Science.gov

Sample records for airi vrnik danuta

  1. Inpainting using airy diffusion

    NASA Astrophysics Data System (ADS)

    Lorduy Hernandez, Sara

    2015-09-01

    One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.

  2. Stationary nonlinear Airy beams

    SciTech Connect

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-08-15

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  3. Ultrabroadband Airy light bullets

    NASA Astrophysics Data System (ADS)

    Piksarv, Peeter; Valdmann, Andreas; Valtna-Lukner, Heli; Saari, Peeter

    2014-04-01

    We present the measurements of the spatiotemporal impulse responses of two optical systems for launching ultrashort Airy pulses, incl. ultrabroadband nonspreading Airy beams whose main lobe size remains invariantly small over propagation. First, a spatial light modulator and, second, a custom refractive element with continuous surface profile were used to impose the required cubic phase on the input field. White-light spectral interferometry setup based on the SEA TADPOLE technique was applied for full spatio-temporal characterization of the impulse response with ultrahigh temporal resolution approaching a single cycle of the light wave. The results were compared to the theoretical model.

  4. Ultrabroadband Airy light bullets

    NASA Astrophysics Data System (ADS)

    Piksarv, P.; Valdmann, A.; Valtna-Lukner, H.; Saari, P.

    2014-08-01

    We present the measurements of the spatiotemporal impulse responses of two optical systems for launching ultrashort Airy pulses, including ultrabroadband nonspreading Airy beams whose main lobe size remains invariantly small over propagation. First, a spatial light modulator and, second, a custom refractive element with continuous surface profile were used to impose the required cubic phase on the input field. A white-light spectral interferometry setup based on the SEA TADPOLE technique was applied for full spatio-temporal characterization of the impulse response with ultrahigh temporal resolution approaching a single cycle of the light wave. The results were compared to the theoretical model.

  5. Voigt Airy surface magneto plasmons.

    PubMed

    Hu, Bin; Wang, Qi Jie; Zhang, Ying

    2012-09-10

    We present a basic theory on Airy surface magneto plasmons (SMPs) at the interface between a dielectric layer and a metal layer (or a doped semiconductor layer) under an external static magnetic field in the Voigt configuration. It is shown that, in the paraxial approximation, the Airy SMPs can propagate along the surface without violating the nondiffracting characteristics, while the ballistic trajectory of the Airy SMPs can be tuned by the applied magnetic field. In addition, the self-deflection-tuning property of the Airy SMPs depends on the direction of the external magnetic field applied, owing to the nonreciprocal effect. PMID:23037243

  6. Bohmian trajectories of Airy packets

    NASA Astrophysics Data System (ADS)

    Nassar, Antonio B.; Miret-Artés, Salvador

    2014-09-01

    The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space-time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject's theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.

  7. Bohmian trajectories of Airy packets

    SciTech Connect

    Nassar, Antonio B.; Miret-Artés, Salvador

    2014-09-15

    The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.

  8. Airy beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-05-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  9. Airy beam optical parametric oscillator.

    PubMed

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  10. Airy beam optical parametric oscillator.

    PubMed

    Aadhi, A; Chaitanya, N Apurv; Jabir, M V; Vaity, Pravin; Singh, R P; Samanta, G K

    2016-05-04

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51-1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond).

  11. Airy beam optical parametric oscillator

    PubMed Central

    Aadhi, A.; Chaitanya, N. Apurv; Jabir, M. V.; Vaity, Pravin; Singh, R. P.; Samanta, G. K.

    2016-01-01

    Airy beam, a non-diffracting waveform, has peculiar properties of self-healing and self-acceleration. Due to such unique properties, the Airy beam finds many applications including curved plasma wave-guiding, micro-particle manipulation, optically mediated particle clearing, long distance communication, and nonlinear frequency conversion. However, many of these applications including laser machining of curved structures, generation of curved plasma channels, guiding of electric discharges in a curved path, study of nonlinear propagation dynamics, and nonlinear interaction demand Airy beam with high power, energy, and wavelength tunability. Till date, none of the Airy beam sources have all these features in a single device. Here, we report a new class of coherent sources based on cubic phase modulation of a singly-resonant optical parametric oscillator (OPO), producing high-power, continuous-wave (cw), tunable radiation in 2-D Airy intensity profile existing over a length >2 m. Based on a MgO-doped periodically poled LiNbO3 crystal pumped at 1064 nm, the Airy beam OPO produces output power more than 8 W, and wavelength tunability across 1.51–1.97 μm. This demonstration gives new direction for the development of sources of arbitrary structured beams at any wavelength, power, and energy in all time scales (cw to femtosecond). PMID:27143582

  12. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  13. Acoustic non-diffracting Airy beam

    SciTech Connect

    Lin, Zhou; Guo, Xiasheng Tu, Juan; Ma, Qingyu; Wu, Junru; Zhang, Dong

    2015-03-14

    The acoustic non-diffracting Airy beam as its optical counterpart has unique features of self-bending and self-healing. The complexity of most current designs handicaps its applications. A simple design of an acoustic source capable of generating multi-frequency and broad-band acoustic Airy beam has been theoretically demonstrated by numerical simulations. In the design, a piston transducer is corrugated to induce spatial phase variation for transducing the Airy function. The piston's surface is grooved in a pattern that the width of each groove corresponds to the half wavelength of Airy function. The resulted frequency characteristics and its dependence on the size of the piston source are also discussed. This simple design may promote the wide applications of acoustic Airy beam particularly in the field of medical ultrasound.

  14. Spatiotemporal dynamics of counterpropagating Airy beams

    NASA Astrophysics Data System (ADS)

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2015-08-01

    We analyse theoretically the spatiotemporal dynamics of two incoherent counterpropagating Airy beams interacting in a photorefractive crystal under focusing conditions. For a large enough nonlinearity strength the interaction between the two Airy beams leads to light-induced waveguiding. The stability of the waveguide is determined by the crystal length, the nonlinearity strength and the beam’s intensities and is improved when comparing to the situation using Gaussian beams. We further identify the threshold above which the waveguide is no longer static but evolves dynamically either time-periodically or even chaotically. Above the stability threshold, each Airy-soliton moves erratically between privileged output positions that correspond to the spatial positions of the lobes of the counterpropagating Airy beam. These results suggest new ways of creating dynamically varying waveguides, optical logic gates and chaos-based computing.

  15. Spatiotemporal dynamics of counterpropagating Airy beams

    PubMed Central

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2015-01-01

    We analyse theoretically the spatiotemporal dynamics of two incoherent counterpropagating Airy beams interacting in a photorefractive crystal under focusing conditions. For a large enough nonlinearity strength the interaction between the two Airy beams leads to light-induced waveguiding. The stability of the waveguide is determined by the crystal length, the nonlinearity strength and the beam’s intensities and is improved when comparing to the situation using Gaussian beams. We further identify the threshold above which the waveguide is no longer static but evolves dynamically either time-periodically or even chaotically. Above the stability threshold, each Airy-soliton moves erratically between privileged output positions that correspond to the spatial positions of the lobes of the counterpropagating Airy beam. These results suggest new ways of creating dynamically varying waveguides, optical logic gates and chaos-based computing. PMID:26315530

  16. Ultrafast Airy beam optical parametric oscillator.

    PubMed

    Apurv Chaitanya, N; Kumar, S Chaitanya; Aadhi, A; Samanta, G K; Ebrahim-Zadeh, M

    2016-01-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm.

  17. Ultrafast Airy beam optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.

    2016-08-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm.

  18. Ultrafast Airy beam optical parametric oscillator

    PubMed Central

    Apurv Chaitanya, N.; Kumar, S. Chaitanya; Aadhi, A.; Samanta, G. K.; Ebrahim-Zadeh, M.

    2016-01-01

    We report on the first realization of an ultrafast Airy beam optical parametric oscillator (OPO). By introducing intracavity cubic phase modulation to the resonant Gaussian signal in a synchronously-pumped singly-resonant OPO cavity and its subsequent Fourier transformation, we have generated 2-dimensional Airy beam in the output signal across a 250 nm tuning range in the near-infrared. The generated Airy beam can be tuned continuously from 1477 to 1727 nm, providing an average power of as much as 306 mW at 1632 nm in pulses of ~23 ps duration with a spectral bandwidth of 1.7 nm. PMID:27476910

  19. Temporal Airy pulses control cell poration

    NASA Astrophysics Data System (ADS)

    Courvoisier, S.; Götte, N.; Zielinski, B.; Winkler, T.; Sarpe, C.; Senftleben, A.; Bonacina, L.; Wolf, J. P.; Baumert, T.

    2016-07-01

    We show that spectral phase shaping of fs-laser pulses can be used to optimize laser-cell membrane interactions in water environment. The energy and peak intensity thresholds required for cell poration with single pulse in the nJ range can be significantly reduced (25% reduction in energy and 88% reduction in peak intensity) by using temporal Airy pulses, controlled by positive third order dispersion, as compared to bandwidth limited pulses. Temporal Airy pulses are also effective to control the morphology of the induced pores, with prospective applications from cellular to tissue opto-surgery and transfection.

  20. Full characterization of Airy beams under physical principles

    NASA Astrophysics Data System (ADS)

    Rogel-Salazar, J.; Jiménez-Romero, H. A.; Chávez-Cerda, S.

    2014-02-01

    The propagation characteristics of Airy beams is investigated and fully described under the traveling-wave approach analogous to that used for nondiffracting Bessel beams. This is possible when noticing that Airy functions are, in fact, Bessel functions of fractional order 1/3. We show how physical principles impose restrictions such that the nondiffracting Airy beams cannot be of infinite extent as has been argued and introduce quantitative expressions for the maximum transverse and longitudinal extent of Airy beams. We show that under the appropriate physical conditions it is possible to obtain higher-order Airy beams.

  1. Airy, Sir George Biddell (1801-92)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A brilliant Cambridge mathematician (Senior Wrangler 1823, i.e. leader of the graduating mathematics class), Airy became the seventh Astronomer Royal in 1835 after a brief period as Lucasian Professor at Cambridge. His output was prodigious, and he published nearly 400 scientific papers and 150 reports on various scientific issues, such as the gauge of railways, spectacles to correct astigmatism,...

  2. Airy acoustical-sheet spinner tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-09-01

    The Airy acoustical beam exhibits parabolic propagation and spatial acceleration, meaning that the propagation bending angle continuously increases before the beam trajectory reaches a critical angle where it decays after a propagation distance, without applying any external bending force. As such, it is of particular importance to investigate its properties from the standpoint of acoustical radiation force, spin torque, and particle dynamics theories, in the development of novel particle sorting techniques and acoustically mediated clearing systems. This work investigates these effects on a two-dimensional (2D) circular absorptive structure placed in the field of a nonparaxial Airy "acoustical-sheet" (i.e., finite beam in 2D), for potential applications in surface acoustic waves and acousto-fluidics. Based on the characteristics of the acoustic field, the beam is capable of manipulating the circular cylindrical fluid cross-section and guides it along a transverse or parabolic trajectory. This feature of Airy acoustical beams could lead to a unique characteristic in single-beam acoustical tweezers related to acoustical sieving, filtering, and removal of particles and cells from a section of a small channel. The analysis developed here is based on the description of the nonparaxial Airy beam using the angular spectrum decomposition of plane waves in close association with the partial-wave series expansion method in cylindrical coordinates. The numerical results demonstrate the ability of the nonparaxial Airy acoustical-sheet beam to pull, propel, or accelerate a particle along a parabolic trajectory, in addition to particle confinement in the transverse direction of wave propagation. Negative or positive radiation force and spin torque causing rotation in the clockwise or the anticlockwise direction can occur depending on the nondimensional parameter ka (where k is the wavenumber and a is the radius) and the location of the cylinder in the beam. Applications in

  3. Airy beam self-focusing in a photorefractive medium

    NASA Astrophysics Data System (ADS)

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2016-10-01

    The unique bending and shape-preserving properties of optical Airy beams offer a large range of applications in for example beam routing, optical waveguiding, particle manipulation and plasmonics. In these applications and others, the Airy beam may experience nonlinear light-matter interactions which in turn modify the Airy beam properties and propagation. A well-known example is light self-focusing that leads to the formation of spatial soliton. Here, we unveil experimentally the self-focusing properties of a 1D-Airy beam in a photorefractive crystal under focusing conditions. The transient evolution involves both self-bending and acceleration of the initially launched Airy beam due to the onset of an off-shooting soliton and the resulting nonlocal refractive index perturbation. Both the transient and stationary self-focusing properties can be tuned by varying the bias electric field, the injected Airy beam power and the background illumination.

  4. Airy beam self-focusing in a photorefractive medium

    PubMed Central

    Wiersma, Noémi; Marsal, Nicolas; Sciamanna, Marc; Wolfersberger, Delphine

    2016-01-01

    The unique bending and shape-preserving properties of optical Airy beams offer a large range of applications in for example beam routing, optical waveguiding, particle manipulation and plasmonics. In these applications and others, the Airy beam may experience nonlinear light-matter interactions which in turn modify the Airy beam properties and propagation. A well-known example is light self-focusing that leads to the formation of spatial soliton. Here, we unveil experimentally the self-focusing properties of a 1D-Airy beam in a photorefractive crystal under focusing conditions. The transient evolution involves both self-bending and acceleration of the initially launched Airy beam due to the onset of an off-shooting soliton and the resulting nonlocal refractive index perturbation. Both the transient and stationary self-focusing properties can be tuned by varying the bias electric field, the injected Airy beam power and the background illumination. PMID:27731356

  5. Nonclassicality of vortex Airy beams in the Wigner representation

    SciTech Connect

    Chen Ruipin; Ooi, C. H. Raymond

    2011-10-15

    The Wigner distribution function (WDF) of a vortex Airy beam is calculated analytically. The WDF provides intuitive pictures of the intriguing features of vorticity in phase space. The nonclassical property of the vortex Airy beam and the Airy beam is analyzed through the negative parts of the WDF. The study shows that destructive interference of certain classical waves can mimic nonclassical lights such as those due to quantum effects.

  6. Creating Airy beams employing a transmissive spatial light modulator

    NASA Astrophysics Data System (ADS)

    Latychevskaia, Tatiana; Schachtler, Daniel; Fink, Hans-Werner

    2016-08-01

    We present a detailed study of two novel methods for shaping the light optical wavefront by employing a transmissive spatial light modulator (SLM). Conventionally, optical Airy beams are created by employing SLMs in the so-called all phase mode. In the first method, a numerically simulated lens phase distribution is loaded directly onto the SLM, together with the cubic phase distribution. An Airy beam is generated at the focal plane of the numerical lens. We provide for the first time a quantitative properties of the formed Airy beam. We derive the formula for deflection of the intensity maximum of the so formed Airy beam, which is different to the quadratic deflection typical of Airy beams. We cross-validate the derived formula by both simulations and experiment. The second method is based on the fact that a system consisting of a transmissive SLM sandwiched between two polarisers can create a transmission function with negative values. This observation alone has the potential for various other wavefront modulations where the transmission function requires negative values. As an example for this method, we demonstrate that a wavefront can be modulated by passing the SLM system with transmission function with negative values by loading an Airy function distribution directly onto SLM. Since the Airy function is a real-valued function but also with negative values, an Airy beam can be generated by direct transfer of the Airy function distribution onto such an SLM system. In this way, an Airy beam is generated immediately behind the SLM. As both new methods do not employ a physical lens, the two setups are more compact than conventional setups for creating Airy beams. We compare the performance of the two novel methods and the properties of the created Airy beams.

  7. Propagation of Bessel and Airy beams through atmospheric turbulence.

    PubMed

    Nelson, W; Palastro, J P; Davis, C C; Sprangle, P

    2014-03-01

    We investigate, through simulation, the modifications to Bessel and Airy beams during propagation through atmospheric turbulence. We find that atmospheric turbulence disrupts the quasi-non-diffracting nature of Bessel and Airy beams when the transverse coherence length (Fried parameter) nears the initial aperture diameter or diagonal, respectively. The turbulence-induced transverse phase distortion limits the effectiveness of Bessel and Airy beams for applications requiring propagation over long distances in the turbulent atmosphere.

  8. Creating Airy beams employing a transmissive spatial light modulator.

    PubMed

    Latychevskaia, Tatiana; Schachtler, Daniel; Fink, Hans-Werner

    2016-08-01

    We present a detailed study of two novel methods for shaping the light optical wavefront by employing a transmissive spatial light modulator (SLM). Conventionally, optical Airy beams are created by employing SLMs in the so-called all-phase mode. In the first method, a numerically simulated lens phase distribution is loaded directly onto the SLM, together with the cubic phase distribution. An Airy beam is generated at the focal plane of the numerical lens. We provide for the first time, to the best of our knowledge, quantitative properties of the formed Airy beam. We derive the formula for deflection of the intensity maximum of the so-formed Airy beam, which is different from the quadratic deflection typical of Airy beams. We cross-validate the derived formula by both simulations and experiment. The second method is based on the fact that a system consisting of a transmissive SLM sandwiched between two polarizers can create a transmission function with negative values. This observation alone has the potential for various other wavefront modulations where the transmission function requires negative values. As an example for this method, we demonstrate that a wavefront can be modulated by passing the SLM system with transmission function with negative values by loading an Airy function distribution directly onto the SLM. Since the Airy function is a real-valued function but also with negative values, an Airy beam can be generated by direct transfer of the Airy function distribution onto such an SLM system. In this way, an Airy beam is generated immediately behind the SLM. As both new methods do not employ a physical lens, the two setups are more compact than conventional setups for creating Airy beams. We compare the performance of the two novel methods and the properties of the created Airy beams. PMID:27505393

  9. Accelerating Airy-Gauss-Kummer localized wave packets

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi; Huang, Tingwen

    2014-01-01

    A general approach to generating three-dimensional nondiffracting spatiotemporal solutions of the linear Schrödinger equation with an Airy-beam time-dependence is reported. A class of accelerating optical pulses with the structure of Airy-Gauss-Kummer vortex beams is obtained. Our results demonstrate that the optical field contributions to the Airy-Gauss-Kummer accelerating optical wave packets of the cylindrical symmetry can be characterized by the radial and angular mode numbers.

  10. Autobiography of Sir George Biddell Airy

    NASA Astrophysics Data System (ADS)

    Airy, George Biddell; Airy, Wilfred

    2010-06-01

    Preface; 1. Personal sketch of George Biddell Airy; 2. From his birth to his taking his B.A. degree; 3. At Trinity College, Cambridge; 4. At Cambridge Observatory; 5. At Greenwich Observatory, 1836-1846; 6. At Greenwich Observatory, 1846-1856; 7. At Greenwich Observatory, 1856-1866; 8. At Greenwich Observatory, 1866-1876; 9. At Greenwich Observatory to his resignation in 1881; 10. At the White House, Greewich, to his death; Appendix: List of printed papers; Index.

  11. Spinning of a submicron sphere by Airy beams.

    PubMed

    Kim, Kyoung-Youm; Kim, Saehwa

    2016-01-01

    We show that by employing two incoherent counter-propagating Airy beams, we can manipulate a submicron sphere to spin around a transverse axis. We can control not only the spinning speed, but also the direction of the spinning axis by changing the polarization directions of Airy beams.

  12. Propagation Dynamics of Airy Water-Wave Pulses.

    PubMed

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-07-17

    We observe the propagation dynamics of surface gravity water waves, having an Airy function envelope, in both the linear and the nonlinear regimes. In the linear regime, the shape of the envelope is preserved while propagating in an 18-m water tank, despite the inherent dispersion of the wave packet. The Airy wave function can propagate at a velocity that is slower (or faster if the Airy envelope is inverted) than the group velocity. Furthermore, the introduction of the Airy wave packet as surface water waves enables the observation of its position-dependent chirp and cubic-phase offset, predicted more than 35 years ago, for the first time. When increasing the envelope of the input Airy pulse, nonlinear effects become dominant, and are manifested by the generation of water-wave solitons. PMID:26230797

  13. Accelerated and Airy-Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2016-09-01

    A quantum particle subjected to a constant force undergoes an accelerated motion following a parabolic path, which differs from the classical motion just because of wave packet spreading (quantum diffusion). However, when a periodic potential is added (such as in a crystal) the particle undergoes Bragg scattering and an oscillatory (rather than accelerated) motion is found, corresponding to the famous Bloch oscillations (BOs). Here, we introduce an exactly-solvable quantum Hamiltonian model, corresponding to a generalized Wannier-Stark Hamiltonian Ĥ, in which a quantum particle shows an intermediate dynamical behavior, namely an oscillatory motion superimposed to an accelerated one. Such a novel dynamical behavior is referred to as accelerated BOs. Analytical expressions of the spectrum, improper eigenfunctions and propagator of the generalized Wannier-Stark Hamiltonian Ĥ are derived. Finally, it is shown that acceleration and quantum diffusion in the generalized Wannier-Stark Hamiltonian are prevented for Airy wave packets, which undergo a periodic breathing dynamics that can be referred to as Airy-Bloch oscillations.

  14. Rainbows: Mie computations and the Airy approximation.

    PubMed

    Wang, R T; van de Hulst, H C

    1991-01-01

    Efficient and accurate computation of the scattered intensity pattern by the Mie formulas is now feasible for size parameters up to x = 50,000 at least, which in visual light means spherical drops with diameters up to 6 mm. We present a method for evaluating the Mie coefficients from the ratios between Riccati-Bessel and Neumann functions of successive order. We probe the applicability of the Airy approximation, which we generalize to rainbows of arbitrary p (number of internal reflections = p - 1), by comparing the Mie and Airy intensity patterns. Millimeter size water drops show a match in all details, including the position and intensity of the supernumerary maxima and the polarization. A fairly good match is still seen for drops of 0.1 mm. A small spread in sizes helps to smooth out irrelevant detail. The dark band between the rainbows is used to test more subtle features. We conclude that this band contains not only externally reflected light (p = 0) but also a sizable contribution f rom the p = 6 and p = 7 rainbows, which shift rapidly with wavelength. The higher the refractive index, the closer both theories agree on the first primary rainbow (p = 2) peak for drop diameters as small as 0.02 mm. This may be useful in supporting experimental work. PMID:20581954

  15. Airy structure in 16O+14C nuclear rainbow scattering

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.

    2015-08-01

    The Airy structure in 16 O +14 C rainbow scattering is studied with an extended double-folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic realistic wave functions for 16 O by using a density-dependent nucleon-nucleon force. The experimental angular distributions at EL=132 , 281, and 382.2 MeV are well reproduced by the calculations. By studying the energy evolution of the Airy structure, the Airy minimum around θ =76∘ in the angular distribution at EL=132 MeV is assigned as the second-order Airy minimum A 2 in contrast to the recent literature which assigns it as the third order A 3 . The Airy minima in the 90∘ excitation function is investigated in comparison with well-known 16 O +16 O and 12 C +12 C systems. Evolution of the Airy structure into the molecular resonances with the 16 O +14 C cluster structure in the low-energy region around Ec .m .=30 MeV is discussed. It is predicted theoretically for the first time for a non-4 N 16O +14 C system that Airy elephants in the 90∘ excitation function are present.

  16. Accelerating Airy beams in the presence of inhomogeneities

    NASA Astrophysics Data System (ADS)

    Besieris, Ioannis M.; Shaarawi, Amr M.; Zamboni-Rached, Michel

    2016-06-01

    Studies have already been made of accelerating Airy beams in the presence of deterministic inhomogeneities, illustrating, in particular, that the inherent self-healing properties of such beams are preserved. The cases of a range-dependent linear transverse potential and a converging GRIN structure (harmonic oscillator) have been examined thoroughly. Examples will be given in this article of novel accelerating Airy beams in the presence of five other types of potential functions. Three of the resulting exact analytical solutions have a common salient characteristic property: they are constructed using the free-space accelerating Airy beam solution as a seed.

  17. Controllable Airy-like beams induced by tunable phase patterns

    NASA Astrophysics Data System (ADS)

    Li, D.; Qian, Y.

    2016-01-01

    We propose and experimentally observe a novel family of Airy-like beams. First, we theoretically investigate the physical generation of our proposed controllable Airy-like beams by introducing a rotation angle factor into the phase function, which can regulate and flexibly control the beam wavefront. Meanwhile we can also readily control the main lobes of these beams to follow appointed parabolic trajectories using the rotation angle factor. We also demonstrate that the controllable Airy-like beams lack the properties of being diffraction-free and self-healing. The experiments are performed and the results are in accord with the theoretical simulations. We believe that the intriguing characteristics of our proposed Airy-like beams could provide more degrees of freedom, and are likely to give rise to new applications and lend versatility to the emerging field.

  18. Continuum Statistics of the Airy2 Process

    NASA Astrophysics Data System (ADS)

    Corwin, Ivan; Quastel, Jeremy; Remenik, Daniel

    2013-01-01

    We develop an exact determinantal formula for the probability that the Airy_2 process is bounded by a function g on a finite interval. As an application, we provide a direct proof that {sup({A}2(x)-x^2)} is distributed as a GOE random variable. Both the continuum formula and the GOE result have applications in the study of the end point of an unconstrained directed polymer in a disordered environment. We explain Johansson's (Commun. Math. Phys. 242(1-2):277-329, 2003) observation that the GOE result follows from this polymer interpretation and exact results within that field. In a companion paper (Moreno Flores et al. in Commun. Math. Phys. 2012) these continuum statistics are used to compute the distribution of the endpoint of directed polymers.

  19. AiryÕs Greenwich Staff

    NASA Astrophysics Data System (ADS)

    Chapman, A.

    2012-01-01

    One major research development in the history of astronomy, pioneered in particular by the SHA, is a shift from the concern with what the ÔgiantsÕ, such as Galileo or Newton, achieved to an examination of the wider spectrum of astronomical personnel. And one rich field of inquiry here is that body of men, and later of women, who earned their livings as assistant astronomers. It is, in fact, an abundantly documented area, including figures employed in Grand Amateur, university, and civic observatories, though without doubt the richest and longest-running body of data pertaining to what might be called the ÔAstronomersÕ GentlemenÕ comes from the archives of the Royal Observatory, Greenwich, especially for the years 1835 to 1881, when Sir George Biddell Airy was Astronomer Royal.

  20. Generation and propagation dynamics of Airy beam with the tunable tail

    NASA Astrophysics Data System (ADS)

    Liu, Huilong; Lü, Yanfei; Xia, Jing; Pu, Xiaoyun; Zhang, Li

    2016-05-01

    We introduce a new kind of Airy beam called Airy beam with the tunable tail, which can be generated from the elliptical flat-topped Gaussian beam. The analytical formula of Airy beam with the tunable tail is derived. Airy beam with the single tail can be obtained by adjusting the ration of the beam width of elliptical flat-topped Gaussian beam. The tail length of Airy beam can be controlled by the order N of incident beam. The normalized intensity distributions of Airy beam with the tunable tail propagating in free space are studied, and the propagation dynamics of Airy beam with the single tail are investigated. Compared with the Airy beam generated from the fundamental Gaussian beam or the flat-topped Gaussian beam, some interesting and useful information has been found.

  1. Vessel extraction using the Buckmaster-Airy filter

    NASA Astrophysics Data System (ADS)

    Sanchez, Valentina

    2016-05-01

    A new and powerful technique for vessel extraction from biomedical images using the so called Buckmaster- Airy Filter is designed, prototyped and tested. The design, the prototyping and the testing were performed using computer algebra software, specifically the Maple package ImageTools. Some preliminary experiments were performed ant the results were excellent. Our new technique is based on partial differential equations.. Specifically two dimensional Airy diffusion equation and the two dimensional Buckmaster equation were used for designing the new Buckmaster-Airy Filter. Such new filter is able to enhance the quality of an image, producing simultaneously noise elimination, but without altering the edges of the image. The new Bukmaster-Airy filter is applied to the target image via discrete convolution. The results of some experiments of vessel extraction will be presented; and some lines for future research such as the possible implementation of the Buckmaster-Airy Filter as a new plugging for the program ImageJ, will be proposed.

  2. Propagation of an Airy beam through the atmosphere.

    PubMed

    Ji, Xiaoling; Eyyuboğlu, Halil T; Ji, Guangming; Jia, Xinhong

    2013-01-28

    In this paper, the effect of thermal blooming of an Airy beam propagating through the atmosphere is examined, and the effect of atmospheric turbulence is not considered. The changes of the intensity distribution, the centroid position and the mean-squared beam width of an Airy beam propagating through the atmosphere are studied by using the four-dimensional (4D) computer code of the time-dependent propagation of Airy beams through the atmosphere. It is shown that an Airy beam can't retain its shape and the structure when the Airy beam propagates through the atmosphere due to thermal blooming except for the short propagation distance, or the short time, or the low beam power. The thermal blooming results in a central dip of the center lobe, and causes the center lobe to spread and decrease. In contrast with the center lobe, the side lobes are less affected by thermal blooming, such that the intensity maximum of the side lobe may be larger than that of the center lobe. However, the cross wind can reduce the effect of thermal blooming. When there exists the cross wind velocity vx in x direction, the dependence of centroid position in x direction on vx is not monotonic, and there exists a minimum, but the centroid position in y direction is nearly independent of vx.

  3. Improved Intrapulse Raman Scattering Control via Asymmetric Airy Pulses

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Tehranchi, Amirhossein; Wabnitz, Stefan; Kashyap, Raman; Chen, Zhigang; Morandotti, Roberto

    2015-02-01

    We experimentally demonstrate the possibility of tuning the frequency of a laser pulse via the use of an Airy pulse-seeded soliton self-frequency shift. The intrinsically asymmetric nature of Airy pulses, typically featured by either leading or trailing oscillatory tails (relatively to the main lobe), is revealed through the nonlinear generation of both a primary and a secondary Raman soliton self-frequency shift, a phenomenon which is driven by the soliton fission processes. The resulting frequency shift can be carefully controlled by using time-reversed Airy pulses or, alternatively, by applying an offset to the cubic phase modulation used to generate the pulses. When compared with the use of conventional chirped Gaussian pulses, our technique brings about unique advantages in terms of both efficient frequency tuning and feasibility, along with the generation and control of multicolor Raman solitons with enhanced tunability. Our theoretical analysis agrees well with our experimental observations.

  4. Optical trapping and manipulation of Mie particles with Airy beam

    NASA Astrophysics Data System (ADS)

    Zhao, Ziyu; Zang, Weiping; Tian, Jianguo

    2016-02-01

    In this paper we calculate the radiation forces and moving trajectories of Mie particles induced by 1D Airy beams using the plane wave spectrum method and arbitrary beam theory. Numerical results show that both the transverse and the longitudinal radiation forces are deeply dependent on the relative refractive index, radii and positions of the scattering particles illuminated by the Airy beam. Due to the radiation forces, Mie particles with different radii and initial positions can be dragged into the nearest main intensity lobes, and move along parabolic trajectories in the direction of the Poynting vector. At the ends of these trajectories, in the presence of Brownian force, the trapped scattering particles show irregular Brownian movement near their equilibrium positions. This characteristic property of Airy beams enables optical sorting to be used more easily in the colloidal and biological sciences.

  5. Airy-Kaup-Kupershmidt filters applied to digital image processing

    NASA Astrophysics Data System (ADS)

    Hoyos Yepes, Laura Cristina

    2015-09-01

    The Kaup-Kupershmidt operator is applied to the two-dimensional solution of the Airy-diffusion equation and the resulting filter is applied via convolution to image processing. The full procedure is implemented using Maple code with the package ImageTools. Some experiments were performed using a wide category of images including biomedical images generated by magnetic resonance, computarized axial tomography, positron emission tomography, infrared and photon diffusion. The Airy-Kaup-Kupershmidt filter can be used as a powerful edge detector and as powerful enhancement tool in image processing. It is expected that the Airy-Kaup-Kupershmidt could be incorporated in standard programs for image processing such as ImageJ.

  6. Super-resolution imaging based on virtual Airy spot

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Guo, Cheng; Cui, Junning; Wu, Qun

    2015-02-01

    Based on the theoretical model of Airy spot, a method is proposed for improving the imaging speed from confocal microscopy. The virtual Airy spot is designed for obtaining the pattern on CCD at detecting plane. Here the size of the spot is determined by the parameters of imaging system and intensity data from point detector, which can receive data quicker than CCD. The treatment can improve the speed of imaging comparing with CCD at receiving end. The virtual structured detection is also utilized for generating high-resolution image. Some numerical simulation results are provided for demonstrating the validity of the proposed method.

  7. Annular arrayed-waveguide fiber for autofocusing Airy-like beams.

    PubMed

    Deng, Hongchang; Yuan, Yonggui; Yuan, Libo

    2016-02-15

    We propose and theoretically demonstrate a novel optical fiber with an annular arrayed-waveguide to implement Airy phase and amplitude modulation, and generate an abruptly autofocusing circular Airy beam. The properties of wave propagation in Airy fiber and free space are studied by using the coupled-mode theory and angular spectrum method. The calculated results show that the output beam from such a fiber has a circular Airy-like pattern and can autofocus with the intensity maxima following a parabolic trajectory. We also show that the position of the focus point of the output beam from the Airy fiber can be easily controlled by changing input wavelength.

  8. Photorefractive and computational holography in the experimental generation of Airy beams

    NASA Astrophysics Data System (ADS)

    Suarez, Rafael A. B.; Vieira, Tarcio A.; Yepes, Indira S. V.; Gesualdi, Marcos R. R.

    2016-05-01

    In this paper, we present the experimental generation of Airy beams via computational and photorefractive holography. Experimental generation of Airy beams using conventional optical components presents several difficulties and a practically infeasible. Thus, the optical generation of Airy beams has been made from the optical reconstruction of a computer generated hologram implemented by a spatial light modulator. In the photorefractive holography technique, being used for the first time to our knowledge, the hologram of an Airy beam is constructed (recorded) and reconstructed (read) optically in a nonlinear photorefractive medium. The Airy beam experimental realization was made by a setup of computational and photorefractive holography using a photorefractive Bi12 TiO20 crystal as holographic recording medium. Airy beams and Airy beam arrays were obtained experimentally in accordance with the predicted theory; with excellent prospects for applications in optical trapping and optical communications systems.

  9. Non-diffracting super-airy beam with intensified main lobe

    NASA Astrophysics Data System (ADS)

    Singh, Brijesh Kumar; Remez, Roei; Tsur, Yuval; Arie, Ady

    2016-04-01

    We study, theoretically and experimentally, the concept of non-diffracting super-Airy beam, where the main lobe of the beam is observed to be nearly half in size and with increased intensity compared to the main lobe of the Airy beam. However, reducing the main lobe size does not affect the transverse acceleration and non-spreading features of the beam. Furthermore, we observed that during propagation, super Airy main lobe shows faster self-reconstruction after an obstruction than the Airy main lobe. Therefore, we envision that specifically, a beam with a smaller lobe size and higher intensity can out-perform the Airy beam for applications such as nonlinear optics, curved plasma generation, laser micromachining, and micro- particle manipulation, while the faster reconstruction property of the super-Airy main lobe can surpass the Airy beam in applications of scattering and turbulent media.

  10. Repositioning and steering laser beam power via coherent combination of multiple Airy beams.

    PubMed

    Zhang, Ze; Ye, Zhuoyi; Song, Daohong; Zhang, Peng; Chen, Zhigang

    2013-12-10

    We study numerically and experimentally laser coherent combination (LCC) with multiple one- or two-dimensional Airy beams. It is shown that the method of LCC using Airy beams leads to a higher combining efficiency and a better feature of propagation than that using conventional Gaussian beams. Based on such coherent Airy beams combination, we propose a laser steering approach that could achieve large-angle beam steering (over 0.6°) without the need of using any mechanical steering component.

  11. Propagation of Airy Gaussian vortex beams in uniaxial crystals

    NASA Astrophysics Data System (ADS)

    Weihao, Yu; Ruihuang, Zhao; Fu, Deng; Jiayao, Huang; Chidao, Chen; Xiangbo, Yang; Yanping, Zhao; Dongmei, Deng

    2016-04-01

    The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108, 11374107, 10904041, and 11547212), the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province, China, the CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, the National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 2015093), and the Science and Technology Projects of Guangdong Province, China (Grant No. 2013B031800011).

  12. Multi-focus of modulated polarized Airy beam

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyang; Lin, Jie; Tan, Jiubin; Jin, Peng

    2016-07-01

    The focusing performance of a modulated polarized Airy beam is explored by using the Richards and Wolf vectorial diffraction model in a high numerical aperture system. The multiple foca appeared on the focal plane or along the optical axis when a complex amplitude modulating function was introduced. Two focusing spots with long-focal-depth were additionally observed due to the Airy beam and complex amplitude modulation. The distance between the focuses were changed from 1.15λ to 3.56λ with FWHM of 0.9λ for one-dimensional linear polarized incident beam and from 1.15λ to 3.64λ for two-dimensional beam. The multiple focusing spots are expected to apply in the field of optical trapping and particle acceleration.

  13. Propagation of Airy Gaussian vortex beams in uniaxial crystals

    NASA Astrophysics Data System (ADS)

    Weihao, Yu; Ruihuang, Zhao; Fu, Deng; Jiayao, Huang; Chidao, Chen; Xiangbo, Yang; Yanping, Zhao; Dongmei, Deng

    2016-04-01

    The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108, 11374107, 10904041, and 11547212), the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province, China, the CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, the National Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. 2015093), and the Science and Technology Projects of Guangdong Province, China (Grant No. 2013B031800011).

  14. Interaction of Airy-Gaussian beams in saturable media

    NASA Astrophysics Data System (ADS)

    Zhou, Meiling; Peng, Yulian; Chen, Chidao; Chen, Bo; Peng, Xi; Deng, Dongmei

    2016-08-01

    Based on the nonlinear Schrödinger equation, the interactions of the two Airy-Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy-Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy-Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374108 and 10904041), the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation (Grant No. SYBZZXM201227), and the Foundation of Cultivating Outstanding Young Scholars (“Thousand, Hundred, Ten” Program) of Guangdong Province, China. CAS Key Laboratory of Geospace Environment, University of Science and Technology of China.

  15. Slow-light Airy wave packets and their active control via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Hang, Chao; Huang, Guoxiang

    2013-07-01

    We propose a scheme to generate (3+1)-dimensional slow-light Airy wave packets in a resonant Λ-type three-level atomic gas via electromagnetically induced transparency. We show that in the absence of dispersion the Airy wave packets formed by a probe field consist of two Airy wave packets accelerated in transverse directions and a longitudinal Gaussian pulse with a constant propagating velocity lowered to 10-5c (c is the light speed in vacuum). We also show that in the presence of dispersion it is possible to generate another type of slow-light Airy wave packet consisting of two Airy beams in transverse directions and an Airy wave packet in the longitudinal direction. In this case, the longitudinal velocity of the Airy wave packet can be further reduced during propagation. Additionally, we further show that the transverse accelerations (or bending) of the both types of slow-light Airy wave packets can be completely eliminated and the motional trajectories of them can be actively manipulated and controlled by using a Stern-Gerlach gradient magnetic field.

  16. Nonlinear evolution of Airy-like beams generated by modulated waveguide arrays.

    PubMed

    Cao, Zheng; Tan, Qinggui; Li, Xiaojun; Qi, Xinyuan

    2016-08-20

    We numerically study the formation of modulated waveguide generated Airy-like beams and their subsequent evolution in homogeneous medium. The results show that the Airy-like beams could be generated from narrow Gaussian beams propagating in one-dimensional transverse separation modulated unbent, cosine bent, or logarithm bent waveguide arrays, respectively. The waveguide-generated Airy-like beams maintain their characteristics when propagating without nonlinearity or under the self-defocusing nonlinearity in homogeneous medium, while the beams are distorted under the self-focusing nonlinearity. The deformation depends on the waveguide bending and the outgoing angles of the Airy-like beams. Our results provide a new way to generate and manipulate the Airy-like beam.

  17. Impacts of cross-phase modulation on modulation instability of Airy pulses

    NASA Astrophysics Data System (ADS)

    Cheng, Yingkai; Fu, Xiquan; Bai, Yanfeng

    2016-10-01

    The modulation instability (MI) of Airy pulses with the influence of cross-phase modulation is studied based on the coupled nonlinear Schrödinger equations in nonlinear media. The main lobe of Airy pulses can be manifested as breakup of MI under interaction with higher power pumped solitons, although the power of Airy pulses is small. By comparing the main lobe's gain spectrum of MI, the gain spectrum has gradually improved with the increase of power of pumped solitons. The gain spectrum of MI of the main lobe is inversely proportional to the truncation coefficient, and then it gradually approaches to that of Gauss pulses with the truncation coefficient increasing to 1. For the side lobes of Airy pulses, there are similar MI but smaller gain spectrum than the main lobe when the pumped solitons is overlapping with corresponding ones of Airy pulses.

  18. Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path.

    PubMed

    Yin, Xia; Zhang, Licheng

    2016-07-01

    Polarization of light has many applications in quantum information processing, including quantum teleportation and dense coding. In this paper, we investigate the polarization fluctuations of Airy beams propagating in a slant turbulent channel under the "few-photon" limit. Using the quantum Stokes parameters and the quantum degree of polarization, we demonstrate that the degree of polarization of Airy beams increases significantly with the large number of the detection photons, and a higher photon-number level can retain the stability of polarization. Numerical simulations show that the longer propagation distance and the stronger turbulence will lead to less oscillatory behaviors and a decrease in the polarization degree of Airy beams, but a bigger exponential truncation factor will cause an increase in the polarization degree of Airy beams. In contrast with Gaussian beams, the degree of polarization of Airy beams is less affected by atmospheric turbulence and propagation distance under the same conditions, which means that Airy beams possess a resilient ability against turbulence-induced perturbations. These results indicate that Airy beams have great potential for applications in long-distance free-space optical communications to improve the performance of a polarization-encoded free-space quantum communication system.

  19. Quantum polarization fluctuations of an Airy beam in turbulent atmosphere in a slant path.

    PubMed

    Yin, Xia; Zhang, Licheng

    2016-07-01

    Polarization of light has many applications in quantum information processing, including quantum teleportation and dense coding. In this paper, we investigate the polarization fluctuations of Airy beams propagating in a slant turbulent channel under the "few-photon" limit. Using the quantum Stokes parameters and the quantum degree of polarization, we demonstrate that the degree of polarization of Airy beams increases significantly with the large number of the detection photons, and a higher photon-number level can retain the stability of polarization. Numerical simulations show that the longer propagation distance and the stronger turbulence will lead to less oscillatory behaviors and a decrease in the polarization degree of Airy beams, but a bigger exponential truncation factor will cause an increase in the polarization degree of Airy beams. In contrast with Gaussian beams, the degree of polarization of Airy beams is less affected by atmospheric turbulence and propagation distance under the same conditions, which means that Airy beams possess a resilient ability against turbulence-induced perturbations. These results indicate that Airy beams have great potential for applications in long-distance free-space optical communications to improve the performance of a polarization-encoded free-space quantum communication system. PMID:27409692

  20. Control on the anomalous interactions of Airy beams in nematic liquid crystals.

    PubMed

    Shen, Ming; Li, Wei; Lee, Ray-Kuang

    2016-04-18

    We reveal a controllable manipulation of anomalous interactions between Airy beams in nonlocal nematic liquid crystals numerically. With the help of an in-phase fundamental Gaussian beam, attraction between in-phase Airy beams can be suppressed or become a repulsive one to each other; whereas the attraction can be strengthened when the Gaussian beam is out-of-phase. In contrast to the repulsive interaction in local media, stationary bound states of breathing Airy soliton pairs are found in nematic liquid crystals.

  1. Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam

    SciTech Connect

    Wen, Wei; Chu, Xiuxiang

    2015-09-15

    The self-healing ability during propagation process is one of the most important properties of non-diffracting beams. This ability has crucial advantages to light sheet-based microscopy to reduce scattering artefacts, increase the quality of the image and enhance the resolution of microscopy. Based on similarity between two infinite-dimensional complex vectors in Hilbert space, the ability to a Bessel–Gaussian beam and an Airy beam have been studied and compared. Comparing the evolution of the similarity of Bessel–Gaussian beam with Airy beam under the same conditions, we find that Bessel–Gaussian beam has stronger self-healing ability and is more stable than that of Airy beam. To confirm this result, the intensity profiles of Bessel–Gaussian beam and Airy beam with different similarities are numerically calculated and compared.

  2. Numerical evaluation of the incomplete airy functions and their application to high frequency scattering and diffraction

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1992-01-01

    The incomplete Airy integrals serve as canonical functions for the uniform ray optical solutions to several high frequency scattering and diffraction problems that involve a class of integrals characterized by two stationary points that are arbitrarily close to one another or to an integration endpoint. Integrals of such analytical properties describe transition region phenomena associated with composite shadow boundaries. An efficient and accurate method for computing the incomplete Airy functions would make the solutions to such problems useful for engineering purposes. Here, a convergent series solution form for the incomplete Airy functions is derived. Asymptotic expansions involving several terms were also developed and serve as large argument approximations. The combination of the series solution form with the asymptotic formulae provides for an efficient and accurate computation of the incomplete Airy functions. Validation of accuracy is accomplished using direct numerical integration data.

  3. AIRY: a complete tool for the simulation and the reconstruction of astronomical images

    NASA Astrophysics Data System (ADS)

    La Camera, Andrea; Carbillet, Marcel; Olivieri, Chiara; Boccacci, Patrizia; Bertero, Mario

    2012-07-01

    The Software Package AIRY (acronym for Astronomical Image Restoration in interferometrY) is a software tool designed to perform simulation and/or deconvolution of images of Fizeau interferometers as well as of any kind of optical telescopes. AIRY is written in IDL and is a Software Package of the CADS Problem Solving Environment (PSE): it is made of a set of modules, each one representing a specific task. We present here the last version of the software, arrived at its sixth release after 10 years of development. This version of AIRY summarizes the work done in recent years by our group, both on AIRY and on AIRY-LN, the version of the software dedicated to the image restoration of LINC-NIRVANA (LN), the Fizeau interferometer of the Large Binocular Telescope (LBT). AIRY v.6.0 includes a renewed deconvolution module implementing regularizations, accelerations, and stopping criteria of standard algorithms, such as OSEM and Richardson-Lucy. Several modules of AIRY have been improved and, in particular, the one used for the extraction and extrapolatioThe Software Package AIRY (acronym for Astronomical Image Restoration in interferometrY) is a software tool designed to perform simulation and/or deconvolution of images of Fizeau interferometers as well as of any kind of optical telescopes. AIRY is written in IDL and is a Software Package of the CAOS Problem Solving Environment (PSE): it is made of a set of modules, each one representing a speci_c task. We present here the last version of the software, arrived at its sixth release after 10 years of development. This version of AIRY summarizes the work done in recent years by our group, both on AIRY and on AIRY-LN, the version of the software dedicated to the image restoration of LINC-NIRVANA (LN), the Fizeau interferometer of the Large Binocular Telescope (LBT). AIRY v.6.0 includes a renewed deconvolution module implementing regularizations, accelerations, and stopping criteria of standard algorithms, such as OSEM and

  4. Periodic inversion and phase transition of finite energy Airy beams in a medium with parabolic potential.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Zhang, Lei; Zhong, Weiping; Zhu, Dayu; Wang, Ruimin; Zhang, Yanpeng

    2015-04-20

    We study periodic inversion and phase transition of normal, displaced, and chirped finite energy Airy beams propagating in a parabolic potential. This propagation leads to an unusual oscillation: for half of the oscillation period the Airy beam accelerates in one transverse direction, with the main Airy beam lobe leading the train of pulses, whereas in the other half of the period it accelerates in the opposite direction, with the main lobe still leading - but now the whole beam is inverted. The inversion happens at a critical point, at which the beam profile changes from an Airy profile to a Gaussian one. Thus, there are two distinct phases in the propagation of an Airy beam in the parabolic potential - the normal Airy and the single-peak Gaussian phase. The length of the single-peak phase is determined by the size of the decay parameter: the smaller the decay, the smaller the length. A linear chirp introduces a transverse displacement of the beam at the phase transition point, but does not change the location of the point. A quadratic chirp moves the phase transition point, but does not affect the beam profile. The two-dimensional case is discussed briefly, being equivalent to a product of two one-dimensional cases.

  5. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask

    NASA Astrophysics Data System (ADS)

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-12-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories.

  6. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask.

    PubMed

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-01-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories. PMID:26626737

  7. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask

    PubMed Central

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-01-01

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories. PMID:26626737

  8. Polarization-controllable Airy beams generated via a photoaligned director-variant liquid crystal mask.

    PubMed

    Wei, Bing-Yan; Chen, Peng; Hu, Wei; Ji, Wei; Zheng, Li-Yang; Ge, Shi-Jun; Ming, Yang; Chigrinov, Vladimir; Lu, Yan-Qing

    2015-12-02

    Researches on Airy beams have grown explosively since the first demonstration in 2007 due to the distinguishing properties of nondiffraction, transverse acceleration and self-healing. To date, a simple and compact approach for generating Airy beams in high quality and efficiency has remained challenging. Here, we propose and demonstrate a liquid crystal (LC) polarization Airy mask (PAM) featured by spatially variant LC azimuthal director. The PAM is fabricated through photoaligning LC via a polarization-sensitive alignment agent suophonic azo dye SD1. Thanks to the special design, a novel feature of polarization-controllable switch between dual Airy beams of orthogonal circular polarization is presented. The molecular-level continuity of LC director significantly improves the quality and efficiency of resultant Airy beams. Besides, the PAM can handle intense light due to the absence of absorptive electrodes. Additional merits of compact size, low cost and broad wavelength tolerance are also exhibited. This work settles a fundamental requirement for Airy beam applications of optical manipulations, biology science and even some uncharted territories.

  9. Enhanced and unusual angle-dependent optical forces exerted on Mie particles by Airy surface plasmon wave

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Xue, Yanli; Li, Jiafang; Li, Zhi-Yuan

    2016-08-01

    In this paper, using an angular spectrum method, we develop an analytical theory for Airy surface plasmon wave excited in a classical Kretschmann setup. It is found that the center of an Airy surface plasmon polariton (SPP) wave has a giant positive lateral shift, and the sidelobes move forward along the surface. The intensity of the Airy SPP wave is greatly enhanced, the corresponding optical forces can be enhanced by more than one order of magnitude. Importantly, we show that the sidelobes of the Airy SPP beam can lead to the splitting of optical force spectra with the variation of incident angle, which is accompanied by strong oscillations emerging at the optimal metal layer thickness. Moreover, the effects of multiple scatterings of the Airy SPP wave between the particle and the metal layer are also discussed. The theoretical analysis could open up new perspectives for the applications of Airy beam in optical manipulation and surface-enhanced Raman scattering.

  10. Spiral spectrum of Airy beams propagation through moderate-to-strong turbulence of maritime atmosphere.

    PubMed

    Zhu, Yun; Zhang, Yixin; Hu, Zhengda

    2016-05-16

    The spatial coherence radius in moderate-to-strong maritime turbulence is derived on the basis of the modified Rytov approximation. Models are developed to simulate the spiral spectrum of Airy beams propagating through moderate-to-strong maritime turbulence. In the moderate-to-strong irradiance fluctuation region, we analyze the effects of maritime turbulence on the spread of the spiral spectrum of Airy beams in a horizontal propagation path. Results indicate that the increment in the inner-scale significantly increases the received power. By contrast, the outer-scale elicits a negligible effect on the received power if the ratio of the inner-scale to the outer-scale is less than 0.01. The outer-scale affects the received power only if the ratio is greater than 0.01. The performance of a light source is essential for the received power of Airy beams carrying orbital angular momentum (OAM) through moderate-to-strong maritime turbulence. Airy beams with longer wavelengths, smaller OAM numbers, larger radii of the main ring, and smaller diameters of the circular aperture are less affected by maritime turbulence. Autofocusing of Airy beams is beneficial for the propagation of the spiral spectrum in a certain propagation distance. These results contribute to the design of optical communication systems with OAM encoding for moderate-to-strong maritime turbulence.

  11. Spiral spectrum of Airy beams propagation through moderate-to-strong turbulence of maritime atmosphere.

    PubMed

    Zhu, Yun; Zhang, Yixin; Hu, Zhengda

    2016-05-16

    The spatial coherence radius in moderate-to-strong maritime turbulence is derived on the basis of the modified Rytov approximation. Models are developed to simulate the spiral spectrum of Airy beams propagating through moderate-to-strong maritime turbulence. In the moderate-to-strong irradiance fluctuation region, we analyze the effects of maritime turbulence on the spread of the spiral spectrum of Airy beams in a horizontal propagation path. Results indicate that the increment in the inner-scale significantly increases the received power. By contrast, the outer-scale elicits a negligible effect on the received power if the ratio of the inner-scale to the outer-scale is less than 0.01. The outer-scale affects the received power only if the ratio is greater than 0.01. The performance of a light source is essential for the received power of Airy beams carrying orbital angular momentum (OAM) through moderate-to-strong maritime turbulence. Airy beams with longer wavelengths, smaller OAM numbers, larger radii of the main ring, and smaller diameters of the circular aperture are less affected by maritime turbulence. Autofocusing of Airy beams is beneficial for the propagation of the spiral spectrum in a certain propagation distance. These results contribute to the design of optical communication systems with OAM encoding for moderate-to-strong maritime turbulence. PMID:27409905

  12. Evolution of the ring Airy Gaussian beams with a spiral phase in the Kerr medium

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Chen, Chidao; Peng, Xi; Peng, Yulian; Zhou, Meiling; Deng, Dongmei; Guo, Hong

    2016-05-01

    Nonlinear optical phenomena are of great practical interest in optics. The evolution of ring Airy Gaussian beams with a spiral phase in the nonlinear Kerr medium is investigated using the nonlinear Schrödinger equation. Numerical simulations indicate that the distribution factor b can influence the formation of the ring Airy Gaussian beams. Results show that the beams can be oscillating, and the light filament can be achieved under appropriate laser input power. On the other hand, the evolution of the ring Airy Gaussian beams with a spiral phase in the nonlinear Kerr medium can be implemented, and the numerical simulations of the holographic generation of the ring Airy Gaussian vortex beams propagated in the medium demonstrate that the vortex can be preserved along the propagation. The Poynting vector shows that the energy flow of the ring Airy Gaussian beams flows in the opposite direction on both sides of the focus plane; however, for beams with a spiral phase, the flow direction remains the same; the energy flow can rotate in opposite directions on both sides of the focal plane.

  13. Optical Bloch oscillations of an Airy beam in a photonic lattice with a linear transverse index gradient.

    PubMed

    Xiao, Fajun; Li, Baoran; Wang, Meirong; Zhu, Weiren; Zhang, Peng; Liu, Sheng; Premaratne, Malin; Zhao, Jianlin

    2014-09-22

    We theoretically report the existence of optical Bloch oscillations (BO) of an Airy beam in a one-dimensional optically induced photonic lattice with a linear transverse index gradient. The Airy beam experiencing optical BO shows a more robust non-diffracting feature than its counterparts in free space or in a uniform photonic lattice. Interestingly, a periodical recurrence of Airy shape accompanied with constant alternation of its acceleration direction is also found during the BO. Furthermore, we demonstrate that the period and amplitude of BO of an Airy beam can be readily controlled over a wide range by varying the index gradient and/or the lattice period. Exploiting these features, we propose a scheme to rout an Airy beam to a predefined output channel without losing its characteristics by longitudinally modulating the transverse index gradient.

  14. Optical Bloch oscillations and Zener tunneling of Airy beams in ionic-type photonic lattices.

    PubMed

    Xiao, Fajun; Zhu, Weiren; Shang, Wuyun; Wang, Meirong; Zhang, Peng; Liu, Sheng; Premaratne, Malin; Zhao, Jianlin

    2016-08-01

    We report on the existence of optical Bloch oscillations (OBOs) and Zener tunneling (ZT) of Airy beams in ionic-type photonic lattices with a refractive index ramp. Different from their counterparts in uniform lattices, Airy beams undergoing OBOs show an alternatively switched concave and convex trajectory as well as a periodical revival of input beam profiles. Moreover, the ionic-type photonic lattice established in photorefractive crystal exhibits a reconfigurable lattice structure, which provides a flexible way to tune the amplitude and period of the OBOs. Remarkably, it is demonstrated that the band gap of the lattice can be readily controlled by rotating the lattice inducing beam, which forces the ZT rate to follow two significant different decay curves amidst decreasing index gradient. Our results open up new possibilities for all-optical switching, routing and manipulation of Airy beams.

  15. Lossless Airy Surface Polaritons in a Metamaterial via Active Raman Gain

    PubMed Central

    Zhang, Qi; Tan, Chaohua; Huang, Guoxiang

    2016-01-01

    We propose a scheme to realize a lossless propagation of linear and nonlinear Airy surface polaritons (SPs) via active Raman gain (ARG). The system we suggest is a planar interface superposed by a negative index metamaterial (NIMM) and a dielectric, where three-level quantum emitters are doped. By using the ARG from the quantum emitters and the destructive interference effect between the electric and magnetic responses from the NIMM, we show that not only the Ohmic loss of the NIMM but also the light absorption of the quantum emitters can be completely eliminated. As a result, non-diffractive Airy SPs may propagate for very long distance without attenuation. We also show that the Kerr nonlinearity of the system can be largely enhanced due to the introduction of the quantum emitters and hence lossless Airy surface polaritonic solitons with very low power can be generated in the system. PMID:26891795

  16. Bose-Einstein condensation of {alpha} particles and Airy structure in nuclear rainbow scattering

    SciTech Connect

    Ohkubo, S.; Hirabayashi, Y.

    2004-10-01

    It is shown that the dilute density distribution of {alpha} particles in nuclei can be observed in the Airy structure in nuclear rainbow scattering. We have analyzed {alpha}+{sup 12}C rainbow scattering to the 0{sub 2}{sup +} (7.65 MeV) state of {sup 12}C in a coupled-channel method with the precise wave functions for {sup 12}C. It is found that the enhanced Airy oscillations in the experimental angular distributions for the 0{sub 2}{sup +} state is caused by the dilute density distribution of this state in agreement for the idea of Bose-Einstein condensation of the three alpha particles.

  17. On the efficient calculation of the incomplete Airy function with application to edge diffraction

    NASA Astrophysics Data System (ADS)

    Cwik, Tom

    1988-12-01

    When the geometrical theory of diffraction (GTD) and its extensions are used to calculate fields across transition regions or in focal areas, various special functions are necessary to create uniform representations. One such transition function is the incomplete Airy function, which is applicable when two reflection points are arbitrarily close to each other and the endpoint of the domain considered. An efficient calculation of the incomplete Airy function is presented and shown to equal known asymptotic expansions when its argument is away from the critical point. By using these expansions, uniform field expressions are found which are consistent with the GTD and maintain its computational efficiency.

  18. Arrays of Gaussian vortex, Bessel and Airy beams by computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Lu, Yang; Jiang, Bo; Lü, Shuchao; Liu, Yongqi; Li, Shasha; Cao, Zheng; Qi, Xinyuan

    2016-03-01

    We generate various kinds of arrays of Gaussian vortex, Bessel and Airy beams, respectively, with digital phase holograms (DPH) based on the fractional-Talbot effect by using the phase-only spatial light modulator (SLM). The linear and nonlinear transmissions of these beam arrays in strontium barium niobate (SBN) crystal are investigated numerically and experimentally. Compared with Gaussian vortex arrays, Bessel and Airy beam arrays can keep their patterns unchanged in over 20 mm, realizing non-diffracting transmission. The Fourier spectra (far-field diffraction patterns) of the lattices are also studied. The experimental results are in good agreement with the numerical simulations.

  19. Norm Estimations of the Modified Teodorescu Transform with Application to a Multidimensional Equation of Airy Type

    SciTech Connect

    Schlichting, A.; Sproessig, W.

    2008-09-01

    We study versions of a generalized Teodorescu transform. In the 2-dimensional case we can describe the asymptotic behaviour by the help of modified Bessel functions. In 3-dimensional case we only have an upper estimate. Such estimates are necessary to prove the convergence of a semi-discretization method for a higher-dimensional analogue of an equation of Airy's type.

  20. Nonlinear plasma-assisted collapse of ring-Airy wave packets

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, Paris; Couairon, Arnaud; Kolesik, Miroslav; Papazoglou, Dimitris G.; Moloney, Jerome V.; Tzortzakis, Stelios

    2016-03-01

    We numerically demonstrate that femtosecond ring-Airy wave packets are able to overcome the reference intensity clamping of 4 ×1013 W/cm2 for filaments generated with Gaussian beams at low numerical apertures and form an intense sharp intensity peak on axis. Numerical simulations, with unidirectional propagation models for the pulse envelope and the carrier resolved electric field, reveal that the driving mechanism for this unexpected intensity increase is due to the self-generated plasma. The plasma formation, in conjunction with the circular geometry of the beam, force the wave packet into a multistage collapse process which takes place faster than the saturating mechanisms can compensate. We report here a nonstandard mechanism that increases the intensity of a collapsing wave packet, due to the joint contributions of the cubic phase of the Airy beam and the formation of a partially reflecting plasma.

  1. Wavelength estimation by using the Airy disk from a diffraction pattern with didactic purposes

    NASA Astrophysics Data System (ADS)

    Rivera-Ortega, Uriel; Pico-Gonzalez, Beatriz

    2016-01-01

    In this paper a simple and easy to implement method that uses the Airy disk generated from a Fraunhofer diffraction pattern due to a circular aperture will be used to estimate the wavelength of the illuminating laser source. This estimation is based on the measurement of the Airy disk diameter, whose approximation is directly proportional to the wavelength of the light source and to the distance between the aperture and the image plane; and inversely proportional to the diameter of the aperture. Due to the characteristics and versatility of the present proposal, this is perfectly suitable for use in graduate or undergraduate physics laboratories, or even in classrooms for educational and/or demonstrative purposes.

  2. A compact Airy beam light sheet microscope with a tilted cylindrical lens.

    PubMed

    Yang, Zhengyi; Prokopas, Martynas; Nylk, Jonathan; Coll-Lladó, Clara; Gunn-Moore, Frank J; Ferrier, David E K; Vettenburg, Tom; Dholakia, Kishan

    2014-10-01

    Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies on complex programming of spatial light modulators or specialized, custom made, optical elements. Here we present a straightforward and low-cost modification to the traditional light-sheet setup, based on the open-access light-sheet microscope OpenSPIM, to achieve Airy light-sheet illumination. This brings wide field single-photon light-sheet imaging to a broader range of endusers. Fluorescent microspheres embedded in agarose and a zebrafish larva were imaged to demonstrate how such a microscope can have a minimal footprint and cost without compromising on imaging quality.

  3. Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.

    PubMed

    Driben, Rodislav; Meier, Torsten

    2014-10-01

    The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse.

  4. Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors

    NASA Astrophysics Data System (ADS)

    Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong

    2016-10-01

    We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.

  5. A compact Airy beam light sheet microscope with a tilted cylindrical lens

    PubMed Central

    Yang, Zhengyi; Prokopas, Martynas; Nylk, Jonathan; Coll-Lladó, Clara; Gunn-Moore, Frank J.; Ferrier, David E. K.; Vettenburg, Tom; Dholakia, Kishan

    2014-01-01

    Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies on complex programming of spatial light modulators or specialized, custom made, optical elements. Here we present a straightforward and low-cost modification to the traditional light-sheet setup, based on the open-access light-sheet microscope OpenSPIM, to achieve Airy light-sheet illumination. This brings wide field single-photon light-sheet imaging to a broader range of endusers. Fluorescent microspheres embedded in agarose and a zebrafish larva were imaged to demonstrate how such a microscope can have a minimal footprint and cost without compromising on imaging quality. PMID:25360362

  6. A compact Airy beam light sheet microscope with a tilted cylindrical lens.

    PubMed

    Yang, Zhengyi; Prokopas, Martynas; Nylk, Jonathan; Coll-Lladó, Clara; Gunn-Moore, Frank J; Ferrier, David E K; Vettenburg, Tom; Dholakia, Kishan

    2014-10-01

    Light-sheet imaging is rapidly gaining importance for imaging intact biological specimens. Many of the latest innovations rely on the propagation-invariant Bessel or Airy beams to form an extended light sheet to provide high resolution across a large field of view. Shaping light to realize propagation-invariant beams often relies on complex programming of spatial light modulators or specialized, custom made, optical elements. Here we present a straightforward and low-cost modification to the traditional light-sheet setup, based on the open-access light-sheet microscope OpenSPIM, to achieve Airy light-sheet illumination. This brings wide field single-photon light-sheet imaging to a broader range of endusers. Fluorescent microspheres embedded in agarose and a zebrafish larva were imaged to demonstrate how such a microscope can have a minimal footprint and cost without compromising on imaging quality. PMID:25360362

  7. Constraints on Airy function zeros from quantum-mechanical sum rules

    NASA Astrophysics Data System (ADS)

    Belloni, M.; Robinett, R. W.

    2009-02-01

    We derive new constraints on the zeros of Airy functions by using the so-called quantum bouncer system to evaluate quantum-mechanical sum rules and perform perturbation theory calculations for the Stark effect. Using commutation and completeness relations, we show how to systematically evaluate sums of the form Sp(n) = ∑k≠n1/(ζk - ζn)p, for natural p > 1, where -ζn is the nth zero of Ai(ζ).

  8. Shaping symmetric Airy beam through binary amplitude modulation for ultralong needle focus

    SciTech Connect

    Fang, Zhao-Xiang; Gong, Lei; Ren, Yu-Xuan; Vaveliuk, Pablo; Chen, Yue; Lu, Rong-De

    2015-11-28

    Needle-like electromagnetic field has various advantages for the applications in high-resolution imaging, Raman spectroscopy, as well as long-distance optical transportation. The realization of such field often requires high numerical aperture (NA) objective lens and the transmission masks. We demonstrate an ultralong needle-like focus in the optical range produced with an ordinary lens. This is achieved by focusing a symmetric Airy beam (SAB) generated via binary spectral modulation with a digital micromirror device. Such amplitude modulation technique is able to shape traditional Airy beams, SABs, as well as the dynamic transition modes between the one-dimensional and two-dimensional (2D) symmetric Airy modes. The created 2D SAB was characterized through measurement of the propagating fields with one of the four main lobes blocked by an opaque mask. The 2D SAB was verified to exhibit self-healing property against propagation with the obstructed major lobe reconstructed after a certain distance. We further produced an elongated focal line by concentrating the SAB via lenses with different NAs and achieved an ultralong longitudinal needle focus. The produced long needle focus will be applied in optical, chemical, and biological sciences.

  9. Interpolation between Airy and Poisson statistics for unitary chiral non-Hermitian random matrix ensembles

    SciTech Connect

    Akemann, G.; Bender, M.

    2010-10-15

    We consider a family of chiral non-Hermitian Gaussian random matrices in the unitarily invariant symmetry class. The eigenvalue distribution in this model is expressed in terms of Laguerre polynomials in the complex plane. These are orthogonal with respect to a non-Gaussian weight including a modified Bessel function of the second kind, and we give an elementary proof for this. In the large n limit, the eigenvalue statistics at the spectral edge close to the real axis are described by the same family of kernels interpolating between Airy and Poisson that was recently found by one of the authors for the elliptic Ginibre ensemble. We conclude that this scaling limit is universal, appearing for two different non-Hermitian random matrix ensembles with unitary symmetry. As a second result we give an equivalent form for the interpolating Airy kernel in terms of a single real integral, similar to representations for the asymptotic kernel in the bulk and at the hard edge of the spectrum. This makes its structure as a one-parameter deformation of the Airy kernel more transparent.

  10. Coherent mid-infrared supercontinuum generation with As2Se3 photonic crystal fiber and femtosecond Airy pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Wu

    2015-12-01

    We discuss a novel method for generating hyper-broadband mid-infrared (MIR) supercontinua (SC) with coherent bandwidth from ~2 μm to ~10 μm by using As2Se3 photonic crystal fiber (PCF) and a 4.1 μm pump with femtosecond (fs) Airy pulse profile. Our simulations confirm that, when pumping in the normal dispersion region, the deceleration and self-healing properties of the Airy pulse can suppress the incoherent noise in modulational instability (MI) induced SC generation and maintain the pulse coherence over a long propagation distance. We also find that fs Airy pulse can generate an MIR SC with a broader coherent bandwidth than these can be achieved with fs parabolic secant pulse.

  11. Results from the Pronghorn field test using passive infrared spectroradiometers-CATSI and AIRIS

    NASA Astrophysics Data System (ADS)

    Jensen, James O.; Theriault, Jean-Marc; Bradette, Claude; Gittins, Christopher M.; Marinelli, William J.

    2002-02-01

    The Pronghorn Field Tests were held at the Nevada Test Site for a two-week period in June 2001. Two passive infrared sensors were tested for inclusion into the Joint Service Wide Area Detection Program. The Adaptive InfraRed Imaging Spectroradiometer (AIRIS) and Compact ATmospheric Sounding Interferometer (CATSI) systems were tested with good results. This field test was a joint effort between the U.S (SBCCOM) and Canada (DREV). Various chemicals were detected and quantified from a distance of 1.5 kilometers. Passive ranging of Chemical Plumes was demonstrated.

  12. Results of the Pronghorn field test using passive infrared spectroradiometers: CATSI and AIRIS

    NASA Astrophysics Data System (ADS)

    Jensen, James O.; Theriault, Jean-Marc; Bradette, Claude; Gittins, Christopher M.; Marinelli, William J.

    2002-08-01

    The Pronghorn Field Tests were held at the Nevada Test Site for a two-week period in June 2001. Two passive infrared sensors were tested for inclusion into the Joint Service Wide Area Detection Program. The Adaptive InfraRed Imaging Spectroradiometer (AIRIS) and Compact Atmospheric Sounding Interferometer (CATSI) systems were tested with good results. This field test was a joint effort between the US (SBCCOM) and Canada (DREV). Various chemicals were detected and quantified from a distance of 1.5 kilometers. Passive ranging of Chemical Plumes was demonstrated.

  13. Airy Equation for the Topological String Partition Function in a Scaling Limit

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Yau, Shing-Tung; Zhou, Jie

    2016-06-01

    We use the polynomial formulation of the holomorphic anomaly equations governing perturbative topological string theory to derive the free energies in a scaling limit to all orders in perturbation theory for any Calabi-Yau threefold. The partition function in this limit satisfies an Airy differential equation in a rescaled topological string coupling. One of the two solutions of this equation gives the perturbative expansion and the other solution provides geometric hints of the non-perturbative structure of topological string theory. Both solutions can be expanded naturally around strong coupling.

  14. Two-dimensional χ2 solitons generated by the downconversion of Airy waves.

    PubMed

    Mayteevarunyoo, Thawatchai; Malomed, Boris A

    2016-07-01

    Conversion of truncated Airy waves (AWs) carried by the second-harmonic (SH) component into axisymmetric χ2 solitons is considered in a 2D system with quadratic nonlinearity. The spontaneous conversion is driven by the parametric instability of the SH wave. The input in the form of the AW vortex is also considered. As a result, one, two, or three stable solitons emerge in a well-defined form, unlike the recently studied 1D setting, where the picture is obscured by radiation jets. Shares of the total power captured by the emerging solitons and conversion efficiency are found as functions of parameters of the AW input. PMID:27367065

  15. Test drilling and aquifer test in the Marburg schist near Mount Airy, Frederick County, Maryland

    USGS Publications Warehouse

    Meyer, Gerald

    1955-01-01

    This memorandum summarizes briefly the data obtained by test drilling and in an aquifer test at Mount Airy, Md. The tests were a part of the State - Federal cooperative study of the ground-water resources of Frederick County, and it is intended that a more complete analysis of the test data will be included in a future report describing the ground-water resource of Frederick County. The purpose of this memorandum is to make the test data immediately available to the general public. Mount Airy is located along the Carroll-Frederick County boundary bout 2 miles north of the intersection of U.S. Highway 40 with the county boundary. Its population is approximately 1,000. The municipal well field, consisting of two drilled wells (fig. 1) is in a valley about one-half mile west of the center of Mount Airy, within about 400 feet of a small stream, and north of Prospect Road. Well 1, about 40 feet north of Prospect Road, is 125 feet deep, 8 inches in diameter, and reportedly yielded 265 gallons per minute (gpm) in 1947 and 201 gpm in a half hour test in March 1955. The writer determined during the tests described in this memorandum that the well has about 34 feet of casing. Well 2, 85 feet north of well 1, is 96 feet deep, 8 inches in diameter, and reportedly yielded 120 gpm in 1947 and 127 gpm in a half hour test in March 1955. The wells are equipped with deep-well turbine pumps powered by electric motors. Cenorally only well 1 is used, and it is pumped for only a few short intervals each day to meet the water requirements of the town (about 75,000 - 80,000 gallons daily). The reported yields of these wells are considerably higher than the average for crystalline-rock wells in the Piedmont of Maryland. The test drilling was done under contract with Edward I. Brown, well driller, between May 3 and May 12, 1955. Water-supply facilities of the town of Mount Airy were kindly made available for the aquifer tests from May 22 to May 30, 1955. The pumping tests consisted of a

  16. Diffraction by three-dimensional slit-shape curves: decomposition in terms of Airy and Pearcey functions.

    PubMed

    Martinez-Vara, P; Barranco, J Silva; De Los Santos G, S I; Munoz-Lopez, J; Torres-Rodriguez, M A; Xique, R Suarez; Martinez-Niconoff, G

    2015-08-01

    We analyze the diffraction field generated by coherent illumination of a three-dimensional transmittance characterized by a slit-shape curve. Generic features are obtained using the Frenet-Serret equations, which allow a decomposition of the optical field. The analysis is performed by describing the influence of the curvature and torsion on osculating, normal, and rectifying planes. We show that the diffracted field has a decomposition in three optical fields propagating along three optical axes that are mutually perpendicular. The decomposition is in terms of the Pearcey and Airy functions, and the generalized Airy function. Experimental results are shown. PMID:26258341

  17. Propagation of an Airy-Gaussian vortex beam in linear and nonlinear media

    NASA Astrophysics Data System (ADS)

    Chen, Chidao; Peng, Xi; Chen, Bo; Peng, Yulian; Zhou, Meiling; Yang, Xiangbo; Deng, Dongmei

    2016-05-01

    We investigate the propagation of an Airy-Gaussian vortex (AiGV) beam in free space and Kerr media. It is interesting to see that the beam will perform self-healing and main lobe focusing both in free space and Kerr media when the vortex locates at the center of the plane. By controlling the number of the topological charge, the beam distribution factor χ 0 and the position of the vortex, we can control the intensity distribution of the AiGV beam in the out plane both in free space and Kerr media. It is found that when the vortex is close to the center of the plane, it has a strong effect on the intensity distribution of the beam. When the beam propagates in the number of the topological charge, the partial collapse will take place even with low initial input power. We find that the main lobe focusing contributes to this partial collapse.

  18. Predicting the past: ancient eclipses and Airy, Newcomb, and Huxley on the authority of science.

    PubMed

    Stanley, Matthew

    2012-06-01

    Greek historical accounts of ancient eclipses were an important, if peculiar, focus of scientific attention in the nineteenth century. Victorian-era astronomers tried to correct the classical histories using scientific methods, then used those histories as data with which to calibrate their lunar theories, then rejected the histories as having any relevance at all. The specific dating of these eclipses--apparently a simple exercise in celestial mechanics--became bound up with tensions between scientific and humanistic approaches to the past as well as with wider social debates over the power and authority of science in general. The major figures discussed here, including G. B. Airy, Simon Newcomb, and T. H. Huxley, argued that the critical question was whether science could speak authoritatively about the past. To them, the ability of science to talk about the past indicated its power to talk about the future; it was also the fulcrum of fierce boundary disputes among science, history, and religion.

  19. Chirped self-healing Airy pulses compression in silicon waveguides under fourth-order dispersion

    NASA Astrophysics Data System (ADS)

    Mandeng Mandeng, Lucien; Tchawoua, Clément

    2013-03-01

    We present the compression of Airy pulses in silicon-on-insulator (SOI) waveguides under the fourth-order dispersion (FOD) using the variational approach that involves Rayleigh's dissipation function (RDF). All the pulse characteristics are under the influence of the two-photon and the frequency-carrier absorptions. In a quasi-linear approximation, the pulse compression conditions induced by the interaction of the group-velocity dispersion (GVD), the chirp and the FOD are derived. In the nonlinear case, the self-phase modulation (SPM), the two-photon absorption (TPA) and the free-carrier absorption (FCA) reduce the length of compression in a propagation regime of normal GVD, positive chirp and a negative value of FOD. The TPA reduces the maximal power reached than the SPM while the FCA rather increases its value. These results are confirmed in the general case where they all interact with the linear dispersion terms of the SOI waveguide.

  20. Predicting the past: ancient eclipses and Airy, Newcomb, and Huxley on the authority of science.

    PubMed

    Stanley, Matthew

    2012-06-01

    Greek historical accounts of ancient eclipses were an important, if peculiar, focus of scientific attention in the nineteenth century. Victorian-era astronomers tried to correct the classical histories using scientific methods, then used those histories as data with which to calibrate their lunar theories, then rejected the histories as having any relevance at all. The specific dating of these eclipses--apparently a simple exercise in celestial mechanics--became bound up with tensions between scientific and humanistic approaches to the past as well as with wider social debates over the power and authority of science in general. The major figures discussed here, including G. B. Airy, Simon Newcomb, and T. H. Huxley, argued that the critical question was whether science could speak authoritatively about the past. To them, the ability of science to talk about the past indicated its power to talk about the future; it was also the fulcrum of fierce boundary disputes among science, history, and religion. PMID:22908421

  1. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, P.; Papazoglou, D. G.; Couairon, A.; Tzortzakis, S.

    2013-10-01

    Controlling the propagation of intense optical wavepackets in transparent media is not a trivial task. During propagation, low- and high-order non-linear effects, including the Kerr effect, multiphoton absorption and ionization, lead to an uncontrolled complex reshaping of the optical wavepacket that involves pulse splitting, refocusing cycles in space and significant variations of the focus. Here we demonstrate both numerically and experimentally that intense, abruptly autofocusing beams in the form of accelerating ring-Airy beams are able to reshape into non-linear intense light-bullet wavepackets propagating over extended distances, while their positioning in space is extremely well defined. These unique wavepackets can offer significant advantages in numerous fields such as the generation of high harmonics and attosecond physics or the precise micro-engineering of materials.

  2. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity.

    PubMed

    Ismail, Nur; Kores, Cristine Calil; Geskus, Dimitri; Pollnau, Markus

    2016-07-25

    We systematically characterize the Fabry-Pérot resonator. We derive the generic Airy distribution of a Fabry-Pérot resonator, which equals the internal resonance enhancement factor, and show that all related Airy distributions are obtained by simple scaling factors. We analyze the textbook approaches to the Fabry-Pérot resonator and point out various misconceptions. We verify that the sum of the mode profiles of all longitudinal modes is the fundamental physical function that characterizes the Fabry-Pérot resonator and generates the Airy distribution. Consequently, the resonator losses are quantified by the linewidths of the underlying Lorentzian lines and not by the measured Airy linewidth. Therefore, we introduce the Lorentzian finesse which provides the spectral resolution of the Lorentzian lines, whereas the usually considered Airy finesse only quantifies the performance of the Fabry-Pérot resonator as a scanning spectrometer. We also point out that the concepts of linewidth and finesse of the Airy distribution of a Fabry-Pérot resonator break down at low reflectivity. Furthermore, we show that a Fabry-Pérot resonator has no cut-off resonance wavelength. Finally, we investigate the influence of frequency-dependent mirror reflectivities, allowing for the direct calculation of its deformed mode profiles.

  3. On the joint distribution of the maximum and its position of the Airy2 process minus a parabola

    NASA Astrophysics Data System (ADS)

    Baik, Jinho; Liechty, Karl; Schehr, Grégory

    2012-08-01

    The maximal point of the Airy2 process minus a parabola is believed to describe the scaling limit of the end-point of the directed polymer in a random medium. This was proved to be true for a few specific cases. Recently, two different formulas for the joint distribution of the location and the height of this maximal point were obtained, one by Moreno Flores, Quastel, and Remenik, and the other by Schehr. The first formula is given in terms of the Airy function and an associated operator, and the second formula is expressed in terms of the Lax pair equations of the Painlevé II equation. We give a direct proof that these two formulas are the same.

  4. Angle-resolved conical emission spectra from filamentation in a solid with an Airy pattern and a Gaussian laser beam.

    PubMed

    Gong, Cheng; Li, ZiXi; Hua, LinQiang; Quan, Wei; Liu, XiaoJun

    2016-09-15

    Filamentation dynamics in fused silica are investigated using an Airy pattern and a Gaussian laser beam. The angle-resolved conical emission spectra are measured and compared with the predictions of several models. Our experimental observations are consistent with the X-waves model in both cases. This indicates that both laser beams spontaneously evolve into nonlinear X-waves and suggests a universal evolution of filaments in fused silica, regardless of the initial laser beam profile. PMID:27628383

  5. Real-time sensor mapping display for airborne imaging sensor test with the adaptive infrared imaging spectroradiometer (AIRIS)

    NASA Astrophysics Data System (ADS)

    Burton, Megan M.; Cruger, William E.; Gittins, Christopher; Kindle, Harry; Ricks, Timothy P.

    2005-11-01

    Captive flight testing (CFT) of sensors and seekers requires accurate data collection and display for sensor performance evaluation. The U.S. Army Redstone Technical Test Center (RTTC), in support of the U.S. Army Edgewood Chemical Biological Center (ECBC), has developed a data collection suite to facilitate airborne test of hyperspectral chemical/biological sensors. The data collection suite combines global positioning system (GPS) tracking, inertial measurement unit (IMU) data, accurate timing streams, and other test scenario information. This data collection suite also contains an advanced real-time display of aircraft and sensor field-of-view information. The latest evolution of this system has been used in support of the Adaptive InfraRed Imaging Spectroradiometer (AIRIS), currently under development by Physical Sciences Incorporated for ECBC. For this test, images from the AIRIS sensor were overlaid on a digitized background of the test area, with latencies of 1 second or less. Detects of surrogate chemicals were displayed and geo-referenced. Video overlay was accurate and reliable. This software suite offers great versatility in the display of imaging sensor data; support of future tests with the AIRIS sensor are planned as the system evolves.

  6. Plume Aerosol Size Distribution Modeling and Comparisons to PrAIRie2005 Field Study Data

    NASA Astrophysics Data System (ADS)

    Cho, S.; Liggio, J.; Makar, P.; Li, S.; Racinthe, J.

    2006-12-01

    As part of the analysis phase of the PrAIRie2005 field study, the effects of different Edmonton-area emission sources on local air-quality are being examined. Four large coal-fired power-plants are located to the West of the city. Here, the effects of these power-plants on urban and regional air-quality will be examined, using both plume and regional air-quality models. During the last few decades, coal-fired power plants have been found to be as a major source of pollution, affecting public-health. According to NACEC (North American Commission for Environmental Corporation, 2001)'s report, 46 of the top 50 air polluters in North America were power plants. The importance of such sources has resulted in several attempts to improve understanding of the basic formation mechanisms of plume particulate matter. Sulphur dioxide contributes to acidifying emissions and to the production of secondary acidic aerosols that have been linked to a number of serious human health problems, acid rain and visibility (Seinfeld and Pandis, 1998; Hidy, 1984; Wilson and McMurray, 1981). Primary particulate matter originating directly from coal-fired power plants may also increase secondary particulate mass by providing a surface for sulphuric acid absorption . Environment Canada's PrAIRie2005 field study between August 12th and September 7th, 2005 included overflights and downwind measurements near the Edmonton powerplants (Wabamun, Sundance, Keephills and Genesee). The data collected consisted of particle size distributions, ozone, NOX, total mass and the chemical composition of fine particles. In order to investigate and improve our understanding of the formation mechanisms and physical properties of power-plant-generated aerosols in the Edmonton area, the Plume Aerosol Microphysical (PAM) model has been employed. This model accounts for gas-phase chemistry, aerosol microphysical processes (i.e. homogeneous/heterogeneous nucleation, condensation/evaporation and coagulation) and

  7. Evidence for Mini-Magnetospheres at four Lunar Magnetic Anomalies: Reiner-Gamma, Airy, Descartes and Crozier

    NASA Astrophysics Data System (ADS)

    Nayak, M.; Garrick-Bethell, I.; Hemingway, D.

    2014-12-01

    Lunar swirls are enigmatic high-albedo surface markings co-located with magnetic anomalies. The existence of mini-magnetospheres has been proposed as a formation mechanism, making small-scale magnetic field interactions with the solar wind of interest. Using data from the Lunar Prospector, Clementine, and Advanced Composition Explorer missions, we develop three metrics for the identification of mini-magnetospheres: 1) presence of coherent magnetism at low altitude for magnetic field measurements taken in the solar wind; 2) directional field distortions that are correlated with changes in incident solar wind azimuth; 3) intensification of total field strength. These metrics are applied to four lunar magnetic anomalies with various reflectances and magnetic field strengths, ranging from fully developed swirls (Reiner-Gamma, Airy) to diffuse albedo patches which may or may not be swirls (Descartes, Crozier). Specifically, we compare magnetic field measurements in the solar wind to source magnetization models constructed from observations in the lunar wake and Earth's magnetotail. By applying these criteria, we confirm previous findings of magnetosphere-like phenomena at Reiner-Gamma. We also find evidence of these phenomena at Descartes and Airy, and propose that mini-magnetospheres may exist here. At Airy, very large upwind distortions are observed, comparable to the length scale of the anomaly itself. At Reiner-Gamma and Descartes, this distortion is significantly smaller, yet the average field strengths are higher, implying that the scale of distortion is linked to the anomaly's field strength. Interestingly, at Crozier, the weakest anomaly considered, we do not observe this distortion. However, we do observe evidence of field intensification at high solar wind pressures (16 nPa). While Descartes and Reiner-Gamma are among the strongest anomalies on the Moon, and both exhibit magnetospheric properties, only Reiner-Gamma shows a well-developed swirl pattern

  8. Dynamic enhancement of autofocusing property for symmetric Airy beam with exponential amplitude modulation

    NASA Astrophysics Data System (ADS)

    Liu, Weiwei; Lu, Yao; Gong, Lei; Chu, Xiuxiang; Xue, Guosheng; Ren, Yuxuan; Zhong, Mincheng; Wang, Ziqiang; Zhou, Jinhua; Li, Yinmei

    2016-07-01

    A symmetric Airy beam (SAB) autofocuses during free space propagation. Such autofocusing SAB is useful in optical manipulation and biomedical imaging. However, its inherently limited autofocusing property may degrade the performance of the SAB in those applications. To enhance the autofocus, a symmetric apodization mask was proposed to regulate the SAB. In combination with the even cubic phase that shapes the SAB, this even exponential function mask with an adjustable parameter regulates the contribution of different frequency spectral components to the SAB. The propagation properties of this new amplitude modulated SAB (AMSAB) were investigated both theoretically and experimentally. Simulation shows that the energy distribution and autofocusing property of an AMSAB can be adjusted by the exponential amplitude modulation. Especially, the beam energy will be more concentrated in the central lobe once the even cubic phase is modulated by the mask with a higher proportion of high-frequency spectral components. Consequently, the autofocusing property and axial gradient force of AMSABs are efficiently enhanced. The experimental generation and characterization for AMSABs were implemented by modulating the collimated beam with a phase-only spatial light modulator. The experimental results well supported the theoretical predictions. With the ability to enhance the autofocus, the proposed exponential apodization modulation will make SAB more powerful in various applications, including optical trapping, fluorescence imaging and particle acceleration.

  9. Airy minima in the scattering of weakly bound light heavy ions

    NASA Astrophysics Data System (ADS)

    Michel, F.; Ohkubo, S.

    2005-11-01

    We reanalyze the existing 6Li + 12C elastic scattering angular distributions for incident energies ranging from a few MeV to 318 MeV within the frame of the optical model. Despite the important breakup effects expected in the scattering of such a fragile projectile, the system is found to display a surprising transparency. Indeed the barrier-wave/internal-wave decomposition of the elastic scattering amplitude reveals that a substantial part of the incident flux that penetrates the nuclear interior reemerges in the elastic channel, and typical refractive effects, like Airy minima, are clearly identified in the angular distributions. Coupled channel calculations performed on 12C(6Li,6Li')12C*(Jπ=2+,Ex=4.44 MeV) angular distributions extending through the whole angular range confirm the existence of an important internal-wave contribution in the backward hemisphere. A similar transparency is observed in other systems of this mass region, such as 7Li + 12C or 6Li + 16O. Finally, we examine recent 6He + 12C elastic scattering data obtained at 18 MeV by Milin et al. [Nucl. Phys. A730, 285 (2004)] and extending up to θc.m.≃85°, and we suggest additional measurements that could ascertain whether some transparency persists in the scattering of this radioactive projectile.

  10. Propagation properties of Airy-Gaussian vortex beams through the gradient-index medium.

    PubMed

    Zhao, Ruihuang; Deng, Fu; Yu, Weihao; Huang, Jiayao; Deng, Dongmei

    2016-06-01

    Propagation of Airy-Gaussian vortex (AiGV) beams through the gradient-index medium is investigated analytically and numerically with the transfer matrix method. Deriving the analytic expression of the AiGV beams based on the Huygens diffraction integral formula, we obtain the propagate path, intensity and phase distributions, and the Poynting vector of the first- and second-order AiGV beams, which propagate through the paraxial ABCD system. The ballistic trajectory is no longer conventional parabolic but trigonometric shapes in the gradient-index medium. Especially, the AiGV beams represent the singular behavior at the propagation path and the light intensity distribution. The phase distribution and the Poynting vector exhibit in reverse when the AiGV beams through the singularity. As the order increases, the main lobe of the AiGV beams is gradually overlapped by the vortex core. Further, the sidelobe weakens when the AiGV beams propagate nearly to the singularity. Additionally, the figure of the Poynting vector of the AiGV beams proves the direction of energy flow corresponding to the intensity distribution. The vortex of the second-order AiGV beams is larger, and the propagation velocity is faster than that of the first order. PMID:27409428

  11. Airy minimum crossing θcm = 90° at Elab = 124 MeV for the 16O + 16O system

    NASA Astrophysics Data System (ADS)

    Kondo, Y.; Sugiyama, Y.; Tomita, T.; Yamanouchi, Y.; Ikezoe, H.; Ideno, K.; Hamada, S.; Sugimitsu, T.; Hijiya, M.; Fujita, H.

    1996-02-01

    We have measured the elastic scattering angular distribution for the 16O + 16O system at Elab = 124 MeV, where a prominent minimum has been observed in the θcm = 90° excitation function. The measured angular distribution shows modulated Airy structures at large angles with a dip at θcm = 90°. It is concluded that the prominent minimum in the excitation function is due to an Airy minimum, most likely to be the third member, crossing 90° at that energy.

  12. The nature of isostasy on the moon - How big a Pratt-fall for Airy models. [crustal density-topographic elevation correlation

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1978-01-01

    The correlation between topographic elevation and the major element chemistry of the lunar surface in non-mare regions suggest that a Pratt-type isostatic mechanism may be important in the lunar highlands. Pratt isostasy involves compensation of greater elevation by lower crustal density. Computation of the bulk density from surface chemistry and normative mineralogy, followed by comparisons between calculated density and surface height, is suggested as a means of testing the applicability of the Pratt isostatic model to the moon. A Pratt-type lunar crustal model requires much smaller variations in lunar crustal thickness than those necessitated by a constant-density (Airy) isostatic model. Mechanisms to produce a crust regionally heterogeneous in composition early in lunar differentiation are also required for Pratt isostasy.

  13. Propagation properties of right-hand circularly polarized Airy-Gaussian beams through slabs of right-handed materials and left-handed materials.

    PubMed

    Huang, Jiayao; Liang, Zijie; Deng, Fu; Yu, Weihao; Zhao, Ruihuang; Chen, Bo; Yang, Xiangbo; Deng, Dongmei

    2015-11-01

    The propagation of right-hand circularly polarized Airy-Gaussian beams (RHCPAiGBs) through slabs of right-handed materials (RHMs) and left-handed materials (LHMs) is investigated analytically and numerically with the transfer matrix method. An approximate analytical expression for the RHCPAiGBs passing through a paraxial ABCD optical system is derived on the basis of the Huygens diffraction integral formula. The intensity and the phase distributions of the RHCPAiGBs through RHMs and LHMs are demonstrated. The influence of the parameter χ0 on the propagation of RHCPAiGBs through RHM and LHM slabs is investigated. The RHCPAiGBs possess transverse-momentum currents, which shows that the physics underlying this intriguing accelerating effect is that of the combined contributions of the transverse spin and transverse orbital currents. Additionally, we go a step further to explore the radiation force including the gradient force and scattering force of the RHCPAiGBs.

  14. Can Hooke's Law and the Airy Disk First Zero Radius Formulation Predict That Education and Work Environment Visual Task Excesses Lead to Vision Impairment?

    NASA Astrophysics Data System (ADS)

    McLeod, Douglas M.; McLeod, Roger D.

    2002-10-01

    DMM found that a distant, single church steeple, which appeared "twin-like" after extended studying episodes, could then be brought into correct visual register by a conscious effort. Similar anecdotal events are repeatable by attentive students or workers in the early stages of educationally or work environmentally induced repetitive vision impairment. RDM proposes that his model for vision and its repair utilizes sequentially applied vision improvement stages that are the equivalent of DMM's experience. Such visual events involve feedback signals generated during the crystalline lens's minor dioptric oscillations that are generated by the blinking reflex, empowered by the Airy radius proportional to wavelength times focal length divided by pupil aperture. This implies some conscious control of feedback mechanisms, which can self-regulate vision protecting processes. Continued visual effort under duress invokes Hooke's "stress proportional to strain." Exceeding extrinsic eye muscles' elastic limits overrides spontaneous feedback repair mechanisms.

  15. Propagation properties of right-hand circularly polarized Airy-Gaussian beams through slabs of right-handed materials and left-handed materials.

    PubMed

    Huang, Jiayao; Liang, Zijie; Deng, Fu; Yu, Weihao; Zhao, Ruihuang; Chen, Bo; Yang, Xiangbo; Deng, Dongmei

    2015-11-01

    The propagation of right-hand circularly polarized Airy-Gaussian beams (RHCPAiGBs) through slabs of right-handed materials (RHMs) and left-handed materials (LHMs) is investigated analytically and numerically with the transfer matrix method. An approximate analytical expression for the RHCPAiGBs passing through a paraxial ABCD optical system is derived on the basis of the Huygens diffraction integral formula. The intensity and the phase distributions of the RHCPAiGBs through RHMs and LHMs are demonstrated. The influence of the parameter χ0 on the propagation of RHCPAiGBs through RHM and LHM slabs is investigated. The RHCPAiGBs possess transverse-momentum currents, which shows that the physics underlying this intriguing accelerating effect is that of the combined contributions of the transverse spin and transverse orbital currents. Additionally, we go a step further to explore the radiation force including the gradient force and scattering force of the RHCPAiGBs. PMID:26560925

  16. A comparison of far-field properties of radial noncanonical vortex airy beam arrays and radial noncanonical vortex Gaussian beam arrays

    NASA Astrophysics Data System (ADS)

    Cheng, Ke; Jiao, Liyang; Zhong, Xianqiong

    2016-05-01

    Based on the vector angular spectrum representation and stationary phase method, the analytical far-field vectorial expressions of radial noncanonical vortex Airy beam arrays (NVAiBAs) and radial noncanonical vortex Gaussian beam arrays (NVGBAs) are derived, and used to investigate their far-field vectorial properties, e.g. center optical vortices and energy fluxes of these corresponding beams, where the effect of noncanonical strength, topological charge, initial phase index and the number of beamlet on far-field vectorial properties of these corresponding beams is emphasized, respectively. The results show that the topological charge of center optical vortices in the far field is equal to initial phase index for the case of the radial NVAiBAs, whereas for radial NVGBAs the topological charge not only lies on initial phase index, but also is closely related to the odevity and sign of optical vortices embedded in beamlet, where mathematical analysis is made to explain the topological charge of center optical vortices, and the limitation of the number of beamlet to the topological charge of center optical vortices is also discussed. In addition, energy fluxes of radial NVAiBAs and NVGBAs exhibit different space orientations by controlling noncancial strength and present larger dark zones by increasing topological charge of beamlet, respectively. Finally, the relationship between the center optical vortices and energy fluxes of radial NVAiBAs and NVGBAs in even or odd N beamlets is also revealed, respectively.

  17. SEMICONDUCTOR DEVICES Comparison of electron transmittances and tunneling currents in an anisotropic TiNx/HfO2/SiO2/p-Si(100) metal—oxide—semiconductor (MOS) capacitor calculated using exponential- and Airy-wavefunction approaches and a transfer matrix method

    NASA Astrophysics Data System (ADS)

    Noor, Fatimah A.; Abdullah, Mikrajuddin; Sukirno; Khairurrijal

    2010-12-01

    Analytical expressions of electron transmittance and tunneling current in an anisotropic TiNx/HfO2/SiO2/p-Si(100) metal—oxide—semiconductor (MOS) capacitor were derived by considering the coupling of transverse and longitudinal energies of an electron. Exponential and Airy wavefunctions were utilized to obtain the electron transmittance and the electron tunneling current. A transfer matrix method, as a numerical approach, was used as a benchmark to assess the analytical approaches. It was found that there is a similarity in the transmittances calculated among exponential- and Airy-wavefunction approaches and the TMM at low electron energies. However, for high energies, only the transmittance calculated by using the Airy-wavefunction approach is the same as that evaluated by the TMM. It was also found that only the tunneling currents calculated by using the Airy-wavefunction approach are the same as those obtained under the TMM for all range of oxide voltages. Therefore, a better analytical description for the tunneling phenomenon in the MOS capacitor is given by the Airy-wavefunction approach. Moreover, the tunneling current density decreases as the titanium concentration of the TiNx metal gate increases because the electron effective mass of TiNx decreases with increasing nitrogen concentration. In addition, the mass anisotropy cannot be neglected because the tunneling currents obtained under the isotropic and anisotropic masses are very different.

  18. Model-independent analysis of Airy structures in the {sup 16}O+{sup 12}C and {sup 16}O+{sup 16}O elastic scattering differential cross sections at 13-22 MeV/nucleon

    SciTech Connect

    Korda, V. Yu.; Molev, A. S.; Klepikov, V. F.; Korda, L. P.

    2009-02-15

    We present the results of the model-independent analysis of Airy structures in the {sup 16}O+{sup 12}C and {sup 16}O+{sup 16}O elastic scattering differential cross sections at 13-22 MeV/nucleon. The analysis has been performed with help of a procedure based on the application of the evolutionary algorithm, which enables us to extract the nuclear part of the scattering matrix S{sub N}(l) as a complex function of angular momentum directly from the scattering data. Contrary to the commonly used model approaches, our procedure gives the better fits and leads to the S{sub N}(l) representations defined by the moduli and the nuclear phases exhibiting smooth monotonic dependencies on l.

  19. Extinction efficiency of "elastic-sheet" beams by a cylindrical (viscous) fluid inclusion embedded in an elastic medium and mode conversion—Examples of nonparaxial Gaussian and Airy beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-10-01

    Stemming from the law of the conservation of energy in an elastic medium, this work extends the scope of the previous analysis for a scatterer immersed in a nonviscous liquid [F. G. Mitri, Ultrasonics 62, 20-26 (2015)] to the case of a (viscous) fluid circular cylinder cross-section encased in a homogeneous, isotropic, elastic matrix. Analytical expressions for the absorption, scattering, and extinction efficiencies (or cross-sections) are derived for "elastic-sheets" (i.e., finite beams in 2D propagating in elastic media) of arbitrary wavefront, in contrast to the ideal case of plane waves of infinite extent. The mathematical expressions are formulated in generalized partial-wave series expansions in cylindrical coordinates involving the beam-shape coefficients of finite elastic-sheet beams with arbitrary wavefront, and the scattering coefficients of the fluid cylinder encased in the elastic matrix. The analysis shows that in elastodynamic scattering, both the scattered L-wave as well as the scattered T-wave contribute to the time-averaged scattered efficiency (or power). However, the extinction efficiency only depends on the scattering coefficients characterizing the same type (L or T) as the incident wave. Numerical computations for the (non-dimensional energy) efficiency factors such as the absorption, scattering, and extinction efficiencies of a circular cylindrical viscous fluid cavity embedded in an elastic aluminum matrix are performed for nonparaxial focused Gaussian and Airy elastic-sheet beams with arbitrary longitudinal and transverse normally-polarized (shear) wave incidences in the Rayleigh and resonance regimes. A series of elastic resonances are manifested in the plots of the efficiencies as the non-dimensional size parameters for the L- and T-waves are varied. As the beam waist for the nonparaxial Gaussian beam increases, the plane wave result is recovered, while for a tightly focused wavefront, some of the elastic resonances can be suppressed

  20. Optical phase imaging of living organisms inside the Airy disk

    NASA Astrophysics Data System (ADS)

    Tychinsky, Vladimir P.; Koufal, Georgy E.; Odintsov, Alex; Vyshenskaia, Tatiana V.

    1994-05-01

    The main goal of this paper is to present a new approach based on computer-aided phase microscope Airyscan for submicron biological structures dynamic investigation. In our experiments micelial cell walls were used as the object with well known submicron structure. Two types of cilia beating specimens and cytoplasm movement inside the onion cell were chosen for dynamic processes registering. This paper peruses mainly methodological goals for demonstration of the new method possibilities.

  1. Atmospherics: A Look at the Earth's Airy Shell.

    ERIC Educational Resources Information Center

    Byalko, A. V.

    1991-01-01

    Describes differences in the composition, pressure, and temperature at distinct altitudes of the Earth's atmosphere from the point of view of physical laws. Discusses the genesis and importance of ozone, thermal radiation and the "layer cake" arrangement of the atmosphere, and solar energy in connection with thermal equilibrium. (JJK)

  2. Asymptotics for the Covariance of the Airy2 Process

    NASA Astrophysics Data System (ADS)

    Shinault, Gregory; Tracy, Craig A.

    2011-04-01

    In this paper we compute some of the higher order terms in the asymptotic behavior of the two point function {P}({A}2(0)≤ s1,A2(t)≤ s2), extending the previous work of Adler and van Moerbeke (arXiv:math.PR/0302329; Ann. Probab. 33, 1326-1361, 2005) and Widom (J. Stat. Phys. 115, 1129-1134, 2004). We prove that it is possible to represent any order asymptotic approximation as a polynomial and integrals of the Painlevé II function q and its derivative q'. Further, for up to tenth order we give this asymptotic approximation as a linear combination of the Tracy-Widom GUE density function f 2 and its derivatives. As a corollary to this, the asymptotic covariance is expressed up to tenth order in terms of the moments of the Tracy-Widom GUE distribution.

  3. Starch-based aerogels: airy materials from amylose-sodium palmitate inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerogels are a class of interesting low density porous materials prepared by replacing the water phase contained within a hydrogel with a gas phase while maintaining the three dimensional network structure of the gel. The investigation of starch and hydrocolloid-based aerogels has received attentio...

  4. No Time for the "Airy Fairy": Teacher Perspectives on Creative Writing in High Stakes Environments

    ERIC Educational Resources Information Center

    Frawley, Emily

    2014-01-01

    This paper discusses a research project undertaken to examine teachers' perceptions of creative writing in the senior English curriculum. It was a case study undertaken in a state high school in Melbourne under the Victorian Certificate of Education (VCE). The project investigated the challenges facing English teachers as they prepare…

  5. Psychometric Properties of the Affect Intensity and Reactivity Measure Adapted for Youth (AIR-Y)

    ERIC Educational Resources Information Center

    Jones, Rachel E.; Leen-Feldner, Ellen W.; Olatunji, Bunmi O.; Reardon, Laura E.; Hawks, Erin

    2009-01-01

    A valid and reliable instrument for measuring affect intensity does not exist for adolescents; such a measure may help to refine understanding of emotion among youths. The purpose of the current study was to evaluate the psychometric properties and clinical relevance of a measure of affect intensity adapted for youths. Two hundred five community…

  6. Two new cembranoids from the leaves of Croton longissimus Airy Shaw.

    PubMed

    Kawakami, Susumu; Matsunami, Katsuyoshi; Otsuka, Hideaki; Lhieochaiphant, Duangporn; Lhieochaiphant, Sorasak

    2013-04-01

    Two new cembrane-type diterpenoids (1 and 2) along with five known compounds (3-7) were isolated from leaves of Croton longissimus collected in Thailand. Their structures were elucidated from spectroscopic evidence and compound 4 was found by HPLC analysis to be identical to oblongionoside B-a compound isolated from Croton oblongifolius-including the absolute configuration at the C-9 position.

  7. One «Both» Sex«es»: Observations, suppositions, and airy speculations on fetal sex anatomy in British scientific literature, 1794-1871.

    PubMed

    Brooks, Ross

    2015-01-01

    The hegemony of the two-sex paradigm in the European scientific imagination and wider culture did not automatically equate to the hegemony of two discrete genders. In fact, two sexes facilitated a variety of gender choices: two singular and a number of double or otherwise intersexed (most commonly referred to as "hermaphrodite" or "bisexual" in its anatomical sense). This article explores some key British medical and allied scientific texts, with reference to associated Continental literature, as a means of illustrating the complexity of the two-sex paradigm and the unexpected transformation of gender possibilities that it helped produce through the early and middle decades of the nineteenth century. Discourses surrounding the first direct observations of the earliest development of fetal urinogenital anatomy were pivotal. The prevailing view that the incipient embryo was sexually undifferentiated (a paragon of the one-sex paradigm) was challenged by the Edinburgh anatomist Robert Knox, initially as he sought to bolster his professional reputation at the height of the Burke and Hare "body-snatching" scandal. Knox suggested that every embryo began life in an essentially dual-sexed state, an individual's sex anatomy depending on the greater or lesser development of component female and male structures. Greater clarification on the contested status of the homology-hermaphrodite distinction was achieved with the discovery of the early co-existence of the excretory duct of the Wolffian body (mesonephric duct) and the Müllerian duct (paramesonephric duct), an observation that made anatomical bisexuality difficult to ignore. The nineteenth-century's greatest champion of primordial hermaphroditism was Charles Darwin who was pivotal in phylogenizing the principle and establishing the premise that (in his own words) "Every man & woman is hermaphrodite," a foundation stone of late-nineteenth-century sexology.

  8. Nonspreading Wave Packets.

    ERIC Educational Resources Information Center

    Berry, M. V.; Balazs, N. L.

    1979-01-01

    Explains properties of the Airy packet that show that quantum wave functions correspond to a family of orbits and not to a single particle. Introducing the Airy packet into elementary quantum mechanics courses is recommended. (HM)

  9. Holographic generation of non-diffractive beams

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Choi, Dawoon; Hong, Keehoon; Lee, Kyookeun; Kim, Kyoung-Youm

    2014-11-01

    An Airy beam is a non-diffractive wave which propagates along a ballistic trajectory without any external force. Although it is impossible to implement ideal Airy beams because they carry infinite power, so-called finite Airy beams can be achieved by tailoring infinite side lobes with an aperture function and they have similar propagating characteristics with those of ideal Airy beams. The finite Airy beam can be optically generated by several ways: the optical Fourier transform system with imposing cubic phase to a broad Gaussian beam, nonlinear generation of Airy beams, curved plasma channel generation, and electron beam generation. In this presentation, a holographic generation of the finite Airy beams will be discussed. The finite Airy beams can be generated in virtue of holographic technique by `reading' a hologram which is recorded by the interference between a finite Airy beam generated by the optical Fourier transform and a reference plane wave. Moreover, this method can exploit the unique features of holography itself such as successful reconstruction with the imperfect incidence of reference beam, reconstruction of phase-conjugated signal beam, and multiplexing, which can shed more light on the characteristics of finite Airy beams. This method has an advantage in that once holograms are recorded in the photopolymer, a bulky optics such as the SLM and lenses are not necessary to generate Airy beams. In addition, multiple Airy beams can be stored and reconstructed simultaneously or individually.

  10. Generation of self-healing and transverse accelerating optical vortices

    NASA Astrophysics Data System (ADS)

    Wei, Bing-Yan; Chen, Peng; Ge, Shi-Jun; Duan, Wei; Hu, Wei; Lu, Yan-Qing

    2016-09-01

    Self-healing and transverse accelerating optical vortices are generated via modulating Gaussian beams through subsequent liquid crystal q-plate and polarization Airy mask. We analyze the propagation dynamics of these vortex Airy beams, and find that they possess the features of both optical vortices and Airy beams. Topological charges and characteristics of nondiffraction, self-healing, and transverse acceleration are experimentally verified. In addition, vortex Airy beams with both topological charge and radial index are demonstrated and mode switch among Gaussian, vortex, vector, Airy beams and their combinations can be acquired easily. Our design provides a flexible and highly efficient way to generate unique optical vortices with self-healing and transverse acceleration properties, and facilitates prospective applications in optics and photonics.

  11. The two populations’ cellular automata model with predation based on the Penna model

    NASA Astrophysics Data System (ADS)

    He, Mingfeng; Lin, Jing; Jiang, Heng; Liu, Xin

    2002-09-01

    In Penna's single-species asexual bit-string model of biological ageing, the Verhulst factor has too strong a restraining effect on the development of the population. Danuta Makowiec gave an improved model based on the lattice, where the restraining factor of the four neighbours take the place of the Verhulst factor. Here, we discuss the two populations’ Penna model with predation on the planar lattice of two dimensions. A cellular automata model containing movable wolves and sheep has been built. The results show that both the quantity of the wolves and the sheep fluctuate in accordance with the law that one quantity increases while the other one decreases.

  12. Comparison of observed and predicted gravity profiles over Aphrodite Terra, Venus

    SciTech Connect

    Black, M.T. ); Zuber, M.T. ); McAdoo, D.C. )

    1991-01-10

    The authors compare observed Pioneer Venus orbiter (PVO) gravity profiles over Aphrodite Terra to profiles predicted from models of thermal isostasy, mantle convection, and Airy compensation. Similar approaches are used in order to investigate how well the models can be distinguished with the PVO data. Topography profiles across Aphrodite are compared to model spreading ridge profiles in order to further assess this model. Airy compensation depths and convection layer thicknesses are greater under eastern Aphrodite than western Aphrodite. Compensation depths in the east are greater than most estimates of lithospheric thickness, suggesting that this part of the ridge is dynamically supported. In parts of western Aphrodite, the spreading ridge model gravity provides a better fit to the data than either Airy compensation or mantle convection. Best-fit spreading rates are between 0.3 and 1.6 cm/yr. Airy compensation and mantle convection cannot be distinguished in most places using only PVO data.

  13. 77 FR 64993 - Change in Bank Control Notices; Acquisitions of Shares of a Bank or Bank Holding Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... Bancorp, Mount Airy, and thereby indirectly acquire voting shares of Surrey Bank & Trust, both in Mount...) 1 Memorial Drive, Kansas City, Missouri 64198-0001: 1. The E.L. Burch Irrevocable Trust of...

  14. 3. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 SOUTHWEST ELEVATION - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA

  15. 4. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 FIREPLACE IN DOLL HOUSE - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA

  16. 1. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey Richard Koch, Photographer, Circa 1925 DOVE COTE AND DOLL HOUSE - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA

  17. 2. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey Richard Koch, Photographer, April, 1934 SOUTHWEST ELEVATION - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA

  18. 5. Historic American Buildings Survey Richard Koch, Photographer, March, 1934 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Richard Koch, Photographer, March, 1934 VIEW FROM NORTH WEST - Angelina Plantation (Dove Cote & Doll House), State Highway 1, Mount Airy, St. John the Baptist Parish, LA

  19. RF-powered atmospheric pressure plasma jet for surface treatment

    NASA Astrophysics Data System (ADS)

    Pawłat, Joanna; Samoń, Radosław; Stryczewska, Henryka D.; Diatczyk, Jarosław; Giżewski, Tomasz

    2013-02-01

    Atmospheric pressure plasma jet (APPJ) was developed for decontamination purposes. Features of the device are ability to work with various feed-gases at the atmospheric pressure in several gas-flow, frequency and current-voltage regimes. LabVIEW virtual measurement sub-system for monitoring and measurement process through subsequent setting of electrical and gas-flow parameters (digital control of flow-meters), conditioning and amplification of electrical signals and collection of the data from peripheral measuring devices was applied. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  20. Porters, watchmen, and the crime of William Sayers: the non-scientific staff of the Royal Observatory, Greenwich, in Victorian times

    NASA Astrophysics Data System (ADS)

    Chapman, Allan

    2003-06-01

    A careful study of the detailed archives of the Victorian Royal Observatory makes it possible to build up a picture of the employment and working conditions not only of the astronomical staff who worked at Greenwich, but also of the labourers, watchmen, and gate porters. Indeed, the archives open up a window on to how the Observatory was run on a daily basis: how its non-scientific staff were recruited and paid, and what were their terms of employment. They also say a great deal about how Sir George Biddell Airy directed and controlled every aspect of the Observatory's life. Yet while Airy was a strict employer, he emerges as a man who was undoubtedly fair-minded and sometimes even generous to his non-scientific work-force. A study of the Observatory staff files also reveals the relationship between the Observatory labouring staff and the Airy family's domestic servants. And of especial interest is the robbery committed by William Sayers, the Airy family footman in 1868, bringing to light as it does Sir George and Lady Richarda Airy's views on crime and its social causes and consequences, the prison rehabilitation service in 1868, and their opinions on the reform of offenders. Though this paper is not about astronomy as such, it illuminates a fascinating interface where the world of astronomical science met and worked alongside the world of ordinary Victorian people within the walls of one of the nineteenth century's most illustrious astronomical institutions.

  1. Abruptly autofocusing terahertz waves with meta-hologram.

    PubMed

    He, Jingwen; Wang, Sen; Xie, Zhenwei; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-06-15

    An abruptly autofocusing ring-Airy beam is demonstrated in the terahertz (THz) waveband with a meta-hologram. The designed meta-hologram is composed of gold C-shaped slot antennas, which can realize both phase and amplitude modulation of the incident THz wave. A THz holographic imaging system is utilized to measure the generated ring-Airy beam; an abrupt focus following a parabolic trajectory is subsequently observed. THz ring-Airy beams with different parameters are also generated and investigated. This method can be expanded to other wavebands, such as the visible band, for which the meta-hologram can replace traditional computer-generated holography to avoid undesirable multiple diffraction orders.

  2. Abruptly autofocusing terahertz waves with meta-hologram.

    PubMed

    He, Jingwen; Wang, Sen; Xie, Zhenwei; Ye, Jiasheng; Wang, Xinke; Kan, Qiang; Zhang, Yan

    2016-06-15

    An abruptly autofocusing ring-Airy beam is demonstrated in the terahertz (THz) waveband with a meta-hologram. The designed meta-hologram is composed of gold C-shaped slot antennas, which can realize both phase and amplitude modulation of the incident THz wave. A THz holographic imaging system is utilized to measure the generated ring-Airy beam; an abrupt focus following a parabolic trajectory is subsequently observed. THz ring-Airy beams with different parameters are also generated and investigated. This method can be expanded to other wavebands, such as the visible band, for which the meta-hologram can replace traditional computer-generated holography to avoid undesirable multiple diffraction orders. PMID:27304289

  3. Theoretical Study of Large-Angle Bending Transport of Microparticles by 2D Acoustic Half-Bessel Beams

    NASA Astrophysics Data System (ADS)

    Li, Yixiang; Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou

    2015-08-01

    Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90o). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences.

  4. New insights into the rainbow Part 1/2: Study on the physics of the supernumerary bows

    NASA Astrophysics Data System (ADS)

    Ricard, J. L.

    2011-12-01

    We have tested the basic assumptions of the Airy's theory. Surprisingly, they are only valid in a small angle close to the minimum deviation angle (less than 2 degrees). For instance in the supernumerary area, the Airy's theory has obvious flaws. In the Airy's model, two aspects of the diffraction are taken into account. Firstly, a phenomenon of interferences discovered by Young created by rays of light with different pathes through the droplets. Secondly, "simple diffraction" such as the one appearing on the both (shadowed and lighted) side of a straight edge. In this study, we show that the "simple diffraction" alone is enough for understanding the formation of the supernumerary arcs. Interferences contribute in fact only very little.

  5. Richard Christopher Carrington: Briefly Among the Great Scientists of His Time

    NASA Astrophysics Data System (ADS)

    Cliver, Edward W.; Keer, Norman C.

    2012-09-01

    We recount the life and career of Richard Christopher Carrington (1826 - 1875) and explore his pivotal relationship with Astronomer Royal George Biddell Airy. Carrington was the pre-eminent solar astronomer of the 19th century. During a ten year span, he determined the position of the Sun's rotation axis and made the following discoveries: i) the latitude variation of sunspots over the solar cycle, ii) the Sun's differential rotation, and iii) the first solar flare (with Hodgson). Due to the combined effects of family responsibilities, failure to secure a funded position in astronomy (reflecting Airy's influence), and ill health, Carrington's productive period ended when he was at the peak of his powers.

  6. Leidos Reclaims Defelice Cup at Annual Golf Tournament | Poster

    Cancer.gov

    By Ashley DeVine, Staff Writer Leidos Biomedical Research reclaimed the Defelice Cup trophy from NCI at the eighth annual Ronald H. Defelice golf tournament, held October 14. The final score was 15–7, with Leidos Biomed tying the series 4 to 4. Fourteen players on each team battled it out at Rattlewood golf course in Mount Airy, Md.

  7. Tracy-Widom at High Temperature

    NASA Astrophysics Data System (ADS)

    Allez, Romain; Dumaz, Laure

    2014-09-01

    We investigate the marginal distribution of the bottom eigenvalues of the stochastic Airy operator when the inverse temperature tends to . We prove that the minimal eigenvalue, whose fluctuations are governed by the Tracy-Widom law, converges weakly, when properly centered and scaled, to the Gumbel distribution. More generally we obtain the convergence in law of the marginal distribution of any eigenvalue with given index . Those convergences are obtained after a careful analysis of the explosion times process of the Riccati diffusion associated to the stochastic Airy operator. We show that the empirical measure of the explosion times converges weakly to a Poisson point process using estimates proved in Dumaz and Virág (Ann Inst H Poincaré Probab Statist 49(4):915-933, 2013). We further compute the empirical eigenvalue density of the stochastic Airy ensemble on the macroscopic scale when . As an application, we investigate the maximal eigenvalues statistics of -ensembles when the repulsion parameter when . We study the double scaling limit and argue with heuristic and numerical arguments that the statistics of the marginal distributions can be deduced following the ideas of Edelman and Sutton (J Stat Phys 127(6):1121-1165, 2007) and Ramírez et al. (J Am Math Soc 24:919-944, 2011) from our later study of the stochastic Airy operator.

  8. Study on measurement of refractive index profile of GI-POF by light scattering

    NASA Astrophysics Data System (ADS)

    Huifen, Jiang; Xiang'e, Han

    2009-04-01

    This paper is devoted to the study on measurement of refractive index profile of graded-index polymer optical fiber (GI-POF) by light scattering. Using Generalized Airy theory and Debye series of an inhomogeneous cylinder, the scattering intensity distributions are obtained of Airy structure of rainbows for different refractive index profile. The results show that positions of Airy peaks depend closely on refractive index profile of GI-POF. Since each order of rainbow penetrates it to different depths, such methods could be used to provide information of the refractive index profile of GI-POF. For GI-POF with given diameter, positions of Airy peaks of rainbows are simulated as a function of refractive index profile, which can be used to inverse unknown parameters of refractive index profile. The least square method is used in inversion of refractive index profile with the given refractive index of the cladding. The results obtained agree with theoretical values with high precision. The method has the advantages of non-instructive and on-line measurement, and can be used for the measurement of other inhomogeneous droplets.

  9. 77 FR 66635 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Border Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... (77 FR 36292). Patricia A. Brink, Director of Civil Enforcement, Antitrust Division. BILLING CODE 4410... Robotics, Sherman Oaks, CA; Global Technical Systems, Virginia Beach, VA; Hurley IR, Mount Airy, MD; ICx Tactical Platforms, Forest Park, GA; Innovative Signal Analysis, Inc., Richardson, TX; Liquid...

  10. At Home with History

    ERIC Educational Resources Information Center

    Biemiller, Lawrence

    2007-01-01

    Charles Carroll Jr. would be long forgotten but for a single notable accomplishment: he built an exceedingly handsome house. Begun in 1801 with money from his wealthy father-- Charles Carroll of Carrollton, the only Roman Catholic signer of the Declaration of Independence-- the Federal-style home has near-perfect proportions and airy rooms. The…

  11. Nonlocalization of Nonlocal Symmetry and Symmetry Reductions of the Burgers Equation

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Jia, Man; Lou, Sen-Yue

    2012-12-01

    Symmetry reduction method is one of the best ways to find exact solutions. In this paper, we study the possibility of symmetry reductions of the well known Burgers equation including the nonlocal symmetry. The related new group invariant solutions are obtained. Especially, the interactions among solitons, Airy waves, and Kummer waves are explicitly given.

  12. Mars, the Meridian, and Mert: The Quest for Martian Longitude

    NASA Astrophysics Data System (ADS)

    Archinal, B. A.; Caplinger, M.

    2002-12-01

    From the mid 1960?s until his passing last year, Merton Davies of RAND was closely involved in establishing and maintaining the fundamental coordinate system for Mars. This included the establishment of the location of a modern 0-degree or Prime Meridian for Mars. In the early 1970's, images of the Martian surface became available via the Mariner 9 spacecraft. In 1973 G. de Vaucouleurs, Davies, and F. Sturms, Jr. proposed (JGR, 78, 4395) that a small easily identifiable crater in the area of Sinus Meridiani - the previously accepted origin - be used to define the Meridian. H. Masursky, de Vaucouleurs, and Davies selected an ~500 m diameter crater to serve this purpose. They proposed a name of Airy-0 for the crater in honor of Sir George Airy, who installed the transit instrument at the Greenwich Observatory, which for many years defined the Prime Meridian of the Earth. In a photogrammetric adjustment of Mariner 9 images Davies (Photo. Eng., 39, 1297; JGR, 78, 4355) held the longitude of Airy-0 fixed at 0-degrees, and thereby tied the entire Martian coordinate system to this crater. Davies and colleagues at RAND continued through 2001 in revising this coordinate system. All the while, these improved coordinate systems continued to be tied to Airy-0 and provided revised values for W0, the angle relating surface longitudes to inertial space coordinates. In 2001, the NASA Mars Geodesy and Cartography Working Group, chaired by T. Duxbury, and having as members many scientists (representing e.g. NASA, USGS, Malin SSS, DLR) interested in Martian coordinate system problems, assessed all available information on the location of Airy-0. This included solutions from Davies and Colvin and others, an evaluation of spacecraft lander locations, a Mars Global Surveyor Mars Orbiter Camera (MOC) image of Airy-0, and MOLA data in the vicinity of Airy-0. A value of W0 = 176.630 degrees was adopted for use, and this value has now in turn been adopted by the IAU (Seidelmann et al., Cel

  13. The Martian Prime Meridian -- Longitude 'Zero'

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site]

    On Earth, the longitude of the Royal Observatory in Greenwich, England is defined as the 'prime meridian,' or the zero point of longitude. Locations on Earth are measured in degrees east or west from this position. The prime meridian was defined by international agreement in 1884 as the position of the large 'transit circle,' a telescope in the Observatory's Meridian Building. The transit circle was built by Sir George Biddell Airy, the 7th Astronomer Royal, in 1850. (While visual observations with transits were the basis of navigation until the space age, it is interesting to note that the current definition of the prime meridian is in reference to orbiting satellites and Very Long Baseline Interferometry (VLBI) measurements of distant radio sources such as quasars. This 'International Reference Meridian' is now about 100 meters east of the Airy Transit at Greenwich.)

    For Mars, the prime meridian was first defined by the German astronomers W. Beer and J. H. Madler in 1830-32. They used a small circular feature, which they designated 'a,' as a reference point to determine the rotation period of the planet. The Italian astronomer G. V. Schiaparelli, in his 1877 map of Mars, used this feature as the zero point of longitude. It was subsequently named Sinus Meridiani ('Middle Bay') by Camille Flammarion.

    When Mariner 9 mapped the planet at about 1 kilometer (0.62 mile) resolution in 1972, an extensive 'control net' of locations was computed by Merton Davies of the RAND Corporation. Davies designated a 0.5-kilometer-wide crater (0.3 miles wide), subsequently named 'Airy-0' (within the large crater Airy in Sinus Meridiani) as the longitude zero point. (Airy, of course, was named to commemorate the builder of the Greenwich transit.) This crater was imaged once by Mariner 9 (the 3rd picture taken on its 533rd orbit, 533B03) and once by the Viking 1 orbiter in 1978 (the 46th image on that spacecraft's 746th orbit

  14. Fourth Bionanotox and Applications Research Conference, 2009

    NASA Astrophysics Data System (ADS)

    Camp, Judy

    2010-04-01

    "Anticipating the future" seemed the common challenge for scientists attending the 4th BioNanoTox and Applications Research Conference in Little Rock, AR, October 21-22, 2009. Over 50 participants in multi-disciplines such as biology, chemistry, physics, medicine, medical diagnostics, computer science and informatics, nanotechnology, toxicology, and pharmaceutical science gathered to share their research data. From topics on water and food resources to space exploration to conservation to understanding biological activities and using instruments and computers that process enormous data, participants shared research approaches from different fields to find common themes in this integrated field. Presentations aimed at preventing the harmful effects of scientific discoveries to animals, humans, plants, and environment; at controlling infections; and at optimizing health care. The conference included addresses from Thomas Flammang, PhD, of the Food and Drug Administration, National Center for Toxicological Research in Jefferson, AR; Little Rock City Mayor Mark Stodola; and two keynote speakers. Keynote lectures by Danuta Leszczynska, PhD, from the Department of Civil and Environmental Engineering, Interdisciplinary Nanotoxicity Center, in Jackson, MS, and by Keith Cowan, PhD, from the Institute for Environmental Biotechnology in Grahamstown, South Africa, highlighted current trends and future challenges of nanoparticle research and of bioprocess technologies. Additionally, 25 graduate and undergraduate students presented research posters, resulting in valuable discussion among the varied participants; three student projects were selected for awards.

  15. Survey of leafhopper species in almond orchards infected with almond witches'-broom phytoplasma in Lebanon.

    PubMed

    Dakhil, Hala A; Hammad, Efat Abou-Fakhr; El-Mohtar, Choaa; Abou-Jawdah, Yusuf

    2011-01-01

    Leafhoppers (Hemiptera: Auchenorrhyncha: Cicadellidae) account for more than 80% of all "Auchenorrhynchous" vectors that transmit phytoplasmas. The leafhopper populations in two almond witches'-broom phytoplasma (AlmWB) infected sites: Tanboureet (south of Lebanon) and Bourj El Yahoudieh (north of Lebanon) were surveyed using yellow sticky traps. The survey revealed that the most abundant species was Asymmetrasca decedens, which represented 82.4% of all the leafhoppers sampled. Potential phytoplasma vectors in members of the subfamilies Aphrodinae, Deltocephalinae, and Megophthalminae were present in very low numbers including: Aphrodes makarovi, Cicadulina bipunctella, Euscelidius mundus, Fieberiella macchiae, Allygus theryi, Circulifer haematoceps, Neoaliturus transversalis, and Megophthalmus scabripennis. Allygus theryi (Horváth) (Deltocephalinae) was reported for the first time in Lebanon. Nested PCR analysis and sequencing showed that Asymmetrasca decedens, Empoasca decipiens, Fieberiella macchiae, Euscelidius mundus, Thamnottetix seclusis, Balclutha sp., Lylatina inexpectata, Allygus sp., and Annoplotettix danutae were nine potential carriers of AlmWB phytoplasma. Although the detection of phytoplasmas in an insect does not prove a definite vector relationship, the technique is useful in narrowing the search for potential vectors. The importance of this information for management of AlmWB is discussed.

  16. Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, Jerzy; Dors, Mirosław; Jasiński, Mariusz; Hrycak, Bartosz; Czylkowski, Dariusz

    2013-02-01

    This work was aimed at experimental investigations of deactivation of different types of microorganisms by using atmospheric pressure low-temperature microwave microplasma source (MmPS). The MmPS was operated at standard microwave frequency of 2.45 GHz. Its main advantages are simple and cheap construction, portability and possibility of penetrating into small cavities. The microplasma deactivation concerned two types of bacteria (Escherichia coli, Bacillus subtilis) and one fungus (Aspergillus niger). The quality as well as quantity tests were performed. The influence of the microorganism type, oxygen concentration, absorbed microwave power, microplasma treatment time and MmPS distance from the treated sample on the microorganism deactivation efficiency was investigated. All experiments were performed for Ar microplasma and Ar/O2 microplasma with up to 3% of O2. Absorbed microwave power was up to 50 W. The Ar flow rate was up to 10 L/min. The sample treatment time was up to 10 s. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  17. Ozone-mist spray sterilization for pest control in agricultural management

    NASA Astrophysics Data System (ADS)

    Ebihara, Kenji; Mitsugi, Fumiaki; Ikegami, Tomoaki; Nakamura, Norihito; Hashimoto, Yukio; Yamashita, Yoshitaka; Baba, Seiji; Stryczewska, Henryka D.; Pawlat, Joanna; Teii, Shinriki; Sung, Ta-Lun

    2013-02-01

    We developed a portable ozone-mist sterilization system to exterminate pests (harmful insects) in agricultural field and greenhouse. The system is composed of an ozone generator, an ozone-mist spray and a small container of ozone gas. The ozone generator can supply highly concentrated ozone using the surface dielectric barrier discharge. Ozone-mist is produced using a developed nozzle system. We studied the effects of ozone-mist spray sterilization on insects and agricultural plants. The sterilization conditions are estimated by monitoring the behavior of aphids and observing the damage of the plants. It was shown that aphids were exterminated in 30 s without noticeable damages of the plant leaves. The reactive radicals with strong oxidation potential such as hydroxyl radical (*OH), hydroperoxide radical (*HO2), the superoxide ion radical (*O2‒) and ozonide radical ion (*O3‒) can increase the sterilization rate for aphids. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  18. Oxidation of nitrogen oxide in hybrid plasma-catalytic reactors based on DBD and Fe2O3

    NASA Astrophysics Data System (ADS)

    Jõgi, Indrek; Erme, Kalev; Haljaste, Ants; Laan, Matti

    2013-02-01

    In the present study, Fe2O3 was used as catalyst for the removal of NO in a hybrid plasma- catalytic reactor. The catalyst was located either directly inside the hybrid plasma-catalytic reactor or in a separate catalytic reactor, which followed ozone producing and injecting plasma reactor. Ozone production in such a reactor was dependent on the state of the electrode surface. The fresh catalyst ensured an order of magnitude smaller ozone concentration in the outlet of the hybrid reactor. After a short treatment of the catalyst with NO2, its ability to destroy ozone diminished but was regained after heating of the reactor up to 100 °C. Similarly to earlier results obtained with TiO2, the removal of NO in the hybrid reactor with Fe2O3 was enhanced compared to that in an ordinary plasma reactor. In the ozone injection reactor, oxidation of NO to NO2 took place with considerably higher efficiency compared to the hybrid reactor. The use of catalyst in the ozonation stage further improved the oxidation of NO2 to N2O5. The time-dependence effects of NO removal during plasma and ozone oxidation were explained by reactions between NO2 adsorbed on surface, with surface-bound NO3 and gas phase NO as the reaction product. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  19. A tomographic visualization of electric discharge sound fields in atmospheric pressure plasma using laser diffraction

    NASA Astrophysics Data System (ADS)

    Nakamiya, Toshiyuki; Mitsugi, Fumiaki; Iwasaki, Yoichiro; Ikegami, Tomoaki; Tsuda, Ryoichi; Sonoda, Yoshito; Danuta Stryczewska, Henryka

    2013-02-01

    The phase modulation of transparent gas can be detected using Fraunhofer diffraction technique, which we call optical wave microphone (OWM). The OWM is suitable for the detection of sonic wave from audible sound to ultrasonic wave. Because this technique has no influence on sound field or electric field during the measurement, we have applied it to the sound detection for the electric discharges. There is almost no research paper that uses the discharge sound to examine the electrical discharge phenomenon. Two-dimensional visualization of the sound field using the OWM is also possible when the computerized tomography (CT) is combined. In this work, coplanar dielectric barrier discharge sin different gases of Ar, N2, He were characterized via the OWM as well as applied voltage and discharge current. This is the first report to investigate the influence of the type of the atmospheric gas on the two-dimensional sound field distribution for the coplanar dielectric barrier discharge using the OWM with CT. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  20. Plasma deposition of antimicrobial coating on organic polymer

    NASA Astrophysics Data System (ADS)

    Rżanek-Boroch, Zenobia; Dziadczyk, Paulina; Czajkowska, Danuta; Krawczyk, Krzysztof; Fabianowski, Wojciech

    2013-02-01

    Organic materials used for packing food products prevent the access of microorganisms or gases, like oxygen or water vapor. To prolong the stability of products, preservatives such as sulfur dioxide, sulfites, benzoates, nitrites and many other chemical compounds are used. To eliminate or limit the amount of preservatives added to food, so-called active packaging is sought for, which would limit the development of microorganisms. Such packaging can be achieved, among others, by plasma modification of a material to deposit on its surface substances inhibiting the growth of bacteria. In this work plasma modification was carried out in barrier discharge under atmospheric pressure. Sulfur dioxide or/and sodium oxide were used as the coating precursors. As a result of bacteriological studies it was found that sulfur containing coatings show a 16% inhibition of Salmonella bacteria growth and 8% inhibition of Staphylococcus aureus bacteria growth. Sodium containing coatings show worse (by 10%) inhibiting properties. Moreover, films with plasma deposited coatings show good sealing properties against water vapor. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  1. Separation of dynamic and isostatic components of the Venusian gravity and topography and determination of the crustal thickness of Venus

    NASA Astrophysics Data System (ADS)

    Yang, An; Huang, Jinshui; Wei, Daiyun

    2016-09-01

    Assuming that the long-wavelength geoid and topography of Venus are supported by both mantle convection and Airy isostasy, we propose a method to separate the dynamic and isostatic components of the Venusian gravity and topography with the aid of the dynamic admittance from numerical models of mantle convection and the isostatic admittance from an Airy isostatic model. The global crustal thickness is then calculated based on the isostatic component of the gravity and topography. The results show that some highland plateaus such as Ishtar Terra and Ovda Regio have thick crust, which are largely supported by isostatic compensation. Other highland plateaus such as Thetis and Phoebe Regiones appear to have superimposed contributions from crustal thickening and dynamic support. Volcanic rises such as Atla and Beta Regiones have thin crust, which is consistent with the postulation that these volcanic rises are mainly the products of dynamic uplift caused by mantle plumes.

  2. Controllably accelerating and decelerating Airy–Bessel–Gaussian wave packets

    NASA Astrophysics Data System (ADS)

    Deng, Fu; Yu, Weihao; Deng, Dongmei

    2016-11-01

    By solving the (3  +  1)D free-space Schrödinger equation in polar coordinates analytically, we have investigated the propagation of 3D controllably accelerating and decelerating Airy–Bessel–Gaussian (CAiBG) wave packets, even CAiBG wave packets, odd CAiBG wave packets and the superposition of several CAiBG wave packets in free space. The CAiBG wave packets are constructed with the Airy pulses with initial velocity in temporal domain and the Bessel–Gaussian beams in space domain. Due to the initial velocity on Airy pulses, we can obtain decelerating and accelerating Airy–Bessel–Gaussian wave packets by selecting different initial velocities. Moreover, by superposing several CAiBG wave packets, we can obtain the rotating wave packets.

  3. Geoid height versus topography for oceanic plateaus and swells

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Mackenzie, Kevin R.

    1989-01-01

    Gridded geoid height data (Marsh et al.l, 1986) and gridded bathymetry data (Van Wykhouse, 1973) are used to estimate the average compensation depths of 53 oceanic swells and plateaus. The relationship between geoid height and topography is examined using Airy and thermal compensation models. It is shown that geoid height is linearly related to topography between wavelengths of 400 and 4000 m as predicted by isostatic compensation models. The geoid/topography ratio is dependent on the average depth of compensation. The intermediate geoid/topography ratios of most thermal swells are interpreted as a linear combination of the decaying thermal swell signature and that of the persisting Airy-compensated volcanic edifice.

  4. Automatic Fourier transform and self-Fourier beams due to parabolic potential

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqi; Liu, Xing; Belić, Milivoj R.; Zhong, Weiping; Petrović, Milan S.; Zhang, Yanpeng

    2015-12-01

    We investigate the propagation of light beams including Hermite-Gauss, Bessel-Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams-that is, the beams whose Fourier transforms are the beams themselves.

  5. Propagation of optical beams in two transverse gradient index media

    NASA Astrophysics Data System (ADS)

    Martín-Ruiz, A.; Martín-Heredia, J.; Ruiz-Ochoa, L. A.; Chan-López, E.

    2016-05-01

    We investigate the propagation of optical beams in two gradient index inhomogeneous media. The Green's function for paraxial propagation in an inhomogeneous medium is derived as a Feynman path integral involving summation over real rays. We use a simple method based on discontinuous functions, which is similar to that used in General Relativity when studying metric discontinuities across an hypersurface, to study the propagation in two transverse refractive index gradients which are coupled in the propagation direction. We show that this method is consistent with the geometric-optics ray theory, and then with the definition of the coupled Green's function. The propagation of Gaussian beams in two homogeneous media with different refractive indices is analyzed. We also study the propagation of Airy beams in two media with different linear transverse refractive index gradients. We demonstrate that by controlling the gradient strength of the media it is possible to reduce to zero their acceleration, yielding an Airy beam that propagates linearly.

  6. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2003-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  7. Accurate Thermal Stresses for Beams: Normal Stress

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Pilkey, Walter D.

    2002-01-01

    Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an Airy stress function. The Airy stress function enables the reduction of the three-dimensional thermal stress problem to a two-dimensional one. Numerical results from the general theory of thermoelasticity are compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for prismatic beams proposed in this paper can be used instead of strength of materials when precise stress results are desired.

  8. Intensity-symmetric accelerating caustic beams.

    PubMed

    Ren, Zhijun; Jin, Hongzhen; Peng, Baojin; Shi, Yile

    2016-09-20

    We construct and generate symmetric accelerating caustic beams (ACBs) by using 3/2-order phase-only masks with elliptical contour based on optical caustics and diffraction theory. The symmetric ACBs are a type of bimodal accelerating caustic beam with two quasi-constant intensity peaks, very similar to the combination of two face-to-face Airy-like beams judging by appearance. Their fundamental optical morphology and force properties of particles in ACBs are subsequently provided. The unique optical properties of ACBs can be exploited for practical uses, such as accelerating electrons and clearing micrometer-sized particles as a laser micrometer-sized "water pump" instead of a laser micrometer-sized "snowblower" of accelerating Airy beams. PMID:27661599

  9. Descartes glare points in scattering by icicles: color photographs and a tilted dielectric cylinder model of caustic and glare-point evolution.

    PubMed

    Marston, P L

    1998-03-20

    Glare points associated with the Airy caustics of once and twice internally reflected rays are visible in the scattering by sunlit icicles. Supporting color photographs include an image of the far-field scattering. Relevant rays are analogous to the Descartes rays of primary and secondary rainbows of drops; however, the caustic conditions for the icicle are predicted to be affected by tilt of the illumination relative to the axis of the icicle. A model for the caustic evolution, given for a circular dielectric cylinder, manifests a transition in which the Airy caustic (and associated glare points) merge in the meridional plane at a critical tilt. At this critical tilt the merged glare point is predicted to be very bright. The calculations use the Bravais effective refractive index and generalized ray tracing. PMID:18268747

  10. Polarized rainbow.

    PubMed

    Können, G P; de Boer, J H

    1979-06-15

    The Airy theory of the rainbow is extended to polarized light. For both polarization directions a simple analytic expression is obtained for the intensity distribution as a function of the scattering angle in terms of the Airy function and its derivative. This approach is valid at least down to droplet diameters of 0.3 mm in visible light. The degree of polarization of the rainbow is less than expected from geometrical optics; it increases with droplet size. For a droplet diameter >1 mm the locations of the supernumerary rainbows are equal for both polarization directions, but for a diameter <1 mm the supernumerary rainbows of the weaker polarization component are located between those in the strong component. PMID:20212586

  11. Scattering of an electromagnetic plane wave by a Luneburg lens. I. Ray theory.

    PubMed

    Lock, James A

    2008-12-01

    For a plane wave incident on either a Luneburg lens or a modified Luneburg lens, the magnitude and phase of the transmitted electric field are calculated as a function of the scattering angle in the context of ray theory. It is found that the ray trajectory and the scattered intensity are not uniformly convergent in the vicinity of edge ray incidence on a Luneburg lens, which corresponds to the semiclassical phenomenon of orbiting. In addition, it is found that rays transmitted through a large-focal-length modified Luneburg lens participate in a far-zone rainbow, the details of which are exactly analytically soluble in ray theory. Using these results, the Airy theory of the modified Luneburg lens is derived and compared with the Airy theory of the rainbows of a homogeneous sphere. PMID:19037388

  12. Maunder, E W (1851-1928) and Maunder, Mrs A S D

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Solar astronomers. Maunder became assistant for spectroscopic and solar observations at the Royal Observatory, Greenwich under GEORGE AIRY, aided by his wife. In 1890, while studying the numbers of sunspots over a 300 year time-span he noticed the scarcity of spots in the period 1645-1715. This so-called Maunder minimum was confirmed by Jack Eddy (1976) to be a real effect rather than simply a...

  13. Alpha particle condensation in {sup 12}C and nuclear rainbow scattering

    SciTech Connect

    Ohkubo, S.; Hirabayashi, Y.

    2008-05-12

    It is shown that the large radius of the Hoyle state of {sup 12}C with a dilute density distribution in an {alpha} particle condensate can be clearly seen in the shift of the rainbow angle (therefore the Airy minimum) to a larger angle in {alpha}+{sup 12}C rainbow scattering at the high energy region and prerainbow oscillations in {sup 3}He+{sup 12}C scattering at the lower energy region.

  14. Methodology of contact stress analysis of gearwheel by means of experimental photoelasticity.

    PubMed

    Frankovský, Peter; Ostertag, Oskar; Trebuňa, František; Ostertagová, Eva; Kelemen, Michal

    2016-06-20

    The subject of this paper is the analysis of contact stresses that occur between the teeth of a gear. The analysis was carried out by means of reflection photoelasticity, which is an experimental method rarely used in this field. Contact stresses assessed in the experiment are compared with values assessed through an analytical calculation while using the Airy stress function or Hertzian relations. PMID:27409110

  15. Observation of the enhanced backscattering of light by the end of a tilted dielectric cylinder owing to the caustic merging transition.

    PubMed

    Marston, Philip L; Zhang, Yibing; Thiessen, David B

    2003-01-20

    The scattering of light by obliquely illuminated circular dielectric cylinders was previously demonstrated to be enhanced by a merger of Airy caustics at a critical tilt angle. [Appl. Opt. 37, 1534 (1998)]. A related enhancement is demonstrated here for backward and near-backward scattering for cylinders cut with a flat end perpendicular to the cylinder's axis. It is expected that merged caustics will enhance the backscattering by clouds of randomly oriented circular cylinders that have appropriately flat ends.

  16. Edge Scaling of the β-Jacobi Ensemble

    NASA Astrophysics Data System (ADS)

    Holcomb, Diane; Moreno Flores, Gregorio R.

    2012-12-01

    We study the scaling limit of the spectrum of the β-Jacobi ensemble at the soft edge and hard edge for general values of β. We show that the limiting point processes correspond respectively to the stochastic Airy and Bessel point processes introduced in Ramírez et al. (J. Am. Math. Soc. 24(4):919-944, 2011) and Ramírez and Rider (Commun. Math. Phys. 288(3):887-906, 2009).

  17. Relativistic Bessel cylinders

    NASA Astrophysics Data System (ADS)

    Krisch, J. P.; Glass, E. N.

    2014-10-01

    A set of cylindrical solutions to Einstein's field equations for power law densities is described. The solutions have a Bessel function contribution to the metric. For matter cylinders regular on axis, the first two solutions are the constant density Gott-Hiscock string and a cylinder with a metric Airy function. All members of this family have the Vilenkin limit to their mass per length. Some examples of Bessel shells and Bessel motion are given.

  18. Self-oscillating beams in a photonic lattice

    NASA Astrophysics Data System (ADS)

    Yuce, C.

    2016-06-01

    We study self-acceleration in a parabolic tight-binding lattice and construct a self-accelerating wave packet in k-space. As opposed to accelerating Airy wave packets in free space, self-acceleration occurs in k-space and this leads to self-oscillation in the lattice. We analytically derived a formula for self-acceleration and perform numerical computation to see such an oscillation for the truncated wave.

  19. Solving the {sup 12}C+{sup 12}C scattering puzzle: is there the '4th elephant'?

    SciTech Connect

    Demyanova, A. S.; Danilov, A. N.; Ogloblin, A. A.; Goncharov, S. A.; Bohlen, H. G.; Khlebnikov, S. V.; Tyurin, G. P.; Maslov, V. A.; Penionzkevich, Yu. E.; Sobolev, Yu. G.; Trzaska, W.

    2010-04-30

    Differential cross sections of the {sup 12}C+{sup 12}C and the {sup 13}C+{sup 12}C elastic scattering were measured at the projectile energies 240 MeV ({sup 12}C) and 250 MeV ({sup 13}C) up to the largest angles. The positions of the 1{sup st} Airy minima known from the former experiments were confirmed.

  20. What Brown saw and you can too

    NASA Astrophysics Data System (ADS)

    Pearle, Philip; Collett, Brian; Bart, Kenneth; Bilderback, David; Newman, Dara; Samuels, Scott

    2010-12-01

    A discussion of Robert Brown's original observations of particles ejected by pollen of the plant Clarkia pulchella undergoing what is now called Brownian motion is given. We consider the nature of those particles and how he misinterpreted the Airy disk of the smallest particles to be universal organic building blocks. Relevant qualitative and quantitative investigations with a modern microscope and with a "homemade" single lens microscope similar to Brown's are presented.

  1. 3d mirror symmetry as a canonical transformation

    NASA Astrophysics Data System (ADS)

    Drukker, Nadav; Felix, Jan

    2015-05-01

    We generalize the free Fermi-gas formulation of certain 3d super-symmetric Chern-Simons-matter theories by allowing Fayet-Iliopoulos couplings as well as mass terms for bifundamental matter fields. The resulting partition functions are given by simple modifications of the argument of the Airy function found previously. With these extra parameters it is easy to see that mirror-symmetry corresponds to linear canonical transformations on the phase space (or operator algebra) of the 1-dimensional fermions.

  2. Rayleigh Limit

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The theoretical resolving power of a telescope according to a criterion devised by Lord Rayleigh (1842-1919). Because of the phenomenon of diffraction the image of a point source of light (such as a star) produced even by a perfect optical instrument consists of a central bright spot (the Airy disk) surrounded by concentric dark and light rings. If two point sources are very close together, the r...

  3. Bibliography of astronomers. Books and pamphlets in English by and about astronomers. Volume I: The spirit of the nineteenth century.

    NASA Astrophysics Data System (ADS)

    Luther, P.

    In this bibliography a concise biographical chronology of the following astronomers is given: George Biddell Airy (1801 - 1892), Robert Stawell Ball (1840 - 1913), George Phillips Bond (1825 - 1865), William Cranch Bond (1789 - 1859), Agnes Mary Clerke (1842 - 1907), John Frederick William Herschel (1792 - 1871), Edward Singleton Holden (1846 - 1914), Joseph Norman Lockyer (1836 - 1920), Percival Lowell (1855 - 1916), Ormsby MacKnight Mitchel (1809 - 1862), Simon Newcomb (1835 - 1909), Richard Anthony Proctor (1837 - 1888), Mary Fairfax Greig Somerville (1780 - 1872).

  4. Precise evaluation of the Helmholtz equation for optical propagation.

    PubMed

    Pond, John E; Sutton, George W

    2015-01-01

    A precise computational integration of the Helmholtz equation was performed for laser propagation of an electromagnetic wave with no approximations or linearization. This computation integration was performed using 64-bit processors. This is illustrated for a uniform monochromatic beam from a circular aperture that has a uniform intensity. It predicts many Arago spots and near-field intensity fluctuations for a large ratio of aperture size to wavelength and converges to the usual Airy pattern in the far field. PMID:25531618

  5. Fluorescent Microspheres as Point Sources: A Localization Study.

    PubMed

    Chao, Jerry; Lee, Taiyoon; Ward, E Sally; Ober, Raimund J

    2015-01-01

    The localization of fluorescent microspheres is often employed for drift correction and image registration in single molecule microscopy, and is commonly carried out by fitting a point spread function to the image of the given microsphere. The mismatch between the point spread function and the image of the microsphere, however, calls into question the suitability of this localization approach. To investigate this issue, we subject both simulated and experimental microsphere image data to a maximum likelihood estimator that localizes a microsphere by fitting an Airy pattern to its image, and assess the suitability of the approach by evaluating the ability of the estimator to recover the true location of the microsphere with the best possible accuracy as determined based on the Cramér-Rao lower bound. Assessing against criteria based on the standard errors of the mean and the variance for an ideal estimator of the microsphere's location, we find that microspheres up to 100 nm in diameter can in general be localized using a fixed width Airy pattern, and that microspheres as large as 1 μm in diameter can in general be localized using a floated width Airy pattern. PMID:26218251

  6. Fluorescent Microspheres as Point Sources: A Localization Study

    PubMed Central

    Chao, Jerry; Lee, Taiyoon; Ward, E. Sally; Ober, Raimund J.

    2015-01-01

    The localization of fluorescent microspheres is often employed for drift correction and image registration in single molecule microscopy, and is commonly carried out by fitting a point spread function to the image of the given microsphere. The mismatch between the point spread function and the image of the microsphere, however, calls into question the suitability of this localization approach. To investigate this issue, we subject both simulated and experimental microsphere image data to a maximum likelihood estimator that localizes a microsphere by fitting an Airy pattern to its image, and assess the suitability of the approach by evaluating the ability of the estimator to recover the true location of the microsphere with the best possible accuracy as determined based on the Cramér-Rao lower bound. Assessing against criteria based on the standard errors of the mean and the variance for an ideal estimator of the microsphere’s location, we find that microspheres up to 100 nm in diameter can in general be localized using a fixed width Airy pattern, and that microspheres as large as 1 μm in diameter can in general be localized using a floated width Airy pattern. PMID:26218251

  7. Art form as an object of cognitive modeling (towards development of Vygotsky`s semiotic model)

    SciTech Connect

    Dmitriev, V.; Perlovsky, L.I.

    1996-12-31

    We suggest a further development of Vygotsky`s esthetic-semiotic model. First, we discuss Vygotsky`s model originally developed for the analysis of Ivan Bunin`s story {open_quotes}Light Breath{close_quotes}. Vygotsky analyzes formal methods used by Bunin to achieve a specific esthetic effect of {open_quote}lightness{close_quotes} while describing {open_quotes}dirty{close_quotes} events of everyday life. According to Vygotsky, this effect is achieved by ordering of events in a non-linear fashion. Vygotsky creams an airy pattern of smooth lines connecting events of story that he first orders linearly in time. And, he insists that this airy pattern creates an impression of airy lightness. In the language of semiotics, the esthetic effect is created by a specific structural organization of signs. Second, we present our critique of Vygotsky`s model. Although, we do not agree with Vygotsky`s sometimes moralistic judgements, and we consider the dynamics between inner personal values and received moral values to be more complicated than implied in his judgements, our critique in this paper is limited to the structure of his semiotic model. We emphasize that Vygotsky`s model does not explicitly account for a hierarchy of multiple levels of semiotic analysis. His analysis regularly slips from one level to another: (1) a lever of cognitive perception by a regular reader is confused with a level of creative genius of a writer; (2) {open_quotes}open{close_quotes} time of real world is mixed up with {open_quote}closed{close_quote} time of the story; (3) events are not organized by the hierarchy of their importance, nor in real world, nor in the inner model of the personages, nor in the story.

  8. Rejoice in the hubris: useful things biologists could do for physicists

    NASA Astrophysics Data System (ADS)

    Austin, Robert H.

    2014-10-01

    Political correctness urges us to state how wonderful it is to work with biologists and how, just as the lion will someday lie down with the lamb, so will interdisciplinary work, where biologists and physicists are mixed together in light, airy buildings designed to force socialization, give rise to wonderful new science. But it has been said that the only drive in human nature stronger than the sex drive is the drive to censor and suppress, and so I claim that it is OK for physicists and biologists to maintain a wary distance from each other, so that neither one censors or suppresses the wild ideas of the other.

  9. Has Vision been Universally Modeled in a Way that Predicts Damage from Improper Use, or Rapid and Safe Repair to a Normal, Dynamic, Feedback Protected State, by Patented and Trademarked Naturoptic Vision Improvement Methods?

    NASA Astrophysics Data System (ADS)

    Niemi, Paul; McLeod, Roger

    2006-03-01

    Mc Leod predicts that in visual tasks with pupil diameter changes, a longer, quasimonochromatic wavelength interval is coincident with foveal cones, and rods. A shorter, partially overlapped interval separately aligns with extrafoveal cones. Wavelengths follow the Airy disk radius formula. Extended visual tasks of a type requiring shorter wavelengths, pair extrinsic eye muscles in inappropriate states, one in extension, the other in contraction, exceeding ``Hooke's law'' settings. Hysterisis prevents feedback-driven, self repair. The universal model for vision predicts myopia, hyperopia and presbyopia. Niemi can test and evaluate that model: repair needs triggering and facilitating demands of the possibly overridden feedback signals.

  10. Passive solar commercial buildings: design assistance and demonstration program. Phase 1. Final report

    SciTech Connect

    1981-01-26

    The final design of the Mount Airy Public Library is given. Incremental passive design costs are discussed. Performance and economic analyses are made and the results reported. The design process is thoroughly documented. Considerations discussed are: (1) building energy needs; (2) site energy potentials, (3) matching energy needs with site energy potentials, (4) design indicators for best strategies and concepts, (5) schematic design alternatives, (6) performance testing of the alternatives, (7) design selection, and (8) design development. Weather data and Duke Power electric rates are included. (LEW)

  11. Structural parameters and their effects on the electronic transport properties in aperiodic superlattice profile

    NASA Astrophysics Data System (ADS)

    Bendahma, F.; Djelti, R.; Bentata, S.

    2016-08-01

    The aperiodic GaAs/AlxGa1-xAs superlattices (SL) with trimer disorder have been studied in this paper. The transfer-matrix technique and the exact Airy function formalism have been used to determine the miniband structure, the transmission coefficient, the resonance energy and resonant tunneling time (RTT). Although the disorder localizes the states on average, our numerical calculations show that the localization length of the states becomes more extended when the disorder is correlated (trimer case). We have also found that the RTT is of the order of several femtoseconds.

  12. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Lei, Zeyu; Yang, Tian

    2016-04-01

    We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.

  13. Metrology system for the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    Shaklin, Stuart; Marchen, Luis; Zhao, Feng; Peters, Robert D.; Ho, Tim; Holmes, Buck

    2004-01-01

    The Terrestrial Planet Finder (TPF) employs an aggressive coronagraph designed to obtain better than 1e-10 contrast inside the third Airy ring. Minute changes in low-order aberration content scatter significant light at this position. One implication is the requirement to control low-order aberrations induced by motion of the secondary mirror relative to the primary mirror; sub-nanometer relative positional stability is required. We propose a 6-beam laser truss to monitor the relative positions of the two mirrors. The truss is based on laser metrology developed for the Space Interferometry Mission.

  14. Fraunhofer diffraction patterns from uniformly illuminated square output apertures with noncentered square obscurations.

    PubMed

    Sutton, G W; Weiner, M M; Mani, S A

    1976-09-01

    Theoretical Fraunhofer diffraction patterns are presented for uniformly illuminated square apertures with noncentered square obscurations. The energy within a given subtended solid angle in the far field is calculated. It is shown that the cornered-off-axis obscuration provides much more far-field energy in a given spot size than the centered obscuration for the same clear aperture area and total energy, for example, 82% more far-field energy in the first Airy square for 50% obscuration, thus providing superior performance for practical systems.

  15. Nonlinear volume holography for wave-front engineering.

    PubMed

    Hong, Xu-Hao; Yang, Bo; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2014-10-17

    The concept of volume holography is applied to the design of an optical superlattice for the nonlinear harmonic generation. The generated harmonic wave can be considered as a holographic image caused by the incident fundamental wave. Compared with the conventional quasi-phase-matching method, this new method has significant advantages when applied to complicated nonlinear processes such as the nonlinear generation of special beams. As an example, we experimentally realized a second-harmonic Airy beam, and the results are found to agree well with numerical simulations.

  16. Rejoice in the hubris: useful things biologists could do for physicists.

    PubMed

    Austin, Robert H

    2014-10-08

    Political correctness urges us to state how wonderful it is to work with biologists and how, just as the lion will someday lie down with the lamb, so will interdisciplinary work, where biologists and physicists are mixed together in light, airy buildings designed to force socialization, give rise to wonderful new science. But it has been said that the only drive in human nature stronger than the sex drive is the drive to censor and suppress, and so I claim that it is OK for physicists and biologists to maintain a wary distance from each other, so that neither one censors or suppresses the wild ideas of the other.

  17. Experimental realization of spectral shaping using nonlinear optical holograms.

    PubMed

    Leshem, Anat; Shiloh, Roy; Arie, Ady

    2014-09-15

    We experimentally demonstrate the spectral shaping of a signal generated by a three-wave mixing process using a nonlinear spectral hologram. These holograms are based on binary spatial modulation of the second-order nonlinear coefficient. Here we present the first experimental realization, to the best of our knowledge, of this concept, encoding a nonlinear hologram in a KTiOPO(4) crystal by electric field poling. Two different spectra in the form of the second-order Hermite-Gauss function and the Airy function are shown using the sum-frequency generation process. PMID:26466274

  18. Improved coordinates of features in the vicinity of the Viking lander site on Mars

    NASA Technical Reports Server (NTRS)

    Davies, M. E.; Dole, S. H.

    1980-01-01

    The measurement of longitude of the Viking 1 landing site and the accuracy of the coordinates of features in the area around the landing site are discussed. The longitude must be measured photogrammatically from the small crater, Airy 0, which defines the 0 deg meridian on Mars. The computer program, GIANT, which was used to perform the analytical triangulations, and the photogrammetric computation of the longitude of the Viking 1 lander site are described. Improved coordinates of features in the vicinity of the Viking 1 lander site are presented.

  19. Light steering of Air-Gaussian beam in Nonlocal Nonlinear Medium

    NASA Astrophysics Data System (ADS)

    Chen, Ran; Zhang, Xiaping

    2016-07-01

    With a nonlocal model, we investigate the propagation dynamics of a single Airy-Gaussian (AiG) beam and their interaction in one-dimensional condition by means of direct numerical simulations. With the split-step Fourier method, numerical results show that nonlocality can support periodic intensity distribution of AiG beams leading to the formation of stable bound states. Espesically, by tuning the phase difference between the two beams, we can steer the centre of the bound AiG beams in nonlocal nonlinear media.

  20. Mode discrimination of unstable resonators with spatial filters and by phase modification.

    PubMed

    Southwell, W H

    1979-07-01

    The effects of an intracavity spatial filter in a half-symmetric unstable bare cavity resonator have been studied using iterative propagation techniques to obtain pure l-mode resonator solutions. The results indicate that the mode-loss difference is highest when the spatial-filter radius is at the first or third dark ring of the Airy pattern at the spatial filter. Furthermore, the results are not directly dependent on the resonator-equivalent Fresnel number. Also presented are results indicating that aspherizing the feedback mirror can be done in such a way as to increase mode discrimination. PMID:19687846

  1. Catastrophe optics of sharp-edge diffraction.

    PubMed

    Borghi, Riccardo

    2016-07-01

    A classical problem of diffraction theory, namely plane wave diffraction by sharp-edge apertures, is here reformulated from the viewpoint of the fairly new subject of catastrophe optics. On using purely geometrical arguments, properly embedded into a wave optics context, uniform analytical estimates of the diffracted wavefield at points close to fold caustics are obtained, within paraxial approximation, in terms of the Airy function and its first derivative. Diffraction from parabolic apertures is proposed to test reliability and accuracy of our theoretical predictions.

  2. Experimental simulation of supersonic superboom in a water tank: nonlinear focusing of weak shock waves at a fold caustic.

    PubMed

    Marchiano, Régis; Thomas, Jean-Louis; Coulouvrat, François

    2003-10-31

    An accelerating supersonic aircraft produces noisy superboom due to acoustical shock wave focusing at a fold caustic. This phenomenon is modeled by the mixed-type nonlinear Tricomi equation. An innovative experimental simulation in a water tank has been carried out, with perfect similitude to sonic boom in air. In the linear regime, the canonical Airy function is reproduced using the inverse filter technique. In the nonlinear regime (weak shock waves), the experiment demonstrates the key role of nonlinear effects: they limit the field amplitude, distort the sonic line, and strongly alter the phase of the signal, in agreement with numerical simulations. PMID:14611285

  3. The discoveries of Neptune and Triton.

    NASA Astrophysics Data System (ADS)

    Moore, P.

    The story of the tracking-down of Neptune has been told many times, but even today there are still discrepancies in the various accounts, to say nothing of conflicting opinions. To some people, John Couch Adams is a shining hero and George Biddell Airy a black villain; to others it is Le Verrier who is the hero, and Adams an unimportant member of the supporting cast. Of course, all this is absurd. In the author's view, the true discoverers of Neptune were Johann Gottfried Galle and Heinrich D'Arrest.

  4. Fractional Schrödinger equation in optics.

    PubMed

    Longhi, Stefano

    2015-03-15

    In quantum mechanics, the space-fractional Schrödinger equation provides a natural extension of the standard Schrödinger equation when the Brownian trajectories in Feynman path integrals are replaced by Levy flights. Here an optical realization of the fractional Schrödinger equation, based on transverse light dynamics in aspherical optical cavities, is proposed. As an example, a laser implementation of the fractional quantum harmonic oscillator is presented in which dual Airy beams can be selectively generated under off-axis longitudinal pumping. PMID:25768196

  5. Domino tilings and the six-vertex model at its free-fermion point

    NASA Astrophysics Data System (ADS)

    Ferrari, Patrik L.; Spohn, Herbert

    2006-08-01

    At the free-fermion point, the six-vertex model with domain wall boundary conditions (DWBC) can be related to the Aztec diamond, a domino tiling problem. We study the mapping on the level of complete statistics for general domains and boundary conditions. This is obtained by associating with both models a set of non-intersecting lines in the Lindström-Gessel-Viennot (LGV) scheme. One of the consequences for DWBC is that the boundaries of the ordered phases are described by the Airy process in the thermodynamic limit.

  6. NCI Holds on to Defelice Cup | Poster

    Cancer.gov

    NCI kept the Defelice Cup trophy this year after beating Leidos Biomedical Research, 15 to 9, at the 10th annual Ronald H. Defelice Golf Tournament held on Columbus Day. Sixteen players on each team battled it out at the yearly contractor vs. government tournament held at Rattlewood Golf Course in Mount Airy, Md. NCI leads the series 6–4. “The score was the highest NCI margin of victory in the 10-year series,” said Denny Dougherty, retired senior subcontracts advisor at what was formerly SAIC-Frederick. “The intensity of the annual competition has increased each year and has become...

  7. Approximate Symmetry Reduction Approach: Infinite Series Reductions to the KdV-Burgers Equation

    NASA Astrophysics Data System (ADS)

    Jiao, Xiaoyu; Yao, Ruoxia; Zhang, Shunli; Lou, Sen Y.

    2009-11-01

    For weak dispersion and weak dissipation cases, the (1+1)-dimensional KdV-Burgers equation is investigated in terms of approximate symmetry reduction approach. The formal coherence of similarity reduction solutions and similarity reduction equations of different orders enables series reduction solutions. For the weak dissipation case, zero-order similarity solutions satisfy the Painlevé II, Painlevé I, and Jacobi elliptic function equations. For the weak dispersion case, zero-order similarity solutions are in the form of Kummer, Airy, and hyperbolic tangent functions. Higher-order similarity solutions can be obtained by solving linear variable coefficients ordinary differential equations.

  8. Special modulated beams for cylindrical coordinates in anisotropic media using computer algebra

    NASA Astrophysics Data System (ADS)

    Echeverri Chacón, Santiago

    2010-04-01

    An extension of the solution for the propagation of modulated beams through homogeneous media in cylindrical coordinates which results in a wave function described by Bessel Beams is the basis for this analysis of modulated beams through non homogeneous media in cylindrical coordinates]. By solving the wave equation analytically, including functions that describe the non-homogeneity, and using computer algebra software such as MAPLE©, we formulate new kinds of beams defined by special functions such as Airy, Kummer,and Hypergeometric functions. We also present convergence issues around the axis of propagation and possible applications for these new beams in telecommunication systems.

  9. Umbral Vade Mecum

    NASA Astrophysics Data System (ADS)

    Curtright, Thomas L.; Zachos, Cosmas K.

    2013-10-01

    In recent years the umbral calculus has emerged from the shadows to provide an elegant correspondence framework that automatically gives systematic solutions of ubiquitous difference equations --- discretized versions of the differential cornerstones appearing in most areas of physics and engineering --- as maps of well-known continuous functions. This correspondence deftly sidesteps the use of more traditional methods to solve these difference equations. The umbral framework is discussed and illustrated here, with special attention given to umbral counterparts of the Airy, Kummer, and Whittaker equations, and to umbral maps of solitons for the Sine-Gordon, Korteweg--de Vries, and Toda systems.

  10. An Invariance Principle to Ferrari-Spohn Diffusions

    NASA Astrophysics Data System (ADS)

    Ioffe, Dmitry; Shlosman, Senya; Velenik, Yvan

    2015-06-01

    We prove an invariance principle for a class of tilted 1 + 1-dimensional SOS models or, equivalently, for a class of tilted random walk bridges in . The limiting objects are stationary reversible ergodic diffusions with drifts given by the logarithmic derivatives of the ground states of associated singular Sturm-Liouville operators. In the case of a linear area tilt, we recover the Ferrari-Spohn diffusion with log-Airy drift, which was derived in Ferrari and Spohn (Ann Probab 33(4):1302—1325, 2005) in the context of Brownian motions conditioned to stay above circular and parabolic barriers.

  11. Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel

    2010-09-01

    A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.

  12. Common characteristics of synchrotron radiation and light leaking from a bent optical fiber

    NASA Astrophysics Data System (ADS)

    Artru, X.; Ray, C.

    2016-07-01

    Light leaking from a bent optical fiber shares many properties with synchrotron radiation : in ray optics, both lights are emitted tangentially to a light cylinder; in wave optics, the emission mechanism involves a tunnel effect. The angular distributions of these two radiations are studied in parallel and found to be similar. The same is done for the impact parameter distributions. The latter show interference fringes of the Airy function type. The far field escaped from the fiber is calculated with the Volume Current Method. An optical system observing the impact parameter profile is proposed.

  13. Elastostatic bending of a bimaterial plate with a circular interface

    NASA Astrophysics Data System (ADS)

    Ogbonna, Nkem

    2015-08-01

    The elastostatic bending of an arbitrarily loaded bimaterial plate with a circular interface is analysed. It is shown that the deflections in the composite solid are directly related to the deflection in the corresponding homogeneous material by integral and differential operators. It is further shown that, by a simple transformation of elastic constants, the Airy stress function induced in the composite by a stretching singularity can be deduced from the deflection induced by a bending singularity. This result is significant for reduction of mathematical labour and for systematic construction of solutions for more complex structures with circular geometry.

  14. Simulation of electron transmittance and tunnel current in n{sup +} Poly-Si/HfSiO{sub x}N/Trap/SiO{sub 2}/Si(100) capacitors using analytical and numerical approaches

    SciTech Connect

    Noor, Fatimah A. Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal

    2015-04-16

    In this paper, we discuss the electron transmittance and tunneling current in high-k-based-MOS capacitors with trapping charge by including the off-diagonal effective-mass tensor elements and the effect of coupling between transverse and longitudinal energies represented by an electron velocity in the gate. The HfSiO{sub x}N/SiO{sub 2} dual ultrathin layer is used as the gate oxide in an n{sup +} poly- Si/oxide/Si capacitor to replace SiO{sub 2}. The main problem of using HfSiO{sub x}N is the charge trapping formed at the HfSiO{sub x}N/SiO{sub 2} interface that can influence the performance of the device. Therefore, it is important to develop a model taking into account the presence of electron traps at the HfSiO{sub x}N/SiO{sub 2} interface in the electron transmittance and tunneling current. The transmittance and tunneling current in n{sup +} poly- Si/HfSiO{sub x}N/trap/SiO2/Si(100) capacitors are calculated by using Airy wavefunctions and a transfer matrix method (TMM) as analytical and numerical approaches, respectively. The transmittance and tunneling current obtained from the Airy wavefunction are compared to those computed by the TMM. The effects of the electron velocity on the transmittance and tunneling current are also discussed.

  15. Nuclear mean field and double-folding model of the nucleus-nucleus optical potential

    NASA Astrophysics Data System (ADS)

    Khoa, Dao T.; Phuc, Nguyen Hoang; Loan, Doan Thi; Loc, Bui Minh

    2016-09-01

    Realistic density dependent CDM3Yn versions of the M3Y interaction have been used in an extended Hartree-Fock (HF) calculation of nuclear matter (NM), with the nucleon single-particle potential determined from the total NM energy based on the Hugenholtz-van Hove theorem that gives rise naturally to a rearrangement term (RT). Using the RT of the single-nucleon potential obtained exactly at different NM densities, the density and energy dependence of the CDM3Yn interactions was modified to account properly for both the RT and observed energy dependence of the nucleon optical potential. Based on a local density approximation, the double-folding model of the nucleus-nucleus optical potential has been extended to take into account consistently the rearrangement effect and energy dependence of the nuclear mean-field potential, using the modified CDM3Yn interactions. The extended double-folding model was applied to study the elastic 12C+12C and 16O+12C scattering at the refractive energies, where the Airy structure of the nuclear rainbow has been well established. The RT was found to affect significantly the real nucleus-nucleus optical potential at small internuclear distances, giving a potential strength close to that implied by the realistic optical model description of the Airy oscillation.

  16. Equation of motion and general solution for the one-dimensional complex cell response in the signal-tuned approach.

    PubMed

    Torreão, José R A

    2015-10-01

    A signal-tuned approach has been recently introduced for modeling stimulus-dependent cortical receptive fields. The approach is based on signal-tuned Gabor functions, which are Gaussian-modulated sinusoids whose parameters are obtained from a "tuning" signal. Given a stimulus to a cell, it is taken as the tuning signal for the Gabor function modeling the cell's receptive field, and the inner product of the stimulus and the stimulus-dependent field produces the cell's response. Here, we derive and solve the equation of motion for the signal-tuned complex cell response r(x,τ), where x and τ are receptive-field parameters: its center, and the delay with which it adapts to a change in input. The motion equation can be mapped onto the Schrödinger equation for a system with time-dependent imaginary mass and time-dependent complex potential, and yields a plane-wave solution and an Airy-packet solution. The plane-wave solution replicates responses previously obtained for temporally modulated and translating signals, and yields responses which seem compatible with apparent-motion effects, when the stimulus is a pair of alternating pulses. The Airy-packet solution can lead to long-range propagating responses.

  17. A new approach to assess isostatic compensation of topography in continental domain from GOCE gravity gradients

    NASA Astrophysics Data System (ADS)

    Cadio, Cécilia; Saraswati, Anita; Cattin, Rodolphe; Mazzotti, Stéphane

    2016-11-01

    Estimating how topography is maintained provides insights into the different factors responsible for surface deformations and their relative roles. Here, we develop a new and simple approach to assess the degree of isostatic compensation of continental topography at regional scale from GOCE gravity gradients. We calculate the ratio between the radial gradient observed by GOCE and that calculated from topography only. From analytical and statistical formulations, simple relationships between this ratio and the degree of compensation are obtained under the Airy-Heiskanen isostasy hypothesis. Then, a value of degree of compensation at each point of study area can be easily deduced. We apply our method to the Alaska-Canada Cordillera and validate our results by comparison with a standard isostatic gravity anomaly model and additional geophysical information for this area. Both our GOCE-based results and the isostatic anomaly show that Airy-Heiskanen isostasy prevails for the Yukon Plateau whereas additional mechanisms are required to support topography below the Northwest Territories Craton and the Yakutat collision zone.

  18. Holonomy, quantum mechanics and the signal-tuned Gabor approach to the striate cortex

    NASA Astrophysics Data System (ADS)

    Torreão, José R. A.

    2016-02-01

    It has been suggested that an appeal to holographic and quantum properties will be ultimately required for the understanding of higher brain functions. On the other hand, successful quantum-like approaches to cognitive and behavioral processes bear witness to the usefulness of quantum prescriptions as applied to the analysis of complex non-quantum systems. Here, we show that the signal-tuned Gabor approach for modeling cortical neurons, although not based on quantum assumptions, also admits a quantum-like interpretation. Recently, the equation of motion for the signal-tuned complex cell response has been derived and proven equivalent to the Schrödinger equation for a dissipative quantum system whose solutions come under two guises: as plane-wave and Airy-packet responses. By interpreting the squared magnitude of the plane-wave solution as a probability density, in accordance with the quantum mechanics prescription, we arrive at a Poisson spiking probability — a common model of neuronal response — while spike propagation can be described by the Airy-packet solution. The signal-tuned approach is also proven consistent with holonomic brain theories, as it is based on Gabor functions which provide a holographic representation of the cell’s input, in the sense that any restricted subset of these functions still allows stimulus reconstruction.

  19. Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.

    PubMed

    McKay, Jack A

    2002-03-20

    The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal. PMID:11921807

  20. Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.

    PubMed

    McKay, Jack A

    2002-03-20

    The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal.

  1. Geodetic use of global digital terrain and crustal databases in gravity field modeling and interpretation

    NASA Astrophysics Data System (ADS)

    Tsoulis, D.

    2013-03-01

    The release of global digital databases for the description of the Earth's topography and the shape of the Earth's crust in terms of consistency and geometry initiates a new era in the interpretation and analysis of the observed gravity field of our planet. The permanent increase in resolution of these databases permits furthermore the identification of high frequency gravity field components, a feature that is of special interest in applications of local or regional scales. The derivation of topographic/isostatic gravity models is the tool which reveals the gravity content of terrain and crustal databases in the spectral domain. We review the significance of some current global digital models in the frame of this analysis by computing distinct spectral gravity quantities and compare them against the Kaula rule of the gravity signal decay and the recently released reference gravity model EGM2008. The different isostatic hypothesis that can be applied in the derivation of a topographic/isostatic model as well its dependency with the increasing harmonic degree is demonstrated and quantified in terms of geoid heights and gravity anomalies. It is shown that the two fundamental compensation mechanisms, namely Airy and Pratt, act complementary in terms of their compensation effect to the uncompensated topography spectrum. The Airy mechanism reduces the uncompensated topography in the longer and medium wavelength part of the spectrum (up to degree 400), while Pratt acts in a compensating manner only for the high to very high frequencies, from degree 100 and onwards.

  2. Biological aerosol detection with combined passive-active infrared measurements

    NASA Astrophysics Data System (ADS)

    Ifarraguerri, Agustin I.; Vanderbeek, Richard G.; Ben-David, Avishai

    2004-12-01

    A data collection experiment was performed in November of 2003 to measure aerosol signatures using multiple sensors, all operating in the long-wave infrared. The purpose of this data collection experiment was to determine whether combining passive hyperspectral and LIDAR measurements can substantially improve biological aerosol detection performance. Controlled releases of dry aerosols, including road dust, egg albumin and two strains of Bacillus Subtilis var. Niger (BG) spores were performed using the ECBC/ARTEMIS open-path aerosol test chamber located in the Edgewood Area of Aberdeen Proving Grounds, MD. The chamber provides a ~ 20' path without optical windows. Ground truth devices included 3 aerodynamic particle sizers, an optical particle size spectrometer, 6 nephelometers and a high-volume particle sampler. Two sensors were used to make measurements during the test: the AIRIS long-wave infrared imaging spectrometer and the FAL CO2 LIDAR. The AIRIS and FAL data sets were analyzed for detection performance relative to the ground truth. In this paper we present experimental results from the individual sensors as well as results from passive-active sensor fusion. The sensor performance is presented in the form of receiver operating characteristic curves.

  3. Incidence angle dependence of Langmuir turbulence and artificial ionospheric layers driven by high-power HF-heating

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Milikh, G.; Shao, X.; Mishin, E. V.; Papadopoulos, K.

    2015-04-01

    We have numerically investigated the development of strong Langmuir turbulence (SLT) and associated electron acceleration at different angles of incidence of ordinary (O) mode pump waves. For angles of incidence within the Spitze cone, the turbulence initially develops within the first maximum of the Airy pattern near the plasma resonance altitude. After a few milliseconds, the turbulent layer shifts downwards by about 1 km. For injections outside the Spitze region, the turning point of the pump wave is at lower altitudes. Yet, an Airy-like pattern forms here, and the turbulence development is quite similar to that for injections within the Spitze. SLT leads to the acceleration of 10-20 eV electrons that ionize the neutral gas thereby creating artificial ionospheric layers. Our numerical modeling shows that most efficient electron acceleration and ionization occur at angles between the magnetic and geographic zenith, where SLT dominates over weak turbulence. Possible effects of the focusing of the electromagnetic beam on magnetic field-aligned density irregularities and the finite heating beam width at the magnetic zenith are also discussed. The results have relevance to ionospheric heating experiments using ground-based, high-power radio transmitters to heat the overhead plasma, where recent observations of artificial ionization layers have been made.

  4. Shaping non-diffracting beams with a digital micromirror device

    NASA Astrophysics Data System (ADS)

    Ren, Yu-Xuan; Fang, Zhao-Xiang; Lu, Rong-De

    2016-02-01

    The micromechanical digital micromirror device (DMD) performs as a spatial light modulator to shape the light wavefront. Different from the liquid crystal devices, which use the birefringence to modulate the light wave, the DMD regulates the wavefront through an amplitude modulation with the digitally controlled mirrors switched on and off. The advantages of such device are the fast speed, polarization insensitivity, and the broadband modulation ability. The fast switching ability for the DMD not only enables the shaping of static light mode, but also could dynamically compensate for the wavefront distortion due to scattering medium. We have employed such device to create the higher order modes, including the Laguerre-Gaussian, Hermite-Gaussian, as well as Mathieu modes. There exists another kind of beam with shape-preservation against propagation, and self-healing against obstacles. Representative modes are the Bessel modes, Airy modes, and the Pearcey modes. Since the DMD modulates the light intensity, a series of algorithms are developed to calculate proper amplitude hologram for shaping the light. The quasi-continuous gray scale images could imitate the continuous amplitude hologram, while the binary amplitude modulation is another means to create the modulation pattern for a steady light field. We demonstrate the generation of the non-diffracting beams with the binary amplitude modulation via the DMD, and successfully created the non-diffracting Bessel beam, Airy beam, and the Pearcey beam. We have characterized the non-diffracting modes through propagation measurements as well as the self-healing measurements.

  5. Diffraction of acoustic-gravity waves in the presence of a turning point.

    PubMed

    Godin, Oleg A

    2016-07-01

    Acoustic-gravity waves (AGWs) in an inhomogeneous atmosphere often have caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Unlike acoustic waves and gravity waves in incompressible fluids, AGW fields in the vicinity of a caustic have never been systematically studied. Here, asymptotic expansions of acoustic gravity waves are derived in the presence of a turning point in a horizontally stratified, moving fluid such as the atmosphere. Sound speed and the background flow (wind) velocity are assumed to vary gradually with height, and slowness of these variations determines the large parameter of the problem. It is found that uniform asymptotic expansions of the wave field in the presence of a turning point can be expressed in terms of the Airy function and its derivative. The geometrical, or Berry, phase, which arises in the consistent Wentzel-Kramers-Brillouin approximation for AGWs, plays an important role in the caustic asymptotics. In the dominant term of the uniform asymptotic solution, the terms with the Airy function and its derivative are weighted by the cosine and sine of the Berry phase, respectively. The physical meaning and corollaries of the asymptotic solutions are discussed. PMID:27475153

  6. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device.

    PubMed

    Cheng, Jiyi; Gu, Chenglin; Zhang, Dapeng; Chen, Shih-Chi

    2015-11-01

    In this Letter, we present a digital micromirror device (DMD)-based ultrafast beam shaper, i.e., DUBS. To our knowledge, the DUBS is the first binary laser beam shaper that can generate high-resolution (1140×912 pixels) arbitrary beam modes for femtosecond lasers at a rate of 4.2 kHz; the resolution and pattern rate are limited by the DMD. In the DUBS, the spectrum of the input pulsed laser is first angularly dispersed by a transmission grating and subsequently imaged to a DMD with beam modulation patterns; the transmission grating and a high-reflectivity mirror together compensate the angular dispersion introduced by the DMD. The mode of the output beam is monitored by a CCD camera. In the experiments, the DUBS is programmed to generate four different beam modes, including an Airy beam, Bessel beam, Laguerre-Gaussian (LG) beam, and a custom-designed "peace-dove" beam via the principle of binary holography. To verify the high shaping rate, the Airy beam and LG beam are generated alternately at 4.2 kHz, i.e., the maximum pattern rate of our DMD. The overall efficiency of the DUBS is measured to be 4.7%. With the high-speed and high-resolution beam-shaping capability, the DUBS may find important applications in nonlinear microscopy, optical manipulation, and microscale/nanoscale laser machining, etc.

  7. Diffraction of acoustic-gravity waves in the presence of a turning point.

    PubMed

    Godin, Oleg A

    2016-07-01

    Acoustic-gravity waves (AGWs) in an inhomogeneous atmosphere often have caustics, where the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified. Unlike acoustic waves and gravity waves in incompressible fluids, AGW fields in the vicinity of a caustic have never been systematically studied. Here, asymptotic expansions of acoustic gravity waves are derived in the presence of a turning point in a horizontally stratified, moving fluid such as the atmosphere. Sound speed and the background flow (wind) velocity are assumed to vary gradually with height, and slowness of these variations determines the large parameter of the problem. It is found that uniform asymptotic expansions of the wave field in the presence of a turning point can be expressed in terms of the Airy function and its derivative. The geometrical, or Berry, phase, which arises in the consistent Wentzel-Kramers-Brillouin approximation for AGWs, plays an important role in the caustic asymptotics. In the dominant term of the uniform asymptotic solution, the terms with the Airy function and its derivative are weighted by the cosine and sine of the Berry phase, respectively. The physical meaning and corollaries of the asymptotic solutions are discussed.

  8. Improved detection and false alarm rejection for chemical vapors using passive hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Marinelli, William J.; Miyashiro, Rex; Gittins, Christopher M.; Konno, Daisei; Chang, Shing; Farr, Matt; Perkins, Brad

    2013-05-01

    Two AIRIS sensors were tested at Dugway Proving Grounds against chemical agent vapor simulants. The primary objectives of the test were to: 1) assess performance of algorithm improvements designed to reduce false alarm rates with a special emphasis on solar effects, and 3) evaluate performance in target detection at 5 km. The tests included 66 total releases comprising alternating 120 kg glacial acetic acid (GAA) and 60 kg triethyl phosphate (TEP) events. The AIRIS sensors had common algorithms, detection thresholds, and sensor parameters. The sensors used the target set defined for the Joint Service Lightweight Chemical Agent Detector (JSLSCAD) with TEP substituted for GA and GAA substituted for VX. They were exercised at two sites located at either 3 km or 5 km from the release point. Data from the tests will be presented showing that: 1) excellent detection capability was obtained at both ranges with significantly shorter alarm times at 5 km, 2) inter-sensor comparison revealed very comparable performance, 3) false alarm rates < 1 incident per 10 hours running time over 143 hours of sensor operations were achieved, 4) algorithm improvements eliminated both solar and cloud false alarms. The algorithms enabling the improved false alarm rejection will be discussed. The sensor technology has recently been extended to address the problem of detection of liquid and solid chemical agents and toxic industrial chemical on surfaces. The phenomenology and applicability of passive infrared hyperspectral imaging to this problem will be discussed and demonstrated.

  9. Rainbow-shift mechanism behind discrete optical-potential ambiguities

    SciTech Connect

    Brandan, M.E. ); McVoy, K.W. )

    1991-03-01

    Some years ago, Drisko {ital et} {ital al}. suggested that the discrete ambiguity often encountered for elastic scattering optical potentials could be understood as being due to the interior or small-{ital l} {ital S}-matrix elements for two equivalent'' potentials differing in phase by 2{pi}, {ital l}-by-{ital l}. We point out that the {ital absence} of this phase change for peripheral partial waves is equally essential, and suggest that a deeper understanding of the ambiguity may be achieved by viewing it as a consequence of a farside interference between interior and peripheral partial waves. It is this interference which produces the broad Airy maxima'' of a nuclear rainbow, and we show that a Drisko-type phase-shift increment {delta}{sub {ital l}}{r arrow}({delta}{sub {ital l}}+{pi}) for low-{ital l} phases relative to the high-{ital l} ones is exactly what is needed to shift a farside rainbow pattern by one Airy maximum, thus providing an equivalent rainbow-shift'' interpretation of the discrete ambiguity. The physical importance of both interpretations lies in the fact that the existence of discrete ambiguities (as well as of nuclear rainbows) is explicit evidence for low-{ital l} transparency in nucleus-nucleus collisions. The essential role played by low partial waves explains why peripheral reactions have generally not proven helpful in resolving this ambiguity.

  10. Proceedings from the 6th Annual University of Calgary Leaders in Medicine Research Symposium.

    PubMed

    Roberts, Jodie I; Beatty, Jennifer K; Peplowski, Michael A; Keough, Michael B; Yipp, Bryan G; Hollenberg, Morley D; Beck, Paul L

    2015-01-01

    On November 14, 2014, the Leaders in Medicine (LIM) program at the Cumming School of Medicine, University of Calgary hosted its 6th Annual Research Symposium. Dr. Danuta Skowronski, Epidemiology Lead for Influenza and Emerging Respiratory Pathogens at the British Columbia Centre for Disease Control (BCCDC), was the keynote speaker and presented a lecture entitled "Rapid response research during emerging public health crises: influenza and reflections from the five year anniversary of the 2009 pandemic". The LIM symposium provides a forum for both LIM and non-LIM medical students to present their research work, either as an oral or poster presentation. There were a total of six oral presentations and 77 posters presented. 
The oral presentations included: Swathi Damaraju, "The role of cell communication and 3D Cell-Matrix environment in a stem cell-based tissue engineering strategy for bone repair"; Menglin Yang, "The proteolytic activity of Nepenthes pitcher fluid as a therapeutic for the treatment of celiac disease"; Amelia Kellar, "Monitoring pediatric inflammatory bowel disease - a retrospective analysis of transabdominal ultrasound"; Monica M. Faria-Crowder, "The design and application of a molecular profiling strategy to identify polymicrobial acute sepsis infections"; Waleed Rahmani, "Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla and modulate hair type"; and, Laura Palmer, "A novel role for amyloid beta protein during hypoxia/ischemia". 
The article on the University of Calgary Leaders in Medicine Program, "A Prescription that Addresses the Decline of Basic Science Education in Medical School," in a previous issue of CIM (2014 37(5):E292) provides more details on the program. Briefly, the LIM Research Symposium has the following objectives: (1) to showcase the impressive variety of projects undertaken by students in the LIM Program as well as University of Calgary medical students; (2) to encourage medical

  11. Proceedings from the 6th Annual University of Calgary Leaders in Medicine Research Symposium.

    PubMed

    Roberts, Jodie I; Beatty, Jennifer K; Peplowski, Michael A; Keough, Michael B; Yipp, Bryan G; Hollenberg, Morley D; Beck, Paul L

    2015-01-01

    On November 14, 2014, the Leaders in Medicine (LIM) program at the Cumming School of Medicine, University of Calgary hosted its 6th Annual Research Symposium. Dr. Danuta Skowronski, Epidemiology Lead for Influenza and Emerging Respiratory Pathogens at the British Columbia Centre for Disease Control (BCCDC), was the keynote speaker and presented a lecture entitled "Rapid response research during emerging public health crises: influenza and reflections from the five year anniversary of the 2009 pandemic". The LIM symposium provides a forum for both LIM and non-LIM medical students to present their research work, either as an oral or poster presentation. There were a total of six oral presentations and 77 posters presented. 
The oral presentations included: Swathi Damaraju, "The role of cell communication and 3D Cell-Matrix environment in a stem cell-based tissue engineering strategy for bone repair"; Menglin Yang, "The proteolytic activity of Nepenthes pitcher fluid as a therapeutic for the treatment of celiac disease"; Amelia Kellar, "Monitoring pediatric inflammatory bowel disease - a retrospective analysis of transabdominal ultrasound"; Monica M. Faria-Crowder, "The design and application of a molecular profiling strategy to identify polymicrobial acute sepsis infections"; Waleed Rahmani, "Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla and modulate hair type"; and, Laura Palmer, "A novel role for amyloid beta protein during hypoxia/ischemia". 
The article on the University of Calgary Leaders in Medicine Program, "A Prescription that Addresses the Decline of Basic Science Education in Medical School," in a previous issue of CIM (2014 37(5):E292) provides more details on the program. Briefly, the LIM Research Symposium has the following objectives: (1) to showcase the impressive variety of projects undertaken by students in the LIM Program as well as University of Calgary medical students; (2) to encourage medical

  12. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    NASA Astrophysics Data System (ADS)

    Levander, A.; Oncken, O.; Niu, F.

    2015-12-01

    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward

  13. On observation of neutron quantum states in the Earth's gravitational field

    NASA Astrophysics Data System (ADS)

    Vankov, Anatoli Andrei

    2010-03-01

    Observation of neutron gravitational quantum states En=mgzn in the peV energy range (z1 is about 10μm in the vertical direction) in the experiment conducted at Laue-Langevin Institute, Grenoble, with ultracold neutrons was recently reported in a series of publications. The purpose of the present work is to analyze the experiment. The experimental apparatus is designed to measure a transmission function T(za), namely, a horizontal flux of relatively fast neutrons (k≫kz in wavelength terms) passing through a slit of variable height za of upper absorbing wall. The quantum states in question are defined by the so-called Airy functions, which are solutions to the stationary 1D equation for a neutron “bouncing” above the perfect mirror in a linear potential field. The Airy functions describe the quantum bouncer (QB), the concept of which is subject to theoretical study of toy 1D models of gravitationally bound particles in nonrelativistic quantum mechanics (QM). This is essentially different from the 3D nonstationary QM object, “the running QB,” investigated in the experiment. The authors assume that there is a connection between T(za) and the probability density distribution P(z,za) for QB states. They devised the “phenomenological model,” in which the quantum pattern should be visible in the transmission curve. We argue, however, that the measured curve T(za) is not sensitive to QB states. Instead, it is sensitive to dynamics of neutron horizontal transport inside the absorbing slit for neutrons of energy values about 105 times greater than eigenvalues En. The latter are related to the neutron transverse mode kz and cannot be termed “energies of neutron gravitational quantum states.” We conclude that the experiment setup and real conditions are not adequate to the claimed objective, and the methodology of measured data treatment is flawed. The authors’ claim that “neutron gravitational quantum states are observed” is neither theoretically nor

  14. The control network of Mars: April 1991

    NASA Technical Reports Server (NTRS)

    Davies, Merton E.; Rogers, Patricia G.

    1991-01-01

    The modern geodetic control network of Mars was first established based on Mariner 9 images with 1-2 km/pixel resolutions and covered almost the entire Martian surface. The introduction of higher resolution (10-200 meter/pixel) Viking Orbiter images greatly improved the accuracy and density of points in the control network. Analysis of the Viking Lander radio tracking data led to more accurate measurements of Mars' rotation period, spin axis direction, and the lander coordinates relative to the inertial reference frame. The prime meridian on Mars was defined by the Geodesy/Cartography Group of the Mariner 9 Television Team as the crater Airy-0, located about 5 degrees south of the equator. The Viking 1 Lander site was identified on a high resolution Viking frame. The control point measurements form the basis of a least squares solution determined by analytical triangulation after the pixel measurements are corrected for geometric distortions and converted to millimeter coordinates in the camera focal plane. Photogrammetric strips encircling Mars at the equator and at 60 degree north south were used to strengthen the overall net and improve the accuracy of the coordinates of points. In addition, photogrammetric strips along 0, 90, 180, and 270 degrees longitude to the Viking 1 Lander site have all significantly strengthened the control network. Most recently, photogrammetric strips were added to the net along 30 degrees north latitude between 0 and 180 degrees, and along 30 degrees between 180 and 360 degrees. The Viking 1 Lander site and Airy-0 are linked through photogrammetric strips occurring along the 0 degree meridian from Airy-0 to 65 degrees north, from that point through the Viking 1 Lander site to the equator, and along the equator to 180 degrees longitude. The Viking 1 lander site is thus a well calibrated area with coordinates of points accurate to approximately 200 meters relative to the J2000 inertial coordinate system. This will be a useful

  15. Curved singular beams for three-dimensional particle manipulation.

    PubMed

    Zhao, Juanying; Chremmos, Ioannis D; Song, Daohong; Christodoulides, Demetrios N; Efremidis, Nikolaos K; Chen, Zhigang

    2015-01-01

    For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark "hole" in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications.

  16. Caustics, catastrophes, and symmetries in curved beams

    NASA Astrophysics Data System (ADS)

    Vaveliuk, Pablo; Lencina, Alberto; Rodrigo, José A.; Matos, Oscar Martinez

    2015-09-01

    In this paper, a meaningful classification of optical caustic beams in two dimensions is presented. It is demonstrated that the phase symmetry of the beam's angular spectrum governs the optical catastrophe, which describes the wave properties of ray singularities, for cusp (symmetric phase) and fold (antisymmetric phase) caustics. In contrast to the established idea, the caustic classification arises from the phase symmetry rather than from the phase power, thus breaking the commonly accepted concept that fold and cusp caustics are related to the Airy and Pearcey functions, respectively. Nevertheless, the role played by the spectral phase power is to control the degree of caustic curvature. These findings provide straightforward engineering of caustic beams by addressing the spectral phase into a spatial light modulator or glass plate.

  17. Elastic interactions between two-dimensional geometric defects.

    PubMed

    Moshe, Michael; Sharon, Eran; Kupferman, Raz

    2015-12-01

    In this paper, we introduce a methodology applicable to a wide range of localized two-dimensional sources of stress. This methodology is based on a geometric formulation of elasticity. Localized sources of stress are viewed as singular defects-point charges of the curvature associated with a reference metric. The stress field in the presence of defects can be solved using a scalar stress function that generalizes the classical Airy stress function to the case of materials with nontrivial geometry. This approach allows the calculation of interaction energies between various types of defects. We apply our methodology to two physical systems: shear-induced failure of amorphous materials and the mechanical interaction between contracting cells. PMID:26764699

  18. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  19. The far field diffraction pattern for corner reflectors with complex reflection coefficients

    NASA Technical Reports Server (NTRS)

    Chang, R. F.; Currie, D. G.; Alley, C. O.; Pittman, M. E.

    1970-01-01

    The far field diffraction pattern of a geometrically perfect corner reflector is examined analytically for normally incident monochromatic light. The states of polarization and the complex amplitudes of the emerging light are expressed through transformation matrices in terms of those of the original incident light for each sextant of the face in a single coordinate system. The analytic expression of the total diffraction pattern is obtained for a circular face. This expression consists of three component functions in addition to the basic Airy function. The coefficient of each function is expressed in terms of complex coefficients of reflectance of the reflecting surface. Some numerical results for different reflecting surfaces, including total internal reflection, are presented. The iso-intensity contours of the diffraction pattern evaluated from the analytical expressions for an uncoated solid corner reflector are also presented along with the photographs of the pattern.

  20. The effect of a coronagraph on the statistics of Adaptive Optics Pinned Speckles

    NASA Astrophysics Data System (ADS)

    Aime, C.; Soummer, R.

    In this communication we study the statistics of Adaptive Optics remnant speckles, and we discuss how a coronagraph can defeat the noise associated with these speckles. At high Strehl Ratio regimes, residual speckles are pinned on the diffraction rings of the airy pattern. It can be shown that these speckles are due to small defaults of the wavefront, amplified by the coherent part of the wave and that the statistics of their intensity can be described by a modified Rice distribution. At low flux levels, a Poisson-Mandel transformation provides an analytical expression of the Probablility Density Function. We show the results of a numerical simulation and compare the results to the theoretical model. Simple analytical expressions can be derived for the variance of the noise. We discuss the efficiency of a coronagraph in terms of Signal to Noise Ratio, based on the analysis of the noise contributions which can be reduced by a coronagraph.

  1. The Stark effect in linear potentials

    NASA Astrophysics Data System (ADS)

    Robinett, R. W.

    2010-01-01

    We examine the Stark effect (the second-order shifts in the energy spectrum due to an external constant force) for two one-dimensional model quantum mechanical systems described by linear potentials, the so-called quantum bouncer (defined by V(z) = Fz for z > 0 and V(z) = ∞ for z < 0) and the symmetric linear potential (given by V(z) = F|z|). We show how straightforward use of the most obvious properties of the Airy function solutions and simple Taylor expansions gives closed form results for the Stark shifts in both systems. These exact results are then compared to other approximation techniques, such as perturbation theory and WKB methods. These expressions add to the small number of closed-form descriptions available for the Stark effect in model quantum mechanical systems.

  2. Anharmonic propagation of two-dimensional beams carrying orbital angular momentum in a harmonic potential.

    PubMed

    Zhang, Yiqi; Liu, Xing; Belić, Milivoj R; Zhong, Weiping; Wen, Feng; Zhang, Yanpeng

    2015-08-15

    We analytically and numerically investigate an anharmonic propagation of two-dimensional beams in a harmonic potential. We pick noncentrosymmetric beams of common interest that carry orbital angular momentum. The examples studied include superposed Bessel-Gauss (BG), Laguerre-Gauss (LG), and circular Airy (CA) beams. For the BG beams, periodic inversion, phase transition, and rotation with periodic angular velocity are demonstrated during propagation. For the LG and CA beams, periodic inversion and variable rotation are still there but not the phase transition. On the whole, the "center of mass" and the orbital angular momentum of a beam exhibit harmonic motion, but the motion of the beam intensity distribution in detail is subject to external and internal torques and forces, causing it to be anharmonic. Our results are applicable to other superpositions of finite circularly asymmetric beams.

  3. Crustal volumes of the continents and of oceanic and continental submarine plateaus

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Sandwell, D.

    1989-01-01

    Using global topographic data and the assumption of Airy isostasy, it is estimated that the crustal volume of the continents is 7182 X 10 to the 6th cu km. The crustal volumes of the oceanic and continental submarine plateaus are calculated at 369 X 10 to the 6th cu km and 242 X 10 to the 6th cu km, respectively. The total continental crustal volume is found to be 7581 X 10 to the 6th cu km, 3.2 percent of which is comprised of continental submarine plateaus on the seafloor. An upper bound on the contintental crust addition rate by the accretion of oceanic plateaus is set at 3.7 cu km/yr. Subduction of continental submarine plateaus with the oceanic lithosphere on a 100 Myr time scale yields an upper bound to the continental crustal subtraction rate of 2.4 cu km/yr.

  4. An assessment of crustal thickness variations on the lunar near side - Models, uncertainties, and implications for crustal differentiation

    NASA Technical Reports Server (NTRS)

    Thurber, C. H.; Solomon, S. C.

    1978-01-01

    The paper presents a series of models for the structure of lunar nearside crust which are consistent with the observed gravity and topography. Each crustal model is derived subject to a specific set of constraints and assumptions. The assumptions/constraints considered include strict isostatic equilibrium, pure Airy compensation mechanism, pure Pratt compensation mechanism, assignment of assumed fixed values for mare basalt thickness, and attribution of all superisostatic mass in the maria to basalt fill. The resulting models are used to assess the degree and mechanism of isostasy, and to investigate the thickness of the mare basalt. Details of the lateral variations in crustal thickness or density and in the degree of isostatic compensation bear strongly on the mode of early crustal differentiation and on the subsequent thermal history of the moon.

  5. Anomalous behaviors of the Fraunhofer diffraction patterns for a class of partially coherent light.

    PubMed

    Pu, Jixiong; Nemoto, Shojiro

    2003-02-24

    In this paper, we investigate the Fraunhofer diffraction of a class of partially coherent light diffracted by a circular aperture. It is shown that by the illumination of partially coherent light of the special spatial correlation function, the anomalous behaviors of the diffraction patterns are found. We find that the decrease of the spatial coherence of the light in the aperture leads to the drastic changes of the diffraction pattern. Specifically, when the light in the aperture is fully coherent, the diffraction pattern is just an Airy disc. However, as the coherence decreases, the diffraction pattern becomes an annulus, and the radius of the annulus increases with the decrease of the coherence. Flattened annuli can be achieved, when the parameters characterizing the correlation of the partially coherent light are chosen with suitable values. Potential applications of modulating the coherence to achieve desired diffraction patterns are discussed.

  6. Hankel Determinant and Orthogonal Polynomials for a Gaussian Weight with a Discontinuity at the Edge

    NASA Astrophysics Data System (ADS)

    Bogatskiy, A.; Claeys, T.; Its, A.

    2016-10-01

    We compute asymptotics for Hankel determinants and orthogonal polynomials with respect to a discontinuous Gaussian weight, in a critical regime where the discontinuity is close to the edge of the associated equilibrium measure support. Their behavior is described in terms of the Ablowitz-Segur family of solutions to the Painlevé II equation. Our results complement the ones in [33]. As consequences of our results, we conjecture asymptotics for an Airy kernel Fredholm determinant and total integral identities for Painlevé II transcendents, and we also prove a new result on the poles of the Ablowitz-Segur solutions to the Painlevé II equation. We also highlight applications of our results in random matrix theory.

  7. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators.

    PubMed

    Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A

    2013-10-01

    We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. PMID:24008430

  8. On extreme value statistics of correlated random variables

    NASA Astrophysics Data System (ADS)

    Clusel, Maxime; Fortin, Jean-Yves

    2013-03-01

    The statistics of extreme values of a set on independent and identically distributed random variables is a well established mathematical theory that can be traced back to the late 1920s, with pioneering work by Fisher and Tippett. While efforts have been made to go beyond the uncorrelated case, little is known about the extremes of strongly correlated variables. Notable exceptions are the distribution of extreme eigenvalues of random matrices (Tracy and Widom 1994), the Airy law for one-dimensional random walks (Majumdar and Comtet 2005), and random variables with logarithmic interactions (Fyodorov and Bouchaud 2008). We propose to adapt the equivalence between extremes and sums (Bertin and Clusel 2006) to obtain asymptotic distributions of correlated random variables. We will show how this approach works in the logarithmic case, before extending it to power-law correlations and beyond. We will eventually illustrate these cases with a simple model, a one-dimensional gas of interacting particles.

  9. Quantum-classical correspondence for a particle in a homogeneous field

    NASA Astrophysics Data System (ADS)

    Singh, Sumita; Suman, Smriti P.; Singh, Vijay A.

    2016-11-01

    The correspondence principle provides a prescription to connect quantum physics to classical. It asserts that the physical quantities evaluated quantum mechanically approach their respective classical values for large quantum numbers. This has been shown for the pedagogically important cases of the particle in a box and a harmonic oscillator. However, a particle in a constant field has a wave function related to the Airy function and has at best been treated numerically. Employing energy eigenstates we obtain the expectation values of the position, the momentum and their moments upto fourth order, rigorously and without resorting to numerical or graphical techniques. We compare them with the corresponding classical values. We also examine the uncertainty product for the system.

  10. Curved singular beams for three-dimensional particle manipulation.

    PubMed

    Zhao, Juanying; Chremmos, Ioannis D; Song, Daohong; Christodoulides, Demetrios N; Efremidis, Nikolaos K; Chen, Zhigang

    2015-01-01

    For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark "hole" in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications. PMID:26166011

  11. Covariance of Lucky Images: Performance analysis

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Cagigas, Miguel A.; Villó-Pérez, Isidro; Colodro-Conde, Carlos; Ginski, C.; Mugrauer, M.; Seeliger, M.

    2016-09-01

    The covariance of ground-based Lucky Images (COELI) is a robust and easy-to-use algorithm that allows us to detect faint companions surrounding a host star. In this paper we analyze the relevance of the number of processed frames, the frames quality, the atmosphere conditions and the detection noise on the companion detectability. This analysis has been carried out using both experimental and computer simulated imaging data. Although the technique allows us the detection of faint companions, the camera detection noise and the use of a limited number of frames reduce the minimum detectable companion intensity to around 1000 times fainter than that of the host star when placed at an angular distance corresponding to the few first Airy rings. The reachable contrast could be even larger when detecting companions with the assistance of an adaptive optics system.

  12. Extreme fluctuations in stochastic network coordination with time delays

    NASA Astrophysics Data System (ADS)

    Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.

    2015-12-01

    We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.

  13. Evidence for a dynamically refracted primary bow in weakly bound 9Be rainbow scattering from 16O

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.

    2016-09-01

    We present for the first time evidence for the existence of a dynamically refracted primary bow for 9Be+16O scattering. This is demonstrated through the use of coupled channel calculations with an extended double folding potential derived from the density-dependent effective two-body force and precise microscopic cluster wave functions for 9Be. The calculations reproduce the experimental Airy structure in 9Be+16O scattering well. It is found that coupling of a weakly bound 9Be nucleus to excited states plays the role of a booster lens, dynamically enhancing the refraction over the static refraction due to the Luneburg lens mean field potential between the ground states of 9Be and 16O.

  14. Nuclear rainbow in elastic scattering of {sup 9}Be nuclei

    SciTech Connect

    Glukhov, Yu. A. Ogloblin, A. A.; Artemov, K. P.; Rudakov, V. P.

    2010-01-15

    A systematic investigation of the elastic scattering of the {sup 9}Be nucleus, which is among themost loosely bound stable nuclei was performed.Differential cross sections for elastic {sup 9}Be + {sup 16}O scattering were measured at a c.m. energy of 47.5 MeV (beam of 132-MeV {sup 16}O nuclei). Available data at different energy values and data for neighboring nuclei were included in our analysis. As a result, the very fact of rainbow scattering was reliably established for the first time in systems involving {sup 9}Be. In addition, the analysis in question made it possible to identify Airy minima and to determine unambiguously the nucleus-nucleus potential with a high probability.

  15. Composition measurements of binary mixture droplets by rainbow refractometry

    SciTech Connect

    Wilms, J.; Weigand, B

    2007-04-10

    So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.

  16. A deterministic approach toward isostatic gravity residuals: A case study from South America

    SciTech Connect

    Chapin, D.A.

    1994-12-31

    Isostatic gravity residuals are based upon geologic models, therefore they provide a reasonable basis of comparison over large areas for reconnaissance studies. To help define the best isostatic model for South America, a new deterministic methodology overcomes the deficiencies of other empirically-based methods. The basis for the model was the Airy-Heiskanen (1958) isostatic model, which assumes that surface topography is supported by crustal thickening. The three key parameters -- (a) the crustal thickness at sea-level, (b) the surface reduction density, and (c) the density contrast between the crust and the mantle -- were determined directly from the elevation, free-air gravity, and Bouguer gravity datasets. The results of this work were not only an isostatic residual map, but methodology which cross-checks the data for quality control purposes. The final isostatic residual map can be used in confidence for basin evaluation throughout the continent of South America.

  17. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    USGS Publications Warehouse

    Plouff, Donald

    1992-01-01

    A residual isostatic gravity map (sheet 2) was prepared so that the regional effect of isostatic compensation present on the Bouguer gravity anomaly map (sheet 1) would be minimized. Isostatic corrections based on the Airy-Heiskanen system (Heiskanen and Vening Meinesz, 1958, p. 135-137) were estimated by using 3-minute topographic digitization and applying the method of Jachens and Roberts (1981). Parameters selected for the isostatic model were 25 km for the normal crustal thickness at sea level, 2.67 g/cm3 for the density of the crust, and 0.4 g/cm3 for the contrast in density between the crust and the upper mantle. These parameters were selected so that the isostatic residual gravity map would be consistent with isostatic residual gravity maps of the adjacent Walker Lake quadrangle (Plouff, 1987) and the state of Nevada (Saltus, 1988c).

  18. Wentzel-Kramers-Brillouin approach and quantum corrections to classical dynamics in the Josephson problem

    SciTech Connect

    Nissen, Felix; Keeling, Jonathan

    2010-06-15

    We apply a many-body Wentzel-Kramers-Brillouin (WKB) approach to determine the leading quantum corrections to the semiclassical dynamics of the Josephson model, describing interacting bosons able to tunnel between two localized states. The semiclassical dynamics is known to divide between regular oscillations and self-trapped oscillations where the sign of the imbalance remains fixed. In both cases, the WKB wave functions are matched to Airy functions, yielding a modified Bohr-Sommerfeld quantization condition. At the critical energy dividing normal and self-trapped oscillations, the WKB wave functions should instead be matched to parabolic cylinder functions, leading to a quantization formula that is not just the Bohr-Sommerfeld formula, and recovering the known logarithmic quantum break times at this energy. This work thus provides another illustration of the usefulness of the WKB approach in certain many-body problems.

  19. Lieb-Liniger gas in a constant-force potential

    SciTech Connect

    Jukic, D.; Galic, S.; Buljan, H.; Pezer, R.

    2010-08-15

    We use Gaudin's Fermi-Bose mapping operator to calculate exact solutions for the Lieb-Liniger model in a linear (constant-force) potential (the constructed exact stationary solutions are referred to as the Lieb-Liniger-Airy wave functions). The ground-state properties of the gas in the wedgelike trapping potential are calculated in the strongly interacting regime by using Girardeau's Fermi-Bose mapping and the pseudopotential approach in the 1/c approximation (c denotes the strength of the interaction). We point out that quantum dynamics of Lieb-Liniger wave packets in the linear potential can be calculated by employing an N-dimensional Fourier transform as in the case of free expansion.

  20. Frequency analysis of temperature-dependent interferometric signal for the measurement of the temperature coefficient of refractive index.

    PubMed

    Zhou, Jianqin; Shen, Jun; Neill, W Stuart

    2016-07-01

    A method of frequency analysis for the measurement of the temperature coefficient of refractive index (dn/dT) using a Fabry-Perot interferometer was developed and tested against ethanol and water. The temperature-dependent interferometric signal described by Airy's formula was analyzed in both the temperature and frequency domains. By fast Fourier transform, a low-pass filter was designed and employed to eliminate the noise superimposed on the signal. dn/dT was determined accurately from the noise-removed signal by peak analysis. Furthermore, the signal frequency parameters may be utilized for the material thermophysical property characterization. This method lays the foundation for an online dn/dT instrument for monitoring chemical processes. PMID:27475545

  1. Aharony-Bergman-Jafferis-Maldacena Wilson Loops in the Fermi Gas Approach

    NASA Astrophysics Data System (ADS)

    Klemm, Albrecht; Mariño, Marcos; Soroush, Masoud

    2013-02-01

    The matrix model of the Aharony-Bergman-Jafferis-Maldacena theory can be formulated in terms of an ideal Fermi gas with a non-trivial one-particle Hamiltonian. We show that, in this formalism, vacuum expectation values (vevs) of Wilson loops correspond to averages of operators in the statistical-mechanical problem. This makes it possible to calculate these vevs at all orders in 1/N, up to exponentially small corrections, and for arbitrary Chern-Simons coupling, by using the Wentzel- Kramer-Brillouin expansion.We present explicit results for the vevs of 1/6 and the 1/2 Bogomolnyi- Prasad-Sommerfield Wilson loops, at any winding number, in terms of Airy functions. Our expressions are shown to reproduce the low genus results obtained previously in the 't Hooft expansion.

  2. Summing up all genus free energy of ABJM matrix model

    NASA Astrophysics Data System (ADS)

    Fuji, Hiroyuki; Hirano, Shinji; Moriyama, Sanefumi

    2011-08-01

    The localization technique allows us to compute the free energy of the U( N) k × U( N)- k Chern-Simons-matter theory dual to type IIA strings on AdS 4 × CP 3 from weak to strong 't Hooft coupling λ = N/ k at finite N, as demonstrated by Drukker, Mariño, and Putrov. In this note we study further the free energy at large 't Hooft coupling with the aim of testing AdS/CFT at the quantum gravity level and, in particular, sum up allthe1/ N corrections, apart from the worldsheet instanton contributions. The all genus partition function takes a remarkably simple form — the Airy function, {text{Ai}}left( {{{left( {{{{π {k^2}}} left/ {{sqrt {2} }} right.}} right)}^{{{2} left/ {3} right.}}}{λ_{text{ren}}}} right) , with the renormalized 't Hooft coupling λren.

  3. Variable beamwidth monopulse feed for Tracking and Data Relay Satellite (TDRS)

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1974-01-01

    The Tracking and Data Relay Satellite with a set of circularly-polarized, amplitude-sensing monopulse patterns suitable for acquiring and tracking user spacecraft at Ku-band (15.0 GHz) is discussed. The possibility of increasing the less than 0.4-degree half-power beamwidth of the data beam to almost 1.0 degree during the acquisition phase is predicated on the use of feeds situated in the first bright-ring of the Airy diffraction structure. A complex-vector simulation equivalent to the Kirchhoff-Kottler or Franz formulations is used to compute transmitted and received field information for a dual-reflector (Cassegrain) antenna configuration in a three-dimensional space.

  4. Stable propagation of non-Gaussian beams in a multiple-pass cell.

    PubMed

    Takasaki, T; Suda, A; Sato, K; Nagasaka, K; Tashiro, H

    1997-05-20

    To apply annular output beams emitted from an unstable resonator to a multiple-pass cell (MPC) for Raman conversion, we studied the mode-matching condition of non-Gaussian beams to a MPC using beam propagation analysis based on Laguerre-Gaussian functions. During transits of the MPC, the radial profile of an annular beam changes between annular and Airy patterns. Although such behavior indicates that it is impossible to achieve complete mode matching of an annular beam, we found a quasi-mode-matching condition under which the variation of beam size was minimized. The above theoretical analysis was verified experimentally using a CO(2) laser beam prepared for a para-hydrogen Raman laser. PMID:18253356

  5. Staircase-scene-based nonuniformity correction in aerial point target detection systems.

    PubMed

    Huo, Lijun; Zhou, Dabiao; Wang, Dejiang; Liu, Rang; He, Bin

    2016-09-01

    Focal-plane arrays (FPAs) are often interfered by heavy fixed-pattern noise, which severely degrades the detection rate and increases the false alarms in airborne point target detection systems. Thus, high-precision nonuniformity correction is an essential preprocessing step. In this paper, a new nonuniformity correction method is proposed based on a staircase scene. This correction method can compensate for the nonlinear response of the detector and calibrate the entire optical system with computational efficiency and implementation simplicity. Then, a proof-of-concept point target detection system is established with a long-wave Sofradir FPA. Finally, the local standard deviation of the corrected image and the signal-to-clutter ratio of the Airy disk of a Boeing B738 are measured to evaluate the performance of the proposed nonuniformity correction method. Our experimental results demonstrate that the proposed correction method achieves high-quality corrections. PMID:27607295

  6. The control net of Mars - May 1977. [from Viking lander spacecraft radio tracking data

    NASA Technical Reports Server (NTRS)

    Davies, M. E.

    1978-01-01

    The development of planet-wide control nets of Mars is reviewed, and the May 1977 update is described. This updated control net was computed by means of a large single-block analytical triangulation incorporating the new direction of the spin axis and the new rotation rate of Mars, as determined from radio tracking data provided by the Viking lander spacecraft. The analytical triangulation adjusts for planimetric control only (areocentric latitude and longitude) and for the camera orientation angles. Most of the areocentric radii at the control points were interpolated from radio occultation measurements, but a few were determined photogrammetically, and a substantial number were derived from elevation contours on the 1976 USGS topographic series of Mars maps. A value of V, measured from Mars' vernal equinox along the equator to the prime meridian (Airy-0) is presented.

  7. Mid-pacific mountains revisited

    NASA Astrophysics Data System (ADS)

    Kroenke, Loren W.; Kellogg, James N.; Nemoto, Kenji

    1985-06-01

    The Mid-Pacific Mountains are guyots whose volcanic pedestals have been constructed on a broad basement plateau, the flanks of which are downfaulted. Edifice construction may have been controlled by an orthogonal system of intersecting faults trending roughly ENE and NNW. Low amplitude gravity anomalies observed over the Mid-Pacific Mountains indicate complete Airy-Heiskanen isostatic compensation, crustal thickening, and eruption on thin elastic lithosphere. Tholeiites of the Mid-Pacific Mountains resemble lavas of Iceland and the Galapagos Islands. The orthogonal fault system, low gravity anomalies, and lava chemistry of the Mid-Pacific Mountains can be explained by eruption on or near a great ENE-trending rift system.

  8. Nondiffracting accelerating wave packets of Maxwell's equations.

    PubMed

    Kaminer, Ido; Bekenstein, Rivka; Nemirovsky, Jonathan; Segev, Mordechai

    2012-04-20

    We present the nondiffracting spatially accelerating solutions of the Maxwell equations. Such beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams to the full domain of the wave equation. For both TE and TM polarizations, the beams exhibit shape-preserving bending which can have subwavelength features, and the Poynting vector of the main lobe displays a turn of more than 90°. We show that these accelerating beams are self-healing, analyze their properties, and find the new class of accelerating breathers: self-bending beams of periodically oscillating shapes. Finally, we emphasize that in their scalar form, these beams are the exact solutions for nondispersive accelerating wave packets of the most common wave equation describing time-harmonic waves. As such, this work has profound implications to many linear wave systems in nature, ranging from acoustic and elastic waves to surface waves in fluids and membranes. PMID:22680719

  9. Frequency analysis of temperature-dependent interferometric signal for the measurement of the temperature coefficient of refractive index

    NASA Astrophysics Data System (ADS)

    Zhou, Jianqin; Shen, Jun; Neill, W. Stuart

    2016-07-01

    A method of frequency analysis for the measurement of the temperature coefficient of refractive index (dn/dT) using a Fabry-Perot interferometer was developed and tested against ethanol and water. The temperature-dependent interferometric signal described by Airy's formula was analyzed in both the temperature and frequency domains. By fast Fourier transform, a low-pass filter was designed and employed to eliminate the noise superimposed on the signal. dn/dT was determined accurately from the noise-removed signal by peak analysis. Furthermore, the signal frequency parameters may be utilized for the material thermophysical property characterization. This method lays the foundation for an online dn/dT instrument for monitoring chemical processes.

  10. Fabry-Pérot interferometry for long range displacement sensing.

    PubMed

    Thurner, Klaus; Braun, Pierre-François; Karrai, Khaled

    2013-09-01

    We investigate different optical configurations of a low-finesse Fabry-Pérot interferometer used for displacement sensing. The different configurations of the Fabry-Pérot cavity are selected in order to achieve large measurement ranges and angular alignment tolerances and to make the interferometer applicable for targets of various reflectivity ranges. The possible working ranges and angular alignment tolerances are characterized with respect to the interference contrast which is a measure for the signal quality. The use of a confocal arrangement enables a measurement range of up to about 0.4 m, or to work with an angular tolerance of more than ±0.2°. In order to predict the optical response of arbitrary configurations of the Fabry-Pérot interferometer, we introduce a simulation method based on the Airy formula and the fiber optic coupling efficiency.

  11. Making acoustic half-Bessel beams with metasurfaces

    NASA Astrophysics Data System (ADS)

    Tang, Kun; Hong, Yuanzhuo; Qiu, Chunyin; Peng, Shasha; Ke, Manzhu; Liu, Zhengyou

    2016-11-01

    Unlike the well-known Airy beams that can be deformed beyond paraxial angles, the half-Bessel (HB) Beams can bend to steeper angles. Here we propose an effective metasurface design for constructing two-dimensional acoustic HB beams. The design is based on an array of spatially varied coiling-slit units, each of which mimics the wave responses derived from the analytical expression of the acoustic HB beam. A tradeoff method is utilized here to simplify the variable amplitude responses. The full-wave simulations and experimental measurements consistently manifest the effectiveness of this design process. Potential applications, such as the large-angle bending transport of particles, can be anticipated.

  12. Laser line shape and spectral density of frequency noise

    SciTech Connect

    Stephan, G.M.; Blin, S.; Besnard, P.; Tam, T.T.; Tetu, M.

    2005-04-01

    Published experimental results show that single-mode laser light is characterized in the microwave range by a frequency noise which essentially includes a white part and a 1/f (flicker) part. We theoretically show that the spectral density (the line shape) which is compatible with these results is a Voigt profile whose Lorentzian part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified that the width of the Lorentzian part varies like 1/P where P is the laser power while the width of the Gaussian part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part originates from population noise.

  13. Two-point generating function of the free energy for a directed polymer in a random medium

    NASA Astrophysics Data System (ADS)

    Prolhac, Sylvain; Spohn, Herbert

    2011-01-01

    We consider a (1 + 1)-dimensional directed continuum polymer in a Gaussian delta-correlated spacetime random potential. For this model the moments (= replica) of the partition function, Z(x, t), can be expressed in terms of the attractive δ-Bose gas on the line. Based on a recent study of the structure of the eigenfunctions, we compute the generating function for Z(x1, t), Z(x2, t) under a particular decoupling assumption and thereby extend recent results on the one-point generating function of the free energy to two points. It is established that in the long-time limit the fluctuations of the free energy are governed by the two-point distribution of the Airy process, which further supports that the long-time behavior of the KPZ equation is the same as derived previously for lattice growth models.

  14. Curved singular beams for three-dimensional particle manipulation

    PubMed Central

    Zhao, Juanying; Chremmos, Ioannis D.; Song, Daohong; Christodoulides, Demetrios N.; Efremidis, Nikolaos K.; Chen, Zhigang

    2015-01-01

    For decades, singular beams carrying angular momentum have been a topic of considerable interest. Their intriguing applications are ubiquitous in a variety of fields, ranging from optical manipulation to photon entanglement, and from microscopy and coronagraphy to free-space communications, detection of rotating black holes, and even relativistic electrons and strong-field physics. In most applications, however, singular beams travel naturally along a straight line, expanding during linear propagation or breaking up in nonlinear media. Here, we design and demonstrate diffraction-resisting singular beams that travel along arbitrary trajectories in space. These curved beams not only maintain an invariant dark “hole” in the center but also preserve their angular momentum, exhibiting combined features of optical vortex, Bessel, and Airy beams. Furthermore, we observe three-dimensional spiraling of microparticles driven by such fine-shaped dynamical beams. Our findings may open up new avenues for shaped light in various applications. PMID:26166011

  15. Simultaneous two color image capture for sub-diffraction localization fluorescence microscopy.

    PubMed

    Glasgow, Ben J; Ma, Lie

    2016-01-01

    A sub-diffraction limit fluorescence localization microscope was constructed using a standard cooled 1.4 mega-pixel fluorescence charge-coupled device (CCD) camera to simultaneously resolve closely adjacent paired quantum dots on a flat surface with emissions of 540 and 630 nm. The images of the overlapping Airy discs were analyzed to determine the center of the point spread function after noise reduction using Fourier transformation analysis. The Cartesian coordinates of the centers of the point spread functions were compared in serial images. Histograms constructed from serial images fit well to Gaussian functions for resolving two quantum dots separated by as little as 10nm in the x-y coordinates. Statistical analysis of multiple pairs validated discrimination of inter-fluorophore distances that vary by 10nm. The method is simple and developed for x-y resolution of dilute fluorophores on a flat surface, not serial z sectioning.

  16. Partition functions of superconformal Chern-Simons theories from Fermi gas approach

    NASA Astrophysics Data System (ADS)

    Moriyama, Sanefumi; Nosaka, Tomoki

    2014-11-01

    We study the partition function of three-dimensional superconformal Chern-Simons theories of the circular quiver type, which are natural generalizations of the ABJM theory, the worldvolume theory of M2-branes. In the ABJM case, it was known that the perturbative part of the partition function sums up to the Airy function as Z( N) = e A C -1/3Ai[ C -1/3( N - B)] with coefficients C, B and A and that for the non-perturbative part the divergences coming from the coefficients of worldsheet instantons and membrane instantons cancel among themselves. We find that many of the interesting properties in the ABJM theory are extended to the general superconformal Chern-Simons theories. Especially, we find an explicit expression of B for general theories, a conjectural form of A for a special class of theories, and cancellation in the non-perturbative coefficients for the simplest theory next to the ABJM theory.

  17. Superconformal Chern-Simons partition functions of affine D-type quiver from Fermi gas

    NASA Astrophysics Data System (ADS)

    Moriyama, Sanefumi; Nosaka, Tomoki

    2015-09-01

    We consider the partition function of the superconformal Chern-Simons theories with the quiver diagram being the affine D-type Dynkin diagram. Rewriting the partition function into that of a Fermi gas system, we show that the perturbative expansions in 1 /N are summed up to an Airy function, as in the ABJM theory or more generally the theories of the affine A-type quiver. As a corollary, this provides a proof for the previous proposal in the large N limit. For special values of the Chern-Simons levels, we further identify three species of the membrane instantons and also conjecture an exact expression of the overall constant, which corresponds to the constant map in the topological string theory. [Figure not available: see fulltext.

  18. A relation between multipath group velocity, mode number, and ray cycle distance.

    PubMed

    Harrison, Chris H

    2012-07-01

    Weston's ray invariant or "characteristic time" in a range-dependent environment is exactly equivalent to the Wentzel-Kramers-Brillouin phase integral for ducted normal modes. By considering a ray element it is shown that the ray invariant can also be written in terms of ray cycle distance and cycle time. This leads to a useful formula for group velocity in terms of cycle distance and mode number. Drawing a distinction between the ray and wave interpretation, the Airy phase (i.e., the existence of a group velocity minimum) can be included in this approach. Favorable comparisons are made with group velocities derived from a normal mode model. The relationship is valid for variable sound speed and variable bathymetry, and this is demonstrated numerically. The formula is applicable to active sonar, multipath pulse shape, target signatures, reverberation, tomography, and underwater communications. PMID:22779454

  19. Electroless plating of Ni thin films using foam of electrolyte

    NASA Astrophysics Data System (ADS)

    Furuhashi, Takahiro; Yamada, Yoshiyasu; Ichihara, Shoji; Takai, Akihiro; Usui, Hiroaki

    2016-02-01

    Electroless plating of Ni thin films was achieved in foam of electroplating solution in place of electroplating liquid. Commercial hypophosphite-based solution for Ni electroless plating was added with a surfactant of sulfuric acid monododecyl ester sodium salt (SDS) and bubbled with nitrogen gas to produce airy foam. Ni thin films were deposited by immersing iron substrates in the foam. Although stationary foam was inconvenient for electrodeposition by itself, film growth was enhanced by generating a flow of foam using substrate rotation and by adding SDS to a concentration of 0.1 to 0.3 wt %. No defects attributed to pinholes were observed on the film surface. This method was effective in reducing the net amount of plating solution necessary for film deposition.

  20. Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Winkler, Thomas; Sarpe, Cristian; Jelzow, Nikolai; Lasse H., Lillevang; Götte, Nadine; Zielinski, Bastian; Balling, Peter; Senftleben, Arne; Baumert, Thomas

    2016-06-01

    In this work, laser excitation of water under ambient conditions is investigated by radially resolved common-path spectral interferometry. Water, as a sample system for dielectric materials, is excited by ultrashort bandwidth-limited and temporally asymmetric shaped femtosecond laser pulses, where the latter start with an intense main pulse followed by a decaying pulse sequence, i.e. a temporal Airy pulse. Spectral interference in an imaging geometry allows measurements of the transient optical properties integrated along the propagation through the sample but radially resolved with respect to the transverse beam profile. Since the optical properties reflect the dynamics of the free-electron plasma, such measurements reveal the spatial characteristics of the laser excitation. We conclude that temporally asymmetric shaped laser pulses are a promising tool for high-precision laser material processing, as they reduce the transverse area of excitation, but increase the excitation inside the material along the beam propagation.

  1. Laws of granular solids: geometry and topology.

    PubMed

    DeGiuli, Eric; McElwaine, Jim

    2011-10-01

    In a granular solid, mechanical equilibrium requires a delicate balance of forces at the disordered grain scale. To understand how macroscopic rigidity can emerge in this amorphous solid, it is crucial that we understand how Newton's laws pass from the disordered grain scale to the laboratory scale. In this work, we introduce an exact discrete calculus, in which Newton's laws appear as differential relations at the scale of a single grain. Using this calculus, we introduce gauge variables that describe identically force- and torque-balanced configurations. In a first, intrinsic formulation, we use the topology of the contact network, but not its geometry. In a second, extrinsic formulation, we introduce geometry with the Delaunay triangulation. These formulations show, with exact methods, how topology and geometry in a disordered medium are related by constraints. In particular, we derive Airy's expression for a divergence-free, symmetric stress tensor in two and three dimensions.

  2. Semilocal density functional theory with correct surface asymptotics

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Fabiano, Eduardo; Pitarke, J. M.; Della Sala, Fabio

    2016-03-01

    Semilocal density functional theory is the most used computational method for electronic structure calculations in theoretical solid-state physics and quantum chemistry of large systems, providing good accuracy with a very attractive computational cost. Nevertheless, because of the nonlocality of the exchange-correlation hole outside a metal surface, it was always considered inappropriate to describe the correct surface asymptotics. Here, we derive, within the semilocal density functional theory formalism, an exact condition for the imagelike surface asymptotics of both the exchange-correlation energy per particle and potential. We show that this condition can be easily incorporated into a practical computational tool, at the simple meta-generalized-gradient approximation level of theory. Using this tool, we also show that the Airy-gas model exhibits asymptotic properties that are closely related to those at metal surfaces. This result highlights the relevance of the linear effective potential model to the metal surface asymptotics.

  3. Nondiffracting accelerating wave packets of Maxwell's equations.

    PubMed

    Kaminer, Ido; Bekenstein, Rivka; Nemirovsky, Jonathan; Segev, Mordechai

    2012-04-20

    We present the nondiffracting spatially accelerating solutions of the Maxwell equations. Such beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams to the full domain of the wave equation. For both TE and TM polarizations, the beams exhibit shape-preserving bending which can have subwavelength features, and the Poynting vector of the main lobe displays a turn of more than 90°. We show that these accelerating beams are self-healing, analyze their properties, and find the new class of accelerating breathers: self-bending beams of periodically oscillating shapes. Finally, we emphasize that in their scalar form, these beams are the exact solutions for nondispersive accelerating wave packets of the most common wave equation describing time-harmonic waves. As such, this work has profound implications to many linear wave systems in nature, ranging from acoustic and elastic waves to surface waves in fluids and membranes.

  4. Heat trap - An optimized far infrared field optics system. [for astronomical sources

    NASA Technical Reports Server (NTRS)

    Harper, D. A.; Hildebrand, R. H.; Winston, R.; Stiening, R.

    1976-01-01

    The article deals with the design and performance of a heat trap IR system designed to maximize the concentration and efficient reception of far IR and submillimeter wavelength radiation. The test object is assumed to be extended and/or viewed at wavelengths much longer than the detector, and the entrance aperture is limited to the size of the telescope Airy diffraction disk. The design of lenses, cavity, bolometers, light collectors, and mirrors for the system is discussed. Advantages and feasibility of arrays of heat traps are considered. Beam patterns, flux concentration, and performance variation with wavelength are dealt with. The heat trap is recommended for sensing all types of far IR sources and particularly for extended far IR sources.-

  5. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    SciTech Connect

    Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun Wang, Kaige

    2015-04-27

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  6. A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies

    NASA Technical Reports Server (NTRS)

    Massman, William

    1987-01-01

    A semianalytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.

  7. A relation between multipath group velocity, mode number, and ray cycle distance.

    PubMed

    Harrison, Chris H

    2012-07-01

    Weston's ray invariant or "characteristic time" in a range-dependent environment is exactly equivalent to the Wentzel-Kramers-Brillouin phase integral for ducted normal modes. By considering a ray element it is shown that the ray invariant can also be written in terms of ray cycle distance and cycle time. This leads to a useful formula for group velocity in terms of cycle distance and mode number. Drawing a distinction between the ray and wave interpretation, the Airy phase (i.e., the existence of a group velocity minimum) can be included in this approach. Favorable comparisons are made with group velocities derived from a normal mode model. The relationship is valid for variable sound speed and variable bathymetry, and this is demonstrated numerically. The formula is applicable to active sonar, multipath pulse shape, target signatures, reverberation, tomography, and underwater communications.

  8. Tail decay for the distribution of the endpoint of a directed polymer

    NASA Astrophysics Data System (ADS)

    Bothner, Thomas; Liechty, Karl

    2013-05-01

    We obtain an asymptotic expansion for the tails of the random variable { T}=\\arg\\max_{u\\in{R}}(A_2(u)-u^2) where A_2 is the Airy2 process. Using the formula of Schehr (2012 J. Stat. Phys. 149 385) that connects the density function of { T} to the Hastings-McLeod solution to the second Painlevé equation, we prove that as t → ∞, {P}(|{ T}|>t)=C\\rme^{-\\frac{4}{3}\\varphi(t)}t^{-145/32}(1+O(t^{-3/4})) , where φ(t) = t3 - 2t3/2 + 3t3/4, and the constant C is given explicitly.

  9. Can Impaired Vision be Easily, Quickly and Safely Restored toward Health and Maintained Wellness, Using McLeod's Patent Pending Naturoptics Methods?

    NASA Astrophysics Data System (ADS)

    Courtmanche, Amanda; McLeod, Roger; McLeod, David

    2006-10-01

    A healthy eye has its large set of diffraction patterns, generated by the viewed scene, spread across the visible spectrum. Only the two of these simultaneously coincident with foveal cones, and rods, or with extra-foveal cones, are visually useful. This fact and pupil diameter changes with illumination, which cause proportional wavelength changes, drives the healthy visual state. A quasi-monochromatic interval is coincident with foveal cones, and rods. A shorter, partially overlapping interval aligns with extrafoveal cones, with about twenty nanometers separation. Wavelengths follow the Airy disk radius formula. An unhealthy eye is an eyeball deformed by self- induced vision abuse. Incorrect and effectively static stresses in the large external eye muscles displace and distort the patterns. Rebalancing the proper vision and muscle state are safely, quickly and rapidly restored by mimicking natural eye and head movements with naturoptics.

  10. Piezoelectric Franz-Keldysh effect in a GaN/InGaN/AlGaN multilayer structure

    NASA Astrophysics Data System (ADS)

    Hou, Yong T.; Teo, Kie L.; Li, Ming Fu; Uchida, Kazuo; Tokunaga, Hiroki; Akutsu, Nakao; Matsumoto, Koh

    1999-11-01

    Contactless electroreflectance (CER) of a GaN/InGaN/AlGaN multilayer structure grown on sapphire has been measured in the temperature range of 15K and 450K. Except for the GaN exciton structures, well-defined Franz-Keldysh Oscillations are observed above the AlGaN band gap. An electomodulational model based on complex Airy functions is used to analyze the FKOs line shape. The temperature dependence of transition energies is obtained both for GaN and AlGaN. The magnitude of the built in electric field in AlGaN layer is also determined. The temperature dependence of the electric field is found to be consistent with the variation of thermal strain in the epilayer. It is demonstrated that the built-in electric field can be identified to be due to the piezoelectric effect.

  11. Size distribution of ring polymers

    NASA Astrophysics Data System (ADS)

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A.

    2016-06-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 - d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5.

  12. Bethe Ansatz and the Spectral Theory of Affine Lie algebra-Valued Connections II: The Non Simply-Laced Case

    NASA Astrophysics Data System (ADS)

    Masoero, Davide; Raimondo, Andrea; Valeri, Daniele

    2016-09-01

    We assess the ODE/IM correspondence for the quantum g -KdV model, for a non-simply laced Lie algebra g. This is done by studying a meromorphic connection with values in the Langlands dual algebra of the affine Lie algebra g^{(1)} , and constructing the relevant {Ψ} -system among subdominant solutions. We then use the {Ψ} -system to prove that the generalized spectral determinants satisfy the Bethe Ansatz equations of the quantum g -KdV model. We also consider generalized Airy functions for twisted Kac-Moody algebras and we construct new explicit solutions to the Bethe Ansatz equations. The paper is a continuation of our previous work on the ODE/IM correspondence for simply-laced Lie algebras.

  13. Evaluation of the new flexible contour backrest for wheelchairs.

    PubMed

    Parent, F; Dansereau, J; Lacoste, M; Aissaoui, R

    2000-01-01

    A new flexible contour backrest for wheelchairs was designed with the objectives of offering adequate posture, uniform pressure distribution, and comfort to the users while keeping the advantages of conventional sling backrests, such as easy to fold, light weight, unobtrusive, and airy. The purpose of this study is to compare the new backrest with two commercially available wheelchair backrests, an adjustable-tension (AT) backrest and a back cushion on a rigid support (RS), in terms of pressure distribution, back profile accommodation, and short-term comfort. Evaluations were done with 15 nonimpaired subjects in a static position. It was shown that the new backrest distributes pressure in a more uniform way than the AT and in a way similar to the RS, while giving a better fit to subjects' trunks than other backrests because of its multiple adjustments. Finally, subjects felt that the new backrest is as comfortable as the RS and more comfortable than the AT.

  14. Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique.

    PubMed

    Takai, Takanari; Nakao, Hidenobu; Iwata, Futoshi

    2014-11-17

    We describe a novel fabrication method of three-dimensional (3D) microstructures using local electrophoresis deposition together with laser trapping. A liquid cell consisting of two-faced conductive substrates was filled with a colloidal solution of Au nanoparticles. The nanoparticles were trapped by a laser spot and positioned on the bottom substrate, then deposited onto the surface by the application of electrical voltage between the two substrates. By moving the liquid cell downward while maintaining the deposition, 3D microstructures were successfully fabricated. The smallest diameter of the fabricated pillar was 500 nm, almost the same as that of the Airy disc. The Young's modulus of the fabricated structure was 1.5 GPa.

  15. Linear and nonlinear light bullets: recent developments

    NASA Astrophysics Data System (ADS)

    Mihalache, Dumitru

    2013-06-01

    The spatiotemporal optical solitons (alias nonlinear "light bullets") are nondiffracting and nondispersing wave packets propagating in nonlinear optical media. The three-dimensional spatiotemporal solitons are localized (self-guided) in two transverse (spatial) dimensions and in the direction of propagation due to the balance of anomalous group-velocity dispersion of the medium in which they form and nonlinear self-phase modulation. The formation of fully threedimensional spatiotemporal optical solitons in two-dimensional photonic lattices was reported in recent experiments. Also, linear light bullets, which are robust and versatile localized wave packets combining Bessel beams in the transverse plane with temporal Airy pulses have been reported experimentally. A brief up-to-date survey of recent theoretical and experimental studies of the formation, stability and robustness of linear and nonlinear light bullets in various physical settings is given.

  16. Mars - Gravity data analysis of the crater Antoniadi

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Ritke, S. J.

    1982-01-01

    Topography and gravity information for this 370-km crater are analyzed to determine a depth of compensation with an Airy isostatic model. A least squares fit to the gravity profile gives an estimate of 115 km for the depth of compensation. It is noted that Antoniadi is the only large Martian crater for which both topographic and gravity data are available for analysis. The goal here is to reduce these geophysical data for additional information on the internal structure of Mars. The results show that if Antoniadi had fully isostatically adjusted, the additional mass material would have been about 100 km below the surface. This is regarded as another data point for geophysicists developing the internal structure of Mars.

  17. Overcoming Polarization Aberrations In Microscopy

    NASA Astrophysics Data System (ADS)

    Hansen, Eric W.

    1988-06-01

    A long-standing problem in polarized light microscopy has been the inability, due to polarization aberrations, to achieve simultaneously high spatial resolution and high contrast. The rotation of the plane of polarization at oblique interfaces between crossed polars causes the pupil function to resemble a dark cross rather than being uniformly dark. Likewise, the point spread function has the visual appearance of a four-leaf clover rather than the ideal Airy disk, and is also space-variant. Images formed with these systems are severely degraded. In this paper the theory of polarization aberrations is applied to the analysis of three solutions to this problem: Reducing the system aperture to block troublesome high-aperture rays; the AVEC-POL method, in which high bias compensation introduces counterbalancing aberrations; and the polarization rectifier, an optical element designed to introduce equal and opposite rotations of the electric vector.

  18. Laplace and the era of differential equations

    NASA Astrophysics Data System (ADS)

    Weinberger, Peter

    2012-11-01

    Between about 1790 and 1850 French mathematicians dominated not only mathematics, but also all other sciences. The belief that a particular physical phenomenon has to correspond to a single differential equation originates from the enormous influence Laplace and his contemporary compatriots had in all European learned circles. It will be shown that at the beginning of the nineteenth century Newton's "fluxionary calculus" finally gave way to a French-type notation of handling differential equations. A heated dispute in the Philosophical Magazine between Challis, Airy and Stokes, all three of them famous Cambridge professors of mathematics, then serves to illustrate the era of differential equations. A remark about Schrödinger and his equation for the hydrogen atom finally will lead back to present times.

  19. Critical-current diffraction patterns of grain-boundary Josephson weak links

    SciTech Connect

    Peterson, R.L.; Ekin, J.W. )

    1990-11-01

    We discuss the diffraction patterns and other characteristics of the critical current as a function of magnetic field in grain-boundary Josephson barriers. Diffraction patterns occur not just for {ital SIS} junctions but for all types of Josephson links, including {ital SNS} junctions, which may be present at grain boundaries in high-{Tc} superconductors. We discuss the generality of the Airy diffraction pattern, which is expected to characterize grain-boundary barriers in bulk material more accurately than the Fraunhofer pattern. The transport critical-current density in many bulk, granular high-{ital T}{sub {ital c}} superconductors has a power-law dependence on very low magnetic fields, characteristic of averaged diffraction patterns, and cannot be fitted by an exponential magnetic-field dependence, which may result from the material properties of the barriers.

  20. The prime meridian of Mars and the longitudes of the Viking landers

    NASA Technical Reports Server (NTRS)

    Davies, M. E.

    1977-01-01

    A planetwide control net of Mars has been computed by a single large-block analytical triangulation derived from 17,224 measurements of 3,037 control points on 928 Mariner 9 pictures. The computation incorporated the Viking-determined direction of the spin axis and rotation rate of Mars. The angle measured from the vernal equinox to the prime meridian (areocentric right ascension) of Mars was determined to be 148.368 deg + 350.891986 deg (JD - 2433282.5), where JD refers to the Julian date. The prime meridian of Mars passes through the center of the small crater Airy-O. The longitudes of the Viking landers are 47.82 + or - 0.1 deg for Lander 1 and 225.59 + or - 0.1 deg for Lander 2.

  1. Quantum catastrophes and ergodicity in the dynamics of bosonic Josephson junctions.

    PubMed

    O'Dell, D H J

    2012-10-12

    We study rainbow (fold) and cusp catastrophes that form in Fock space following a quench in a Bose Josephson junction. In the Gross-Pitaevskii mean-field theory, the rainbows are singular caustics, but in the second-quantized theory a Poisson resummation of the wave function shows that they are described by well-behaved Airy functions. The structural stability of these Fock space caustics against variations in the initial conditions and Hamiltonian evolution is guaranteed by catastrophe theory. We also show that the long-time dynamics are ergodic. Our results are relevant to the question posed by Berry [M. V. Berry, Nonlinearity 21, T19 (2008)]: Are there circumstances when it is necessary to second quantize wave theory in order to avoid singularities? PMID:23102282

  2. Supernumerary ice-crystal halos?

    PubMed

    Berry, M V

    1994-07-20

    Geometric-optics singularities in the intensity profiles of refraction halos formed by randomly oriented ice crystals are softened by diffraction and decorated with fine supernumerary fringes. If the crystals have a fixed symmetry axis (as in parhelia), the geometric singularity is a square-root divergence, as in the rainbow. However, the universal curve that describes diffraction is different from the rainbow's Airy function, with weak maxima (supernumerary fringes) on the geometrically dark region inside the halo (and even fainter fringes outside); these are much smaller than their counterparts on the light side of rainbows. If the crystals have no preferred orientation (as in the 22° halo), the geometric singularity is a step. In this case the universal diffraction function has no maxima, and its supernumeraries are shoulders rather than maxima. The low contrast of the fringes is probably the main reason why supernumerary halos are rarely if ever seen. PMID:20935824

  3. Optical system design of solar-blind UV target simulator with long focal length

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Huo, Furong; Zheng, Liqin

    2014-11-01

    Ultraviolet (UV) radiation of 200nm-300nm waveband from the sun is absorbed by atmosphere, which is often referred to the solar-blind region of the solar spectrum. Solar-blind characteristics of this waveband have important application value, especially in military fields. The application of solar-blind waveband has developed very rapidly, which is receiving more and more attention. Sometimes, to test the performance of a UV optical system, a standard solar-blind UV target simulator is needed as the UV light source. In this paper, an optical system of a solar-blind UV target simulator is designed with waveband 240nm-280nm. To simulate a far UV target, the focal length of this UV optical system needs to be long. Besides, different field of view (FOV) of the system should meet aplanatic condition. The optional materials are very few for UV optical systems, in which only CaF2 and JGS1 are commonly used. Various aberrations are difficult to be corrected. To save production cost and enhance the precision of fabrication and test, aspheric surfaces and binary elements are not adopted in the system. Moreover, doublet or triplet cannot be used in UV optical system considering possible cracking for different thermal expansion coefficients of different materials. After optimization, the system is composed of 4 lenses with focal length 500mm. MTF curves of different FOV coincide together. The maximum RMS radius of the optimized system has almost the same size as Airy disk, which proves the good image quality after system optimization. The aplanatic condition is met very well in this system. In the spot diagram, root mean square (RMS) radius changes from 3 microns to 3.6 microns, which has similar size with Airy disk and meets aplanatic condition very well. This optical system of solar-blind UV target simulator also has relatively loose tolerance data, which can prove the system is designed in an optimal state.

  4. A note on ultra-short pulses compression in silicon optical waveguides under fourth-order dispersion

    NASA Astrophysics Data System (ADS)

    Mandeng Mandeng, L.; Fewo Ibraid, S.; Tchawoua, C.; Kofané, T. C.

    2014-08-01

    We present an overview of the pulse compression phenomenon obtained during the propagation of ultra-short pulses in common used optical waveguides. In the case of the silicon-on-insulator (SOI) waveguides, using the modified and realistic variational approach (MVA) that involves the Rayleigh's dissipation function (RDF), we conduct the analysis of the compression mechanism on different input profiles. This study allows to show the effects of fourth-order dispersion (FOD), the nonlinear coefficients of absorption (nonlinear absorption) and the chirp, not only on symmetric and compact pulses but also on those with asymmetric profile as the Airy pulses. Indeed, considering the case of linear compression, the conditions of their occurrence are obtained. A relation between the FOD, the group-velocity dispersion (GVD) and the chirp is proposed in this way. In the nonlinear case, using the symmetric profiles as input pulses, we demonstrate a periodic compression induced by the interplay between the self-phase modulation (SPM) and the FOD. This appears as a new mode to generate the pulse compression phenomenon. Then, we show that when large values of the initial chirp and absorption coefficients as the two-photon absorption (TPA) present in these waveguides are considered, the compression mechanism is completely destroyed with at least the observation of one pulse amplification over a short distance of propagation before the pulse broadening. Finally, the study relating to the Airy pulses, leads rather to the reduction of the compression length induced by the SPM, the TPA and the free-carrier absorption (FCA) showing the pulse asymmetry influence.

  5. Crustal-thickness variations in the central Andes

    SciTech Connect

    Beck, S.L.; Myers, S.C.; Wallace, T.C.; Zandt, G. |; Silver, P.G.; Drake, L.

    1996-05-01

    We estimated the crustal thickness along an east-west transect across the Andes at lat 20{degree}S and along a north-south transect along the eastern edge of the Altiplano from data recorded on two arrays of portable broadband seismic stations (BANJO and SEDA). We found crustal-thickness variations of nearly 40 km across the Andes. Maximum crustal thicknesses of 70-74 km under the Western Cordillera and the Eastern Cordillera thin to 32-38 km 200 km east of the Andes in the Chaco Plain. The central Altiplano at 20{degree}S has crustal thicknesses of 60 to 65 km. The crust also appears to thicken from north (16{degree}S, 55-60 km) to south (20{degree}S, 70-74 km) along the Eastern Cordillera. The Subandean zone crust has intermediate thicknesses of 43 to 47 km. Crustal-thickness predictions for the Andes based on Airy-type isostatic behavior show remarkable overall correlation with observed crustal thickness in the regions of high elevation. In contrast, at the boundary between the Eastern Cordillera and the Subandean zone and in the Chaco Plain, the crust is thinner than predicted, suggesting that the crust in these regions is supported in part by the flexural rigidity of a strong lithosphere. With additional constraints, we conclude that the observation of Airy-type isostasy is consistent with thickening associated with compressional shortening of a weak lithosphere squeezed between the stronger lithosphere of the subducting Nazca plate and the cratonic lithosphere of the Brazilian craton. 26 refs., 4 figs.

  6. Crustal-thickness variations in the central Andes

    NASA Astrophysics Data System (ADS)

    Beck, Susan L.; Zandt, George; Myers, Stephen C.; Wallace, Terry C.; Silver, Paul G.; Drake, Lawrence

    1996-05-01

    We estimated the crustal thickness along an east-west transect across the Andes at lat 20°S and along a north-south transect along the eastern edge of the Altiplano from data recorded on two arrays of portable broadband seismic stations (BANJO and SEDA). Waveforms of deep regional events in the downgoing Nazca slab and teleseismic earthquakes were processed to isolate the P-to-S converted phases from the Moho in order to compute the crustal thickness. We found crustal-thickness variations of nearly 40 km across the Andes. Maximum crustal thicknesses of 70 74 km under the Western Cordillera and the Eastern Cordillera thin to 32 38 km 200 km east of the Andes in the Chaco Plain. The central Altiplano at 20°S has crustal thicknesses of 60 to 65 km. The crust also appears to thicken from north (16°S, 55 60 km) to south (20°S, 70 74 km) along the Eastern Cordillera. The Subandean zone crust has intermediate thicknesses of 43 to 47 km. Crustal-thickness predictions for the Andes based on Airy-type isostatic behavior show remarkable overall correlation with observed crustal thickness in the regions of high elevation. In contrast, at the boundary between the Eastern Cordillera and the Subandean zone and in the Chaco Plain, the crust is thinner than predicted, suggesting that the crust in these regions is supported in part by the flexural rigidity of a strong lithosphere. With additional constraints, we conclude that the observation of Airy-type isostasy is consistent with thickening associated with compressional shortening of a weak lithosphere squeezed between the stronger lithosphere of the subducting Nazca plate and the cratonic lithosphere of the Brazilian craton.

  7. The 6Hankel asymptotic approximation for the uniform description of rainbows and glories in the angular scattering of state-to-state chemical reactions: derivation, properties and applications.

    PubMed

    Xiahou, Chengkui; Connor, J N L

    2014-06-01

    This paper considers the asymptotic (semiclassical) analysis of a forward glory and a rainbow in the differential cross section (DCS) of a state-to-state chemical reaction, whose scattering amplitude is given by a Legendre partial wave series (PWS). A recent paper by C. Xiahou, J. N. L. Connor and D. H. Zhang [Phys. Chem. Chem. Phys., 2011, 13, 12981] stated without proof a new asymptotic formula for the scattering amplitude, which is uniform for a glory and a rainbow in the DCS. The new formula was designated "6Hankel" because it involves six Hankel functions. This paper makes three contributions: (1) we provide a detailed derivation of the 6Hankel approximation. This is done by first generalizing a method described by G. F. Carrier [J. Fluid Mech., 1966, 24, 641] for the uniform asymptotic evaluation of an oscillating integral with two real coalescing stationary phase points, which results in the "2Hankel" approximation (it contains two Hankel functions). Application of the 2Hankel approximation to the PWS results in the 6Hankel approximation for the scattering amplitude. We also test the accuracy of the 2Hankel approximation when it is used to evaluate three oscillating integrals of the cuspoid type. (2) We investigate the properties of the 6Hankel approximation. In particular, it is shown that for angles close to the forward direction, the 6Hankel approximation reduces to the "semiclassical transitional approximation" for glory scattering derived earlier. For scattering close to the rainbow angle, the 6Hankel approximation reduces to the "transitional Airy approximation", also derived earlier. (3) Using a J-shifted Eckart parameterization for the scattering matrix, we investigate the accuracy of the 6Hankel approximation for a DCS. We also compare with angular scattering results from the "uniform Bessel", "uniform Airy" and other semiclassical approximations. PMID:24519014

  8. Committees and organizers

    NASA Astrophysics Data System (ADS)

    2011-07-01

    Chairman:Jozef Spałek (Kraków) Program Committee:Stephen Blundell (Oxford), J Michael D Coey (Dublin), Dominique Givord (Grenoble), Dariusz Kaczorowski (Wrocław), Roman Micnas (Poznań), Marek Przybylski (Halle), Ludiwig Schultz (Dresden), Vladimir Sechovsky (Prague), Jozef Spałek (Kraków), Henryk Szymczak (Warszawa), Manuel Vázquez (Madrid) Publication Committee:Dariusz Kaczorowski, Robert Podsiadły, Jozef Spałek, Henryk Szymczak, Andrzej Szytuła Local committee:Maria Bałanda, Anna Majcher, Robert Podsiadły, Michał Rams, Andrzej Ślebarski, Krzysztof Tomala Editors of the Proceedings:Jozef Spałek, Krzysztof Tomala, Danuta Goc-Jagło, Robert Podsiadły, Michał Rams, Anna Majcher Plenary, semi-plenary and tutorial speakers:Ernst Bauer (Wien)Stephen Blundell (Oxford)J Michael D Coey (Dublin)Russell P Cowburn (London)Burkard Hillebrands (Kaiserslautern)Claudine Lacroix (Grenoble)Lluís Mañosa (Barcelona)María del Carmen Muñoz (Madrid)Bernard Raveau (Caen)Pedro Schlottmann (Tallahassee)Frank Steglich (Dresden)Oliver Waldmann (Freiburg) Invited speakers within symposia: R Ahuja (Uppsala)A Kirilyuk (Nijmegen) M Albrecht (Vienna)L Theil Kuhn (Roskilde) K Bärner (Göttingen)J Liu (Dresden) U Bovensiepen (Duisburg)G Lorusso (Modena) V Buchelnikov (Chelyabinsk)M M Maska (Katowice) B Chevalier (Bordeaux)Y Mukovskii (Moscow) O Chubykalo-Fesenko (Madrid)M Pannetier-Lecoeur (Saclay) A V Chumak (Kaiserslautern)G Papavassiliou (Athens) J M D Coey (Dublin)K R Pirota (Campinas) B Dabrowski (DeKalb)P Przyslupski (Warszawa) S Das (Aveiro)M Reiffers (Košice) A del Moral (Zaragoza)K Sandeman (London) V E Demidov (Muenster)D Sander (Halle) B Djafari-Rouhani (Lille)M Sawicki (Sendai/Warsaw) H A Dürr (Menlo Park)J Schaefer (Würzburg) J Fassbender (Dresden)H Schmidt (Wetzikon) J Fontcuberta (Barcelona)J Spałek (Kraków) V Garcia (Orsay)L Straka (Helsinki) J N Gonçalves (Aveiro)A Szewczyk (Warszawa) M E Gruner (Duisburg)Y Taguchi (Wako) G Gubbiotti (Perugia)A Thiaville

  9. Analysis of the seismic wavefield in the Moesian Platform (Bucharest area)

    NASA Astrophysics Data System (ADS)

    -Florinela Manea, Elena; Hobiger, Manuel-Thomas; Michel, Clotaire; Fäh, Donat; -Ortanza Cioflan, Carmen

    2016-04-01

    Bucharest is located in the center of the Moesian platform, in a large and deep sedimentary basin (450 km long, 300 km wide and in some places up to 20 km depth). During large earthquakes generated by the Vrancea seismic zone, located approximately 140 km to the North, the ground motion recorded in Bucharest area is characterized by predominant long periods and large amplification. This phenomenon has been explained by the influence of both source mechanism (azimuth and type of incident waves) and mechanical properties of the local structure (geological layering and geometry). The main goal of our study is to better characterize and understand the seismic wave field produced by earthquakes in the area of Bucharest. We want to identify the contribution of different seismic surface waves, such as the ones produced at the edges of the large sedimentary basin or multipath interference waves (Airy phases of Love and Rayleigh waves) to the ground motion. The data from a 35 km diameter array (URS experiment) installed by the National Institute for Earth Physics during 10 months in 2003 and 2004 in the urban area of Bucharest and adjacent zones was used. In order to perform the wave field characterization of the URS array, the MUSIQUE technique was used. This technique consists in a combination of the classical MUSIC and the quaternion-MUSIC algorithms and analyzes the three-component signals of all sensors of a seismic array together in order to analyze the Love and Rayleigh wave dispersion curves as well as the Rayleigh wave ellipticity curve. The analysis includes 20 regional earthquakes with Mw >3 and 5 teleseismic events with Mw> 7 that have enough energy at low frequency (0.1 - 1 Hz), i.e. in the resolution range of the array. For all events, the greatest energy is coming from the backazimuth of the source and the wave field is dominated by Love waves. The results of the array analyses clearly indicate a significant scattering corresponding to 2D or 3D effects in the

  10. Progress report of southeastern monazite exploration, 1952

    USGS Publications Warehouse

    Overstreet, W.C.; Theobald, P.K.; White, A.M.; Cuppels, N.P.; Caldwell, D.W.; Whitlow, J.W.

    1953-01-01

    Reconnaissance of placer monazite during the field season of 1952 covered 6,600 square miles drained by streams in the western Piedmont of Virginia 5 North Carolina, South Carolina,, and Georgia. Emphasis during this investigation was placed on the area between the Savannah River at the border of South Carolina and Georgia and the Catawba River in North Carolina because it contains most of the placers formerly mined for monaziteo Four other areas along the strike of the monazite-bearing crystalline rocks were also studied, They center around Mt. Airy, N.C., Athens, Ga. Griffin, Ga. and LaGrange, Ga. In the Savannah River Catawba River district, studies indicate that even the highest grade stream deposits of more than 10 million cubic yards of alluvium contain less than 1 pound of monazite per cubic yard. The average grade of the better deposits is about 0 0 5 pound of monazite per cubic yard. Only trace amounts of niobium, tantalum, and tin have been detected in the placers. Tungsten is absent. Locally gold adds a few cents per cubic yard to the value of placer ground. The best deposits range in size from 1 to 5 million cubic yards and contain 1 to 2 pounds of monazite to the cubic yard. Hundreds of placers smaller than 1 million cubic yards exceed 2 pounds of monazite to the cubic yard and locally attain an average of 10 pounds Monazite deposits around Athens, Ga., are similar to the smaller deposits in the central part of the Savannah River - Catawba River district. A few small very low-grade monazite placers were found near Mt. Airy, N.C., Griffin, Ga., and LaGrange Ga., but they are of no economic value. The larger the flood plain and the farther it lies from the source of the stream, the lower is the monazite content of the sediment. Monazite cannot be profitably mined .from the crystalline rocks in the five areas. The alluvial placers are in stream sediments of post-Wisconsin age. Some pre-Wisconsin terrace gravel of small areal extent is exposed but it

  11. Surface wave propagation in central Asia: Observations of scattering and multipathing with the Kyrgyzstan broadband array

    NASA Astrophysics Data System (ADS)

    Pavlis, Gary L.; Mahdi, Hanan

    1996-04-01

    We studied the propagation of Rayleigh waves at regional distances in central Asia using a combination of array processing techniques and surface wave analysis. We present results from the detailed analysis of three representative events recorded by a 10-station, broadband network that has been running in the central Asian country of Kyrgyzstan since 1991: an Ms = 5.1 event near Ashkhabad, Turkmenistan; an Ms = 5.8 event in south central Tibet; and the October 7, 1994, nuclear explosion at Lop Nor. We find there is a remarkable difference in the propagation characteristics of surface waves along these three paths. The path from the event in Turkmenistan is simple and is well approximated by propagation through a laterally homogeneous medium. Array processing shows the entire Rayleigh wave train stacks coherently and arrives from an azimuth close to that predicted by a great circle path. Furthermore, estimates of dispersion curves and fundamental mode signals determined for individual stations show little variation across the array. The Tibet and Lop Nor paths are completely different. We find strong evidence for complicated multipathing and scattering effects along both of these paths. We observe a three-stage pattern in the Tibet case: (1) the early, lowest-frequency part of the Rayleigh wave packet arrives as a coherent signal from close to the great circle path azimuth; (2) this is overpowered in the period range around 20 s by a strong multipath signal that propagates across the array from a much more southerly azimuth; and (3) periods below 20 s rapidly become incoherent, and the signal does not have a well-defined direction of propagation. The Lop Nor path shows similar complexity. On this path there is little dispersion for measurable periods greater than 10 s, so the low-frequency energy arrives in an Airy phase. The Airy phase stacks somewhat coherently (it stacks, but significant power is lost in the best beam), and slowness analysis shows it arrives from

  12. A Post-Pathfinder Evaluation of Areocentric Solar Coordinates with Improved Timing Recipes for Mars Seasonal/Diurnal Climate Studies

    NASA Technical Reports Server (NTRS)

    Allison, Michael; McEwen, Megan

    1999-01-01

    The accurate determination of the Mars pole vector derived from Pathfinder and Viking Lander radio data, together with the VSOP87 representation of planetary orbits, have been applied to a new evaluation of the right ascension of the "fictitious mean sun" (FMS) at Mars. With DELTA t (sub J2000) the elapsed time in days from the J2000 epoch (J.D.2451545.0 (sup TT), alpha FMS = 270 degrees.3863 + 0.52403840(degrees/d) (raised dot) DELTA T (sub j2000) - 4 x 10 (exp -13) (degrees/d (sup 2)) (raised dot) DELTA t (sup 2) (sub J2000) represents a best least-squares quadratic fit of the FMS, including aberration, to each instance of the four equinox and solstice passages for each of 134 Mars orbits spanning the calendar years 1874-2127. The implied tropical orbit period for Mars, 686.9726 (sup d), closely agrees with the recent evaluations. Together with the Pathfinder radio determination of the Mars sidereal rotation, the derived FMS rate corresponds to a mean solar day (or "sol") of 1.027491251 (sup d). The new FMS determination would serve to define the Mean Solar Time at Mars to the nearest tenth-second, according to historical conventions originally established for terrestrial time keeping, once the Mars prime meridian defined by the crater Airy-O is navigated to the same accuracy. For convenient reference to current epochs, 2000 Jan 06 00:00 UTC (= MJD 51549.000 (sup UTC)) corresponds to a coincidence of (alpha (sub FMS)) and the rotation angle of the crater Airy-O measured with respect to the Mars equinox (i.e. "mean solar midnight" on the planet's prime meridian), to within the current uncertainty of several seconds in the locational definition of the planet's cartographic grid. As a further result of the analysis, the consistently derived Mars obliquity of date is epsilon = 25 degrees.192 + 3.45 x l0 (exp -7)(degrees/d)(raised dot) DELTA t (sub J2000). An improved analytic recipe for the calculation of the solar areocentric longitude (L (sub s)) of Mars to an

  13. The Four-Quadrant Phase-Mask Coronagraph. I. Principle

    NASA Astrophysics Data System (ADS)

    Rouan, D.; Riaud, P.; Boccaletti, A.; Clénet, Y.; Labeyrie, A.

    2000-11-01

    We describe a new type of coronagraph, based on the principle of a phase mask as proposed by Roddier and Roddier a few years ago but using an original mask design found by one of us (D. R.), a four-quadrant binary phase mask (0, π) covering the full field of view at the focal plane. The mutually destructive interferences of the coherent light from the main source produce a very efficient nulling. The computed rejection rate of this coronagraph appears to be very high since, when perfectly aligned and phase-error free, it could in principle reduce the total amount of light from the bright source by a factor of 108, corresponding to a gain of 20 mag in brightness at the location of the first Airy ring, relative to the Airy peak. In the real world the gain is of course reduced by a strong factor, but nulling is still performing quite well, provided that the perturbation of the phase, for instance, due to the Earth's atmosphere, is efficiently corrected by adaptive optics. We show from simulations that a detection at a contrast of 10 mag between a star and a faint companion is achievable in excellent conditions, while 8 mag appears routinely feasible. This coronagraph appears less sensitive to atmospheric turbulence and has a larger dynamic range than other recently proposed nulling techniques: the phase-mask coronagraph (by Roddier and Roddier) or the Achromatic Interfero-Coronagraph (by Gay and Rabbia). We present the principle of the four-quadrant coronagraph and results of a first series of simulations. We compare those results with theoretical performances of other devices. We briefly analyze the different limitations in space or ground-based observations, as well as the issue of manufacturing the device. We also discuss several ways to improve the detection of a faint companion around a bright object. We conclude that, with respect to previous techniques, an instrument equipped with this coronagraph should have better performance and even enable the imaging of

  14. Lithospheric structure and compensation mechanisms of the Galapagos Archipelago

    NASA Astrophysics Data System (ADS)

    Feighner, Mark A.; Richards, Mark A.

    1994-04-01

    Volcanic islands of the Galapagos Archipelago are the most recent subaerial expression of the Galapagos hotspot. These islands and numerous seamounts are constructed mainly upon a broad volcanic platform that overlies very young (less than 10 m.y.) oceanic lithosphere just south of the active Galapagos Spreading Center. The 91 deg W fracture zone crosses the platform and creates an estimated 5-m.y. age discontinuity in the lithosphere. Major tectonic features of the Galapagos include an unusually broad distribution of volcanic centers, pronounced structural trends such as the NW-SE Wolf-Darwin Lineament (WDL), and a steep escarpment along the western and southern margins of the archipelago. We use shipboard gravity and bathymetry data along with Geosat geoid data to explain the tectonic and structural evolution of the Galapagos region. We model the gravity anomalies using a variety of compensation models, including Airy isostasy, continuous elastic flexure of the lithosphere, and an elastic plate with embedded weaknesses, and we infer significant lithospheric strength variations across the archipelago. The outboard parts of the southern and western escarpment are flexurally supported with an effective elastic thickness of approximately 12 km. This area includes the large shield volcanoes of Fernandina and Isabela Islands, where the lithosphere regionally supports these volcanic loads. The central platform is weaker, with an elastic thickness of 6 km or less, and close to Airy isostasy. The greatest depths to the Moho are located beneath eastern Isabela Island and the central platform. Thinner lithosphere in this region may account for the broad distribution of volcanoes, the extended period of eruption of the central volcanoes, and their reduced size. The transition from strong to weak lithosphere along the southern escarpment appears to be abrupt, within the resolution of our models, and can be best represented by a free end or faultlike discontinuity. Also

  15. Models for Near-Ridge Seamounts Constrained by Gravity Observations

    NASA Astrophysics Data System (ADS)

    Kostlan, M.; McClain, J. S.

    2009-12-01

    In an analysis of the seamount chain centered at 105°20’W, 9°05’N, west of the East Pacific Rise and south of the Clipperton transform fault, we compared measured free air gravity anomaly values with modeled gravity anomaly values. The seamount chain contains approximately ten seamounts trending roughly east-west, perpendicular to the mid-ocean ridge axis. They lie on lithosphere between 1.5 and 2.7 Ma in age. Based on its position and age, the seamount chain appears to be associated with the 9°03’N overlapping spreading center (OSC). This OSC includes several associated seamount chains, aligned generally east-west, and of varying ages. The observed data include both free air gravity anomalies and bathymetry of the seamount chain, provided by the National Geophysical Data Center (NGDC), and was selected because the gravity measurements are relatively well covered. We used a series of different structural models of the oceanic crust and mantle to generate gravity anomalies associated with the sea mounts. The models utilize Parker’s algorithm to generate these free air gravity anomalies. We compute a gravity residual by subtracting the calculated anomalies from the observed anomalies. The models include one with a crust of a constant thickness (6 km), while another introduces a constant-thickness Layer 2A. In contrast, a third model included a variable thickness crust, where the thickness is governed by Airy compensation. The calculations show that the seamounts must be partly compensated, because the constant-thickness models predict a high negative residual (or they produce an anomaly which is too high). In contrast, the Airy compensation model produces an anomaly that is too low at the longer wavelengths, indicating that the lithosphere must have some strength, and that flexure must be supporting part of the load of the seamount chain. This contrasts with earlier studies that indicate young, near-ridge seamounts do not result in flexure of the thin

  16. How predictable is the anomaly pattern of the Indian summer rainfall?

    NASA Astrophysics Data System (ADS)

    Li, Juan; Wang, Bin

    2016-05-01

    Century-long efforts have been devoted to seasonal forecast of Indian summer monsoon rainfall (ISMR). Most studies of seasonal forecast so far have focused on predicting the total amount of summer rainfall averaged over the entire India (i.e., all Indian rainfall index-AIRI). However, it is practically more useful to forecast anomalous seasonal rainfall distribution (anomaly pattern) across India. The unknown science question is to what extent the anomalous rainfall pattern is predictable. This study attempted to address this question. Assessment of the 46-year (1960-2005) hindcast made by the five state-of-the-art ENSEMBLE coupled dynamic models' multi-model ensemble (MME) prediction reveals that the temporal correlation coefficient (TCC) skill for prediction of AIRI is 0.43, while the area averaged TCC skill for prediction of anomalous rainfall pattern is only 0.16. The present study aims to estimate the predictability of ISMR on regional scales by using Predictable Mode Analysis method and to develop a set of physics-based empirical (P-E) models for prediction of ISMR anomaly pattern. We show that the first three observed empirical orthogonal function (EOF) patterns of the ISMR have their distinct dynamical origins rooted in an eastern Pacific-type La Nina, a central Pacific-type La Nina, and a cooling center near dateline, respectively. These equatorial Pacific sea surface temperature anomalies, while located in different longitudes, can all set up a specific teleconnection pattern that affects Indian monsoon and results in different rainfall EOF patterns. Furthermore, the dynamical models' skill for predicting ISMR distribution primarily comes primarily from these three modes. Therefore, these modes can be regarded as potentially predictable modes. If these modes are perfectly predicted, about 51 % of the total observed variability is potentially predictable. Based on understanding the lead-lag relationships between the lower boundary anomalies and the

  17. Scattering and the Point Spread Function of the New Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Schreur, Julian J.

    1996-01-01

    Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called

  18. Variations in effective compensation depth across Aphrodite Terra, Venus

    SciTech Connect

    Herrick, R.R.; Hall, S.A. ); Bills, B.G.

    1989-06-01

    Aphrodite Terra is the largest elevated terrain on Venus and it serves as a focal point in current discussions of global tectonic style. Using the topography and gravity data acquired by the Pioneer Venus Orbiter (PVO) the authors have estimated an effective depth of Airy compensation for each of 75 orbital arcs that provide fairly uniform areal coverage of the entire province. The most pronounced pattern that emerges is a general increase in compensation depth to the east. The most rapid change occurs near 135{degree}; the average west of there is 70 km, while the average to the east is 230 km. Superimposed on this larger trend are five distinctive regional patterns, four well defined peaks and one interval of widely scattered and poorly constrained depths. The maxima in compensation depth are well correlated with regional topographic highs. While these observations are easily reconciled with the general notion that Aphrodite is a region of crustal divergence, the great depth of compensation is difficult to accord with the more specific suggestion that Aphrodite is a terrestrial type divergent plate margin. The alternative suggestion that Aphrodite, and the other equatorial highlands on Venus, are surface manifestations of hot upwelling mantle plumes is consistent both with the great depths of compensation and with the pattern of regional peaks and intervening troughs. The broader scale increase in effective depth of compensation from west to east is more enigmatic, but it might reflect an age progression of the plumes.

  19. Conventional fluorescence microscopy below the diffraction limit with simultaneous capture of two fluorophores in DNA origami

    NASA Astrophysics Data System (ADS)

    Glasgow, Ben J.

    2016-02-01

    A conventional fluorescence microscope was previously constructed for simultaneous imaging of two colors to gain sub-diffraction localization. The system is predicated on color separation of overlapping Airy discs, construction of matrices of Cartesian coordinates to determine locations as well as centers of the point spread functions of fluorophores. Quantum dots that are separated by as little as 10 nm were resolved in the x-y coordinates. Inter-fluorophore distances that vary by 10 nm could also be distinguished. Quantum dots are bright point light source emitters that excite with a single laser and can serve as a label for many biomolecules. Here, alterations in the method are described to test the ability to resolve Atto 488 and Atto 647 dyes attached to DNA origami at ~40 nm spacing intervals. Dual laser excitation is used in tandem with multi-wavelength bandpass filters. Notwithstanding challenges from reduced intensity in Atto labeled DNA origami helical bundles compared to quantum dots, preliminary data show a mean inter-fluorophore distance of 56 nm with a range (14-148 nm). The range closely matches published results with DNA origami with other methods of subdiffraction microscopy. Sub-diffraction simultaneous two-color imaging fluorescence microscopy acronymically christened (SSTIFM) is a simple, readily accessible, technique for measurement of inter-fluorophore distances in compartments less than 40 nm. Preliminary results with so called nanorulers are encouraging for use with other biomolecules.

  20. In pursuit of accurate timekeeping: Liverpool and Victorian electrical horology.

    PubMed

    Ishibashi, Yuto

    2014-10-01

    This paper explores how nineteenth-century Liverpool became such an advanced city with regard to public timekeeping, and the wider impact of this on the standardisation of time. From the mid-1840s, local scientists and municipal bodies in the port city were engaged in improving the ways in which accurate time was communicated to ships and the general public. As a result, Liverpool was the first British city to witness the formation of a synchronised clock system, based on an invention by Robert Jones. His method gained a considerable reputation in the scientific and engineering communities, which led to its subsequent replication at a number of astronomical observatories such as Greenwich and Edinburgh. As a further key example of developments in time-signalling techniques, this paper also focuses on the time ball established in Liverpool by the Electric Telegraph Company in collaboration with George Biddell Airy, the Astronomer Royal. This is a particularly significant development because, as the present paper illustrates, one of the most important technologies in measuring the accuracy of the Greenwich time signal took shape in the experimental operation of the time ball. The inventions and knowledge which emerged from the context of Liverpool were vital to the transformation of public timekeeping in Victorian Britain.

  1. A heat pipe mechanism for volcanism and tectonics on Venus

    SciTech Connect

    Turcotte, D.L. )

    1989-12-01

    A heat pipe mechanism is proposed for the transport of heat through the lithosphere on Venus. This mechanism allows the crust and lithosphere on Venus to be greater than 150 km thick. A thick crust and thick lithosphere can explain the high observed topography and large associated gravity anomalies. For a 150-km-thick lithosphere the required volcanic flux on Venus is 200 km{sup 3}/yr; this is compared with a flux of 17 km{sup 3}/yr associated with the formation of the oceanic crust on Earth. A thick basaltic crust on Venus is expected to transform to eclogite at a depth of 60 to 80 km; the dense eclogite would contribute the lithospheric delamination that returns the crust to the interior of the planet completing the heat pipe cycle. Topography and the associated gravity anomalies can be explained by Airy compensation of the thick crust. The principal observation that is contrary to this hypothesis is the mean age of the surface that is inferred from crater statistics; the minimum mean age is about 130 Ma, and this implies an upper limit of 2 km{sup 3}/yr for the surface volcanic flux. If the heat pipe mechanism was applicable on Earth in the Archean, it would provide the thick lithosphere implied by isotopic data from diamonds.

  2. Raman and the mirage revisited: confusions and a rediscovery

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    2013-11-01

    Raman argued that in a continuously varying layered medium, such as air above a hot road, a ray that bends so as to become horizontal must remain so, implying that the reflection familiar in the mirage cannot be explained by geometrical optics. This is a mistake, as standard ray curvature arguments demonstrate. But a simple limiting process, in which the smoothly varying refractive index is approximated by a stack of thin discrete layers, is not quite straightforward because it involves a curious singularity, related to the level ray envisaged by Raman. In contrast to individual rays, families of rays possess caustic (focal) singularities. These can be calculated explicitly for two families of rays that are relevant to the mirage. Only exceptionally does the locus of reflection (lowest points on the rays) coincide with the caustics. Caustics correspond to the ‘vanishing line’, representing the limiting height of objects that can be seen by reflection. For these two families, the waves that decorating mirage caustics are described by the universal Airy function, and can be calculated exactly.

  3. Nonlinear refractive index change and optical rectification in a GaN-based step quantum wells with strong built-in electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2015-11-01

    Based on the compact density matrix approach, the linear and nonlinear refractive index change (RIC) and optical rectification (OR) coefficients in a GaN-based step QW with strong built-in electric field (BEF) have been theoretically deduced and investigated in detail. The analytical electronic state is derived by the two airy functions. And the band nonparabolicity is taken into account by using an energy dependence effective mass (EDEM) method. Numerical calculations on a four-layer AlN/GaN/AlxGa1-xN/AlN step QW are performed, and the curves for the geometric factors, the linear, the nonlinear, the total RICs and the OR coefficients as functions of the structural parameters of the step QW are discussed. The features for these curves were specified and reasons for the features were explained reasonably. It is found that the decreasing of well width Lw, and step barrier width Lb and the doped concentration x in step barrier will result in the significant enhancement of the RICs. With the decrease of Lw, Lb and x, the resonant photon energies of RIC and OR coefficients have obvious blue-shift. Moreover, the RIC and OR coefficients behave different dependence on the structural parameters of the GaN-based step QWs. The profound physical reasons are also analyzed.

  4. Scattering of wave packets on atoms in the Born approximation

    NASA Astrophysics Data System (ADS)

    Karlovets, D. V.; Kotkin, G. L.; Serbo, V. G.

    2015-11-01

    It has recently been demonstrated experimentally that 200 -300 keV electrons with the unusual spatial profiles can be produced and even focused to a subnanometer scale—namely, electrons carrying nonzero orbital angular momentum and also the so-called Airy beams. Since the wave functions of such electrons do not represent plane waves, the standard Born formula for scattering of them off a potential field is no longer applicable and, hence, needs modification. In the present paper, we address the generic problem of elastic scattering of a wave packet of a fast nonrelativistic particle off a potential field. We obtain simple and convenient formulas for a number of events and an effective cross section in such a scattering, which represent generalization of the Born formula for a case when finite sizes and spatial inhomogeneity of the initial packet should be taken into account. As a benchmark, we consider two simple models corresponding to scattering of a Gaussian wave packet on a Gaussian potential and on a hydrogen atom, and perform a detailed analysis of the effects brought about by the limited sizes of the incident beam and by the finite impact parameter between the potential center and the packet's axis.

  5. Three-dimensional analytical infinite order sudden quantum theory for triatomic indirect photodissociation processes

    NASA Astrophysics Data System (ADS)

    Grinberg, Horacio; Freed, Karl F.; Williams, Carl J.

    1997-08-01

    Our previously developed analytical infinite order sudden (IOS) quantum theory of triatomic photodissociation is extended to describe indirect photodissociation processes through a real or virtual intermediate state. The theory uses the IOS approximation for the dynamics in the final dissociative channels and an Airy function approximation for the continuum states. These approximations enable us to evaluate the multi-dimensional non-separable transition amplitudes analytically (as one-dimensional quadratures), despite the different natural coordinates for the initial bound, the intermediate resonant, and the final dissociative states. The fragment internal energy distributions are described as a function of the initial and final quantum states and the photon excitation energy. The theory readily permits the evaluation of rotational distributions for high values of the total angular momentum J in the initial bound molecular state, a feature that would be very difficult with close-coupled methods. In paper II we apply the theory to describe the photofragment yield spectrum of NOCl in the region of the T1(13A″)←S0(11A') transition.

  6. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.

    1986-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  7. Focal plane optics in far-infrared and submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.

    1985-01-01

    The construction of airborne observatories, high mountain-top observatories, and space observatories designed especially for infrared and submillimeter astronomy has opened fields of research requiring new optical techniques. A typical far-IR photometric study involves measurement of a continuum spectrum in several passbands between approx 30 microns and 1000 microns and diffraction-limited mapping of the source. At these wavelengths, diffraction effects strongly influence the design of the field optics systems which couple the incoming flux to the radiation sensors (cold bolometers). The Airy diffraction disk for a typical telescope at submillimeter wavelengths approx 100 microns-1000 microns is many millimeters in diameter; the size of the field stop must be comparable. The dilute radiation at the stop is fed through a Winston nonimaging concentrator to a small cavity containing the bolometer. The purpose of this paper is to review the principles and techniques of infrared field optics systems, including spectral filters, concentrators, cavities, and bolometers (as optical elements), with emphasis on photometric systems for wavelengths longer than 60 microns.

  8. Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams

    NASA Astrophysics Data System (ADS)

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2016-05-01

    It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. However, all known light modulation techniques allow for limited light modifications only: focusing within a restricted region in space, shaping into a certain class of parametric curves along the optical axis or bending described by a quadratic-dependent deflection as in the case of Airy beams. We show a general case of classical light wavefront shaping that allows for intensity and phase redistribution into an arbitrary profile including pre-determined switching-off of the intensity. To create an arbitrary three-dimensional path of intensity, we represent the path as a sequence of closely packed individual point-like absorbers and simulate the in-line hologram of the created object set; when such a hologram is contrast inverted, thus giving rise to a diffractor, it creates the pre-determined three-dimensional path of intensity behind the diffractor under illumination. The crucial parameter for a smooth optical path is the sampling of the predetermined curves, which is given by the lateral and axial resolution of the optical system. We provide both, simulated and experimental results to demonstrate the power of this novel method.

  9. Energetic pulses in exciton-phonon molecular chains and conservative numerical methods for quasilinear Hamiltonian systems.

    PubMed

    Lemesurier, Brenton

    2013-09-01

    The phenomenon of coherent energetic pulse propagation in exciton-phonon molecular chains such as α-helix protein is studied using an ODE system model of Davydov-Scott type, both with numerical studies using a new unconditionally stable fourth-order accurate energy-momentum conserving time discretization and with analytical explanation of the main numerical observations. Impulsive initial data associated with initial excitation of a single amide-I vibration by the energy released by ATP hydrolysis are used as well as the best current estimates of physical parameter values. In contrast to previous studies based on a proposed long-wave approximation by the nonlinear Schrödinger (NLS) equation and focusing on initial data resembling the soliton solutions of that equation, the results here instead lead to approximation by the third derivative nonlinear Schrödinger equation, giving a far better fit to observed behavior. A good part of the behavior is indeed explained well by the linear part of that equation, the Airy PDE, while other significant features do not fit any PDE approximation but are instead explained well by a linearized analysis of the ODE system. A convenient method is described for construction of the highly stable, accurate conservative time discretizations used, with proof of its desirable properties for a large class of Hamiltonian systems, including a variety of molecular models.

  10. The role of gravitational potential energy in the Martian lithospheric stress field

    NASA Astrophysics Data System (ADS)

    Naliboff, J. B.; Lithgow-Bertelloni, C.

    2006-12-01

    Understanding the lithospheric stress field on Mars is essential in interpreting patterns of surface faulting and geomorphologic features, as well as assessing the accuracy of different lithospheric models. We compute the portion of the lithospheric stress field on Mars produced by variations in crustal density and thickness using data described in Neumann et al. (2004). Our computation consists of two parts: calculation of the gravitational potential energy (GPE) at 1 degree intervals followed by calculation of the stress field derived from variations in the GPE using the commercial finite element program ABAQUS. When calculating the GPE, we consider both Airy and Pratt isostatic compensation models, as well as scenarios where no compensation model is invoked or the Martian crust acts as the Martian lithosphere. The lithosphere is treated as an elastic body and the full 3-D equations for conservation of mass and momentum are solved. In future models variations in lithologic properties and a viscoselastic rheology for the lithosphere will be incorporated. Preliminary results show gradations in the GPE between the southern highland and northern lowland regions of Mars relating to variations in crustal thickness between the two regions. For example, when the crust is assumed to behave as the elastic lithosphere, the southern highlands of Mars exhibit a much higher GPE as a result of their higher on average crustal thickness. If the lithosphere is assumed to contain both crust and mantle sections and a uniform compensation depth is assigned, however, the variation in GPE between the two regions is significantly altered.

  11. Statistics of pinned speckles in direct and coronagraphic high-contrast imaging

    NASA Astrophysics Data System (ADS)

    Soummer, Remi; Aime, Claude

    2004-10-01

    In this communication we study the utility and limitations of ground based coronagraphy with adaptive optics (AO). In very high AO correction regimes, residual speckles are pinned on the diffraction rings of the Airy pattern. It can be shown that these speckles are due to small defaults of the wavefront, amplified by the coherent part of the wave. Their statistics can be described by a modified Rice distribution, under reasonable physical assumptions. Using properties of the Moment Generating Function (MGF), simple expressions are obtained for the variances of the noise at high flux and at photon counting levels. We discuss the relative importance of speckle and photon noise and present conclusions on the limits of coronagraphy for the detection of an exoplanet. The total variance can be partitioned into two contributions: one that can be suppressed by a coronagraph and one that cannot, and different regimes can be identified. These results enable analysis of when a coronagraph can defeat the noise variance, and they provide a criterion for effectiveness of such instruments.

  12. A UGO/EUTD Solution for the Scattering and Diffraction from Cubic Polynomial Strips

    NASA Technical Reports Server (NTRS)

    Constantinides, Evagoras D.; Marhefka, Ronald J.

    1993-01-01

    A uniform geometrical optics (UGO) and an extended uniform geometrical theory of diffraction (EUTD) solution is developed for the scattering and diffraction from perfectly conducting cubic polynomial strips. The new solution overcomes the difficulties of the classic GO/UTD solution near caustics and composite shadow boundaries. The approach for constructing the UGO/EUTD solution is based on a spatial domain physical optics (PO) radiation integral representation for the scattered field which is then reduced using a uniform asymptotic procedure. New uniform reflection, zero-curvature diffraction, and edge diffraction coefficients are derived and involve the ordinary and incomplete Airy integrals as canonical functions. Higher order effects such as double edge diffraction, edge-excited creeping waves, and whispering gallery modes are not examined in this work. The UGO/EUTD solution is very efficient and provides useful physical insight into the various scattering and diffraction processes. It is also universal in nature and can be used to effectively describe the scattered fields from flat, strictly concave or convex, and concave-convex boundaries containing edges. Its accuracy is confirmed via comparison with some reference moment method (MM) results.

  13. An extended UTD analysis for the scattering and diffraction from cubic polynomial strips

    NASA Technical Reports Server (NTRS)

    Constantinides, E. D.; Marhefka, R. J.

    1993-01-01

    Spline and polynomial type surfaces are commonly used in high frequency modeling of complex structures such as aircraft, ships, reflectors, etc. It is therefore of interest to develop an efficient and accurate solution to describe the scattered fields from such surfaces. An extended Uniform Geometrical Theory of Diffraction (UTD) solution for the scattering and diffraction from perfectly conducting cubic polynomial strips is derived and involves the incomplete Airy integrals as canonical functions. This new solution is universal in nature and can be used to effectively describe the scattered fields from flat, strictly concave or convex, and concave convex boundaries containing edges. The classic UTD solution fails to describe the more complicated field behavior associated with higher order phase catastrophes and therefore a new set of uniform reflection and first-order edge diffraction coefficients is derived. Also, an additional diffraction coefficient associated with a zero-curvature (inflection) point is presented. Higher order effects such as double edge diffraction, creeping waves, and whispering gallery modes are not examined. The extended UTD solution is independent of the scatterer size and also provides useful physical insight into the various scattering and diffraction processes. Its accuracy is confirmed via comparison with some reference moment method results.

  14. Coherent-state analysis of the quantum bouncing ball

    NASA Astrophysics Data System (ADS)

    Mather, William H.; Fox, Ronald F.

    2006-03-01

    Gaussian-Klauder coherent states are applied to the bound “quantum bouncer,” a gravitating particle above an infinite potential boundary. These Gaussian-Klauder states, originally created for Rydberg atoms, provide an overcomplete set of wave functions that mimic classical trajectories for extended times through the utilization of energy localization. For the quantum bouncer, analytic methods are applied presently to compute first and second moments of position and momentum operators, and from these results, at least two scalings of Gaussian-Klauder parameters are highlighted, one of which tends to remains localized for markedly more bounces than comparable states that are Gaussian in position (by an order of magnitude in some cases). We close with a connection that compares Gaussian-Klauder states and positional Gaussian states directly for the quantum bouncer, relating the two through a known energy-position duality of Airy functions. Our results, taken together, ultimately reemphasize the primacy of energy localization as a key ingredient for long-lived classical correspondence in systems with smooth spectra.

  15. New identities from quantum-mechanical sum rules of parity-related potentials

    NASA Astrophysics Data System (ADS)

    Ayorinde, O. A.; Chisholm, K.; Belloni, M.; Robinett, R. W.

    2010-06-01

    We apply quantum-mechanical sum rules to pairs of one-dimensional systems defined by potential energy functions related by parity. Specifically, we consider symmetric potentials, V(x) = V(- x), and their parity-restricted partners, ones with V(x) but defined only on the positive half-line. We extend recent discussions of sum rules for the quantum bouncer by considering the parity-extended version of this problem, defined by the symmetric linear potential, V(z) = F|z| and find new classes of constraints on the zeros of the Airy function, Ai(ζ), and its derivative, Ai'(ζ). We also consider the parity-restricted version of the harmonic oscillator and find completely new classes of mathematical relations, unrelated to those of the ordinary oscillator problem. These two soluble quantum-mechanical systems defined by power-law potentials provide examples of how the form of the potential (both parity and continuity properties) affects the convergence of quantum-mechanical sum rules. We also discuss semi-classical predictions for expectation values and the Stark effect for these systems.

  16. Detection of extrasolar planets by the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Takahashi, T.

    1984-01-01

    The best wavelength for observing Jupiter-size planetary companions to stars other than the Sun is one at which a planet's thermal emission is strongest; typically this would occur in the far-infrared region. It is assumed that the orbiting infrared telescope used is diffraction-limited so that the resolution of the planet from the central star is accomplished in the wings of the star's Airy pattern. Proxima Centauri, Barnard's Star, Wolf 359, and Epsilon Eridani are just a few of the many nearest main-sequence stars that could be studied with the large deployable relfector (LDR). The detectability of a planet improves for warmer planets and less luminous stars; therefore, planets around white dwarfs and those young planets which have sufficient internal gravitational energy release so as to cause a significant increase in their temperatures are considered. If white dwarfs are as old as they are usually assumed to be (5-10 billion yr), then only the nearest white dwarf (Sirius B) is within the range of LDR. The Ursa Major cluster and Perseu cluster are within LDR's detection range mainly because of their proximity and young age, respectively.

  17. Confocal filtering in cathodoluminescence microscopy of nanostructures

    SciTech Connect

    Narváez, Angela C. E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P. E-mail: j.p.hoogenboom@tudelft.nl; Kruit, Pieter

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  18. A heat-pipe mechanism for volcanism and tectonics on Venus

    NASA Astrophysics Data System (ADS)

    Turcotte, D. L.

    1989-03-01

    A heat-pipe mechanism is proposed for the transport of heat through the lithosphere of Venus. This mechanism allows the crust and lithosphere on Venus to be greater than 150 km thick. A thick basaltic crust on Venus is expected to transform eclogite at a depth of 60 to 80 km; the dense eclogite would contribute to lithospheric delamination that returns the crust to the interior of the planet completing the heat-pipe cycle. Topography and the associated gravity anomalies can be explained by Airy compensation of the thick crust. The principal observation that is contrary to this hypothesis is the mean age of the surface that is inferred from crater statistics; the minimum mean age is about 130 Myr and this implies an upper limit of 2 cubic kilometers per year for the surface volcanic flux. If the heat-pipe mechanism was applicable on the earth in the Archean it would provide the thick lithosphere implied by isotopic data from diamonds.

  19. Detecting curvatures in digital images using filters derived from differential geometry

    NASA Astrophysics Data System (ADS)

    Toro Giraldo, Juanita

    2015-09-01

    Detection of curvature in digital images is an important theoretical and practical problem in image processing. Many important features in an image are associated with curvature and the detection of such features is reduced to detection and characterization of curvatures. Differential geometry studies many kinds of curvature operators and from these curvature operators is possible to derive powerful filters for image processing which are able to detect curvature in digital images and videos. The curvature operators are formulated in terms of partial differential operators which can be applied to images via convolution with generalized kernels derived from the the Korteweg- de Vries soliton . We present an algorithm for detection of curvature in digital images which is implemented using the Maple package ImageTools. Some experiments were performed and the results were very good. In a future research will be interesting to compare the results using the Korteweg-de Vries soliton with the results obtained using Airy derivatives. It is claimed that the resulting curvature detectors could be incorporated in standard programs for image processing.

  20. On the Diffraction Limit for Lensless Imaging

    PubMed Central

    Mielenz, Klaus D.

    1999-01-01

    The diffraction limit for lensless imaging, defined as the sharpest possible point image obtainable with a pinhole aperture, is analyzed and compared to the corresponding limit for imaging with lenses by means of theoretical considerations and numerical computations using the Fresnel-Lommel diffraction theory for circular apertures. The numerical result (u = π) obtained for the best configuration parameter u which defines the optical setup is consistent with the quarter-wave criterion, and is the same as the value reported in a classical paper by Petzval but smaller than the value (u = 1.8π) found by Lord Rayleigh. The smallest discernible detail (pixel) in a composite image is defined by an expression found by Rayleigh on applying the half-wave criterion and is shown to be consistent with the Sparrow criterion of resolution. The numerical values of other measures of image size are reported and compared to equivalent parameters of the Fraunhofer-Airy profile that governs imaging with lenses.

  1. Fine Guidance Sensing for Coronagraphic Observatories

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Alexander, James W.; Trauger, John T.; Moody, Dwight C.

    2011-01-01

    Three options have been developed for Fine Guidance Sensing (FGS) for coronagraphic observatories using a Fine Guidance Camera within a coronagraphic instrument. Coronagraphic observatories require very fine precision pointing in order to image faint objects at very small distances from a target star. The Fine Guidance Camera measures the direction to the target star. The first option, referred to as Spot, was to collect all of the light reflected from a coronagraph occulter onto a focal plane, producing an Airy-type point spread function (PSF). This would allow almost all of the starlight from the central star to be used for centroiding. The second approach, referred to as Punctured Disk, collects the light that bypasses a central obscuration, producing a PSF with a punctured central disk. The final approach, referred to as Lyot, collects light after passing through the occulter at the Lyot stop. The study includes generation of representative images for each option by the science team, followed by an engineering evaluation of a centroiding or a photometric algorithm for each option. After the alignment of the coronagraph to the fine guidance system, a "nulling" point on the FGS focal point is determined by calibration. This alignment is implemented by a fine alignment mechanism that is part of the fine guidance camera selection mirror. If the star images meet the modeling assumptions, and the star "centroid" can be driven to that nulling point, the contrast for the coronagraph will be maximized.

  2. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence.

    PubMed

    Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph

    2016-05-20

    The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target. PMID:27411147

  3. Design of photoelectric autocollimator for NC rotary table position detection

    NASA Astrophysics Data System (ADS)

    Hu, Mingjun; Yan, Bixi; Zhu, Lianqing

    2011-11-01

    A photoelectric autocollimator of large measuring range for detecting position accuracy of NC rotary table is designed. The autocollimator has a measurement range of +/-30'. The measurement accuracy and the resolution of the autocollimator are 2" and 0.32" respectively. The autocollimator applies an area CCD camera as its detector, which can realize two-axis measuring at the same time and automatically detect the position of the rotary table. The important components of the autocollimator are designed such as objective lens, ocular lens, cross reticule, beam splitter prism. A LED light is used in the autocollimator for its high brightness. Using the ZEMAX optical design program, the light path of the system is analyzed and optimized to ensure the spherical aberration within -0.05mm~+0.05mm and the sine aberration of 0.0003mm. The MTF value of field of view is more than 0.5 at the half Nyquist frequency. The MTF is higher than 0.3 within 0.7 FOV at the Nyquist frequency. RMS radiuses are less than Airy disk. The mechanical structure of the autocollimator is designed. And two adjusting devices to regulate the position of the reticule and the objective lens are designed to ensure the reticule at the right position and to get an excellent imaging performance in CCD. The performance of the debugging sample machine has been tested, The error of indication of the autocollimator is contrasted and the result is consistent with the specification above.

  4. Detection, imaging, and kinetics of sub-micron organelles of chondrocytes by multiple beam interference microscopy

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Medina, Honorio; Barboza, J. M.; Colantuoni, Gladys; Quintero, Maritza

    2004-07-01

    Chondrocytes, obtained from testosterone treated human articular cartilage, were examined by a recently developed Multiple Beam Interference Microscopy (MBIM) attached to a confocal set up, Video-enhanced differential interference microphotography and also by cinematography. In the MBIM, the intensity of the transmitted pattern is given by the Airy function which increases the contrast dramatically as the coefficient of the reflectance of the parallel plates increases. Moreover, in this configuration, the beam passes several times through a specific organelle and increases its optical path difference both because of the increase in the trajectory and refractive index (high density) of the organelle. The improved contrast enhances the resolving power of the system and makes visible several structural details of sub micron dimensions like nucleolus, retraction fibers, podia, etc. which are not possible to reveal with such a clarity by conventional techniques such as bright field, phase contrast or DIC. This technique permits to detect the oscillatory and rotational motions of unstained cilia for the first time. The frequency of oscillations was found to be 0.8 Hz.

  5. Investigation of the numerics of point spread function integration in single molecule localization.

    PubMed

    Chao, Jerry; Ram, Sripad; Lee, Taiyoon; Ward, E Sally; Ober, Raimund J

    2015-06-29

    The computation of point spread functions, which are typically used to model the image profile of a single molecule, represents a central task in the analysis of single molecule microscopy data. To determine how the accuracy of the computation affects how well a single molecule can be localized, we investigate how the fineness with which the point spread function is integrated over an image pixel impacts the performance of the maximum likelihood location estimator. We consider both the Airy and the two-dimensional Gaussian point spread functions. Our results show that the point spread function needs to be adequately integrated over a pixel to ensure that the estimator closely recovers the true location of the single molecule with an accuracy that is comparable to the best possible accuracy as determined using the Fisher information formalism. Importantly, if integration with an insufficiently fine step size is carried out, the resulting estimates can be significantly different from the true location, particularly when the image data is acquired at relatively low magnifications. We also present a methodology for determining an adequate step size for integrating the point spread function. PMID:26191698

  6. Hyperspectral Infrared Imaging of Flames Using a Spectrally Scanning Fabry-Perot Filter

    NASA Technical Reports Server (NTRS)

    Rawlins, W. T.; Lawrence, W. G.; Marinelli, W. J.; Allen, M. G.; Piltch, N. (Technical Monitor)

    2001-01-01

    The temperatures and compositions of gases in and around flames can be diagnosed using infrared emission spectroscopy to observe molecular band shapes and intensities. We have combined this approach with a low-order scanning Fabry-Perot filter and an infrared camera to obtain spectrally scanned infrared emission images of a laboratory flame and exhaust plume from 3.7 to 5.0 micrometers, at a spectral resolution of 0.043 micrometers, and a spatial resolution of 1 mm. The scanning filter or AIRIS (Adaptive Infrared Imaging Spectroradiometer) is a Fabry-Perot etalon operating in low order (mirror spacing = wavelength) such that the central spot, containing a monochromatic image of the scene, is viewed by the detector array. The detection system is a 128 x 128 liquid-nitrogen-cooled InSb focal plane array. The field of view is controlled by a 50 mm focal length multielement lens and an V4.8 aperture, resulting in an image 6.4 x 6.4 cm in extent at the flame and a depth of field of approximately 4 cm. Hyperspectral images above a laboratory CH4/air flame show primarily the strong emission from CO2 at 4.3 micrometers, and weaker emissions from CO and H2O. We discuss techniques to analyze the spectra, and plans to use this instrument in microgravity flame spread experiments.

  7. Further evidence for a dynamically generated secondary bow in 13C+12C rainbow scattering

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.; Ogloblin, A. A.

    2015-11-01

    The existence of a secondary bow is confirmed for 13C+12C nuclear rainbow scattering in addition to the 16O+12C system. This is found by studying the experimental angular distribution of 13C+12C scattering at the incident 13C energy EL=250 MeV with an extended double-folding (EDF) model that describes all the diagonal and off-diagonal coupling potentials derived from the microscopic wave functions for 12C using a density-dependent nucleon-nucleon force. The Airy minimum at θ ≈70°, which is not reproduced by a conventional folding potential, is revealed to be a secondary bow generated dynamically by a coupling to the excited state 2+ (4.44 MeV) of 12C. The essential importance of the quadruple Y 2 term (reorientation term) of potential of the excited state 2+ of 12C for the emergence of a secondary bow is found. The mechanism of the secondary bow is intuitively explained by showing how the trajectories are refracted dynamically into the classically forbidden angular region beyond the rainbow angle of the primary rainbow.

  8. A Nulling Coronagraph for TPF-C

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Levine, Bruce Martin; Wallace, James Kent; Orton, Glenn S.; Schmidtlin, Edouard; Lane, Benjamin F.; Seager, Sara; Tolls, Volker; Lyon, Richard G.; Samuele, Rocco; Tenerelli, Domenick J.; Woodruff, Robert; Ge, Jian

    2006-01-01

    The nulling coronagraph is one of 5 instrument concepts selected by NASA for study for potential use in the TPF-C mission. This concept for extreme starlight suppression has two major components, a nulling interferometer to suppress the starlight to 10(sup -10) per airy spot within 2 (lamda)/D of the star, and a calibration interferometer to measure the residual scattered starlight. The ability to work at 2 (lamda)/D dramatically improves the science throughput of a space based coronagraph like TPF-C. The calibration interferometer is an equally important part of the starlight suppression system. It measures the measures the wavefront of the scattered starlight with very high SNR, to 0.05nm in less than 5 minutes on a 5mag star. In addition, the post coronagraph wavefront sensor will be used to measure the residual scattered light after the coronagraph and subtract it in post processing to 12x10(sup -11) to enable detection of an Earthlike planet with a SNR of 510.

  9. Engineering light-matter interaction for emerging optical manipulation applications

    NASA Astrophysics Data System (ADS)

    Qiu, Cheng-Wei; Palima, Darwin; Novitsky, Andrey; Gao, Dongliang; Ding, Weiqiang; Zhukovsky, Sergei V.; Gluckstad, Jesper

    2014-06-01

    In this review, we explore recent trends in optical micromanipulation by engineering light-matter interaction and controlling the mechanical effects of optical fields. One central theme is exploring the rich phenomena beyond the now established precision measurements based on trapping micro beads with tightly focused beams. Novel synthesized beams, exploiting the linear and angular momentum of light, open new possibilities in optical trapping and micromanipulation. Similarly, novel structures are promising to enable new optical micromanipulation modalities. Moreover, an overview of the amazing features of the optics of tractor beams and backward-directed energy fluxes will be presented. Recently the so-called effect of negative propagation of the beams (existence of the backward energy fluxes) has been confirmed for X-waves and Airy beams. In the review, we will also discuss the negative pulling force of structured beams and negative energy fluxes in the vicinity of fibers. The effect is achieved due to the interaction of multipoles or, in another interpretation, the momentum conservation. Both backward-directed Poynting vector and backward optical forces are counter-intuitive and give an insight into new physics and technologies. Exploiting the degrees of freedom in synthesizing novel beams and designed microstructures offer attractive prospects for emerging optical manipulation applications.

  10. Upwarp of anomalous asthenosphere beneath the Rio Grande rift

    USGS Publications Warehouse

    Parker, E.C.; Davis, P.M.; Evans, J.R.; Iyer, H.M.; Olsen, K.H.

    1984-01-01

    Continental rifts are possible analogues of mid-ocean ridges, although major plate tectonic features are less clearly observed1. Current thermal models of mid-ocean ridges2-4 consist of solid lithospheric plates overlying the hotter, less viscous asthenosphere, with plate thickness increasing away from the ridge axis. The lithospheric lower boundary lies at or near the melting point isotherm, so that at greater depths higher temperatures account for lower viscosity, lower seismic velocities and possibly partial melting. Upwarp of this boundary at the ridge axis concentrates heat there, thus lowering densities by expansion and raising the sea floor to the level of thermal isostatic equilibrium. At slow spreading ridges, a major central graben forms owing to the mechanics of magma injection into the crust5. Topography, heat flow, gravity and seismic studies support these models. On the continents, a low-velocity channel has been observed, although it is poorly developed beneath ancient cratons6-9. Plate tectonic models have been applied to continental basins and margins10-12, but further similarities to the oceanic models remain elusive. Topographic uplift is often ascribed to Airy type isostatic compensation caused by crustal thickening, rather than thermal compensation in the asthenosphere. Here we discuss the Rio Grande rift, in southwestern United States. Teleseismic P-wave residuals show that regional uplift is explained by asthenosphere uplift rather than crustal thickening. ?? 1984 Nature Publishing Group.

  11. Three-dimensional gravity modeling of the geologic structure of Long Valley caldera

    SciTech Connect

    Carle, S.F.

    1988-11-10

    A 48-mGal gravity low coincides with Long Valley caldera and is mainly attributed to low-density caldera fill. Gravity measurements by Unocal Geothermal have been integrated with U.S. Geological Survey data, vastly improving gravity station coverage throughout the caldera. A strong regional gravity trend is mainly attributed to isostasy. A ''best fitting'' (based on regional control of basement densities) Airy-Heiskanen isostatic model was used for the regional correction. A three-dimensional, multiple-unit gravity modeling program with iterative capabilities was developed to model the residual gravity. The density structure of Long Valley caldera and vicinity was modeled with 22 discrete density units, most of which were based on geologic units. Information from drill hole lithologies, surface geology, and structural geology interpretations constrain the model. Some important points revealed by the three-dimensional gravity modeling are that (1) the volume of ejected magma associated with the Bishop Tuff eruption is greater than previously thought, (2) the caldera structure is strongly influenced by precaldera topography and the extensions of major, active faults, (3) the main west ring fracture is coincident with the Inyo Domes--Mono Craters fracture system, (4) a relatively low-density region probably underlies the caldera, and (5) a silicic magma chamber may underlie Devils Postpile. copyright American Geophysical Union 1988

  12. Hg-Mask Coronagraph

    NASA Astrophysics Data System (ADS)

    Bourget, P.; Veiga, C. H.; Vieira Martins, R.; Assus, P.; Colas, F.

    In order to optimize the occulting process of a Lyot coronagraph and to provide a high dynamic range imaging, a new kind of occulting disk has been developed at the National Observatory of Rio de Janeiro. A mercury (Hg) drop glued onto an optical window by molecular cohesion and compressed by a pellicle film is used as the occulting disk. The minimum of the superficial tension potential function provides an optical precision (lambda/100) of the toric free surface of the mercury. This process provides a size control for the adaptation to the seeing conditions and to the apparent diameter of a resolved object, and in the case of adaptive optics, to the Airy diameter fraction needed. The occultation is a three dimensional process near the focal plane on the toric free surface that provides an apodization of the occultation. The Hg-Mask coronagraph has been projected for astrometric observations of faint satellites near to Jovian planets and works since 2000 at the 1.6 m telescope of the Pico dos Dias Observatory (OPD - Brazil).

  13. Random geometry and the Kardar-Parisi-Zhang universality class

    NASA Astrophysics Data System (ADS)

    Santalla, Silvia N.; Rodríguez-Laguna, Javier; LaGatta, Tom; Cuerno, Rodolfo

    2015-03-01

    We consider a model of a quenched disordered geometry in which a random metric is defined on {{{R}}2}, which is flat on average and presents short-range correlations. We focus on the statistical properties of balls and geodesics, i.e., circles and straight lines. We show numerically that the roughness of a ball of radius R scales as {{R}χ }, with a fluctuation exponent χ ≃ 1/3, while the lateral spread of the minimizing geodesic between two points at a distance L grows as {{L}ξ }, with wandering exponent value ξ ≃ 2/3. Results on related first-passage percolation problems lead us to postulate that the statistics of balls in these random metrics belong to the Kardar-Parisi-Zhang universality class of surface kinetic roughening, with ξ and χ relating to critical exponents characterizing a corresponding interface growth process. Moreover, we check that the one-point and two-point correlators converge to the behavior expected for the Airy-2 process characterized by the Tracy-Widom (TW) probability distribution function of the largest eigenvalue of large random matrices in the Gaussian unitary ensemble (GUE). Nevertheless extreme-value statistics of ball coordinates are given by the TW distribution associated with random matrices in the Gaussian orthogonal ensemble. Furthermore, we also find TW-GUE statistics with good accuracy in arrival times.

  14. Finite-Temperature Free Fermions and the Kardar-Parisi-Zhang Equation at Finite Time

    NASA Astrophysics Data System (ADS)

    Dean, David S.; Le Doussal, Pierre; Majumdar, Satya N.; Schehr, Grégory

    2015-03-01

    We consider the system of N one-dimensional free fermions confined by a harmonic well V (x )=m ω2x2/2 at finite inverse temperature β =1 /T . The average density of fermions ρN(x ,T ) at position x is derived. For N ≫1 and β ˜O (1 /N ) , ρN(x ,T ) is given by a scaling function interpolating between a Gaussian at high temperature, for β ≪1 /N , and the Wigner semicircle law at low temperature, for β ≫N-1 . In the latter regime, we unveil a scaling limit, for β ℏω =b N-1 /3 , where the fluctuations close to the edge of the support, at x ˜±√{2 ℏN /(m ω ) } , are described by a limiting kernel Kbf f(s ,s') that depends continuously on b and is a generalization of the Airy kernel, found in the Gaussian unitary ensemble of random matrices. Remarkably, exactly the same kernel Kbf f(s ,s') arises in the exact solution of the Kardar-Parisi-Zhang equation in 1 +1 dimensions at finite time t , with the correspondence t =b3 .

  15. Physical states in the canonical tensor model from the perspective of random tensor networks

    NASA Astrophysics Data System (ADS)

    Narain, Gaurav; Sasakura, Naoki; Sato, Yuki

    2015-01-01

    Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N = 2 , 3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N = 3, and comment on an extension of Airy function related to the solutions.

  16. Elastic scattering of {sup 16}O+{sup 16}O at energies E/A between 5 and 8 MeV

    SciTech Connect

    Nicoli, M. P.; Haas, F.; Freeman, R. M.; Aissaoui, N.; Beck, C.; Elanique, A.; Nouicer, R.; Morsad, A.; Szilner, S.; Basrak, Z.

    1999-12-01

    The elastic scattering of {sup 16}O+{sup 16}O has been measured at nine energies between E{sub lab}=75 and 124 MeV. The data cover up to 100 degree sign in the c.m. and can be described in terms of phenomenological and folding model potentials which reproduce the main features observed. In agreement with studies at higher energies in this and similar systems, refractive effects are present in the angular distributions at all energies. In particular, the passage of Airy minima through 90 degree sign at E{sub c.m.}=40, 47.5, and 62 MeV explains the deep minima observed in the excitation function. The real part of the optical potential is found to vary very little with energy over the studied interval, but the imaginary part shows a rapid change in its shape at incident energy about 90 MeV. Nonetheless, the energy dependence of the volume integral of the real and imaginary parts is in agreement with dispersion relation predictions. (c) 1999 The American Physical Society.

  17. Large-core tube-leaky waveguide for delivery of high-powered Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Katagiri, T.; Matsuura, Y.

    2014-02-01

    A tube-leaky fiber that consists of only dielectric thin-film tubing for delivery of Er:YAG laser light is presented. The tube-leaky fiber confines light in the airy core when the film thickness is properly chosen for target wavelength. Transmission properties of the fibers are derived by using a ray optic method and designed the optimum wall thickness for the Er:YAG laser wavelength of 2.94 micron. In fabrication of the tube leaky fiber, we use a microstructural tube made of glass to enhance mechanical strength. The central bore and surrounding glass thin layer that is held by the microstructure function as a tube-leaky fiber. We fabricate a large-core fiber for delivery of high-power medical lasers by stack-and-draw method and we use borosilicate-glass as a fiber material for low cost fabrication. Fabricated fibers have a diameter over 400 μm and from the loss measurements for Er:YAG laser, and the fibers deliver laser light with a transmission loss of 0.85 dB/m that is comparable to 0.7 dB/m of conventional hollow-optical fibers. The fibers withstand transmission of laser pulses with energy higher than 120 mJ. We confirm that these energies are enough to ablate biological tissues in surgical operations.

  18. Quantum model of electron accumulation at charged boundaries of heavily doped semiconductor films

    SciTech Connect

    Gergel, V. A. Verhovtseva, A. V.

    2010-10-15

    A new quantum model of electron accumulation at positively charged boundaries of semiconductor films has been developed. It is based on the well-known concepts of quantum confinement of transverse electron motion in a uniform electric field, the role of which is played by the effective field of attraction to positive surface donor centers. Electrons with a surface density equal to the donor concentration occupy the corresponding quasi-discrete states according to the Fermi statistics. At reasonable concentrations all the electrons of the accumulation layer are mainly concentrated at the first quantum-confinement level. Ultra-high built-in fields on the order of the atomic level (10{sup 8} V/cm) correspond to the onset of filling the third level. The potential profile, which describes the interaction of the accumulation-layer electrons with other charged particles (including holes) is calculated by double integration of the Poisson equation with the electron density in the form of squares of the corresponding segments of the Airy function. Its boundary value-the surface potential-describes the effect of the electron-accumulation layer on the external electric circuit. The obtained dependence of the surface potential on the resulting boundary electric field (including that induced by the built-in charge) is easily transformed into the corresponding capacitance-voltage characteristics.

  19. ABJM theory as a Fermi gas

    NASA Astrophysics Data System (ADS)

    Mariño, Marcos; Putrov, Pavel

    2012-03-01

    The partition function on the 3-sphere of many supersymmetric Chern-Simons-matter theories reduces, by localization, to a matrix model. We develop a new method to study these models in the M-theory limit, but at all orders in the 1/N expansion. The method is based on reformulating the matrix model as the partition function of an ideal Fermi gas with a non-trivial, one-particle quantum Hamiltonian. This new approach leads to a completely elementary derivation of the N3/2 behavior for ABJM theory and {N}=3 quiver Chern-Simons-matter theories. In addition, the full series of 1/N corrections to the original matrix integral can be simply determined by a next-to-leading calculation in the WKB or semiclassical expansion of the quantum gas, and we show that, for several quiver Chern-Simons-matter theories, it is given by an Airy function. This generalizes a recent result of Fuji, Hirano and Moriyama for ABJM theory. It turns out that the semiclassical expansion of the Fermi gas corresponds to a strong coupling expansion in type IIA theory, and it is dual to the genus expansion. This allows us to calculate explicitly non-perturbative effects due to D0- and D2-brane instantons in the AdS background.

  20. Completed Beltrami-Michell Formulation for Analyzing Radially Symmetrical Bodies

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Saigal, Sunil; Hopkins, Dale A.; Patnaik, Surya N.

    1994-01-01

    A force method formulation, the completed Beltrami-Michell formulation (CBMF), has been developed for analyzing boundary value problems in elastic continua. The CBMF is obtained by augmenting the classical Beltrami-Michell formulation with novel boundary compatibility conditions. It can analyze general elastic continua with stress, displacement, or mixed boundary conditions. The CBMF alleviates the limitations of the classical formulation, which can solve stress boundary value problems only. In this report, the CBMF is specialized for plates and shells. All equations of the CBMF, including the boundary compatibility conditions, are derived from the variational formulation of the integrated force method (IFM). These equations are defined only in terms of stresses. Their solution for kinematically stable elastic continua provides stress fields without any reference to displacements. In addition, a stress function formulation for plates and shells is developed by augmenting the classical Airy's formulation with boundary compatibility conditions expressed in terms of the stress function. The versatility of the CBMF and the augmented stress function formulation is demonstrated through analytical solutions of several mixed boundary value problems. The example problems include a composite circular plate and a composite circular cylindrical shell under the simultaneous actions of mechanical and thermal loads.

  1. Attractors and Long Time Behavior of von Karman Thermoelastic Plates

    SciTech Connect

    Chueshov, Igor Lasiecka, Irena

    2008-10-15

    This paper undertakes a study of asymptotic behavior of solutions corresponding to von Karman thermoelastic plates. A distinct feature of the work is that the model considered has no added dissipation-particularly mechanical dissipation typically added to plate equation when long time-behavior is considered. Thus, the model consists of undamped oscillatory plate equation strongly coupled with heat equation. Nevertheless we are able to show that the ultimate (asymptotic) behavior of the von Karman evolution is described by finite dimensional global attractor. In addition, the obtained estimate for the dimension and the size of the attractor are independent of the rotational inertia parameter {gamma} and heat/thermal capacity {kappa}, where the former is known to change the character of dynamics from hyperbolic ({gamma}>0) to parabolic like ({gamma}=0). Other properties of attractors such as additional smoothness and upper-semicontinuity with respect to parameters {gamma} and {kappa} are also established. The main ingredients of the proofs are (i) sharp regularity of Airy's stress function, and (ii) newly developed (Chueshov and Lasiecka in Memoirs of AMS, in press) 'compensated' compactness methods applicable to non-compact dynamics.

  2. Present-day dynamic and residual topography in central Anatolia

    NASA Astrophysics Data System (ADS)

    Uluocak, Ebru Şengül; Pysklywec, Russell; Göğüş, Oğuz H.

    2016-06-01

    The Central Anatolian orogenic plateau is represented by young volcanism, rapid plateau uplift, and distinctive (past and active) tectonic deformation. In this study, we consider observational data in terms of regional present-day geodynamics in the region. The residual topography of Central Anatolia was derived to define the regional isostatic conditions according to Airy isostasy and infer the potential role of "dynamic topography". Two-dimensional thermo-mechanical forward models for coupled mantle-lithosphere flow/deformation were conducted along a N-S directional profile through the region (e.g. northern/Pontides, interior, and southern/Taurides). These models were based on seismic tomography data that provide estimates about the present-day mantle thermal structure beneath the Anatolian plate. We compare the modelling results with calculated residual topography and independent data sets of geological deformation, gravity, and high surface heat flow/widespread geothermal activity. Model results suggest that there is ˜1 km of mantle flow induced dynamic topography associated with the sub-lithospheric flow driven by the seismically-inferred mantle structure. The uprising mantle may have also driven the asthenospheric source of volcanism in the north (e.g. Galatia volcanic province) and the Cappadocia volcanic province in the south while elevating the surface in the last 10 Myrs. Our dynamic topography calculations emphasize the role of vertical forcing under other orogenic plateaux underlain by relatively thin crust and low-density asthenospheric mantle.

  3. Size distribution of ring polymers

    PubMed Central

    Medalion, Shlomi; Aghion, Erez; Meirovitch, Hagai; Barkai, Eli; Kessler, David A.

    2016-01-01

    We present an exact solution for the distribution of sample averaged monomer to monomer distance of ring polymers. For non-interacting and local-interaction models these distributions correspond to the distribution of the area under the reflected Bessel bridge and the Bessel excursion respectively, and are shown to be identical in dimension d ≥ 2, albeit with pronounced finite size effects at the critical dimension, d = 2. A symmetry of the problem reveals that dimension d and 4 − d are equivalent, thus the celebrated Airy distribution describing the areal distribution of the d = 1 Brownian excursion describes also a polymer in three dimensions. For a self-avoiding polymer in dimension d we find numerically that the fluctuations of the scaled averaged distance are nearly identical in dimension d = 2, 3 and are well described to a first approximation by the non-interacting excursion model in dimension 5. PMID:27302596

  4. Characterisation of a PERCIVAL monolithic active pixel prototype using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Correa, J.; Bayer, M.; Göttlicher, P.; Lange, S.; Marras, A.; Niemann, M.; Reza, S.; Shevyakov, I.; Smoljanin, S.; Tennert, M.; Xia, Q.; Viti, M.; Wunderer, C. B.; Zimmer, M.; Dipayan, D.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Turchetta, R.; Cautero, G.; Giuressi, D.; Khromova, A.; Pinaroli, G.; Menk, R.; Stebel, L.; Fan, R.; Marchal, J.; Pedersen, U.; Rees, N.; Steadman, P.; Sussmuth, M.; Tartoni, N.; Yousef, H.; Hyun, H. J.; Kim, K.; Rah, S.; Graafsma, H.

    2016-02-01

    PERCIVAL ("Pixelated Energy Resolving CMOS Imager, Versatile And Large") is a monolithic active pixel sensor (MAPS) based on CMOS technology. Is being developed by DESY, RAL/STFC, Elettra, DLS, and PAL to address the various requirements of detectors at synchrotron radiation sources and Free Electron Lasers (FELs) in the soft X-ray regime. These requirements include high frame rates and FELs base-rate compatibility, large dynamic range, single-photon counting capability with low probability of false positives, high quantum efficiency (QE), and (multi-)megapixel arrangements with good spatial resolution. Small-scale back-side-illuminated (BSI) prototype systems are undergoing detailed testing with X-rays and optical photons, in preparation of submission of a larger sensor. A first BSI processed prototype was tested in 2014 and a preliminary result—first detection of 350eV photons with some pixel types of PERCIVAL—reported at this meeting a year ago. Subsequent more detailed analysis revealed a very low QE and pointed to contamination as a possible cause. In the past year, BSI-processed chips on two more wafers were tested and their response to soft X-ray evaluated. We report here the improved charge collection efficiency (CCE) of different PERCIVAL pixel types for 400eV soft X-rays together with Airy patterns, response to a flat field, and noise performance for such a newly BSI-processed prototype sensor.

  5. Inverted Gabor holography principle for tailoring arbitrary shaped three-dimensional beams

    PubMed Central

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2016-01-01

    It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. However, all known light modulation techniques allow for limited light modifications only: focusing within a restricted region in space, shaping into a certain class of parametric curves along the optical axis or bending described by a quadratic-dependent deflection as in the case of Airy beams. We show a general case of classical light wavefront shaping that allows for intensity and phase redistribution into an arbitrary profile including pre-determined switching-off of the intensity. To create an arbitrary three-dimensional path of intensity, we represent the path as a sequence of closely packed individual point-like absorbers and simulate the in-line hologram of the created object set; when such a hologram is contrast inverted, thus giving rise to a diffractor, it creates the pre-determined three-dimensional path of intensity behind the diffractor under illumination. The crucial parameter for a smooth optical path is the sampling of the predetermined curves, which is given by the lateral and axial resolution of the optical system. We provide both, simulated and experimental results to demonstrate the power of this novel method. PMID:27199254

  6. Photographic image enhancement

    NASA Technical Reports Server (NTRS)

    Hite, Gerald E.

    1990-01-01

    Deblurring capabilities would significantly improve the scientific return from Space Shuttle crew-acquired images of the Earth and the safety of Space Shuttle missions. Deblurring techniques were developed and demonstrated on two digitized images that were blurred in different ways. The first was blurred by a Gaussian blurring function analogous to that caused by atmospheric turbulence, while the second was blurred by improper focussing. It was demonstrated, in both cases, that the nature of the blurring (Gaussian and Airy) and the appropriate parameters could be obtained from the Fourier transformation of their images. The difficulties posed by the presence of noise necessitated special consideration. It was demonstrated that a modified Wiener frequency filter judiciously constructed to avoid over emphasis of frequency regions dominated by noise resulted in substantially improved images. Several important areas of future research were identified. Two areas of particular promise are the extraction of blurring information directly from the spatial images and improved noise abatement form investigations of select spatial regions and the elimination of spike noise.

  7. A heat-pipe mechanism for volcanism and tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1989-01-01

    A heat-pipe mechanism is proposed for the transport of heat through the lithosphere of Venus. This mechanism allows the crust and lithosphere on Venus to be greater than 150 km. thick. A thick basaltic crust on Venus is expected to transform eclogite at a depth of 60 to 80 km; the dense eclogite would contribute to lithospheric delamination that returns the crust to the interior of the planet completing the heat-pipe cycle. Topography and the associated gravity anomalies can be explained by Airy compensation of the thick crust. The principal observation that is contrary to this hypothesis is the mean age of the surface that is inferred from crater statistics; the minimum mean age is about 130 Myr and this implies an upper limit of 2 cubic kilometers per year for the surface volcanic flux. If the heat-pipe mechanism was applicable on the Earth in the Archean it would provide the thick lithosphere implied by isotopic data from diamonds.

  8. Effects of UGTs on the ionosphere

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1992-10-01

    In this paper we describe the processes that propagate local effects of underground nuclear tests from the ground into the upper atmosphere, and produce a detectable signal in the ionosphere. Initially, the blast wave from a UGT radially expands, until it reaches the surface of the earth. The wave is both reflected and transmitted at this sharp discontinuity in propagation media. ne reflected wave combines with the incident wave to form an ``Airy surface,`` at which very strong ripping forces tear the earth apart. This broken region is called the ``spat zone,`` and is launched into ``ballistic motion. The resultant ground motion launches an acoustical wave into the atmosphere. This acoustic wave, with overpressures of a few tenths of one percent, propagates upwards at the speed of sound. Assuming purely linear propagation, the path of the acoustic energy can be tracked using raytracing models. Most of the wave energy, which is radiated nearly vertically, tends to propagate into the upper atmosphere, while wave energy radiated at angles greater than about 30 degrees to the vertical will be reflected back to earth and is probably what is seen by most infrasonde measurements.

  9. Effects of UGTs on the ionosphere

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1992-01-01

    In this paper we describe the processes that propagate local effects of underground nuclear tests from the ground into the upper atmosphere, and produce a detectable signal in the ionosphere. Initially, the blast wave from a UGT radially expands, until it reaches the surface of the earth. The wave is both reflected and transmitted at this sharp discontinuity in propagation media. ne reflected wave combines with the incident wave to form an Airy surface,'' at which very strong ripping forces tear the earth apart. This broken region is called the spat zone,'' and is launched into ballistic motion. The resultant ground motion launches an acoustical wave into the atmosphere. This acoustic wave, with overpressures of a few tenths of one percent, propagates upwards at the speed of sound. Assuming purely linear propagation, the path of the acoustic energy can be tracked using raytracing models. Most of the wave energy, which is radiated nearly vertically, tends to propagate into the upper atmosphere, while wave energy radiated at angles greater than about 30 degrees to the vertical will be reflected back to earth and is probably what is seen by most infrasonde measurements.

  10. Conventional fluorescence microscopy below the diffraction limit with simultaneous capture of two fluorophores in DNA origami

    PubMed Central

    2016-01-01

    A conventional fluorescence microscope was previously constructed for simultaneous imaging of two colors to gain subdiffraction localization. The system is predicated on color separation of overlapping Airy discs, construction of matrices of Cartesian coordinates to determine locations as well as centers of the point spread functions of fluorophores. Quantum dots that are separated by as little as 10 nm were resolved in the x-y coordinates. Inter-fluorophore distances that vary by 10 nm could also be distinguished. Quantum dots are bright point light source emitters that excite with a single laser and can serve as a label for many biomolecules. Here, alterations in the method are described to test the ability to resolve Atto 488 and Atto 647 dyes attached to DNA origami at ~40 nm spacing intervals. Dual laser excitation is used in tandem with multi-wavelength bandpass filters. Notwithstanding challenges from reduced intensity in Atto labeled DNA origami helical bundles compared to quantum dots, preliminary data show a mean inter-fluorophore distance of 56 nm with a range (14-148 nm). The range closely matches published results with DNA origami with other methods of subdiffraction microscopy. Sub-diffraction simultaneous two-color imaging fluorescence microscopy acronymically christened (SSTIFM) is a simple, readily accessible, technique for measurement of inter-fluorophore distances in compartments less than 40 nm. Preliminary results with so called nanorulers are encouraging for use with other biomolecules. PMID:27307653

  11. Propagation of Scholte Waves in deep water in a seafloor with power-law shear velocity depth dependence.

    NASA Astrophysics Data System (ADS)

    Dorman, L. M.

    2015-12-01

    The seafloor plays an important role in the propagation ofseafloor noise because its low shear velocity forms a strongwaveguide and the high shear velocity gradient facilitatesconversion processes.In 2001 (JASA), O. A. Godin and D. M.F. Chapman studiedpropagation of interface (Scholte) waves in models with ashear speed profile with a power-law depth dependence.They analyzed of four datasets from shallow-watersites, which they fit well with two-parameter models.Furthermore, they show that for the exponent value of1/2, the mode wavefunctions are self-similar.Data from the deep seafloor from seafloor sources observedby Ocean-Bottom Seismographs frequently exhibit afundamental mode ending in an Airy phase with a frequencyof a few Hertz. This is, of course,, incompatiblewith self-similarity. Adjusting the power-law shear velocityprofile near the water interface, however, improvesthe fit of this simple model with a parsimoniousparameterization to data from the the deep seafloor.Approximation of a power-law model using thin layers ofuniform velocity is eased by using an editor with aninteractive graphical user interface.

  12. Inhomogeneous field theory inside the arctic circle

    NASA Astrophysics Data System (ADS)

    Allegra, Nicolas; Dubail, Jérôme; Stéphan, Jean-Marie; Viti, Jacopo

    2016-05-01

    Motivated by quantum quenches in spin chains, a one-dimensional toy-model of fermionic particles evolving in imaginary-time from a domain-wall initial state is solved. The main interest of this toy-model is that it exhibits the arctic circle phenomenon, namely a spatial phase separation between a critically fluctuating region and a frozen region. Large-scale correlations inside the critical region are expressed in terms of correlators in a (euclidean) two-dimensional massless Dirac field theory. It is observed that this theory is inhomogenous: the metric is position-dependent, so it is in fact a Dirac theory in curved space. The technique used to solve the toy-model is then extended to deal with the transfer matrices of other models: dimers on the honeycomb and square lattice, and the six-vertex model at the free fermion point (Δ =0 ). In all cases, explicit expressions are given for the long-range correlations in the critical region, as well as for the underlying Dirac action. Although the setup developed here is heavily based on fermionic observables, the results can be translated into the language of height configurations and of the gaussian free field, via bosonization. Correlations close to the phase boundary and the generic appearance of Airy processes in all these models are also briefly revisited in the appendix.

  13. The gabbro-eclogite phase transition and the elevation of mountain belts on Venus

    NASA Technical Reports Server (NTRS)

    Namiki, Noriyuki; Solomon, Sean C.

    1993-01-01

    The hypothesis is explored that the crust-mantle boundary of Venus is not in phase equilibrium but rather is rate-limited by the temperature-dependent volume diffusion of the slowest ionic species. The 1D thermal evolution problem is solved assuming that the mountains formed by uniform horizontal shortening of the crust and the lithospheric mantle at a constant rate. The time-dependent density structure and surface elevation are calculated by assuming a temperature-dependent reaction rate and local Airy isostatic compensation. For a horizontal strain rate of 10 exp -15/s or greater, the temperature increase at the base of the crust during mountain formation is modest to negligible, the deepening lower crust is metastable, and the surface elevation increases as the crust thickens. For strain rates less than 10 exp -16/s, crustal temperature increases with time because of internal heat production and the lower crust is more readily transformed to the dense eclogite assemblage. For such models, a maximum elevation is reached during crustal shortening.

  14. How the Term "Shock Waves" Came Into Being

    NASA Astrophysics Data System (ADS)

    Fomin, N. A.

    2016-07-01

    The present paper considers the history of works on shock waves beginning from S. D. Poisson's publication in 1808. It expounds on the establishment of the Polytechnic School in Paris and its fellows and teachers — Gaspard Monge, Lazare Carnot, Joseph Louis Gay-Lussac, Simeon Denis Poisson, Henri Navier, Augustin Louis Cauchy, Joseph Liouville, Ademar de Saint-Venant, Henri Regnault, Pierre Dulong, Emile Jouguet, Pierre Duhem, and others. It also describes the participation in the development of the shock wave theory of young scientists from the universities of Cambridge, among which were George Airy, James Challis, Samuel Earnshaw, George Stokes, Lord Rayleigh, Lord Kelvin, and James Maxwell, as well as of scientists from the Göttingen University, Germany — Bernhard Riemann and Ernst Heinrich Weber. The pioneer works on shock waves of the Scottish engineer William Renkin, the French artillerist Pierre-Henri Hugoniot, German scientists August Toepler and Ernst Mach, and a Hungarian scientist Gyözö Zemplén are also considered.

  15. A Documentary History of the Discovery of Neptune

    NASA Astrophysics Data System (ADS)

    Waff, C. B.; Kollerstrom, N.

    2001-12-01

    The discovery of the planet Neptune by Johann Gottfried Galle on 23 September 1846 near the positions predicted by Urbain Jean Joseph Le Verrier and John Couch Adams has been justly considered by many the greatest achievement of Newtonian celestial mechanics. Aside from communications to societies and journals and a selection of letters published shortly after the discovery by British Astronomer Royal George Biddell Airy, however, contemporary documents (especially letters) concerning the discovery have in large part remained unpublished and scattered in numerous archives in England, France, the United States, Germany, and elsewhere. Partially in response to the longtime disappearance and fortunate recent recovery of the Royal Greenwich Observatory file of documents on the discovery, the authors of this paper have formed the project of editing and annotating for publication a chronologically ordered collection of documents relating to the prediction, discovery, and orbit determination of Neptune. A lengthy introductory essay that would summarize research on the Neptune discovery that has been conducted by various historians would accompany such a collection. This paper will outline the criteria that have been used for selecting the documents that will be published in the edition and describe some of the preliminary associated research findings of the authors.

  16. In pursuit of accurate timekeeping: Liverpool and Victorian electrical horology.

    PubMed

    Ishibashi, Yuto

    2014-10-01

    This paper explores how nineteenth-century Liverpool became such an advanced city with regard to public timekeeping, and the wider impact of this on the standardisation of time. From the mid-1840s, local scientists and municipal bodies in the port city were engaged in improving the ways in which accurate time was communicated to ships and the general public. As a result, Liverpool was the first British city to witness the formation of a synchronised clock system, based on an invention by Robert Jones. His method gained a considerable reputation in the scientific and engineering communities, which led to its subsequent replication at a number of astronomical observatories such as Greenwich and Edinburgh. As a further key example of developments in time-signalling techniques, this paper also focuses on the time ball established in Liverpool by the Electric Telegraph Company in collaboration with George Biddell Airy, the Astronomer Royal. This is a particularly significant development because, as the present paper illustrates, one of the most important technologies in measuring the accuracy of the Greenwich time signal took shape in the experimental operation of the time ball. The inventions and knowledge which emerged from the context of Liverpool were vital to the transformation of public timekeeping in Victorian Britain. PMID:25508512

  17. In pursuit of accurate timekeeping: Liverpool and Victorian electrical horology.

    PubMed

    Ishibashi, Yuto

    2014-10-01

    This paper explores how nineteenth-century Liverpool became such an advanced city with regard to public timekeeping, and the wider impact of this on the standardisation of time. From the mid-1840s, local scientists and municipal bodies in the port city were engaged in improving the ways in which accurate time was communicated to ships and the general public. As a result, Liverpool was the first British city to witness the formation of a synchronised clock system, based on an invention by Robert Jones. His method gained a considerable reputation in the scientific and engineering communities, which led to its subsequent replication at a number of astronomical observatories such as Greenwich and Edinburgh. As a further key example of developments in time-signalling techniques, this paper also focuses on the time ball established in Liverpool by the Electric Telegraph Company in collaboration with George Biddell Airy, the Astronomer Royal. This is a particularly significant development because, as the present paper illustrates, one of the most important technologies in measuring the accuracy of the Greenwich time signal took shape in the experimental operation of the time ball. The inventions and knowledge which emerged from the context of Liverpool were vital to the transformation of public timekeeping in Victorian Britain. PMID:25470885

  18. New separators at the ATLAS facility

    NASA Astrophysics Data System (ADS)

    Back, Birger; Agfa Collaboration; Airis Team

    2015-10-01

    Two new separators are being built for the ATLAS facility. The Argonne Gas-Filled Analyzer (AGFA) is a novel design consisting of a single quadrupole and a multipole magnet that has both dipole and quadrupole field components. The design allows for placing Gammasphere at the target position while providing a solid angle of ~ 22 msr for capturing recoil products emitted at zero degrees. This arrangement enables studies of prompt gamma ray emission from weakly populated trans-fermium nuclei and those near the doubly-magic N = Z = 50 shell closure measured in coincidence with the recoils registered by AGFA. The Argonne In-flight Radioactive Ion Separator (AIRIS) is a magnetic chicane that will be installed immediately downstream of the last ATLAS cryostat and serve to separate radioactive ion beams generated in flight at an upstream high intensity production target. These beams will be further purified by a downstream RF sweeper and transported into a number of target stations including HELIOS, the Enge spectrograph, the FMA and Gammasphere. This talk will present the status of these two projects. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.

  19. Mach-Zehnder interferometer for piston and tip-tilt sensing in segmented telescopes: theory and analytical treatment.

    PubMed

    Yaitskova, Natalia; Dohlen, Kjetil; Dierickx, Philippe; Montoya, Luzma

    2005-06-01

    A study is presented of a Mach-Zehnder interferometer for the measurement of phasing errors of the type found in segmented telescopes. We show that with a pinhole much larger than the Airy disk and an optical path difference between the arms equal to a quarter of the wavelength, the interferometric signal is related to the second derivative of the wave front. In this condition the signal is produced mostly by the segmentation errors and is marginally sensitive to other aberrations including atmospheric turbulence. The signal has distinguishable symmetric and antisymmetric properties that are related to segment aberrations. We suggest using the antisymmetric component of the signal to retrieve piston, tip, and tilt. The symmetric component of the signal serves as an estimate of the measurement error. In this way we proceed with a study of the errors associated with the misalignment of the interferometer, the segment edge imperfections, and the nonaveraged atmospheric perturbations. The entire study is performed on a theoretical basis, and numerical simulations are used to cross check the analytical results. PMID:15984482

  20. Investigations of the gravity profile below the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Shen, W. B.; Han, J. C.

    2012-04-01

    Scientists pay great attention to the structure and dynamics of the Tibetan plateau due to the fact that it is a natural experiment site for geoscience studies. The gravity profiles below the Tibetan plateau with successive high-accuracy play more and more significant role in studying the structure and evolution of the Tibetan plateau. This study focuses on determining the inner gravity field of the Tibetan plateau until to the depth of D and interpret possible mechanism of the gravity profile below the Tibetan plateau, especially reinvestigating the isostasy problem (Pratt hypothesis and Airy hypothesis). The inner gravity field below the Tibetan plateau is determined based on a simple technique (i.e. a combination of Newtonian integral, downward continuation of gravity field, and "remove-restore" scheme) and the following datasets: the external Earth gravitational model EGM2008 and the digital topographic model DTM2006.0 released by NGA (National Geospatial-Intelligence Agency, USA), and the crust density distribution model CRUST2.0 released by NGS (National Geological Survey, USA). This study is supported by Natural Science Foundation China (grant No.40974015; No.41174011).

  1. Spectral analysis of the gravity and topography of Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.; Frey, Herbert V.; Kiefer, Walter S.; Nerem, R. Steven; Zuber, Maria T.

    1993-01-01

    New spherical harmonic models of the gravity and topography of Mars place important constraints on the structure and dynamics of the interior. The gravity and topography models are significantly phase coherent for harmonic degrees n less than 30 (wavelengths greater than 700 km). Loss of coherence below that wavelength is presumably due to inadequacies of the models, rather than a change in behavior of the planet. The gravity/topography admittance reveals two very different spectral domains: for n greater than 4, a simple Airy compensation model, with mean depth of 100 km, faithfully represents the observed pattern; for degrees 2 and 3, the effective compensation depths are 1400 and 550 km, respectively, strongly arguing for dynamic compensation at those wavelengths. The gravity model has been derived from a reanalysis of the tracking data for Mariner 9 and the Viking Orbiters, The topography model was derived by harmonic analysis of the USGS digital elevation model of Mars. Before comparing gravity and topography for internal structure inferences, we must ensure that both are consistently referenced to a hydrostatic datum. For the gravity, this involves removal of hydrostatic components of the even degree zonal coefficients. For the topography, it involves adding the degree 4 equipotential reference surface, to get spherically referenced values, and then subtracting the full degree 50 equipotential. Variance spectra and phase coherence of orthometric heights and gravity anomalies are addressed.

  2. Present-day dynamic and residual topography in Central Anatolia

    NASA Astrophysics Data System (ADS)

    Şengül Uluocak, Ebru; Pysklywec, Russell; Göǧüş, Oǧuz H.

    2016-09-01

    The Central Anatolian orogenic plateau is represented by young volcanism, rapid plateau uplift and distinctive (past and active) tectonic deformation. In this study, we consider observational data in terms of regional present-day geodynamics in the region. The residual topography of Central Anatolia was derived to define the regional isostatic conditions according to Airy isostasy and infer the potential role of `dynamic topography'. 2-D thermomechanical forward models for coupled mantle-lithosphere flow/deformation were conducted along an N-S directional profile through the region (e.g. northern/Pontides, interior and southern/Taurides). These models were based on seismic tomography data that provide estimates about the present-day mantle thermal structure beneath the Anatolian plate. We compare the modelling results with calculated residual topography and independent data sets of geological deformation, gravity and high surface heat flow/widespread geothermal activity. Model results suggest that there is ˜1 km of mantle flow induced dynamic topography associated with the sublithospheric flow driven by the seismically inferred mantle structure. The uprising mantle may have also driven the asthenospheric source of volcanism in the north (e.g. Galatia volcanic province) and the Cappadocia volcanic province in the south while elevating the surface in the last 10 Myr. Our dynamic topography calculations emphasize the role of vertical forcing under other orogenic plateaux underlain by relatively thin crust and low-density asthenospheric mantle.

  3. An Approach for Characterizing and Comparing Hyperspectral Microscopy Systems

    PubMed Central

    Annamdevula, Naga S.; Sweat, Brenner; Favreau, Peter; Lindsey, Ashley S.; Alvarez, Diego F.; Rich, Thomas C.; Leavesley, Silas J.

    2013-01-01

    Hyperspectral imaging and analysis approaches offer accurate detection and quantification of fluorescently-labeled proteins and cells in highly autofluorescent tissues. However, selecting optimum acquisition settings for hyperspectral imaging is often a daunting task. In this study, we compared two hyperspectral systems—a widefield system with acoustic optical tunable filter (AOTF) and charge coupled device (CCD) camera, and a confocal system with diffraction gratings and photomultiplier tube (PMT) array. We measured the effects of system parameters on hyperspectral image quality and linear unmixing results. Parameters that were assessed for the confocal system included pinhole diameter, laser power, PMT gain and for the widefield system included arc lamp intensity, and camera gain. The signal-to-noise ratio (SNR) and the root-mean-square error (RMS error) were measured to assess system performance. Photobleaching dynamics were studied. Finally, theoretical sensitivity studies were performed to estimate the incremental response (sensitivity) and false-positive detection rates (specificity). Results indicate that hyperspectral imaging assays are highly dependent on system parameters and experimental conditions. For detection of green fluorescent protein (GFP)-expressing cells in fixed lung tissues, a confocal pinhole of five airy disk units, high excitation intensity and low detector gain were optimal. The theoretical sensitivity studies revealed that widefield hyperspectral microscopy was able to detect GFP with fewer false positive occurrences than confocal microscopy, even though confocal microscopy offered improved signal and noise characteristics. These studies provide a framework for optimization that can be applied to a variety of hyperspectral imaging systems. PMID:23877125

  4. A Least Squares Collocation Approach with GOCE gravity gradients for regional Moho-estimation

    NASA Astrophysics Data System (ADS)

    Rieser, Daniel; Mayer-Guerr, Torsten

    2014-05-01

    The depth of the Moho discontinuity is commonly derived by either seismic observations, gravity measurements or combinations of both. In this study, we aim to use the gravity gradient measurements of the GOCE satellite mission in a Least Squares Collocation (LSC) approach for the estimation of the Moho depth on regional scale. Due to its mission configuration and measurement setup, GOCE is able to contribute valuable information in particular in the medium wavelengths of the gravity field spectrum, which is also of special interest for the crust-mantle boundary. In contrast to other studies we use the full information of the gradient tensor in all three dimensions. The problem outline is formulated as isostatically compensated topography according to the Airy-Heiskanen model. By using a topography model in spherical harmonics representation the topographic influences can be reduced from the gradient observations. Under the assumption of constant mantle and crustal densities, surface densities are directly derived by LSC on regional scale, which in turn are converted in Moho depths. First investigations proofed the ability of this method to resolve the gravity inversion problem already with a small amount of GOCE data and comparisons with other seismic and gravitmetric Moho models for the European region show promising results. With the recently reprocessed GOCE gradients, an improved data set shall be used for the derivation of the Moho depth. In this contribution the processing strategy will be introduced and the most recent developments and results using the currently available GOCE data shall be presented.

  5. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence.

    PubMed

    Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph

    2016-05-20

    The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.

  6. Optimal structural design of the Airborne Infrared Imager

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Cerrati, Vincent J.; Forman, Steven E.; Sultana, John A.

    1995-09-01

    The airborne infrared imager (AIRI) is a dual-band IR sensor designed to study air defense issues while wing mounted in a pod. The sensor consists of an optical bench attached to a two- axis inertially stabilized gimbal structure in elevation and azimuth. The gimbal assembly operates within an 18-inch diameter globe while meeting strict pointing and tracking requirements. Design conditions for the assembly include operational and nonoperational inertial, thermal, and dynamic loads. Primary design efforts centered on limiting the line-of- sight jitter of the optical system to 50 (mu) rad under the operating environment. An MSC/NASTRAN finite element model was developed for structural response predictions and correlated to experimental data. Design changes were aided by MSC/NASTRAN's optimization routine with the goal of maximizing the fundamental frequency of the gimbal assembly. The final structural design resultsed in a first natural frequency of 79 Hz using a titanium azimuthal gimbal, a stainless steel elevation gimbal, and an aluminum optical bench which met the design and performance requirements.

  7. Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals

    PubMed Central

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    Light beams with extraordinary spatial structures, such as the Airy beam (AB), the Bessel-Gaussian beam (BGB) and the Laguerre-Gaussian beam (LGB), are widely studied and applied in many optical scenarios. We report on preparation of light beams with controllable spatial structures through sum frequency generation (SFG) using two Gaussian pump beams in a quasi-phase matching (QPM) crystal. The spatial structures, including multi-ring-like BGB, donut-like LGB, and super-Gaussian-like beams, can be controlled periodically via crystal phase mismatching by tuning the pump frequency or crystal temperature. This phenomenon has not been reported or discussed previously. Additionally, we present numerical simulations of the phenomenon, which agree very well with the experimental observations. Our findings give further insight into the SFG process in QPM crystals, provide a new way to generate light with unusual spatial structures, and may find applications in the fields of laser optics, all-optical switching, and optical manipulation and trapping. PMID:25007780

  8. Graphene Plasmonic Metasurfaces to Steer Infrared Light.

    PubMed

    Li, Zubin; Yao, Kan; Xia, Fengnian; Shen, Sheng; Tian, Jianguo; Liu, Yongmin

    2015-07-23

    Metasurfaces utilizing engineered metallic nanostructures have recently emerged as an important means to manipulate the propagation of light waves in a prescribed manner. However, conventional metallic metasurfaces mainly efficiently work in the visible and near-infrared regime, and lack sufficient tunability. In this work, combining the pronounced plasmonic resonance of patterned graphene structures with a subwavelength-thick optical cavity, we propose and demonstrate novel graphene metasurfaces that manifest the potential to dynamically control the phase and amplitude of infrared light with very high efficiency. It is shown that the phase of the infrared light reflected from a simple graphene ribbon metasurface can span over almost the entire 2π range by changing the width of the graphene ribbons, while the amplitude of the reflection can be maintained at high values without significant variations. We successfully realize anomalous reflection, reflective focusing lenses, and non-diffracting Airy beams based on graphene metasurfaces. Our results open up a new paradigm of highly integrated photonic platforms for dynamic beam shaping and adaptive optics in the crucial infrared wavelength range.

  9. Coherent Detector for Near-Angle Scattering and Polarization Characterization of Telescope Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chipman, Russell A.; Daugherty, Brian J.; McClain, Stephen C.

    2012-01-01

    A report discusses the difficulty of measuring scattering properties of coated mirrors extremely close to the specular reflection peak. A prototype Optical Hetero dyne Near-angle Scatterometer (OHNS) was developed. Light from a long-coherence-length (>150 m) 532-nm laser is split into two arms. Acousto-optic modulators frequency shift the sample and reference beams, establishing a fixed beat frequency between the beams. The sample beam is directed at very high f/# onto a mirror sample, and the point spread function (PSF) formed after the mirror sample is scanned with a pinhole. This light is recombined by a non-polarizing beam splitter and measured through heterodyne detection with a spectrum analyzer. Polarizers control the illuminated and analyzed polarization states, allowing the polarization dependent scatter to be measured. The bidirectional reflective or scattering distribution function is normally measured through use of a scattering goniometer instrument. The instrumental beam width (collection angle span) over which the scatterometer responds is typically many degrees. The OHNS enables measurement at angles as small as the first Airy disk diameter.

  10. Internal resonance of axially moving laminated circular cylindrical shells

    NASA Astrophysics Data System (ADS)

    Wang, Yan Qing; Liang, Li; Guo, Xing Hui

    2013-11-01

    The nonlinear vibrations of a thin, elastic, laminated composite circular cylindrical shell, moving in axial direction and having an internal resonance, are investigated in this study. Nonlinearities due to large-amplitude shell motion are considered by using Donnell's nonlinear shallow-shell theory, with consideration of the effect of viscous structure damping. Differently from conventional Donnell's nonlinear shallow-shell equations, an improved nonlinear model without employing Airy stress function is developed to study the nonlinear dynamics of thin shells. The system is discretized by Galerkin's method while a model involving four degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the multi-degrees-of-freedom system. When the structure is excited close to a resonant frequency, very intricate frequency-response curves are obtained, which show strong modal interactions and one-to-one-to-one-to-one internal resonance phenomenon. The effects of different parameters on the complex dynamic response are investigated in this study. The stability of steady-state solutions is also analyzed in detail.

  11. From the classical to the generalized von Karman and Marguerre-von Karman equations

    NASA Astrophysics Data System (ADS)

    Ciarlet, Philippe G.; Gratie, Liliana

    2006-06-01

    In this work, we describe and analyze two models that were recently proposed for modeling generalized von Karman plates and generalized Marguerre-von Karman shallow shells.First, we briefly review the "classical" von Karman and Marguerre-von Karman equations, their physical meaning, and their mathematical justification. We then consider the more general situation where only a portion of the lateral face of a nonlinearly elastic plate or shallow shell is subjected to boundary conditions of von Karman type, while the remaining portion is free. Using techniques from formal asymptotic analysis, we obtain in each case a two-dimensional boundary value problem that is analogous to, but is more general than, the classical equations.In particular, it is remarkable that the boundary conditions for the Airy function can still be determined on the entire boundary of the nonlinearly elastic plate or shallow shell solely from the data.Following recent joint works, we then reduce these more general equations to a single "cubic" operator equation, which generalizes an equation introduced by Berger and Fife, and whose sole unknown is the vertical displacement of the shell. We next adapt an elegant compactness method due to Lions for establishing the existence of a solution to this operator equation.

  12. Adaptive correction of vortex laser beam in a closed-loop system with phase only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Ma, Haotong; Liu, Zejin; Wu, Huiyun; Xu, Xiaojun; Chen, Jinbao

    2012-03-01

    We propose and demonstrate the wave front correction of a vortex laser beam by using dual phase only liquid crystal spatial light modulators (LC-SLMs) and a stochastic parallel gradient descent (SPGD) algorithm. One phase only LC-SLM is used to generate vortex laser beam by loading spiral phase screen onto the wave front of input quasi-Gaussian beam. The other phase only LC-SLM under SPGD controller based on the subzone control method adaptively compensates the wave front of vortex laser beam. Numerical simulation and experimental results show that after correction, vortex doughnut like beam is focused into a beam with airy disk pattern distribution in the far field. The adaptive corrections of vortex laser beam with different optical topological charges are studied. The results show that the optical topological charge has little influence on adaptive correction. The powers in the main lobe of far field intensity distributions of vortex laser beams with different optical topological charges are all greatly improved by adaptive correction. The technique proposed in this paper can be used in optical communication, relay mirror and atmospheric turbulence correction.

  13. Medical applications of phytoestrogens from the Thai herb Pueraria mirifica.

    PubMed

    Malaivijitnond, Suchinda

    2012-03-01

    Pueraria mirifica Airy Shaw et Suvatabandhu is a medicinal plant endemic to Thailand. It has been used in Thai folklore medicine for its rejuvenating qualities in aged women and men for nearly one hundred years. Indeed, it has been claimed that P. mirifica contains active phytoestrogens (plant substances with estrogen-like activity). Using high performance liquid chromatography, at least 17 phytoestrogens, mainly isoflavones, have been isolated. Thus, fairly considerable scientific researches, both in vitro in cell lines and in vivo in various species of animals including humans, have been conducted to date to address its estrogenic activity on the reproductive organs, bones, cardiovascular diseases and other climacteric related symptoms. The antioxidative capacity and antiproliferative effect on tumor cell lines have also been assessed. In general, P. mirifica could be applicable for preventing, or as a therapeutic for, the symptoms related to estrogen deficiency in menopausal women as well as in andropausal men. However, the optimal doses for each desirable effect and the balance to avoid undesired side effects need to be calculated before use.

  14. Semiclassical momentum representation in quantum cosmology

    NASA Astrophysics Data System (ADS)

    Coutant, Antonin

    2016-02-01

    It is well known that the standard WKB approximation fails to provide semiclassical solutions in the vicinity of turning points. However, turning points arise in many cosmological scenarios. In a previous work, we obtained a new class of semiclassical solutions of the Wheeler-DeWitt equation using the conjugate momentum to the geometric variable. We present here a detailed study of their main properties. We carefully compare them to usual WKB solutions and turning point resolutions using Airy functions. We show that the momentum representation possesses many advantages that are absent in other approaches. In particular, this framework has a key application in tackling the problem of time. It allows us to use curvature as a time variable, and control the corresponding domain of validity, i.e., under which conditions it provides a good clock. We consider several applications, and in particular show how this allows us to obtain semiclassical solutions of the Wheeler-DeWitt equation parametrized by York time.

  15. Teaching, Testing, and Evaluating Roger D. Mc Leod's Models for Vision, and its Repair, by Patent-pending Naturoptics.

    NASA Astrophysics Data System (ADS)

    Niemi, Paul R.; D., O.; Mc Leod, David M.; Mc Leod, Roger D.

    2007-04-01

    RDM taught a health professional how to recover her previously impaired near vision in one session, also bringing a similar male from 20/30 to 20/10, distance vision, in about ten minutes; another health professional's improvement went from 20/300 to 20/20 in three sessions. A former athlete achieved a distance improvement from 20/800 to 20/100, again, in three sessions. RDM offers to replicate these types of improvements, using patent-pending Naturoptics under monitored conditions, and non-disclosure restraints, to protect franchising and patent-pending rights. Evening atropine use, controlled, at Singapore's National Eye Center, demonstrated an effect against myopia. Does this actually constitute an experimental verification of Mc Leod's Airy-disk radius-formula explanation of how vision works, and predicts how it can be damaged/repaired? Evaluation and documentation is to be by close and distance vision standard charts, or their equivalents, with guaranteed ``chart'' improvements of one line per session, after the beginning visit, or the session is free. Patent-pending Naturoptics differs from all vision-boosting competitors by safely re-eliciting vision's feedback control self-repairs, including astigmatism and presbyopia. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NES07.C2.4

  16. Fredholm Determinants and Pole-free Solutions to the Noncommutative Painlevé II Equation

    NASA Astrophysics Data System (ADS)

    Bertola, M.; Cafasso, M.

    2012-02-01

    We extend the formalism of integrable operators à la Its-Izergin-Korepin-Slavnov to matrix-valued convolution operators on a semi-infinite interval and to matrix integral operators with a kernel of the form {E_1^T(λ) E_2(μ)/λ+μ}, thus proving that their resolvent operators can be expressed in terms of solutions of some specific Riemann-Hilbert problems. We also describe some applications, mainly to a noncommutative version of Painlevé II (recently introduced by Retakh and Rubtsov) and a related noncommutative equation of Painlevé type. We construct a particular family of solutions of the noncommutative Painlevé II that are pole-free (for real values of the variables) and hence analogous to the Hastings-McLeod solution of (commutative) Painlevé II. Such a solution plays the same role as its commutative counterpart relative to the Tracy-Widom theorem, but for the computation of the Fredholm determinant of a matrix version of the Airy kernel.

  17. Nanoscale contact-radius determination by spectral analysis of polymer roughness images.

    PubMed

    Knoll, Armin W

    2013-11-12

    In spite of the long history of atomic force microscopy (AFM) imaging of soft materials such as polymers, little is known about the detailed effect of a finite tip size and applied force on the imaging performance on such materials. Here we exploit the defined scaling of roughness amplitudes on amorphous polymer films to determine the transfer function imposed by the imaging tip. The finite indentation of the nanometer-scale tip into the comparatively soft polymer surface leads to a finite contact area, which in turn effectively acts as a moving average filter for the surface roughness. In the power spectral density (PSD), this leads to an attenuation of the roughness amplitudes related to the Airy pattern known from light diffraction of a circular aperture. This transfer function is affected by the roughness-induced local modulation of the tip height and contact area, which is studied by performing simulations of the polymer roughness and the imaging process. We find that for typical polymer parameters and sharp tips the contact radius of the tip-sample contact can be recovered from the roughness spectrum. We experimentally verify and demonstrate the method by measuring the nanoscale contact radius as a function of applied load and travel distance on a highly cross-linked model polymer. The data are consistent with the Johnson-Kendall-Roberts (JKR) contact model and verifies its applicability at the nanometer scale. Using the model, quantitative values of the elastic sample parameters can be determined.

  18. Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves

    USGS Publications Warehouse

    Ellsworth, William L.; Malin, Peter E.

    2011-01-01

    Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA. This laterally extensive channel extends downwards to at least half way through the seismogenic crust, more than about 7 km. The channel supports not only the previously recognized Love-type- (FL) and Rayleigh-type- (FR) guided waves, but also a new fault-guided wave, which we name FF. As recorded 2.7 km underground, FF is normally dispersed, ends in an Airy phase, and arrives between the P- and S-waves. Modelling shows that FF travels as a leaky mode within the core of the fault zone. Combined with the drill core samples, well logs and the two other types of guided waves, FF at SAFOD reveals a zone of profound, deep, rock damage. Originating from damage accumulated over the recent history of fault movement, we suggest it is maintained either by fracturing near the slip surface of earthquakes, such as the 1857 Fort Tejon M 7.9, or is an unexplained part of the fault-creep process known to be active at this site.

  19. Solar performance: results from the field

    SciTech Connect

    Adams, J.A.

    1982-07-01

    Actual monitored data are presented on 7 homes and an office complex to illustrate energy savings possible through the use of solar energy and energy conservation. In the Brookhaven house (superinsulated) a Trombe wall is shown to be superior to a sunspace. Energy-Efficient Residence I (Mt. Airy, MD) is compared to a conventional house next door and found to use 70% less energy for heating and 31% less energy for cooling. Energy-Efficient Residence II (Damascus, MD) is a two-story residence using passive and hybrid solar space heating, rockbin heat storage, greywater recycling and an earth-source heat pump. It's energy heating costs are reported at $120/yr. In an office complex in Taos, NM solar energy was reported to provide 67% of the heating and a large fraction of the lighting requirements. The Mastin Double-Envelope House in Middletown, RI is described as operating quite effectively although some problems remain. Rymark I, II, and III (Frederick, MD) are described as modular homes with various amounts of north and south glazing, and differing amounts of insulation and thermal mass. One finding is that 85 ft/sup 2/ of glass and R-5 window insulation saves the same amount of energy as adding 125 ft/sup 2/ of south glass and eutectic salts for thermal mass, but costs $2200 less. (MJJ)

  20. On the equivalence of semi-classical methods for QED in intense external fields

    NASA Astrophysics Data System (ADS)

    Hartin, Anthony

    2009-12-01

    Using the semi-classical method of Nikishov-Ritus (NR), the derivation of the transition rate of the beamsstrahlung process is reviewed. This method uses the Furry Picture and the exact solutions of the Dirac equation in the external field potential. For future linear colliders, the nominal machine parameters are such that this external field can be considered to be a constant crossed electromagnetic field. The Dirac equation solutions can be Fourier transformed such that they are functions of Dirac gamma matrices, Airy functions and the usual non-external field solution. The resultant analytic form for the transition rate is the same as that obtained by the Quasiclassical Operator (QO) method of Baier-Katkov which is valid in the limit of ultra-relativistic electron and vanishingly small radiation angle. The NR calculation however also exhibits a pole in the radiation angle for back-radiated photons. The removal of this pole requires a further study of IR divergences within the Furry Picture.

  1. How is the artist role affected when artists are participating in projects in work life?

    PubMed

    Stenberg, Henrik

    2016-01-01

    In Sweden, during the last decade, the artist has come to function as a creative resource in workplaces. There are two organisations, Skiss (Contemporary Artist in the Contemporary Society) and Airis (Artist in Residence), that organise projects for artists and coworkers. These projects are intended to have a positive effect on the well-being of organisations and their employees through artistic means, and the artist often focuses on the social interaction between the employees in their work. The artists' work involves frequent interaction with coworkers. The aim of this article was to describe how visual artists' roles as artists are affected by their engagement in artistic and social projects at workplaces in Sweden. The focus in the article is on the social interaction between artists and employees. The study is a qualitative narrative interview study with fine artists participating in different projects in work life. Since the artist's intervention is usually directed towards social relations in the workplaces, a social perspective on well-being is from a micro-sociological point of view. The categories in the interviews were how the artists worked with the projects, how the social interaction between artists and coworkers worked out, and how the artists evaluated the projects in relation to their ambitions. The results show that, many times, the artistic projects promote well-being in organisations and to some extent benefit the artist, but that the ability of the artists to actually function as artists can be problematic. PMID:27167555

  2. High-index asymptotics of spherical Bessel products averaged with modulated Gaussian power laws

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2014-12-01

    Bessel integrals of type are investigated, where the kernel g( k) is a modulated Gaussian power-law distribution , and the jl ( m) are multiple derivatives of spherical Bessel functions. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. Two methods allowing efficient numerical calculation of these integrals are presented, covering Bessel indices l in the currently accessible multipole range 0 ≤ l ≤ 104 and beyond. The first method is based on a representation of spherical Bessel functions by Lommel polynomials. Gaussian power-law averages can then be calculated in closed form as finite Hankel series of parabolic cylinder functions, which allow high-precision evaluation. The second method is asymptotic, covering the high- l regime, and is applicable to general distribution functions g( k) in the integrand; it is based on the uniform Nicholson approximation of the Bessel derivatives in conjunction with an integral representation of squared Airy functions. A numerical comparison of these two methods is performed, employing Gaussian power laws and Kummer distributions to average the Bessel products.

  3. Bessel integrals in epsilon expansion: Squared spherical Bessel functions averaged with Gaussian power-law distributions

    NASA Astrophysics Data System (ADS)

    Tomaschitz, Roman

    2013-12-01

    Bessel integrals of type {int_0^infty {k^{μ+2}{e}^{-ak2-(b+{i} ω)k}j_l^{2} (pk)dk}} are studied, where the squared spherical Bessel function j {/l 2} is averaged with a modulated Gaussian power-law density. These integrals define the multipole moments of Gaussian random fields on the unit sphere, arising in multipole fits of temperature and polarization power spectra of the cosmic microwave background. The averages can be calculated in closed form as finite Hankel series, which allow high-precision evaluation. In the case of integer power-law exponents μ, singularities emerge in the series coefficients, which requires ɛ expansion. The pole extraction and regularization of singular Hankel series is performed, for integer Gaussian power-law densities as well as for the special case of Kummer averages (a = 0 in the exponential of the integrand). The singular ɛ residuals are used to derive combinatorial identities (sum rules) for the rational Hankel coefficients, which serve as consistency checks in precision calculations of the integrals. Numerical examples are given, and the Hankel evaluation of Gaussian and Kummer averages is compared with their high-index Airy approximation over a wide range of integer Bessel indices l.

  4. A dynamic model of Venus's gravity field

    NASA Technical Reports Server (NTRS)

    Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.

    1984-01-01

    Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.

  5. Optical characterization of subwavelength-scale solid immersion lenses

    NASA Astrophysics Data System (ADS)

    Kim, Myun-Sik; Scharf, Toralf; Haq, Mohammad Tahdiul; Nakagawa, Wataru; Herzig, Hans Peter

    2012-03-01

    We present the fabrication and optical characterization of nano-scale solid immersion lenses (nano-SILs) with sizes down to a subwavelength range. Submicron-scale cylinders fabricated by electron-beam lithography (EBL) are thermally reflowed to form a spherical shape. Subsequent soft lithography leads to nano-SILs on transparent substrates, i.e. glass, for optical characterization with visible light. The optical characterization is performed using a high-resolution interference microscope (HRIM) with illumination at 642 nm wavelength. The measurements of the 3D amplitude and phase fields provide information on the spot size and the peak intensity. In particular, the phase measurement is a more convincing proof of the Airy disc size reduction rather than the full-width at half maximum (FWHM) spot size. The focal spots produced by the nano-SILs show both spot-size reduction and enhanced optical intensity, which are consistent with the immersion effect. In this way, we experimentally confirm the immersion effect of a subwavelength-size SIL (d = 530 nm and h = 45 nm) with a spot reduction ratio of 1.35, which is less than the expected value of 1.5, most likely due to the slightly non-ideal shape of the nano-SIL.

  6. A Kramers-Moyal Approach to the Analysis of Third-Order Noise with Applications in Option Valuation

    PubMed Central

    Popescu, Dan M.; Lipan, Ovidiu

    2015-01-01

    We propose the use of the Kramers-Moyal expansion in the analysis of third-order noise. In particular, we show how the approach can be applied in the theoretical study of option valuation. Despite Pawula’s theorem, which states that a truncated model may exhibit poor statistical properties, we show that for a third-order Kramers-Moyal truncation model of an option’s and its underlier’s price, important properties emerge: (i) the option price can be written in a closed analytical form that involves the Airy function, (ii) the price is a positive function for positive skewness in the distribution, (iii) for negative skewness, the price becomes negative only for price values that are close to zero. Moreover, using third-order noise in option valuation reveals additional properties: (iv) the inconsistencies between two popular option pricing approaches (using a “delta-hedged” portfolio and using an option replicating portfolio) that are otherwise equivalent up to the second moment, (v) the ability to develop a measure R of how accurately an option can be replicated by a mixture of the underlying stocks and cash, (vi) further limitations of second-order models revealed by introducing third-order noise. PMID:25625856

  7. Pinhole shifting lifetime imaging microscopy.

    PubMed

    Ramshesh, Venkat K; Lemasters, John J

    2008-01-01

    Lifetime imaging microscopy is a powerful tool to probe biological phenomena independent of luminescence intensity and fluorophore concentration. We describe time-resolved imaging of long-lifetime luminescence with an unmodified commercial laser scanning confocal/multiphoton microscope. The principle of the measurement is displacement of the detection pinhole to collect delayed luminescence from a position lagging the rasting laser beam. As proof of principle, luminescence from microspheres containing europium (Eu(3+)), a red emitting probe, was compared to that of short-lifetime green-fluorescing microspheres and/or fluorescein and rhodamine in solution. Using 720-nm two-photon excitation and a pinhole diameter of 1 Airy unit, the short-lifetime fluorescence of fluorescein, rhodamine and green microspheres disappeared much more rapidly than the long-lifetime phosphorescence of Eu(3+) microspheres as the pinhole was repositioned in the lagging direction. In contrast, repositioning of the pinhole in the leading and orthogonal directions caused equal loss of short- and long-lifetime luminescence. From measurements at different lag pinhole positions, a lifetime of 270 micros was estimated for the Eu(3+) microspheres, consistent with independent measurements. This simple adaptation is the basis for quantitative 3-D lifetime imaging microscopy. PMID:19123648

  8. Comparisons of global topographic/isostatic models to the Earth's observed gravity field

    NASA Technical Reports Server (NTRS)

    Rummel, Reiner; Rapp, Richard H.; Suenkel, Hans; Tscherning, C. Christian

    1988-01-01

    The Earth's gravitational potential, as described by a spherical harmonic expansion to degree 180, was compared to the potential implied by the topography and its isostatic compensation using five different hypothesis. Initially, series expressions for the Airy/Heiskanen topographic isostatic model were developed to the third order in terms of (h/R), where h is equivalent rock topography and R is a mean Earth radius. Using actual topographic developments for the Earth, it was found that the second and third terms of the expansion contributed 30 and 3 percents, of the first of the expansion. With these new equations it is possible to compute depths (D) of compensation, by degree, using 3 different criteria. The results show that the average depth implied by criterion I is 60 km while it is about 33 km for criteria 2 and 3 with smaller compensation depths at the higher degrees. Another model examined was related to the Vening-Meinesz regional hypothesis implemented in the spectral domain. Finally, oceanic and continental response functions were derived for the global data sets and comparisons made to locally determined values.

  9. How is the artist role affected when artists are participating in projects in work life?

    PubMed Central

    Stenberg, Henrik

    2016-01-01

    In Sweden, during the last decade, the artist has come to function as a creative resource in workplaces. There are two organisations, Skiss (Contemporary Artist in the Contemporary Society) and Airis (Artist in Residence), that organise projects for artists and coworkers. These projects are intended to have a positive effect on the well-being of organisations and their employees through artistic means, and the artist often focuses on the social interaction between the employees in their work. The artists’ work involves frequent interaction with coworkers. The aim of this article was to describe how visual artists’ roles as artists are affected by their engagement in artistic and social projects at workplaces in Sweden. The focus in the article is on the social interaction between artists and employees. The study is a qualitative narrative interview study with fine artists participating in different projects in work life. Since the artist's intervention is usually directed towards social relations in the workplaces, a social perspective on well-being is from a micro-sociological point of view. The categories in the interviews were how the artists worked with the projects, how the social interaction between artists and coworkers worked out, and how the artists evaluated the projects in relation to their ambitions. The results show that, many times, the artistic projects promote well-being in organisations and to some extent benefit the artist, but that the ability of the artists to actually function as artists can be problematic. PMID:27167555

  10. Accurate axial localization by conical diffraction beam shaping generating a dark-helix PSF

    NASA Astrophysics Data System (ADS)

    Fallet, Clement; Lassalle, Astrid; Dubois-Delumeau, Maxime; Sirat, Gabriel Y.

    2016-02-01

    We present here a new PSF-shaping technique using biaxial crystals to generate a highly z-dependent distribution in single molecule localization microscopy (SMLM). This distribution features two zeros of intensity that rotate together with defocus. This PSF features similarities to the double-helix introduced by Moerner and Piestun and thus has been dubbed dark-helix since we track zeros of intensity. Preliminary numerical studies based on Cramer-Rao Lower Bound (CRLB) show that this PSF has the potential to obtain up to 20nm localization precision. This PSF can be easily generated by a very simple, monolithic add-on added in front of the detection camera. Additionally, the PSF remains of the approximate size of the Airy PSF, the x-y localization precision is not substantially affected and no trade-off is required. The xy compacity of the PSF also enables theoretically a higher density of emitters than the double-helix which spreads on a larger scale. Limiting factors for SMLM such as loss of photons, complexity and robustness will be discussed and considerations about the practical implementation of such techniques will be given.

  11. Isostatic geoid anomalies over mid-plate swells in the Central North Atlantic

    NASA Astrophysics Data System (ADS)

    Grevemeyer, Ingo

    1999-08-01

    The relation of geoid height data from Geosat/ERM altimeter measurements to seafloor topography from recent shipborne data is investigated for eight igneous provinces located in the Central North Atlantic. The long wavelength undulations of the geoid, reflecting deep-seated density anomalies, were removed by subtracting a low degree and order spherical harmonic representation of the geoid. After converting residual geoid heights and topography to anomalies related to the thermal plate model, both maps were low-pass filtered to isolate the signal associated with local compensation from surface loading. Finally, the ratio of geoid height to topography was determined by fitting a straight line to the data. Cape Verde, Bermuda, Canary and Madeira swells exhibit high geoid/topography ratios, which signify reheating of the lower lithosphere. These features were classified as thermal swells. Geoid/topography ratios occurring over the New England, Corner, Azores and Great Meteor seamount chains can be explained by Airy compensation model of crustal thickening. This requires non-hotspot processes to be active within the Azores and Great Meteor seamounts.

  12. Frederik Kaiser (1808-1872) and the Modernisation of Dutch Astronomy

    NASA Astrophysics Data System (ADS)

    van der Heijden, Petra

    Frederik Kaiser was the director of Leiden Observatory from 1837 until his death in 1872. Educated by his German-born uncle Johan Frederik Keyser (1766-1823), who was a proficient amateur astronomer, Kaiser proved to be a real observational talent. Despite the poor conditions in which he worked, his observations soon rivalled with the best in the world. Kaiser's contributions to astronomical practice include the foundation of a new, completely up-to-date observatory building in Leiden, and the introduction of statistics and precision measurements in daily practice at the observatory. Moreover he was the author of several bestselling books on popular astronomy. Kaiser had an extensive correspondence with colleagues all over Europe, mostly in Germany. Correpondents include Airy, Argelander, Von Auwers, Bessel, Encke, John Herschel, LeVerrier, Von Littrow, Schumacher, Otto W. Struve, as well as several geodesists and instrument makers. Preliminary research indicates that Frederik Kaiser played a crucial role in the revival of Dutch astronomy in the second half of the 19th century. This project aims at analysing and explaining Kaiser's activities in science, institutionalisation and popularisation, in the context of national and international developments in 19th-century astronomy and scientific culture.

  13. Semiclassical catastrophes and cumulative angular squeezing of a kicked quantum rotor

    SciTech Connect

    Leibscher, M.; Averbukh, I.Sh.; Rozmej, P.; Arvieu, R.

    2004-03-01

    We present a detailed theory of spectacular semiclassical catastrophes happening during the time evolution of a kicked quantum rotor [Phys. Rev. Lett. 87, 163601 (2001)]. Both two- and three-dimensional rotational systems are analyzed. It is shown that the wave function of the rotor develops a cusp at certain delay after a kick, which results in a sharply focused rotational wave packet. The cusp is followed by a fold-type catastrophe manifested in the rainbow-type moving singularities. In the three-dimensional case, the rainbows are accompanied by additional singular features similar to the glory structures known in the wave optics. These catastrophes in the time-dependent angular wave function are well described by the appropriate tools of the quasiclassical wave mechanics, i.e., by Airy and Bessel approximations and Pearcey's functions. A scenario of 'cumulative squeezing' is also presented in which a specially designed train of short kicks produces an unlimited narrowing of the rotor angular distribution. This scenario is relevant to the molecular alignment by short laser pulses, and also to the atom lithography schemes in which cold atoms are focused by an optical standing wave.

  14. Generalized rainbows and unfolded glories of oblate drops: organization for multiple internal reflections and extension of cusps into Alexander's dark band.

    PubMed

    Marston, P L; Kaduchak, G

    1994-07-20

    Oblate drops of water can produce caustics where, unlike a simple Airy caustic, more than two rays merge. We extend previous treatments of generalized primary rainbows based on catastrophe optics [Opt. Lett. 10, 588 (1985); Proc. R. Soc. (London) A 438, 397 (1992)] to rays having (p - 1) = 2 to 5 internal reflections. The analysis is for a horizontally illuminated ellipsoid with a vertical symmetry axis. Aspect ratios causing a vanishing of the vertical curvature at the equator for the outgoing wave front are found from generalized ray tracing. In response to infinitesimal deformation, the axial caustic of real glory rays unfolds producing cusps. Laboratory observations with laser illumination demonstrate that cusps resulting from rays with five internal reflections extend into Alexander's dark band when the drop's aspect ratio is near 1.08. The evolution of this p = 6 scattering pattern as cusps meet the quinary rainbow is suggestive of an E(6) catastrophe. For ellipsoids of varying aspect ratio and refractive index N, there is an organizing singularity associated with an exceptionally flat outgoing wave front from spheres with N = p. PMID:20935841

  15. Rainbows, Coronas and Glories

    NASA Astrophysics Data System (ADS)

    Laven, Philip

    Rainbows, coronas and glories are examples of atmospheric optical phenomena caused by the scattering of sunlight from spherical drops of water. It is surprising that the apparently simple process of scattering of light by spherical drops of water can result in this wide range of colourful effects. However, the scattering mechanisms are very complicated. Eminent scientists (such as Descartes, Newton, Young, Airy and many others) offered various explanations for the formation of rainbows—thus making major contributions to our understanding of the nature of light. The basic features of rainbows can be explained by geometrical optics but, in the early 1800s, supernumerary arcs on rainbows provided crucial supporting evidence for the wave theory of light. In 1908, Mie provided a rigorous (but very complicated) solution to the problem of scattering of light by spherical particles. More than 100 years later, Mie's solution can now be used to produce excellent full-colour simulations. Examples of such simulations show how the appearance of these phenomena vary with the size of the water drops, as well as describing the scattering mechanisms that are responsible for their formation.

  16. Mach-Zehnder interferometer for piston and tip-tilt sensing in segmented telescopes: theory and analytical treatment.

    PubMed

    Yaitskova, Natalia; Dohlen, Kjetil; Dierickx, Philippe; Montoya, Luzma

    2005-06-01

    A study is presented of a Mach-Zehnder interferometer for the measurement of phasing errors of the type found in segmented telescopes. We show that with a pinhole much larger than the Airy disk and an optical path difference between the arms equal to a quarter of the wavelength, the interferometric signal is related to the second derivative of the wave front. In this condition the signal is produced mostly by the segmentation errors and is marginally sensitive to other aberrations including atmospheric turbulence. The signal has distinguishable symmetric and antisymmetric properties that are related to segment aberrations. We suggest using the antisymmetric component of the signal to retrieve piston, tip, and tilt. The symmetric component of the signal serves as an estimate of the measurement error. In this way we proceed with a study of the errors associated with the misalignment of the interferometer, the segment edge imperfections, and the nonaveraged atmospheric perturbations. The entire study is performed on a theoretical basis, and numerical simulations are used to cross check the analytical results.

  17. Lithosphere, crust and basement ridges across Ganga and Indus basins and seismicity along the Himalayan front, India and Western Fold Belt, Pakistan

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, M.; Mishra, D. C.; Singh, B.

    2013-10-01

    Spectral analysis of the digital data of the Bouguer anomaly of North India including Ganga basin suggest a four layer model with approximate depths of 140, 38, 16 and 7 km. They apparently represent lithosphere-asthenosphere boundary (LAB), Moho, lower crust, and maximum depth to the basement in foredeeps, respectively. The Airy's root model of Moho from the topographic data and modeling of Bouguer anomaly constrained from the available seismic information suggest changes in the lithospheric and crustal thicknesses from ˜126-134 and ˜32-35 km under the Central Ganga basin to ˜132 and ˜38 km towards the south and 163 and ˜40 km towards the north, respectively. It has clearly brought out the lithospheric flexure and related crustal bulge under the Ganga basin due to the Himalaya. Airy's root model and modeling along a profile (SE-NW) across the Indus basin and the Western Fold Belt (WFB), (Sibi Syntaxis, Pakistan) also suggest similar crustal bulge related to lithospheric flexure due to the WFB with crustal thickness of 33 km in the central part and 38 and 56 km towards the SE and the NW, respectively. It has also shown the high density lower crust and Bela ophiolite along the Chamman fault. The two flexures interact along the Western Syntaxis and Hazara seismic zone where several large/great earthquakes including 2005 Kashmir earthquake was reported. The residual Bouguer anomaly maps of the Indus and the Ganga basins have delineated several basement ridges whose interaction with the Himalaya and the WFB, respectively have caused seismic activity including some large/great earthquakes. Some significant ridges across the Indus basin are (i) Delhi-Lahore-Sargodha, (ii) Jaisalmer-Sibi Syntaxis which is highly seismogenic. and (iii) Kachchh-Karachi arc-Kirthar thrust leading to Sibi Syntaxis. Most of the basement ridges of the Ganga basin are oriented NE-SW that are as follows (i) Jaisalmer-Ganganagar and Jodhpur-Chandigarh ridges across the Ganga basin intersect

  18. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies

    NASA Astrophysics Data System (ADS)

    Balmino, G.; Vales, N.; Bonvalot, S.; Briais, A.

    2012-07-01

    The availability of high-resolution global digital elevation data sets has raised a growing interest in the feasibility of obtaining their spherical harmonic representation at matching resolution, and from there in the modelling of induced gravity perturbations. We have therefore estimated spherical Bouguer and Airy isostatic anomalies whose spherical harmonic models are derived from the Earth's topography harmonic expansion. These spherical anomalies differ from the classical planar ones and may be used in the context of new applications. We succeeded in meeting a number of challenges to build spherical harmonic models with no theoretical limitation on the resolution. A specific algorithm was developed to enable the computation of associated Legendre functions to any degree and order. It was successfully tested up to degree 32,400. All analyses and syntheses were performed, in 64 bits arithmetic and with semi-empirical control of the significant terms to prevent from calculus underflows and overflows, according to IEEE limitations, also in preserving the speed of a specific regular grid processing scheme. Finally, the continuation from the reference ellipsoid's surface to the Earth's surface was performed by high-order Taylor expansion with all grids of required partial derivatives being computed in parallel. The main application was the production of a 1' × 1' equiangular global Bouguer anomaly grid which was computed by spherical harmonic analysis of the Earth's topography-bathymetry ETOPO1 data set up to degree and order 10,800, taking into account the precise boundaries and densities of major lakes and inner seas, with their own altitude, polar caps with bedrock information, and land areas below sea level. The harmonic coefficients for each entity were derived by analyzing the corresponding ETOPO1 part, and free surface data when required, at one arc minute resolution. The following approximations were made: the land, ocean and ice cap gravity spherical

  19. PSF Rotation with Changing Defocus and Applications to 3D Imaging for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Kumar, R.

    2013-09-01

    For a clear, well corrected imaging aperture in space, the point-spread function (PSF) in its Gaussian image plane has the conventional, diffraction-limited, tightly focused Airy form. Away from that plane, the PSF broadens rapidly, however, resulting in a loss of sensitivity and transverse resolution that makes such a traditional best-optics approach untenable for rapid 3D image acquisition. One must scan in focus to maintain high sensitivity and resolution as one acquires image data, slice by slice, from a 3D volume with reduced efficiency. In this paper we describe a computational-imaging approach to overcome this limitation, one that uses pupil-phase engineering to fashion a PSF that, although not as tight as the Airy spot, maintains its shape and size while rotating uniformly with changing defocus over many waves of defocus phase at the pupil edge. As one of us has shown recently [1], the subdivision of a circular pupil aperture into M Fresnel zones, with the mth zone having an outer radius proportional to m and impressing a spiral phase profile of form m? on the light wave, where ? is the azimuthal angle coordinate measured from a fixed x axis (the dislocation line), yields a PSF that rotates with defocus while keeping its shape and size. Physically speaking, a nonzero defocus of a point source means a quadratic optical phase in the pupil that, because of the square-root dependence of the zone radius on the zone number, increases on average by the same amount from one zone to the next. This uniformly incrementing phase yields, in effect, a rotation of the dislocation line, and thus a rotated PSF. Since the zone-to-zone phase increment depends linearly on defocus to first order, the PSF rotates uniformly with changing defocus. For an M-zone pupil, a complete rotation of the PSF occurs when the defocus-induced phase at the pupil edge changes by M waves. Our recent simulations of reconstructions from image data for 3D image scenes comprised of point sources at

  20. The seismic Moho structure of Shatsky Rise oceanic plateau, northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Jinchang; Sager, William W.; Korenaga, Jun

    2016-05-01

    Oceanic plateaus are large igneous provinces formed by extraordinary eruptions that create thick oceanic crust, whose structure is poorly known owing to the lack of deep-penetration seismic data. Multichannel seismic (MCS) reflection and wide-angle refraction data allow us to show Moho structure beneath a large part of the Shatsky Rise oceanic plateau in the northwest Pacific Ocean. Moho reflectors in the two data sets can be connected to trace the interface from the adjacent abyssal plain across much of the interior. The reflectors display varied character in continuity, shape, and amplitude, similar to characteristics reported in other locations. Beneath normal crust, the Moho is observed at ∼13 km depth (∼7 km below the seafloor) in MCS data and disappears at ∼20 km depth (∼17 km below the seafloor) beneath the high plateau. Moho at the distal flanks dips downward towards the center with slopes of ∼0.5°-1°, increasing to 3°-5° at the middle flanks. Seismic Moho topography is consistent with Airy isostasy, confirming this widely-applied assumption. Data from this study show that crustal thickness between the massifs in the interior of the plateau is nearly twice normal crustal thickness, despite the fact that this crust records apparently normal seafloor spreading magnetic lineations. The Moho model allows improved estimates of plateau area (5.33 ×105 km2) and volume (6.90 ×106 km3), the latter assuming that the entire crust was formed by Shatsky Rise volcanism because the massifs formed at spreading ridges. This study is unique in showing Moho depth and structure over an extraordinarily large area beneath an oceanic plateau, giving insight to plateau structure and formation.

  1. Adaptive optics scanning ophthalmoscopy with annular pupils.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2012-07-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

  2. Is there uniformitarian or catastrophic tectonics on Venus?

    NASA Astrophysics Data System (ADS)

    Turcotte, Donald L.

    1993-03-01

    The distribution and modification of craters on Venus favors a near global, volcanic resurfacing event about 500 Myrs ago. Such an event indicates that the tectonic evolution of Venus was catastrophic rather than uniformitarian. The creation of a global, single-plate lithosphere on Venus about 500 Myrs ago can explain a variety of tectonic features on Venus that are not consistent with the thin lithosphere required by a uniformitarian hypothesis. A lithosphere on Venus that has thickened for 500 Myrs has a present thickness of about 300 km whereas steady-state heat loss from Venus requires a mean lithospheric thickness near 40 km. A thick lithosphere on Venus can support the high plateaus (elevations of 3-4 km) and mountain belts (up to 9 km) using the same isostatic compensation concepts applicable to the earth. If a thick lithosphere is thinned by a mantle plume, elevation is caused by thermal isostasy. The elevation due to the thinning of a 300 km thick lithosphere is about 3 km. Thus the domal elevation of Beta Regio can be explained by the same mechanism responsible for the elevation of the Hawaiian Swell. While the broad highland plateaus on Venus may be associated with thermal isostasy, the mountain belts in Ishtar Terra clearly cannot be. The high topography of Freyja Montes is almost certainly associated with underthrusting and the likely compensation mechanism is Airy isostasy associated with a thickened crust. With a density contrast delta, of 500 kg m-3 an elevation of 9 km requires a crustal thickening of about 70 km. With a thick lithosphere there is no difficulty in supporting such a thick crust.

  3. New Insights into the Morphology of the Galapagos Platform from Lower Crustal Flow Models

    NASA Astrophysics Data System (ADS)

    Orellana Rovirosa, F.; Richards, M. A.

    2014-12-01

    The volcanically-active Galapagos Islands are constructed upon a broad platform, with the westernmost islands being the most active, marking the present-day position of the Galapagos hotspot (mantle plume). This volcanic platform overlies relatively young oceanic lithosphere (<15 Myr) and exhibits unique morphologic features along its boundaries. The most spectacular of these features is a system of stepped terraces on the southwestern escarpment, with very large vertical relief (>3 km), and contrasting with relatively gentle slopes off the eastern platform edge toward the Carnegie ridge. Considering the horizontal lithostatic pressure differences associated with this bathymetric relief, along with the high temperatures within this young, hotspot-affected oceanic lithosphere and crust; it is likely that lower crustal flow contributes significantly, perhaps even dominantly, to lithospheric and crustal deformation within the Galapagos Platform. Using 2D numerical models that invoke a thin-sheet approximation for the Stokes' equation for a Newtonian fluid with space- and time-dependent viscosity, and assuming isostatic conditions, we show that: (1) the pronounced bathymetric rim along the Eastern platform region (where gravimetric studies indicate Airy isostasy) near Española Island may be the expression of a mature stage of a lower crustal flow front evolving asymptotically during the last ~3 Myr; (2) the spectacular system of stepped terraces along the southwestern edge of the platform may be explained by lower crustal flow-associated backward tilting of the bathymetric surface that, even with small amounts of angular change (~0.1 deg) and potentially occurring in non-isostatic regimes, effectively hinders the horizontal flow of lava. This process of backward-tilting may have been largely restricted to the last ~1 Myr of platform growth, and hence may be a unique event that may involve horizontal extrusion of large lava sheets from within the southwestward

  4. Evidence and models for lower crustal flow beneath the Galápagos platform

    NASA Astrophysics Data System (ADS)

    Orellana-Rovirosa, Felipe; Richards, Mark

    2016-01-01

    The volcanic Galápagos Islands are constructed upon a broad platform, with their active westernmost islands marking the current position of the hotspot. Built upon young oceanic lithosphere (<15 Ma), this platform exhibits unique morphologic features including a system of stepped terraces on the southwestern escarpment with 3 km relief, contrasting with gentle slopes off the eastern platform toward the Carnegie Ridge. Considering horizontal lithostatic pressure differences associated with this relief, along with high temperatures within the young, hotspot-affected lithosphere, it is likely that lower crustal flow contributes significantly to crustal deformation within the Galápagos platform. Using a 2-D, isostatic, thin-sheet approximation for the Stokes flow equation with (Newtonian) space-time-dependent viscosity, we suggest that the bathymetric rim along the eastern platform region (where gravimetry indicates Airy isostasy) near Española Island may be the expression of a mature lower crustal flow front developed over the last ˜3 Myr; horizontal mass displacements (˜50 km) associated with this crustal flow episode may have advected mantle plume geochemical signatures toward the southeast, and in directions not necessarily parallel to the hotspot track. Also, the stepped terraces along the southwestern platform may be explained by lower crustal flow-associated backward tilting of the bathymetric surface that, although resulting in small angular changes (˜0.1°), effectively hinders the horizontal flow of lava sheets. This backward-tilting process was likely restricted to the last ˜1 Ma or less, and may be a unique event involving extrusion of lavas from within the southwestward-marching lower-crustal flow front.

  5. Constraints on Crustal Structures, Residual Topography, and Isostasy in the Western US from Virtual Deep Seismic Sounding (VDSS)

    NASA Astrophysics Data System (ADS)

    Yu, C.; van der Hilst, R. D.; Chen, W. P.

    2015-12-01

    How surface topography is supported at depth is a long-standing question in geodynamics. Overall, the western United States (US) stands high compared to the North American craton, but it has remained a challenge to distinguish crustal and mantle support of this topography due to the complex tectonic history of the western US and inadequate knowledge of crustal structure. We provide new seismological constraints on crustal structure using virtual deep seismic sounding (VDSS). VDSS uses SV-to-P wave conversion at the free surface near each seismograph as a virtual source, which, in turn, generates a strong, post-critical reflection off the Moho. This signal remains robust even if the Moho is complex or transitional in nature. Compared to traditional receiver functions, VDSS is less prone to contamination by scattering from other crustal structures, such as thick sediments or intra-crustal discontinuities. More important, VDSS can provide simultaneous constraints on both the total thickness and the overall P-wave speed of the crust - two key parameters for estimating the crustal contribution to isostasy. Based on data from USArray (EarthScope), we estimate the residual topography (that is, the difference between observed elevation and that predicted from the Airy model given the inferred crustal structure) in the western US (Figure 1). Positive values, indicative of mantle-supported topography, are wide spread in the Great Basin, the southern Rocky Mountains, the Snake River Plain-Yellowstone system, and the High Lava Plains. The periphery of the Colorado Plateau, the Central Sierra Nevada batholith, and the Idaho batholith also show positive residual topography. In contrast, our analysis suggests that thick crust in the interior of the Colorado Plateau and the Wyoming craton provides more than enough support for the topography, consistent with a thick, cold lithospheric root below.

  6. The high tide of the warm Pliocene: Implications of ~20 m Peak Eustatic Sea-Levels for Antarctic Deglaciation

    NASA Astrophysics Data System (ADS)

    Miller, K. G.; Browning, J. V.; Kulpecz, A. A.; Kominz, M. A.; Naish, T.; Rosenthal, Y.; Peltier, W. R.; Sosdian, S. M.; Wright, J. D.

    2010-12-01

    The eustatic peak of the Pliocene (ca. 3 Ma) allows evaluation of sea-level response to conditions warmer than present and with atmospheric carbon dioxide levels similar to the early 21st century. We provide new eustatic estimates for the Pliocene from backstripping shallow-marine, siliciclastic sections in Virginia, U.S.A., and New Zealand, accounting for the effects of compaction, Airy loading, and thermal subsidence. We compare our backstripped eustatic estimates with previously published estimates from a carbonate atoll (Enewetak), deep sea benthic foraminiferal oxygen isotopes, Mg-Ca, and uplifted marine terraces in the Carolinas and Alaska and conclude that the peak was 19±5 m, significantly lower than previously published estimates of 30-40 m derived from uplifted terraces. The 19-m peak implies not only the loss of the total equivalent of Greenland and West Antarctic ice sheets, but suggests volume loss of the East Antarctic Ice Sheet (EAIS) of ~4 m of sea-level equivalent. Our estimates provide helps resolve the long-standing controversy of the stability of the EAIS during the warmer-than-present Pliocene climatic optimum. The sea-level fall at MIC 100 (ca. 2.7 Ma) associated with the growth of large northern hemisphere ice sheets was remarkably large (~100 m) and may have cause a glacial isotostatic adjustment the resulted in uplift of the otherwise tectonically stable New Jersey coastal plain. Despite uncertainties in pre-ice core CO2 and global temperature measurements, the Pliocene provides a critical sea level-atmospheric CO2 calibration point for climates significantly warmer than the last major interglacial, MIC 5e.

  7. Surface magnetic field mapping on high albedo marking areas of the moon

    NASA Astrophysics Data System (ADS)

    Shibuya, H.; Aikawa, K.; Tsunakawa, H.; Takahashi, F.; Shimizu, H.; Matsushima, M.

    2009-12-01

    The correlation between high albedo markings (HAM) on the surface of the moon and strong magnetic anomalies has been claimed since the early time of the lunar magnetic field study (Hood and Schubert, 1980). Hood et al. (1989) mapped the smoothed magnetic field over the Reiner Gamma region using Lunar Prospector magnetometer (LP-MAG) data, and showed that the position of them matches well. We have developed a method to recover the 3-d magnetic field from satellite field observations (EPR method which stands for Equivalent Pole Reduction; Toyoshima et al. 2008). Applying EPR to the several areas of strong magnetic anomalies, we calculated the magnetic anomaly maps of near surface regions, to see how the anomaly and the HAM correlate each other. The data used is of the Lunar Prospector magnetometer (LP-MAG). They are selected from low altitude observations performed in 1998 to 1999. The areas studied are Reiner Gamma, Airy, Descartes, Abel, and Crisium Antipode regions. The EPR determines a set of magnetic monopoles at the moon surface which produce the magnetic field of the observation. In each studied area, we put poles in 0.1° intervals of both latitude and longitude, then the magnetic field at 5km in altitude is calculated. The field distribution is superimposed with the albedo map made from Clementine data. The total force (Bf) maps indicate that the HMA occurs at the strong anomaly regions, but their shape does not quite overlie. However, taking horizontal component (Bh), not only position but the shape and size of the anomalies coincide with HMA regions. It is particularly true for the Reiner Gamma, and Descartes regions. The shape of HMA fits in a Bh contour. The HMA is argued to be formed by the reduction of solar wind particles which are shielded by the magnetic field. Since the deflection of the charged particle becomes large at large horizontal component, the Bh distribution showed here support the argument.

  8. Three-dimensional infinite order sudden quantum theory for indirect photodissociation processes. Application to the photofragment yield spectrum of NOCl in the region of the T1(13A″) ←S0(11A') transition. Fragment rotational distributions and thermal averages

    NASA Astrophysics Data System (ADS)

    Grinberg, Horacio; Freed, Karl F.; Williams, Carl J.

    1997-08-01

    The analytical infinite order sudden (IOS) quantum theory of triatomic photodissociation, developed in paper I, is applied to study the indirect photodissociation of NOCl through a real or virtual intermediate state. The theory uses the IOS approximation for the dynamics in the final dissociative channels and an Airy function approximation for the continuum functions. The transition is taken as polarized in the plane of the molecule; symmetric top wave functions are used for both the initial and intermediate bound states; and simple semiempirical model potentials are employed for each state. The theory provides analytical expressions for the photofragment yield spectrum for producing particular final fragment ro-vibrational states as a function of the photon excitation energy. Computations are made of the photofragment excitation spectrum of NOCl in the region of the T1(13A″)←S0(11A') transition for producing the NO fragment in the vibrational states nNO=0, 1, and 2. The computed spectra for the unexcited nNO==0 and excited nNO=2 states are in reasonable agreement with experiment. However, some discrepancies are observed for the singly excited nNO=1 vibrational state, indicating deficiencies in the semiempirical potential energy surface. Computations for two different orientations of the in-plane transition dipole moment produce very similar excitation spectra. Calculations of fragment rotational distributions are performed for high values of the total angular momentum J, a feature that would be very difficult to perform with close-coupled methods. Computations are also made of the thermally averaged rotational energy distributions to simulate the conditions in actual supersonic jet experiments.

  9. Van Gogh's Starry Nights, Lincoln's Moon, Shakespeare's Stars, and More: Tales of Astronomy in Art, History, and Literature

    NASA Astrophysics Data System (ADS)

    Olson, Donald W.

    2009-01-01

    How do astronomical methods make it possible to calculate dates and times for Vincent van Gogh's night-sky paintings? Why is there a blood-red sky in Edvard Munch's The Scream? How can the 18.6-year cycle of the lunar nodes and the Moon's declination on the night of August 29-30, 1857, explain a long-standing mystery about Abraham Lincoln's honesty in the murder case known as the almanac trial? Why is a bright star described in Act 1, Scene 1, of Hamlet? There is a long tradition of astronomical methods employed to analyze works of art, to understand historical events, and to elucidate passages in literature. Both Edmond Halley and George Biddell Airy calculated lunar phases and tide tables in attempts to determine the landing beach where Julius Caesar invaded Britain in 55 B.C. Henry Norris Russell computed configurations of Jupiter and Saturn to determine a date for a 14th-century celestial event mentioned in Chaucer's Troilus and Criseyde. In this tradition, our Texas State group has published a series of articles in Sky & Telescope over the last two decades, applying astronomy to art, history, and literature. Don Osterbrock worked with us 3 years ago when my students and I calculated dates for moonrise photographs taken by Ansel Adams in Yosemite National Park. The peaks of the Sierra Nevada crest in Yosemite are more than 125 miles from Lick Observatory, but the mountains can become visible from Lick on clear winter days and were photographed from there on early infrared-sensitive plates during the 1920s and 1930s. As we tested our topographic software by identifying the peaks that appear in the Lick plates, it was a pleasure to come to know Don, a former director of Lick Observatory and the person in whose honor this talk is dedicated.

  10. The Isostatic State of Ethiopia and Adjacent Areas

    NASA Astrophysics Data System (ADS)

    Woldetinsae, G.; Götze, H.-J.

    2003-04-01

    Over 35000 onshore and offshore gravity stations have been compiled in order to test isostatic models and perform geologic correlations over a large section of the Afro-Arabian shield. Ethiopia is an important part of this system because it contains the major section of the ca. 5000km Afro-Arabian rift and it includes the transition between the Arabo-Nubian-Shield (ANS) and Mozambique Belt (MB). Isostatic residual anomalies have been calculated using both Airy and Vening-Meinsez models. These anomalies outline the major Precambrian belts, the Cenozoic rifts and associated major structures. Positive residual anomalies associated with the Main Ethiopian Rift (MER) and Kenyan rift systems could be the expression of an axial intrusive body and swarms of local faults and fractures. The residual anomalies indicate relative stability in the MER and increased tectonic activity over the areas of the Red Sea, Gulf of Aden and Afar. Near-zero isostatic residuals flank the MER and Kenya rifts and are found within the Danakil Alps and some plateau regions. A series of NW-SE and E-W trending features are evident in the different isostatic residual maps. These parallel features include, from north to south, the Najid fault system, Red Sea axial zone, Melka Werer cross structure, the Anza rift and the Aswa shear zone. Additional NW-SE structures are apparent in the southern rift system, although these features are somewhat diffuse. Curvature enhanced maps are also useful for mapping fracture zones, major gravity lineaments and, in some cases, orientation of faults. Important areas from a metallogenesis point of view have been identified for further examination. The results of the qualitative interpretation form the basis of continuing three-dimensional gravity modelling and qualitative analysis that also integrates data from eastern Sudan.

  11. Using Google Earth to Explore Strain Rate Models of Southern California

    NASA Astrophysics Data System (ADS)

    Richard, G. A.; Bell, E. A.; Holt, W. E.

    2007-12-01

    A series of strain rate models for the Transverse Ranges of southern California were developed based on Quaternary fault slip data and geodetic data from high precision GPS stations in southern California. Pacific-North America velocity boundary conditions are applied for all models. Topography changes are calculated using the model dilatation rates, which predict crustal thickness changes under the assumption of Airy isostasy and a specified rate of crustal volume loss through erosion. The models were designed to produce graphical and numerical output representing the configuration of the region from 3 million years ago to 3 million years into the future at intervals of 50 thousand years. Using a North American reference frame, graphical output for the topography and faults and numerical output for locations of faults and points on the crust marked by the locations on cities were used to create data in KML format that can be used in Google Earth to represent time intervals of 50 thousand years. As markers familiar to students, the cities provide a geographic context that can be used to quantify crustal movement, using the Google Earth ruler tool. By comparing distances that markers for selected cities have moved in various parts of the region, students discover that the greatest amount of crustal deformation has occurred in the vicinity of the boundary between the North American and Pacific plates. Students can also identify areas of compression or extension by finding pairs of city markers that have converged or diverged, respectively, over time. The Google Earth layers also reveal that faults that are not parallel to the plate boundary have tended to rotate clockwise due to the right lateral motion along the plate boundary zone. KML TimeSpan markup was added to two versions of the model, enabling the layers to be displayed in an automatic sequenced loop for a movie effect. The data is also available as QuickTime (.mov) and Graphics Interchange Format (.gif

  12. Is there uniformitarian or catastrophic tectonics on Venus?

    NASA Technical Reports Server (NTRS)

    Turcotte, Donald L.

    1993-01-01

    The distribution and modification of craters on Venus favors a near global, volcanic resurfacing event about 500 Myrs ago. Such an event indicates that the tectonic evolution of Venus was catastrophic rather than uniformitarian. The creation of a global, single-plate lithosphere on Venus about 500 Myrs ago can explain a variety of tectonic features on Venus that are not consistent with the thin lithosphere required by a uniformitarian hypothesis. A lithosphere on Venus that has thickened for 500 Myrs has a present thickness of about 300 km whereas steady-state heat loss from Venus requires a mean lithospheric thickness near 40 km. A thick lithosphere on Venus can support the high plateaus (elevations of 3-4 km) and mountain belts (up to 9 km) using the same isostatic compensation concepts applicable to the earth. If a thick lithosphere is thinned by a mantle plume, elevation is caused by thermal isostasy. The elevation due to the thinning of a 300 km thick lithosphere is about 3 km. Thus the domal elevation of Beta Regio can be explained by the same mechanism responsible for the elevation of the Hawaiian Swell. While the broad highland plateaus on Venus may be associated with thermal isostasy, the mountain belts in Ishtar Terra clearly cannot be. The high topography of Freyja Montes is almost certainly associated with underthrusting and the likely compensation mechanism is Airy isostasy associated with a thickened crust. With a density contrast delta, of 500 kg m(exp -3) an elevation of 9 km requires a crustal thickening of about 70 km. With a thick lithosphere there is no difficulty in supporting such a thick crust.

  13. Development of Finite Elements for Two-Dimensional Structural Analysis Using the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.

    1996-01-01

    The Integrated Force Method has been developed in recent years for the analysis of structural mechanics problems. This method treats all independent internal forces as unknown variables that can be calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper a finite element library for analyzing two-dimensional problems by the Integrated Force Method is presented. Triangular- and quadrilateral-shaped elements capable of modeling arbitrary domain configurations are presented. The element equilibrium and flexibility matrices are derived by discretizing the expressions for potential and complementary energies, respectively. The displacement and stress fields within the finite elements are independently approximated. The displacement field is interpolated as it is in the standard displacement method, and the stress field is approximated by using complete polynomials of the correct order. A procedure that uses the definitions of stress components in terms of an Airy stress function is developed to derive the stress interpolation polynomials. Such derived stress fields identically satisfy the equations of equilibrium. Moreover, the resulting element matrices are insensitive to the orientation of local coordinate systems. A method is devised to calculate the number of rigid body modes, and the present elements are shown to be free of spurious zero-energy modes. A number of example problems are solved by using the present library, and the results are compared with corresponding analytical solutions and with results from the standard displacement finite element method. The Integrated Force Method not only gives results that agree well with analytical and displacement method results but also outperforms the displacement method in stress calculations.

  14. Measurement of sediment and crustal thickness corrected RDA for 2D profiles at rifted continental margins: Applications to the Iberian, Gulf of Aden and S Angolan margins

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick

    2014-05-01

    Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal

  15. Modified Visible and Infrared Optical Design for the ITER Upper Ports

    SciTech Connect

    Lasnier, C; Seppala, L; Morris, K

    2008-04-24

    This document reports the results of a follow-on optical design study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. The major objectives of this work are to move the viewing aperture closer to the plasma so that the optical path does not cut through any adjacent blanket shield module other than the module designated for the port; move optics forward into the port tube to increase the aperture size and therefore improve the spatial resolution; assess the trade-off between spatial resolution and spatial coverage by reducing the field of view; and create a mechanical model with a neutron labyrinth. Here we show an optical design incorporating all these aspects. The new design fits into a 360 mm ID tube, as did the previous design. The entrance aperture is increased from 10 mm to 21 mm, with a corresponding increase in spatial resolution. The Airy disk diameter for 3.8 {micro}m wavelength IR light is 5.1 mm at the most distant target point in the field of view. The field of view is reduced from 60 toroidal degrees (full toroidal coverage with 6 cameras) to 50 toroidal degrees. The 10 degrees eliminated are those nearest the camera, which have the poorest view of the divertor plate and in fact saw little of the plate. The Cassegrain telescope that was outside the vacuum windows in the previous design is now in vacuum, along with lenses for visible light. The Cassegrain for visible light is eliminated. An additional set of optical relay lenses is added for the visible and for the IR.

  16. [Physicochemical studies of Pharmachem's tylosin].

    PubMed

    Donev, B; Palankova, M

    1978-01-01

    Studied is the effect of high temperature, light, moisture, the type of the solvent and the reaction in the medium on the chemical stability and biological activity of the tylosine base, tylosine tartarate and tylosine phosphate, produced by the "PHARMACHIM" State Economic Corporation. The evaluation of the effect is carried out by using the spectrophotometric (in the UV-region) and microbiological methods (diffusion in agar with Sarcina lutea A. T. C. C. 7341 as a test microorganism). It is found that tylosine is stable thermally both as substance and as solution, yet it loses a large part of its activity when the solutions are exposed to ultraviolet or direct sun light. This calls the solutions of the antibiotics in the course of their preparation, storage and application to be protected from the direct effect of light and that they should be packed in light-proof material. Depending on the air moisture (72--98 per cent), the tylosine base absorbs water from 4 to 11 per cent, the tartarate--from 9 to 37.5 per cent, the phosphate--from 8 to 28.5 per cent, the tylosine tartarate (water-soluble form)--from 7 to 32 per cent, and the tylosine phosphate (granules)--from 12 to 39 per cent of their weights. This requires their storage to be limited to dry, airy premises or they should be hermetically packed. Water, ethanol, methanol, phosphate buffers with pH 6--10.0, dimethylformamide and dimethylsulphoxide do not affect the activity of tylosine, but the last two solvents inhibit the diffusion of the antibiotic in agar and are unsuitable for biological tests. The tylosine base, manufactured by the "Elanco" Company, manifests similar properties in relation to thermal stability, light sensitivity, hygroscopicity and diffusions in agar. PMID:753031

  17. Crustal structure of Hubei Province of China from teleseismic receiver functions: Evidence for lower crust delamination

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Zhu, Lupei; Xu, Yixian

    2014-12-01

    Western Hubei Province is at the southern end of the 3000-km-long north-south-oriented Xing'anling-Taihangshan-Wulingshan topographic step in China, which separates high-rising plateaus and mountain ranges in the west from low-elevation plains in the east. We calculated teleseismic P receiver functions of 32 permanent broadband seismic stations in Hubei Province and estimated crustal thicknesses under them using the H-κ method. We also obtained detailed crustal structural images along three profiles using the CCP stacking method. The results show an east-west crustal thickness increase in the study area from 30-35 km to 45-50 km in less than 20 km of horizontal distance, most likely in a step-wise fashion. The thin crust beneath the Nanxiang and Jianghan basins in eastern Hubei extends into the interior of the Wuling Uplift and the Huangling Massif in western Hubei. The lack of mirror symmetry between the Moho and surface topography suggests that part of the mountain ranges in western Hubei is either compensated by non-Airy-type isostasy models or is not in isostatic equilibrium but supported by the strength of the lithosphere. The brittle or localized ductile deformation in the lower crust/uppermost mantle as indicated by the abrupt Moho steps seems to be decoupled with brittle deformation in the upper crust. The CCP images also reveal an apparent double Moho beneath the Wudang Mts. which is interpreted to be due to a partially eclogitized lower crust after the original cratonic mantle lithosphere was replaced by warm and hydrated mantle materials in eastern China in the Late Mesozoic. The Moho steps were formed when a segment of eclogitized lower crust became gravitationally unstable and foundered into the mantle.

  18. Planet Formation Instrument for the Thirty Meter Telescope

    SciTech Connect

    Macintosh, B; Troy, M; Graham, J; Doyon, R

    2006-02-22

    In the closing years of the 20th Century humankind began its exploration of the planetary systems in the solar neighborhood. Precision radial velocity measurements have now yielded the discovery of over 160 planets. Direct imaging of these planets, as opposed to detection of the effects of orbital motion on their parent star, is now feasible, and the first young planet in a wide orbit may have been detected using adaptive optics systems. Gemini and the VLT are building the first generation of high contrast adaptive optics systems, which deliver planet-imaging performance within few Airy rings of the host star. These systems will make the first surveys of the outer regions of solar systems by detecting the self-luminous radiation of young planets. These instruments will establish whether Jovian planets form predominantly through 'top-down' (global gravitational instability) or 'bottom-up' (core accretion) processes. The 8-m 'extreme' AO systems cannot see close enough to the host stars to image Doppler planets, and they cannot reach the relatively distant, young clusters and associations where planets are forming. The Planet Formation Instrument will use the nearly four-fold improved angular resolution of TMT to peer into the inner solar systems of Doppler-planet bearing stars to yield a unified sample of planets with known Keplerian orbital elements and atmospheric properties. In star formation regions, where T Tauri stars (young solar type stars) are found in abundance, PFI can see into the snow line, where the icy cores of planets like Jupiter must have formed. Thus, TMT will be the first facility to witness the formation of new planets.

  19. ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS

    SciTech Connect

    Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

    2008-04-15

    The recent Nevada Earthquake (M=6) produced an extraordinary set of crustal guided waves. In this study, we examine the three-component data at all the USArray stations in terms of how well existing models perform in predicting the various phases, Rayleigh waves, Love waves, and Pnl waves. To establish the source parameters, we applied the Cut and Paste Code up to distance of 5° for an average local crustal model which produced a normal mechanism (strike=35°,dip=41°,rake=-85°) at a depth of 9 km and Mw=5.9. Assuming this mechanism, we generated synthetics at all distances for a number of 1D and 3D models. The Pnl observations fit the synthetics for the simple models well both in timing (VPn=7.9km/s) and waveform fits out to a distance of about 5°. Beyond this distance a great deal of complexity can be seen to the northwest apparently caused by shallow subducted slab material. These paths require considerable crustal thinning and higher P-velocities. Small delays and advances outline the various tectonic province to the south, Colorado Plateau, etc. with velocities compatible with that reported on by Song et al.(1996). Five-second Rayleigh waves (Airy Phase) can be observed throughout the whole array and show a great deal of variation ( up to 30s). In general, the Love waves are better behaved than the Rayleigh waves. We are presently adding higher frequency to the source description by including source complexity. Preliminary inversions suggest rupture to northeast with a shallow asperity. We are, also, inverting the aftershocks to extend the frequencies to 2 Hz and beyond following the calibration method outlined in Tan and Helmberger (2007). This will allow accurate directivity measurements for events with magnitude larger than 3.5. Thus, we will address the energy decay with distance as s function of frequency band for the various source types.

  20. Turbulence: large-scale sweeping and the emergence of small-scale Kolmogorov spectra.

    PubMed

    Dekker, H

    2011-08-01

    The dynamics of fully developed hydrodynamic turbulence still is a basically unsolved theoretical problem, due to the strong-coupling long-range nonlinearities in the Navier-Stokes equations. The present analysis focuses on the small-scale fluctuations in a turbulent boundary layer with one external length scale y(o). After taking a (2+1)D spatiotemporal spectral transform of the fluctuating vorticity fields, care is taken of large-scale sweeping which arises as a collective zero mode from the nonlinear flow terms. The "unswept" small-scale nonlinearities are then shown to be asymptotically locally isotropic (i.e., for wave numbers k→∞) by internal consistency, which allows to close the nonlinear hierarchy. The Navier-Stokes equations (without external forcing) are integrated to give the spectral response of the fluctuating small-scale velocity fields on the presence of a locally isotropic blob of turbulence while it is being swept around over an arbitrary steady state mean velocity profile, using viscous boundary conditions at y=0. Averaging the response spectrum over all possible orientational configurations and sweep velocities results in a novel self-consistency integral for the 4D energy spectrum function. The distribution of turbulence sweep velocities is modeled by means of Lévy-type densities, having an algebraic tail with power p>1. The generic case (which includes Von Kármán's logarithmic mean velocity profile) is found to correspond to 1Airy-type frequency spectrum E(ı)(k,Δ/k(λ))∼k(μ) with so-called "normal" Kolmogorov scaling, that is, μ=-7/3 and λ=2/3. Anomalous scaling is possible for one special mean profile.

  1. A Curved, Elastostatic Boundary Element for Plane Anisotropic Structures

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S.; Klang, Eric C.

    2001-01-01

    The plane-stress equations of linear elasticity are used in conjunction with those of the boundary element method to develop a novel curved, quadratic boundary element applicable to structures composed of anisotropic materials in a state of plane stress or plane strain. The curved boundary element is developed to solve two-dimensional, elastostatic problems of arbitrary shape, connectivity, and material type. As a result of the anisotropy, complex variables are employed in the fundamental solution derivations for a concentrated unit-magnitude force in an infinite elastic anisotropic medium. Once known, the fundamental solutions are evaluated numerically by using the known displacement and traction boundary values in an integral formulation with Gaussian quadrature. All the integral equations of the boundary element method are evaluated using one of two methods: either regular Gaussian quadrature or a combination of regular and logarithmic Gaussian quadrature. The regular Gaussian quadrature is used to evaluate most of the integrals along the boundary, and the combined scheme is employed for integrals that are singular. Individual element contributions are assembled into the global matrices of the standard boundary element method, manipulated to form a system of linear equations, and the resulting system is solved. The interior displacements and stresses are found through a separate set of auxiliary equations that are derived using an Airy-type stress function in terms of complex variables. The capabilities and accuracy of this method are demonstrated for a laminated-composite plate with a central, elliptical cutout that is subjected to uniform tension along one of the straight edges of the plate. Comparison of the boundary element results for this problem with corresponding results from an analytical model show a difference of less than 1%.

  2. Asymptotics of bivariate generating functions with algebraic singularities

    NASA Astrophysics Data System (ADS)

    Greenwood, Torin

    Flajolet and Odlyzko (1990) derived asymptotic formulae the coefficients of a class of uni- variate generating functions with algebraic singularities. Gao and Richmond (1992) and Hwang (1996, 1998) extended these results to classes of multivariate generating functions, in both cases by reducing to the univariate case. Pemantle and Wilson (2013) outlined new multivariate ana- lytic techniques and used them to analyze the coefficients of rational generating functions. After overviewing these methods, we use them to find asymptotic formulae for the coefficients of a broad class of bivariate generating functions with algebraic singularities. Beginning with the Cauchy integral formula, we explicity deform the contour of integration so that it hugs a set of critical points. The asymptotic contribution to the integral comes from analyzing the integrand near these points, leading to explicit asymptotic formulae. Next, we use this formula to analyze an example from current research. In the following chapter, we apply multivariate analytic techniques to quan- tum walks. Bressler and Pemantle (2007) found a (d + 1)-dimensional rational generating function whose coefficients described the amplitude of a particle at a position in the integer lattice after n steps. Here, the minimal critical points form a curve on the (d + 1)-dimensional unit torus. We find asymptotic formulae for the amplitude of a particle in a given position, normalized by the number of steps n, as n approaches infinity. Each critical point contributes to the asymptotics for a specific normalized position. Using Groebner bases in Maple again, we compute the explicit locations of peak amplitudes. In a scaling window of size the square root of n near the peaks, each amplitude is asymptotic to an Airy function.

  3. Non-Gaussian Photon Probability Distribution

    NASA Astrophysics Data System (ADS)

    Solomon, Benjamin T.

    2010-01-01

    This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mΓ distribution (whose parameters are α = r, βr/√u ) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact Pi, the probabilistic function and the ability to interact Ai, the electromagnetic function. Splitting the probability function Pi from the electromagnetic function Ai enables the investigation of the photon behavior from a purely probabilistic Pi perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function Pi and the ability to interact Ai, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon Pi of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al. (2006) microwave cloaking, and Oulton et al. (2008) sub wavelength confinement; thereby providing a strong case that

  4. Gravity field and isostatic state of Ethiopia and adjacent areas

    NASA Astrophysics Data System (ADS)

    Woldetinsae, G.; Götze, H.-J.

    2005-01-01

    Over 35,000 onshore and offshore gravity stations have been compiled in order to test isostatic models against geologic structures over a part of the Afro-Arabian shield. The area of Ethiopia covers an important part of this system because it contains the major section of the ≈5000 km Afro-Arabian rift and includes the transition between the Arabo-Nubian-Shield (ANS) and the Mozambique Belt (MB). Isostatic residual anomalies have been calculated using both Airy and Vening-Meinesz (flexural rigidity D = 10 22 Nm) models. The isostatic residual anomalies outline the major Precambrian belts, the Cenozoic rifts and associated major structures. Positive residual anomalies associated with the main Ethiopian Rift (MER) and Kenyan rift systems could be the expressions of an axial intrusive body and swarms of local faults and fractures. The residual anomalies indicate relative stability in the MER and increased tectonic activity in the areas of the Red Sea, Gulf of Aden and Afar. Near-zero isostatic residuals flank the MER and Kenya rifts and are found within the Danakil Alps and some plateau regions. The small mean isostatic residual anomaly (about 8 mGal) and the isostatic analysis show a slight positive bias indicating under compensation. The undercompensation may imply that there are upper crustal features that are not compensated regionally (probably supported by the rigidity of the lithosphere) and isostatic disequilibrium in the region. Therefore, the high topography of Ethiopia and East African plateau is partly compensated by thicker crust (broad negative isostatic regional anomaly) and partly by dynamic forces. The results of the qualitative interpretation form the basis of continuing three-dimensional gravity modelling and quantitative analysis that also integrates data from eastern Sudan.

  5. Exploring shoreface dynamics and a mechanistic explanation for a morphodynamic depth of closure

    NASA Astrophysics Data System (ADS)

    Ortiz, Alejandra C.; Ashton, Andrew D.

    2016-02-01

    Using energetics-based formulations for wave-driven sediment transport, we develop a robust methodology for estimating the morphodynamic evolution of a cross-shore sandy coastal profile. In our approach, wave-driven cross-shore sediment flux depends on three components: two onshore-directed terms (wave asymmetry and wave streaming) and an offshore-directed slope term. In contrast with previous work, which applies shallow water wave assumptions across the transitional zone of the lower shoreface, we use linear Airy wave theory. The cross-shore sediment transport formulation defines a dynamic equilibrium profile and, by perturbing about this steady state profile, we present an advection-diffusion formula for profile evolution. Morphodynamic Péclet analysis suggests that the shoreface is diffusionally dominated. Using this depth-dependent characteristic diffusivity timescale, we distinguish a morphodynamic depth of closure for a given time envelope. Even though wave-driven sediment transport can (and will) occur at depths deeper than this morphodynamic closure depth, the rate of morphologic bed changes in response to shoreline change becomes asymptotically slow. Linear wave theory suggests a shallower shoreface depth of closure and much sharper break in processes than shallow water wave assumptions. Analyzing hindcasted wave data using a weighted frequency-magnitude approach, we determine representative wave conditions for selected sites along the U.S. coastline. Computed equilibrium profiles and depths of closure demonstrate reasonable similarities, except where inheritance is strong. The methodology espoused in this paper can be used to better understand the morphodynamics at the lower shoreface transition with relative ease across a variety of sites and with varied sediment transport equations.

  6. Thickness of Mercury's crust from MESSENGER gravity and altimetry data

    NASA Astrophysics Data System (ADS)

    Padovan, S.; Wieczorek, M. A.; Margot, J. L.; Tosi, N.; Solomon, S. C.

    2014-12-01

    The major igneous events that form and shape the crust of a rocky body, such as magma ocean solidification and volcanism, affect the interior thermo-chemical evolution through control on the bulk volatile content, partitioning of heat-producing elements, and heat loss. Therefore, characterizing the crust of a body provides information on that object's origin, differentiation, and subsequent geologic evolution. For Mercury, the crust may hold clues in particular to the still poorly understood processes of formation of this planet. Analysis of geoid-to-topography ratios (GTRs) has been previously applied to infer the thickness of the crust of the Moon, Mars, and Venus. We perform a similar analysis for Mercury with the gravity and altimetry data acquired by the MESSENGER spacecraft. We consider only the northern hemisphere, where the gravity field and topography are well constrained. We assume that Airy isostasy is the principal mechanism of support of variations in topography, and we therefore exclude from the analysis regions that might not be compatible with this assumption, such as large expanses of smooth plains and large impact basins. For a conservative range of densities of the crust, we infer a crustal thickness of 35±18 km (one standard deviation). This new mean value is substantially less than earlier estimates that were based on viscous relaxation of topography, on the relation between the low-degree gravity field and equatorial ellipticity, and on the depth of the brittle-ductile transition as constrained by models of thrust faulting and thermal evolution. This relatively thin crust allows for the possibility of excavation of mantle material during the formation of large impact basins (such as Caloris). Such material might be observed with instruments on MESSENGER and the BepiColombo spacecraft now in development.

  7. Diffraction and Dissipation of Atmospheric Waves in the Vicinity of Caustics

    NASA Astrophysics Data System (ADS)

    Godin, O. A.

    2015-12-01

    A large and increasing number of ground-based and satellite-borne instruments has been demonstrated to reliably reveal ionospheric manifestations of natural hazards such as large earthquakes, strong tsunamis, and powerful tornadoes. To transition from detection of ionospheric manifestations of natural hazards to characterization of the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it is necessary to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard and, in particular, accurately model propagation of atmospheric waves from the ground or ocean surface to the ionosphere. The ray theory has been used extensively to model propagation of atmospheric waves and proved to be very efficient in elucidating the effects of atmospheric variability on ionospheric signatures of natural hazards. However, the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified in the vicinity of caustics. This paper presents an asymptotic theory that describes diffraction, focusing and increased dissipation of acoustic-gravity waves in the vicinity of caustics and turning points. Air temperature, viscosity, thermal conductivity, and wind velocity are assumed to vary gradually with height and horizontal coordinates, and slowness of these variations determines the large parameter of the problem. Uniform asymptotics of the wave field are expressed in terms of Airy functions and their derivatives. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In addition to the wave field in the vicinity of the caustic, these asymptotics describe wave reflection from the caustic and the evanescent wave field beyond the caustic. The evanescent wave field is found to play an important role in ionospheric manifestations of tsunamis.

  8. Imaging of single-chromophore molecules in aqueous solution near a fused-silica interface

    NASA Astrophysics Data System (ADS)

    Davis, Lloyd M.; Parker, Wesley C.; Ball, David A.; Williams, John G.; Bashford, Greg R.; Sheaff, Pamela; Eckles, Robert D.; Lamb, Don T.; Middendorf, Lyle R.

    2001-04-01

    Single molecules of unconjugated Bodipy-Texas Red (BTR), BTR-dimer, and BTR conjugated to cysteine, in aqueous solutions are imaged using total-internal-reflection excitation and through-sample collection of fluorescence onto an intensified CCD camera, or a back-illuminated frame transfer CCD. The sample excitation is provided by the beam from a continuous-wave krypton ion laser, or a synchronously-pumped dye laser, operating at 568 nm. In order to essentially freeze molecular motion due to diffusion and thereby enhance image contrast, the laser beam is first passed through a mechanical shutter, which yields a 3-millisecond laser exposure for each camera frame. The laser beam strikes the fused-silica/sample interface at an angle exceeding the critical angle by about 1 degree. The resultant evanescent wave penetrates into the sample a depth of approximately 0.3 microns. Fluorescence from the thin plane of illumination is then imaged onto the camera by a water immersion apochromat (NA 1.2, WD 0.2mm). A Raman notch filter blocks Rayleigh and specular laser scatter and a band-pass-filter blocks most Raman light scatter that originates from the solvent. Single molecules that have diffused into the evanescent zone at the time of laser exposure yield near-diffraction-limited Airy disk images with diameters of ~5 pixels. While most molecules diffuse out of the evanescent zone before the next laser exposure, stationary or slowly moving molecules persisting over several frames, and blinking of such molecules are occasionally observed.

  9. On the application of quantum transport theory to electron sources.

    PubMed

    Jensen, Kevin L

    2003-01-01

    Electron sources (e.g., field emitter arrays, wide band-gap (WBG) semiconductor materials and coatings, carbon nanotubes, etc.) seek to exploit ballistic transport within the vacuum after emission from microfabricated structures. Regardless of kind, all sources strive to minimize the barrier to electron emission by engineering material properties (work function/electron affinity) or physical geometry (field enhancement) of the cathode. The unique capabilities of cold cathodes, such as instant ON/OFF performance, high brightness, high current density, large transconductance to capacitance ratio, cold emission, small size and/or low voltage operation characteristics, commend their use in several advanced devices when physical size, weight, power consumption, beam current, and pulse repletion frequency are important, e.g., RF power amplifier such as traveling wave tubes (TWTs) for radar and communications, electrodynamic tethers for satellite deboost/reboost, and electric propulsion systems such as Hall thrusters for small satellites. The theoretical program described herein is directed towards models to evaluate emission current from electron sources (in particular, emission from WBG and Spindt-type field emitter) in order to assess their utility, capabilities and performance characteristics. Modeling efforts particularly include: band bending, non-linear and resonant (Poole-Frenkel) potentials, the extension of one-dimensional theory to multi-dimensional structures, and emission site statistics due to variations in geometry and the presence of adsorbates. Two particular methodologies, namely, the modified Airy approach and metal-semiconductor statistical hyperbolic/ellipsoidal model, are described in detail in their present stage of development.

  10. 30 Doradus: The Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.; Brandl, B.; Brandner, W.; Moneti, A.; Hunter, D.

    We have obtained HST/NICMOS H-band images of the central 1'x1' field around the R136 starburst cluster in the 30 Doradus HII region, in an attempt to reveal the presence (or absence) of a low-mass stellar population (M < 1 Mo). We will discuss the fascinating prospect of 30 Dor/R136 being a proto-globular cluster and a template starburst unit. At the time of writing, we are still working to determine which method and photometry package is best suited to our 0.15" NICMOS images, which are characterised by extreme crowding in the cluster center and a peculiar and slightly undersampled NICMOS PSF. The main difficulty with the PSF is identifying the many "dots" that appear outside the Airy ring as PSF features and not as faint stars. Prelimininary analysis suggests that the H-band luminosity function rises at least until H = 20 (2 Mo). We have detected numerous stars with 20.0 < H < 22.5 (the latter corresponding to 0.4 Mo) beyond about 7" from the cluster centre, but we have not yet determined the completeness in that magnitude range, and we are not yet in a position to make a statement about the shape of the H-band luminosity function there. We have combined our infrared data with the optical WFPC2 images of Hunter et al. (1995) to produce a VIH 3-colour image of the central 30" x 30" area. The result clearly shows unexpected patches of extinction, with one patch only about 5" from the cluster core.

  11. Tunable coherent radiation at soft X-ray wavelengths: Generation and interferometric applications

    SciTech Connect

    Rosfjord, Kristine Marie

    2004-07-01

    The availability of high power, spectrally and spatially coherent soft x-rays (SXR) would facilitate a wide variety of experiments as this energy region covers the primary resonances of many magnetic and biological materials. Specifically, there are the carbon and oxygen K-edges that are critical for biological imaging in the water window and the L-edges of iron, nickel, and cobalt for which imaging and scattering studies can be performed. A new coherent soft X-ray branchline at the Advanced Light Source has begun operation (beamline 12.0.2). Using the third harmonic from an 8 cm period undulator, this branch delivers coherent soft x-rays with photon energies ranging from 200eV to 1keV. This branchline is composed of two sub-branches one at 14X demagnification and the other 8X demagnification. The former is optimized for use at 500eV and the latter at 800eV. Here the expected power from the third harmonic of this undulator and the beamline design and characterization is presented. The characterization includes measurements on available photon flux as well as a series of double pinhole experiments to determine the coherence factor with respect to transverse distance. The first high quality Airy patterns at SXR wavelengths are created with this new beamline. The operation of this new beamline allows for interferometry to be performed in the SXR region. Here an interferometric experiment designed to directly determine the index of refraction of a material under test is performed. Measurements are first made in the EUV region using an established beamline (beamline12.0.1) to measure silicon, ruthenium and tantalum silicon nitride. This work is then extended to the SXR region using beamline 12.0.2 to test chromium and vanadium.

  12. InSight detection of a Lithospheric Low Seismic Velocity Zone in Mars

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Nimmo, F.; Lay, T.

    2014-12-01

    Most seismological models for the interior of Mars lack an upper mantle low velocity zone. However, there is expected to be a large thermal gradient across the stagnant conductive lid (lithosphere) of Mars. This gradient should tend to decrease elastic wave velocities with increasing depth, with this effect dominating the opposing tendency caused by increasing pressure with depth because Mars has low gravity. An upper mantle lithosphere with a low velocity zone (LVZ) beneath a thin high velocity "seismic lid" is thus predicted. The upcoming NASA InSight mission includes a three-component seismometer, which should provide the first opportunity to directly detect any lithospheric LVZ in Mars. Seismic wavefields expected for Mars mantle velocity structures with or without a strong LVZ are very distinct and may be distinguished by observing a modest number of seismic sources at different epicentral ranges. The LVZ models predict shadow zones for high-frequency seismic body wave phases such as P, S, PP and SS, etc. The most diagnostic waves that can be used to evaluate presence of a lithospheric LVZ given a single seismometer are intermediate period surface waves, which travel along the great circle from a seismic source to the seismometer along both minor- and (if the source is large enough) major-arc directions. An LVZ produces distinctive dispersion, with a Rayleigh wave Airy phase around 100 s period and very different surface wave seismograms compared to a model with no LVZ. Even a single observation of long-period surface waves from a known range can be diagnostic of the lithospheric structure. Establishing the existence of an LVZ has major implications for thermal evolution, volatile content and internal dynamics of the planet.

  13. Seismological implications of a lithospheric low seismic velocity zone in Mars

    NASA Astrophysics Data System (ADS)

    Zheng, Yingcai; Nimmo, Francis; Lay, Thorne

    2015-03-01

    Most seismological models for the interior of Mars lack an upper mantle low velocity zone. However, there is expected to be a large thermal gradient across the stagnant conductive lid (lithosphere) of Mars. This gradient should tend to decrease elastic wave velocities with increasing depth, with this effect dominating the opposing tendency caused by increasing pressure with depth because Mars has low gravity. An upper mantle lithosphere with a low velocity zone (LVZ) beneath a thin high velocity "seismic lid" is thus predicted. The upcoming NASA InSight mission includes a three-component seismometer, which should provide the first opportunity to directly detect any lithospheric LVZ in Mars. Seismic wavefields expected for Mars mantle velocity structures with or without a strong LVZ are very distinct. The LVZ models predict shadow zones for high-frequency seismic body wave phases such as P, S, PP and SS, etc. The most diagnostic waves that can be used to evaluate presence of a lithospheric LVZ given a single seismometer are intermediate-period global surface waves, which travel along the great circle from a seismic source to the seismometer. An LVZ produces distinctive dispersion, with a Rayleigh wave Airy phase around 100 s period and very different surface wave seismograms compared to a model with no LVZ. Even a single observation of long-period surface waves from a known range can be diagnostic of the lithospheric structure. Establishing the existence of an LVZ has major implications for thermal evolution, volatile content and internal dynamics of the planet.

  14. On Certain Functionals of the Maximum of Brownian Motion and Their Applications

    NASA Astrophysics Data System (ADS)

    Perret, Anthony; Comtet, Alain; Majumdar, Satya N.; Schehr, Grégory

    2015-12-01

    We consider a Brownian motion (BM) x(τ ) and its maximal value x_{max } = max _{0 ≤ τ ≤ t} x(τ ) on a fixed time interval [0, t]. We study functionals of the maximum of the BM, of the form {O}_{max }(t)=int _0^t V(x_{max } - x(τ )) {d}τ where V( x) can be any arbitrary function and develop various analytical tools to compute their statistical properties. These tools rely in particular on (i) a "counting paths" method and (ii) a path-integral approach. In particular, we focus on the case where V(x) = δ (x-r), with r a real parameter, which is relevant to study the density of near-extreme values of the BM (the so called density of states), ρ (r,t), which is the local time of the BM spent at given distance r from the maximum. We also provide a thorough analysis of the family of functionals {T}_{α }(t)=int _0^t (x_{max } - x(τ ))^α {{d}}τ corresponding to V(x) = x^α with α real. As α is varied, T_α (t) interpolates between different interesting observables. For instance, for α =1, T_{α = 1}(t) is a random variable of the "area", or "Airy", type while for α =-1/2 it corresponds to the maximum time spent by a ballistic particle through a Brownian random potential. On the other hand, for α = -1, it corresponds to the cost of the optimal algorithm to find the maximum of a discrete random walk, proposed by Odlyzko. We revisit here, using tools of theoretical physics, the statistical properties of this algorithm which had been studied before using probabilistic methods. Finally, we extend our methods to constrained BM, including in particular the Brownian bridge, i.e., the Brownian motion starting and ending at the origin.

  15. Systematic investigation of the principal and first secondary maxima of ultrashort optical pulses focused by a high numerical aperture aplanatic lens

    NASA Astrophysics Data System (ADS)

    Lindlein, Norbert; Loosen, Florian; Fries, Sebastian

    2015-09-01

    The electromagnetic field in the focus of an ideal aplanatic lens with high numerical aperture, which is illuminated by an ultrashort optical pulse and plane wave front, is simulated by taking the vectorial Debye integral and the coherent superposition of a frequency spectrum of monochromatic waves. The behavior of the principal maxima and the first secondary maxima as function of the numerical aperture (NA) and the pulse duration T is investigated systematically for light incident with linear polarization. First, one would not expect remarkable deviations from the stationary case. But also this simple system of an ideal aplanatic lens without any chromatic or monochromatic aberrations (of course only simple from the point of theory, but not at all from the point of practical realization) shows some remarkable results. If the NA (in vacuum) tends to the limiting case of 1.0 the maximum value of |E|2 increases faster than expected from the scalar theory (Airy disc) with a maximum deviation of about 13%. The second effect really comes from very short pulses, i.e. very small values T. Then, the value of |E|2 compared to the expected linear increase with 1/T decreases slightly (only less than 2%), but systematically for all NAs. Even more interesting is the dependence of the height of the first secondary maxima along the x-axis and y-axis on the NA and 1/T. It can be seen that along both axes the first secondary maxima nearly vanish for very short pulses, i.e. large values 1/T.

  16. Transverse intensity transformation by laser amplifiers

    NASA Astrophysics Data System (ADS)

    Litvin, Igor A.; King, Gary; Collett, Oliver J. P.; Strauss, Hencharl J.

    2015-03-01

    Lasers beams with a specific intensity profile such as super-Gaussian, Airy or Dougnut-like are desirable in many applications such as laser materials processing, medicine and communications. We propose a new technique for laser beam shaping by amplifying a beam in an end-pumped bulk amplifier that is pumped with a beam that has a modified intensity profile. Advantages of this method are that it is relatively easy to implement, has the ability to reshape multimode beams and is naturally suited to high power/energy beams. Both three and four level gain materials can be used as amplifier media. However, a big advantage of using three level materials is their ability to attenuate of the seed beam, which enhances the contrast of the shaping. We first developed a numerical method to obtain the required pump intensity for an arbitrary beam transformation. This method was subsequently experimentally verified using a three level system. The output of a 2.07 μm seed laser was amplified in a Ho:YLF bulk amplifier which was being pumped by a 1.89 μm Tm:YLF laser which had roughly a TEM10 Hermit Gaussian intensity profile. The seed beam was amplified from 0.3 W to 0.55 W at the full pump power of 35 W. More importantly, the beam profile in one transverse direction was significantly shaped from Gaussian to roughly flat-top, as the model predicted. The concept has therefore been shown to be viable and can be used to optimise the beam profile for a wide range of applications.

  17. Topographic/isostatic evaluation of new-generation GOCE gravity field models

    NASA Astrophysics Data System (ADS)

    Hirt, C.; Kuhn, M.; Featherstone, W. E.; GöTtl, F.

    2012-05-01

    We use gravity implied by the Earth's rock-equivalent topography (RET) and modeled isostatic compensation masses to evaluate the new global gravity field models (GGMs) from European Space Agency (ESA)'s Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite gravimetry mission. The topography is now reasonably well-known over most of the Earth's landmasses, and also where conventional GGM evaluation is prohibitive due to the lack (or unavailability) of ground-truth gravity data. We construct a spherical harmonic representation of Earth's RET to derive band-limited topography-implied gravity, and test the somewhat simplistic Airy/Heiskanen and Pratt/Hayford hypotheses of isostatic compensation, but which did not improve the agreement between gravity from the uncompensated RET and GOCE. The third-generation GOCE GGMs (based on 12 months of space gravimetry) resolve the Earth's gravity field effectively up to spherical harmonic degree ˜200-220 (˜90-100 km resolution). Such scales could not be resolved from satellites before GOCE. From the three different GOCE processing philosophies currently in use by ESA, the time-wise and direct approaches exhibit the highest sensitivity to short-scale gravity recovery, being better than the space-wise approach. Our topography-implied gravity comparisons bring evidence of improvements from GOCE to gravity field knowledge over the Himalayas, Africa, the Andes, Papua New Guinea and Antarctic regions. In attenuated form, GOCE captures topography-implied gravity signals up to degree ˜250 (˜80 km resolution), suggesting that other signals (originating, e.g., from the crust-mantle boundary and buried loads) are captured as well, which might now improve our knowledge on the Earth's lithosphere structure at previously unresolved spatial scales.

  18. Technology Advancement of the Visible Nulling Coronagraph

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve

    2010-01-01

    The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.

  19. Uniform asymptotic approximations for transient waves due to an initial disturbance

    NASA Astrophysics Data System (ADS)

    Madsen, Per A.; Schäffer, Hemming A.; Fuhrman, David R.; Toledo, Yaron

    2016-01-01

    In this work, we first present a semianalytical method for the evolution of linear fully dispersive transient waves generated by an initial surface displacement and propagating over a constant depth. The procedure starts from Fourier and Hankel transforms and involves a combination of the method of stationary phase, the method of uniform asymptotic approximations and various Airy integral formulations. Second, we develop efficient convolution techniques expressed as single and double summations over the source area. These formulations are flexible, extremely fast, and highly accurate even for the dispersive tail of the transient waves. To verify the accuracy of the embedded dispersion properties, we consider test cases with sharp-edged disturbances in 1-D and 2-D. Furthermore, we consider the case of a relatively blunt Gaussian disturbance in 2-D. In all cases, the agreement between the convolution results and simulations with a high-order Boussinesq model is outstanding. Finally, we make an attempt to extend the convolution methods to geophysical tsunami problems taking into account, e.g., uneven bottom effects. Unfortunately, refraction/diffraction effects cannot easily be incorporated, so instead we focus on the incorporation of linear shoaling and its effect on travel time and temporal evolution of the surface elevation. The procedure is tested on data from the 2011 Japan tsunami. Convolution results are likewise compared to model simulations based on the nonlinear shallow water equations and both are compared with field observations from 10 deep water DART buoys. The near-field results are generally satisfactory, while the far-field results leave much to be desired.

  20. Upper-Mantle Flow Driven Dynamic Topography in Eastern Anatolia

    NASA Astrophysics Data System (ADS)

    Sengul Uluocak, Ebru; Pysklywec, Russell; Eken, Tuna; Hakan Gogus, Oguz

    2016-04-01

    Eastern Anatolia is characterized by 2 km plateau uplift -in the last 10 Myrs-, high surface heat flow distribution, shallow Curie-point depth, anomalous gravity field. Seismological observations indicate relatively high Pn and Sn attenuation and significant low seismic velocity anomalies in the region. Moreover, the surface geology is associated predominantly with volcanic rocks in which melt production through mantle upwelling (following lithospheric delamination) has been suggested. It has been long known that the topographic loading in the region cannot be supported by crustal thickness (~45 km) based on the principle of Airy isostasy. Recent global geodynamic studies carried out for evaluating the post-collisional processes imply that there is an explicit dynamic uplift in Eastern Anatolia and its adjacent regions. In this study we investigate the instantaneous dynamic topography driven by 3-D upper-mantle flow in Eastern Anatolia. For this purpose we conducted numerous thermo-mechanical models using a 2-D Arbitrary Lagrangian Eulerian (ALE) finite element method. The available P-wave tomography data extracted along 10 profiles were used to obtain depth-dependent density anomalies in the region. We present resulting dynamic topography maps and estimated 3D mantle flow velocity vectors along these 2-D cross sections for each profile. The residual topography based on crustal thickness and observed topography was calculated and compared with other independent datasets concerning geological deformation and dynamic topography predictions. The results indicate an upper mantle driven dynamic uplift correlated with the under-compensated characteristic in Eastern Anatolia. We discuss our results combined with 3D mantle flow by considering seismic anisotropy studies in the region. Initial results indicate that high dynamic uplift and the localized low Pn velocities in concurrence with Pn anisotropy structures show nearly spatial coherence in Eastern Anatolia.

  1. Isostatic Model and Isostatic Gravity Anomalies of the Arabian Plate and Surroundings

    NASA Astrophysics Data System (ADS)

    Kaban, Mikhail K.; El Khrepy, Sami; Al-Arifi, Nassir

    2016-04-01

    The isostatic modeling represents one of the most useful "geological" reduction methods of the gravity field. With the isostatic correction, it is possible to remove a significant part of the effect of deep density heterogeneity, which dominates in the Bouguer gravity anomalies. Although there exist several isostatic compensation schemes, it is usually supposed that a choice of the model is not an important factor to first order, since the total weight of compensating masses remains the same. We compare two alternative models for the Arabian plate and surrounding area. The Airy model gives very significant regional isostatic anomalies, which cannot be explained by the upper crust structure or disturbances of the isostatic equilibrium. Also, the predicted "isostatic" Moho is very different from existing seismic observations. The second isostatic model includes the Moho, which is based on seismic determinations. Additional compensation is provided by density variations within the lithosphere (chiefly in the upper mantle). According to this model, the upper mantle under the Arabian Shield is less dense than under the Platform. In the Arabian platform, the maximum density coincides with the Rub' al Khali, one of the richest oil basin in the world. This finding agrees with previous studies, showing that such basins are often underlain by dense mantle, possibly related to an eclogite layer that has caused their subsidence. The mantle density variations might be also a result of variations of the lithosphere thickness. With the combined isostatic model, it is possible to minimize regional anomalies over the Arabian plate. The residual local anomalies correspond well to tectonic structure of the plate. Still very significant anomalies, showing isostatic disturbances of the lithosphere, are associated with the Zagros fold belt, the collision zone of the Arabian and Eurasian plates.

  2. Extremes of N Vicious Walkers for Large N: Application to the Directed Polymer and KPZ Interfaces

    NASA Astrophysics Data System (ADS)

    Schehr, Grégory

    2012-11-01

    We compute the joint probability density function (jpdf) P N ( M, τ M ) of the maximum M and its position τ M for N non-intersecting Brownian excursions, on the unit time interval, in the large N limit. For N→∞, this jpdf is peaked around M = sqrt{2N} and τ M =1/2, while the typical fluctuations behave for large N like M - sqrt{2N} ∝ s N^{-1/6} and τ M -1/2∝ wN -1/3 where s and w are correlated random variables. One obtains an explicit expression of the limiting jpdf P( s, w) in terms of the Tracy-Widom distribution for the Gaussian Orthogonal Ensemble (GOE) of Random Matrix Theory and a psi-function for the Hastings-McLeod solution to the Painlevé II equation. Our result yields, up to a rescaling of the random variables s and w, an expression for the jpdf of the maximum and its position for the Airy2 process minus a parabola. This latter describes the fluctuations in many different physical systems belonging to the Kardar-Parisi-Zhang (KPZ) universality class in 1+1 dimensions. In particular, the marginal probability density function (pdf) P( w) yields, up to a model dependent length scale, the distribution of the endpoint of the directed polymer in a random medium with one free end, at zero temperature. In the large w limit one shows the asymptotic behavior log P( w)˜- w 3/12.

  3. Scheme of 3 interfaces with local isostatic compensation on the Argentine continental margin

    NASA Astrophysics Data System (ADS)

    Pedraza De Marchi, A. C.; Ghidella, M. E.; Tocho, C.

    2013-05-01

    The segment of Argentine continental margin located between 39°S and the Malvinas platform (~49°S) is of passive type and volcanic characteristics revealed by seaward-dipping seismic reflectors sequences (SDRs). The free air gravity edge-effect associated with passive continental margins is one of the most distinctive characteristics of gravity in marine regions. This effect is in large part due to the transition between continental and oceanic crusts, because of their different thicknesses. In this presentation we investigate the Airy type isostatic compensation scheme by using three interfaces in a forward calculation with different approximations of Parker's expression to obtain the isostatic anomaly. After that we perform the inversion of the anomaly thus obtained in order to find the Moho's deflection necessary to compensate it (or minimize it) by using the same scheme of interfaces and the iterative Parker-Oldenburg method (Oldenburg, D., 1974) with more terms in the inversion. The crust-mantle interface (Moho) thus calculated represents a more realistic surface than the one calculated using one term in the inversion and the surface estimated with topographic data and sediment thickness. Even considering that the experiment constitutes a schematic assumption just to test the numerical methods involved, we find that in the comparison with the only available digitized refraction profile, the inverted Moho interface reproduces fairly well the Moho that the seismic profile yields, for the case of the iterative method. This suggests that the inverse calculation with the iterative method is sensible to the presence of the SDRS, at least for this sole profile. Keywords: isostatic anomaly, Moho, passive continental margins Oldenburg, D., 1974. The inversion and interpretation of gravity anomalíes, Geophysics, vol. 39, no. 4, p. 526-536.

  4. Constraining the Mean Crustal Thickness on Mercury

    NASA Technical Reports Server (NTRS)

    Nimmo, F.

    2001-01-01

    The topography of Mercury is poorly known, with only limited radar and stereo coverage available. However, radar profiles reveal topographic contrasts of several kilometers over wavelengths of approximately 1000 km. The bulk of Mercury's geologic activity took place within the first 1 Ga of the planet's history), and it is therefore likely that these topographic features derive from this period. On Earth, long wavelength topographic features are supported either convectively, or through some combination of isostasy and flexure. Photographic images show no evidence for plume-like features, nor for plate tectonics; I therefore assume that neither convective support nor Pratt isostasy are operating. The composition and structure of the crust of Mercury are almost unknown. The reflectance spectrum of the surface of Mercury is similar to that of the lunar highlands, which are predominantly plagioclase. Anderson et al. used the observed center-of-mass center-of-figure offset together with an assumption of Airy isostasy to infer a crustal thickness of 100-300 km. Based on tidal despinning arguments, the early elastic thickness (T(sub e)) of the (unfractured) lithosphere was approximately equal to or less than 100 km. Thrust faults with lengths of up to 500 km and ages of about 4 Ga B.P. are known to exist on Mercury. Assuming a semicircular slip distribution and a typical thrust fault angle of 10 degrees, the likely vertical depth to the base of these faults is about 45 km. More sophisticated modelling gives similar or slightly smaller answers. The depth to the base of faulting and the elastic layer are usually similar on Earth, and both are thought to be thermally controlled. Assuming that the characteristic temperature is about 750 K, the observed fault depth implies that the heat flux at 4 Ga B.P. is unlikely to be less than 20 mW m(exp -2) for a linear temperature gradient. For an elastic thickness of 45 km, topography at 1000 km wavelength is likely to be about 60

  5. Optical performance of the JWST/MIRI flight model: characterization of the point spread function at high resolution

    NASA Astrophysics Data System (ADS)

    Guillard, P.; Rodet, T.; Ronayette, S.; Amiaux, J.; Abergel, A.; Moreau, V.; Augueres, J. L.; Bensalem, A.; Orduna, T.; Nehmé, C.; Belu, A. R.; Pantin, E.; Lagage, P.-O.; Longval, Y.; Glasse, A. C. H.; Bouchet, P.; Cavarroc, C.; Dubreuil, D.; Kendrew, S.

    2010-07-01

    The Mid Infra Red Instrument (MIRI) is one of the four instruments onboard the James Webb Space Telescope (JWST), providing imaging, coronagraphy and spectroscopy over the 5 - 28 μm band. To verify the optical performance of the instrument, extensive tests were performed at CEA on the flight model (FM) of the Mid-InfraRed IMager (MIRIM) at cryogenic temperatures and in the infrared. This paper reports on the point spread function (PSF) measurements at 5.6 μm, the shortest operating wavelength for imaging. At 5.6 μm, the PSF is not Nyquist-sampled, so we use am original technique that combines a microscanning measurement strategy with a deconvolution algorithm to obtain an over-resolved MIRIM PSF. The microscanning consists in a sub-pixel scan of a point source on the focal plane. A data inversion method is used to reconstruct PSF images that are over-resolved by a factor of 7 compared to the native resolution of MIRI. We show that the FWHM of the high-resolution PSFs were 5 - 10 % wider than that obtained with Zemax simulations. The main cause was identified as an out-of-specification tilt of the M4 mirror. After correction, two additional test campaigns were carried out, and we show that the shape of the PSF is conform to expectations. The FWHM of the PSFs are 0.18 - 0.20 arcsec, in agreement with simulations. 56.1 - 59.2% of the total encircled energy (normalized to a 5 arcsec radius) is contained within the first dark Airy ring, over the whole field of view. At longer wavelengths (7.7 - 25.5 μm), this percentage is 57 - 68 %. MIRIM is thus compliant with the optical quality requirements. This characterization of the MIRIM PSF, as well as the deconvolution method presented here, are of particular importance, not only for the verification of the optical quality and the MIRI calibration, but also for scientific applications.

  6. Structure and Evolution of the North American Upper Mantle: Insight from Integrative Modeling of Gravity, Topography and Seismic Tomography Data

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Kaban, M. K.; Tesauro, M.

    2014-12-01

    A limitation on the application of geophysical methods for the study of the upper mantle is the effect of lateral variations in the structure of the overlying crust that obscure the signal from the mantle. However, the North American upper mantle is particularly well-suited for geophysical study because crustal corrections can be made based on the results from numerous active- and passive-source seismic investigations that have determined lateral variations in crustal properties, including crustal thickness, P- and S-wave velocities, and crustal density estimated from empirical velocity-density relations. We exploit this knowledge of the crust of North America to construct an integrated 3D model of variations in density, temperature and composition within the upper mantle to a depth of 250 km. Our model is based on a joint analysis of topography, gravity, and seismic tomography data, coupled with mineral physics constraints. In the first step we remove the effect of the laterally-varying crust from the observed gravity field and topography (assuming Airy isostasy) using our crustal model NACr2014 (Tesauro et al., submitted). In the second step the residual mantle gravity field and residual topography (obtained in the first step) are inverted to obtain a 3D density model of the upper mantle. Thermal effects dominate this initial density model. To compensate for the thermal effects we invert for mantle temperatures based on the S-wave velocities determined by two seismic tomography models (S40RTS and NA2007). After removing the thermal effect from the mantle gravity anomalies we are left with the upper mantle density variations that are due to compositional variations. We recover two long-wavelength (5°-10°) features in the upper mantle compositional density model that are not evident in seismic tomography models: (1) a strong (+200 mgal) positive compositional anomaly beneath the Gulf of Mexico, perhaps due to eclogite in the uppermost mantle, and (2) a NE

  7. Scattering resonance of elastic wave and low-frequency equivalent slow wave

    NASA Astrophysics Data System (ADS)

    Meng, X.; Liu, H.; Hu, T.; Yang, L.

    2015-12-01

    . Using quaternion and Pfaffian(Dyson 1970) techniques, the matrix's exponential mapping solution is further solved as the hyperbolic trigonometric functions or trigonometric matrix elements. Using the Fourier transform, slow wave's Airy-like function can be obtained. This study shows that slow waves only occur in the case of strong scattering.

  8. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is

  9. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Krishna, K. S.; Bull, J. M.; Ishizuka, O.; Scrutton, R. A.; Jaishankar, S.; Banakar, V. K.

    2014-02-01

    The Afanasy Nikitin seamount (ANS) is a major structural feature (400 km-long and 150 km-wide) in the Central Indian Basin, situated at the southern end of the so-called 85°E Ridge. Combined analyses of new multibeam bathymetric, seismic reflection and geochronological data together with previously described magnetic data provide new insights into the growth of the ANS through time, and its relationship with the 85°E Ridge. The ANS comprises a main plateau, rising 1200 m above the surrounding ocean floor (4800 m), and secondary elevated seamount highs, two of which (lie at 1600 and 2050 m water depths) have the morphology of a guyot, suggesting that they were formed above or close to sea-level. An unbroken sequence of spreading anomalies 34 through 32n.1 identified over the ANS reveal that the main plateau of the ANS was formed at 80-73 Ma, at around the same time as that of the underlying oceanic crust. The 40Ar/39Ar dates for two basalt samples dredged from the seamount highs are consistent, within error, at 67 Ma. These results, together with published results of late Cretaceous to early Cenozoic Indian Ocean plate reconstructions, indicate that the Conrad Rise hotspot emplaced both the main plateau of the ANS and Conrad Rise (including the Marion Dufresne, Ob and Lena seamounts) at 80-73 Ma, close to the India-Antarctica Ridge system. Subsequently, the seamount highs were formed by late-stage volcanism c. 6-13 Myr after the main constructional phase of the seamount plateau. Flexural analysis indicates that the main plateau and seamount highs of the ANS are consistent with Airy-type isostatic compensation, which suggest emplacement of the entire seamount in a near spreading-center setting. This is contrary to the flexural compensation of the 85°E Ridge further north, which is interpreted as being emplaced in an intraplate setting, i.e., 25-35 Myr later than the underlying oceanic crust. Therefore, we suggest that the ANS and the 85°E Ridge appear to be

  10. Growth of the Afanasy Nikitin seamount and its relationship with the 85°E Ridge, northeastern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Krishna, K. S.

    2012-12-01

    The Afanasy Nikitin seamount (ANS) is a major structural feature (400 km-long and 150 km-wide) in the Central Indian Basin, situated at the southern end of the so-called 85°E Ridge. Combined analyses of new multibeam bathymetric, seismic reflection and geochronological data together with previously described magnetic data provide valuable insights into the growth of the ANS through time, and its relationship with the 85°E Ridge. The ANS comprises a main plateau, rising 1200 m above the surrounding ocean floor (4800 m), and secondary elevated seamount highs, two of which (lie at 1600 m and 2050 m water depths) have the morphology of a guyot, suggesting that they were formed above or close to sea-level. An unbroken sequence of spreading anomalies 34 through 31 identified over the ANS reveal that the main plateau of the ANS was formed at 80 - 73 Ma, at the same time as the underlying oceanic crust. The 40Ar/39Ar dates for two basalt samples dredged from the seamount highs are consistent, within error, at 67 Ma. These results, together with published results of late Cretaceous to early Cenozoic Indian Ocean plate reconstructions, indicate that the Conrad Rise hot spot emplaced both the main plateau of the ANS and Conrad Rise (including the Marion Dufresne, Ob and Lena seamounts) at 80-73 Ma, close to the India-Antarctica Ridge system. Subsequently, the seamount highs were formed by late-stage volcanism c. 6 - 13 Myr after the main constructional phase of the seamount plateau. Flexural analysis indicates that the main plateau and seamount highs of the ANS are consistent with Airy-type isostatic compensation, which suggest emplacement of the entire seamount in a near spreading-center setting. This is contrary to the flexural compensation of the 85°E Ridge further north, which is interpreted as being emplaced in an intraplate setting, i.e., 25-35 Myr later than the underlying oceanic crust. Therefore, we conclude that the Afanasy Nikitin seamount and the 85°E Ridge

  11. Modernisation of the Narod fluxgate electronics at Budkov Geomagnetic Observatory

    NASA Astrophysics Data System (ADS)

    Vlk, Michal

    2013-04-01

    From the signal point of view, fluxgate unit is a low-frequency parametric up-convertor where the output signal is picked up in bands near second harmonic of the pump frequency fp (sometimes called idler for historic reasons) and purity of idler is augmented by orthogonal construction of the pump and pick-up coil. In our concept, the pump source uses Heegner quartz oscillator near 8 MHz, synchronous divider to 16 kHz (fp) and switched current booster. Rectangular pulse is used for feeding the original ferroresonant pump source with neutralizing transformer in the case of symmetric shielded cabling. Input transformer has split primary winding for using symmetrical shielded input cabling and secondary winding tuned by polystyrol capacitor and loaded by inverting integrator bridged by capacitor. This structure behaves like resistor cooled to low temperature. Next stage is bandpass filter (derivator) with a gain tuned to 2 fp with leaky FDNRs followed by current booster. Another part of the system is low-noise peak elimination and bias circuit. Heart of the system is a 120-V precision source which uses 3.3-V Zener diode chain - thermistor bridge in the feedback. Peak elimination circuit logics consists of the envelope detector, comparators, asynchronous counter in hardwired logics, set of weighted resistor chains and discrete MOS switches in current-mode. All HV components use airy montage to prevent the ground-leak. After 200 m long coaxial line, the signal is galvanically separated by transformer and fed into A/D converter, which is ordinary HD audio (96 kHz) soundcard. Real sample rate is constructed by a-posteriori data processing when statistic properties of the incoming sample are known. The sampled signal is band-pass filtered with a 200-Hz filter centered at 2 fp. The signal is then fed through a first-order allpass centered at 2 fp. The result approximates Hilbert transform sufficiently good for detecting the envelope via square sum-root rule. The signal is

  12. Crustal structure, and topographic relief in the high southern Scandes, Norway

    NASA Astrophysics Data System (ADS)

    Stratford, W.; Thybo, H.; Frassetto, A.

    2010-05-01

    thickness implies that the high elevations of the southern Scandes Mountains are not entirely compensated by an Airy type of isostatic model, and other mechanisms for uplift and sustained topographic relief must be in effect. Moreover, there is an observed lateral offset between the highest mountains and the thickest crust beneath the southern Scandes indicating that the Moho topography is modulated by the flexural strength of the lithosphere. We relate new crustal thickness measurements to observed topography to quantify how much of the present elevation of the southern Scandes Mountains can be accounted for by crustal thickness alone. This new understanding of crustal structure can be used to help separate the climatic and tectonic effects on landscape evolution of the southern Scandes Mountains.

  13. Predicting gravity and sediment thickness in Afghanistan

    NASA Astrophysics Data System (ADS)

    Jung, W.; Brozena, J.; Peters, M.

    2013-02-01

    The US Naval Research Laboratory conducted comprehensive high-altitude (7 km above mean sea level) aero-geophysical surveys over Afghanistan in 2006 (Rampant Lion I). The surveys were done in collaboration with the US Geological Survey and upon the request of Islamic Republic of Afghanistan Ministry of Mines. In this study, we show that a best fitting admittance between topography and airborne gravity in western Afghanistan can be used to predict airborne gravity for the no-data area of eastern Afghanistan where the mountains are too high to conduct airborne surveys, due to the threat of ground fire. The differences between the airborne and the predicted gravity along a tie-track through the no-data area were found to be within ±12 mGal range with rms difference 7.3 mGal, while those between the predicted gravity from a simple Airy model (with compensation depth of 32 km and crustal density of 2.67 g cm-3) and the airborne gravity were within ±22 mGal range with rms difference 10.3 mGal. A combined airborne free-air anomaly has been constructed by merging the predicted gravity with the airborne data. We also demonstrate that sediment thickness can be estimated for basin areas where surface topography and airborne free-air anomaly profiles do not show a correlation presumably because of thick sediments. In order to estimate sediment thickness, we first determine a simple linear relationship from a scatter plot of the airborne gravity points and the interpolated Shuttle Radar Topography Mission (SRTM) topography along the Rampant Lion I tracks, and computed corresponding quasi-topography tracks by multiplying the linear relationship with the airborne free-air anomalies. We then take the differences between the SRTM and quasi-topography as a first-order estimate of sediment thickness. A global gravity model (GOCO02S), upward continued to the same altitude (7 km above mean sea level) as the data collection, was compared with the low-pass filtered (with cutoff

  14. On possible plume-guided seismic waves

    USGS Publications Warehouse

    Julian, B.R.; Evans, J.R.

    2010-01-01

    Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband

  15. Rainbow phenomena: Development of a laser-based, non- intrusive technique for measuring droplet size, temperature and velocity

    NASA Astrophysics Data System (ADS)

    van Beeck, Jeronimus Petrus Antonius Johannes

    Liquid sprays appear in a variety of aerospace, automotive and industrial applications. In order to be able to employ the optimal spray configuration it is essential that one first develops a complete understanding of the fundamental phenomena that influence and control the overall spray performance for such applications. Toward this end, the development of advanced diagnostic tools is necessary for studying spray processes in both ideal laboratory conditions and realistic environments. The objective of the thesis was to study the first-order rainbow and to apply it to the non-intrusive determination of droplet parameters in spray environments. The first-order rainbow is created in the laboratory by droplets scattering laser light and this is therefore monochromatic. The effect of size and temperature (and thereby refractive index) of spherical droplets on the rainbow characteristics have been predicted by the Lorenz-Mie and Airy theories. Experiments on satellite droplets around an unstable water jet, performed with a linear CCD-camera, have revealed the effect of droplet non-sphericity on the accuracy of the temperature and size measurements. To understand this effect better, a surface integral method has been developed which describes the behaviour of the rainbow for an ellipsoidal scatterer. The theoretical approach is based on the vectorial Kirchhoff integral relation taken over the electric field on the droplet surface, with the electric field obtained using ray- optics. The integral has been solved by looking for the ridge of stationary points in the integrand of the Kirchhoff integral. A comparison with the Lorenz-Mie theory has validated the approach in the special case of spherical scatterers. The surface integral method endorses the experimental non-sphericity detection method that selects, using the rainbow pattern, spherical droplets. This method has considerably improved the accuracy of the droplet parameters measured using the rainbow technique. A

  16. Long-term Observation of Seafloor Disturbances by Array of Pressure Gauges

    NASA Astrophysics Data System (ADS)

    Fukao, Y.; Sugioka, H.; Ito, A.; Shiobara, H.

    2015-12-01

    We developed a seafloor array system of pressure gauges to record disturbances on both the oceanic and solid-Earth sides. The array consists of 10 high-resolution pressure gauges (PARO-8B7000-I-005) in a regular triangle configuration with site intervals of 10 km. The targeted disturbances on the oceanic side include infragravity waves, tsunamis and low-mode internal tides. Those on the solid-Earth side include P-wave families and Rayleigh waves, in particular, the Airy phase of suboceanic Rayleigh waves at periods around 10 s. We confirmed using data from the Nankai Trough seafloor network of pressure gauges (DONET) that our system should enable us to retrieve accurately the first-mode internal tides with the signal power four orders of magnitude smaller than the corresponding semidiurnal surface tides. We installed this system around (32.4N, 140.3E, 1500-2200m depths) on the upper slope of the Izu-Bonin Trench in May 2014. The system was recovered in May-June 2015 and reinstalled around (31.2N, 141.7E, 4700-5700m depths) on the lower slope of this trench in a hope to recover in June 2016 (see Figure). The already recovered data contains records of the tsunami earthquake of May 02, 2015, at epicentral distances around 90 km. Its seismic magnitude was only 5.7, yet the tsunami height was 0.5 m at the 170km-distant island. Our pressure records show P-wave families followed by dispersive tsunami wave trains with amplitudes about 200 Pa successively passing through the array. Although P-wave families of comparable amplitudes were recorded by the M5.6 near-trench low-angle thrust earthquake of May 10, 2015, at epicentral distances around 160 km, they were not followed by any visible tsunami signals. These observations imply merits of sea-bottom pressure array, including easiness of comparing amplitudes of seismic waves and tsunamis on the same record and capability of tracing two-dimensional tsunami propagation through the array as a function of period.

  17. Variations in Crustal Structure, Lithospheric Flexural Strength, and Isostatic Compensation Mechanisms of Mars

    NASA Astrophysics Data System (ADS)

    Ding, M.; Lin, J.; Zuber, M. T.

    2014-12-01

    We analyze gravity and topography of Mars to investigate the spatial variations in crustal thickness, lithospheric strength, and mechanisms of support of prominent topographic features on Mars. The latest gravity model JGMRO110c (released in 2012) from the Mars Reconnaissance Orbiter mission has a spatial block size resolution of ~97 km (corresponding to degree-110), enabling us to resolve crustal structures at higher spatial resolution than those determined from previous degree-80 and 85 gravity models [Zuber et al., 2000; McGovern et al., 2002, 2004; Neumann et al., 2004; Belleguic et al., 2005]. Using the latest gravity data, we first inverted for a new version of crustal thickness model of Mars assuming homogeneous crust and mantle densities of 2.9 and 3.5 g/cm3. We calculated "isostatic" topography for the Airy local isostatic compensation mechanism, and "non-isostatic" topography after removing the isostatic part. We find that about 92% of the Martian surface is in relatively isostatic state, indicating either relatively small lithospheric strength and/or small vertical loading. Relatively isostatic regions include the hemispheric dichotomy, Hellas and Argyre Planitia, Noachis and Arabia Terra, and Terra Cimmeria. In contrast, regions with significant amount of non-isostatic topography include the Olympus, Ascraeus, Arsia, Pavonis, Alba, and Elysium Mons, Isidis Planitia and Valles Marineris. Their relatively large "non-isostatc topography" implies relatively strong lithospheric strength and large vertical loading. Spectral analysis of the admittance and correlation relationship between gravity and topography were conducted for the non-isostatic regions using the localized spectra method [Wieczorek and Simons, 2005, 2007] and thin-shell lithospheric flexural approximation [Forsyth, 1985; McGovern et al., 2002, 2004]. The best-fitting models reveal significant variations in the effective lithospheric thickness with the greatest values for the Olympus Mon

  18. Regional-residual separation of bathymetry and revised estimates of Hawaii plume flux

    NASA Astrophysics Data System (ADS)

    Wessel, Paul

    2016-02-01

    Observations of the temporal variations in the volume flux of a plume can provide useful constraints on geodynamic models of plumes and plume-plate interactions. Furthermore, they can be compared with observations at other plumes and may be analysed further to understand the nature and cause of the variations. The volume plume flux is typically derived from a sum of edifice and compensation root volumes. The former can be obtained via the application of regional-residual separation procedures that split the observed relief into regional (swell) and residual (edifice) components, while the latter is generally inferred from the former using local (Airy) or regional (flexural) compensation models. Most regional-residual techniques used in past studies give non-unique results and provide no estimates of the uncertainty in the separation, which impacts the significance of the results. Here, the optimal robust separator (ORS) method achieves a unique separation for the swell and edifice components of the Hawaiian Ridge and furthermore obtain confidence bounds on the total volume flux. A fast spectral method for plate flexure with different edifice and infill densities is used to determine compensation volumes. Although my flux estimates have assigned confidence bounds, these are much smaller than the flux estimates themselves. A comparison of my new results to published volume flux curves shows that my revised flux estimates are lower by a factor of 2-3. Reproducing the prior higher results demonstrates that these discrepancies appear to be related to shortcomings in the implementation of the methodology used in the separation. The variability in the Hawaiian plume flux occurs at two different time scales: A short (1-2 Myr) periodicity related to the spacing of islands and seamounts, which ultimately is related to plume-plate flexural interactions, and a much longer (10-15 Myr) periodicity that may be related to plate kinematic changes. Superimposed on these trends may

  19. From Isostasy to Proterozoic Underplating: New Inferences from Crustal Thickness and Vp/Vs Ratio beneath the Western Canada Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Chen, Y.

    2015-12-01

    The rapid expansion of regional broadband seismic arrays in Alberta provides an unprecedented opportunity to map the subsurface seismic structure. In this study, we compute the P-to-S receiver functions from 5 regional seismic networks and 62 stations to determine the crustal properties beneath southern-central Alberta, a boundary zone between the Mesozoic Canadian Cordillera and the Precambrian craton(s). The optimal Moho depth and Vp/Vs ratio at each receiver are determined by tracing the direct P, converted (Pms) and reverberated (PpPms and PpSms+PsPms) phases through a three-dimensional shear velocity model. The resulting Moho depth-Vp/Vs ratio (H-K) image shows more coherent stacking amplitudes than the traditional H-K method. The map of Moho depth shows an increase of crustal thickness from an average of 41 km in Precambrian domains to ~50 km beneath the foothills of the Rocky Mountains, which indicates a strong crustal gradient across the craton-domain boundary in the Western Canada Sedimentary Basin (WCSB). The surface elevations along the foreland belt of the Rockies are isostatically compensated by a thickened crustal root, which is consistent with thick-skinned deformation likely sustained during the Laramide phase of the Farallon subduction. To the west of the foreland belt, however, a relatively thin crust with an average thickness of ~36 km is mapped beneath the extreme topography of southern Canadian Rockies. The lack of a deep crustal root is inconsistent with the Airy isostasy model, implying very high temperatures beneath the Cordillera upper mantle. Ratios of average crustal velocities (Vp/Vs) vary from 1.61 to 1.91 across the study region. The smallest values are observed near the northern Snowbird Tectonic Zone (STZ) and Taltson magmatic arc, which suggest a felsic crust resulted from crustal thickening and melting during the early Proterozoic. On the other hand, the Vp/Vs ratio shows the highest value (~1.9) in the vicinity of the Vulcan

  20. Internal polarization limits coronagraph contrast

    NASA Astrophysics Data System (ADS)

    Breckinridge, James Bernard; Lam, Wai Sze T.; Chipman, Russell A.

    2015-08-01

    % encircled energy of this ghost PSF image is centered on the axis and twice as large as the Airy diffraction pattern. 6. This ~1E-5 scattered light level is to be compared to the 1E-9 scattered light level required for terrestrial exoplanet imaging coronagraphy.

  1. Growth Inhibition of Human Gynecologic and Colon Cancer Cells by Phyllanthus watsonii through Apoptosis Induction

    PubMed Central

    Ramasamy, Sujatha; Abdul Wahab, Norhanom; Zainal Abidin, Nurhayati; Manickam, Sugumaran; Zakaria, Zubaidah

    2012-01-01

    Phyllanthus watsonii Airy Shaw is an endemic plant found in Peninsular Malaysia. Although there are numerous reports on the anti cancer properties of other Phyllanthus species, published information on the cytotoxicity of P. watsonii are very limited. The present study was carried out with bioassay-guided fractionation approach to evaluate the cytotoxicity and apoptosis induction capability of the P. watsonii extracts and fractions on human gynecologic (SKOV-3 and Ca Ski) and colon (HT-29) cancer cells. P. watsonii extracts exhibited strong cytotoxicity on all the cancer cells studied with IC50 values of ≤ 20.0 µg/mL. Hexane extract of P. watsonii was further subjected to bioassay-guided fractionation and yielded 10 fractions (PW-1→PW-10). PW-4→PW-8 portrayed stronger cytotoxic activity and was further subjected to bioassay-guided fractionation and resulted with 8 sub-fractions (PPWH-1→PPWH-8). PPWH-7 possessed greatest cytotoxicity (IC50 values ranged from 0.66 – 0.83 µg/mL) and was selective on the cancer cells studied. LC-MS/MS analysis of PPWH-7 revealed the presence of ellagic acid, geranic acid, glochidone, betulin, phyllanthin and sterol glucoside. Marked morphological changes, ladder-like appearance of DNA and increment in caspase-3 activity indicating apoptosis were clearly observed in both human gynecologic and colon cancer cells treated with P. watsonii especially with PPWH-7. The study also indicated that P. watsonii extracts arrested cell cycle at different growth phases in SKOV-3, Ca Ski and HT-29 cells. Cytotoxic and apoptotic potential of the endemic P. watsonii was investigated for the first time by bioassay-guided approach. These results demonstrated that P. watsonii selectively inhibits the growth of SKOV-3, Ca Ski and HT-29 cells through apoptosis induction and cell cycle modulation. Hence, P. watsonii has the potential to be further exploited for the discovery and development of new anti cancer drugs. PMID:22536331

  2. Receiver function analysis of the crust and upper mantle in Fennoscandia - isostatic implications

    NASA Astrophysics Data System (ADS)

    Frassetto, Andrew; Thybo, Hans

    2013-11-01

    The mountains across southern Norway and other margins of the North Atlantic Ocean appear conspicuously high in the absence of recent convergent tectonics. We investigate this phenomenon with receiver functions calculated for seismometers deployed across southern Fennoscandia. These are used to constrain the structure and seismic properties of the lithosphere and primarily to measure the thickness and infer the bulk composition of the crust. Such parameters are key to understanding crustal isostasy and assessing its role, or lack thereof, in supporting the observed elevations. Our study focuses on the southern Scandes mountain range that has an average elevation >1.0 km above mean sea level. The crust-mantle boundary (Moho) is ubiquitously imaged, and we occasionally observe structures that may represent the base of the continental lithosphere or other thermal, chemical, or viscous boundaries in the upper mantle. The Moho resides at ˜25-30 km depth below mean sea level in southeastern coastal Norway and parts of Denmark, ˜35-45 km across the southern Scandes, and ˜50-60 km near the Norwegian-Swedish border. That section of thickest crust coincides with much of the Transscandinavian Igneous Belt and often exhibits a diffuse conversion at the Moho, which probably results from the presence of a high wave speed, mafic lower crust across inner Fennoscandia. A zone of thinned crust (<35 km) underlies the Oslo Graben. Crustal Vp/Vs ratio measurements show trends that generally correlate with Moho depth; relatively high Vp/Vs occurs near the coast and areas affected by post-Caledonide rifting and lower Vp/Vs appears in older, unrifted crust across the southern Scandes. Our results indicate that most of the observed surface elevation in the southern Scandes is supported by an Airy-like crustal root and potentially thin mantle lithosphere. To the east, where thicker crust and mantle lithosphere underlie low elevations, the presence of dense mafic lower crust fits a Pratt

  3. Large aperture kinoform phase plates in fused silica for spatial beam smoothing on Nova and the Beamlet Lasers

    SciTech Connect

    Rushford, M.C.; Dixit, S.N.; Thomas, I.M.; Martin, A.M.; Perry, M.D.

    1997-03-01

    It is now widely recognized that spatial beam smoothing (homogenization) is essential in coupling the laser energy to the inertial confinement fusion (ICF) targets. For the indirect drive approach to ICF, it is desirable to distribute the laser energy into a uniformly speckled profile that has a flat-top super-Gaussian envelope (8th power or higher) and contains greater than 95% of the energy inside the super-Gaussian profile. Spatial smoothing is easily achieved by introducing a binary random phase plate (RPP) in the beam. This produces a homogenized far-field pattern which consists of an overall envelope function determined by the RPP element superimposed with a fine scale speckle pattern arising due to the interference among the various RPP elements. Although easy to fabricate and currently in routine use in many fusion laboratories, the binary RPPs do not meet the ICF requirements stated above since the far-field intensity profile is restricted to essentially an Airy function containing only 84% (an upper limit) of the energy inside the central spot. Approaches using lenslet arrays (refractive or diffractive) have limited use since they operate in the quasi-far-field and have a short depth of focus. The limitations of the RPPs can be overcome by relaxing the binary phase constraint. We have recently presented 5 continuously varying phase screens for tailoring the focal plane irradiance profiles. Called kinoform phase plates (KPPs), these phase screens offer complete flexibility in tailoring the focal plane envelope and, at the same time, increasing the energy efficiency inside the focal spot. In this paper we discuss the design and fabrication of such kinoform phase plates in fused silica for spatial beam smoothing on the Nova and the Beamlet lasers. Since the phase plates are used at the end of the laser chain, KPPs on Nova and Beamlet have to be fabricated on large aperture optics (65-cm diameter and 40-cm square substrates respectively). The following

  4. Determining OCT structure and COB Location of the Omani Gulf of Aden Continental Margin from Gravity Inversion, Residual Depth Anomaly and Subsidence Analysis.

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie; Manatshal, Gianreto

    2013-04-01

    Knowledge and understanding of the ocean-continent transition (OCT) structure and continent-ocean boundary (COB) location, the distribution of thinned continental crust and lithosphere, its distal extent and the start of unequivocal oceanic crust are of critical importance in evaluating rifted continental margin formation and evolution. In order to determine the OCT structure and COB location for the eastern Gulf of Aden, along the Oman margin, we use a combination of gravity inversion, subsidence analysis and residual depth anomaly (RDA) analysis. Gravity inversion has been used to determine Moho depth, crustal basement thickness and continental lithosphere thinning; subsidence analysis has been used to determine the distribution of continental lithosphere thinning; and RDAs have been used to investigate the OCT bathymetric anomalies with respect to expected oceanic bathymetries at rifted margins. The gravity inversion method, which is carried out in the 3D spectral domain, incorporates a lithosphere thermal gravity anomaly and includes a correction for volcanic addition due to decompression melting. Reference Moho depths used in the gravity inversion have been calibrated against seismic refraction Moho depths. RDAs have been calculated by comparing observed and age predicted oceanic bathymetries, using the thermal plate model predictions from Crosby and McKenzie (2009). RDAs have been computed along profiles and have been corrected for sediment loading using flexural back-stripping and decompaction. In addition, gravity inversion crustal basement thicknesses together with Airy isostasy have been used to predict a synthetic RDA. The RDA results show a change in RDA signature and may be used to estimate the distal extent of thinned continental crust and where oceanic crust begins. Continental lithosphere thinning has been determined using flexural back-stripping and subsidence analysis assuming the classical rift model of McKenzie (1978) with a correction for

  5. Anomalous Subsidence at the Ocean Continent Transition of the Gulf of Aden Rifted Continental Margin

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick; Leroy, Sylvie

    2013-04-01

    It has been proposed that some rifted continental margins have anomalous subsidence and that at break-up they were elevated at shallower bathymetries than the isostatic response predicted by classical rift models (McKenzie, 1978). The existence of anomalous syn- or early-post break-up subsidence of this form would have important implications for our understanding of the geodynamics of continental break-up and sea-floor spreading initiation. We have investigated subsidence of the young rifted continental margin of the eastern Gulf of Aden, focussing on the western Oman margin (break-up age 17.6 Ma). Lucazeau et al. (2008) have found that the observed bathymetry here is approximately 1 km shallower than the predicted bathymetry. In order to examine the proposition of an anomalous early post break-up subsidence history of the Omani Gulf of Aden rifted continental margin, we have determined the subsidence of the oldest oceanic crust adjacent to the continent-ocean boundary (COB) using residual depth anomaly (RDA) analysis corrected for sediment loading and oceanic crustal thickness variation. RDAs corrected for sediment loading using flexural backstripping and decompaction have been calculated by comparing observed and age predicted oceanic bathymetries in order to identify anomalous subsidence of the Gulf of Aden rifted continental margin. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions of Crosby and McKenzie (2009). Non-zero RDAs at the Omani Gulf of Aden rifted continental margin can be the result of non standard oceanic crustal thickness or the effect of mantle dynamic topography or a non-classical rift and break-up model. Oceanic crustal basement thicknesses from gravity inversion together with Airy isostasy have been used to predict a "synthetic" gravity RDA, in order to determine the RDA contribution from non-standard oceanic crustal thickness. Gravity inversion, used to determine crustal basement thickness

  6. A new rainbow: angular scattering of the F + H2(v(i) = 0, j(i) = 0) --> FH(v(f) = 3, j(f) = 3) + H reaction.

    PubMed

    Xiahou, Chengkui; Connor, J N L

    2009-12-31

    The angular scattering of a state-to-state chemical reaction contains fundamental information on its dynamics. Often the angular distributions are highly structured and the physical interpretation of this structure is an important and difficult problem. Here, we report a surprising finding for the benchmark F + H(2) --> FH + H reaction, when the product molecule FH is in a vibrational state with quantum number = 3 and a rotational state with quantum number = 3. We demonstrate that the differential cross section (DCS) is an example of (attractive) rainbow scattering, being characterized by an Airy function and its derivative. The rainbow reveals its presence in the DCS by interference with the repulsive (or nearside) scattering producing characteristic diffraction oscillations. The rainbow is broad, which explains why it has not been recognized in the many earlier theoretical and experimental investigations of this reaction. There is an angular region in the DCS where the rainbow dominates, but with the unusual property that the DCS is less intense than in adjoining angular regions. The reaction investigated is F + H(2)(v(i) = 0, j(i) = 0, m(i) = 0) --> FH(v(f) = 3, j(f) = 3, m(f) = 0) + H, where v(i), j(i), m(i) and v(f), j(f), m(f) are initial and final vibrational, rotational and helicity quantum numbers, respectively. The relative translational energy is 0.119 eV. We use rigorous semiclassical (asymptotic) techniques that provide physical insight as well as a mathematically sound and numerically accurate description of the angular scattering. The semiclassical DCS agrees very closely with the exact quantum DCS. The semiclassical scattering amplitude is used to assess the physical effectiveness of the Fuller nearside-farside decomposition for the partial wave series of the F + H(2) reaction, including the effect of one resummation. We also compare the semiclassical and exact quantum nearside, farside, and full local angular momenta and find good agreement

  7. A blind deconvolution method for ground based telescopes and Fizeau interferometers

    NASA Astrophysics Data System (ADS)

    Prato, M.; La Camera, A.; Bonettini, S.; Rebegoldi, S.; Bertero, M.; Boccacci, P.

    2015-10-01

    preliminary results look promising at least in specific situations. The IDL code of the proposed method is available on request and will be included in the forthcoming version of the Software Package AIRY (v.6.1).

  8. America's First Carl Sagan: Ormsby MacKnight Mitchel, Pre-Civil War Astronomer and Lecturer on the Cosmos

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    2002-12-01

    In the years before television, videos, radio. movies, or even loudspeakers, Ormsby MacKnight Mitchel (1809-1862) was the best-known popularizer of astronomy and the scientific study of the universe in nineteenth-century America. Each winter he traveled the country by railroad, steamer, and stagecoach, speaking to large paying crowds in principal cities from Boston, New York, and Philadelphia through Cincinnati to New Orleans on the cosmos and our place in it, with special attention to possible inhabitants of planers orbiting other stars. Mitchel had much the same attraction as Sagan did in our time, and awakened many people's interest in astronomy through the human angle, as Carl did. His argument was simple, and according to Frank Triplett goes back thousands of years: other stars are suns, our sun has planets with people on one of them, why should not other stars also have populated planets? But first Mitchel, like Sagan, always explained clearly the discoveries of astronomy that fleshed out this argument with facts. He emphasized the ``clockwork universe", governed by gravity, that Newton, Herschel, and Laplace had investigated and found to be stable. There were many other similarities between these two great popularizers. Mitchel's base was the Cincinnati Observatory, which he had founded, raising the funds for it himself in small contributions from hundreds of ``members", which he publicised as far more democratic than support from European kings and lords. He went abroad to get a telescope, and finally found his ``Great [12-inch] Refractor" in Munich, with help from John Quincy Adams, Astronomer Royal George Biddle Airy, and Paris Observatory Director Fracois Arago, in spite of a rebuff by President John Tyler. These episodes have similarities in Sagan's lobbying NASA for close-up images of Mars. Views of other American professional astronomers on life on other worlds will also be described briefly, from Denison Olmsted, Elias Loomis, Charles A. Young (who

  9. Non-Gaussian Photon Probability Distribution

    SciTech Connect

    Solomon, Benjamin T.

    2010-01-28

    This paper investigates the axiom that the photon's probability distribution is a Gaussian distribution. The Airy disc empirical evidence shows that the best fit, if not exact, distribution is a modified Gamma mGAMMA distribution (whose parameters are alpha = r, betar/sq root(u)) in the plane orthogonal to the motion of the photon. This modified Gamma distribution is then used to reconstruct the probability distributions along the hypotenuse from the pinhole, arc from the pinhole, and a line parallel to photon motion. This reconstruction shows that the photon's probability distribution is not a Gaussian function. However, under certain conditions, the distribution can appear to be Normal, thereby accounting for the success of quantum mechanics. This modified Gamma distribution changes with the shape of objects around it and thus explains how the observer alters the observation. This property therefore places additional constraints to quantum entanglement experiments. This paper shows that photon interaction is a multi-phenomena effect consisting of the probability to interact P{sub i}, the probabilistic function and the ability to interact A{sub i}, the electromagnetic function. Splitting the probability function P{sub i} from the electromagnetic function A{sub i} enables the investigation of the photon behavior from a purely probabilistic P{sub i} perspective. The Probabilistic Interaction Hypothesis is proposed as a consistent method for handling the two different phenomena, the probability function P{sub i} and the ability to interact A{sub i}, thus redefining radiation shielding, stealth or cloaking, and invisibility as different effects of a single phenomenon P{sub i} of the photon probability distribution. Sub wavelength photon behavior is successfully modeled as a multi-phenomena behavior. The Probabilistic Interaction Hypothesis provides a good fit to Otoshi's (1972) microwave shielding, Schurig et al.(2006) microwave cloaking, and Oulton et al.(2008) sub

  10. Authenticity analyses of Phyllanthus amarus using barcoding coupled with HRM analysis to control its quality for medicinal plant product.

    PubMed

    Buddhachat, Kittisak; Osathanunkul, Maslin; Madesis, Panagiotis; Chomdej, Siriwadee; Ongchai, Siriwan

    2015-11-15

    The Phyllanthus genus, a plant used in traditional Thai medicine, has according to several pharmacopeias hepatoprotective properties. Not only is the anatomical morphology of these species relatively similar but they also share the Thai common names Look-Tai-Bai (ลูกใต้ใบ) and Yah-Tai-Bai (หญ้าใต้ใบ), which might cause confusion for laypersons. This study attempted to develop a method for accurate identification of Phyllanthus species, especially Phyllanthus amarus, and to detect contaminants in P. amarus products by using DNA barcoding coupled with high resolution melting (HRM) analysis (bar-HRM). Two plastid loci (rbcL and trnL) were chosen for DNA barcoding to generate a suitable primer for distinguishing Phyllanthus species by HRM analysis. The five species of Phyllanthus were subjected to amplification for testing the specificity and discrimination power of the designed primers derived from rbcL and trnL regions. Sensitivity of the method (DNA barcoding conjugated with HRM) to detect adulterant in P. amarus samples was evaluated. The commercial P. amarus products obtained from a local market were authenticated. The primer pair derived from trnL DNA barcoding (PhylltrnL) had more specificity and power of discrimination for Phyllanthus species than that derived from rbcL DNA barcoding (PhyllrbcL). The result showed that Tm of P. amarus, Phyllanthus urinaria, Phyllanthus debilis, Phyllanthus airy-shawii, and Phyllanthus virgatus was 74.3±0.08, 73.04±0.07, 73.36±0.05, 72.21±0.06, 72.77±0.15°C, respectively. This method proved to be a very sensitive tool that can be used for rapid detection of contamination as low as 1% of other Phyllanthus species in P. amarus admixtures. All commercial products of P. amarus obtained from a local market in Thailand were found to contain pure raw materials of P. amarus without any substitution or contamination. Our results indicated that the use of DNA barcoding coupled with HRM was an

  11. Paleobathymetry from 3-D flexural backstripping: Implementation and application to NW Australia and Liberia passive margins

    NASA Astrophysics Data System (ADS)

    Lovely, Peter; Chauvin, Benjamin; Brennan, Patrick; Laroche, Matt

    2015-04-01

    Understanding paleobathymetry is important to hydrocarbon explorationists, as it impacts depositional environments, reservoir quality, source rock preservation, hydrocarbon migration pathways, and paleo-stress. At long wavelengths (basin scale), bathymetry is controlled predominantly by isostatic compensation of vertical loads, which include sediment, water and spatial and temporal variations in the thickness and temperature of the crust and lithospheric mantle. Roberts, et al. (2003) present a workflow to account for these loads and derive paleobathymetry by 3-D flexural backstripping. However, to our knowledge, commercially packaged software for flexural backstripping is limited to two dimensions, and 3-D software is limited to Airy isostasy, which does not account for the elastic stiffness of the earth's crust and may, as a result, produce local error of 1km or more. We have developed a 3-D backstripping application that incorporates flexural isostasy, and is implemented in a workflow modeled after Roberts, et al. (2003). The application restores the isostatic components of basin geometry and bathymetry, and may account for the effects of sediment loading (isostasy & compaction), and rift-related subsidence (post- and syn-rift effects of homogeneous or depth-dependent pure-shear stretching models. Effects of dynamic topography, if quantifiable, may be prescribed as a bulk shift after backstripping. Implemented as a plug-in to Gocad, the application is accessible to a broad audience of geoscientists. The flexural isostasy implementation accounts for basin geometry and spatially heterogeneous layer thickness by discretizing each layer as a series of cylindrical loads of varying density and thickness at the nodes of a square grid. The isostatic effect of a single cylindrical load is provided by Brotchie & Silvester (1969) and the effect of multiple loads may be summed linearly. An iterative approach for calculating local water depth accounts for variations in

  12. A new rainbow: angular scattering of the F + H2(v(i) = 0, j(i) = 0) --> FH(v(f) = 3, j(f) = 3) + H reaction.

    PubMed

    Xiahou, Chengkui; Connor, J N L

    2009-12-31

    The angular scattering of a state-to-state chemical reaction contains fundamental information on its dynamics. Often the angular distributions are highly structured and the physical interpretation of this structure is an important and difficult problem. Here, we report a surprising finding for the benchmark F + H(2) --> FH + H reaction, when the product molecule FH is in a vibrational state with quantum number = 3 and a rotational state with quantum number = 3. We demonstrate that the differential cross section (DCS) is an example of (attractive) rainbow scattering, being characterized by an Airy function and its derivative. The rainbow reveals its presence in the DCS by interference with the repulsive (or nearside) scattering producing characteristic diffraction oscillations. The rainbow is broad, which explains why it has not been recognized in the many earlier theoretical and experimental investigations of this reaction. There is an angular region in the DCS where the rainbow dominates, but with the unusual property that the DCS is less intense than in adjoining angular regions. The reaction investigated is F + H(2)(v(i) = 0, j(i) = 0, m(i) = 0) --> FH(v(f) = 3, j(f) = 3, m(f) = 0) + H, where v(i), j(i), m(i) and v(f), j(f), m(f) are initial and final vibrational, rotational and helicity quantum numbers, respectively. The relative translational energy is 0.119 eV. We use rigorous semiclassical (asymptotic) techniques that provide physical insight as well as a mathematically sound and numerically accurate description of the angular scattering. The semiclassical DCS agrees very closely with the exact quantum DCS. The semiclassical scattering amplitude is used to assess the physical effectiveness of the Fuller nearside-farside decomposition for the partial wave series of the F + H(2) reaction, including the effect of one resummation. We also compare the semiclassical and exact quantum nearside, farside, and full local angular momenta and find good agreement

  13. A New Rainbow: Angular Scattering of the F + H2(vi = 0, ji = 0) → FH(vf = 3, jf = 3) + H Reaction

    NASA Astrophysics Data System (ADS)

    Xiahou, Chengkui; Connor, J. N. L.

    2009-11-01

    The angular scattering of a state-to-state chemical reaction contains fundamental information on its dynamics. Often the angular distributions are highly structured and the physical interpretation of this structure is an important and difficult problem. Here, we report a surprising finding for the benchmark F + H2 → FH + H reaction, when the product molecule FH is in a vibrational state with quantum number = 3 and a rotational state with quantum number = 3. We demonstrate that the differential cross section (DCS) is an example of (attractive) rainbow scattering, being characterized by an Airy function and its derivative. The rainbow reveals its presence in the DCS by interference with the repulsive (or nearside) scattering producing characteristic diffraction oscillations. The rainbow is broad, which explains why it has not been recognized in the many earlier theoretical and experimental investigations of this reaction. There is an angular region in the DCS where the rainbow dominates, but with the unusual property that the DCS is less intense than in adjoining angular regions. The reaction investigated is F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 3, mf = 0) + H, where vi, ji, mi and vf, jf, mf are initial and final vibrational, rotational and helicity quantum numbers, respectively. The relative translational energy is 0.119 eV. We use rigorous semiclassical (asymptotic) techniques that provide physical insight as well as a mathematically sound and numerically accurate description of the angular scattering. The semiclassical DCS agrees very closely with the exact quantum DCS. The semiclassical scattering amplitude is used to assess the physical effectiveness of the Fuller nearside-farside decomposition for the partial wave series of the F + H2 reaction, including the effect of one resummation. We also compare the semiclassical and exact quantum nearside, farside, and full local angular momenta and find good agreement. Although our new rainbow has unusual

  14. Topographic map of Mars M 25M RKN

    USGS Publications Warehouse

    ,

    2002-01-01

    the International Astronomical Union (IAU) and the International Association of Geodesy (IAG) (Seidelmann and others, 2002), these inertial coordinates were converted into the planet-fixed coordinates (longitude and latitude) used on this map. These values include the orientation of the north pole of Mars (including the effects of precession), the rotation rate of Mars, and a value for W0 of 176.630°, where W0 is the angle along the equator to the east, between the 0° meridian and the equator's intersection with the celestial equator at the standard epoch J2000.0 (Seidelmann and others, 2002). This value of W0 was chosen (Duxbury and others, 2002) in order to place the 0° meridian through the center of the small (~500 m) crater Airy-0, located in the crater Airy (de Vaucouleurs and others, 1973; Seidelmann and others, 2002). Longitude increases to the east, and latitude is planetocentric as allowed by IAU/IAG standards (Seidelmann and others, 2002) and in accordance with current NASA and USGS standards (Duxbury and others, 2002). A secondary grid (printed in red) has been added to the map as a reference to the west longitude/planetographic latitude system that is also allowed by IAU/IAG standards (Seidelmann and others, 2002) and has also been used for Mars. The figure adopted to compute this secondary grid is an oblate spheroid with an equatorial radius of 3,396.19 km and a polar radius of 3,376.2 km (Duxbury and others, 2002; Seidelmann and others, 2002). MAPPING TECHNIQUES To create the topographic base image, the original DEM produced by the MOLA team in Simple Cylindrical projection with a resolution of 64 pixels per degree was projected into the Mercator and Polar Stereographic pieces. A shaded relief was generated from each DEM with a sun angle of 30° from horizontal and a sun azimuth of 270°, as measured clockwise from north, and a vertical exaggeration of 100%. Illumination is from the west, which follows a long-standing USGS tradition for planetary maps

  15. Color-coded contour map of Mars M 25M RKN

    USGS Publications Warehouse

    ,

    2002-01-01

    the International Astronomical Union (IAU) and the International Association of Geodesy (IAG) (Seidelmann and others, 2002), these inertial coordinates were converted into the planet-fixed coordinates (longitude and latitude) used on this map. These values include the orientation of the north pole of Mars (including the effects of precession), the rotation rate of Mars, and a value for W0 of 176.630°, where W0 is the angle along the equator to the east, between the 0° meridian and the equator's intersection with the celestial equator at the standard epoch J2000.0 (Seidelmann and others, 2002). This value of W0 was chosen (Duxbury and others, 2002) in order to place the 0° meridian through the center of the small (~500 m) crater Airy-0, located in the crater Airy (de Vaucouleurs and others, 1973; Seidelmann and others, 2002). Longitude increases to the east, and latitude is planetocentric as allowed by IAU/IAG standards (Seidelmann and others, 2002) and in accordance with current NASA and USGS standards (Duxbury and others, 2002). A secondary grid (printed in red) has been added to the map as a reference to the west longitude/planetographic latitude system that is also allowed by IAU/IAG standards (Seidelmann and others, 2002) and has also been used for Mars. The figure adopted to compute this secondary grid is an oblate spheroid with an equatorial radius of 3,396.19 km and a polar radius of 3,376.2 km (Duxbury and others, 2002; Seidelmann and others, 2002). MAPPING TECHNIQUES To create the topographic base image, the original DEM produced by the MOLA team in Simple Cylindrical projection with a resolution of 64 pixels per degree was projected into the Mercator and Polar Stereographic pieces. A shaded relief was generated from each DEM with a sun angle of 30° from horizontal and a sun azimuth of 270°, as measured clockwise from north, and a vertical exaggeration of 100%. Illumination is from the west, which follows a long-standing USGS tradition for planetary maps

  16. The influence of organic substances type on the properties of mineral-organic fertilizers

    NASA Astrophysics Data System (ADS)

    Huculak-Mä Czka, Marta; Hoffmann, Krystyna; Hoffmann, Józef

    2010-05-01

    In presented research the lignite coal, peat, poultry droppings and their composts were suggested as a components of mineral-organic fertilizers. Fertility of soil is conditioned by an ability to supply plants with water and nutrients essential to their growth and development. The soil is described as tri-phase system consisting of solid, liquid and gas phase. In solid phase the soil minerals and organic matter can be distinguished. The content of micro-organisms contained in the soil i.e. microfauna and microflora is indispensable for high soil fertility. Nutrients should occur in the forms available for plants in order to obtain high yields of the high quality crops. Organic fertilizing has versatile activity. Increasing contents of humus, providing mineral nutrients included in organic substance and the improvement in physical properties of the soil belong to its main purposes. Due to applying organic fertilizers heavy soils is getting loosen and in consequence become more airy what probably influences stimulation of soil micro-organisms activity. An aqueous as well as sorption capacity of light soils is also increasing, buffer range and the stabilization of the proper level of pH value of the soil, plants are provided with basic macro and micronutrients. Conventional organic fertilizers applied in an arable farms are manure, dung, green manures and composts of different kind. Within compost group the following types can be distinguished: compost from farming, urban wastes, shredded straw, poultry droppings, industrial wastes, bark of coniferous tree etc. Properly developed fertilizer formulas should contain in their composition both mineral as well as organic elements. Such fertilizer should fit its composition to the soil and plant requirements. It should contain organic substance being characterized by a high aqueous and cations sorption capacity, substance undergoing the fast mineralization with the large calcium content. Inorganic substances e.g. bentonites

  17. Constrained optimisation of the parameters for a simple isostatic Moho model

    NASA Astrophysics Data System (ADS)

    Lane, R. J.

    2010-12-01

    In a regional-scale integrated 3D crustal mapping project for the offshore Capel-Faust region, approximately 800 km east of the Australian east coast, gravity data were being used by the Geoscience Australia Remote Eastern Frontiers team to evaluate the viability of an interpretation of the upper crustal sequence that had been derived from a network of 2D seismic lines. A preliminary gravity forward modelling calculation for this sequence using mass density values derived from limited well log and seismic velocity information indicated a long wavelength misfit between this response and the observed data. Rather than draw upon a mathematical function to account for this component of the model response (e.g., low order polynomial), a solution that would lack geological significance, I chose to first investigate whether the gravity response stemming from the density contrast across the crust-mantle boundary (i.e., the Moho) could account for this misfit. The available direct observations to build the Moho surface in the 3D geological map were extremely sparse, however. The 2D seismic data failed to provide any information on the Moho. The only constraints on the depth to this interface within the project area were from 2 seismic refraction soundings. These soundings were in the middle of a set of 11 soundings forming a profile across the Lord Howe Rise. The use of relatively high resolution bathymetry data coupled with an Airy-Heiskanen isostatic model assumption was investigated as a means of defining the form of the Moho surface. The suitability of this isostatic assumption and associated simple model were investigated through optimisation of the model parameters. The Moho depths interpreted from the seismic refraction profile were used as the observations in this exercise. The output parameters were the average depth to the Moho (Tavg), upper crust density (RHOzero), and density contrast across the lower crust and upper mantle (RHOone). The model inputs were a grid

  18. Geodetic And Geological Analysis Of The Tandilia Crust

    NASA Astrophysics Data System (ADS)

    Del Cogliano, D.; Dallasalda, L.

    2007-05-01

    Keywords: Tandilia-Geoid-Anomaly-Collision-Transamazonic The oldest Precambrian rocks of the south-western Gondwana in South America are cropping out in the Río de la Plata craton, it encompasses the western region of Uruguay, the Martín Garcia island and the Tandilia Ranges in the Buenos Aires Province, Argentina. The Tandil Ranges are the oldest region in Argentina (1.8- 2.2Ga); however, some features of the crust still remain unknown. These rocks evolved during two main events:Transamazonian and Brasilian tectonic cycles. The local and regional gravitational effects were analyzed on gravity and height anomalies. The studied are extended on 400 km x 400 km area which includes three geological units: the Tandilia ranges, and the Claromecó and Salado basins. Due the dependence of gravity and height anomalies with the distance, the seconds are more suitable to analyze the crust interior. For this reason a very precise cuasi geoid model was calculated using the point masses method, from gravity and GPS/leveling data. Taking into account the topography (less than 500 m high hills) and the Bouguer anomalies values (| AB | < 35 mGal), the differences between the cuasi geoid and the geoid will are less than 1 cm. In consequence the geoid undulations (N) were used. The EIGEN-CG01C geopotential model allowed to remove the wavelengths of more than 1000 km of the local geoid (Nobs=N-Neigen). This made it possible to analyze the signals attributed to the structure of Tandilia, and the Claromecó and Salado basins influence on it. In Tandilia geophysical, geodetic and geologic analysis allowed to postulate an isostatic compensated Airy model (Nisost) with a 42 km thick crust (2.84 gr/cm3) resting on a 3.24 gr/cm3 density mantel. Residuals geoid distribution (Nobs-Nisost) shows a tendency to the eastern edge of the ranges. This anomaly is interpreted as the presence of an upper crust excess of mass, which, from Olavarría and Azul hills (north of Tandilia) it extends to the

  19. Mert Davies: Pioneer in the Use of Spacecraft to Map Earth and Mars

    NASA Astrophysics Data System (ADS)

    Murray, B.; Augenstein, B.

    2002-12-01

    -based television teams invented the world?s first digital television cameras using primitive slow-scan vidicon sensors in order to overcome the 200-fold greater distance to Mars. Spacecraft mapping and geodesy was initiated by the dual flybys Mariner 6 and 7 of 1969, each carrying a moderately high resolution optical system, but one plagued by the geometric limitations of a vidicon sensor necessarily using imprecise electro-optical imaging internally. He understood clearly that the number of resolution elements on the Mariner 6/7 cameras were too small for good photogrammetric solutions. Each picture contained only 70,000 resolution elements compared to a standard aerial photograph with about a third of a billion of comparable elements. Despite such limitations, Mert was able to exploit especially the far encounter imaging from Mariners 6/7 to create the first Mars surface control net based on topographic features, and to solve for the position of the rotational pole. Under his leadership, the Mariner 9 orbiter mission greatly expanded that coverage, providing the evolving basis of USGS Mars mapping practically until the present. Furthermore, Mert, in conjunction with Harold Masursky and Gerard de Vaucoleurs, established the topocentric reference point for the prime meridian on Mars as the small crater Airy-O, which thus occupies a role analogous to that of Greenwich, England for the Earth. He was to play that historic prime meridian role for nearly all the solid bodies in the Solar System over the ensuing decades as well as a continuing role on the IAU committee that named officially the surface features of Mercury, Venus, Mars, and the satellites of Jupiter, Saturn, Uranus.

  20. Revisiting the crustal evolution of the Pyrenees and the Cantabrian Mountains: inferences from new concepts and data

    NASA Astrophysics Data System (ADS)

    Teixell, Antonio; Labaume, Pierre; Lagabrielle, Yves

    2016-04-01

    The evolution of the Pyrenean-Cantabrian orogenic system at the crustal scale is currently reformulated in the light of new concepts of continental hyperextension and mantle exhumation applied to the preorogenic stages. Major advances are being obtained in the frame of programs as TOPOIBERIA, TOPOEUROPE, GDR Marge, PYRAMID, PYROPE and BRGM-RGF. Crustal models developed in the 80's and 90's after the ECORS reflection profiles depicted a precursor Mesozoic rift basin floored by a strongly thinned, but entirely continental substratum, using Airy isostasy. In the past years, a restatement of the significance of the Pyrenean peridotites and the application of concepts from passive continental margins has led to scenarios of extreme crustal attenuation and mantle exhumation during mid-Cretaceous times. New paleothermometrical databases show a generalized high heat flow during the mid and late Cretaceous that accounts for thermal isostasy and explains the apparent disequilibrium between extreme crustal thinning and not so great synrift sedimentary thickness and paleobathymetry. Models for the evolution of the Pyrenean orogeny must consider feedbacks between the Cretaceous hyperextension and the late Cretaceous to Cenozoic inversion. A key challenge is to identify the ancient continental margins of the European and Iberian plates and their suture. New sequential restorations of the compressional structure to selected steps allow a reassessment of the style of convergence through time. In preorogenic reconstructions, end-member models show a tilted-block structure vs. smoothly thinned (boudinaged) margins, overlain by a sedimentary lid detached in the Triassic evaporites. As for the Pyrenees, different models agree that the early stages of convergence involved the subduction of the peridotite "ocean", which was followed by early collision of the thinned continental margins until the crust regained thickness. Late collision involved northward subduction of decoupled lower