after it has set. As sunlight passes through more and more dense atmosphere at sunset the light slows and bends closer and closer toward the normal. When the eye traces the light ray it appears to be higher in the sky (lower right figure).
Amplitude image processing by diffractive optics.
Cagigal, Manuel P; Valle, Pedro J; Canales, V F
2016-02-22
In contrast to the standard digital image processing, which operates over the detected image intensity, we propose to perform amplitude image processing. Amplitude processing, like low pass or high pass filtering, is carried out using diffractive optics elements (DOE) since it allows to operate over the field complex amplitude before it has been detected. We show the procedure for designing the DOE that corresponds to each operation. Furthermore, we accomplish an analysis of amplitude image processing performances. In particular, a DOE Laplacian filter is applied to simulated astronomical images for detecting two stars one Airy ring apart. We also check by numerical simulations that the use of a Laplacian amplitude filter produces less noisy images than the standard digital image processing.
Yan, Zhi; Zaman, Mostafa; Jiang, Liying
2011-01-01
In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment. PMID:28824130
NASA Astrophysics Data System (ADS)
Bornemann, Folkmar
2016-08-01
By applying an idea of Borodin and Olshanski [J. Algebra 313 (2007), 40-60], we study various scaling limits of determinantal point processes with trace class projection kernels given by spectral projections of selfadjoint Sturm-Liouville operators. Instead of studying the convergence of the kernels as functions, the method directly addresses the strong convergence of the induced integral operators. We show that, for this notion of convergence, the Dyson, Airy, and Bessel kernels are universal in the bulk, soft-edge, and hard-edge scaling limits. This result allows us to give a short and unified derivation of the known formulae for the scaling limits of the classical random matrix ensembles with unitary invariance, that is, the Gaussian unitary ensemble (GUE), the Wishart or Laguerre unitary ensemble (LUE), and the MANOVA (multivariate analysis of variance) or Jacobi unitary ensemble (JUE).
Mars - Gravity data analysis of the crater Antoniadi
NASA Technical Reports Server (NTRS)
Sjogren, W. L.; Ritke, S. J.
1982-01-01
Topography and gravity information for this 370-km crater are analyzed to determine a depth of compensation with an Airy isostatic model. A least squares fit to the gravity profile gives an estimate of 115 km for the depth of compensation. It is noted that Antoniadi is the only large Martian crater for which both topographic and gravity data are available for analysis. The goal here is to reduce these geophysical data for additional information on the internal structure of Mars. The results show that if Antoniadi had fully isostatically adjusted, the additional mass material would have been about 100 km below the surface. This is regarded as another data point for geophysicists developing the internal structure of Mars.
Numerical algorithms for highly oscillatory dynamic system based on commutator-free method
NASA Astrophysics Data System (ADS)
Li, Wencheng; Deng, Zichen; Zhang, Suying
2007-04-01
In the present paper, an efficiently improved modified Magnus integrator algorithm based on commutator-free method is proposed for the second-order dynamic systems with time-dependent high frequencies. Firstly, the second-order dynamic systems are transferred to the frame of reference by introducing new variable so that highly oscillatory behaviour inherited from the entries. Then the modified Magnus integrator method based on local linearization is appropriately designed for solving the above new form. And some optimized strategies for reducing the number of function evaluations and matrix operations are also suggested. Finally, several numerical examples for highly oscillatory dynamic systems, such as Airy equation, Bessel equation, Mathieu equation, are presented to demonstrate the validity and effectiveness of the proposed method.
The Green function for the BFKL pomeron and the transition to DGLAP evolution
NASA Astrophysics Data System (ADS)
Kowalski, H.; Lipatov, L. N.; Ross, D. A.
2014-06-01
We consider the (process-independent) Green function for the BFKL equation with running coupling, and explain how, within the semi-classical approximation, it is related to Green function of the Airy equation. The unique Green function is obtained from a combination of its required ultraviolet behaviour compatible with asymptotic freedom and an infrared limit phase imposed by the non-perturbative sector of QCD. We show that at sufficiently large gluon transverse momenta the corresponding gluon density matches that of the DGLAP analysis, whereas for relatively small values of the gluon transverse momentum the gluon distribution is sensitive to the Regge poles, whose positions are determined both by the non-perturbative QCD dynamics and physics at large transverse momenta.
NASA Astrophysics Data System (ADS)
Zhou, Jianqin; Shen, Jun; Neill, W. Stuart
2016-07-01
A method of frequency analysis for the measurement of the temperature coefficient of refractive index (dn/dT) using a Fabry-Perot interferometer was developed and tested against ethanol and water. The temperature-dependent interferometric signal described by Airy's formula was analyzed in both the temperature and frequency domains. By fast Fourier transform, a low-pass filter was designed and employed to eliminate the noise superimposed on the signal. dn/dT was determined accurately from the noise-removed signal by peak analysis. Furthermore, the signal frequency parameters may be utilized for the material thermophysical property characterization. This method lays the foundation for an online dn/dT instrument for monitoring chemical processes.
The Stark effect in linear potentials
NASA Astrophysics Data System (ADS)
Robinett, R. W.
2010-01-01
We examine the Stark effect (the second-order shifts in the energy spectrum due to an external constant force) for two one-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z > 0 and V(z) = ∞ for z < 0) and the symmetric linear potential (given by V(z) = F|z|). We show how straightforward use of the most obvious properties of the Airy function solutions and simple Taylor expansions gives closed form results for the Stark shifts in both systems. These exact results are then compared to other approximation techniques, such as perturbation theory and WKB methods. These expressions add to the small number of closed-form descriptions available for the Stark effect in model quantum mechanical systems.
Yan, Zhi; Zaman, Mostafa; Jiang, Liying
2011-12-12
In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.
Zhang, Yiqi; Liu, Xing; Belić, Milivoj R; Zhong, Weiping; Wen, Feng; Zhang, Yanpeng
2015-08-15
We analytically and numerically investigate an anharmonic propagation of two-dimensional beams in a harmonic potential. We pick noncentrosymmetric beams of common interest that carry orbital angular momentum. The examples studied include superposed Bessel-Gauss (BG), Laguerre-Gauss (LG), and circular Airy (CA) beams. For the BG beams, periodic inversion, phase transition, and rotation with periodic angular velocity are demonstrated during propagation. For the LG and CA beams, periodic inversion and variable rotation are still there but not the phase transition. On the whole, the "center of mass" and the orbital angular momentum of a beam exhibit harmonic motion, but the motion of the beam intensity distribution in detail is subject to external and internal torques and forces, causing it to be anharmonic. Our results are applicable to other superpositions of finite circularly asymmetric beams.
Curved singular beams for three-dimensional particle manipulation.
Zhao, Juanying; Chremmos, Ioannis D; Song, Daohong; Christodoulides, Demetrios N; Efremidis, Nikolaos K; Chen, Zhigang
2015-07-13
For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark "hole" in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications.
Covariance of lucky images: performance analysis
NASA Astrophysics Data System (ADS)
Cagigal, Manuel P.; Valle, Pedro J.; Cagigas, Miguel A.; Villó-Pérez, Isidro; Colodro-Conde, Carlos; Ginski, C.; Mugrauer, M.; Seeliger, M.
2017-01-01
The covariance of ground-based lucky images is a robust and easy-to-use algorithm that allows us to detect faint companions surrounding a host star. In this paper, we analyse the relevance of the number of processed frames, the frames' quality, the atmosphere conditions and the detection noise on the companion detectability. This analysis has been carried out using both experimental and computer-simulated imaging data. Although the technique allows us the detection of faint companions, the camera detection noise and the use of a limited number of frames reduce the minimum detectable companion intensity to around 1000 times fainter than that of the host star when placed at an angular distance corresponding to the few first Airy rings. The reachable contrast could be even larger when detecting companions with the assistance of an adaptive optics system.
Electroless plating of Ni thin films using foam of electrolyte
NASA Astrophysics Data System (ADS)
Furuhashi, Takahiro; Yamada, Yoshiyasu; Ichihara, Shoji; Takai, Akihiro; Usui, Hiroaki
2016-02-01
Electroless plating of Ni thin films was achieved in foam of electroplating solution in place of electroplating liquid. Commercial hypophosphite-based solution for Ni electroless plating was added with a surfactant of sulfuric acid monododecyl ester sodium salt (SDS) and bubbled with nitrogen gas to produce airy foam. Ni thin films were deposited by immersing iron substrates in the foam. Although stationary foam was inconvenient for electrodeposition by itself, film growth was enhanced by generating a flow of foam using substrate rotation and by adding SDS to a concentration of 0.1 to 0.3 wt %. No defects attributed to pinholes were observed on the film surface. This method was effective in reducing the net amount of plating solution necessary for film deposition.
Laplace and the era of differential equations
NASA Astrophysics Data System (ADS)
Weinberger, Peter
2012-11-01
Between about 1790 and 1850 French mathematicians dominated not only mathematics, but also all other sciences. The belief that a particular physical phenomenon has to correspond to a single differential equation originates from the enormous influence Laplace and his contemporary compatriots had in all European learned circles. It will be shown that at the beginning of the nineteenth century Newton's "fluxionary calculus" finally gave way to a French-type notation of handling differential equations. A heated dispute in the Philosophical Magazine between Challis, Airy and Stokes, all three of them famous Cambridge professors of mathematics, then serves to illustrate the era of differential equations. A remark about Schrödinger and his equation for the hydrogen atom finally will lead back to present times.
NASA Astrophysics Data System (ADS)
Masoero, Davide; Raimondo, Andrea; Valeri, Daniele
2017-02-01
We assess the ODE/IM correspondence for the quantum g-KdV model, for a non-simply laced Lie algebra g. This is done by studying a meromorphic connection with values in the Langlands dual algebra of the affine Lie algebra g^{(1)}, and constructing the relevant {Ψ}-system among subdominant solutions. We then use the {Ψ}-system to prove that the generalized spectral determinants satisfy the Bethe Ansatz equations of the quantum g-KdV model. We also consider generalized Airy functions for twisted Kac-Moody algebras and we construct new explicit solutions to the Bethe Ansatz equations. The paper is a continuation of our previous work on the ODE/IM correspondence for simply-laced Lie algebras.
Computer simulation of super-resolution point source image detection
NASA Astrophysics Data System (ADS)
Fillard, Jean-Pierre; M'timet, H.; Lussert, Jean-Marc; Castagne, Michel
1993-11-01
We present a computer simulation of the analysis of an `in-focus' 2D Airy disk. Two competing methods are used to calculate the coordinates of the center of this point spread function image. The first one is the classical technique that relies on the 2D `centroid' of the image, and the second one is a more original method that uses the frequency dependence of the argument of the Fourier transform. Comparative simulations show that the latter technique [Fourier phase shift (FPS)] allows us to obtain a very good precision of better than 1% of a pixel spacing after quantization. Perturbations such as dc offset reduction, quantization noise, and additive Gaussian noise are introduced in the simulation. The results show that there is an improved perturbation immunity for the FPS method.
NASA Astrophysics Data System (ADS)
Courtmanche, Amanda; McLeod, Roger; McLeod, David
2006-10-01
A healthy eye has its large set of diffraction patterns, generated by the viewed scene, spread across the visible spectrum. Only the two of these simultaneously coincident with foveal cones, and rods, or with extra-foveal cones, are visually useful. This fact and pupil diameter changes with illumination, which cause proportional wavelength changes, drives the healthy visual state. A quasi-monochromatic interval is coincident with foveal cones, and rods. A shorter, partially overlapping interval aligns with extrafoveal cones, with about twenty nanometers separation. Wavelengths follow the Airy disk radius formula. An unhealthy eye is an eyeball deformed by self- induced vision abuse. Incorrect and effectively static stresses in the large external eye muscles displace and distort the patterns. Rebalancing the proper vision and muscle state are safely, quickly and rapidly restored by mimicking natural eye and head movements with naturoptics.
Structural characteristics and tectonics of northeastern Tellus Regio and Meni Tessera
NASA Technical Reports Server (NTRS)
Toermaenen, T.
1992-01-01
The Tellus Regio-Meni Tessera region is an interesting highland area characterized by large areas of complex ridged terrain or tessera terrain. The area was previously studied from the Venera 15/16 data, typical characteristics of complex tessera terrain of Tellus Regio were analyzed, and a formation mechanism was proposed. Apparent depths of compensation of approximately 30-50 km were calculated from Pioneer Venus gravity and topography data. These values indicate predominant Airy compensation for the area. Regional stresses and lithospheric structures were defined from analysis of surface structures, topography, and gravity data. In this work we concentrate on northeastern Tellus Regio and Meni Tessera, which are situated north and west of Tellus Regio. Structural features and relationships are analyzed in order to interpret tectonic history of the area. Study area was divided into three subareas: northeastern Tellus Regio, Meni Tessera, and the deformed plain between them.
Variable beamwidth monopulse feed for Tracking and Data Relay Satellite (TDRS)
NASA Technical Reports Server (NTRS)
Schmidt, R. F.
1974-01-01
The Tracking and Data Relay Satellite with a set of circularly-polarized, amplitude-sensing monopulse patterns suitable for acquiring and tracking user spacecraft at Ku-band (15.0 GHz) is discussed. The possibility of increasing the less than 0.4-degree half-power beamwidth of the data beam to almost 1.0 degree during the acquisition phase is predicated on the use of feeds situated in the first bright-ring of the Airy diffraction structure. A complex-vector simulation equivalent to the Kirchhoff-Kottler or Franz formulations is used to compute transmitted and received field information for a dual-reflector (Cassegrain) antenna configuration in a three-dimensional space.
Crustal volumes of the continents and of oceanic and continental submarine plateaus
NASA Technical Reports Server (NTRS)
Schubert, G.; Sandwell, D.
1989-01-01
Using global topographic data and the assumption of Airy isostasy, it is estimated that the crustal volume of the continents is 7182 X 10 to the 6th cu km. The crustal volumes of the oceanic and continental submarine plateaus are calculated at 369 X 10 to the 6th cu km and 242 X 10 to the 6th cu km, respectively. The total continental crustal volume is found to be 7581 X 10 to the 6th cu km, 3.2 percent of which is comprised of continental submarine plateaus on the seafloor. An upper bound on the contintental crust addition rate by the accretion of oceanic plateaus is set at 3.7 cu km/yr. Subduction of continental submarine plateaus with the oceanic lithosphere on a 100 Myr time scale yields an upper bound to the continental crustal subtraction rate of 2.4 cu km/yr.
Transport of inertial anisotropic particles under surface gravity waves
NASA Astrophysics Data System (ADS)
Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas
2016-11-01
The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.
Tail decay for the distribution of the endpoint of a directed polymer
NASA Astrophysics Data System (ADS)
Bothner, Thomas; Liechty, Karl
2013-05-01
We obtain an asymptotic expansion for the tails of the random variable { T}=\\arg\\max_{u\\in{R}}(A_2(u)-u^2) where A_2 is the Airy2 process. Using the formula of Schehr (2012 J. Stat. Phys. 149 385) that connects the density function of { T} to the Hastings-McLeod solution to the second Painlevé equation, we prove that as t → ∞, {P}(|{ T}|>t)=C\\rme^{-\\frac{4}{3}\\varphi(t)}t^{-145/32}(1+O(t^{-3/4})) , where φ(t) = t3 - 2t3/2 + 3t3/4, and the constant C is given explicitly.
Thermally induced optical nonlinearity during transient heating of thin films
Chen, G. ); Tien, C.L. )
1994-05-01
This work studies the temperature field and the optical response of weakly absorbing thin films with thermally induced optical nonlinearity during picosecond to nanosecond pulsed-laser heating. A one-dimensional model is presented that examines the effects of the temperature dependent optical constants and the nonuniform absorption caused by interference. The energy equation is solved numerically, coupled with the matrix method in optical multilayer theory. Both cadmium sulfide (CdS) thin films and a zinc selenide (ZnSe) interference filter are considered. The computational results compare favorably with available experimental data on the ZnSe interference filter. This study shows that the transient temperature distributions in the films are highly nonuniform. Such nonuniformity yields Airy's formulae for calculating the thin-film reflectance and transmittance inapplicable. Applications of the work include optical bistability, localized change of the film structure, and measurement of the thermal diffusivity of thin films. 31 refs., 7 figs., 1 tab.
Degree variances of the earth's potential, topography and its isostatic compensation
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1982-01-01
A spherical harmonic expansion of the earth's gravitational potential and equivalent rock topography to degree and order 180 is described. The potential implied by the topography considered as uncompensated and with isostatic compensation has been computed. Good agreement with the observed potential field is found when the depth of compensation in the Airy theory is assumed to be 50 km. At the higher degrees the correlation coefficient between the potential expansion and the equivalent rock topography is about 0.5. The Lachapelle equations for the topographic isostatic potential were tested using 1 x 1 deg equivalent rock topography. The degree variances agree at the lower degrees but at degree 36 the Lachapelle results using 5 deg data underestimate the potential degree variances by about one-third.
The control net of Mars - May 1977. [from Viking lander spacecraft radio tracking data
NASA Technical Reports Server (NTRS)
Davies, M. E.
1978-01-01
The development of planet-wide control nets of Mars is reviewed, and the May 1977 update is described. This updated control net was computed by means of a large single-block analytical triangulation incorporating the new direction of the spin axis and the new rotation rate of Mars, as determined from radio tracking data provided by the Viking lander spacecraft. The analytical triangulation adjusts for planimetric control only (areocentric latitude and longitude) and for the camera orientation angles. Most of the areocentric radii at the control points were interpolated from radio occultation measurements, but a few were determined photogrammetically, and a substantial number were derived from elevation contours on the 1976 USGS topographic series of Mars maps. A value of V, measured from Mars' vernal equinox along the equator to the prime meridian (Airy-0) is presented.
The prime meridian of Mars and the longitudes of the Viking landers
NASA Technical Reports Server (NTRS)
Davies, M. E.
1977-01-01
A planetwide control net of Mars has been computed by a single large-block analytical triangulation derived from 17,224 measurements of 3,037 control points on 928 Mariner 9 pictures. The computation incorporated the Viking-determined direction of the spin axis and rotation rate of Mars. The angle measured from the vernal equinox to the prime meridian (areocentric right ascension) of Mars was determined to be 148.368 deg + 350.891986 deg (JD - 2433282.5), where JD refers to the Julian date. The prime meridian of Mars passes through the center of the small crater Airy-O. The longitudes of the Viking landers are 47.82 + or - 0.1 deg for Lander 1 and 225.59 + or - 0.1 deg for Lander 2.
Lithospheric structure in the Pacific geoid
NASA Technical Reports Server (NTRS)
Marsh, B. D.
1984-01-01
In order that sub-lithospheric density variations be revealed with the geoid, the regional geoid anomalies associated with bathymetric variations must first be removed. Spectral techniques were used to generate a synthetic geoid by filtering the residual bathymetry assuming an Airy-type isostatic compensation model. An unbiased estimated of the admittances show that for region under study, no single compensation mechanism will explain all of the power in the geoid. Nevertheless, because topographic features are mainly coherent with the geoid, to first order an isostationally compensated lithosphere cut by major E-W fracture zones accounts for most of the power in the high degree and other SEASAT geoid in the Pacific.
Holographic superconductors near the Breitenlohner-Freedman bound
NASA Astrophysics Data System (ADS)
Siopsis, George; Therrien, Jason; Musiri, Suphot
2012-04-01
We discuss holographic superconductors in an arbitrary dimension whose dual black holes have a scalar hair of mass near the Breitenlohner-Freedman bound. We concentrate on low temperatures in the probe limit. We show analytically that when the bound is saturated, the condensate diverges at low temperatures as |ln T|δ, where δ depends on the dimension. This mild divergence was missed in earlier numerical studies. We calculate the conductivity analytically and show that at low temperatures, all poles move toward the real axis. We obtain an increasingly large number of poles which approach the zeroes of the Airy function in 2+1 dimensions and of the Gamma function in 3+1 dimensions. Our analytic results are in good agreement with numerical results whenever the latter are available.
Vicarious Collecting: A Review of Some Notable Books about Books - and where to acquire them!
NASA Astrophysics Data System (ADS)
Koester, Jack
Reviews on Milestones of Science, Ruth A. Sparrow, Buffalo Museum of Science, 1972, The Face of the Moon, from the Linda Hall Library, Out of this World - The Golden Age of the Celestial Atlas, Linda Hall Library, including Bayer's Uranometria, Schiller's Coelum Christianum, Hevelius' Firmamentum, Flamsteed's Atlas Coelestis, and Bode's Uranographia, as well as Argelander, Bode, Cellarius, Coronelli, Doppelmaier, Kepler, La Caille, Messier, Piccolomini, and Wollaston, Heavenly Library, Angus MacDonald and A.D. Morrison-Low from Royal Observatory Edinburgh, Library, 1994, Catalogue of the Rare Astronomical Books in the San Diego State University Library, Louis A. Kenney, 1988, and Vanity Fair, from 1869 to 1914, including caricatures of famous astronomers and scientists, such as Airy, Ball, Huggins, and Proctor.
Takai, Takanari; Nakao, Hidenobu; Iwata, Futoshi
2014-11-17
We describe a novel fabrication method of three-dimensional (3D) microstructures using local electrophoresis deposition together with laser trapping. A liquid cell consisting of two-faced conductive substrates was filled with a colloidal solution of Au nanoparticles. The nanoparticles were trapped by a laser spot and positioned on the bottom substrate, then deposited onto the surface by the application of electrical voltage between the two substrates. By moving the liquid cell downward while maintaining the deposition, 3D microstructures were successfully fabricated. The smallest diameter of the fabricated pillar was 500 nm, almost the same as that of the Airy disc. The Young's modulus of the fabricated structure was 1.5 GPa.
Aharony-Bergman-Jafferis-Maldacena Wilson Loops in the Fermi Gas Approach
NASA Astrophysics Data System (ADS)
Klemm, Albrecht; Mariño, Marcos; Soroush, Masoud
2013-02-01
The matrix model of the Aharony-Bergman-Jafferis-Maldacena theory can be formulated in terms of an ideal Fermi gas with a non-trivial one-particle Hamiltonian. We show that, in this formalism, vacuum expectation values (vevs) of Wilson loops correspond to averages of operators in the statistical-mechanical problem. This makes it possible to calculate these vevs at all orders in 1/N, up to exponentially small corrections, and for arbitrary Chern-Simons coupling, by using the Wentzel- Kramer-Brillouin expansion.We present explicit results for the vevs of 1/6 and the 1/2 Bogomolnyi- Prasad-Sommerfield Wilson loops, at any winding number, in terms of Airy functions. Our expressions are shown to reproduce the low genus results obtained previously in the 't Hooft expansion.
NASA Astrophysics Data System (ADS)
Reasenberg, R. D.; Bills, B. G.
1983-01-01
A critique of a model of the near-surface structure of Venus by Cazenave and Dominh (1981) based on Pioneer Venus data on gravity and topography is presented. Two objections are raised, the first an assumption of Airy compensation at a depth of 6 km, and the second that a gravity-topography relation is sufficient to study the subsurface characteristics. It is shown that determination of the gravity field along the line of sight, and not along the vertical, is necessary for a valid geophysical model with the available data. It is concluded that the spacecraft data are sufficient to define constraints on models of the subsurface characteristics, but are not sufficient for actually describing the substrate.
NASA Technical Reports Server (NTRS)
Head, James W.
1990-01-01
Processes of crustal formation and evolution are examined, and the role of crustal thickness variation in the production of topography is assessed. Evidence for crustal composition, age, average crustal thickness, and total crustal volume on Venus is reviewed. It is shown that the present crustal volume of Venus is comparable to that of the present earth. The geologic evidence for variations in crustal thickness on Venus are outlined, and specific examples of regions of apparent crustal thickening are assessed. These observations are compared to a simple model of Airy isostasy using global Venus topography and the end-member hypothesis (that the topography of Venus could result solely from crustal thickness variations). Models to account for these observations are proposed.
Further insights into the colours of the natural rainbow at sunset.
NASA Astrophysics Data System (ADS)
Ricard, Jean Louis; Barckicke, Jean; Adams, Peter
2014-05-01
This paper is an addendum to last year's paper (presented at EGU, Vienna in April 2013) entitled "New insights into the rainbow. The colours of the natural rainbow at sunset". Using a realistic model of rainbow based on the Airy theory, we showed that , at sunset, the orange, the violet, the blue and the green bands disappear completely in this order. And we stated that "At the end, the primary bow is mainly red and slightly yellow." and we displayed outputs from our model "proving" it. However, a picture taken by Claudia Hinz in the Alps proves that purely red rainbows (that is without any yellow band) do exist. Although surprising, this anomaly is not in contradiction with the rainbow model. It can be reproduced and understood. Purely red rainbows should never happen in flat countries: on Claudia's picture, the sun is approximately 0.5-1 degree below the horizon.
The Optical Assembly of Lens System in Microcolumn
NASA Astrophysics Data System (ADS)
Jang, Won; Kim, Ho
2005-04-01
The resolution and performance of micro-column is determined by factors of optical aberration, which are dependent of the size, the roundness of lens aperture, and the precise alignment. The micro-column is composed of deflector, source lenses and Einzel lenses with the whole length less than 10mm. The optical aberrations of micro-column are reduced owing to the considerable reduction of its dimension compared with that of conventional electron column. A precise circular aperture was pierced on a 3μm thin silicon membrane by laser machining. The range of the aperture diameter of electron lenses usually ranges from 10 to 200μm, and the spacing between electrodes is from 100μm to several hundreds of μm. Laser diffraction pattern observed through the assembled lens system, and the distortion of the diffraction pattern can be easily recognized. An Airy circular diffraction was observed and monitored for the clear pattern..
Flaw characterization in structural ceramics using scanning laser acoustic microscopy
NASA Technical Reports Server (NTRS)
Roth, Don J.
1988-01-01
The ability of scanning laser acoustic microscopy (SLAM) to characterize artifically seeded voids in sintered silicon nitride structural ceramic specimens was investigated. The voids ranged from 20 to 430 microns in diameter and were embedded up to 2 mm beneath the surface of the specimens. Probability of detection was determined as a function of void depth and size. Trigonometric relationships and Airy's diffraction theory were used to obtain predictions of void depth and size from acoustic diffraction patterns produced by the voids. Agreement was observed between actual and predicted void depths. However, predicted void diameters were generally much greater than actual diameters. Precise diameter predictions are difficult to obtain because of measurement uncertainty and the limitations of the 100 MHz SLAM applied to typical ceramic specimens.
Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach
NASA Astrophysics Data System (ADS)
Camassa, R.; Falqui, G.; Ortenzi, G.
2017-02-01
The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.
From gap probabilities in random matrix theory to eigenvalue expansions
NASA Astrophysics Data System (ADS)
Bothner, Thomas
2016-02-01
We present a method to derive asymptotics of eigenvalues for trace-class integral operators K :{L}2(J;{{d}}λ )\\circlearrowleft , acting on a single interval J\\subset {{R}}, which belongs to the ring of integrable operators (Its et al 1990 Int. J. Mod. Phys. B 4 1003-37 ). Our emphasis lies on the behavior of the spectrum \\{{λ }i(J)\\}{}i=0∞ of K as | J| \\to ∞ and i is fixed. We show that this behavior is intimately linked to the analysis of the Fredholm determinant {det}(I-γ K){| }{L2(J)} as | J| \\to ∞ and γ \\uparrow 1 in a Stokes type scaling regime. Concrete asymptotic formulæ are obtained for the eigenvalues of Airy and Bessel kernels in random matrix theory. Dedicated to Percy Deift and Craig Tracy on the occasion of their 70th birthdays.
Dynamic compensation of Venus's geoid: A comparison with Earth
NASA Technical Reports Server (NTRS)
Kiefer, W. S.; Hager, B. H.; Richards, M. A.
1985-01-01
Unlike Earth, on Venus long wavelength geoid anomalies correlate well with topography. Venus's admittance curve between harmonic degrees 3 and 18 is inconsistent with Airy isostasy but is consistent with dynamic support from convection being the dominant mechanism of compensation on Venus. We model dynamic compensation on Venus using simple flow models which assume a spherically symmetric Newtonian mantle viscosity profile. Preliminary models parameterize the viscosity variation with depth as a 2 layer model with a boundary at 720 km depth. A model in which viscosity in the lower mantle is a factor of 10 lower than in the upper mantle can explain Venus's observed admittance curve for degrees 3 through 18. Dynamic models which include a chemical boundary between the upper and lower mantle do not successfully explain the observed admittance curve, indicating that Venus does not have a chemically layered mantle.
Production of isoflavonoids in callus cultures of Pueraria candollei var. mirifica.
Udomsuk, Latiporn; Jarukamjorn, Kanokwan; Tanaka, Hiroyuki; Putalun, Waraporn
2009-01-01
Pueraria candollei Wall. ex Benth. var. mirifica (Airy Shaw & Suvat.) Niyomdham was investigated for callus induction using Murashige and Skoog (MS) medium containing different plant growth regulators. After 8 weeks of culture, 66-100% of leaf or stem explants formed calli. Calli from stem explants cultured on MS medium supplemented with 0.5 mg/l thidiazuron (TDZ) gave the maximum of shoot induction (16%) and the highest level of total isoflavonoids [(50.39 +/- 7.06) mg/g dry wt], which was 7-fold higher than that of the native tuber [(7.04 +/- 0.29) mg/g dry wt]. These results suggest that addition of TDZ to the culture medium markedly enhances the production of isoflavonoids in calli induced from stem explants of P. candollei var. mirifica.
Is Mc Leod's Patent Pending Naturoptic Method for Restoring Healthy Vision Easy and Verifiable?
NASA Astrophysics Data System (ADS)
Niemi, Paul; McLeod, David; McLeod, Roger
2006-10-01
RDM asserts that he and people he has trained can assign visual tasks from standard vision assessment charts, or better replacements, proceeding through incremental changes and such rapid improvements that healthy vision can be restored. Mc Leod predicts that in visual tasks with pupil diameter changes, wavelengths change proportionally. A longer, quasimonochromatic wavelength interval is coincident with foveal cones, and rods. A shorter, partially overlapping interval separately aligns with extrafoveal cones. Wavelengths follow the Airy disk radius formula. Niemi can evaluate if it is true that visual health merely requires triggering and facilitating the demands of possibly overridden feedback signals. The method and process are designed so that potential Naturopathic and other select graduate students should be able to self-fund their higher- level educations from preferential franchising arrangements of earnings while they are in certain programs.
Quantum Catastrophes and Ergodicity in the Dynamics of Bosonic Josephson Junctions
NASA Astrophysics Data System (ADS)
O'Dell, D. H. J.
2012-10-01
We study rainbow (fold) and cusp catastrophes that form in Fock space following a quench in a Bose Josephson junction. In the Gross-Pitaevskii mean-field theory, the rainbows are singular caustics, but in the second-quantized theory a Poisson resummation of the wave function shows that they are described by well-behaved Airy functions. The structural stability of these Fock space caustics against variations in the initial conditions and Hamiltonian evolution is guaranteed by catastrophe theory. We also show that the long-time dynamics are ergodic. Our results are relevant to the question posed by Berry [M. V. Berry, Nonlinearity 21, T19 (2008)]: Are there circumstances when it is necessary to second quantize wave theory in order to avoid singularities?
Quantum catastrophes and ergodicity in the dynamics of bosonic Josephson junctions
NASA Astrophysics Data System (ADS)
O'Dell, Duncan
2013-05-01
We study rainbow (fold) and cusp catastrophes that form in Fock space following a quench in a Bose Josephson junction. In the Gross-Pitaevskii mean-field theory the rainbows are singular caustics, but in the second-quantized theory a Poisson resummation of the wave function shows that they are described by well behaved Airy functions. The structural stability of these Fock space caustics against variations in the initial conditions and Hamiltonian evolution is guaranteed by catastrophe theory. We also show that the long-time dynamics are ergodic. Our results are relevant to the question posed by Berry: are there circumstances when it is necessary to second-quantize wave theory in order to avoid singularities? NSERC
Dynamic compensation of Venus's geoid: A comparison with Earth
NASA Technical Reports Server (NTRS)
Kiefer, W. S.; Hager, B. H.; Richards, M. A.
1985-01-01
Unlike Earth, on Venus long wavelength geoid anomalies correlate well with topography. Venus's admittance curve between harmonic degrees 3 and 18 is inconsistent with Airy isostasy but is consistent with dynamic support from convection being the dominant mechanism of compensation on Venus. We model dynamic compensation on Venus using simple flow models which assume a spherically symmetric Newtonian mantle viscosity profile. Preliminary models parameterize the viscosity variation with depth as a 2 layer model with a boundary at 720 km depth. A model in which viscosity in the lower mantle is a factor of 10 lower than in the upper mantle can explain Venus's observed admittance curve for degrees 3 through 18. Dynamic models which include a chemical boundary between the upper and lower mantle do not successfully explain the observed admittance curve, indicating that Venus does not have a chemically layered mantle.
Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths
NASA Astrophysics Data System (ADS)
Hu, Yao; Zeng, Lijiang; Li, Lifeng
2007-01-01
We propose an experimental method to coherently mosaic two planar diffraction gratings. The method uses a Twyman-Green interferometer to guarantee the planar parallelism of the two sub-aperture gratings, and obtains the in-plane rotational error and the two translational errors from analysis of the far-field diffraction intensity patterns in two alignment wavelengths. We adjust the relative attitude and position of the two sub-aperture gratings to produce Airy disk diffraction patterns in both wavelengths. In our experiment, the repeatability of in-plane rotation adjustment was 2.35 μrad and that of longitudinal adjustment was 0.11 μm. The accuracy of lateral adjustment was about 2.9% of the grating period.
Gravity study of the Pitcairn-Easter hotline
NASA Astrophysics Data System (ADS)
Maia, M.; Dehghani, G. A.; Diament, M.; Francheteau, J.; Stoffers, P.
1994-11-01
Shipboard free air gravity and bathymetric anomalies with an extension of 400 km were identified across the Pitcairn-Easter hotline in the South Pacific. The anomalies are associated with one of the positive geoid undulations observed in the area from satellite data. Several smaller topographic features, volcano-tectonic ridges oriented N 65 deg E, are superimposed on the topographic hig. Admittance computations and direct modeling show that the swell topography is compensated by a low density zone within the lithosphere, 4 to 8 km below the crust. The volcano tectonic ridges are locally compensated in a classical Airy sense. The swell and the associated ridges were probably created by the action of a thermal anomaly resulting from the interaction of the Easter Island hotspot and of the Easter Microplate accretion centers.
Evidence for a dynamically refracted primary bow in weakly bound 9Be rainbow scattering from 16O
NASA Astrophysics Data System (ADS)
Ohkubo, S.; Hirabayashi, Y.
2016-09-01
We present for the first time evidence for the existence of a dynamically refracted primary bow for 9Be+16O scattering. This is demonstrated through the use of coupled channel calculations with an extended double folding potential derived from the density-dependent effective two-body force and precise microscopic cluster wave functions for 9Be. The calculations reproduce the experimental Airy structure in 9Be+16O scattering well. It is found that coupling of a weakly bound 9Be nucleus to excited states plays the role of a booster lens, dynamically enhancing the refraction over the static refraction due to the Luneburg lens mean field potential between the ground states of 9Be and 16O.
NASA Astrophysics Data System (ADS)
Berry, M. V.
2005-01-01
By applying the technique of uniform asymptotic approximation to the oscillatory integrals representing tsunami wave profiles, the form of the travelling wave far from the source is calculated for arbitrary initial disturbances. The approximations reproduce the entire profiles very accurately, from the front to the tail, and their numerical computation is much faster than that of the oscillatory integrals. For one-dimensional propagation, the uniform asymptotics involve Airy functions and their derivatives; for two-dimensional propagation, the uniform asymptotics involve products of these functions. Separate analyses are required when the initial disturbance is specified as surface elevation or surface velocity as functions of position, and when these functions are even or odd. 'There was an awful rainbow once in heaven' (John Keats, 1820)
The control net of Mars - May 1977. [from Viking lander spacecraft radio tracking data
NASA Technical Reports Server (NTRS)
Davies, M. E.
1978-01-01
The development of planet-wide control nets of Mars is reviewed, and the May 1977 update is described. This updated control net was computed by means of a large single-block analytical triangulation incorporating the new direction of the spin axis and the new rotation rate of Mars, as determined from radio tracking data provided by the Viking lander spacecraft. The analytical triangulation adjusts for planimetric control only (areocentric latitude and longitude) and for the camera orientation angles. Most of the areocentric radii at the control points were interpolated from radio occultation measurements, but a few were determined photogrammetically, and a substantial number were derived from elevation contours on the 1976 USGS topographic series of Mars maps. A value of V, measured from Mars' vernal equinox along the equator to the prime meridian (Airy-0) is presented.
Peripheral Jet Air Cushion Landing System Spanloader Aircraft. Volume II
1979-12-01
12 .3 VT I P 6. WTEAN =- R9 t %, urgP *AIA. 14-suTTS ’-3j3A..Q - WT AIRI 83736.1 WFU:L -: 6)6009 WT TIP GEAR 450)0 J’T 14& lPv fi;6R = -401S . WT Y Wr...CUSHI "T 51.9 9SEA I1 1*2.8 LIFT 7190(,.U #-/A b3*341 H/h r *157 ma 0 6SD8*741 oJ =106091c, Qj : 3444.239 A 3,7 r4" --4( -u-re -4V jt~k. *. 7 . wAA
The far field diffraction pattern for corner reflectors with complex reflection coefficients
NASA Technical Reports Server (NTRS)
Chang, R. F.; Currie, D. G.; Alley, C. O.; Pittman, M. E.
1970-01-01
The far field diffraction pattern of a geometrically perfect corner reflector is examined analytically for normally incident monochromatic light. The states of polarization and the complex amplitudes of the emerging light are expressed through transformation matrices in terms of those of the original incident light for each sextant of the face in a single coordinate system. The analytic expression of the total diffraction pattern is obtained for a circular face. This expression consists of three component functions in addition to the basic Airy function. The coefficient of each function is expressed in terms of complex coefficients of reflectance of the reflecting surface. Some numerical results for different reflecting surfaces, including total internal reflection, are presented. The iso-intensity contours of the diffraction pattern evaluated from the analytical expressions for an uncoated solid corner reflector are also presented along with the photographs of the pattern.
Bending light via adiabatic optical transition in longitudinally modulated photonic lattices
Han, Bin; Xu, Lei; Dou, Yiling; Xu, Jingjun; Zhang, Guoquan
2015-01-01
Bending light in a controllable way is desired in various applications such as beam steering, navigating and cloaking. Different from the conventional way to bend light by refractive index gradient, transformation optics or special beams through wavefront design such as Airy beams and surface plasmons, we proposed a mechanism to bend light via resonant adiabatic optical transition between Floquet-Bloch (FB) modes from different FB bands in longitudinally modulated photonic lattices. The band structure of longitudinally modulated photonic lattices was calculated by employing the concept of quasi-energy based on the Floquet-Bloch theory, showing the existence of band discontinuities at specific resonant points which cannot be revealed by the coupled-mode theory. Interestingly, different FB bands can be seamlessly connected at these resonant points in longitudinally modulated photonic lattices driven by adiabatically varying the longitudinal modulation period along the propagation direction, which stimulates the adiabatic FB mode transition between different FB bands. PMID:26511890
Extreme fluctuations in stochastic network coordination with time delays
NASA Astrophysics Data System (ADS)
Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.
2015-12-01
We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.
Curved singular beams for three-dimensional particle manipulation
Zhao, Juanying; Chremmos, Ioannis D.; Song, Daohong; Christodoulides, Demetrios N.; Efremidis, Nikolaos K.; Chen, Zhigang
2015-01-01
For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark “hole” in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications. PMID:26166011
The Computation of Potential Harmonic Coefficients Using Global Crustal Information
NASA Astrophysics Data System (ADS)
Tsoulis, D.
Topographic/isostatic potential harmonic coefficients can be computed from a global elevation model, when one accounts for the compensation of the upper crust according to a certain model of isostasy. The theory is based on a series expansion of the inverse distance function, which enables an efficient computation of the dimensionless poten- tial coefficients on the sphere. The availability of global crustal models permits the application of the same theory, with the exception that here the theoretically defined boundary between upper crust and mantle is replaced with crustal thickness informa- tion derived mainly from processing repeated seismic observations. The present paper deals with the spherical harmonic analysis of such a model, namely the CRUST 2.0 global crustal model, and compares the derived spectrum with the respective coeffi- cient sets delivered by the application of idealized isostatic models such as those of Airy/Heiskanen or Pratt/Hayford.
Plouff, Donald
1992-01-01
A residual isostatic gravity map (sheet 2) was prepared so that the regional effect of isostatic compensation present on the Bouguer gravity anomaly map (sheet 1) would be minimized. Isostatic corrections based on the Airy-Heiskanen system (Heiskanen and Vening Meinesz, 1958, p. 135-137) were estimated by using 3-minute topographic digitization and applying the method of Jachens and Roberts (1981). Parameters selected for the isostatic model were 25 km for the normal crustal thickness at sea level, 2.67 g/cm3 for the density of the crust, and 0.4 g/cm3 for the contrast in density between the crust and the upper mantle. These parameters were selected so that the isostatic residual gravity map would be consistent with isostatic residual gravity maps of the adjacent Walker Lake quadrangle (Plouff, 1987) and the state of Nevada (Saltus, 1988c).
NASA Astrophysics Data System (ADS)
Pavlis, N. K.; Rapp, R. H.
1990-03-01
Consideration is given to the possibility of combining low-degree satellite-derived geopotential models with the harmonic coefficients of the topographic-isostatic potential implied by the Airy/Heiskanen isostatic hypothesis. The compilation of a topographic database providing information pertaining to terrain type classification is discussed. The formulation for the determination of harmonic coefficients of the topographic-isostatic potential is extended beyond to cases discussed by Lachapelle (1976) to include various terrain types. This formulation and the series expansion approach of Rummel et al. (1988) are implemented for potential coefficient determinations complete to degree and order 360. The topographic-isostatic coefficients are used with satellite-derived geopotential models to estimate mean gravity anomalies. The results are compared with observations to evaluate the quality of different estimation procedures.
NASA Astrophysics Data System (ADS)
Snyder, D. B.; Roberts, C. W.; Saltus, R. W.; Sikora, R. F.
1981-02-01
The principal facts of 64,026 gravity stations within the State of California are contained on the 9-track magnetic tape. Tape blocksize is 8000 with logical record lengths of eighty ASCII characters written at 1600 bpi density. The tape contains a leading explanatory file followed by 28 data files arranged by 1 degree by 2 degree sheets. The International Gravity Formula of 1930 is used. Airy-Heiskanen isostatic anomalies are included, computed for an average crustal thickness of 25 km, density of topography 2.67 g/cc and a lower crust-upper mantle density of 0.4 g/cc, in addition to complete Bouguer anomalies reduced at a density of 2.67 g/cc. Terrain corrections extend to 166.7 km from each station.
Mid-pacific mountains revisited
NASA Astrophysics Data System (ADS)
Kroenke, Loren W.; Kellogg, James N.; Nemoto, Kenji
1985-06-01
The Mid-Pacific Mountains are guyots whose volcanic pedestals have been constructed on a broad basement plateau, the flanks of which are downfaulted. Edifice construction may have been controlled by an orthogonal system of intersecting faults trending roughly ENE and NNW. Low amplitude gravity anomalies observed over the Mid-Pacific Mountains indicate complete Airy-Heiskanen isostatic compensation, crustal thickening, and eruption on thin elastic lithosphere. Tholeiites of the Mid-Pacific Mountains resemble lavas of Iceland and the Galapagos Islands. The orthogonal fault system, low gravity anomalies, and lava chemistry of the Mid-Pacific Mountains can be explained by eruption on or near a great ENE-trending rift system.
Global map of the isostatic gravity disturbances
NASA Astrophysics Data System (ADS)
Tenzer, Robert; Chen, Wenjin; Novák, Pavel
2013-04-01
We compile and compare global maps of the isostatic gravity disturbances for different isostatic models. The Airy-Heiskanen, Prat-Hayford and Vening-Meinesz Moritz models of isostasy are taken into consideration. These isostatic gravity data are then used to interpret the Earth's inner density structures and geophysical processes occurring within the lithosphere and sub-lithosphere mantle. The investigation is done separately for the oceanic and continental crustal structures. The isostatic gravity disturbances are computed globally using the global geopotential model (GOCO-03c), global topographic/bathymetric model (DTM2006.0) including ice-thickness data, and sediment data taken form the global crustal model (CRUST2.0).
Subsidence of the aru trough and the Aru Island, Irian Java, Indonesia
NASA Astrophysics Data System (ADS)
Untung, Mohamad
1985-03-01
The Aru Trough, structurally on trend with the Timor Trough, is located in the northwestern edge of the Australian platform southwest of Irian Jaya and east of the imbricated sediment wedge of the strong gravity gradient of the Banda arc. The isostatic anomalies based on the Airy-Heiskanen system show that this part of the region is in subsidence. A crustal extension may be active in a zone east of the Aru Trough, resulting in a graben formation. The root of the Aru Island is being pulled downward to the east so that this island is likely to sink. Geological investigations in the Aru Island strengthen this phenomenon and show a subsidence rate of 1 cm/yr. This crustal extension indicates that there is a separation underway of a block of the Australian continental crust from the Australian platform.
NASA Technical Reports Server (NTRS)
Pavlis, N. K.; Rapp, R. H.
1990-01-01
Consideration is given to the possibility of combining low-degree satellite-derived geopotential models with the harmonic coefficients of the topographic-isostatic potential implied by the Airy/Heiskanen isostatic hypothesis. The compilation of a topographic database providing information pertaining to terrain type classification is discussed. The formulation for the determination of harmonic coefficients of the topographic-isostatic potential is extended beyond to cases discussed by Lachapelle (1976) to include various terrain types. This formulation and the series expansion approach of Rummel et al. (1988) are implemented for potential coefficient determinations complete to degree and order 360. The topographic-isostatic coefficients are used with satellite-derived geopotential models to estimate mean gravity anomalies. The results are compared with observations to evaluate the quality of different estimation procedures.
NASA Astrophysics Data System (ADS)
Martinec, Z.
1996-11-01
We investigate the stability of a discrete downward continuation problem for geoid determination when the surface gravity observations are harmonically continued from the Earth's surface to the geoid. The discrete form of Poisson's integral is used to set up the system of linear algebraic equations describing the problem. The posedness of the downward continuation problem is then expressed by means of the conditionality of the matrix of a system of linear equations. The eigenvalue analysis of this matrix for a particularly rugged region of the Canadian Rocky Mountains shows that the discrete downward continuation problem is stable once the topographical heights are discretized with a grid step of size 5 arcmin or larger. We derive two simplified criteria for analysing the conditionality of the discrete downward continuation problem. A comparison with the proper eigenvalue analysis shows that these criteria provide a fairly reliable view into the conditionality of the problem. The compensation of topographical masses is a possible way how to stabilize the problem as the spectral contents of the gravity anomalies of compensated topographical masses may significantly differ from those of the original free-air gravity anomalies. Using surface gravity data from the Canadian Rocky Mountains, we investigate the efficiency of highly idealized compensation models, namely the Airy-Heiskanen model, the Pratt-Hayford model, and Helmert's 2nd condensation technique, to dampen high-frequency oscillations of the free-air gravity anomalies. We show that the Airy-Heiskanen model reduces high-frequencies of the data in the most efficient way, whereas Helmert's 2nd condensation technique in the least efficient way. We have found areas where a high-frequency part of the surface gravity data has been completely removed by adopting the Airy-Heiskanen model which is in contrast to the nearly negligible dampening effect of Helmert's 2nd condensation technique. Hence, for computation of
A model of compensation of topographic masses
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk
1993-09-01
The compilation of new global Mohorovičić (‘Moho’) topographic data enables the density contrast between the crust and mantle to be estimated. Assuming that this contrast is constant, the minimization of the external gravitational potential induced by the Earth's topographic masses and the Moho discontinuity yields the value of 0.28 g/cm3 for the density jump at the Moho. Moreover, it is shown that the Airy Heiskanen model of compensation only partly compensates the surface topographic masses. To fit the external gravitational potential, induced by the surface topography, the Pratt-Hayford concept of compensation has to be considered. Employing the dynamical flattening of the Earth, the minimum depth of compensation has been estimated at 100 150 km. This means that the topographic masses are compensated throughout the Earth's lithosphere at least.
Three-dimensional gravity modeling of the geologic structure of Long Valley caldera
Carle, S.F.
1988-01-01
A 48-mGal gravity low coincides with Long Valley caldera and is mainly attributed to low-density caldera fill. A strong regional gravity trend is mainly attributed to isostasy. A "best fitting' (based on regional control of basement densities) Airy-Heiskanen isostatic model was used for the regional correction. Some important points revealed by the three-dimensional gravity modeling are that 1) the volume of ejected magma associated with the Bishop Tuff eruption is greater than previously thought, 2) the caldera structure is strongly influenced by precaldera topography and the extensions of major, active faults, 3) the main west ring fracture is coincident with the Inyo Domes-Mono Craters fracture system, 4) a relatively low-density region probably underlies the caldera, and 5) a silicic magma chamber may underlie Devils Postpile. -from Author
Further insight into the tunneling contribution to the vibrational relaxation of NO in Ar.
Dashevskaya, E I; Litvin, I; Nikitin, E E; Troe, J
2015-04-28
Tunneling corrections to Landau-Zener rate coefficients for the vibrational relaxation NO(X(2)Π, v = 1) + Ar → NO(X(2)Π, v = 0) + Ar between 300 and 2000 K are determined employing ab initio potential energy surfaces calculated by the code provided by Alexander [J. Chem. Phys. 111, 7426 (1999)]. The calculations use a reaction coordinate approach and lead to vibronically nonadiabatic transition probabilities within the generalized Airy approximation as extended to the WKB underbarrier Landau-Lifshitz limit. The calculations confirm experimental evidence for an onset of major tunneling contributions to the relaxation rate at temperatures below about 900 K and rationalize large tunneling contributions at 300 K. These effects increase the rate coefficients by several orders of magnitude over the uncorrected Landau-Zener values and remove the large gap between the latter and experimental results.
Świrniak, Grzegorz; Mroczka, Janusz
2016-04-01
When a plane electromagnetic wave is scattered by an optically transparent object, whose size is much larger than the wavelength, a series of bright and dark fringes forms the primary rainbow, which is one of the most splendid phenomena in nature. In this work, an optical technique is discussed for simultaneous measurement of the diameter and refractive index of an axisymmetric and dielectric fiber by studying some rainbow features. This noncontact optical technique uses a beam of light exhibiting low temporal coherence, which enabled us to reduce the detrimental sensitivity of the rainbow features to variations of the fiber properties, thus allowing for high-precision estimates. Approximate mathematical formulas for the diameter and refractive index measurements were derived from the lowest-order complex angular momentum correction to Airy theory of rainbow. Furthermore, sensitivity of the measurement data to small deformation of the fiber's cross section into an ellipse was discussed. Preliminary empirical results provide a qualitative verification.
Nissen, Felix; Keeling, Jonathan
2010-06-15
We apply a many-body Wentzel-Kramers-Brillouin (WKB) approach to determine the leading quantum corrections to the semiclassical dynamics of the Josephson model, describing interacting bosons able to tunnel between two localized states. The semiclassical dynamics is known to divide between regular oscillations and self-trapped oscillations where the sign of the imbalance remains fixed. In both cases, the WKB wave functions are matched to Airy functions, yielding a modified Bohr-Sommerfeld quantization condition. At the critical energy dividing normal and self-trapped oscillations, the WKB wave functions should instead be matched to parabolic cylinder functions, leading to a quantization formula that is not just the Bohr-Sommerfeld formula, and recovering the known logarithmic quantum break times at this energy. This work thus provides another illustration of the usefulness of the WKB approach in certain many-body problems.
IRAN: Interferometric Remapped Array Nulling
NASA Astrophysics Data System (ADS)
Aristidi, E.; Vakili, F.; Schutz, A.; Lanteri, H.; Abe, L.; Belu, A.; Gori, P. M.; Lardière, O.; Lopez, B.; Menut, J. L.; Patru, F.
IRAN is a method of beam-combination in the hypertelescope imaging technique recently introduced by Labeyrie in optical interferometry. We propose to observe the interferometric image in the pupil plane, performing multi-axial pupil plane interferometry. Imaging is performed in a combined pupil-plane where the point-source intensity distribution (PSID) tends towards a pseudo Airy disc for a sufficiently large number of telescopes. The image is concentrated into the limited support of the output pupil of the individual telescopes, in which the object-image convolution relation is conserved. Specific deconvolution algorithms have been developped for IRAN hypertelescope imagery, based upon Lucy-like iterative techniques. We show that the classical (image plane) and IRAN (pupil plane) hypertelescope imaging techniques are equivalent if one uses optical fibers for beam transportation. An application to the VLT/VIDA concept is presented.
Current density in generalized Fibonacci superlattices under a uniform electric field.
Panchadhyayee, P; Biswas, R; Khan, Arif; Mahapatra, P K
2008-07-09
We present an exhaustive study on tunneling and electrical conduction in an electrically biased GaAs-Al(y)Ga(1-y)As generalized Fibonacci superlattice. The study is based on transfer matrix formalism using an Airy function approach and provides an exact calculation of the current density in the case of quasi-periodic multibarrier systems. The results suggest the use of such quasi-periodic systems in perfect band-pass or band-eliminator (of extremely low width) circuitry. We have clearly demonstrated the resonance-type peaks and negative differential conductivity regimes in such systems. It has also been found that quasi-periodicity favors sharp negative differential conductivity peaks compared to those in periodic superlattices and thus have profound importance in device applications.
Composition measurements of binary mixture droplets by rainbow refractometry.
Wilms, J; Weigand, B
2007-04-10
So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.
Enhanced Photoacoustic Beam Profiling of Pulsed Lasers
NASA Astrophysics Data System (ADS)
González, M.; Santiago, G.; Paz, M.; Slezak, V.; Peuriot, A.
2013-09-01
An improved version of a photoacoustic beam profiler of pulsed lasers is presented. The new model resorts to high-bandwidth condenser microphones to register higher-order, excited acoustic modes, thus enabling more accurate profiling. In addition, Xe was used as a buffer gas since its high atomic weight further reduces the eigenfrequencies. Furthermore, a new gas-handling system makes up for some deficiencies found in the first model. The system was calibrated using the Airy pattern generated with a pinhole illuminated by a frequency-doubled Nd:YAG laser that excited traces. Once calibrated, the beam profile of a TEA laser was obtained, using ethylene as the absorbing species. This profiler returns more accurate profiles than thermal paper.
Laser line shape and spectral density of frequency noise
Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.
2005-04-01
Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise.
Crustal-thickness variations in the central Andes
NASA Astrophysics Data System (ADS)
Beck, Susan L.; Zandt, George; Myers, Stephen C.; Wallace, Terry C.; Silver, Paul G.; Drake, Lawrence
1996-05-01
We estimated the crustal thickness along an east-west transect across the Andes at lat 20°S and along a north-south transect along the eastern edge of the Altiplano from data recorded on two arrays of portable broadband seismic stations (BANJO and SEDA). Waveforms of deep regional events in the downgoing Nazca slab and teleseismic earthquakes were processed to isolate the P-to-S converted phases from the Moho in order to compute the crustal thickness. We found crustal-thickness variations of nearly 40 km across the Andes. Maximum crustal thicknesses of 70 74 km under the Western Cordillera and the Eastern Cordillera thin to 32 38 km 200 km east of the Andes in the Chaco Plain. The central Altiplano at 20°S has crustal thicknesses of 60 to 65 km. The crust also appears to thicken from north (16°S, 55 60 km) to south (20°S, 70 74 km) along the Eastern Cordillera. The Subandean zone crust has intermediate thicknesses of 43 to 47 km. Crustal-thickness predictions for the Andes based on Airy-type isostatic behavior show remarkable overall correlation with observed crustal thickness in the regions of high elevation. In contrast, at the boundary between the Eastern Cordillera and the Subandean zone and in the Chaco Plain, the crust is thinner than predicted, suggesting that the crust in these regions is supported in part by the flexural rigidity of a strong lithosphere. With additional constraints, we conclude that the observation of Airy-type isostasy is consistent with thickening associated with compressional shortening of a weak lithosphere squeezed between the stronger lithosphere of the subducting Nazca plate and the cratonic lithosphere of the Brazilian craton.
Refractive beam shapers for focused laser beams
NASA Astrophysics Data System (ADS)
Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei
2016-09-01
Focusing of laser radiation is most often used approach in various industrial micromachining applications like scribing, PCB drilling, and is important in scientific researches like laser heating in geophysics experiments with diamond anvil cells (DAC). Control of intensity distribution in focal spot is important task since optimum intensity profiles are rather flat-top, doughnut or "inverse-Gauss" than typical for lasers Gaussian profile. Because of high intensity of modern CW and pulsed lasers it is advisable to use refractive beam shaping optics with smooth optical surfaces providing high radiation resistance. Workable optical solutions can be built on the base of diffraction theory conclusion that flat-top intensity profile in focal plane of a lens is created when input beam has Airy-disk intensity distribution. It is suggested to apply refractive beam shapers converting, with minimum wavefront deformation, Gaussian profile of TEM00 beam to a beam with Airy disk intensity distribution, thereby optimizing conditions of interference near the focal plane of a lens after the beam shaper and providing flat-top, doughnut, "inverse-Gauss" profiles. This approach allows operation with CW and ultra-short pulse lasers, using F-theta lenses and objectives, mirror scanners, provides extended depth of field similar to Rayleigh length of comparable TEM00 beam, easy integration in industrial equipment, simple adjustment procedure and switching between profiles, telescope and collimator implementations. There will be considered design basics of beam shapers, analysis of profile behaviour near focal plane, examples of implementations in micromachining systems and experimental DAC setups, results of profile measurements and material processing.
Crustal-thickness variations in the central Andes
Beck, S.L.; Myers, S.C.; Wallace, T.C.; Zandt, G. |; Silver, P.G.; Drake, L.
1996-05-01
We estimated the crustal thickness along an east-west transect across the Andes at lat 20{degree}S and along a north-south transect along the eastern edge of the Altiplano from data recorded on two arrays of portable broadband seismic stations (BANJO and SEDA). We found crustal-thickness variations of nearly 40 km across the Andes. Maximum crustal thicknesses of 70-74 km under the Western Cordillera and the Eastern Cordillera thin to 32-38 km 200 km east of the Andes in the Chaco Plain. The central Altiplano at 20{degree}S has crustal thicknesses of 60 to 65 km. The crust also appears to thicken from north (16{degree}S, 55-60 km) to south (20{degree}S, 70-74 km) along the Eastern Cordillera. The Subandean zone crust has intermediate thicknesses of 43 to 47 km. Crustal-thickness predictions for the Andes based on Airy-type isostatic behavior show remarkable overall correlation with observed crustal thickness in the regions of high elevation. In contrast, at the boundary between the Eastern Cordillera and the Subandean zone and in the Chaco Plain, the crust is thinner than predicted, suggesting that the crust in these regions is supported in part by the flexural rigidity of a strong lithosphere. With additional constraints, we conclude that the observation of Airy-type isostasy is consistent with thickening associated with compressional shortening of a weak lithosphere squeezed between the stronger lithosphere of the subducting Nazca plate and the cratonic lithosphere of the Brazilian craton. 26 refs., 4 figs.
NASA Astrophysics Data System (ADS)
Singer, Werner; Gausa, Michael; Latteck, Ralph; Honary, Farideh; Friedrich, Martin
Electron densities of the lower ionosphere are estimated using the Saura MF Doppler radar data since summer 2003. The radar is located near Andenes, Norway (69.3N, 16.0E) and operates at 3.17 MHz. The experiment utilizes partial reflections of ordinary and extraordinary component waves from scatterers in the altitude range 50-90 km to estimate electron number densities from differential absorption (DAE) and differential phase (DPE) measurements. Height profiles of electron density are obtained between about 55 km and 90 km with a height resolution of 1 km. The diurnal and seasonal variability of electron densities as well as the response of D-region electron densities to solar activity storms, solar proton events, and geomagnetic disturbances have been estimated. The imaging riometer AIRIS near Andenes monitors excessive radio wave absorption due to precipitating energetic particles. The vertical beam of the Saura MF radar coincides with the volume observed with the vertical AIRIS beam. The data from both systems allow the verification of the lower part of the neural network-based ionospheric model for the Auroral zone IMAZ-2. The model provides electron density profiles between 60 and 140 km for a given riometer absorption, time, and ionospheric state. It is based on electron density profiles from EISCAT UHF/VHF radars for altitudes above about 85 km and high-latitude rocket measurements, but the data below 70 km is almost exclusively due to sounding rockets. Comparisons of the IMAZ model with measured electron density profiles are discussed for different levels of solar activity and various particle precipitation events.
The vibrational relaxation of NO in Ar: tunneling in a curve-crossing mechanism.
Dashevskaya, E I; Nikitin, E E; Troe, J
2015-01-07
Experimental data for the vibrational relaxation NO(X(2)Π, v = 1) + Ar → NO(X(2)Π, v = 0) + Ar between 300 and 2000 K are analyzed. The measured rate coefficients k10 greatly exceed Landau-Teller values (LT)k10. This observation can be attributed to a mechanism involving curve-crossing of the (A'', v = 1) and (A', v = 0) vibronic states of the collision system. At high temperatures, the rate coefficients k10 are well represented by the thermally averaged Landau-Zener rate constant (LZ)k10 with an apparent Arrhenius activation energy Ea/kB near 4500 K. At intermediate temperatures, around T = 900 K, the measured k10 values are a factor of two higher than the extrapolated (LZ)k10 values. This deviation is attributed to tunneling in nonadiabatic curve-crossing transitions, which are analyzed within the Airy approximation (linear model for crossing diabatic curves) and an effective mass approach. This suggests a substantial contribution of hindered rotation of NO to the nonadiabatic perturbation. The extrapolation of the Airy probabilities to even lower temperatures (by the Landau-Lifshitz WKB tunneling expression for simple nonlinear model potentials) indicates a further marked increase of the tunneling contribution beyond the extrapolated (LZ)k10. Near 300 K, the k10 can be two to three orders of magnitude higher than the extrapolated (LZ)k10. This agrees with the limited available experimental data for NO-Ar relaxation near room temperature.
NASA Astrophysics Data System (ADS)
2011-07-01
Chairman:Jozef Spałek (Kraków) Program Committee:Stephen Blundell (Oxford), J Michael D Coey (Dublin), Dominique Givord (Grenoble), Dariusz Kaczorowski (Wrocław), Roman Micnas (Poznań), Marek Przybylski (Halle), Ludiwig Schultz (Dresden), Vladimir Sechovsky (Prague), Jozef Spałek (Kraków), Henryk Szymczak (Warszawa), Manuel Vázquez (Madrid) Publication Committee:Dariusz Kaczorowski, Robert Podsiadły, Jozef Spałek, Henryk Szymczak, Andrzej Szytuła Local committee:Maria Bałanda, Anna Majcher, Robert Podsiadły, Michał Rams, Andrzej Ślebarski, Krzysztof Tomala Editors of the Proceedings:Jozef Spałek, Krzysztof Tomala, Danuta Goc-Jagło, Robert Podsiadły, Michał Rams, Anna Majcher Plenary, semi-plenary and tutorial speakers:Ernst Bauer (Wien)Stephen Blundell (Oxford)J Michael D Coey (Dublin)Russell P Cowburn (London)Burkard Hillebrands (Kaiserslautern)Claudine Lacroix (Grenoble)Lluís Mañosa (Barcelona)María del Carmen Muñoz (Madrid)Bernard Raveau (Caen)Pedro Schlottmann (Tallahassee)Frank Steglich (Dresden)Oliver Waldmann (Freiburg) Invited speakers within symposia: R Ahuja (Uppsala)A Kirilyuk (Nijmegen) M Albrecht (Vienna)L Theil Kuhn (Roskilde) K Bärner (Göttingen)J Liu (Dresden) U Bovensiepen (Duisburg)G Lorusso (Modena) V Buchelnikov (Chelyabinsk)M M Maska (Katowice) B Chevalier (Bordeaux)Y Mukovskii (Moscow) O Chubykalo-Fesenko (Madrid)M Pannetier-Lecoeur (Saclay) A V Chumak (Kaiserslautern)G Papavassiliou (Athens) J M D Coey (Dublin)K R Pirota (Campinas) B Dabrowski (DeKalb)P Przyslupski (Warszawa) S Das (Aveiro)M Reiffers (Košice) A del Moral (Zaragoza)K Sandeman (London) V E Demidov (Muenster)D Sander (Halle) B Djafari-Rouhani (Lille)M Sawicki (Sendai/Warsaw) H A Dürr (Menlo Park)J Schaefer (Würzburg) J Fassbender (Dresden)H Schmidt (Wetzikon) J Fontcuberta (Barcelona)J Spałek (Kraków) V Garcia (Orsay)L Straka (Helsinki) J N Gonçalves (Aveiro)A Szewczyk (Warszawa) M E Gruner (Duisburg)Y Taguchi (Wako) G Gubbiotti (Perugia)A Thiaville
NASA Astrophysics Data System (ADS)
Manea, Elena Florinela; Michel, Clotaire; Hobiger, Manuel; Fäh, Donat; Cioflan, Carmen Ortanza; Radulian, Mircea
2017-09-01
During large earthquakes generated at intermediate depth in the Vrancea seismic zone, the ground motion recorded in Bucharest (Romania) is characterized by predominant long periods with strong amplification. Time-frequency analysis highlights the generation of low frequency surface waves (<1 Hz) for sufficiently strong and superficial events. This phenomenon has been explained by the influence of both source mechanism (radiation pattern, directivity effects) and mechanical properties of the local geological structure (geological layering and geometry). The main goal of our study is to better characterize and understand the seismic wavefield produced by earthquakes in the area of Bucharest, taking into account its location in the centre of the Moesian Platform, a large sedimentary basin (450 km long, 300 km wide and up to 20 km deep). To this aim, we identify the contribution of different seismic surface waves, such as the ones produced at the edges of this large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves), on ground motion. The data from a 35 km diameter array (URS experiment) were used. The array was installed by the National Institute for Earth Physics in cooperation with the Karlsruhe Institute for Technology and operated during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones. The earthquake wavefield recorded by the URS array was analysed using the MUSIQUE technique. This technique analyses the three-component signals of all sensors of a seismic array together. The analysis includes 19 earthquakes with epicentral distances from 100 to 1560 km and with various backazimuths with enough energy at low frequencies (0.1-1 Hz), within the resolution range of the array. For all events, the largest portion of energy is arriving from the source direction and the wavefield is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2-D
How predictable is the anomaly pattern of the Indian summer rainfall?
NASA Astrophysics Data System (ADS)
Li, Juan; Wang, Bin
2016-05-01
Century-long efforts have been devoted to seasonal forecast of Indian summer monsoon rainfall (ISMR). Most studies of seasonal forecast so far have focused on predicting the total amount of summer rainfall averaged over the entire India (i.e., all Indian rainfall index-AIRI). However, it is practically more useful to forecast anomalous seasonal rainfall distribution (anomaly pattern) across India. The unknown science question is to what extent the anomalous rainfall pattern is predictable. This study attempted to address this question. Assessment of the 46-year (1960-2005) hindcast made by the five state-of-the-art ENSEMBLE coupled dynamic models' multi-model ensemble (MME) prediction reveals that the temporal correlation coefficient (TCC) skill for prediction of AIRI is 0.43, while the area averaged TCC skill for prediction of anomalous rainfall pattern is only 0.16. The present study aims to estimate the predictability of ISMR on regional scales by using Predictable Mode Analysis method and to develop a set of physics-based empirical (P-E) models for prediction of ISMR anomaly pattern. We show that the first three observed empirical orthogonal function (EOF) patterns of the ISMR have their distinct dynamical origins rooted in an eastern Pacific-type La Nina, a central Pacific-type La Nina, and a cooling center near dateline, respectively. These equatorial Pacific sea surface temperature anomalies, while located in different longitudes, can all set up a specific teleconnection pattern that affects Indian monsoon and results in different rainfall EOF patterns. Furthermore, the dynamical models' skill for predicting ISMR distribution primarily comes primarily from these three modes. Therefore, these modes can be regarded as potentially predictable modes. If these modes are perfectly predicted, about 51 % of the total observed variability is potentially predictable. Based on understanding the lead-lag relationships between the lower boundary anomalies and the
NASA Technical Reports Server (NTRS)
Allison, Michael; McEwen, Megan
1999-01-01
The accurate determination of the Mars pole vector derived from Pathfinder and Viking Lander radio data, together with the VSOP87 representation of planetary orbits, have been applied to a new evaluation of the right ascension of the "fictitious mean sun" (FMS) at Mars. With DELTA t (sub J2000) the elapsed time in days from the J2000 epoch (J.D.2451545.0 (sup TT), alpha FMS = 270 degrees.3863 + 0.52403840(degrees/d) (raised dot) DELTA T (sub j2000) - 4 x 10 (exp -13) (degrees/d (sup 2)) (raised dot) DELTA t (sup 2) (sub J2000) represents a best least-squares quadratic fit of the FMS, including aberration, to each instance of the four equinox and solstice passages for each of 134 Mars orbits spanning the calendar years 1874-2127. The implied tropical orbit period for Mars, 686.9726 (sup d), closely agrees with the recent evaluations. Together with the Pathfinder radio determination of the Mars sidereal rotation, the derived FMS rate corresponds to a mean solar day (or "sol") of 1.027491251 (sup d). The new FMS determination would serve to define the Mean Solar Time at Mars to the nearest tenth-second, according to historical conventions originally established for terrestrial time keeping, once the Mars prime meridian defined by the crater Airy-O is navigated to the same accuracy. For convenient reference to current epochs, 2000 Jan 06 00:00 UTC (= MJD 51549.000 (sup UTC)) corresponds to a coincidence of (alpha (sub FMS)) and the rotation angle of the crater Airy-O measured with respect to the Mars equinox (i.e. "mean solar midnight" on the planet's prime meridian), to within the current uncertainty of several seconds in the locational definition of the planet's cartographic grid. As a further result of the analysis, the consistently derived Mars obliquity of date is epsilon = 25 degrees.192 + 3.45 x l0 (exp -7)(degrees/d)(raised dot) DELTA t (sub J2000). An improved analytic recipe for the calculation of the solar areocentric longitude (L (sub s)) of Mars to an
Analysis of the seismic wavefield in the Moesian Platform (Bucharest area)
NASA Astrophysics Data System (ADS)
-Florinela Manea, Elena; Hobiger, Manuel-Thomas; Michel, Clotaire; Fäh, Donat; -Ortanza Cioflan, Carmen
2016-04-01
Bucharest is located in the center of the Moesian platform, in a large and deep sedimentary basin (450 km long, 300 km wide and in some places up to 20 km depth). During large earthquakes generated by the Vrancea seismic zone, located approximately 140 km to the North, the ground motion recorded in Bucharest area is characterized by predominant long periods and large amplification. This phenomenon has been explained by the influence of both source mechanism (azimuth and type of incident waves) and mechanical properties of the local structure (geological layering and geometry). The main goal of our study is to better characterize and understand the seismic wave field produced by earthquakes in the area of Bucharest. We want to identify the contribution of different seismic surface waves, such as the ones produced at the edges of the large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves) to the ground motion. The data from a 35 km diameter array (URS experiment) installed by the National Institute for Earth Physics during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones was used. In order to perform the wave field characterization of the URS array, the MUSIQUE technique was used. This technique consists in a combination of the classical MUSIC and the quaternion-MUSIC algorithms and analyzes the three-component signals of all sensors of a seismic array together in order to analyze the Love and Rayleigh wave dispersion curves as well as the Rayleigh wave ellipticity curve. The analysis includes 20 regional earthquakes with Mw >3 and 5 teleseismic events with Mw> 7 that have enough energy at low frequency (0.1 - 1 Hz), i.e. in the resolution range of the array. For all events, the greatest energy is coming from the backazimuth of the source and the wave field is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2D or 3D effects in the
Noninteracting fermions at finite temperature in a d -dimensional trap: Universal correlations
NASA Astrophysics Data System (ADS)
Dean, David S.; Le Doussal, Pierre; Majumdar, Satya N.; Schehr, Grégory
2016-12-01
We study a system of N noninteracting spinless fermions trapped in a confining potential, in arbitrary dimensions d and arbitrary temperature T . The presence of the confining trap breaks the translational invariance and introduces an edge where the average density of fermions vanishes. Far from the edge, near the center of the trap (the so-called "bulk regime"), where the fermions do not feel the curvature of the trap, physical properties of the fermions have traditionally been understood using the local density (or Thomas-Fermi) approximation. However, these approximations drastically fail near the edge where the density vanishes and thermal and quantum fluctuations are thus enhanced. The main goal of this paper is to show that, even near the edge, novel universal properties emerge, independently of the details of the shape of the confining potential. We present a unified framework to investigate both the bulk and the edge properties of the fermions. We show that for large N , these fermions in a confining trap, in arbitrary dimensions and at finite temperature, form a determinantal point process. As a result, any n -point correlation function, including the average density profile, can be expressed as an n ×n determinant whose entry is called the kernel, a central object for such processes. Near the edge, we derive the large-N scaling form of the kernels, parametrized by d and T . In d =1 and T =0 , this reduces to the so-called Airy kernel, that appears in the Gaussian unitary ensemble (GUE) of random matrix theory. In d =1 and T >0 we show a remarkable connection between our kernel and the one appearing in the (1 +1 )-dimensional Kardar-Parisi-Zhang equation at finite time. Consequently, our result provides a finite-T generalization of the Tracy-Widom distribution, that describes the fluctuations of the position of the rightmost fermion at T =0 , or those of the largest single-fermion momentum. In d >1 and T ≥0 , while the connection to GUE no longer holds
Long term strength of the western part of Northern Anatolian Fault
NASA Astrophysics Data System (ADS)
Klein, Elliot C.; Sinan Ozeren, M.
2010-05-01
What can the GPS data and gravitational potential energies calculated under Airy isostasy assumption tell us about the long-term strength of various portions of the North Anatolian Fault (NAF) ? To what extent does the strength vary from east to west ? In this work we have tried to develop some approaches to attack these question by setting up an inverse problem to quantify the depth-integrated deviatoric stress field acting within the seismogenic portion of the crust. The solution method is standard, we solve the force balance equations where the forcing is simply the horizontal gradients in gravitational potential energy per unit area (GPE). This is equivalent to calculating the Green's function for the Stokes equations for a viscous, non-accelerating thin-sheet continuum. We then exploit the linearity of the problem to solve for the stress boundary conditions to reach a style match between the stresses and the strain rates (calculated using a GPS dataset) within the domain. In this preliminary work we assumed Airy isostasy and assumed no lateral density variations within the crust. Such strength calculations are obviously strongly dependent on the integration depth for the dynamical quantities. In order to keep the inversion as simple as possible our parametrization of the fault strength is solely based on the friction coefficient and long term pore pressure. One interesting outcome of our calculations is that, irrespective of the stress integration depth, the fault friction coefficients in the Marmara zone are larger than the rest of NAF to the east. As the stress integration depth increases, the zone that characterizes the "large friction" Marmara zone extends slightly to the east. Assuming a brittle-ductile transition depth of around 15-17 km, we see that the faults in western Turkey have friction coefficients of around 0.1-0.2 (under long-term hydrostatic pore pressure conditions) which is similar to most of California whereas in the eastern part of NAF the
Lithospheric structure and compensation mechanisms of the Galapagos Archipelago
NASA Astrophysics Data System (ADS)
Feighner, Mark A.; Richards, Mark A.
1994-04-01
Volcanic islands of the Galapagos Archipelago are the most recent subaerial expression of the Galapagos hotspot. These islands and numerous seamounts are constructed mainly upon a broad volcanic platform that overlies very young (less than 10 m.y.) oceanic lithosphere just south of the active Galapagos Spreading Center. The 91 deg W fracture zone crosses the platform and creates an estimated 5-m.y. age discontinuity in the lithosphere. Major tectonic features of the Galapagos include an unusually broad distribution of volcanic centers, pronounced structural trends such as the NW-SE Wolf-Darwin Lineament (WDL), and a steep escarpment along the western and southern margins of the archipelago. We use shipboard gravity and bathymetry data along with Geosat geoid data to explain the tectonic and structural evolution of the Galapagos region. We model the gravity anomalies using a variety of compensation models, including Airy isostasy, continuous elastic flexure of the lithosphere, and an elastic plate with embedded weaknesses, and we infer significant lithospheric strength variations across the archipelago. The outboard parts of the southern and western escarpment are flexurally supported with an effective elastic thickness of approximately 12 km. This area includes the large shield volcanoes of Fernandina and Isabela Islands, where the lithosphere regionally supports these volcanic loads. The central platform is weaker, with an elastic thickness of 6 km or less, and close to Airy isostasy. The greatest depths to the Moho are located beneath eastern Isabela Island and the central platform. Thinner lithosphere in this region may account for the broad distribution of volcanoes, the extended period of eruption of the central volcanoes, and their reduced size. The transition from strong to weak lithosphere along the southern escarpment appears to be abrupt, within the resolution of our models, and can be best represented by a free end or faultlike discontinuity. Also
On-going scientific and development projects involving rare-isotope beams at ATLAS
NASA Astrophysics Data System (ADS)
Kay, Benjamin
2016-09-01
The ATLAS Facility, located at Argonne National Laboratory, provides both radioactive and stable ion beams at energies around the Coulomb barrier (<20 MeV/u). Beams of this nature facilitate measurements related to nuclear structure, astrophysics, reactions, fundamental symmetries, and beyond. Along with the ability to accelerate nearly all stable ions from protons to Uranium, the facility also holds the capability to produce radioactive beams using the two-accelerator method, an in-flight production facility, or through the collection of spontaneous fission fragments at the CARIBU facility. The in-flight technique, in particular, is utilized to produce short-lived beams that are typically one to two-nucleons away from stability, and lighter than mass 40. The CARIBU facility, however, provides access to very neutron-rich isotopes, ranging from the vicinity of doubly-magic 132Sn, to regions of large deformation near A 150 . CARIBU beams are available in both stopped and re-accelerated fashions, and therefore, measurement techniques involving trapping or stopping of the ions, as well as reactions requiring beam energies at or beyond the Coulomb barrier, are possible. In this presentation, highlights from various scientific results which have hinged on radioactive beams produced at ATLAS are to be shown. Also, introductions to, and descriptions of, the on-going technical initiatives aimed at enhancing the radioactive ion-beam production at ATLAS will be given. Finally, exciting future avenues for rare-isotope research, made possible because of the new initiative, is to be discussed. For example, installation of an electron beam ion source (EBIS) has recently been completed to increase both the purity and intensities of re-accelerated CARIBU beams. In addition, expansion of the isotopes produced in-flight, both mass and isospin, is going to occur with the construction of a dedicated separator, AIRIS. AIRIS is designed to highly suppress the intense un-reacted primary
Progress report of southeastern monazite exploration, 1952
Overstreet, W.C.; Theobald, P.K.; White, A.M.; Cuppels, N.P.; Caldwell, D.W.; Whitlow, J.W.
1953-01-01
Reconnaissance of placer monazite during the field season of 1952 covered 6,600 square miles drained by streams in the western Piedmont of Virginia 5 North Carolina, South Carolina,, and Georgia. Emphasis during this investigation was placed on the area between the Savannah River at the border of South Carolina and Georgia and the Catawba River in North Carolina because it contains most of the placers formerly mined for monaziteo Four other areas along the strike of the monazite-bearing crystalline rocks were also studied, They center around Mt. Airy, N.C., Athens, Ga. Griffin, Ga. and LaGrange, Ga. In the Savannah River Catawba River district, studies indicate that even the highest grade stream deposits of more than 10 million cubic yards of alluvium contain less than 1 pound of monazite per cubic yard. The average grade of the better deposits is about 0 0 5 pound of monazite per cubic yard. Only trace amounts of niobium, tantalum, and tin have been detected in the placers. Tungsten is absent. Locally gold adds a few cents per cubic yard to the value of placer ground. The best deposits range in size from 1 to 5 million cubic yards and contain 1 to 2 pounds of monazite to the cubic yard. Hundreds of placers smaller than 1 million cubic yards exceed 2 pounds of monazite to the cubic yard and locally attain an average of 10 pounds Monazite deposits around Athens, Ga., are similar to the smaller deposits in the central part of the Savannah River - Catawba River district. A few small very low-grade monazite placers were found near Mt. Airy, N.C., Griffin, Ga., and LaGrange Ga., but they are of no economic value. The larger the flood plain and the farther it lies from the source of the stream, the lower is the monazite content of the sediment. Monazite cannot be profitably mined .from the crystalline rocks in the five areas. The alluvial placers are in stream sediments of post-Wisconsin age. Some pre-Wisconsin terrace gravel of small areal extent is exposed but it
NASA Astrophysics Data System (ADS)
Bertero, M.; Boccacci, P.; La Camera, A.; Olivieri, C.; Carbillet, M.
2011-11-01
LINC-NIRVANA (LN) is the Fizeau interferometer of the Large Binocular Telescope which consists of two 8.4 m mirrors with a center-to-center distance of 14.4 m, hence providing a maximum path of 22.8 m in the direction of the baseline joining the two centers. LN is a true imager since interference occurs in the focal plane and not in the aperture plane as with essentially all the existing interferometers. However, an LN image is characterized by an anisotropic resolution: that of a 22.8 m mirror in the direction of the baseline and that of a 8.4 m mirror in the orthogonal direction. In order to obtain a unique image with a high and isotropic resolution, several images must be detected with different orientations of the baseline and suitably processed. Therefore, the instrument will routinely require the use of image reconstruction methods for providing astronomical images with unprecedented resolution, in principle ten times the resolution of the Hubble Space Telescope. This review concerns the image reconstruction problem for LN and is based essentially on our work. After a description of the main features of the telescope and of the interferometer, it contains a discussion of the problem and of the approximations introduced in its formulation. In short, it is reduced to multiple-image deconvolution with Poisson data. Similarity with the image reconstruction problem in emission tomography is stressed and utilized for introducing suitable iterative reconstruction methods. These methods are extended to regularized versions of the problem. Efficiency is another important issue because the size of LN images is of the order of 4.2 megapixels; therefore, acceleration methods are also discussed. All methods are tested on synthetic images because, even if the instrument is in an advanced stage of realization, it will be presumably operative in 2014. The algorithms of the proposed image reconstruction methods are implemented in the Software Package AIRY (astronomical image
NASA Astrophysics Data System (ADS)
Maruyama, Takashi; Yusupov, Kamil; Akchurin, Adel
2015-04-01
It is well known that atmospheric waves excited by intense earthquakes induce ionospheric disturbances. At remote distances greater than ~500 km, Rayleigh waves are the major source of infrasounds that propagate upward in the atmosphere. Acoustic waves interact with the ionospheric plasma through collision between neutral particles and ions. Ionospheric disturbances caused by Rayleigh waves near the low frequency part of the Airy phase (a period of several minutes) are detected as a change in the total electron content since the wavelength of induced acoustic waves in the thermosphere is comparable to the ionospheric slab thickness. On the other hand, Rayleigh waves near the high frequency part of the Airy phase (a period of several tens of seconds) cause distortion of ionogram traces characterized by a multiple cusp signature (MCS). The vertical separation of the ledge corresponding to each cusp is the wavelength of the infrasound in the thermosphere. Thus, the MCS ionogram is considered to be a snapshot of the wave that propagates upward. We conducted rapid run operation of ionosonde with a frame rate of 1 min at Kazan, Russia. After the 2010 M8.8 Chile earthquake (epicentral distance was 15,162 km), ionospheric disturbances showing MCSs on ionograms were observed for several tens of minutes. The sound speed calculated by a model was 500~700 m/s at the height of the bottomside ionosphere and wavefronts should propagate 30~42 km upward during the intervals of ionograms, which is smaller than the bottomside depth of the ionosphere. The seismogram obtained at Obninsk near Moscow, Russia (epicentral distance was 14,369 km) recorded Rayleigh waves with a period of ~17 s responsible for the ionospheric disturbances showing MCS, when the plot was shifted by the time corresponding to the difference of epicentral distances between the two locations by assuming a Rayleigh wave speed of 3 km/s. The vertical wavelength of the acoustic waves launched by the Rayleigh waves was
Scattering and the Point Spread Function of the New Generation Space Telescope
NASA Technical Reports Server (NTRS)
Schreur, Julian J.
1996-01-01
Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called
Lunar crustal analysis of Mare Orientale from topographic and gravity correlations
NASA Astrophysics Data System (ADS)
von Frese, Ralph R. B.; Tan, Li; Potts, Laramie V.; Kim, Jeong Woo; Merry, Carolyn J.; Bossler, John D.
1997-11-01
We investigated the use of spectral correlation analysis for modeling the crustal features of Mare Orientale from lunar 70th degree spherical harmonic topographic and gravity field models derived from Clementine satellite and earlier investigations. The analysis considered a 64°-by-64° region of the Moon centered roughly on Mare Orientale at an altitude of 100 km. The topography of the study region, which includes over 11 km of relief, was modeled for its gravity effects in lunar spherical coordinates by Gauss-Legendre quadrature integration assuming a terrain density of 2.8g/cm3. We observed substantial positive and negative correlations between terrain gravity effects and free-air gravity anomalies that seriously limit the utility of simple Bouguer gravity anomalies for subsurface studies. Using the wavenumber correlation spectrum between the two data sets, we designed correlation filters to extract the common features. Possible interpretations for the terrain-correlated free-air gravity anomalies include isostatic crustal mass imbalances that may be equilibrated by radial adjustments of the Moho of up to 44 km, assuming Airy-Heiskanen compensation and a mantle density contrast of 0.5g/cm3 with the crust. These Moho adjustments define mass variations that account for most of the mascon and flanking negative free-air gravity anomalies. Furthermore, their remarkable correlation with the topographic rings of Mare Orientale points to the possible influence of a strong local stress field of the crust in the development of the ring structures. Subtracting the terrain-correlated free-air anomalies from the free-air gravity anomalies and terrain gravity effects yielded terrain-decorrelated free-air and isostatically compensated terrain gravity anomalies, respectively, that show zero correlation. This lack of correlation may be interpreted for a Moho that involves over 100 km of relief assuming Airy-Heiskanen compensation of the crust. Beneath Mare Orientale, we
Methodological improvements of geoid modelling for the Austrian geoid computation
NASA Astrophysics Data System (ADS)
Kühtreiber, Norbert; Pail, Roland; Wiesenhofer, Bernadette; Pock, Christian; Wirnsberger, Harald; Hofmann-Wellenhof, Bernhard; Ullrich, Christian; Höggerl, Norbert; Ruess, Diethard; Imrek, Erich
2010-05-01
The geoid computation method of Least Squares Collocation (LSC) is usually applied in connection with the remove-restore technique. The basic idea is to remove, before applying LSC, not only the long-wavelength gravity field effect represented by the global gravity field model, but also the high-frequency signals, which are mainly related to topography, by applying a topographic-isostatic reduction. In the current Austrian geoid solution, an Airy-Heiskanen model with a standard density of 2670 kg/m3 was used. A close investigation of the absolute error structure of this solution reveals some correlations with topography, which may be explained with these simplified assumptions. On parameter of the remove-restore process to be investigated in this work is the depth of the reference surface of isostatic compensation, the Mohorovicic discontinuity (Moho). The recently compiled European plate Moho depth model, which is based on 3D-seismic tomography and other geophysical measurements, is used instead of the reference surface derived from the Airy-Heiskanen isostatic model. Additionally, the use of of the standard density of 2670 kg/m3 is replaced by a laterally variable (surface) density model. The impact of these two significant modifications of the geophysical conception of the remove-restore procedure on the Austrian geoid solution is investigated and analyzed in detail. In the current Austrian geoid solution the above described remove-restore concept was used in a first step to derive a pure gravimetric geoid and predicting the geoid height for 161 GPS/levelling points. The difference between measured and predicted geoid heights shows a long-wavelength structure. These systematic distortions are commonly attributed to inconsistencies in the datum, distortions of the orthometric height system, and systematic GPS errors. In order to cope with this systematic term, a polynomial of degree 3 was fitted to the difference of predicted geoid heights and GPS
Method of Global Transformation and its Role in Turning Point Problems
NASA Astrophysics Data System (ADS)
McArthur, Raymond Peter
In this monograph, we introduce an asymptotic technique which can be used to obtain uniform asymptotic solutions of certain types of second-order, linear ordinary differential equations which may arise in wave propagation problems in non-homogeneous media. Of particular interest are those physical phenomenon which lead to simple and non-simple turning point problems where the nature of the fundamental solution undergoes a sudden metamorphosis of character at the turning point. We begin by giving a few examples which under certain conditions admit turning point behavior. The general theory of the method of global transformation is then introduced. After giving a preview of the method, a historical account of the idea of comparison equation is given which systematically leads to our generalization of the concept. Next, we transform the original problem to an appropriate comparison equation using new dependent and independent variables. This leads to a non-linear differential equation in the transformed coordinate. This non-linear equation has the property that its solution can be determined in the form of uniformly convergent series. We take advantage of this unique property and develop an iterative technique to obtain the solution of the original problem. In applying our iterative technique, the zero -order solution so obtained reproduces exactly the dominant solutions as given by WKBJ or method of stationary phase. We then obtain the higher-order solutions of the non-linear equation which yield new transformations. Use of these transformations in conjunction with the comparison equation give us higher-order correction terms in the asymptotic series solution of the original problem. These higher -order terms correspond to the higher-order terms which one would obtain by using the method of steepest descent. After giving an account of the well-known connection problem using our zero-order solution of the Airy equation, we conclude by giving an illustrative example of
Detecting curvatures in digital images using filters derived from differential geometry
NASA Astrophysics Data System (ADS)
Toro Giraldo, Juanita
2015-09-01
Detection of curvature in digital images is an important theoretical and practical problem in image processing. Many important features in an image are associated with curvature and the detection of such features is reduced to detection and characterization of curvatures. Differential geometry studies many kinds of curvature operators and from these curvature operators is possible to derive powerful filters for image processing which are able to detect curvature in digital images and videos. The curvature operators are formulated in terms of partial differential operators which can be applied to images via convolution with generalized kernels derived from the the Korteweg- de Vries soliton . We present an algorithm for detection of curvature in digital images which is implemented using the Maple package ImageTools. Some experiments were performed and the results were very good. In a future research will be interesting to compare the results using the Korteweg-de Vries soliton with the results obtained using Airy derivatives. It is claimed that the resulting curvature detectors could be incorporated in standard programs for image processing.
Teaching Mathematical Modelling for Earth Sciences via Case Studies
NASA Astrophysics Data System (ADS)
Yang, Xin-She
2010-05-01
Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).
Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams
Latychevskaia, Tatiana; Fink, Hans-Werner
2016-01-01
It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. However, all known light modulation techniques allow for limited light modifications only: focusing within a restricted region in space, shaping into a certain class of parametric curves along the optical axis or bending described by a quadratic-dependent deflection as in the case of Airy beams. We show a general case of classical light wavefront shaping that allows for intensity and phase redistribution into an arbitrary profile including pre-determined switching-off of the intensity. To create an arbitrary three-dimensional path of intensity, we represent the path as a sequence of closely packed individual point-like absorbers and simulate the in-line hologram of the created object set; when such a hologram is contrast inverted, thus giving rise to a diffractor, it creates the pre-determined three-dimensional path of intensity behind the diffractor under illumination. The crucial parameter for a smooth optical path is the sampling of the predetermined curves, which is given by the lateral and axial resolution of the optical system. We provide both, simulated and experimental results to demonstrate the power of this novel method. PMID:27199254
Plume-Surface Interaction Modeling for a Human-Scale Mars Lander
NASA Technical Reports Server (NTRS)
Hart, Kenneth
2017-01-01
Landing vehicles impart thermal and strain energy onto the landing site from the retrorocket exhaust. Depending on the design of the vehicle, the energy may be great enough to cause spallation at the landing site. This damage may be minor and repairable in the case of landing on a terrestrial landing pad. For missions to other planetary bodies, the spallation may cause the landing site to become uneven and unstable, as well as damage. Simulating this phenomenon in a laboratory or computationally would require a significant amount of time and other resources. These resources typically are not available during the design phase of a mission. This paper presents a computationally-efficient model for the temperature and stress distributions that arise during landing. These quantities can be used along with existing failure criteria, such as the Hoek-Brown criterion for geological materials, to quickly determine whether spallation will occur. The stress and temperature distributions at the landing site are inherently 3D; however, there is a plane of symmetry and in that plane the distributions are 2D. Both quantities are modeled using series solutions to their governing partial differential equations (PDEs). The stress is modeled using the Airy stress potential function and its governing PDE is the biharmonic equation. The temperature is governed by Fourier's law. The models assume that stress due to gravity can be neglected, the points in the plane do not accelerate, and that the material properties are constant.
Exercises in exact quantization
NASA Astrophysics Data System (ADS)
Voros, André
2000-10-01
The formalism of exact 1D quantization is reviewed in detail and applied to the spectral study of three concrete Schrödinger Hamiltonians [-d2/dq2 + V(q)]± on the half-line {q>0}, with a Dirichlet (-) or Neumann (+) condition at q = 0. Emphasis is put on the analytical investigation of the spectral determinants and spectral zeta-functions with respect to singular perturbation parameters. We first discuss the homogeneous potential V(q) = qN as N→ + ∞ versus its (solvable) N = ∞ limit (an infinite square well): useful distinctions are established between regular and singular behaviours of spectral quantities; various identities among the square-well spectral functions are unravelled as limits of finite-N properties. The second model is the quartic anharmonic oscillator: the zero-energy spectral determinants det (-d2/dq2 + q4 + vq2)± are explicitly analysed in detail, revealing many special values, algebraic identities between Taylor coefficients and functional equations of a quartic type coupled to asymptotic v→∞ properties of Airy type. The third study addresses the potentials V(q) = qN + vqN/2-1 of even degree: their zero-energy spectral determinants prove computable in closed form, and the generalized eigenvalue problems with v as spectral variable admit exact quantization formulae which are perfect extensions of the harmonic oscillator case (corresponding to N = 2); these results partly reflect the presence of quasi-exactly solvable potentials in the family above.
Elastic scattering of {sup 16}O+{sup 16}O at energies E/A between 5 and 8 MeV
Nicoli, M. P.; Haas, F.; Freeman, R. M.; Aissaoui, N.; Beck, C.; Elanique, A.; Nouicer, R.; Morsad, A.; Szilner, S.; Basrak, Z.
1999-12-01
The elastic scattering of {sup 16}O+{sup 16}O has been measured at nine energies between E{sub lab}=75 and 124 MeV. The data cover up to 100 degree sign in the c.m. and can be described in terms of phenomenological and folding model potentials which reproduce the main features observed. In agreement with studies at higher energies in this and similar systems, refractive effects are present in the angular distributions at all energies. In particular, the passage of Airy minima through 90 degree sign at E{sub c.m.}=40, 47.5, and 62 MeV explains the deep minima observed in the excitation function. The real part of the optical potential is found to vary very little with energy over the studied interval, but the imaginary part shows a rapid change in its shape at incident energy about 90 MeV. Nonetheless, the energy dependence of the volume integral of the real and imaginary parts is in agreement with dispersion relation predictions. (c) 1999 The American Physical Society.
Maximum relative height of elastic interfaces in random media.
Rambeau, Joachim; Bustingorry, Sebastian; Kolton, Alejandro B; Schehr, Grégory
2011-10-01
The distribution of the maximal relative height (MRH) of self-affine one-dimensional elastic interfaces in a random potential is studied. We analyze the ground-state configuration at zero driving force, and the critical configuration exactly at the depinning threshold, both for the random-manifold and random-periodic universality classes. These configurations are sampled by exact numerical methods, and their MRH distributions are compared with those with the same roughness exponent and boundary conditions, but produced by independent Fourier modes with normally distributed amplitudes. Using Pickands' theorem we derive an exact analytical description for the right tail of the latter. After properly rescaling the MRH distributions we find that corrections from the Gaussian independent modes approximation are, in general, small, as previously found for the average width distribution of depinning configurations. In the large size limit all corrections are finite except for the ground state in the random-periodic class whose MRH distribution becomes, for periodic boundary conditions, indistinguishable from the Airy distribution. We find that the MRH distributions are, in general, sensitive to changes of boundary conditions.
Light scattered from polished optical surfaces: Wings of the point spread function
NASA Astrophysics Data System (ADS)
Kenknight, C. E.
1984-11-01
Random figure errors from the polishing process plus particles on the main mirrors in a telescope cause an extended point spread function (PSF) declining approximately as the inverse square of the sine of the angle from a star from about 100 micro-rad to a right angle. The decline in at least one case, and probably in general, proceeds as the inverse cube at smaller angles where the usual focal plane aperture radius is chosen. The photometric error due to misalignment by one Airy ring spacing with an aperture of n rings depends on the net variance in the figure. It is approximately 60/(n+1)(3) when using the data of Kormendy (1973). A typical value is 6 x 10 to the -5th power per ring of misalignment with n = 100 rings. The encircled power may be modulated on a time scale of hours by parts per thousand in a wavelength dependent manner due to relative humidity effects on mirror dust. The scattering according to an inverse power law is due to a random walk in aberration height caused by a multitude of facets and slope errors left by the polishing process. A deviation from such a law at grazing emergence may permit monitoring the dust effects.
Scattering of wave packets on atoms in the Born approximation
NASA Astrophysics Data System (ADS)
Karlovets, D. V.; Kotkin, G. L.; Serbo, V. G.
2015-11-01
It has recently been demonstrated experimentally that 200 -300 keV electrons with the unusual spatial profiles can be produced and even focused to a subnanometer scale—namely, electrons carrying nonzero orbital angular momentum and also the so-called Airy beams. Since the wave functions of such electrons do not represent plane waves, the standard Born formula for scattering of them off a potential field is no longer applicable and, hence, needs modification. In the present paper, we address the generic problem of elastic scattering of a wave packet of a fast nonrelativistic particle off a potential field. We obtain simple and convenient formulas for a number of events and an effective cross section in such a scattering, which represent generalization of the Born formula for a case when finite sizes and spatial inhomogeneity of the initial packet should be taken into account. As a benchmark, we consider two simple models corresponding to scattering of a Gaussian wave packet on a Gaussian potential and on a hydrogen atom, and perform a detailed analysis of the effects brought about by the limited sizes of the incident beam and by the finite impact parameter between the potential center and the packet's axis.
In pursuit of accurate timekeeping: Liverpool and Victorian electrical horology.
Ishibashi, Yuto
2014-10-01
This paper explores how nineteenth-century Liverpool became such an advanced city with regard to public timekeeping, and the wider impact of this on the standardisation of time. From the mid-1840s, local scientists and municipal bodies in the port city were engaged in improving the ways in which accurate time was communicated to ships and the general public. As a result, Liverpool was the first British city to witness the formation of a synchronised clock system, based on an invention by Robert Jones. His method gained a considerable reputation in the scientific and engineering communities, which led to its subsequent replication at a number of astronomical observatories such as Greenwich and Edinburgh. As a further key example of developments in time-signalling techniques, this paper also focuses on the time ball established in Liverpool by the Electric Telegraph Company in collaboration with George Biddell Airy, the Astronomer Royal. This is a particularly significant development because, as the present paper illustrates, one of the most important technologies in measuring the accuracy of the Greenwich time signal took shape in the experimental operation of the time ball. The inventions and knowledge which emerged from the context of Liverpool were vital to the transformation of public timekeeping in Victorian Britain.
Present-day dynamic and residual topography in Central Anatolia
NASA Astrophysics Data System (ADS)
Şengül Uluocak, Ebru; Pysklywec, Russell; Göǧüş, Oǧuz H.
2016-09-01
The Central Anatolian orogenic plateau is represented by young volcanism, rapid plateau uplift and distinctive (past and active) tectonic deformation. In this study, we consider observational data in terms of regional present-day geodynamics in the region. The residual topography of Central Anatolia was derived to define the regional isostatic conditions according to Airy isostasy and infer the potential role of `dynamic topography'. 2-D thermomechanical forward models for coupled mantle-lithosphere flow/deformation were conducted along an N-S directional profile through the region (e.g. northern/Pontides, interior and southern/Taurides). These models were based on seismic tomography data that provide estimates about the present-day mantle thermal structure beneath the Anatolian plate. We compare the modelling results with calculated residual topography and independent data sets of geological deformation, gravity and high surface heat flow/widespread geothermal activity. Model results suggest that there is ˜1 km of mantle flow induced dynamic topography associated with the sublithospheric flow driven by the seismically inferred mantle structure. The uprising mantle may have also driven the asthenospheric source of volcanism in the north (e.g. Galatia volcanic province) and the Cappadocia volcanic province in the south while elevating the surface in the last 10 Myr. Our dynamic topography calculations emphasize the role of vertical forcing under other orogenic plateaux underlain by relatively thin crust and low-density asthenospheric mantle.
An extended UTD analysis for the scattering and diffraction from cubic polynomial strips
NASA Technical Reports Server (NTRS)
Constantinides, E. D.; Marhefka, R. J.
1993-01-01
Spline and polynomial type surfaces are commonly used in high frequency modeling of complex structures such as aircraft, ships, reflectors, etc. It is therefore of interest to develop an efficient and accurate solution to describe the scattered fields from such surfaces. An extended Uniform Geometrical Theory of Diffraction (UTD) solution for the scattering and diffraction from perfectly conducting cubic polynomial strips is derived and involves the incomplete Airy integrals as canonical functions. This new solution is universal in nature and can be used to effectively describe the scattered fields from flat, strictly concave or convex, and concave convex boundaries containing edges. The classic UTD solution fails to describe the more complicated field behavior associated with higher order phase catastrophes and therefore a new set of uniform reflection and first-order edge diffraction coefficients is derived. Also, an additional diffraction coefficient associated with a zero-curvature (inflection) point is presented. Higher order effects such as double edge diffraction, creeping waves, and whispering gallery modes are not examined. The extended UTD solution is independent of the scatterer size and also provides useful physical insight into the various scattering and diffraction processes. Its accuracy is confirmed via comparison with some reference moment method results.
Shaping the longitudinal intensity pattern of Cartesian beams in lossless and lossy media
NASA Astrophysics Data System (ADS)
Corato-Zanarella, Mateus; Corato-Zanarella, Henrique; Zamboni-Rached, Michel
2017-09-01
Several applications, such as optical tweezers and atom guiding, benefit from techniques that allow the engineering of spatial field profiles, in particular their longitudinal intensity patterns. In cylindrical coordinates, methods such as frozen waves allow an advanced control of beam characteristics, but in Cartesian coordinates there is no analogous technique. Since Cartesian beams may also be useful in applications, we develop here a method to modulate on demand the longitudinal intensity pattern of any (initially) unidimensional Cartesian beam with concentrated angular spectrum (thus encompassing all unidimensional paraxial beams) in lossless and lossy media. To this end, we write the total beam as a product of two unidimensional beams and explore the degree of freedom provided by the additional Cartesian coordinate. While in the plane where this coordinate is zero the chosen unidimensional beam keeps its structure with the additional desired intensity modulation, a sinusoidal-like oscillation appears in the direction of this variable and creates a spot whose size is tunable. Examples with Gaussian and Airy beams are presented and their corresponding experimental demonstrations in free-space are performed to show the validity of the method.
Stray Light Correction of HMI Data
NASA Astrophysics Data System (ADS)
Norton, Aimee Ann; Duvall, Thomas; Schou, Jesper; Cheung, Mark; Scherrer, Philip H.
2017-08-01
The point spread function (PSF) for HMI is an Airy function convolved with a Lorentzian. The parameters are bound by ground-based testing before launch, then post-launch off-limb light curves, lunar eclipse and Venus transit data. The PSF correction is programmed in C and runs within the HMI data processing pipeline environment. A single full-disk intensity image can be processed in less than one second. Deconvolution of the PSF on the Stokes profile data (a linear combination of original filtergrms) is less computationally expensive and is shown to be equivalent to deconvolution applied at the original filtergram level. Results include a decrease in umbral darkness of a few percent (~200 K cooler), a doubling of the granulation contrast in intensity from 3.6 to 7.2%, an increase in plage field strengths by a factor of 1.5, and a partial correction of the convective blueshift in Doppler velocities. Requests for data corrected for stray light are welcome and will be processed by the HMI team.
Subsidence modeling of the Sabah Basin, a foreland basin, Northwest Borneo, Malaysia
Azim-Ibrahim, N. ); White, N. )
1994-07-01
The Sabah Basin is located on the northwestern side of Borneo. It is a piggy back northeast-southwest-trending basin, riding on a north-westward directed imbricate thrust system. The basin contains approximately 10 to 12 km of sediment in the deepest part deposited in two main episodes of basin development; (1) a pre-early middle Miocene phase of generally deep-marine clastic deformation, which was later subjected to compression and (2) a post-early middle Miocene episode of clastic deposition, comprising bathyal to upper coastal plain sediments. Tectonic subsidence of the post-middle Miocene sequence was determined using the 1-D Airy and 2-D flexure backstripping techniques and wells and selected dip profiles, where the effects of compaction and sediment loading were removed. Variation in paleowater depth was also taken into account. The results show an extremely rapid subsidence phase dominating the earlier part of the basin history, with the later part corresponding to passive basin infilling. The boundary between these two phases becomes younger toward the northwest. The rapid subsidence phase is attributed to tectonic loading, possibly as a result of continuing thrusting at the basin margin. The results also imply that sedimentary sequences formed during the earlier phase were tectonically controlled and marked by transgressive events, while those deposited during the later phase bear the imprints of both tectonic and eustasy.
Completed Beltrami-Michell Formulation for Analyzing Radially Symmetrical Bodies
NASA Technical Reports Server (NTRS)
Kaljevic, Igor; Saigal, Sunil; Hopkins, Dale A.; Patnaik, Surya N.
1994-01-01
A force method formulation, the completed Beltrami-Michell formulation (CBMF), has been developed for analyzing boundary value problems in elastic continua. The CBMF is obtained by augmenting the classical Beltrami-Michell formulation with novel boundary compatibility conditions. It can analyze general elastic continua with stress, displacement, or mixed boundary conditions. The CBMF alleviates the limitations of the classical formulation, which can solve stress boundary value problems only. In this report, the CBMF is specialized for plates and shells. All equations of the CBMF, including the boundary compatibility conditions, are derived from the variational formulation of the integrated force method (IFM). These equations are defined only in terms of stresses. Their solution for kinematically stable elastic continua provides stress fields without any reference to displacements. In addition, a stress function formulation for plates and shells is developed by augmenting the classical Airy's formulation with boundary compatibility conditions expressed in terms of the stress function. The versatility of the CBMF and the augmented stress function formulation is demonstrated through analytical solutions of several mixed boundary value problems. The example problems include a composite circular plate and a composite circular cylindrical shell under the simultaneous actions of mechanical and thermal loads.
Probe-Beam Diffraction in a Pulsed Top-Hat Beam Thermal Lens with a Mode-Mismatched Configuration
NASA Astrophysics Data System (ADS)
Li, Bincheng; Welsch, Eberhard
1999-08-01
The Fresnel diffraction integral is used directly to describe the thermal lens (TL) effect with a mode-mismatched collinear configuration. The TL amplitudes obtained with Gaussian, Airy, and top-hat beam excitations are computed and compared. Numerical results for beam geometries optimized for both near- and far-field detection schemes are presented, and the analytical results developed by Bialkowski and Chartier Appl. Opt. 36, 6711 (1997) for a Gaussian beam TL effect are summarized in simplified form. Both the numerical and the analytical results demonstrate that, under a beam geometry optimized for either near- or far-field detection, the Gaussian beam TL experiment has approximately the same maximum signal amplitude as does the photothermal-interference scheme. A comparison between the optimum near- and far-field detection beam geometries indicates that a practical mode-mismatched TL instrument should be based on the far-field detection geometry. The computation results further demonstrate that the optimum beam geometry and the TL amplitude depend largely on the excitation-beam profile. The top-hat beam TL experiment is approximately twice as sensitive as the Gaussian beam TL scheme.
NASA Astrophysics Data System (ADS)
Glasgow, Ben J.
2016-02-01
A conventional fluorescence microscope was previously constructed for simultaneous imaging of two colors to gain sub-diffraction localization. The system is predicated on color separation of overlapping Airy discs, construction of matrices of Cartesian coordinates to determine locations as well as centers of the point spread functions of fluorophores. Quantum dots that are separated by as little as 10 nm were resolved in the x-y coordinates. Inter-fluorophore distances that vary by 10 nm could also be distinguished. Quantum dots are bright point light source emitters that excite with a single laser and can serve as a label for many biomolecules. Here, alterations in the method are described to test the ability to resolve Atto 488 and Atto 647 dyes attached to DNA origami at ~40 nm spacing intervals. Dual laser excitation is used in tandem with multi-wavelength bandpass filters. Notwithstanding challenges from reduced intensity in Atto labeled DNA origami helical bundles compared to quantum dots, preliminary data show a mean inter-fluorophore distance of 56 nm with a range (14-148 nm). The range closely matches published results with DNA origami with other methods of subdiffraction microscopy. Sub-diffraction simultaneous two-color imaging fluorescence microscopy acronymically christened (SSTIFM) is a simple, readily accessible, technique for measurement of inter-fluorophore distances in compartments less than 40 nm. Preliminary results with so called nanorulers are encouraging for use with other biomolecules.
NASA Astrophysics Data System (ADS)
Niemi, Paul R.; D., O.; Mc Leod, David M.; Mc Leod, Roger D.
2007-04-01
RDM taught a health professional how to recover her previously impaired near vision in one session, also bringing a similar male from 20/30 to 20/10, distance vision, in about ten minutes; another health professional's improvement went from 20/300 to 20/20 in three sessions. A former athlete achieved a distance improvement from 20/800 to 20/100, again, in three sessions. RDM offers to replicate these types of improvements, using patent-pending Naturoptics under monitored conditions, and non-disclosure restraints, to protect franchising and patent-pending rights. Evening atropine use, controlled, at Singapore's National Eye Center, demonstrated an effect against myopia. Does this actually constitute an experimental verification of Mc Leod's Airy-disk radius-formula explanation of how vision works, and predicts how it can be damaged/repaired? Evaluation and documentation is to be by close and distance vision standard charts, or their equivalents, with guaranteed ``chart'' improvements of one line per session, after the beginning visit, or the session is free. Patent-pending Naturoptics differs from all vision-boosting competitors by safely re-eliciting vision's feedback control self-repairs, including astigmatism and presbyopia. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.4
Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can
2014-01-01
Light beams with extraordinary spatial structures, such as the Airy beam (AB), the Bessel-Gaussian beam (BGB) and the Laguerre-Gaussian beam (LGB), are widely studied and applied in many optical scenarios. We report on preparation of light beams with controllable spatial structures through sum frequency generation (SFG) using two Gaussian pump beams in a quasi-phase matching (QPM) crystal. The spatial structures, including multi-ring-like BGB, donut-like LGB, and super-Gaussian-like beams, can be controlled periodically via crystal phase mismatching by tuning the pump frequency or crystal temperature. This phenomenon has not been reported or discussed previously. Additionally, we present numerical simulations of the phenomenon, which agree very well with the experimental observations. Our findings give further insight into the SFG process in QPM crystals, provide a new way to generate light with unusual spatial structures, and may find applications in the fields of laser optics, all-optical switching, and optical manipulation and trapping. PMID:25007780
Coupled-mode solutions in generalized ocean environments.
Stotts, Steven A
2002-04-01
This paper presents the application of the differential equation approach to solving the second-order coupled-mode equations in inhomogeneous ocean environments. The model incorporates sound velocity profile points to construct depth-dependent, piecewise linear, ocean and bottom environments along a range grid. Modal solutions are evaluated in terms of Airy functions. The formalism to evaluate analytically the mode-coupling coefficients is presented. Comparisons to conventional expressions of the coefficients are made. The integro-differential form of the coupled equations is solved using an approach developed in nuclear theory that incorporates the Lanczos method [Knobles, J. Acoust. Soc. Am. 96, 1741-1747 (1994)]. Demonstration of the practicality of this approach is made by applying the results in actual calculations with realistic ocean environments. The formalism to evaluate analytically the mode-coupling coefficients is presented. Several benchmark examples were examined in order to validate the model and are discussed, including propagation over a hill, benchmark wedge problems, and a range-varying sound speed profile benchmark. The importance of this model is also demonstrated by the physical insight gained in having a coupled-mode approach to solving range-dependent problems.
Raman and the mirage revisited: confusions and a rediscovery
NASA Astrophysics Data System (ADS)
Berry, M. V.
2013-11-01
Raman argued that in a continuously varying layered medium, such as air above a hot road, a ray that bends so as to become horizontal must remain so, implying that the reflection familiar in the mirage cannot be explained by geometrical optics. This is a mistake, as standard ray curvature arguments demonstrate. But a simple limiting process, in which the smoothly varying refractive index is approximated by a stack of thin discrete layers, is not quite straightforward because it involves a curious singularity, related to the level ray envisaged by Raman. In contrast to individual rays, families of rays possess caustic (focal) singularities. These can be calculated explicitly for two families of rays that are relevant to the mirage. Only exceptionally does the locus of reflection (lowest points on the rays) coincide with the caustics. Caustics correspond to the ‘vanishing line’, representing the limiting height of objects that can be seen by reflection. For these two families, the waves that decorating mirage caustics are described by the universal Airy function, and can be calculated exactly.
NASA Astrophysics Data System (ADS)
Dorman, L. M.
2015-12-01
The seafloor plays an important role in the propagation ofseafloor noise because its low shear velocity forms a strongwaveguide and the high shear velocity gradient facilitatesconversion processes.In 2001 (JASA), O. A. Godin and D. M.F. Chapman studiedpropagation of interface (Scholte) waves in models with ashear speed profile with a power-law depth dependence.They analyzed of four datasets from shallow-watersites, which they fit well with two-parameter models.Furthermore, they show that for the exponent value of1/2, the mode wavefunctions are self-similar.Data from the deep seafloor from seafloor sources observedby Ocean-Bottom Seismographs frequently exhibit afundamental mode ending in an Airy phase with a frequencyof a few Hertz. This is, of course,, incompatiblewith self-similarity. Adjusting the power-law shear velocityprofile near the water interface, however, improvesthe fit of this simple model with a parsimoniousparameterization to data from the the deep seafloor.Approximation of a power-law model using thin layers ofuniform velocity is eased by using an editor with aninteractive graphical user interface.
Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams
NASA Astrophysics Data System (ADS)
Latychevskaia, Tatiana; Fink, Hans-Werner
2016-05-01
It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. However, all known light modulation techniques allow for limited light modifications only: focusing within a restricted region in space, shaping into a certain class of parametric curves along the optical axis or bending described by a quadratic-dependent deflection as in the case of Airy beams. We show a general case of classical light wavefront shaping that allows for intensity and phase redistribution into an arbitrary profile including pre-determined switching-off of the intensity. To create an arbitrary three-dimensional path of intensity, we represent the path as a sequence of closely packed individual point-like absorbers and simulate the in-line hologram of the created object set; when such a hologram is contrast inverted, thus giving rise to a diffractor, it creates the pre-determined three-dimensional path of intensity behind the diffractor under illumination. The crucial parameter for a smooth optical path is the sampling of the predetermined curves, which is given by the lateral and axial resolution of the optical system. We provide both, simulated and experimental results to demonstrate the power of this novel method.
A statistical mechanics framework for static granular matter
NASA Astrophysics Data System (ADS)
Henkes, Silke
2009-03-01
It is still an open question if the formalism of equilibrium statistical mechanics can be extended to athermal granular media. A number of authors have used a maximum entropy approach with a flat measure in configuration space to derive the equivalent of the canonical ensemble for the total volume or for the boundary forces as conserved quantities. We have generalized the force-based ensemble to the full force-moment tensor, and allow for the effects of a measure that is not flat. At the isostatic point, this formalism allows us to compute the force distribution exactly, and we obtain an exponential if we choose a flat measure. We use this result as a baseline to investigate the effects of the measure, and we also study the link to a recently proposed ensemble which incorporates an additional stress-based conserved quantity. At a coarse-grained level, the jamming transition can be studied within this framework by postulating a field-theoretical model for the density of states. We construct a minimal model based on symmetry arguments and a positivity constraint for the pressure, which incorporates force and torque balance through the Airy stress function. Unlike in continuum elasticity, the material constants crucially depend on the imposed boundary stresses. The model predicts that the jamming transition is characterized by a vanishing phase space available to the system as the pressure goes to zero. We are able to calculate correlation functions for the components of the stress tensor and compare them to simulation results.
A Documentary History of the Discovery of Neptune
NASA Astrophysics Data System (ADS)
Waff, C. B.; Kollerstrom, N.
2001-12-01
The discovery of the planet Neptune by Johann Gottfried Galle on 23 September 1846 near the positions predicted by Urbain Jean Joseph Le Verrier and John Couch Adams has been justly considered by many the greatest achievement of Newtonian celestial mechanics. Aside from communications to societies and journals and a selection of letters published shortly after the discovery by British Astronomer Royal George Biddell Airy, however, contemporary documents (especially letters) concerning the discovery have in large part remained unpublished and scattered in numerous archives in England, France, the United States, Germany, and elsewhere. Partially in response to the longtime disappearance and fortunate recent recovery of the Royal Greenwich Observatory file of documents on the discovery, the authors of this paper have formed the project of editing and annotating for publication a chronologically ordered collection of documents relating to the prediction, discovery, and orbit determination of Neptune. A lengthy introductory essay that would summarize research on the Neptune discovery that has been conducted by various historians would accompany such a collection. This paper will outline the criteria that have been used for selecting the documents that will be published in the edition and describe some of the preliminary associated research findings of the authors.
New separators at the ATLAS facility
NASA Astrophysics Data System (ADS)
Back, Birger; Agfa Collaboration; Airis Team
2015-10-01
Two new separators are being built for the ATLAS facility. The Argonne Gas-Filled Analyzer (AGFA) is a novel design consisting of a single quadrupole and a multipole magnet that has both dipole and quadrupole field components. The design allows for placing Gammasphere at the target position while providing a solid angle of ~ 22 msr for capturing recoil products emitted at zero degrees. This arrangement enables studies of prompt gamma ray emission from weakly populated trans-fermium nuclei and those near the doubly-magic N = Z = 50 shell closure measured in coincidence with the recoils registered by AGFA. The Argonne In-flight Radioactive Ion Separator (AIRIS) is a magnetic chicane that will be installed immediately downstream of the last ATLAS cryostat and serve to separate radioactive ion beams generated in flight at an upstream high intensity production target. These beams will be further purified by a downstream RF sweeper and transported into a number of target stations including HELIOS, the Enge spectrograph, the FMA and Gammasphere. This talk will present the status of these two projects. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
Size distribution of ring polymers
Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A.
2016-01-01
We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 − d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5. PMID:27302596
Computer simulations of interferometric imaging with the VLT Interferometer and the AMBER instrument
NASA Astrophysics Data System (ADS)
Bloecker, Thomas; Hofmann, Karl-Heinz; Przygodda, Frank; Weigelt, Gerd
2000-07-01
We present computer simulations of interferometric imaging with the VLT interferometer and the AMBER instrument. These simulations include both the astrophysical modeling of a stellar object by radiative transfer calculations and the simulation of light propagation from the object to the detector (through atmosphere, telescopes, and the AMBER instrument), simulation of photon noise and detector read- out noise, and finally data processing of the interferograms. The results show the dependence of the visibility error bars on the following observational parameters: different seeing during the observation of object and reference star (Fried parameters r0,object equals 2.4 m, r0,ref. equals 2.5 m), different residual tip- tilt error ((delta) tt,object equals 2% of the Airy disk diameter, (delta) tt,ref. equals 0.1%), and object brightness (Kobject equals 3.5 mag and 11 mag, Kref. equals 3.5 mag). Exemplarily, we focus on stars in late stages of stellar evolution and study one of its key objects, the dusty supergiant IRC + 10420 that is rapidly evolving on human timescales. We show computer simulations of VLTI interferometry of IRC + 10420 with two ATs (wide-field mode, i.e. without fiber optics spatial filters) and discuss whether the visibility accuracy is sufficient to distinguish between different theoretical model predictions.
NASA Astrophysics Data System (ADS)
Blöcker, T.; Hofmann, K.-H.; Przygodda, F.; Weigelt, G.
We present computer simulations of interferometric imaging with the VLT interferometer and the AMBER instrument. These simulations include both the astrophysical modelling of a stellar object by radiative transfer calculations and the simulation of light propagation from the object to the detector (through atmosphere, telescopes, and the AMBER instrument), simulation of photon noise and detector read-out noise, and finally data processing of the interferograms. The results show the dependence of the visibility error bars on the following observational parameters: different seeing during the observation of object and reference star (Fried parameters r0,object and r0,ref. ranging between 0.9 m and 1.2 m), different residual tip-tilt error (δtt,object and δtt,ref. ranging between 0.1% and 20% of the Airy disk diameter), and object brightness (Kobject=3.5 mag to 13 mag, Kref.=3.5 mag). Exemplarily, we focus on stars in late stages of stellar evolution and study one of its key objects, the dusty supergiant IRC +10 420 that is rapidly evolving on human timescales. We show computer simulations of VLT interferometry of IRC +10 420 with two ATs (wide-field mode, i.e. without fiber optics spatial filters) and discuss whether the visibility accuracy is sufficient to distinguish between different theoretical model predictions.
LINEAR ACCELERATION EMISSION. II. POWER SPECTRUM
Melrose, D. B.; Luo, Q.
2009-06-10
The theory of linear acceleration emission (LAE) is developed for a large amplitude electrostatic wave in which all particles become highly relativistic in much less than a wave period. An Airy-integral approximation is shown to apply near the phases where the electric field passes through zero and the Lorentz factors of all particles have their maxima. The emissivity is derived for an individual particle and is integrated over frequency and solid angle to find the power radiated per particle. The result is different from that implied by the generalized Larmor formula which, we argue, is not valid in this case. We also discuss a mathematical inconsistency that arises when one evaluates the power spectrum by integrating the emissivity over solid angle. The correct power spectrum increases as the 4/3rd power of the frequency at low frequencies, and falls off exponentially above a characteristic frequency. We discuss application of LAE to the emission of high-frequency photons in an oscillating model for pulsars. We conclude that it cannot account for gamma-ray emission, but can play a role in secondary pair creation.
Allgaier, D.E.
1986-04-07
Asymptotic solutions for the nonlinear, nonhomogeneous, Korteweg-deVries (KdV) partial differential equation with slowly varying coefficients are not, in general, uniformly valid. A uniform asymptotic expansion is obtained by finding separate expansions for different regions and matching. A KdV solitary wave propagating in slowly varying media is examined. Quasi-stationarity for the core reduces the problem to solving ordinary differential equations for that region. However, in the leading tail region, hyperbolic pde's must be solved to determine the amplitude and phase. The method of characteristics predicts triple valuedness after a caustic (penumbral or cusped) develops. Singular perturbation methods show the solution near first focusing satisfies the diffusion equation and involves either an incomplete Airy-type integral or an exponential integral similar to the Pearcey integral. Laplace's method shows that the critical points of the exponential phase satisfy the fundamental folding equation. A linear multi-phase solution is determined which does not become triple valued (break). Instead, a wave number shock develops, which separates two different solitary wave tails, and travels at the shock velocity predicted by conservation of waves. Thus, a unique uniform leading tail solution is obtained corresponding to a specified moving core (the problem is shown to be well-posed).
Fine Guidance Sensing for Coronagraphic Observatories
NASA Technical Reports Server (NTRS)
Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.
2011-01-01
Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.
Scattering of wave packets with phases
NASA Astrophysics Data System (ADS)
Karlovets, Dmitry V.
2017-03-01
A general problem of 2 → N f scattering is addressed with all the states being wave packets with arbitrary phases. Depending on these phases, one deals with coherent states in (3 + 1) D, vortex particles with orbital angular momentum, the Airy beams, and their generalizations. A method is developed in which a number of events represents a functional of the Wigner functions of such states. Using width of a packet σ p /< p> as a small parameter, the Wigner functions, the number of events, and a cross section are represented as power series in this parameter, the first non-vanishing corrections to their plane-wave expressions are derived, and generalizations for beams are made. Although in this regime the Wigner functions turn out to be everywhere positive, the cross section develops new specifically quantum features, inaccessible in the plane-wave approximation. Among them is dependence on an impact parameter between the beams, on phases of the incoming states, and on a phase of the scattering amplitude. A model-independent analysis of these effects is made. Two ways of measuring how a Coulomb phase and a hadronic one change with a transferred momentum t are discussed.
Medical applications of phytoestrogens from the Thai herb Pueraria mirifica.
Malaivijitnond, Suchinda
2012-03-01
Pueraria mirifica Airy Shaw et Suvatabandhu is a medicinal plant endemic to Thailand. It has been used in Thai folklore medicine for its rejuvenating qualities in aged women and men for nearly one hundred years. Indeed, it has been claimed that P. mirifica contains active phytoestrogens (plant substances with estrogen-like activity). Using high performance liquid chromatography, at least 17 phytoestrogens, mainly isoflavones, have been isolated. Thus, fairly considerable scientific researches, both in vitro in cell lines and in vivo in various species of animals including humans, have been conducted to date to address its estrogenic activity on the reproductive organs, bones, cardiovascular diseases and other climacteric related symptoms. The antioxidative capacity and antiproliferative effect on tumor cell lines have also been assessed. In general, P. mirifica could be applicable for preventing, or as a therapeutic for, the symptoms related to estrogen deficiency in menopausal women as well as in andropausal men. However, the optimal doses for each desirable effect and the balance to avoid undesired side effects need to be calculated before use.
How the Term "Shock Waves" Came Into Being
NASA Astrophysics Data System (ADS)
Fomin, N. A.
2016-07-01
The present paper considers the history of works on shock waves beginning from S. D. Poisson's publication in 1808. It expounds on the establishment of the Polytechnic School in Paris and its fellows and teachers — Gaspard Monge, Lazare Carnot, Joseph Louis Gay-Lussac, Simeon Denis Poisson, Henri Navier, Augustin Louis Cauchy, Joseph Liouville, Ademar de Saint-Venant, Henri Regnault, Pierre Dulong, Emile Jouguet, Pierre Duhem, and others. It also describes the participation in the development of the shock wave theory of young scientists from the universities of Cambridge, among which were George Airy, James Challis, Samuel Earnshaw, George Stokes, Lord Rayleigh, Lord Kelvin, and James Maxwell, as well as of scientists from the Göttingen University, Germany — Bernhard Riemann and Ernst Heinrich Weber. The pioneer works on shock waves of the Scottish engineer William Renkin, the French artillerist Pierre-Henri Hugoniot, German scientists August Toepler and Ernst Mach, and a Hungarian scientist Gyözö Zemplén are also considered.
High-index asymptotics of spherical Bessel products averaged with modulated Gaussian power laws
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2014-12-01
Bessel integrals of type are investigated, where the kernel g( k) is a modulated Gaussian power-law distribution , and the jl ( m) are multiple derivatives of spherical Bessel functions. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. Two methods allowing efficient numerical calculation of these integrals are presented, covering Bessel indices l in the currently accessible multipole range 0 ≤ l ≤ 104 and beyond. The first method is based on a representation of spherical Bessel functions by Lommel polynomials. Gaussian power-law averages can then be calculated in closed form as finite Hankel series of parabolic cylinder functions, which allow high-precision evaluation. The second method is asymptotic, covering the high- l regime, and is applicable to general distribution functions g( k) in the integrand; it is based on the uniform Nicholson approximation of the Bessel derivatives in conjunction with an integral representation of squared Airy functions. A numerical comparison of these two methods is performed, employing Gaussian power laws and Kummer distributions to average the Bessel products.
Free-carrier and exciton Franz-Keldysh theory for one-dimensional semiconductors
NASA Astrophysics Data System (ADS)
Pedersen, Thomas G.; Lynge, Thomas B.
2002-02-01
The optical properties of a one-dimensional semiconductor in the presence of a static electric field applied along the long axis are calculated. An analytic, nonperturbative expression for the complex free-carrier dielectric constant is obtained in terms of Airy functions. In addition, broadening of the dielectric constant is included analytically. Analytic expressions for the numerical results of Hughes and Citrin [Phys. Rev. Lett. 84, 4228 (2000)] are presented. The characteristics of the Franz-Keldysh effect, i.e., oscillatory modulation of the spectra and below-gap absorption, are clearly observed. It is demonstrated that these signatures of the electric field may be much more pronounced than the corresponding effects in bulk materials. The influence of electron-hole interaction is subsequently analyzed and exciton eigenstates of an effective Hamiltonian including the one-dimensional Coulomb interaction and the electric field are obtained from an expansion in the free-carrier basis. The exciton Franz-Keldysh effect is compared to the free-carrier result. It is concluded that field-induced changes in the spectral region below the band gap are greatly suppressed in comparison to the free-carrier case as a result of the large exciton binding energy. The oscillatory modulation of the spectra above the band gap is found to be essentially intact, however. In agreement with experiments, the shift of absorption resonances with electric field is found to behave very differently for discrete resonances below the gap and continuum resonances.
Inhomogeneous field theory inside the arctic circle
NASA Astrophysics Data System (ADS)
Allegra, Nicolas; Dubail, Jérôme; Stéphan, Jean-Marie; Viti, Jacopo
2016-05-01
Motivated by quantum quenches in spin chains, a one-dimensional toy-model of fermionic particles evolving in imaginary-time from a domain-wall initial state is solved. The main interest of this toy-model is that it exhibits the arctic circle phenomenon, namely a spatial phase separation between a critically fluctuating region and a frozen region. Large-scale correlations inside the critical region are expressed in terms of correlators in a (euclidean) two-dimensional massless Dirac field theory. It is observed that this theory is inhomogenous: the metric is position-dependent, so it is in fact a Dirac theory in curved space. The technique used to solve the toy-model is then extended to deal with the transfer matrices of other models: dimers on the honeycomb and square lattice, and the six-vertex model at the free fermion point (Δ =0 ). In all cases, explicit expressions are given for the long-range correlations in the critical region, as well as for the underlying Dirac action. Although the setup developed here is heavily based on fermionic observables, the results can be translated into the language of height configurations and of the gaussian free field, via bosonization. Correlations close to the phase boundary and the generic appearance of Airy processes in all these models are also briefly revisited in the appendix.
Design of an adaptable Stokes polarimeter for exploring chromospheric magnetism
NASA Astrophysics Data System (ADS)
Louis, Rohan E.; Bayanna, A. Raja; Socas Navarro, Héctor
2017-10-01
The chromosphere is a highly complex and dynamic layer of the Sun, that serves as a conduit for mass and energy supply between two, very distinct regions of the solar atmosphere, namely, the photosphere and corona. Inferring magnetic fields in the chromosphere, has thus become an important topic, that can be addressed with large-aperture solar telescopes to carry out highly sensitive polarimetric measurements. In this article, we present a design of a polarimeter for investigating the chromospheric magnetic field. The instrument consists of a number of lenses, two ferro-electric liquid crystals, a Wollaston prism, and a CCD camera. The optical design is similar to that of a commercial zoom lens which allows a variable f# while maintaining focus and aberrations well within the Airy disc. The optical design of the Adaptable ChRomOspheric POLarimeter (ACROPOL) makes use of off-the-shelf components and is described for the 70 cm Vacuum Tower Telescope and the 1.5 m GREGOR telescope at Observatorio del Teide, Tenerife, Spain. Our design shows that the optical train can be separated into two units where the first unit, consisting of a single lens, has to be changed while going from the VTT to the GREGOR configuration. We also discuss the tolerances within which, diffraction limited performance can be achieved with our design.
Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves
Ellsworth, William L.; Malin, Peter E.
2011-01-01
Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.
NASA Astrophysics Data System (ADS)
Hernandez, O.; von Frese, R. R.; Potts, L. M.
2007-05-01
A new model for the crustal evolution of northwestern South America (-8 S to 23.5 N, -90 W to -58.5 W) was developed from gravity derived MOHO depth estimates and tectonic features interpreted from correlative geopotential anomalies and seismic data. Crustal thickness estimates provide important constraints on the distribution of volcanic and seismic hazards, and mineral and energy deposits. Crustal thickness estimates were obtained by inversion of the compensated terrain gravity effects (CTGE) and compared against theoretical Airy MOHO and compiled seismic MOHO estimates. The thickness of the continental crust varies from 35 km to 55 km and shows that the mountain ranges are partially compensated by continental roots. The volumetric proportions of erupted rock types and geochemical characteristics likely are strongly correlated with the thickness and chemical characteristics of the crust through which the rising magmas travel. Crustal thicknesses from 45 to 55 km at the continent are related to the presence of andesitic batholiths of economic interest. Major deposits of base and precious metals of the Andean Mountains are related to intermediate to felsic intrusions. Porphyry copper-molybdenum deposits coincide with Mesozoic - Cenozoic orogenic belts and calc- alkaline volcanism. Major batholiths in the Central Andes, are related to gravity-inferred crustal thicknesses between 55 km to 60 km. Therefore, these results suggest that exploration of mineral deposits associated with batholithic intrusions in the Andes Mountains can be extended to crustal thicknesses from 45 km to 60 km.
NASA Astrophysics Data System (ADS)
Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitno, D. H.
2017-05-01
The hierarchical Co-Ni/HZSM-5 catalyst with hierarchical pore structure was prepared by desilication and incipient wetness impregnation. Hydrocracking of non-edible vegetable oils at temperature of 400 °C, 20±5 bar for 2 h was performed in the presence of this type of catalyst under hydrogen initial pressure in pressured batch reactor. Non-edible vegetable oils, such as Reutealis trisperma (Blanco) airy shaw (sunan candlenut) and Hevea brasiliensis (rubber seed) were chosen to study the effect of the degree of saturation and lateral chain length on hydrocarbon compounds obtained through hydrocracking. Cerbera manghas oil was also tested for comparison because the composition of fatty acid was different with the other oils The hydrocracking test indicated that liquid product produced has a similar hydrocarbon compounds with petroleum diesel. The most abundant hydrocarbon is pentadecane (n-C15) and heptadecane (n-C17). The high aromatic compounds were found in liquid product produced in hydrocracking of Sunan candlenut oil.
Photographic image enhancement
NASA Technical Reports Server (NTRS)
Hite, Gerald E.
1990-01-01
Deblurring capabilities would significantly improve the scientific return from Space Shuttle crew-acquired images of the Earth and the safety of Space Shuttle missions. Deblurring techniques were developed and demonstrated on two digitized images that were blurred in different ways. The first was blurred by a Gaussian blurring function analogous to that caused by atmospheric turbulence, while the second was blurred by improper focussing. It was demonstrated, in both cases, that the nature of the blurring (Gaussian and Airy) and the appropriate parameters could be obtained from the Fourier transformation of their images. The difficulties posed by the presence of noise necessitated special consideration. It was demonstrated that a modified Wiener frequency filter judiciously constructed to avoid over emphasis of frequency regions dominated by noise resulted in substantially improved images. Several important areas of future research were identified. Two areas of particular promise are the extraction of blurring information directly from the spatial images and improved noise abatement form investigations of select spatial regions and the elimination of spike noise.
Inversion of GPS velocity and seismicity data to yield changes in stress in the Japanese Islands
NASA Astrophysics Data System (ADS)
Iinuma, Takeshi; Kato, Teruyuki; Hori, Muneo
2005-02-01
To estimate stress changes within the crust from observed displacement rates, we have devised a new stress inversion method for a 2-D plate subjected to a planar stress which uses Airy's stress function. The merits of this stress inversion method are that it allows us to estimate the stress field without full knowledge of the elastic properties of the object and it improves precision because it is not necessary to take derivatives of observed quantities. We applied this stress inversion method to the Japanese Islands where the Geographical Survey Institute has been operating a nationwide GPS array called `GEONET'. We make the assumption that the inelastic deformation in the Japanese Islands has no dilatational component. We used velocity data derived from 3 yr of GPS observations. We estimated the change in boundary traction from the seismic parameters of large earthquakes (stress drop, slip direction and recurrence interval). We compared the observed `total' strain and estimated the `elastic' strain. The results suggest that the latter looks larger than the former, indicating that it is feasible to estimate the distribution of rigidity from the stress inversion. Comparison with seismicity data suggests that inland shallow earthquakes occur where rigidity is lower.
NASA Astrophysics Data System (ADS)
Fatalov, V. R.
2017-07-01
For the Brownian motion X_μ(t) on the half-axis \\lbrack 0,∞) with linear drift μ, reflected at zero and for fixed numbers p>0, δ>0, d>0, a ≥ 0, we calculate the exact asymptotics as T\\to∞ of the mathematical expectations and probabilities \\displaystyle \\mathsf E\\biggl \\lbrack \\exp\\biggl\\{-δ\\int_0T X_μ......l\\{\\frac1 T\\int_0T X_μ^p(t) dt as well as of their conditional versions. For p=1 we give explicit formulae for the emerging constants via the Airy function. We consider an application of the results obtained to the problem of studying the behaviour of a Brownian particle in a gravitational field in a container bounded below by an impenetrable wall when μ=-mg/(2kT K), where m is the mass of the Brownian particle, g is the gravitational acceleration, k is the Boltzmann constant, T K is the temperature in the Kelvin scale. The analysis is conducted by the Laplace method for the sojourn time of homogeneous Markov processes. Bibliography: 31 titles.
Nanoscale contact-radius determination by spectral analysis of polymer roughness images.
Knoll, Armin W
2013-11-12
In spite of the long history of atomic force microscopy (AFM) imaging of soft materials such as polymers, little is known about the detailed effect of a finite tip size and applied force on the imaging performance on such materials. Here we exploit the defined scaling of roughness amplitudes on amorphous polymer films to determine the transfer function imposed by the imaging tip. The finite indentation of the nanometer-scale tip into the comparatively soft polymer surface leads to a finite contact area, which in turn effectively acts as a moving average filter for the surface roughness. In the power spectral density (PSD), this leads to an attenuation of the roughness amplitudes related to the Airy pattern known from light diffraction of a circular aperture. This transfer function is affected by the roughness-induced local modulation of the tip height and contact area, which is studied by performing simulations of the polymer roughness and the imaging process. We find that for typical polymer parameters and sharp tips the contact radius of the tip-sample contact can be recovered from the roughness spectrum. We experimentally verify and demonstrate the method by measuring the nanoscale contact radius as a function of applied load and travel distance on a highly cross-linked model polymer. The data are consistent with the Johnson-Kendall-Roberts (JKR) contact model and verifies its applicability at the nanometer scale. Using the model, quantitative values of the elastic sample parameters can be determined.
The effect of gradational velocities and anisotropy on fault-zone trapped waves
NASA Astrophysics Data System (ADS)
Gulley, A. K.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.
2017-08-01
Synthetic fault-zone trapped wave (FZTW) dispersion curves and amplitude responses for FL (Love) and FR (Rayleigh) type phases are analysed in transversely isotropic 1-D elastic models. We explore the effects of velocity gradients, anisotropy, source location and mechanism. These experiments suggest: (i) A smooth exponentially decaying velocity model produces a significantly different dispersion curve to that of a three-layer model, with the main difference being that Airy phases are not produced. (ii) The FZTW dispersion and amplitude information of a waveguide with transverse-isotropy depends mostly on the Shear wave velocities in the direction parallel with the fault, particularly if the fault zone to country-rock velocity contrast is small. In this low velocity contrast situation, fully isotropic approximations to a transversely isotropic velocity model can be made. (iii) Fault-aligned fractures and/or bedding in the fault zone that cause transverse-isotropy enhance the amplitude and wave-train length of the FR type FZTW. (iv) Moving the source and/or receiver away from the fault zone removes the higher frequencies first, similar to attenuation. (v) In most physically realistic cases, the radial component of the FR type FZTW is significantly smaller in amplitude than the transverse.
Validation of a New Rainbow Model Over the Hawaiian Islands
NASA Astrophysics Data System (ADS)
Ricard, J. L.; Adams, P. L.; Barckike, J.
2012-12-01
A new realistic model of the rainbow has been developed at the CNRM. It is based on the Airy theory. The main entry parameters are the droplet size distribution, the angle of the sun above the horizon, the temperature of the droplets and the wavelength. The island of Hawaii seems to be a perfect place for the validation of the rainbow model. Not only because of its famous rainbows, but also because of the convenient ring road along the coast. The older lower islands for more frequent viewing opportunities having to do with the proximity of clear sky to heavy rainfall. Both Oahu and Kauai as well as the western part of Maui have coastal roads that offer good access to rainbows. The best time to view rainbows is when the sun angle is lowest, in other words near the winter solstice. Figure 1 = Map of mean annual rainfall for the islands of Kauai and Oahu, developed from the new 2011 Rainfall Atlas of Hawaii. The base period of the statistics is 1978-2007. Figure 2 = Moisture zone map by Gon et al (1998). Blue areas are the wet ones. Green areas are the Mesic ones. Yellow areas are the dry ones.
Fresnel equations and transmission line analogues for diffraction gratings
Kaushik, S.
1995-08-01
A simple and intuitive formalism is presented to describe diffraction in multi-layered periodic structures. We use the well known results from scalar analysis (wave propagation in homogeneous layered media) and show that they can be generalized rather readily to vector problems such as diffraction analysis. Specifically, we derive: (1) generalized Fresnel equations appropriate for reflection and transmission from an infinitely thick grating, (2) a generalized Airy formula for thin-film to describe reflection and transmission of light through a lamellar grating and (3) a matrix propagation method akin to that used for multi-layer thin film analysis. The results developed here complement the recent work on R-matrix and S-matrix propagation algorithms that have been used in connection with modal and differential grating theories. These algorithms have proven to be numerically stable for calculating diffraction efficiencies from deep groove gratings. The formalism developed here expands upon the earlier literature by providing important details that are hitherto unavailable.
Light Scattered from Polished Optical Surfaces: Wings of the Point Spread Function
NASA Technical Reports Server (NTRS)
Kenknight, C. E.
1984-01-01
Random figure errors from the polishing process plus particles on the main mirrors in a telescope cause an extended point spread function (PSF) declining approximately as the inverse square of the sine of the angle from a star from about 100 micro-rad to a right angle. The decline in at least one case, and probably in general, proceeds as the inverse cube at smaller angles where the usual focal plane aperture radius is chosen. The photometric error due to misalignment by one Airy ring spacing with an aperture of n rings depends on the net variance in the figure. It is approximately 60/(n+1)(3) when using the data of Kormendy (1973). A typical value is 6 x 10 to the -5th power per ring of misalignment with n = 100 rings. The encircled power may be modulated on a time scale of hours by parts per thousand in a wavelength dependent manner due to relative humidity effects on mirror dust. The scattering according to an inverse power law is due to a random walk in aberration height caused by a multitude of facets and slope errors left by the polishing process. A deviation from such a law at grazing emergence may permit monitoring the dust effects.
Hyperspectral Infrared Imaging of Flames Using a Spectrally Scanning Fabry-Perot Filter
NASA Technical Reports Server (NTRS)
Rawlins, W. T.; Lawrence, W. G.; Marinelli, W. J.; Allen, M. G.; Piltch, N. (Technical Monitor)
2001-01-01
The temperatures and compositions of gases in and around flames can be diagnosed using infrared emission spectroscopy to observe molecular band shapes and intensities. We have combined this approach with a low-order scanning Fabry-Perot filter and an infrared camera to obtain spectrally scanned infrared emission images of a laboratory flame and exhaust plume from 3.7 to 5.0 micrometers, at a spectral resolution of 0.043 micrometers, and a spatial resolution of 1 mm. The scanning filter or AIRIS (Adaptive Infrared Imaging Spectroradiometer) is a Fabry-Perot etalon operating in low order (mirror spacing = wavelength) such that the central spot, containing a monochromatic image of the scene, is viewed by the detector array. The detection system is a 128 x 128 liquid-nitrogen-cooled InSb focal plane array. The field of view is controlled by a 50 mm focal length multielement lens and an V4.8 aperture, resulting in an image 6.4 x 6.4 cm in extent at the flame and a depth of field of approximately 4 cm. Hyperspectral images above a laboratory CH4/air flame show primarily the strong emission from CO2 at 4.3 micrometers, and weaker emissions from CO and H2O. We discuss techniques to analyze the spectra, and plans to use this instrument in microgravity flame spread experiments.
Coronagraphy with the AEOS High Order Adaptive Optics System
NASA Astrophysics Data System (ADS)
Lloyd, J. P.; Graham, J. R.; Kalas, P.; Oppenheimer, B. R.; Sivaramakrishnan, A.; Makidon, R. B.; Macintosh, B. A.; Max, C. E.; Baudoz, P.; Kuhn, J. R.; Potter, D.
2001-05-01
Adaptive Optics has recently become a widely used technique to acquire sensitive, diffraction limited images in the near infrared with large ground based telescopes. Most astronomical targets are faint; driving astronomical AO systems towards large subapertures; resulting in a compromise between guide star brightness, observing wavelength, resolution and Strehl ratio. Space surveilance systems have recently been developed that exploit high order adaptive optics systems to take diffraction limited images in visible light on 4 meter class telescopes on bright (V<8) targets. There is, however, a particular niche that can be exploited by turning these visible light space surveillance systems to astronomical use at infrared wavelengths. At the longer wavelengths, the strehl ratio rises dramatically, thus placing more light into the diffracted Airy pattern at the expense of the atmospheric halo. A coronagraph can be used to suppress the diffracted light, and observe faint companions and debris disks around nearby, bright stars. Observations of these very high contrast objects benefit greatly from much higher order adaptive optics systems than are presently available to the astronomical commnunity. The National Science Foundation and Air Force Office of Scientific Research is sponsoring a program to conduct astronomical observations at the AEOS facility. We are presently developing an astronomical coronagraph to be deployed at the Air Force AEOS facility. We describe the coronagraph, and discuss the advantages and limitations of ground based high order AO for high contrast imaging.
Astronomical coronagraphy with high-order adaptive optics systems
NASA Astrophysics Data System (ADS)
Lloyd, James P.; Graham, James R.; Kalas, Paul; Oppenheimer, Ben R.; Sivaramakrishnan, Anand; Makidon, Russell B.; Macintosh, Bruce A.; Max, Claire E.; Baudoz, Pierre; Kuhn, Jeff R.; Potter, Dan
2001-12-01
Space surveillance systems have recently been developed that exploit high order adaptive optics systems to take diffraction limited images in visible light on 4 meter class telescopes. Most astronomical targets are faint, thus driving astronomical AO systems towards larger subapertures, and thus longer observing wavelengths for diffraction limited imaging at moderate Strehl ratio. There is, however, a particular niche that can be exploited by turning these visible light space surveillance systems to astronomical use at infrared wavelengths. At the longer wavelengths, the Strehl ratio rises dramatically, thus placing more light into the diffracted Airy pattern compared to the atmospheric halo. A Lyot coronagraph can be used to suppress the diffracted light from an on axis star, and observe faint companions and debris disks around nearby, bright stars. These very high contrast objects can only be observed with much higher order adaptive optics systems than are presently available to the astronomical community. We describe simulations of high order adaptive optics coronagraphs, and outline a project to deploy an astronomical coronagraph at the Air Force AEOS facility at the Maui Space Surveillance System.
Star testing: a novel evaluation of intraocular lens optical quality
Mitchell, L; Molteno, A C B; Bevin, T H; Sanderson, G
2006-01-01
Background Despite the importance of optical quality of an intraocular lens (IOL) on visual outcomes following cataract surgery, objective data on their optical quality are not readily available, and manufacturing standards are industry regulated. The star test is a classic test of optical quality based on examination of the Airy disc and expanded diffraction rings of a point source of light, used mainly for telescope and microscope objectives. Methods A physical model eye cell allowed star testing of IOLs under conditions similar to the optical environment in which they operate. 18 IOLs were tested and results compared to actual images produced by these lenses in the model eye cell. Quantitative measures of star testing performance were developed. Results The optical performance of the IOLs varied, some performing very poorly. Most lenses (13/17) performed better in reverse orientation, while aberrations induced by the haptics of foldable IOLs were also detected. There was excellent correlation between actual images formed and star testing parameters. Conclusion Star testing IOLs was a novel biomedical application of a centuries old, inexpensive method. A concerning variation of optical quality was found, suggesting IOL optical performance data should be more readily available. Independent, authority mandated IOL optical quality standards should be developed, and results readily available to ophthalmologists. PMID:16622088
NASA Astrophysics Data System (ADS)
Maruyama, Takashi; Yusupov, Kamil; Akchurin, Adel
2016-02-01
The vertical ground motion of seismic surface waves launches acoustic waves into the atmosphere and induces ionospheric disturbances. Disturbances due to Rayleigh waves near the short-period Airy phase appear as wavy fluctuations in the virtual height of an ionogram and have a multiple-cusp signature (MCS) when the fluctuation amplitude is increased. An extremely developed MCS was observed at Kazan, Russia, after the 2010 M 8.8 Chile earthquake. The ionogram exhibited steep satellite traces for which the virtual heights increased rapidly with frequency starting near the top of cusps and continuing for 0.1-0.2 MHz. This complicated ionogram was analyzed by applying a ray tracing technique to the radio wave propagation in the ionosphere that was perturbed by acoustic waves. Acoustic wavefronts were inclined by the effects of finite Rayleigh wave velocity and sound speed in the thermosphere. The satellite echo traces were reproduced by oblique returns from the inclined wavefronts, in addition to the nearly vertical returns that are responsible for the main trace.
NASA Technical Reports Server (NTRS)
Macenka, Steven A.; Chipman, Russell A.; Daugherty, Brian J.; McClain, Stephen C.
2012-01-01
A report discusses the difficulty of measuring scattering properties of coated mirrors extremely close to the specular reflection peak. A prototype Optical Hetero dyne Near-angle Scatterometer (OHNS) was developed. Light from a long-coherence-length (>150 m) 532-nm laser is split into two arms. Acousto-optic modulators frequency shift the sample and reference beams, establishing a fixed beat frequency between the beams. The sample beam is directed at very high f/# onto a mirror sample, and the point spread function (PSF) formed after the mirror sample is scanned with a pinhole. This light is recombined by a non-polarizing beam splitter and measured through heterodyne detection with a spectrum analyzer. Polarizers control the illuminated and analyzed polarization states, allowing the polarization dependent scatter to be measured. The bidirectional reflective or scattering distribution function is normally measured through use of a scattering goniometer instrument. The instrumental beam width (collection angle span) over which the scatterometer responds is typically many degrees. The OHNS enables measurement at angles as small as the first Airy disk diameter.
NASA Astrophysics Data System (ADS)
Xiao, Zi-Jian; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Sun, Yan
2017-08-01
Under investigation are the soliton interactions for a (2+1)-dimensional nonlinear Schrödinger equation, which can describe the dynamics of a nonlinear photonic quasi-crystal or vortex Airy beam in a Kerr medium. With the symbolic computation and Hirota method, analytic bright N-soliton and dark two-soliton solutions are derived. Graphic description of the soliton properties and interactions in a nonlinear photonic quasicrystal or Kerr medium is done. Through the analysis on bright and dark one solitons, effects of the optical wavenumber/linear opposite wavenumber and nonlinear coefficient on the soliton amplitude and width are studied: when the absolute value of the optical wavenumber or linear opposite wavenumber increases, bright soliton amplitude and dark soliton width become smaller; nonlinear coefficient has the same influence on the bright soliton as that of the optical wavenumber or linear opposite wavenumber, but does not affect the dark soliton amplitude or width. Overtaking/periodic interactions between the bright two solitons and overtaking interactions between the dark two solitons are illustrated. Overtaking interactions show that the bright soliton with a larger amplitude moves faster and overtakes the smaller, while the dark soliton with a smaller amplitude moves faster and overtakes the larger. When the absolute value of the optical wavenumber or linear opposite wavenumber increases, the periodic-interaction period becomes longer. All the above interactions are elastic. Through the interactions, soliton amplitudes and shapes keep invariant except for some phase shifts.
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2014-06-01
Weber integrals {int_0^infty {k^{2+μ}{e}^{-ak2}j_n^{2} (pk)dk}} and Beltrami integrals {int_0^infty {k^{2+μ}{e}^{-bk}j_n^{2} (pk)dk}} are studied, which arise in the multipole expansions of spherical random fields. These integrals define spectral averages of squared spherical Bessel functions j {/n 2} with Gaussian or exponentially cut power-law densities. Finite series representations of the integrals are derived for integer power-law index Î¼, which admit high-precision evaluation at low and moderate Bessel index n. At high n, numerically tractable uniform asymptotic approximations are obtained, based on the Debye expansion of modified spherical Bessel functions in the case of Weber integrals. The high-n approximation of Beltrami integrals can be reduced to Legendre asymptotics. The Airy approximation of Weber and Beltrami integrals is derived as well, and numerical tests are performed over a wide range of Bessel indices, by comparing the exact finite series expansions of the integrals to their high-index asymptotics.