Science.gov

Sample records for airline cockpit crew

  1. Airline Crew Training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The discovery that human error has caused many more airline crashes than mechanical malfunctions led to an increased emphasis on teamwork and coordination in airline flight training programs. Human factors research at Ames Research Center has produced two crew training programs directed toward more effective operations. Cockpit Resource Management (CRM) defines areas like decision making, workload distribution, communication skills, etc. as essential in addressing human error problems. In 1979, a workshop led to the implementation of the CRM program by United Airlines, and later other airlines. In Line Oriented Flight Training (LOFT), crews fly missions in realistic simulators while instructors induce emergency situations requiring crew coordination. This is followed by a self critique. Ames Research Center continues its involvement with these programs.

  2. Mortality Among a Cohort of U.S. Commercial Airline Cockpit Crew

    PubMed Central

    Yong, Lee C.; Pinkerton, Lynne E.; Yiin, James H.; Anderson, Jeri L.; Deddens, James A.

    2015-01-01

    Background We evaluated mortality among 5,964 former U.S. commercial cockpit crew (pilots and flight engineers). The outcomes of a priori interest were non-chronic lymphocytic leukemia, central nervous system (CNS) cancer (including brain), and malignant melanoma. Methods Vital status was ascertained through 2008. Life table and Cox regression analyses were conducted. Cumulative exposure to cosmic radiation was estimated from work history data. Results Compared to the U.S. general population, mortality from all causes, all cancer, and cardiovascular diseases was decreased, but mortality from aircraft accidents was highly elevated. Mortality was elevated for malignant melanoma but not for non-chronic lymphocytic leukemia. CNS cancer mortality increased with an increase in cumulative radiation dose. Conclusions Cockpit crew had a low all-cause, all-cancer, and cardiovascular disease mortality but elevated aircraft accident mortality. Further studies are needed to clarify the risk of CNS and other radiation-associated cancers in relation to cosmic radiation and other workplace exposures. PMID:24700478

  3. Control in the cockpit: crews vs. computers.

    PubMed

    Ropelewski, R

    1996-08-01

    In the no-holds-barred competition between Boeing and Europe's Airbus Industrie for dominance in the world's commercial jet airliner markets, the question of who--or what--is in charge in the cockpit has been a significant selling point. Airbus, which pioneered highly automated flight controls with its A320 narrow-body transport in the late 1980s, likes to emphasize the "protection" features built into the aircraft through those automated systems. Boeing, which employs many of the same concepts in its new 777 twin-engine widebody transport, tends to put more emphasis on crew involvement in the operation of that aircraft. Is there a difference? In fact, the question has broader implications than those involving the marketing battle between Boeing and Airbus. Airlines, aircraft manufacturers, flight training specialists, human factors gurus, and aviation authorities in various countries are struggling with the isse as automation becomes more and more prevalent on passenger and cargo-carrying aircraft around the world.

  4. Procedures in complex systems: the airline cockpit.

    PubMed

    Degani, A; Wiener, E L

    1997-05-01

    In complex human-machine systems, successful operations depend on an elaborate set of procedures which are specified by the operational management of the organization. These procedures indicate to the human operator (in this case the pilot) the manner in which operational management intends to have various tasks done. The intent is to provide guidance to the pilots and to ensure a safe, logical, efficient, and predictable (standardized) means of carrying out the objectives of the job. However, procedures can become a hodge-podge. Inconsistent or illogical procedures may lead to noncompliance by operators. Based on a field study with three major airlines, the authors propose a model for procedure development called the "Four P's": philosophy, policies, procedures, and practices. Using this model as a framework, the authors discuss the intricate issue of designing flight-deck procedures, and propose a conceptual approach for designing any set of procedures. The various factors, both external and internal to the cockpit, that must be considered for procedure design are presented. In particular, the paper addresses the development of procedures for automated cockpits--a decade-long, and highly controversial issue in commercial aviation. Although this paper is based on airline operations, we assume that the principles discussed here are also applicable to other high-risk supervisory control systems, such as space flight, manufacturing process control, nuclear power production, and military operations.

  5. Crew coordination concepts: Continental Airlines CRM training

    NASA Technical Reports Server (NTRS)

    Christian, Darryl; Morgan, Alice

    1987-01-01

    The outline of the crew coordination concepts at Continental airlines is: (1) Present relevant theory: Contained in a pre-work package and in lecture/discussion form during the work course, (2) Discuss case examples: Contained in the pre-work for study and use during the course; and (3) Simulate practice problems: Introduced during the course as the beginning of an ongoing process. These concepts which are designed to address the problem pilots have in understanding the interaction between situations and their own theories of practice are briefly discussed.

  6. Management training for cockpit crews at Piedmont flight

    NASA Technical Reports Server (NTRS)

    Sifford, J. C.

    1984-01-01

    A brief history of Piedmont Airlines' flight operations is presented. A captain-management seminar conducted regularly by Piedmont is discussed. Piedmont's approach to cockpit resource management (CRM) is reviewed, and the relationship of CRM training to other aspects of flight training is addressed. Future leadership research plans and CRM training is considered along with critical training issues.

  7. The impact of cockpit automation on crew coordination and communication. Volume 1: Overview, LOFT evaluations, error severity, and questionnaire data

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.; Chidester, Thomas R.; Kanki, Barbara G.; Palmer, Everett A.; Curry, Renwick E.; Gregorich, Steven E.

    1991-01-01

    The purpose was to examine, jointly, cockpit automation and social processes. Automation was varied by the choice of two radically different versions of the DC-9 series aircraft, the traditional DC-9-30, and the glass cockpit derivative, the MD-88. Airline pilot volunteers flew a mission in the simulator for these aircraft. Results show that the performance differences between the crews of the two aircraft were generally small, but where there were differences, they favored the DC-9. There were no criteria on which the MD-88 crews performed better than the DC-9 crews. Furthermore, DC-9 crews rated their own workload as lower than did the MD-88 pilots. There were no significant differences between the two aircraft types with respect to the severity of errors committed during the Line-Oriented Flight Training (LOFT) flight. The attitude questionnaires provided some interesting insights, but failed to distinguish between DC-9 and MD-88 crews.

  8. Cockpit management attitudes

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1984-01-01

    Distinctions are drawn between personality traits and attitudes. The stability of the personality and the malleability of attitudes are stressed. These concepts are related to pilot performance, especially in the areas of crew coordination and cockpit resource management. Airline pilots were administered a Cockpit Management Attitudes questionnaire; empirical data from that survey are reported and implications of the data for training in crew coordination are discussed.

  9. Risk factors for skin cancer among Finnish airline cabin crew.

    PubMed

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study.

  10. "Checklist Complete". Or Is It? Closing a Task in the Airline Cockpit

    ERIC Educational Resources Information Center

    Nevile, Maurice

    2005-01-01

    For airline pilots, the call of "checklist complete" is officially prescribed talk to claim that the crew's joint conduct of a checklist is over, and the task can be understood as closed. However, very often this call is not the final talk for the task. This paper uses naturally occurring data, transcriptions of pilots interacting on actual…

  11. Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit

    NASA Technical Reports Server (NTRS)

    Rudisill, Marianne

    2000-01-01

    The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.

  12. Radiation exposure of German aircraft crews under the impact of solar cycle 23 and airline business factors.

    PubMed

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf

    2014-12-01

    The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again.

  13. Cancer incidence in airline cabin crew: experience from Sweden

    PubMed Central

    Linnersjo, A; Hammar, N; Dammstrom, B; Johansson, M; Eliasch, H

    2003-01-01

    Aims: To determine the cancer incidence in Swedish cabin crew. Methods: Cancer incidence of cabin crew at the Swedish Scandinavian Airline System (SAS) (2324 women and 632 men) employed from 1957 to 1994 was determined during 1961–96 from the Swedish National Cancer Register. The cancer incidence in cabin crew was compared with that of the general Swedish population by comparing observed and expected number of cases through standardised incidence ratios (SIR). A nested case-control study was performed, including cancer cases diagnosed after 1979 and four controls per case matched by gender, age, and calendar year. Results: The SIR for cancer overall was 1.01 (95% CI 0.78 to 1.24) for women and 1.16 (95% CI 0.76 to 1.55) for men. Both men and women had an increased incidence of malignant melanoma of the skin (SIR 2.18 and 3.66 respectively) and men of non-melanoma skin cancer (SIR 4.42). Female cabin attendants had a non-significant increase of breast cancer (SIR 1.30; 95% CI 0.85 to 1.74). No clear associations were found between length of employment or cumulative block hours and cancer incidence. Conclusions: Swedish cabin crew had an overall cancer incidence similar to that of the general population. An increased incidence of malignant melanoma and non-melanoma skin cancer may be associated with exposure to UV radiation, either at work or outside work. An increased risk of breast cancer in female cabin crew is consistent with our results and may in part be due to differences in reproductive history. PMID:14573710

  14. Group-level issues in the design and training of cockpit crews

    NASA Technical Reports Server (NTRS)

    Hackman, J. Richard

    1987-01-01

    Cockpit crews always operate in an organizational context, and the transactions between the crew and representatives of that context (e.g., organizational managers, air traffic controllers) are consequential for any crew's performance. For a complete understanding of crew performance a look beyond the traditional focus on individual pilots is provided to see how team- and organization-level factors can enhance (or impede) the ability of even well-trained individuals to work together effectively. This way of thinking about cockpit crews (that is, viewing them as teams that operate in organizations) offers some potentially useful avenues for thinking about next steps in the development of CRM training programs. Those possibilities are explored, emphasizing how they can enrich (not replace) individually-focussed CRM training.

  15. Human factors in cockpit automation: A field study of flight crew transition

    NASA Technical Reports Server (NTRS)

    Wiener, E. L.

    1985-01-01

    The factors which affected two groups of airline pilots in the transition from traditional airline cockpits to a highly automated version were studied. All pilots were highly experienced in traditional models of the McDonnell-Douglas DC-9 prior to their transition to the more automated DC-9-80. Specific features of the new aircraft, particularly the digital flight guidance system (DFGS) and other automatic features such as the autothrottle system (ATS), autobrake, and digital display were studied. Particular attention was paid to the first 200 hours of line flying experience in the new aircraft, and the difficulties that some pilots found in adapting to the new systems during this initial operating period. Efforts to prevent skill loss from automation, training methods, traditional human factors issues, and general views of the pilots toward cockpit automation are discussed.

  16. Whither CRM? Future directions in Crew Resource Management training in the cockpit and elsewhere

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1993-01-01

    The past decade has shown worldwide adoption of human factors training in civil aviation, now known as Crew Resource Management (CRM). The shift in name from cockpit to crew reflects a growing trend to extend the training to other components of the aviation system including flight attendants, dispatchers, maintenance personnel, and Air Traffic Controllers. The paper reports findings and new directions in research into human factors.

  17. Cockpit Resource Management (CRM): A tool for improved flight safety (United Airlines CRM training)

    NASA Technical Reports Server (NTRS)

    Carroll, J. E.; Taggart, William R.

    1987-01-01

    The approach and methodology used in developing cockpit management skills is effective because of the following features: (1) A comparative method of learning is used enabling crewmembers to study different forms of teamwork. (2) The learning comes about as a result of crewmembers learning from one another instead of from an expert instructor. (3) Key elements of cockpit teamwork and effective management are studied so that crewmembers can determine how these elements can improve safety and problem solving. (4) Critique among the crewmembers themselves rather than from outsiders is used as a common focusing point for crews to provide feedback to one another on how each can be a more effective crewmember. (5) The training is continuous in the sense that it becomes part of recurrent, upgrade, and other forms of crewmember training and development. And (6) the training results in sound and genuine insights that come about through solid education as opposed to tutoring, coaching, or telling crewmembers how to behave more effectively.

  18. Cabin crew stress factors examined.

    PubMed

    Barayan, O S

    1991-05-01

    The impact of reduced cockpit crew on the cabin crew in commercial airlines is examined. One hundred cabin crew members participated in a study to determine what stressors are present in contemporary transport aircraft, the extent of differences in rating context-related and task-related stressors, and the effect of peak versus normal periods of duty time on stress factors. Results indicate that under peak period conditions, context-related factors are more stressful than task-related factors. Recommendations to alleviate cabin crew stress factors include training to maximize crew knowledge and abilities, elevate cabin crew to the same status as cockpit crew, improve the cabin crew certification program, and expose cabin crew to cockpit crew procedures to foster better communication and enhance safety.

  19. Investigation of Minimum Sized Low-Profile Cockpits (MSLPC) and Crew Escape System Integration.

    DTIC Science & Technology

    1979-09-17

    GLOSSARY OF TERMINOLOGY ABBREVIATIONS, SYMBOLS, a ACRONYMS AMP Aircraft maneuvering parameter ATS Air-to-surface technology evaluation & integration study ...afterburner, if any Lb FSLGVOL Fuselage volume Cubic feet NOAC Number of operational aircraft Integer i’ xv 1. INTRODUCTION Recent study efforts to define...Profile Cockpit (MSLPC) concept and the integra- tion of crew escape system concepts. This study determined the attendant per- formance and effectiveness

  20. Individual differences in airline captains' personalities, communication strategies, and crew performance

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith

    1991-01-01

    Aircrew effectiveness in coping with emergencies has been linked to captain's personality profile. The present study analyzed cockpit communication during simulated flight to examine the relation between captains' discourse strategies, personality profiles, and crew performance. Positive Instrumental/Expressive captains and Instrumental-Negative captains used very similar communication strategies and their crews made few errors. Their talk was distinguished by high levels of planning and strategizing, gathering information, predicting/alerting, and explaining, especially during the emergency flight phase. Negative-Expressive captains talked less overall, and engaged in little problem solving talk, even during emergencies. Their crews made many errors. Findings support the theory that high crew performance results when captains use language to build shared mental models for problem situations.

  1. Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization.

    PubMed

    Chung, Sai Ho; Ma, Hoi Lam; Chan, Hing Kai

    2016-12-09

    This article concerns the assignment of buffer time between two connected flights and the number of reserve crews in crew pairing to mitigate flight disruption due to flight arrival delay. Insufficient crew members for a flight will lead to flight disruptions such as delays or cancellations. In reality, most of these disruption cases are due to arrival delays of the previous flights. To tackle this problem, many research studies have examined the assignment method based on the historical flight arrival delay data of the concerned flights. However, flight arrival delays can be triggered by numerous factors. Accordingly, this article proposes a new forecasting approach using a cascade neural network, which considers a massive amount of historical flight arrival and departure data. The approach also incorporates learning ability so that unknown relationships behind the data can be revealed. Based on the expected flight arrival delay, the buffer time can be determined and a new dynamic reserve crew strategy can then be used to determine the required number of reserve crews. Numerical experiments are carried out based on one year of flight data obtained from 112 airports around the world. The results demonstrate that by predicting the flight departure delay as the input for the prediction of the flight arrival delay, the prediction accuracy can be increased. Moreover, by using the new dynamic reserve crew strategy, the total crew cost can be reduced. This significantly benefits airlines in flight schedule stability and cost saving in the current big data era.

  2. Flight Training Technology for Regional/Commuter Airline Operations: Regional Airline Association/NASA Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Lee, A. T. (Editor); Lauber, J. K. (Editor)

    1984-01-01

    Programs which have been developed for training commercial airline pilots and flight crews are discussed. The concept of cockpit resource management and the concomitant issues of management techniques, interpersonal communication, psychological factors, and flight stress are addressed. Training devices and simulation techniques are reported.

  3. The Risk of Melanoma in Airline Pilots and Cabin Crew A Meta-analysis

    PubMed Central

    Sanlorenzo, Martina; Wehner, Mackenzie R.; Linos, Eleni; Kornak, John; Kainz, Wolfgang; Posch, Christian; Vujic, Igor; Johnston, Katia; Gho, Deborah; Monico, Gabriela; McGrath, James T.; EE; Osella-Abate, Simona; Quaglino, Pietro; Cleaver, James E.; Ortiz-Urda, Susana

    2015-01-01

    Importance Airline pilots and cabin crew are occupationally exposed to higher levels of cosmic and UV radiation than the general population, but their risk of developing melanoma is not yet established. Objective To assess the risk of melanoma in pilots and airline crew. Data Sources PubMed (1966 to October 30, 2013), Web of Science (1898 to January 27, 2014), and Scopus (1823 to January 27, 2014). Study Selection All studies were included that reported a standardized incidence ratio (SIR), standardized mortality ratio (SMR), or data on expected and observed cases of melanoma or death caused by melanoma that could be used to calculate an SIR or SMR in any flight-based occupation. Data Extraction and Synthesis Primary random-effect meta-analyses were used to summarize SIR and SMR for melanoma in any flight-based occupation. Heterogeneity was assessed using the χ2 test and I2 statistic. To assess the potential bias of small studies, we used funnel plots, the Begg rank correlation test, and the Egger weighted linear regression test. Main Outcomes and Measures Summary SIR and SMR of melanoma in pilots and cabin crew. Results Of the 3527 citations retrieved, 19 studies were included, with more than 266 431 participants. The overall summary SIR of participants in any flight-based occupation was 2.21 (95% CI, 1.76-2.77; P < .001; 14 records). The summary SIR for pilots was 2.22 (95% CI, 1.67-2.93; P = .001; 12 records). The summary SIR for cabin crew was 2.09 (95% CI, 1.67-2.62; P = .45; 2 records). The overall summary SMR of participants in any flight-based occupation was 1.42 (95% CI, 0.89-2.26; P = .002; 6 records). The summary SMR for pilots was 1.83 (95% CI, 1.27-2.63, P = .33; 4 records). The summary SMR for cabin crew was 0.90 (95% CI, 0.80-1.01; P = .97; 2 records). Conclusions and Relevance Pilots and cabin crew have approximately twice the incidence of melanoma compared with the general population. Further research on mechanisms and optimal occupational

  4. Human factors of advanced technology (glass cockpit) transport aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    A three-year study of airline crews at two U.S. airlines who were flying an advanced technology aircraft, the Boeing 757 is discussed. The opinions and experiences of these pilots as they view the advanced, automated features of this aircraft, and contrast them with previous models they have flown are discussed. Training for advanced automation; (2) cockpit errors and error reduction; (3) management of cockpit workload; and (4) general attitudes toward cockpit automation are emphasized. The limitations of the air traffic control (ATC) system on the ability to utilize the advanced features of the new aircraft are discussed. In general the pilots are enthusiastic about flying an advanced technology aircraft, but they express mixed feelings about the impact of automation on workload, crew errors, and ability to manage the flight.

  5. The effects of Crew Resource Mangement (CRM) training in airline maintenance: Results following three years' experience

    NASA Technical Reports Server (NTRS)

    Taylor, J. C.; Robertson, M. M.

    1995-01-01

    This report describes three years' evaluation of the effects of one airline's Crew Resources Management (CRM) training operation for maintenance. This evaluation focuses on the post-training attitudes of maintenance managers' and technical support professionals, their reported behaviors, and the safety, efficiency and dependable maintenance performance of their units. The results reveal a strong positive effect of the training. The overall program represents the use of CRM training as a long-term commitment to improving performance through effective communication at all levels in airline maintenance operations. The initial findings described in our previous progress reports are reinforced and elaborated here. The current results benefit from the entire pre-post training survey, which now represents total attendance of all managers and staff professionals. Additionally there are now full results from the two-month, six-month, and 12-month follow-up questionnaires, together with as many as 33 months of post-training performance data, using several indicators. In this present report, we examine participants' attitudes, their reported behaviors following the training, the performance of their work units, and the relationships among these variables. Attitudes include those measured immediately before and after the training as well as participants' attitudes months after their training. Performance includes measures, by work units, of on-time flight departures, on-schedule maintenance releases, occupational and aircraft safety, and efficient labor costs. We report changes in these performance measures following training, as well their relationships with the training participants' attitudes. Highlights of results from this training program include increased safety and improved costs associated with positive attitudes about the use of more assertive communication, and the improved management of stress. Improved on-time performance is also related to those improved

  6. Crew Factors in Flight Operations. 11; A Survey of Fatigue Factors in Regional Airline Operations

    NASA Technical Reports Server (NTRS)

    Co, Elizabeth L.; Gregory, Kevin B.; Johnson, Julie M.; Rosekind, Mark R.

    1999-01-01

    This report is the eleventh in a series on the physiological effects of flight operations on flight crews. A 119-question survey was completed by 1,424 flight crewmembers from 26 regional carriers to identify factors contributing to fatigue in regional airline operations. Eighty-nine percent of crewmembers identified fatigue as a moderate or serious concern with 88% reporting that it was a common occurrence and 92% reporting that, when it occurs, fatigue represents a moderate or serious safety issue. However, 86% reported they received no company training addressing fatigue issues. Identified fatigue factors included multiple flight segments, scheduling considerations, varying regulations, and others. The two most commonly cited fatigue factors regarded flying multiple (more than four) segments. Scheduling factors accounted for nine of the ten most common recommendations to reduce fatigue in regional operations. Differing requirements among regulations were cited as contributing to fatigue. Other identified factors were the flight deck environment, automation, and diet. The data suggested specific recommendations, including education of industry personnel about fatigue issues and examination of scheduling practices. Education plays a critical role in any effort to address fatigue. Analyzing scheduling practices and identifying potential improvements may result in reduced fatigue as well as other benefits to operations.

  7. Development of a systems theoretical procedure for evaluation of the work organization of the cockpit crew of a civil transport airplane

    NASA Technical Reports Server (NTRS)

    Fricke, M.; Vees, C.

    1983-01-01

    To achieve optimum design for the man machine interface with aircraft, a description of the interaction and work organization of the cockpit crew is needed. The development of system procedure to evaluate the work organization of pilots while structuring the work process is examined. Statistical data are needed to simulate sequences of pilot actions on the computer. Investigations of computer simulation and applicability for evaluation of crew concepts are discussed.

  8. Evaluating the effectiveness of cockpit resource management training

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1989-01-01

    The concept of providing flight crews with intensive training in crew coordination and interpersonal skills (cockpit resource management training - CRM) is outlined with emphasis on full mission simulator training (line-oriented flight training - LOFT). Findings from several airlines that have instituted CRM and LOFT are summarized. Four types of criteria used for evaluating CRM programs: observer ratings of crew behavior, measures of attitudes regarding cockpit management, self-reports by participants on the value of the training, and case studies of CRM-related incidents and accidents are covered. Attention is focused on ratings of the performance of crews during line flights and during simulator sessions conducted as a part of LOFT. A boomerang effect - the emergence of a subgroup that has changed the attitudes in the opposite direction from that desired is emphasized.

  9. Crew factors in flight operations 9: Effects of planned cockpit rest on crew performance and alertness in long-haul operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Graeber, R. Curtis; Dinges, David F.; Connell, Linda J.; Rountree, Michael S.; Spinweber, Cheryl L.; Gillen, Kelly A.

    1994-01-01

    This study examined the effectiveness of a planned cockpit rest period to improve alertness and performance in long-haul flight operations. The Rest Group (12 crew members) was allowed a planned 40 minute rest period during the low workload, cruise portion of the flight, while the No-Rest Group (9 crew members) had a 40 minute planned control period when they maintained usual flight activities. Measures used in the study included continuous ambulatory recordings of brain wave and eye movement activity, a reaction time/vigilance task, a wrist activity monitor, in-flight fatigue and alertness ratings, a daily log for noting sleep periods, meals, exercise, flight and duty periods, and the NASA Background Questionnaire. The Rest Group pilots slept on 93 percent of the opportunities, falling asleep in 5.6 minutes and sleeping for 25.8 minutes. This nap was associated with improved physiological alertness and performance compared to the No-Rest Group. The benefits of the nap were observed through the critical descent and landing phases of flight. The nap did not affect layover sleep or the cumulative sleep debt. The nap procedures were implemented with minimal disruption to usual flight operations and there were no reported or identified concerns regarding safety.

  10. First Encounters of the Close Kind: The Formation Process of Airline Flight Crews

    DTIC Science & Technology

    1987-01-01

    Everyday there are over 16,500 major commercial airline flights (DC-9, 737 or larger) departing in the United States (G. Mercer, personal communication...ten persons . Yet despite these design and regulatory imperative, the majority of behavioral research in the airline industry has been directed at topics...Flight 90 came back down, hitting the 14th Street Bridge before it crashed into the ice covered Potomac River, killing 74 persons on the aircraft and

  11. 29 CFR 825.802 - Special rules for airline flight crew employees, calculation of leave.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flight crew employee needs to take FMLA leave for a two-hour physical therapy appointment, the employer... flight crew employees are subject to § 825.205(a)(2), the physical impossibility provision....

  12. 29 CFR 825.802 - Special rules for airline flight crew employees, calculation of leave.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flight crew employee needs to take FMLA leave for a two-hour physical therapy appointment, the employer... flight crew employees are subject to § 825.205(a)(2), the physical impossibility provision....

  13. Cockpit resource management training

    NASA Technical Reports Server (NTRS)

    Yocum, M.; Foushee, C.

    1984-01-01

    Cockpit resource management which is a multifaceted concept is outlined. The system involves the effective coordination of many resources: aircraft systems, company, air traffic control, equipment, navigational aids, documents, and manuals. The main concept, however, is group interaction. Problems which arise from lack of coordination, decision making, and lack of communication are pointed out. Implementation by the regional airline industry of cockpit resource management, designed to deal with human interactions problems in the most cost effective manner, is discussed.

  14. Integrated cockpit for A-129

    NASA Technical Reports Server (NTRS)

    Reina, F.; Gracia, J. J.; Koth, B. W.

    1982-01-01

    Weight, size, and mission requirements for the A-129 mandated an integrated system approach for the crew/cockpit interface design. Instead of the usual multitude of cockpit controls, indicators, gauges, and lights, the primary crew interface is a single multifunction keyboard and one or more multifunction CRT display units. This cockpit design approach imposed unusual constraints upon the system architecture to overcome the inherent information access limitations of a data input/output window that was restricted by the available space. The conceptual approach and resulting design of the A-129 cockpit with the intent to enhance the development of cockpit standardization are described.

  15. Cockpit Resource Management (CRM) training in the 1550th combat crew training wing

    NASA Technical Reports Server (NTRS)

    Fiedler, Michael T.

    1987-01-01

    The training program the 1550th Combat Crew Training Wing at Kirtland Air Force Base, New Mexico, implemented in September 1985 is discussed. The program is called Aircrew Coordination Training (ACT), and it is designed specifically to help aircrew members work more effectively as a team in their respective aircraft and hopefully to reduce human factors-related accidents. The scope of the 1550th CCTW's training responsibilities is described, the structure of the program, along with a brief look at the content of the academic part of the course. Then the Mission-Oriented Simulator Training (MOST) program is discussed; a program similar to the Line Oriented Flight Training (LOFT) programs. Finally, the future plans for the Aircrew Coordination Training Program at the 1550th is discussed.

  16. The effects of Crew Resource Management (CRM) training in airline maintenance: Results following three year's experience

    NASA Technical Reports Server (NTRS)

    Taylor, J. C.; Robertson, M. M.

    1995-01-01

    An airline maintenance department undertook a CRM training program to change its safety and operating culture. In 2 1/2 years this airline trained 2200 management staff and salaried professionals. Participants completed attitude surveys immediately before and after the training, as well as two months, six months, and one year afterward. On-site interviews were conducted to test and confirm the survey results. Comparing managers' attitudes immediately after their training with their pretraining attitudes showed significant improvement for three attitudes. A fourth attitude, assertiveness, improved significantly above the pretraining levels two months after training. The expected effect of the training on all four attitude scales did not change significantly thereafter. Participants' self-reported behaviors and interview comments confirmed their shift from passive to more active behaviors over time. Safety, efficiency, and dependability performance were measured before the onset of the training and for some 30 months afterward. Associations with subsequent performance were strongest with positive attitudes about sharing command (participation), assertiveness, and stress management when those attitudes were measured 2 and 12 months after the training. The two month follow-up survey results were especially strong and indicate that active behaviors learned from the CRM training consolidate and strengthen in the months immediately following training.

  17. Cockpit napping

    NASA Technical Reports Server (NTRS)

    Graeber, R. Curtis; Rosekind, Mark R.; Connell, Linda J.; Dinges, David F.

    1990-01-01

    The results of a NASA-sponsored study examining the effectiveness of a brief, preplanned cockpit rest period to improve pilot alertness and performance in nonaugmented long-haul flight operations are discussed. Four regularly scheduled trans-Pacific flight legs were studied. The shortest flight legs were about 7 h and the longest about 9.5 h, with duty periods averaging about 11 h and layovers about 25 h. Three-person B747 crews were divided randomly into two volunteer pilot groups. These crews were nonaugmented, and therefore no relief pilots were available. The rest group, consisting of four crews, was allowed a 40 min opportunity to rest during the overwater cruise portion of the flight. On a preplanned, rotating basis, individual crew members were allowed to nap. It is concluded that a preplanned cockpit nap is associated with significantly better behavioral performance and higher levels of physiological alertness and that this can be accomplished without disrupting normal flight operations or compromising safety.

  18. Effects of checklist interface on non-verbal crew communications

    NASA Technical Reports Server (NTRS)

    Segal, Leon D.

    1994-01-01

    The investigation looked at the effects of the spatial layout and functionality of cockpit displays and controls on crew communication. Specifically, the study focused on the intra-cockpit crew interaction, and subsequent task performance, of airline pilots flying different configurations of a new electronic checklist, designed and tested in a high-fidelity simulator at NASA Ames Research Center. The first part of this proposal establishes the theoretical background for the assumptions underlying the research, suggesting that in the context of the interaction between a multi-operator crew and a machine, the design and configuration of the interface will affect interactions between individual operators and the machine, and subsequently, the interaction between operators. In view of the latest trends in cockpit interface design and flight-deck technology, in particular, the centralization of displays and controls, the introduction identifies certain problems associated with these modern designs and suggests specific design issues to which the expected results could be applied. A detailed research program and methodology is outlined and the results are described and discussed. Overall, differences in cockpit design were shown to impact the activity within the cockpit, including interactions between pilots and aircraft and the cooperative interactions between pilots.

  19. Automated cockpits special report, part 2.

    PubMed

    1995-02-06

    Part two of this report includes the following articles: Studies Highlight Automation 'Surprises'; Pilots Union Presses for Improved Displays; United Training Stresses Cockpit Discipline; Former NASA Ames Experts Hold Key Airline Posts; Aiding Mode Awareness; Military Cockpits Keep Autopilot Interface Simple; Gulfstream Using Vertical Profile Display; and, Data Recorders Crucial to State-of-art Crash Probes.

  20. Synthetic Vision for Airliners and General Aviaion

    NASA Technical Reports Server (NTRS)

    1999-01-01

    'Video News Release'(?) for AWIN, the Aviation Weather Information Network. Includes animations. Narration: Bad weather and poor visibility can be potentially hazardous to aircraft and flight crews. Both can contribute to deadly accidents. The NASA Aviation Safety Program is working on innovative cockpit technologies that could help pilots avoid flying into rough weather, terrain or obstacles. Aviation Weather Information (AWIN) - a 'weather channel' in the sky - would give flight crews, air-traffic controllers and airline dispatchers timely moving map displays to help them make better re-routing decisions. 'Synthetic vision' would offer pilots a clear electronic picture including topography, traffic, even airport runways. Sensors, sattellites and terrain databases would create a kind of virtual-reality of what's outside - no matter what the weather or time of day. NASA isn't working alone to make air travel safer, it is teamed with the Federal Aviation Administration (FAA) and industry to develop new systems for airliners and general aviation aircraft. Their partnership is expected to make a difference worldwide and ensure many safe and smooth landings

  1. Jet transport flight operations using cockpit display of traffic information during instrument meteorological conditions: Simulation evaluation

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Wells, Douglas C.

    1986-01-01

    A simulation study was undertaken to evaluate flight operations using cockpit display of traffic information (CDTI) in a conventional jet transport aircraft. Eight two-person airline flight crews participated as test subjects flying simulated terminal area approach and departure operations under instrument meteorological conditions (IMC). A fixed-base cockpit simulator configured with a full complement of conventional electromechanical instrumentation to permit full workload operations was utilized. Traffic information was displayed on a color cathode-ray tube (CRT) mounted above the throttle quadrant in the typical weather radar location. A transparent touchpanel overlay was utilized for pilot interface with the display. Air traffic control (ATC) simulation included an experienced controller and full partyline radio environment for evaluation of pilot-controlled self-separation and traffic situation monitoring tasks. Results of the study revealed the CDTI to be well received by the test subjects as a useful system which could be incorporated into an existing jet transport cockpit. Crew coordination and consistent operating procedures were identified as important considerations in operational implementation of traffic displays. Cockpit workload was increased with active CDTI tasks. However, all test subjects rated the increase to be acceptable.

  2. The Advanced Technology Crew Station: Development and Validation of a Workload Assessment Technique for Cockpit Function Allocation

    DTIC Science & Technology

    1993-07-30

    Plaza III Bethlehem Pike At Sheble Lane ’- r4 Spring House , PA 19477 David Cohen and Lt. Meghan Carmody IEL Ec-L7 Air Vehicle and Crew Systems Technology...Department (Code 6021) NAVAL AIR WARFARE CENTER 4 AIRCRAFT DIVISION WARMINSTER P.O. Box 5152 Warminster, PA 18974-0591 30 JULY 1993 FINAL REPORT • 94...Technology Department (Code 60B) NAVAL AIR WARFARE CENTER AIRCRAFT DIVISION WARMINSTER P.O. Box 5152 Warmlnster, PA 18974-0591 9 4 5 20 184 NOTICES REPORT

  3. The development and implementation of cockpit resource management in UAL recurrent training

    NASA Technical Reports Server (NTRS)

    Shroyer, David H.

    1987-01-01

    Line Oriented Flight Training (LOFT) for United Airlines started in 1976. At that time it was basically no more than a line-simulated training function conducted in a full-mission simulator with no attention or stress on its human factor content. Very soon after the implementation of the LOFT program concerns were voiced about certain crew behavioral situations they were observing in the flight crew's execution of cockpit duties. These duties involved emergency procedures as well as irregular and normal procedures and situations. It was evident that new information was surfacing concerning crew interaction, or its lack thereof, in the cockpit and its effect on satisfactory performance. These observations naturally raised the question of how this information translated into the safety of aircraft operations. A training system had to be repetitive, the crew interactive, and the training had to be conducted under the crew concept. The foundation had to have two other factors: (1) it was necessary to have adequate human factor content, and (2) an advanced state-of-the-art simulator and appropriate electronic devices were required. These concepts are further discussed.

  4. Checklists and Monitoring in the Cockpit: Why Crucial Defenses Sometimes Fail

    NASA Technical Reports Server (NTRS)

    Dismukes, R. Key; Berman, Ben

    2010-01-01

    Checklists and monitoring are two essential defenses against equipment failures and pilot errors. Problems with checklist use and pilots failures to monitor adequately have a long history in aviation accidents. This study was conducted to explore why checklists and monitoring sometimes fail to catch errors and equipment malfunctions as intended. Flight crew procedures were observed from the cockpit jumpseat during normal airline operations in order to: 1) collect data on monitoring and checklist use in cockpit operations in typical flight conditions; 2) provide a plausible cognitive account of why deviations from formal checklist and monitoring procedures sometimes occur; 3) lay a foundation for identifying ways to reduce vulnerability to inadvertent checklist and monitoring errors; 4) compare checklist and monitoring execution in normal flights with performance issues uncovered in accident investigations; and 5) suggest ways to improve the effectiveness of checklists and monitoring. Cognitive explanations for deviations from prescribed procedures are provided, along with suggestions for countermeasures for vulnerability to error.

  5. Evaluating cockpit resource management training

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.; Wilhelm, John A.

    1987-01-01

    The determinants of effective or ineffective cockpit resurce management and the difficulties these multiple factors pose for validation of the effectiveness of cockpit resource management (CRM) training are discussed. A model of an evaluation design that may be applied to this type of training is presented. Concept validation is discussed as well as criteria for judging crew proficiency. Attention is given to accidents and proficiency checks, incidents and repeated maneuvers, attitude measuremet, and self-report evauation of training.

  6. The advancement of a new human factors report--'The Unique Report'--facilitating flight crew auditing of performance/operations as part of an airline's safety management system.

    PubMed

    Leva, M C; Cahill, J; Kay, A M; Losa, G; McDonald, N

    2010-02-01

    This paper presents the findings of research relating to the specification of a new human factors report, conducted as part of the work requirements for the Human Integration into the Lifecycle of Aviation Systems project, sponsored by the European Commission. Specifically, it describes the proposed concept for a unique report, which will form the basis for all operational and safety reports completed by flight crew. This includes all mandatory and optional reports. Critically, this form is central to the advancement of improved processes and technology tools, supporting airline performance management, safety management, organisational learning and knowledge integration/information-sharing activities. Specifically, this paper describes the background to the development of this reporting form, the logic and contents of this form and how reporting data will be made use of by airline personnel. This includes a description of the proposed intelligent planning process and the associated intelligent flight plan concept, which makes use of airline operational and safety analyses information. Primarily, this new reporting form has been developed in collaboration with a major Spanish airline. In addition, it has involved research with five other airlines. Overall, this has involved extensive field research, collaborative prototyping and evaluation of new reports/flight plan concepts and a number of evaluation activities. Participants have included both operational and management personnel, across different airline flight operations processes. Statement of Relevance: This paper presents the development of a reporting concept outlined through field research and collaborative prototyping within an airline. The resulting reporting function, embedded in the journey log compiled at the end of each flight, aims at enabling employees to audit the operations of the company they work for.

  7. The Effects of Advanced 'Glass Cockpit' Displayed Flight Instrumentation on In-flight Pilot Decision Making

    NASA Astrophysics Data System (ADS)

    Steigerwald, John

    The Cognitive Continuum Theory (CCT) was first proposed 25 years ago to explain the relationship between intuition and analytical decision making processes. In order for aircraft pilots to make these analytical and intuitive decisions, they obtain information from various instruments within the cockpit of the aircraft. Advanced instrumentation is used to provide a broad array of information about the aircraft condition and flight situation to aid the flight crew in making effective decisions. The problem addressed is that advanced instrumentation has not improved the pilot decision making in modern aircraft. Because making a decision is dependent upon the information available, this experimental quantitative study sought to determine how well pilots organize and interpret information obtained from various cockpit instrumentation displays when under time pressure. The population for this study was the students, flight instructors, and aviation faculty at the Middle Georgia State College School of Aviation campus in Eastman, Georgia. The sample was comprised of two groups of 90 individuals (45 in each group) in various stages of pilot licensure from student pilot to airline transport pilot (ATP). The ages ranged from 18 to 55 years old. There was a statistically significant relationship at the p < .05 level in the ability of the participants to organize and interpret information between the advanced glass cockpit instrumentation and the traditional cockpit instrumentation. It is recommended that the industry explore technological solutions toward creating cockpit instrumentation that could match the type of information display to the type of decision making scenario in order to aid pilots in making decisions that will result in better organization of information. Understanding the relationship between the intuitive and analytical decisions that pilots make and the information source they use to make those decisions will aid engineers in the design of instrumentation

  8. AMLCD cockpit: promise and payoffs

    NASA Astrophysics Data System (ADS)

    Snow, Michael P.; Jackson, Timothy W.; Meyer, Frederick M.; Reising, John M.; Hopper, Darrel G.

    1999-08-01

    optical characterization of the AMLCDs used in this simulator and the cockpit design are described. Display formats under consideration for test in this cockpit are described together with some of the basic human factors engineering issues involved. Studies conducted in this cockpit will be part of an ongoing joint effort of the hardware-focused aerospace displays team and the pilot-focused human factors team in the Air Force Research Laboratory's Crew System Interface Division. The objective of these studies is to ascertain the payoffs of the large AMLCD promise in combat cockpits.

  9. Human performance in the modern cockpit

    NASA Technical Reports Server (NTRS)

    Dismukes, R. K.; Cohen, M. M.

    1992-01-01

    This panel was organized by the Aerospace Human Factors Committee to illustrate behavioral research on the perceptual, cognitive, and group processes that determine crew effectiveness in modern cockpits. Crew reactions to the introduction of highly automated systems in the cockpit will be reported on. Automation can improve operational capabilities and efficiency and can reduce some types of human error, but may also introduce entirely new opportunities for error. The problem solving and decision making strategies used by crews led by captains with various personality profiles will be discussed. Also presented will be computational approaches to modeling the cognitive demands of cockpit operations and the cognitive capabilities and limitations of crew members. Factors contributing to aircrew deviations from standard operating procedures and misuse of checklist, often leading to violations, incidents, or accidents will be examined. The mechanisms of visual perception pilots use in aircraft control and the implications of these mechanisms for effective design of visual displays will be discussed.

  10. Optimum culture in the cockpit

    NASA Technical Reports Server (NTRS)

    Yamamori, Hisaaki

    1987-01-01

    Even with the same program and objectives, if the culture is different, there will be different approaches to the goal of flight safety. However, the cockpit environment is culture-free so it is not as important to think of a person's cultural background as it is to think of the approach to the goal of ultimate safety. Crew members can look at their individual safety goals and compare them to their own performance to see if their behavior matches their own safety goals. The cockpit environment must be culture-free in order to obtain the ultimate safety goal. One must first realize how their culture affects their behavior before they can begin to change their attitude and actions in the cockpit.

  11. Food irradiation and airline catering

    SciTech Connect

    Preston, F.S.

    1988-04-01

    Food poisoning from contaminated airline food can produce serious consequences for airline crew and passengers and can hazard flight. While irradiation of certain foodstuffs has been practised in a number of countries for some years, application of the process has not been made to complete meals. This paper considers the advantages, technical considerations, costs and possible application to airline meals. In addition, the need to educate the public in the advantages of the process in the wake of incidents such as Chernobyl is discussed.

  12. Development and Demonstration of a Prototype Free Flight Cockpit Display of Traffic Information

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Battiste, Vernol; Delzell, Susanne; Holland, Sheila; Belcher, Sean; Jordan, Kevin

    2003-01-01

    Two versions of a prototype Free Flight cockpit situational display (Basic and Enhanced) were examined in a simulation at the NASA Ames Research Center. Both displays presented a display of traffic out to a range of 120 NM, and an alert when the automation detected a substantial danger of losing separation with another aircraft. The task for the crews was to detect and resolve threats to separation posed by intruder aircraft. An Enhanced version of the display was also examined. It incorporated two additional conflict alerting levels and tools to aid in trajectory prediction and path planning. Ten crews from a major airline participated in the study. Performance analyses and pilot debriefings showed that the Enhanced display was preferred, and that minimal separation between the intruder and the ownship was larger with the Enhanced display. In addition, the additional information on the Enhanced display did not lead crews to engage in more maneuvering. Instead an opposite trend was indicated. Finally, crews using the Enhanced display responded more proactively, tending to resolve alerts earlier.

  13. Cosmic radiation and mortality from cancer among male German airline pilots: extended cohort follow-up.

    PubMed

    Hammer, Gaël Paul; Blettner, Maria; Langner, Ingo; Zeeb, Hajo

    2012-06-01

    Commercial airline pilots are exposed to cosmic radiation and other specific occupational factors, potentially leading to increased cancer mortality. This was analysed in a cohort of 6,000 German cockpit crew members. A mortality follow-up for the years 1960-2004 was performed and occupational and dosimetry data were collected for this period. 405 deaths, including 127 cancer deaths, occurred in the cohort. The mortality from all causes and all cancers was significantly lower than in the German population. Total mortality decreased with increasing radiation doses (rate ratio (RR) per 10 mSv: 0.85, 95 % CI: 0.79, 0.93), contrasting with a non-significant increase of cancer mortality (RR per 10 mSv: 1.05, 95 % CI: 0.91, 1.20), which was restricted to the group of cancers not categorized as radiogenic in categorical analyses. While the total and cancer mortality of cockpit crew is low, a positive trend of all cancer with radiation dose is observed. Incomplete adjustment for age, other exposures correlated with duration of employment and a healthy worker survivor effect may contribute to this finding. More information is expected from a pooled analysis of updated international aircrew studies.

  14. Individual Differences Underlying Pilot Cockpit Error

    DTIC Science & Technology

    1991-04-01

    achievement motivation, work motivation, and possessing a strong tendency towards interpersonal warmth , combined with low levels of verbal aggression...influence it. RESEARCH FOCUS The focus of this dissertation was an investigation of pilot cockpit error, specifically perception and judgement activities...1970s, the National Transportation Safety Board and the FAA (1988) discovered that poor interpersonal communications among crew members or inadequate

  15. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  16. An Agent-Based Cockpit Task Management System

    NASA Technical Reports Server (NTRS)

    Funk, Ken

    1997-01-01

    An agent-based program to facilitate Cockpit Task Management (CTM) in commercial transport aircraft is developed and evaluated. The agent-based program called the AgendaManager (AMgr) is described and evaluated in a part-task simulator study using airline pilots.

  17. Airline Wheelchair

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Accutron Tool & Instrument Co.'s wheelchair was designed to increase mobility within the airplane. Utilizing NASA's structural analysis and materials engineering technologies, it allows passage through narrow airline aisles to move passengers to their seats and give access to lavatories. Stable, durable, comfortable and easy to handle, it's made of composite materials weighing only 17 pounds, yet is able to support a 200 pound person. Folded easily and stored when not in use.

  18. Improving Cockpits through Flight Crew Workload Measurement,

    DTIC Science & Technology

    1975-04-25

    Ocic ot the partici pain% %oloi t tcred 11w idva tchat workload was thc amnount ol effort expeiided Ii (lie pertortirance MISSION EVENT TIELINES ...lest o nc’. I igcirk 3 shows tile re I at. in shi Ii bet wee i a Iti tic dc ANALYIS PRCH)LTR IL L:~IMAllY INed a rid hcc~licll ri tci tile List portio

  19. Crew workload strategies in advanced cockpits

    NASA Technical Reports Server (NTRS)

    Hart, Sandra G.

    1990-01-01

    Many methods of measuring and predicting operator workload have been developed that provide useful information in the design, evaluation, and operation of complex systems and which aid in developing models of human attention and performance. However, the relationships between such measures, imposed task demands, and measures of performance remain complex and even contradictory. It appears that we have ignored an important factor: people do not passively translate task demands into performance. Rather, they actively manage their time, resources, and effort to achieve an acceptable level of performance while maintaining a comfortable level of workload. While such adaptive, creative, and strategic behaviors are the primary reason that human operators remain an essential component of all advanced man-machine systems, they also result in individual differences in the way people respond to the same task demands and inconsistent relationships among measures. Finally, we are able to measure workload and performance, but interpreting such measures remains difficult; it is still not clear how much workload is too much or too little nor the consequences of suboptimal workload on system performance and the mental, physical, and emotional well-being of the human operators. The rationale and philosophy of a program of research developed to address these issues will be reviewed and contrasted to traditional methods of defining, measuring, and predicting human operator workload. Viewgraphs are given.

  20. Integrated Approach to Flight Crew Training

    NASA Technical Reports Server (NTRS)

    Carroll, J. E.

    1984-01-01

    The computer based approach used by United Airlines for flight training is discussed. The human factors involved in specific aircraft accidents are addressed. Flight crew interaction and communication as they relate to training and flight safety are considered.

  1. Research project evaluates the effect of national culture on flight crew behaviour.

    PubMed

    Helmreich, R L; Merritt, A C; Sherman, P J

    1996-10-01

    The role of national culture in flight crew interactions and behavior is examined. Researchers surveyed Asian, European, and American flight crews to determine attitudes about crew coordination and cockpit management. Universal attitudes among pilots are identified. Culturally variable attitudes among pilots from 16 countries are compared. The role of culture in response to increasing cockpit automation is reviewed. Culture-based challenges to crew resource management programs and multicultural organizations are discussed.

  2. Learning About Cockpit Automation: From Piston Trainer to Jet Transport

    NASA Technical Reports Server (NTRS)

    Casner, Stephen M.

    2003-01-01

    Two experiments explored the idea of providing cockpit automation training to airline-bound student pilots using cockpit automation equipment commonly found in small training airplanes. In a first experiment, pilots mastered a set of tasks and maneuvers using a GPS navigation computer, autopilot, and flight director system installed in a small training airplane Students were then tested on their ability to complete a similar set of tasks using the cockpit automation system found in a popular jet transport aircraft. Pilot were able to successfully complete 77% of all tasks in the jet transport on their first attempt. An analysis of a control group suggests that the pilot's success was attributable to the application of automation principles they had learned in the small airplane. A second experiment looked at two different ways of delivering small-aeroplane cockpit automation training: a self-study method, and a dual instruction method. The results showed a slight advantage for the self-study method. Overall, the results of the two studies cast a strong vote for the incorporation of cockpit automation training in curricula designed for pilot who will later transition to the jet fleet.

  3. Airline Flight Crew Technical Corrections Act

    THOMAS, 111th Congress

    Rep. Bishop, Timothy H. [D-NY-1

    2009-02-09

    03/23/2009 Referred to the Subcommittee on Workforce Protections. (All Actions) Notes: For further action, see S.1422, which became Public Law 111-119 on 12/21/2009. Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  4. STS-112 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Footage shows the crew of STS-112 (Jeffrey Ashby, Commander; Pamela Melroy, Pilot; David Wolf, Piers Sellers, Sandra Magnus, and Fyodor Yurchikhin, Mission Specialists) during several parts of their training. The video is arranged into short segments. In 'Topside Activities at the NBL', Wolf and Sellers are fitted with EVA suits for pool training. 'Pre-Launch Bailout Training in CCT II' shows all six crew members exiting from the hatch on a model of a shuttle orbiter cockpit. 'EVA Training in the VR Lab' shows a crew member training with a virtual reality simulator, interspersed with footage of Magnus, and Wolf with Melroy, at monitors. There is a 'Crew Photo Session', and 'Pam Melroy and Sandy Magnus at the SES Dome' also features a virtual reality simulator. The final two segments of the video involve hands-on training. 'Post Landing Egress at the FFT' shows the crew suiting up into their flight suits, and being raised on a harness, to practice rapelling from the cockpit hatch. 'EVA Prep and Post at the ISS Airlock' shows the crew assembling an empty EVA suit onboard a model of a module. The crew tests oxygen masks, and Sellers is shown on an exercise bicycle with an oxygen mask, with his heart rate monitored (not shown).

  5. Teaching Cockpit Automation in the Classroom

    NASA Technical Reports Server (NTRS)

    Casner, Stephen M.

    2003-01-01

    This study explores the idea of teaching fundamental cockpit automation concepts and skills to aspiring professional pilots in a classroom setting, without the use of sophisticated aircraft or equipment simulators. Pilot participants from a local professional pilot academy completed eighteen hours of classroom instruction that placed a strong emphasis on understanding the underlying principles of cockpit automation systems and their use in a multi-crew cockpit. The instructional materials consisted solely of a single textbook. Pilots received no hands-on instruction or practice during their training. At the conclusion of the classroom instruction, pilots completed a written examination testing their mastery of what had been taught during the classroom meetings. Following the written exam, each pilot was given a check flight in a full-mission Level D simulator of a Boeing 747-400 aircraft. Pilots were given the opportunity to fly one practice leg, and were then tested on all concepts and skills covered in the class during a second leg. The results of the written exam and simulator checks strongly suggest that instruction delivered in a traditional classroom setting can lead to high levels of preparation without the need for expensive airplane or equipment simulators.

  6. The Introduction of New Cockpit Technology: A Human Factors Study

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1985-01-01

    A joint Airline/NASA field study of B-767 training and operations was conducted during the period this aircraft was being introduced into line service. The objectives of the study were: (1) to identify any adverse reactions to the new technology; (2) to provide a clearing house of information for the airlines and pilots during the introductory period; (3) to provide feedback on airline training programs for the new aircraft; and (4) to provide field data to NASA and other researchers to help them develop principles of human interaction with automated systems. It is concluded that: (1) a large majority of pilots enjoy flying the B-767 more than the older aircraft; (2) pilots accept new cockpit technology and find it useful; (3) pilots are aware of the potential loss of flying skills because of automation, and take steps to prevent this from happening; (4) autopilot/autothrottle interactions and FMS operations were sometimes confusing or surprising to pilots, and they desired more training in this area; and (5) highly automated cockpits can result in a loss of effective monitoring performance.

  7. 'But Captain, I've been doing this a lot longer than you have' - The effects of 'role-reversal' on crew interaction

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra C.; Kanki, Barbara G.; Foushee, H. Clayton

    1987-01-01

    Legislation providing for airline deregulation has, among other things, created some ambiguity with respect to cockpit role structures. With the demise of some airlines, the absorption of others, the merging of seniority lists, and a new shortage of pilots, individuals with experience equivalent to or greater than that of the pilot in command may be placed in roles of lesser status. A formerly senior captain may be flying in the right seat as a first officer with an individual very much 'junior' in terms of both age and experience. Moreover, the mandatory retirement of airline pilots at age 60 does not apply to flight engineers, and some are 'down-grading' to fly in that capacity. The effects of this 'role-reversal' phenomenon on the crew coordination process have not been explored. The purpose of this study was to begin investigating this phenomenon using data obtained from a previous 'short-haul' full mission study conducted by Foushee, Lauber, Baetge, and Acomb (1986).

  8. Generic voice interface for cockpit application

    NASA Astrophysics Data System (ADS)

    Williamson, David T.; Feitshans, Gregory L.

    A voice technology interface is proposed that would allow both novice and expert users of voice input and output devices to quickly interface them to their applications while maintaining optimum performance. The objective of this generic voice interface (GVI) is to provide a device-independent interface to existing voice systems. The system will be designed so that any application, not just cockpit applications, can be used with the GVI. Once it has been successfully integrated into a few key applications, the same techniques can be transitioned to other areas. The system will initially be targeted for the rapidly reconfigurable crew-station (RRC) program, which will provide a rapid prototyping environment for advanced crew-station design.

  9. A Cockpit Display Designed to Enable Limited Flight Deck Separation Responsibility

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Battiste, Vernol; Bochow, Sheila Holland

    2003-01-01

    Cockpit displays need to be substantially improved to serve the goals of situational awareness, conflict detection, and path replanning, in Free Flight. This paper describes the design of such an advanced cockpit display, along with an initial simulation based usability evaluation. Flight crews were particularly enthusiastic about color coding for relative altitude, dynamically pulsing predictors, and the use of 3-D flight plans for alerting and situational awareness.

  10. Limits of Expertise: Rethinking Pilot Error and the Causes of Airline Accidents. CRM/HF Conference, Held in Denver, Colorado on April 16-17, 2006

    NASA Technical Reports Server (NTRS)

    Dismukes, Key; Berman, Ben; Loukopoulos, Loukisa

    2007-01-01

    Reviewed NTSB reports of the 19 U.S. airline accidents between 1991-2000 attributed primarily to crew error. Asked: Why might any airline crew in situation of accident crew--knowing only what they knew--be vulnerable. Can never know with certainty why accident crew made specific errors but can determine why the population of pilots is vulnerable. Considers variability of expert performance as function of interplay of multiple factors.

  11. Culture in the cockpit: do Hofstede's dimensions replicate?

    PubMed

    Merritt, A

    2000-05-01

    Survey data collected from 9,400 male commercial airline pilots in 19 countries were used in a replication study of Hofstede's indexes of national culture. The analysis that removed the constraint of item equivalence proved superior, both conceptually and empirically, to the analysis using Hofstede's items and formulae as prescribed, and rendered significant replication correlations for all indexes (Individualism-Collectivism .96, Power Distance .87, Masculinity-Femininity .75, and Uncertainty Avoidance .68). The successful replication confirms that national culture exerts an influence on cockpit behavior over and above the professional culture of pilots, and that "one size fits all" training is inappropriate.

  12. Culture in the cockpit: do Hofstede's dimensions replicate?

    NASA Technical Reports Server (NTRS)

    Merritt, A.; Helmreich, R. L. (Principal Investigator)

    2000-01-01

    Survey data collected from 9,400 male commercial airline pilots in 19 countries were used in a replication study of Hofstede's indexes of national culture. The analysis that removed the constraint of item equivalence proved superior, both conceptually and empirically, to the analysis using Hofstede's items and formulae as prescribed, and rendered significant replication correlations for all indexes (Individualism-Collectivism .96, Power Distance .87, Masculinity-Femininity .75, and Uncertainty Avoidance .68). The successful replication confirms that national culture exerts an influence on cockpit behavior over and above the professional culture of pilots, and that "one size fits all" training is inappropriate.

  13. Hazard alerting and situational awareness in advanced air transport cockpits

    NASA Technical Reports Server (NTRS)

    Hansman, R. J.; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan

    1992-01-01

    An overview of the Advanced Cockpit Simulation Facility at the Massachusetts Institute of Technology is presented. Though detailed results depend on the specific application, graphical presentation of flight control and alert information has generally been found to be effective for situational awareness and subjectively selected by flight crews. Graphical display is most effective when it is consistent with the pilots cognitive map of the process being displayed or of the situation.

  14. Shared Problem Models and Crew Decision Making

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The importance of crew decision making to aviation safety has been well established through NTSB accident analyses: Crew judgment and decision making have been cited as causes or contributing factors in over half of all accidents in commercial air transport, general aviation, and military aviation. Yet the bulk of research on decision making has not proven helpful in improving the quality of decisions in the cockpit. One reason is that traditional analytic decision models are inappropriate to the dynamic complex nature of cockpit decision making and do not accurately describe what expert human decision makers do when they make decisions. A new model of dynamic naturalistic decision making is offered that may prove more useful for training or aiding cockpit decision making. Based on analyses of crew performance in full-mission simulation and National Transportation Safety Board accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation and reflect the crew's metacognitive skill. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relation between communication that serves to build performance. Implications of these findings for crew training will be discussed.

  15. Multimission helicopter cockpit displays

    NASA Astrophysics Data System (ADS)

    Terry, William S.; Terry, Jody K.; Lovelace, Nancy D.

    1996-05-01

    A new operator display subsystem is being incorporated as part of the next generation United States Navy (USN) helicopter avionics system to be integrated into the multi-mission helicopter (MMH) that replaces both the SH-60B and the SH-60F in 2001. This subsystem exploits state-of-the-art technology for the display hardware, the display driver hardware, information presentation methodologies, and software architecture. Both of the existing SH-60 helicopter display systems are based on monochrome CRT technology; a key feature of the MMH cockpit is the integration of color AMLCD multifunction displays. The MMH program is one of the first military programs to use modified commercial AMLCD elements in a tactical aircraft. This paper presents the general configuration of the MMH cockpit and multifunction display subsystem and discusses the approach taken for presenting helicopter flight information to the pilots as well as presentation of mission sensor data for use by the copilot.

  16. Crew Activity Analyzer

    NASA Technical Reports Server (NTRS)

    Murray, James; Kirillov, Alexander

    2008-01-01

    The crew activity analyzer (CAA) is a system of electronic hardware and software for automatically identifying patterns of group activity among crew members working together in an office, cockpit, workshop, laboratory, or other enclosed space. The CAA synchronously records multiple streams of data from digital video cameras, wireless microphones, and position sensors, then plays back and processes the data to identify activity patterns specified by human analysts. The processing greatly reduces the amount of time that the analysts must spend in examining large amounts of data, enabling the analysts to concentrate on subsets of data that represent activities of interest. The CAA has potential for use in a variety of governmental and commercial applications, including planning for crews for future long space flights, designing facilities wherein humans must work in proximity for long times, improving crew training and measuring crew performance in military settings, human-factors and safety assessment, development of team procedures, and behavioral and ethnographic research. The data-acquisition hardware of the CAA (see figure) includes two video cameras: an overhead one aimed upward at a paraboloidal mirror on the ceiling and one mounted on a wall aimed in a downward slant toward the crew area. As many as four wireless microphones can be worn by crew members. The audio signals received from the microphones are digitized, then compressed in preparation for storage. Approximate locations of as many as four crew members are measured by use of a Cricket indoor location system. [The Cricket indoor location system includes ultrasonic/radio beacon and listener units. A Cricket beacon (in this case, worn by a crew member) simultaneously transmits a pulse of ultrasound and a radio signal that contains identifying information. Each Cricket listener unit measures the difference between the times of reception of the ultrasound and radio signals from an identified beacon

  17. Advanced Civil Transport Simulator Cockpit View

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Advanced Civil Transport Simulator (ACTS) is a futuristic aircraft cockpit simulator designed to provide full-mission capabilities for researching issues that will affect future transport aircraft flight stations and crews. The objective is to heighten the pilots situation awareness through improved information availability and ease of interpretation in order to reduce the possibility of misinterpreted data. The simulators five 13-inch Cathode Ray Tubes are designed to display flight information in a logical easy-to-see format. Two color flat panel Control Display Units with touch sensitive screens provide monitoring and modification of aircraft parameters, flight plans, flight computers, and aircraft position. Three collimated visual display units have been installed to provide out-the-window scenes via the Computer Generated Image system. The major research objectives are to examine needs for transfer of information to and from the flight crew; study the use of advanced controls and displays for all-weather flying; explore ideas for using computers to help the crew in decision making; study visual scanning and reach behavior under different conditions with various levels of automation and flight deck-arrangements.

  18. Staging Airliner Service

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2007-01-01

    There is a general consensus building that historically high fuel prices and greater public awareness of the emissions that result from burning fuel are going to be long-term concerns for those who design, build, and operate airliners. The possibility of saving both fuel and reducing emissions has rekindled interest in breaking very long-range airline flights into multiple stages or even adopting in-flight refueling. It is likely that staging will result in lower fuel burn, and recent published reports have suggested that the savings are substantial, particularly if the airliner is designed from the outset for this kind of operation. Given that staging runs against the design and operation historical trend, this result begs for further attention. This paper will examine the staging question, examining both analytic and numeric performance estimation methodologies to quantify the likely amount of fuel savings that can be expected and the resulting design impacts on the airliner.

  19. 14 CFR 25.777 - Cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cockpit controls. 25.777 Section 25.777... Cockpit controls. (a) Each cockpit control must be located to provide convenient operation and to prevent confusion and inadvertent operation. (b) The direction of movement of cockpit controls must meet...

  20. 14 CFR 27.777 - Cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cockpit controls. 27.777 Section 27.777... Cockpit controls. Cockpit controls must be— (a) Located to provide convenient operation and to prevent... there is full and unrestricted movement of each control without interference from the cockpit...

  1. 14 CFR 25.777 - Cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cockpit controls. 25.777 Section 25.777... Cockpit controls. (a) Each cockpit control must be located to provide convenient operation and to prevent confusion and inadvertent operation. (b) The direction of movement of cockpit controls must meet...

  2. 14 CFR 29.777 - Cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cockpit controls. 29.777 Section 29.777... Cockpit controls. Cockpit controls must be— (a) Located to provide convenient operation and to prevent... there is full and unrestricted movement of each control without interference from the cockpit...

  3. Estimating Airline Operating Costs

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    The factors affecting commercial aircraft operating and delay costs were used to develop an airline operating cost model which includes a method for estimating the labor and material costs of individual airframe maintenance systems. The model permits estimates of aircraft related costs, i.e., aircraft service, landing fees, flight attendants, and control fees. A method for estimating the costs of certain types of airline delay is also described.

  4. Space Shuttle Cockpit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. Stennisphere is open free of charge from 9 a.m. to 5 p.m. daily.

  5. Space Shuttle Cockpit exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis Space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  6. Cockpit control system

    NASA Technical Reports Server (NTRS)

    Lesnewski, David; Snow, Russ M.; Paufler, Dave; Schnieder, George; Athousake, Roxanne; Combs, Lisa

    1993-01-01

    The purpose of this project is to provide a detail design for the cockpit control system of the Viper PFT. The statement of work for this project requires provisions for control of the ailerons, elevator, rudder, and elevator trim. The system should provide adjustment for pilot stature, rigging, and maintenance. MIL-STD-1472 is used as a model for human factors criterion. The system is designed to the pilot limit loading outlined in FAR part 23.397. The general philosophy behind this design is to provide a simple, reliable control system which will withstand the daily abuse that is experienced in the training environment without excessive cost or weight penalties.

  7. A survey of new technology for cockpit application to 1990's transport aircraft simulators

    NASA Technical Reports Server (NTRS)

    Holt, A. P., Jr.; Noneaker, D. O.; Walthour, L.

    1980-01-01

    Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels.

  8. Cockpit resource management skills enhance combat mission performance in a B-52 simulator

    NASA Technical Reports Server (NTRS)

    Povenmire, H. Kingsley; Rockway, Marty R.; Bunecke, Joseph L.; Patton, Mark W.

    1989-01-01

    A cockpit resource management (CRM) program for mission-ready B-52 aircrew is developed. The relationship between CRM performance and combat mission performance is studied. The performances of six crew members flying a simulated high workload mission in a B-52 weapon system trainer are evaluated. The data reveal that CRM performance enhances tactical maneuvers and bombing accuracy.

  9. Cockpit Adaptive Automation and Pilot Performance

    NASA Technical Reports Server (NTRS)

    Parasuraman, Raja

    2001-01-01

    The introduction of high-level automated systems in the aircraft cockpit has provided several benefits, e.g., new capabilities, enhanced operational efficiency, and reduced crew workload. At the same time, conventional 'static' automation has sometimes degraded human operator monitoring performance, increased workload, and reduced situation awareness. Adaptive automation represents an alternative to static automation. In this approach, task allocation between human operators and computer systems is flexible and context-dependent rather than static. Adaptive automation, or adaptive task allocation, is thought to provide for regulation of operator workload and performance, while preserving the benefits of static automation. In previous research we have reported beneficial effects of adaptive automation on the performance of both pilots and non-pilots of flight-related tasks. For adaptive systems to be viable, however, such benefits need to be examined jointly in the context of a single set of tasks. The studies carried out under this project evaluated a systematic method for combining different forms of adaptive automation. A model for effective combination of different forms of adaptive automation, based on matching adaptation to operator workload was proposed and tested. The model was evaluated in studies using IFR-rated pilots flying a general-aviation simulator. Performance, subjective, and physiological (heart rate variability, eye scan-paths) measures of workload were recorded. The studies compared workload-based adaptation to to non-adaptive control conditions and found evidence for systematic benefits of adaptive automation. The research provides an empirical basis for evaluating the effectiveness of adaptive automation in the cockpit. The results contribute to the development of design principles and guidelines for the implementation of adaptive automation in the cockpit, particularly in general aviation, and in other human-machine systems. Project goals

  10. Flight Crew Training: Multi-Crew Pilot License Training versus Traditional Training and Its Relationship with Job Performance

    ERIC Educational Resources Information Center

    Cushing, Thomas S.

    2013-01-01

    In 2006, the International Civil Aviation Organization promulgated requirements for a Multi-Crew Pilot License for First Officers, in which the candidate attends approximately two years of ground school and trains as part of a two-person crew in a simulator of a Boeing 737 or an Airbus 320 airliner. In the traditional method, a candidate qualifies…

  11. Airline Safety and Economy

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This video documents efforts at NASA Langley Research Center to improve safety and economy in aircraft. Featured are the cockpit weather information needs computer system, which relays real time weather information to the pilot, and efforts to improve techniques to detect structural flaws and corrosion, such as the thermal bond inspection system.

  12. Panoramic cockpit displays for tactical military cockpits

    NASA Astrophysics Data System (ADS)

    Fletcher, Mark; Huffman, David

    2010-04-01

    The F-35 Joint Strike Fighter (JSF) incorporates the latest technology for aerial warfighting. To support this aircraft's mission and to provide the pilot with the increased situational awareness needed in today's battlespace, a panoramic AMLCD was developed and is being deployed for the first time. This 20" by 8" display is the largest fielded to date in a tactical fighter. Key system innovations had to be employed to allow this technology to function in this demanding environment. Certain older generation aircraft are now considering incorporating a panoramic display to provide their crews with this level of increased capability. Key design issues that had to be overcome dealt with sunlight readability, vibration resistance, touchscreen operation, and reliability concerns to avoid single-point failures. A completely dual redundant system design had to be employed to ensure that the pilot would always have access to critical mission and flight data.

  13. Chemical warfare protection for the cockpit of future aircraft

    NASA Technical Reports Server (NTRS)

    Pickl, William C.

    1988-01-01

    Currently systems are being developed which will filter chemical and biological contaminants from crew station air. In order to maximize the benefits of these systems, a method of keeping the cockpit contaminant free during pilot ingress and egress is needed. One solution is to use a rectangular plastic curtain to seal the four edges of the canopy frame to the canopy sill. The curtain is stored in a tray which is recessed into the canopy sill and unfolds in accordion fashion as the canopy is raised. A two way zipper developed by Calspan could be used as an airlock between the pilot's oversuit and the cockpit. This system eliminates the pilot's need for heavy and restrictive CB gear because he would never be exposed to the chemical warfare environment.

  14. Cockpit data management

    NASA Technical Reports Server (NTRS)

    Groce, J. L.; Boucek, G. P.

    1988-01-01

    This study is a continuation of an FAA effort to alleviate the growing problems of assimilating and managing the flow of data and flight related information in the air transport flight deck. The nature and extent of known pilot interface problems arising from new NAS data management programs were determined by a comparative timeline analysis of crew tasking requirements. A baseline of crew tasking requirements was established for conventional and advanced flight decks operating in the current NAS environment and then compared to the requirements for operation in a future NAS environment emphasizing Mode-S data link and TCAS. Results showed that a CDU-based pilot interface for Mode-S data link substantially increased crew visual activity as compared to the baseline. It was concluded that alternative means of crew interface should be available during high visual workload phases of flight. Results for TCAS implementation showed substantial visual and motor tasking increases, and that there was little available time between crew tasks during a TCAS encounter. It was concluded that additional research should be undertaken to address issues of ATC coordination and the relative benefit of high workload TCAS features.

  15. Key drivers of airline loyalty.

    PubMed

    Dolnicar, Sara; Grabler, Klaus; Grün, Bettina; Kulnig, Anna

    2011-10-01

    This study investigates drivers of airline loyalty. It contributes to the body of knowledge in the area by investigating loyalty for a number of a priori market segments identified by airline management and by using a method which accounts for the multi-step nature of the airline choice process. The study is based on responses from 687 passengers. Results indicate that, at aggregate level, frequent flyer membership, price, the status of being a national carrier and the reputation of the airline as perceived by friends are the variables which best discriminate between travellers loyal to the airline and those who are not. Differences in drivers of airline loyalty for a number of segments were identified. For example, loyalty programs play a key role for business travellers whereas airline loyalty of leisure travellers is difficult to trace back to single factors. For none of the calculated models satisfaction emerged as a key driver of airline loyalty.

  16. Crew member and instructor evaluations of line oriented flight training

    NASA Technical Reports Server (NTRS)

    Wilhelm, John

    1991-01-01

    Results obtained from the NASA/UT/LOFT survey of 8300 crew members from four airlines is presented. As simulator training is very expensive and excellence in training is the objective, some effort is justified in evaluating LOFT and in determining what it is about the best scenarios that creates positive effects. Attention is given to the effects of different scenarios, self reports of crew resource management behaviors, organization, fleet and crew position differences.

  17. The Airline Quality Rating 2001

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2001-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, Airline Quality Rating 2001, reflects monthly Airline Quality Rating scores for 2000. AQR scores for the calendar year 2000 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating 2001 is a summary of month-by-month quality ratings for the ten major U.S. airlines operating during 2000. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, major airlines comparative performance for the calendar year of 2000 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for major airlines domestic operations for the 12 month period of 2000, and industry average results. Also, comparative Airline Quality Rating data for 1999 are included for each airline to provide historical perspective regarding performance quality in the industry.

  18. The Airline Quality Rating 2002

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2002-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, Airline Quality Rating 2002, reflects monthly Airline Quality Rating scores for 2001. AQR scores for the calendar year 2001 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating 2002 is a summary of month-by-month quality ratings for the 11 largest U.S. airlines operating during 2001. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2001 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2001, and industry average results. Also, comparative Airline Quality Rating data for 2000 are included for each airline to provide historical perspective regarding performance quality in the industry.

  19. The Airline Quality Rating 2003

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2003-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, the Airline Quality Rating 2003, reflects monthly Airline Quality Rating scores for 2002. AQR scores for the calendar year 2002 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating 2003 is a summary of month-by-month quality ratings for the 10 largest U.S. airlines operating during 2002. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of ontime arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2002 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2002, and industry average results. Also, comparative Airline Quality Rating data for 2001 are included for each airline to provide historical perspective regarding performance quality in the industry.

  20. Estimating airline operating costs

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    A review was made of the factors affecting commercial aircraft operating and delay costs. From this work, an airline operating cost model was developed which includes a method for estimating the labor and material costs of individual airframe maintenance systems. The model, similar in some respects to the standard Air Transport Association of America (ATA) Direct Operating Cost Model, permits estimates of aircraft-related costs not now included in the standard ATA model (e.g., aircraft service, landing fees, flight attendants, and control fees). A study of the cost of aircraft delay was also made and a method for estimating the cost of certain types of airline delay is described.

  1. Joint Cockpit Office: history and role in defense-wide issues regarding avionics displays

    NASA Astrophysics Data System (ADS)

    O'Connor, John C.; Kraemer, William A.

    2000-08-01

    The charter of the Joint Cockpit Office (JCO) is to plan, coordinate and accelerate the transition of advanced development cockpit/crew station technologies critical to crew effectiveness in current and future air vehicles. The JCO helps assure a single, coordinated, and highly integrated cockpit/crew station Science and Technology (S&T) program within and between the Air Force, the Army, and the Navy. It serves as the primary interface and focal point for issues involving these technologies for organizations within and external to the Services. The Services are at the advent of fielding new technologies such as helmet-mounted displays as a primary flight reference. They will most certainly evaluate the use of windowless cockpits to counter the laser threat and allow for less constraining aerodynamic conditions in future vehicle design. The transition to multi-spectral displays in future military and commercial aircraft is imminent. The JCO is well positioned to assess and focus the research needed to safely exploit these new technologies and meet customer requirements. Presently, the JCO is undertaking three initiatives: creation of a joint-service, Cooperative Research and Development Agreement (CRDA) with Lockheed Martin to study the thresholds of virtual helmet-mounted display attributes and effects on pilot performance; management of the Spatial Disorientation Countermeasures program, and facilitation of the actions determined by the DoD Executive Agent for Flat Panel Displays.

  2. The Airline Quality Rating 1999

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    1999-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline performance on combined multiple criteria. This current report, Airline Quality Rating 1999, reflects an updated approach to calculating monthly Airline Quality Rating scores for 1998. AQR scores for the calendar year 1998 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating is a summary of month-by-month quality ratings for the ten major U.S. airlines operating during 1998. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, major airlines comparative performance for the calendar year 1998 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for major airlines domestic operations for the 12 month period of 1998, and industry average results. Also, comparative Airline Quality Rating data for 1997, using the updated criteria, are included to provide a reference point regarding quality in the industry.

  3. The Airline Quality Rating 2004

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2004-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, the Airline Quality Rating 2004, reflects monthly Airline Quality Rating scores for 2003. AQR scores far the calendar year 2003 are based on 15 elemnts in four major areas that focus on airline performance aspects important to air travel consumers. The Airline Quality Rating 2004 is a summary of month-by-month quality ratings for U.S. airlines that have at least 1% of domestic passenger volume during 2003. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2003 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2003, and industry results. Also, comparative Airline Quality Rating data for 2002 are included, where available, to provide historical perspective

  4. The Airline Quality Rating 2004

    NASA Technical Reports Server (NTRS)

    Fink, Mary M. (Editor); Bowen, Brent D.; Headley, Dean E.

    2004-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, the Airline Quality Rating 2004, reflects monthly Airline Quality Rating scores for 2003. AQR scores for the calendar year 2003 are based on 15 elements in four major areas that focus on airline performance aspects important to air travel consumers. The Airline Quality Rating 2004 is a summary of month-by-month quality ratings for U.S. airlines that have at least 1 % of domestic passenger volume during 2003. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2003 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2003, and industry results. Also, comparative Airline Quality Rating data for 2002 are included, where available, to provide historical perspective regarding performance quality in the industry.

  5. Flight Crew Workload, Acceptability, and Performance When Using Data Comm in a High-Density Terminal Area Simulation

    NASA Technical Reports Server (NTRS)

    Norman, R. Michael; Baxley, Brian T.; Adams, Cathy A.; Ellis, Kyle K. E.; Latorella, Kara A.; Comstock, James R., Jr.

    2013-01-01

    This document describes a collaborative FAA/NASA experiment using 22 commercial airline pilots to determine the effect of using Data Comm to issue messages during busy, terminal area operations. Four conditions were defined that span current day to future flight deck equipage: Voice communication only, Data Comm only, Data Comm with Moving Map Display, and Data Comm with Moving Map displaying taxi route. Each condition was used in an arrival and a departure scenario at Boston Logan Airport. Of particular interest was the flight crew response to D-TAXI, the use of Data Comm by Air Traffic Control (ATC) to send taxi instructions. Quantitative data was collected on subject reaction time, flight technical error, operational errors, and eye tracking information. Questionnaires collected subjective feedback on workload, situation awareness, and acceptability to the flight crew for using Data Comm in a busy terminal area. Results showed that 95% of the Data Comm messages were responded to by the flight crew within one minute and 97% of the messages within two minutes. However, post experiment debrief comments revealed almost unanimous consensus that two minutes was a reasonable expectation for crew response. Flight crews reported that Expected D-TAXI messages were useful, and employment of these messages acceptable at all altitude bands evaluated during arrival scenarios. Results also indicate that the use of Data Comm for all evaluated message types in the terminal area was acceptable during surface operations, and during arrivals at any altitude above the Final Approach Fix, in terms of response time, workload, situation awareness, and flight technical performance. The flight crew reported the use of Data Comm as implemented in this experiment as unacceptable in two instances: in clearances to cross an active runway, and D-TAXI messages between the Final Approach Fix and 80 knots during landing roll. Critical cockpit tasks and the urgency of out-the window scan made the

  6. Facilitation techniques as predictors of crew participation in LOFT debriefings

    NASA Technical Reports Server (NTRS)

    McDonnell, L. K.

    1996-01-01

    Based on theories of adult learning and airline industry guidelines for Crew Resource Management (CRM), the stated objective during Line Oriented Flight Training (LOFT) debriefings is for instructor pilots (IP's) to facilitate crew self-analysis of performance. This study reviews 19 LOFT debriefings from two major U.S. airlines to examine the relationship between IP efforts at facilitation and associated characteristics of crew participation. A subjective rating scale called the Debriefing Assessment Battery was developed and utilized to evaluate the effectiveness of IP facilitation and the quality of crew participation. The results indicate that IP content, encouragement, and questioning techniques are highly and significantly correlated with, and can therefore predict, the degree and depth of crew participation.

  7. 14 CFR 23.777 - Cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cockpit controls. 23.777 Section 23.777... Cargo Accommodations § 23.777 Cockpit controls. (a) Each cockpit control must be located and (except... inadvertent operation. (b) The controls must be located and arranged so that the pilot, when seated, has...

  8. Lasers Aimed at Aircraft Cockpits: Background and Possible Options to Address the Threat to Aviation Safety and Security

    DTIC Science & Technology

    2005-01-26

    1 Van B. Nakagawara and Ronald W. Montgomery. Laser Pointers : Their Potential Affects on Vision and Aviation Safety. Federal Aviation...powerful at extended viewing distances. Because lasers remain powerful over large distances, a laser pointer can expose pilots to radiation levels above...airliner by aiming a handheld laser pointer into the cockpit is highly unlikely, there is concern that a military laser , such as the Chinese-made ZM-87 laser

  9. Avoidance maneuevers selected while viewing cockpit traffic displays

    NASA Technical Reports Server (NTRS)

    Smith, J. D.; Ellis, S. R.; Lee, E.

    1982-01-01

    Ten airline pilots rates the collision danger of air traffic presented on cockpit displays of traffic information while they monitored simulated departures from Denver. They selected avoidance maneuvers when necessary for separation. Most evasive maneuvers were turns rather than vertical maneuvers. Evasive maneuvers chosen for encounters with low or moderate collision danger were generally toward the intruding aircraft. This tendency lessened as the perceived threat level increased. In the highest threst situations pilots turned toward the intruder only at chance levels. Intruders coming from positions in front of the pilot's own ship were more frequently avoided by turns toward than when intruders approached laterally or from behind. Some of the implications of the pilots' turning-toward tendencies are discussed with respect to automatic collision avoidance systems and coordination of avoidance maneuvers of conflicting aircraft.

  10. Designing Struts for the Low-Fidelity Orion Cockpit Mockup

    NASA Technical Reports Server (NTRS)

    Lucienne, Runa A.

    2009-01-01

    The objective of the project was to design and construct nine struts to be installed in the low-fidelity Orion cockpit mockup (Rev F; located at NASA s Johnson Space Center in Houston, TX) as simplified representations of the existing flight designed struts designed by engineers at Lockheed Martin (the primary contractor of the Orion). The project design included: researching the existing flight designs, brainstorming design upgrades, developing three unrelated three-dimensional (3D) strut designs using Pro/Engineer Wildfire 3.0, choosing the best fit design, locating materials and their sources, implementing the chosen design, and making design modifications. The project resulted in making simple modifications to the existing struts used in the last Orion cockpit mockup. The project is relevant to NASA, because upgrades to the low-fidelity Orion cockpit mockup progresses NASA s goals of developing and testing a new spacecraft, conducting the spacecraft's first crewed mission by 2015, returning to the moon by 2020, and exploring Mars and other planets in the future.

  11. "Virtual Cockpit Window" for a Windowless Aerospacecraft

    NASA Technical Reports Server (NTRS)

    Abernathy, Michael F.

    2003-01-01

    A software system processes navigational and sensory information in real time to generate a three-dimensional-appearing image of the external environment for viewing by crewmembers of a windowless aerospacecraft. The design of the particular aerospacecraft (the X-38) is such that the addition of a real transparent cockpit window to the airframe would have resulted in unacceptably large increases in weight and cost. When exerting manual control, an aircrew needs to see terrain, obstructions, and other features around the aircraft in order to land safely. The X-38 is capable of automated landing, but even when this capability is utilized, the crew still needs to view the external environment: From the very beginning of the United States space program, crews have expressed profound dislike for windowless vehicles. The wellbeing of an aircrew is considerably promoted by a three-dimensional view of terrain and obstructions. The present software system was developed to satisfy the need for such a view. In conjunction with a computer and display equipment that weigh less than would a real transparent window, this software system thus provides a virtual cockpit window. The key problem in the development of this software system was to create a realistic three-dimensional perspective view that is updated in real time. The problem was solved by building upon a pre-existing commercial program LandForm C3 that combines the speed of flight-simulator software with the power of geographic-information-system software to generate real-time, three-dimensional-appearing displays of terrain and other features of flight environments. In the development of the present software, the pre-existing program was modified to enable it to utilize real-time information on the position and attitude of the aerospacecraft to generate a view of the external world as it would appear to a person looking out through a window in the aerospacecraft. The development included innovations in realistic

  12. Preliminary results from the evaluation of Cockpit Resource Management training - Performance ratings of flightcrews

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.; Wilhelm, John A.; Gregorich, Steven E.; Chidester, Thomas R.

    1990-01-01

    The first data from the NASA/University of Texas Crew Performance project on the behavior of flightcrews with and without formal training in Cockpit Resource Management (CRM) is reported. Expert observers made detailed ratings of 15 components of crew behavior in both line operations and in full mission simulations. The results indicate that such training in crew coordination concepts increases the percentage of crews rated as above average in performance and decreases the percentage rated as below average. The data also show high and unexpected degrees of variations in rated performance among crews flying different aircraft within the same organization. It was also found that the specific behaviors that triggered observer ratings of above or below average performance differed markedly between organizations. Characteristics of experts' ratings and future research needs are also discussed.

  13. Robustness of airline route networks

    NASA Astrophysics Data System (ADS)

    Lordan, Oriol; Sallan, Jose M.; Escorihuela, Nuria; Gonzalez-Prieto, David

    2016-03-01

    Airlines shape their route network by defining their routes through supply and demand considerations, paying little attention to network performance indicators, such as network robustness. However, the collapse of an airline network can produce high financial costs for the airline and all its geographical area of influence. The aim of this study is to analyze the topology and robustness of the network route of airlines following Low Cost Carriers (LCCs) and Full Service Carriers (FSCs) business models. Results show that FSC hubs are more central than LCC bases in their route network. As a result, LCC route networks are more robust than FSC networks.

  14. Justice Department Airline Merger Policy

    NASA Technical Reports Server (NTRS)

    Farmer, D. A.

    1972-01-01

    Justice Department airline merger policy is developed within the context of the Federal Aviation Act, in which there is an unusually explicit reliance on competition as a means of fulfilling statutory goals. The economics of the airline industry appear to indicate that low concentration and vigorous competition are particularly viable and desirable. Several factors, including existing regulatory policy, create incentives for airlines to merge whether or not an individual merger promotes or conflicts with the public interest. Specific benefits to the public should be identified and shown to clearly outweight the detriments, including adverse competitive impact, in order for airline mergers to be approved.

  15. Theory underlying CRM training: Psychological issues in flight crew performance and crew coordination

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1987-01-01

    What psychological theory and research can reveal about training in Cockpit Resource Management (CRM) is summarized. A framework is provided for the critical analysis of current approaches to CRM training. Background factors and definitions critical to evaluating CRM are reviewed, followed by a discussion of issues directly related to CRM training effectiveness. Some of the things not known about the optimization of crew performance and the research needed to make these efforts as effective as possible are described.

  16. KC-135 Cockpit Modernization Study and Crew Reduction Feasibility Demonstration

    DTIC Science & Technology

    1993-10-01

    training, a set of 27 cards, absolute measurement of sbjective workload, it representing all possible combinations of levels can be used to 1) determine...person or corporation; or as conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related...thereto. This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including

  17. Response time effects of alerting tone and semantic context for synthesized voice cockpit warnings

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.; Williams, D. H.

    1980-01-01

    Some handbooks and human factors design guides have recommended that a voice warning should be preceded by a tone to attract attention to the warning. As far as can be determined from a search of the literature, no experimental evidence supporting this exists. A fixed-base simulator flown by airline pilots was used to test the hypothesis that the total 'system-time' to respond to a synthesized voice cockpit warning would be longer when the message was preceded by a tone because the voice itself was expected to perform both the alerting and the information transfer functions. The simulation included realistic ATC radio voice communications, synthesized engine noise, cockpit conversation, and realistic flight routes. The effect of a tone before a voice warning was to lengthen response time; that is, responses were slower with an alerting tone. Lengthening the voice warning with another work, however, did not increase response time.

  18. Traffic Aware Planner for Cockpit-Based Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Woods, Sharon E.; Vivona, Robert A.; Henderson, Jeffrey; Wing, David J.; Burke, Kelly A.

    2016-01-01

    The Traffic Aware Planner (TAP) software application is a cockpit-based advisory tool designed to be hosted on an Electronic Flight Bag and to enable and test the NASA concept of Traffic Aware Strategic Aircrew Requests (TASAR). The TASAR concept provides pilots with optimized route changes (including altitude) that reduce fuel burn and/or flight time, avoid interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a route and/or altitude change from Air Traffic Control. Developed using an iterative process, TAP's latest improvements include human-machine interface design upgrades and added functionality based on the results of human-in-the-loop simulation experiments and flight trials. Architectural improvements have been implemented to prepare the system for operational-use trials with partner commercial airlines. Future iterations will enhance coordination with airline dispatch and add functionality to improve the acceptability of TAP-generated route-change requests to pilots, dispatchers, and air traffic controllers.

  19. Cockpit task management: A preliminary, normative theory

    NASA Technical Reports Server (NTRS)

    Funk, Ken

    1991-01-01

    Cockpit task management (CTM) involves the initiation, monitoring, prioritizing, and allocation of resources to concurrent tasks as well as termination of multiple concurrent tasks. As aircrews have more tasks to attend to due to reduced crew sizes and the increased complexity of aircraft and the air transportation system, CTM will become a more critical factor in aviation safety. It is clear that many aviation accidents and incidents can be satisfactorily explained in terms of CTM errors, and it is likely that more accidents induced by poor CTM practice will occur in the future unless the issue is properly addressed. The first step in understanding and facilitating CTM behavior was the development of a preliminary, normative theory of CTM which identifies several important CTM functions. From this theory, some requirements for pilot-vehicle interfaces were developed which are believed to facilitate CTM. A prototype PVI was developed which improves CTM performance and currently, a research program is under way that is aimed at developing a better understanding of CTM and facilitating CTM performance through better equipment and procedures.

  20. Crew health

    NASA Technical Reports Server (NTRS)

    Billica, Roger D.

    1992-01-01

    Crew health concerns for Space Station Freedom are numerous due to medical hazards from isolation and confinement, internal and external environments, zero gravity effects, occupational exposures, and possible endogenous medical events. The operational crew health program will evolve from existing programs and from life sciences investigations aboard Space Station Freedom to include medical monitoring and certification, medical intervention, health maintenance and countermeasures, psychosocial support, and environmental health monitoring. The knowledge and experience gained regarding crew health issues and needs aboard Space Station Freedom will be used not only to verify requirements and programs for long duration space flight, but also in planning and preparation for Lunar and Mars exploration and colonization.

  1. Anthropometry of Airline Stewardesses

    DTIC Science & Technology

    1975-03-01

    dimensions of the airline stewardesses who, as will be shown below, differ significantly in many respects from other female populations. Lacking...measurements over clothing were negligible except for one dimension , bust circumference. In this instance, arrange- ments were made with the clinic nurse...metatarsal- phalangeal joints. N 422 MEAN 8.81 + 0.02 CM. S.D. 0.47 ± 0.02 CM. MINIMUM 7.50 CM. MAXIMUM 10.50 CM. C.V. 5.29 % 3.47 ± 0.01

  2. Airport ramp safety and crew performance issues

    NASA Technical Reports Server (NTRS)

    Chamberlin, Roy; Drew, Charles; Patten, Marcia; Matchette, Robert

    1995-01-01

    This study examined 182 ramp operations incident reports from the Aviation Safety Reporting System (ASRS) database, to determine which factors influence ramp operation incidents. It was found that incidents occurred more often during aircraft arrival operations than during departure operations; incidents occurred most often at the gate stop area, less so at the gate entry/exit areas, and least on the ramp fringe areas; and reporters cited fewer incidents when more ground crew were present. The authors offer suggestions for both airline management and flight crews to reduce the rate of ramp incidents.

  3. When training boomerangs - Negative outcomes associated with Cockpit Resource Management programs

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.; Wilhelm, John A.

    1989-01-01

    Participants' self-reports and measures of attitudes regarding flightdeck management indicate that Cockpit Resource Management training is positively received and causes highly significant changes in attitudes regarding crew coordination and personal capabilities. However, a subset of participants react negatively to the training and show boomerangs (negative change) in attitudes. Explorations into the causes of this effect pinpoint personality factors and group dynamics as critical determinants of reactions to training and the magnitude and direction of attitude change.

  4. Commercial Crew

    NASA Video Gallery

    Phil McAlister delivers a presentation by the Commercial Crew (CC) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of this workshop was to...

  5. Behavioral characteristics of effective crew leaders

    NASA Technical Reports Server (NTRS)

    Ginnett, Robert C.

    1989-01-01

    The behaviors of effective versus less effective captains as they form and lead their crews in line operations are analyzed. The research examines real work groups in an actual organization with a specific and consequential task to perform and is based on a normative model of work group effectiveness. Selection of captains is outlined, as well as data collection over the course of six months of crew and cockpit observations including over 300 hours of direct crew observations and 110 hours of actual flight time. Common characteristics of the effective leaders as well as the deviations of the less effective are described, and organizational implications are assessed. The concept of 'shells' depicted as a series of concentric circles moving outward from the group's task execution at the center is introduced and discussed.

  6. Field study of communication and workload in police helicopters - Implications for AI cockpit design

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte; Shively, Robert J.

    1988-01-01

    This paper reports on the work performed by civilian helicopter crews, using audio and video recordings and a variety of workload measures (heart rate and subjective ratings) obtained in a field study of public service helicopter missions. The number and frequency of communications provided a significant source of workload. This is relevant to the design of automated cockpit systems, since many designs presuppose the use of voice I/O systems. Fluency of communications (including pauses, hesitation markers, repetitions, and false starts) furnished an early indication of the effects of fatigue. Three workload measures were correlated to identify high workload segments of flight, and to suggest alternate task allocations between crew members.

  7. Cockpit Readiness For Night Vision Goggles

    NASA Astrophysics Data System (ADS)

    Scholl, Marija S.; Scholl, James W.

    1987-09-01

    The introduction of night vision goggles into the cockpit environment may produce incompatibility with existing cockpit optoelectronic instrumentation. The methodology used to identify the origin of the spurious signal is demonstrated with the example of an electronic display. The amount of radiation emitted by a gray body in the wavelength region of goggle sensitivity is calculated. A simple procedure for preflight testing of cockpit instrumentation using a commercially available infrared camera is recommended. Other recommendations include the specification of cockpit instrumentation for compatibility with night vision devices.

  8. F-8 Iron Bird Cockpit

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The F-8 DFBW (Digital-Fly-By-Wire) simulator used an 'Iron-Bird' for its cockpit. It was used from 1971 to 1986. The F-8 DFBW simulator was used in the development, testing, and validation of an all digital flight-control system installed in the F-8 aircraft that replaced the normal mechanical/hydraulic controls. Many military and commercial aircraft have digital flight control systems based on the technologies developed at NASA Dryden.

  9. Airline Operations Aid

    NASA Technical Reports Server (NTRS)

    1993-01-01

    C Language Integrated Production System (CLIPS), a NASA-developed expert systems program, is used by American Airlines for three purposes: as a rapid prototyping tool; to develop production prototypes; and to develop production application. An example of the latter is CLIPS' use in "Hub S1AAshing," a knowledge based system that recommends contingency plans when severe schedule reductions must be made. Hub S1AAshing has replaced a manual, labor intensive process. It saves time and allows Operations Control Coordinators to handle more difficult situations. Because the system assimilates much of the information necessary to facilitate educated decision making, it minimizes negative impact in situations where it is impossible to operate all flights.

  10. LOFT Debriefings: An Analysis of Instructor Techniques and Crew Participation

    NASA Technical Reports Server (NTRS)

    Dismukes, R. Key; Jobe, Kimberly K.; McDonnell, Lori K.

    1997-01-01

    This study analyzes techniques instructors use to facilitate crew analysis and evaluation of their Line-Oriented Flight Training (LOFT) performance. A rating instrument called the Debriefing Assessment Battery (DAB) was developed which enables raters to reliably assess instructor facilitation techniques and characterize crew participation. Thirty-six debriefing sessions conducted at five U.S. airlines were analyzed to determine the nature of instructor facilitation and crew participation. Ratings obtained using the DAB corresponded closely with descriptive measures of instructor and crew performance. The data provide empirical evidence that facilitation can be an effective tool for increasing the depth of crew participation and self-analysis of CRM performance. Instructor facilitation skill varied dramatically, suggesting a need for more concrete hands-on training in facilitation techniques. Crews were responsive but fell short of actively leading their own debriefings. Ways to improve debriefing effectiveness are suggested.

  11. Lessons from cross-fleet/cross-airline observations - Evaluating the impact of CRM/LOFT training

    NASA Technical Reports Server (NTRS)

    Butler, Roy E.

    1991-01-01

    A review is presented of the crew resource management/line oriented flight training (CRM/LOFT) program to help determine the level of standardization across fleets and airlines in the critical area of evaluating crew behavior and performance. One of the goals of the project is to verify that check airmen and LOFT instructors within organizations are evaluating CRM issues consistently and that differences observed between fleets are not a function of idiosyncracies on the part of observers. Attention is given to the research tools for crew evaluation.

  12. Flight selection at United Airlines

    NASA Technical Reports Server (NTRS)

    Traub, W.

    1980-01-01

    Airline pilot selection proceedures are discussed including psychogical and personality tests, psychomotor performance requirements, and flight skills evaluation. Necessary attitude and personality traits are described and an outline of computer selection, testing, and training techniques is given.

  13. Outsourcing as an Airline Strategy

    NASA Technical Reports Server (NTRS)

    Rutner, Stephen M.; Brown, John H.

    1999-01-01

    Since the deregulation of the airline industry, carriers have searched for any method to improve their competitive position. At the same time, there has been a growth in the use of Third Party Logistics throughout corporate America. This paper presents an overview of the Third Party Logistics system of outsourcing and insourcing within the airline industry. This discussion generated a number of propositions, possible future scenarios and opportunities for empirical testing.

  14. Outsourcing as an Airline Strategy

    NASA Technical Reports Server (NTRS)

    Brown, John H.; Rutner, Stephen M.

    1999-01-01

    Since the deregulation of the airline industry, carriers have searched for any method to improve their competitive position. At the same time, there has been a growth in the use of Third Party Logistics throughout corporate America, This paper presents an overview of the Third Party Logistics system of outsourcing and insourcing within the airline industry. This discussion generated a number of propositions, possible future scenarios and opportunities for empirical testing.

  15. An advanced cockpit instrumentation system: The coordinated cockpit display

    NASA Technical Reports Server (NTRS)

    Baty, D. L.; Watkins, M. L.

    1979-01-01

    Cathode Ray Tube (CRT) and computer technologies are described in one approach to the replacement of flight instruments using three separate color CRT's. Each CRT display information pertinent to one of the three orthogonal projections of the aircraft flight situation. Three airline pilot's assessment of the display set is presented. Comments, rankings, and ratings show that the pilots accepted the concept of pictorial flight displays.

  16. Generic experimental cockpit for evaluating pilot assistance systems

    NASA Astrophysics Data System (ADS)

    Toebben, Helmut H.; Doehler, Hans-Ullrich; Hecker, Peter

    2002-07-01

    The workload of aircraft crews, especially during taxiing, take-off, approach and landing under adverse weather conditions has heavily increased due to the continuous growth of air traffic. New pilot assistance systems can improve the situational awareness of the aircrew and consequently increase the safety and reduce the workload. For demonstration and human factor evaluation of such new systems the DLR has built a Generic Experimental Cockpit Simulator equipped with a modern glass-cockpit collimated display. The Primary Flight Display (PFD), the human machine interface for an Advanced Flight Management System (AFMS), a Taxi Guidance System called Taxi and Ramp Management and Control (TARMAC) and an Enhanced Vision System (EVS) based on real time simulation of MMWR and FLIR sensors are integrated into the cockpit on high resolution TFT touch screens. The situational awareness is further enhanced by the integration of a raster/stroke capable Head-Up Display (HUD). It prevents the pilot's eye from permanent accommodation between the Head-Down Displays and the outside view. This contribution describes the technical implementation of the PFD, the Taxi Guidance System and the EVS onto the HUD. The HUD is driven by a normal PC, which provides the Arinc data for the stroke generator and the video signal for the raster image. The PFD uses the built-in stroke generator and is working under all operations. During taxi operations the cleared taxi route and the positions of other aircraft are displayed via raster. The images of the real time simulation of the MMWR and FLIR Sensors are presented via raster on demand. During approach and landing a runway symbol or a 3D wire frame database is shown which exactly matches the outside view and obstacles on the runway are highlighted. The runway position is automatically calculated from the MMWR Sensor as reported in previous contributions.

  17. Automated cockpits special report, part 1.

    PubMed

    1995-01-30

    Part one of this report includes the following articles: Accidents Direct Focus on Cockpit Automation; Modern Cockpit Complexity Challenges Pilot Interfaces; Airbus Seeks to Keep Pilot, New Technology in harmony; NTSB: Mode Confusion Poses Safety Threat; and, Certification Officials grapple with Flight Deck Complexity.

  18. 14 CFR 23.777 - Cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Cargo Accommodations § 23.777 Cockpit controls. Link to an amendment published at 76 FR 75757, December... each control without interference from either his clothing or the cockpit structure. (c) Powerplant... red. Effective Date Note: By Amdt. 23-62, 76 FR 75757, Dec. 2, 2011, § 23.777 was amended by...

  19. Flat panel displays in an underwater cockpit

    NASA Astrophysics Data System (ADS)

    Sola, Kenneth E.

    1999-08-01

    This paper reports on a highly unusual application of flat panel displays in a cockpit. The cockpit is found in a mini- submarine of the Advanced SEAL Delivery System (ASDS), a state-of-the-art military platform designed to deliver U.S. Navy SEALs, and other special forces, to their mission locations. For security reasons, the presentation details are intentionally kept minimal.

  20. View of QF-106 aircraft cockpit

    NASA Technical Reports Server (NTRS)

    1997-01-01

    View of the cockpit and instrument panel of the QF-106 airplane used in the Eclipse project. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  1. Emergency medical kit for commercial airlines: an update.

    PubMed

    Thibeault, Claude; Evans, Anthony

    2007-12-01

    In 1998, the Air Transport Medicine (ATM) Committee of the Aerospace Medical Association (AsMA) made its first recommendations concerning medical kits for commercial airlines. These were updated in 2002 and the ATM has continued to monitor medical kit usage, as well as pharmaceutical developments, and a further revision is now needed. This has taken into account ongoing work of the International Civil Aviation Organization and recommendations of the International Air Transport Association in the field of passenger and crew health. Based on the above, the Committee proposes the following update to its 2002 recommendations.

  2. Cultural changes (1986-96) in a Norwegian airline company.

    PubMed

    Mjøs, Kjell

    2002-02-01

    The purpose of the study was to investigate cultural changes in a Norwegian airline company over a time span of 10 years. A questionnaire including parameters characterizing culture was administered to air crews in 1986 (n = 137) and in 1996 (n = 50). The performance part of a simulator study in 1996 indicated a significant reduction in operational failures compared with the 1986 study. The data further demonstrated significant changes in cultural variables, such as reduced Dominance and Masculinity, and improved Social climate and Communication. The direction of change in scores on the cultural variables corresponded with the principles on which the remedial actions were based.

  3. Advanced cockpit technology for future civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Parrish, Russell V.

    1990-01-01

    A review is presented of advanced cockpit technology for future civil transport aircraft, covering the present state-of-the-art and major technologies, including flat-panel displays, graphics and pictorial displays. Pilot aiding/automation/human-centered design and imaging sensor/flight systems technology (for low-visibility operations) are also presented. NASA Langley Research Center's recent results in pictorial displays and on future developments in large-screen display technologies are discussed. Major characteristics foreseen for the future high-speed civil transport include fault-tolerant digital avionics and controls/displays with extensive human-centered automation, and unusually clean, uncluttered interface with natural crew interaction via touch, voice/tactile means.

  4. Anthropometric accommodation in USAF cockpits

    NASA Technical Reports Server (NTRS)

    Zehner, Gregory F.

    1994-01-01

    Over the past three years, a new set of methodologies has been developed to specify and evaluate anthropometric accommodation in USAF crewstation designs. These techniques are used to improve the ability of the pilot to reach controls, to safely escape the aircraft, to achieve adequate mobility and comfort, and to assure full access to the visual field both inside and outside the aircraft. This paper summarized commonly encountered aircraft accommodation problems, explains the failure of the traditional 'percentile man' design concept to resolve these difficulties, and suggests an alternative approach for improving cockpit design to better accommodate today's more heterogeneous flying population.

  5. Cockpit Ocular Recording System (CORS)

    NASA Technical Reports Server (NTRS)

    Rothenheber, Edward; Stokes, James; Lagrossa, Charles; Arnold, William; Dick, A. O.

    1990-01-01

    The overall goal was the development of a Cockpit Ocular Recording System (CORS). Four tasks were used: (1) the development of the system; (2) the experimentation and improvement of the system; (3) demonstrations of the working system; and (4) system documentation. Overall, the prototype represents a workable and flexibly designed CORS system. For the most part, the hardware use for the prototype system is off-the-shelf. All of the following software was developed specifically: (1) setup software that the user specifies the cockpit configuration and identifies possible areas in which the pilot will look; (2) sensing software which integrates the 60 Hz data from the oculometer and heat orientation sensing unit; (3) processing software which applies a spatiotemporal filter to the lookpoint data to determine fixation/dwell positions; (4) data recording output routines; and (5) playback software which allows the user to retrieve and analyze the data. Several experiments were performed to verify the system accuracy and quantify system deficiencies. These tests resulted in recommendations for any future system that might be constructed.

  6. The evolution of Crew Resource Management training in commercial aviation.

    PubMed

    Helmreich, R L; Merritt, A C; Wilhelm, J A

    1999-01-01

    In this study, we describe changes in the nature of Crew Resource Management (CRM) training in commercial aviation, including its shift from cockpit to crew resource management. Validation of the impact of CRM is discussed. Limitations of CRM, including lack of cross-cultural generality are considered. An overarching framework that stresses error management to increase acceptance of CRM concepts is presented. The error management approach defines behavioral strategies taught in CRM as error countermeasures that are employed to avoid error, to trap errors committed, and to mitigate the consequences of error.

  7. The evolution of Crew Resource Management training in commercial aviation

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.; Merritt, A. C.; Wilhelm, J. A.

    1999-01-01

    In this study, we describe changes in the nature of Crew Resource Management (CRM) training in commercial aviation, including its shift from cockpit to crew resource management. Validation of the impact of CRM is discussed. Limitations of CRM, including lack of cross-cultural generality are considered. An overarching framework that stresses error management to increase acceptance of CRM concepts is presented. The error management approach defines behavioral strategies taught in CRM as error countermeasures that are employed to avoid error, to trap errors committed, and to mitigate the consequences of error.

  8. Cockpit readiness for night vision goggles

    NASA Technical Reports Server (NTRS)

    Scholl, Marija S.; Scholl, James W.

    1987-01-01

    The introduction of night vision goggles into the cockpit environment may produce incompatibility with existing cockpit optoelectronic instrumentation. The methodology used to identify the origin of the spurious signal is demonstrated with the example of an electronic display. The amount of radiation emitted by a gray body in the wavelength region of goggle sensitivity is calculated. A simple procedure for preflight testing of cockpit instrumentation using a commercially available infrared camera is recommended. Other recommendations include the specification of cocklpit instrumentation for compatibility with night vision devices.

  9. United Airlines LOFT training

    NASA Technical Reports Server (NTRS)

    Cavanagh, D.; Traub, B.

    1981-01-01

    Line oriented training is used in a broader, more generic sense that as a specific program under FAR 12.1409 and AC 120-35. A company policy was adopted more than twenty years ago requiring that all pilot checks and recurrent training be conducted with a full crew occupying the seats they occupy on the line. Permission was obtained to reschedule the hours for recurrent proficiency training to include one and one-half hours of LOFT flight. The number of emergencies and abnormal procedures which could be undertaken were considered and the introduction of an a occasional incapacitation revealed which person is the most difficult to replace on the widebodies. By using the LOFT concept, every training period can be structured like a typical line flight. The use of LOFT in simulator syllabus development and problems that need to be refined are discussed.

  10. A study of commuter airline economics

    NASA Technical Reports Server (NTRS)

    Summerfield, J. R.

    1976-01-01

    Variables are defined and cost relationships developed that describe the direct and indirect operating costs of commuter airlines. The study focused on costs for new aircraft and new aircraft technology when applied to the commuter airline industry. With proper judgement and selection of input variables, the operating costs model was shown to be capable of providing economic insight into other commuter airline system evaluations.

  11. Southwest Airlines: lessons in loyalty.

    PubMed

    D'Aurizio, Patricia

    2008-01-01

    Southwest Airlines continues to garner accolades in the areas of customer service, workforce management, and profitability. Since both the health care and airlines industries deal with a service rather than a product, the customer experience depends on the people who deliver that experience. Employees' commitment or "loyalty" to their customers, their employer, and their work translates into millions of dollars of revenue. What employee wants to work for "the worst employer in town?" Nine loyalty lessons from Southwest can be carried over to the health care setting for the benefit of employees and patients.

  12. NASA Airline Operations Research Center

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.

    2016-01-01

    This is a PowerPoint presentation NASA airline operations center (AOC) research. It includes information on using IBM Watson in the AOC. It also reviews a dispatcher decision support tool call the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. It should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations with the same title.

  13. Cockpit Electronic Display Workshop: A Synopsis

    DTIC Science & Technology

    1993-12-01

    Systems Center to identify human factors issues associated with depicting terminal area operations information on electronic cockpit displays. Two...Thirty-six government, academic, and industry human factors professionals participated in a workship convened at the Volpe National Transportation

  14. On-the-Spot Problem Solving of Airline Professionals: A Case Study of Sky Business School Personnel Training Program

    ERIC Educational Resources Information Center

    Nara, Jun

    2010-01-01

    This research explores how chief cabin crew members of major airlines made their decisions on-the-spot when they had unexpected problems. This research also presents some insights that may improve personnel training programs for future stewardesses and stewards based on the investigation of their decision-making styles. The theoretical framework…

  15. A Comparison of Center/TRACON Automation System and Airline Time of Arrival Predictions

    NASA Technical Reports Server (NTRS)

    Heere, Karen R.; Zelenka, Richard E.

    2000-01-01

    Benefits from information sharing between an air traffic service provider and a major air carrier are evaluated. Aircraft arrival time schedules generated by the NASA/FAA Center/TRACON Automation System (CTAS) were provided to the American Airlines System Operations Control Center in Fort Worth, Texas, during a field trial of a specialized CTAS display. A statistical analysis indicates that the CTAS schedules, based on aircraft trajectories predicted from real-time radar and weather data, are substantially more accurate than the traditional airline arrival time estimates, constructed from flight plans and en route crew updates. The improvement offered by CTAS is especially advantageous during periods of heavy traffic and substantial terminal area delay, allowing the airline to avoid large predictive errors with serious impact on the efficiency and profitability of flight operations.

  16. Short wave infrared imager cockpit interface issues

    NASA Astrophysics Data System (ADS)

    Marasco, Peter L.

    2007-04-01

    With the introduction of the night-vision goggle (NVG) into vehicle cockpits, the transfer of visual information to the observer became more complex. This problem stems primarily from the fact that the image intensifier tube photocathode was sensitive to much of the visible spectrum. NVGs were capable of sensing and amplifying visible cockpit light, making the observation of the scene outside of the cockpit, the primary use for NVGs, difficult if not impossible. One solution was to establish mutually exclusive spectral bands; a band of shorter wavelengths reserved for transmission of visible information from the cockpit instrumentation to the observer and a longer wavelength region left to the night vision goggle for imaging the night environment. Several documents have been published outlining the night vision imaging system (NVIS) compatible lighting performance enabling this approach, seen as necessary for military and civilian aviation. Recent advances in short wave infrared (SWIR) sensor technology make it a possible alternative to the image intensifiers for night imaging application. However, application-specific integration issues surrounding the new sensor type must still be thoroughly investigated. This paper examines the impact of the SWIR spectral sensitivity on several categories of lighting found in vehicle cockpits and explores cockpit integration issues that may arise from the SWIR spectral sensitivity.

  17. Cockpit Interruptions and Distractions: Effective Management Requires a Careful Balancing Act

    NASA Technical Reports Server (NTRS)

    Dismukes, R. K.; Young, Grant E.; Sumwalt, Robert L., III; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    Managing several tasks concurrently is an everyday part of cockpit operations. For the most part, crews handle concurrent task demands efficiently, yet crew preoccupation with one task to the detriment of performing other tasks is one of the more common forms of error in the cockpit. Most pilots are familiar with the December 1972 L1011 crash that occurred when the crew became preoccupied with a landing gear light malfunction and failed to notice that someone had inadvertently bumped off the autopilot. More recently a DC-9 landed gear-up in Houston when the crew, preoccupied with an stabilized approach, failed to recognize that the gear was not down because they had not switched the hydraulic pumps to high. We have recently started a research project to study why crews are vulnerable to these sorts of errors. As part of that project we reviewed NTSB reports of accidents attributed to crew error; we concluded that nearly half of these accidents involved lapses of attention associated with interruptions, distractions, or preoccupation with one task to the exclusion of another task. We have also analyzed 107 ASRS reports involving competing tasks; we present here some of our conclusions from those ASRS reports. These 107 reports involved 21 different types of routine tasks crews neglected at a critical moment while attending to another task. Sixty-nine percent of the neglected tasks involved either failure to monitor the current status or position of the aircraft or failure to monitor the actions of the pilot flying or taxiing. Thirty-four different types of competing activities distracted or preoccupied the pilots. Ninety percent of these competing activities fell into one of four broad categories: communication (e.g., discussion among crew or radio communication), heads-down work (e.g., programming the FMS or reviewing approach plates), responding to abnormals, or searching for VMC traffic. We will discuss examples of each of these four categories and suggest things

  18. 14 CFR 129.24 - Cockpit voice recorders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Cockpit voice recorders. 129.24 Section 129... § 129.24 Cockpit voice recorders. No person may operate an aircraft under this part that is registered in the United States unless it is equipped with an approved cockpit voice recorder that meets...

  19. Human Factors Engineering in Designing the Passengers' Cockpit of the Malaysian Commercial Suborbital Spaceplane

    NASA Astrophysics Data System (ADS)

    Ridzuan Zakaria, Norul; Mettauer, Adrian; Abu, Jalaluddin; Hassan, Mohd Roshdi; Ismail, Anwar Taufeek; Othman, Jamaluddin; Shaari, Che Zhuhaida; Nasron, Nasri

    2010-09-01

    The design of the passengers’ cabin or cockpit of commercial suborbital spaceplane is a new and exciting frontier in human factors engineering, which emphasizes on comfort and safety. There is a program to develop small piloted 3 seats commercial suborbital spaceplane by a group of Malaysians with their foreign partners, and being relatively small and due to its design philosophy, the spaceplane does not require a cabin, but only a cockpit for its 2 passengers. In designing the cockpit, human factors engineering and safety principles are given priority. The cockpit is designed with the intention to provide comfort and satisfaction to the passengers without compromising the safety, in such a way that there are passenger-view wide angled video camera to observe the passengers at all time in flight, “rear-view”, “under-the-floor-view” and “fuselage-view” video cameras for the passengers, personalized gauges and LCDs on the dashboard to provide vital and useful information during the flight to the passengers, and biomedical engineered products which not only entertain the passengers, but also provide important information on the passengers to the ground crews who are responsible in the comfort and safety of the passengers. The passenger-view video-camera, which record the passengers with Earth visible through the glass canopy as the background, not only provides live visual of the passengers for safety reason, but also provide the most preferred memorable video collection for the passengers, while other video cameras provide the opportunity to view at various angles from unique positions to both the passengers and the ground observers. The gauges and LCDs on the dashboard provide access to the passengers to information such as the gravity, orientation, rate of climb and flight profile of the spaceplane, graphical presentation of the spaceplane in flight, and live video from the onboard video cameras. There is also a control stick for each passenger to

  20. Airline Safety: A Comparative Analysis.

    DTIC Science & Technology

    1987-01-01

    Some Empirical Findings," Management Science 25 (November 1979)s 1045-1056. 2. Air Carrier Traffic Statistics , published monthly by U.S. Civil...Times, various issues 1976-1986. 6. Traffic, ICAO Digest of Statistics , Series T, various editions 1976-1980. 7. World Airline Accident Summary...34 statistical license" and added the rankings from each of the four measures considered separately to produce a final ranking shown in Table 2.2 [7

  1. Separation Monitoring with Four Types of Predictors on a Cockpit Display of Traffic Information

    NASA Technical Reports Server (NTRS)

    Jago, S.; Palmer, E.

    1982-01-01

    A clear and concise display format for use in later full mission simulator evaluation of the cockpit display of traffic information (CDTI) concept was studied. This experiment required airline pilots to monitor a CDTI and make perceptual judgments concerning the future position of a single intruder aircraft in relationship to their own aircraft (ownship). The main experimental variable was the type of predictor used to display future position of each aircraft. Predictors were referenced to the ground or to ownship and they either included turn rate information or did not. Other variables were the aircraft's separation distance when the judgment was required and the type of encounter (straight or turning). Results indicate that under these experimental conditions fewer errors were made when the predictor included turn rate information. There was little difference in overall error rate for the curved ground referenced and the ownship referenced predictors.

  2. Evaluation of the potential format and content of a cockpit display of traffic information

    NASA Technical Reports Server (NTRS)

    Hart, S. G.; Loomis, L. L.

    1980-01-01

    The types and formats of information most suitable to be displayed in a cockpit display of traffic information (CDTI) are investigated. Twenty three airline pilots and 13 instrumentated general aviation pilots were asked to select from sets of symbols of various complexities incorporating various levels of information that would contain all information necessary for monitoring the traffic situation, detecting errors, maintaining separation and merging. Display features selected by a significant number of pilots were then evaluated for their capabilities in helping pilots to assess the lateral or vertical separation between their own and another aircraft in a dynamic simulation. It is found that while some of the features initially chosen by the pilots, such as flightpath predictors, aided the pilots in perceiving the traffic situation correctly, others, such as ground speed and climb/descend arrows and relative altitude encoding of symbols for other aircraft, did not contribute to improved performance speed or accuracy.

  3. Human factors of the high technology cockpit

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1990-01-01

    The rapid advance of cockpit automation in the last decade has outstripped the ability of the human factors profession to understand the changes in human functions required. High technology cockpits require less physical (observable) workload, but are highly demanding of cognitive functions such as planning, alternative selection, and monitoring. Furthermore, automation creates opportunity for new and more serious forms of human error, and many pilots are concerned about the possibility of complacency affecting their performance. On the positive side, the equipment works as advertized with high reliability, offering highly efficient, computer-based flight. These findings from the cockpit studies probably apply equally to other industries, such as nuclear power production, other modes of transportation, medicine, and manufacturing, all of which traditionally have looked to aviation for technological leadership. The challenge to the human factors profession is to aid designers, operators, and training departments in exploiting the positive side of automation, while seeking solutions to the negative side. Viewgraphs are given.

  4. Cockpit System Situational Awareness Modeling Tool

    NASA Technical Reports Server (NTRS)

    Keller, John; Lebiere, Christian; Shay, Rick; Latorella, Kara

    2004-01-01

    This project explored the possibility of predicting pilot situational awareness (SA) using human performance modeling techniques for the purpose of evaluating developing cockpit systems. The Improved Performance Research Integration Tool (IMPRINT) was combined with the Adaptive Control of Thought-Rational (ACT-R) cognitive modeling architecture to produce a tool that can model both the discrete tasks of pilots and the cognitive processes associated with SA. The techniques for using this tool to predict SA were demonstrated using the newly developed Aviation Weather Information (AWIN) system. By providing an SA prediction tool to cockpit system designers, cockpit concepts can be assessed early in the design process while providing a cost-effective complement to the traditional pilot-in-the-loop experiments and data collection techniques.

  5. American Airlines LOFT evaluation program

    NASA Technical Reports Server (NTRS)

    Jensen, D.

    1981-01-01

    The development of a test program to evaluate recurrent training LOFT and a three-legged scenario used for the evaluation are highlighted. The test guidelines set up and the questionnaires sent to crew member participants are examined.

  6. Hazard alerting and situational awareness in advanced air transport cockpits

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan

    1993-01-01

    Advances in avionics and display technology have significantly changed the cockpit environment in current 'glass cockpit' aircraft. Recent developments in display technology, on-board processing, data storage, and datalinked communications are likely to further alter the environment in second and third generation 'glass cockpit' aircraft. The interaction of advanced cockpit technology with human cognitive performance has been a major area of activity within the MIT Aeronautical Systems Laboratory. This paper presents an overview of the MIT Advanced Cockpit Simulation Facility. Several recent research projects are briefly reviewed and the most important results are summarized.

  7. Using Visualization in Cockpit Decision Support Systems

    SciTech Connect

    Aragon, Cecilia R.

    2005-07-01

    In order to safely operate their aircraft, pilots must makerapid decisions based on integrating and processing large amounts ofheterogeneous information. Visual displays are often the most efficientmethod of presenting safety-critical data to pilots in real time.However, care must be taken to ensure the pilot is provided with theappropriate amount of information to make effective decisions and notbecome cognitively overloaded. The results of two usability studies of aprototype airflow hazard visualization cockpit decision support systemare summarized. The studies demonstrate that such a system significantlyimproves the performance of helicopter pilots landing under turbulentconditions. Based on these results, design principles and implicationsfor cockpit decision support systems using visualization arepresented.

  8. Modern cockpit complexity challenges pilot interfaces.

    PubMed

    Dornheim, M A

    1995-01-30

    Advances in the use of automated cockpits are examined. Crashes at Nagoya and Toulouse in 1994 and incidents at Manchester, England, and Paris Orly are used as examples of cockpit automation versus manual operation of aircraft. Human factors researchers conclude that flight management systems (FMS) should have fewer modes and less authority. Reducing complexity and authority override systems of FMS can provide pilots with greater flexibility during crises. Aircraft discussed include Boeing 737-300 and 757-200, Airbus A300-600 and A310, McDonnell Douglas MD-11, and Tarom A310-300.

  9. Public health response to commercial airline travel of a person with Ebola virus infection - United States, 2014.

    PubMed

    Regan, Joanna J; Jungerman, Robynne; Montiel, Sonia H; Newsome, Kimberly; Objio, Tina; Washburn, Faith; Roland, Efrosini; Petersen, Emily; Twentyman, Evelyn; Olaiya, Oluwatosin; Naughton, Mary; Alvarado-Ramy, Francisco; Lippold, Susan A; Tabony, Laura; McCarty, Carolyn L; Kinsey, Cara Bicking; Barnes, Meghan; Black, Stephanie; Azzam, Ihsan; Stanek, Danielle; Sweitzer, John; Valiani, Anita; Kohl, Katrin S; Brown, Clive; Pesik, Nicki

    2015-01-30

    Before the current Ebola epidemic in West Africa, there were few documented cases of symptomatic Ebola patients traveling by commercial airline, and no evidence of transmission to passengers or crew members during airline travel. In July 2014 two persons with confirmed Ebola virus infection who were infected early in the Nigeria outbreak traveled by commercial airline while symptomatic, involving a total of four flights (two international flights and two Nigeria domestic flights). It is not clear what symptoms either of these two passengers experienced during flight; however, one collapsed in the airport shortly after landing, and the other was documented to have fever, vomiting, and diarrhea on the day the flight arrived. Neither infected passenger transmitted Ebola to other passengers or crew on these flights. In October 2014, another airline passenger, a U.S. health care worker who had traveled domestically on two commercial flights, was confirmed to have Ebola virus infection. Given that the time of onset of symptoms was uncertain, an Ebola airline contact investigation in the United States was conducted. In total, follow-up was conducted for 268 contacts in nine states, including all 247 passengers from both flights, 12 flight crew members, eight cleaning crew members, and one federal airport worker (81 of these contacts were documented in a report published previously). All contacts were accounted for by state and local jurisdictions and followed until completion of their 21-day incubation periods. No secondary cases of Ebola were identified in this investigation, confirming that transmission of Ebola during commercial air travel did not occur.

  10. Airline Chair-rest Deconditioning: Induction of Immobilization Thromboemboli?

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Rehrer, N. J.; Mohler, S. R.; Quach, D. T.; Evans, D. G.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    Air passenger miles will likely double by year 2020. The altered and restrictive environment in an airliner cabin can influence hematological homeostasis in passengers and crew. Flight-related deep various thromboemboli (DVT) have been associated with at least 577 deaths on 42 of 120 airlines from 1977 to 1984 (25 deaths/million departures), whereas many such cases go unreported. However, there are four major factors that could influence formation of possible flight-induced DVT: sleeping accomodations (via sitting immobilization), travelers' medical history (via tissue injury), cabin environmental factors (via lower partial pressure of oxygen and lower relative humidity), and the more encompassing chair-rest deconditioning (C-RD) syndrome. There is ample evidence that recent injury and surgery (especially in deconditioned hospitalized patients) facilitate thrombophlebitis and formation of DVT that may be exacerbated by the immobilization of prolonged air travel. In the healthy flying population immobilization factors associated with prolonged (> 5 hr) C-RID such as total body dehydration, hypovolemia and increased blood viscosity, and reduced various blood flow (pooling) in the legs may facilitate formation of DVT. However, data from at least four case-controlled epidemiological studies did not confirm a direct causative relationship between air travel and DART, but factors such as history of vascular thromboemboli, various insufficiency, chronic heart failure, obesity, immobile standing position, more than 3 pregnancies, infectious disease, long-distance travel, muscular trauma and violent physical effort were significantly more frequent in DVT patients than in controls. Thus, there is no clear, direct evidence yet that prolonged sitting in airliner seats, or prolonged experimental chair-rest- or bed- rest-deconditioning treatments cause deep various thromboemboli in healthy people.

  11. Airline chair-rest deconditioning: induction of immobilisation thromboemboli?

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Rehrer, Nancy J.; Mohler, Stanley R.; Quach, David T.; Evans, David G.

    2004-01-01

    Air passenger miles will likely double by year 2020. The altered and restrictive environment in an airliner cabin can influence haematological homeostasis in passengers and crew. Flight-related deep venous thromboemboli (DVT) have been associated with at least 577 deaths on 42 of 120 airlines from 1977 to 1984 (25 deaths/million departures), whereas many such cases go unreported. However, there are four major factors that could influence formation of possible flight-induced DVT: sleeping accommodations (via sitting immobilisation); travellers' medical history (via tissue injury); cabin environmental factors (via lower partial pressure of oxygen and lower relative humidity); and the more encompassing chair-rest deconditioning (C-RD) syndrome. There is ample evidence that recent injury and surgery (especially in deconditioned hospitalised patients) facilitate thrombophlebitis and formation of DVT that may be exacerbated by the immobilisation of prolonged air travel.In the healthy flying population, immobilisation factors associated with prolonged (>5 hours) C-RD such as total body dehydration, hypovolaemia and increased blood viscosity, and reduced venous blood flow (pooling) in the legs may facilitate formation of DVT. However, data from at least four case-controlled epidemiological studies did not confirm a direct causative relationship between air travel and DVT, but factors such as a history of vascular thromboemboli, venous insufficiency, chronic heart failure, obesity, immobile standing position, more than three pregnancies, infectious disease, long-distance travel, muscular trauma and violent physical effort were significantly more frequent in DVT patients than in controls. Thus, there is no clear, direct evidence yet that prolonged sitting in airliner seats, or prolonged experimental chair-rest or bed-rest deconditioning treatments cause DVT in healthy people.

  12. Another Approach to Enhance Airline Safety: Using Management Safety Tools

    NASA Technical Reports Server (NTRS)

    Lu, Chien-tsug; Wetmore, Michael; Przetak, Robert

    2006-01-01

    The ultimate goal of conducting an accident investigation is to prevent similar accidents from happening again and to make operations safer system-wide. Based on the findings extracted from the investigation, the "lesson learned" becomes a genuine part of the safety database making risk management available to safety analysts. The airline industry is no exception. In the US, the FAA has advocated the usage of the System Safety concept in enhancing safety since 2000. Yet, in today s usage of System Safety, the airline industry mainly focuses on risk management, which is a reactive process of the System Safety discipline. In order to extend the merit of System Safety and to prevent accidents beforehand, a specific System Safety tool needs to be applied; so a model of hazard prediction can be formed. To do so, the authors initiated this study by reviewing 189 final accident reports from the National Transportation Safety Board (NTSB) covering FAR Part 121 scheduled operations. The discovered accident causes (direct hazards) were categorized into 10 groups Flight Operations, Ground Crew, Turbulence, Maintenance, Foreign Object Damage (FOD), Flight Attendant, Air Traffic Control, Manufacturer, Passenger, and Federal Aviation Administration. These direct hazards were associated with 36 root factors prepared for an error-elimination model using Fault Tree Analysis (FTA), a leading tool for System Safety experts. An FTA block-diagram model was created, followed by a probability simulation of accidents. Five case studies and reports were provided in order to fully demonstrate the usefulness of System Safety tools in promoting airline safety.

  13. Synthesis of an integrated cockpit management system

    NASA Technical Reports Server (NTRS)

    Dasaro, J. A.; Elliott, C. T.

    1982-01-01

    The process used in the synthesis of an integrated cockpit management system was discussed. Areas covered included flight displays, subsystem management, checklists, and procedures (both normal and emergency). The process of evolving from the unintegrated conventional system to the integrated system is examined and a brief description of the results presented.

  14. Technical Workshop: Advanced Helicopter Cockpit Design

    NASA Technical Reports Server (NTRS)

    Hemingway, J. C. (Editor); Callas, G. P. (Editor)

    1984-01-01

    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration.

  15. 14 CFR 27.777 - Cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cockpit controls. 27.777 Section 27.777 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Personnel and Cargo Accommodations §...

  16. 14 CFR 29.777 - Cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cockpit controls. 29.777 Section 29.777 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Personnel and Cargo Accommodations §...

  17. STS-101 Crew Interview / Scott Horowitz

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage of a preflight interview with Pilot Scott J. Horowitz is seen. The interview addresses many different questions including why Horowitz became an astronaut, the events that led to his interest, any role models that he had, and his inspiration. Other interesting information that this one-on-one interview discusses is the reaction and reasons for the splitting-up of the objectives for STS-101 with STS-106. Horowitz also mentions the scheduled space-walk, docking with the International Space Station (ISS), the new glass cockpit of Atlantis, the repairs of equipment and change of the batteries. Horowitz also discusses his responsibilities during the space-walk, and docking of the spacecraft. He stresses that he will have an added challenge during the space-walk, his inability to see where he needs to place the Extravehicular Activities (EVA) crew.

  18. Future direction in airline marketing

    NASA Technical Reports Server (NTRS)

    Colussy, D. A.

    1972-01-01

    The rapid growth and broadening of the air travel market, coupled with a more sophisticated consumer, will dramatically change airline marketing over the next decade. Discussed is the direction this change is likely to take and its implications for companies within the industry. New conceptualization approaches are required if the full potential of this expanding market is to be fully realized. Marketing strategies are developed that will enable various elements of the travel industry to compete not only against each other but also with other products that are competing for the consumer's discretionary income.

  19. 76 FR 23109 - Enhancing Airline Passenger Protections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... flights. For example, Condor Flugdienst Airlines (Condor) states that it sees no reason to enforce a... carriers that commented, Condor Airlines notes that when a longer delay becomes inevitable, Condor has... medical attention, Condor states that its flight attendants are capable of providing basic first aid...

  20. Consumer Marketing and the Airline Industry

    NASA Technical Reports Server (NTRS)

    Roy, W. R.

    1972-01-01

    The fundamentals of consumer marketing as applied to the airline industry are considered. An attempt is made to boil down the mystique and jargon which frequently surround the subject of marketing. Topics covered include: (1) The marketing concept; (2) consumer expectations from airlines; (3) planning of marketing strategy; and (4) the roles of advertising, sales, and middlemen.

  1. Airline Careers. Aviation Careers Series. Revised.

    ERIC Educational Resources Information Center

    Zaharevitz, Walter

    This booklet, one in a series on aviation careers, outlines the variety of careers available in airlines. The first part of the booklet provides general information about careers in the airline industry, including salaries, working conditions, job requirements, and projected job opportunities. In the main part of the booklet, the following 22 job…

  2. Fuel conservation integrated into airline economics

    SciTech Connect

    Ferguson, D.R.

    1981-01-01

    Fuel conservation efforts at most major airlines involve close scrutiny and intensive analysis in all areas - flight, maintenance and ground handling. Yet, despite the concern and attention devoted, the fundamental question of fuel saving versus time trade-offs remains unanswered. This paper introduces and defines the concept ''The value of an airplane to an airline is that airplane's earning power.

  3. Case Study of the Space Shuttle Cockpit Avionics Upgrade Software

    NASA Technical Reports Server (NTRS)

    Ferguson, Roscoe C.; Thompson, Hiram C.

    2005-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. An early version of this system was used to gather human factor statistics in the Space Shuttle Motion Simulator of the Johnson Space Center for one month by multiple teams of astronauts. The results were compiled by NASA Ames Research Center and it was was determined that the system provided a better than expected increase in situational awareness and reduction in crew workload. Even with all of the benefits nf the system, NASA cancelled the project towards the end of the development cycle. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. This paper serves as a case study to document knowledge gained and techniques that can be applied for future space avionics development efforts. The major technological advances were the use of reflective memory concepts for data acquisition and the incorporation of Commercial off the Shelf (COTS) products in a human rated space avionics system. The infused COTS products included a real time operating system, a resident linker and loader, a display generation tool set, and a network data manager. Some of the successful design concepts were the engineering of identical outputs in multiple avionics boxes using an event driven approach and inter-computer communication, a reconfigurable data acquisition engine, the use of a dynamic bus bandwidth allocation algorithm. Other significant experiences captured were the use of prototyping to reduce risk, and the correct balance between Object Oriented and Functional based programming.

  4. Understanding and Counteracting Fatigue in Flight Crews

    NASA Technical Reports Server (NTRS)

    Mallis, Melissa; Neri, David; Rosekind, Mark; Gander, Philippa; Caldwell, John; Graeber, Curtis

    2007-01-01

    The materials included in the collection of documents describe the research of the NASA Ames Fatigue Countermeasures Group (FCG), which examines the extent to which fatigue, sleep loss, and circadian disruption affect flight-crew performance. The group was formed in 1980 in response to a Congressional request to examine a possible safety problem of uncertain magnitude due to transmeridian flying and a potential problem due to fatigue in association with various factors found in air-transport operations and was originally called the Fatigue/Jet Lag Program. The goals of the FCG are: (1) the development and evaluation of strategies for mitigating the effects of sleepiness and circadian disruption on pilot performance levels; (2) the identification and evaluation of objective approaches for the prediction of alertness changes in flight crews; and (3) the transfer and application of research results to the operational field via classes, workshops, and safety briefings. Some of the countermeasure approaches that have been identified to be scientifically valid and operationally relevant are brief naps (less than 40 min) in the cockpit seat and 7-min activity breaks, which include postural changes and ambulation. Although a video-based alertness monitor based on slow eyelid closure shows promise in other operational environments, research by the FCG has demonstrated that in its current form at the time of this reporting, it is not feasible to implement it in the cockpit. Efforts also focus on documenting the impact of untreated fatigue on various types of flight operations. For example, the FCG recently completed a major investigation into the effects of ultra-long-range flights (20 continuous hours in duration) on the alertness and performance of pilots in order to establish a baseline set of parameters against which the effectiveness of new ultra-long-range fatigue remedies can be judged.

  5. Early flight test experience with Cockpit Displayed Traffic Information (CDTI)

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.; Moen, G. C.; Person, L. H., Jr.; Keyser, G. L., Jr.; Yenni, K. R.; Garren, J. F., Jr.

    1980-01-01

    Coded symbology, based on the results of early human factors studies, was displayed on the electronic horizontal situation indicator and flight tested on an advanced research aircraft in order to subject the coded traffic symbology to a realistic flight environment and to assess its value by means of a direct comparison with simple, uncoded traffic symbology. The tests consisted of 28 curved, decelerating approaches, flown by research-pilot flight crews. The traffic scenarios involved both conflict-free and blunder situations. Subjective pilot commentary was obtained through the use of a questionnaire and extensive pilot debriefing sessions. The results of these debriefing sessions group conveniently under either of two categories: display factors or task performance. A major item under the display factor category was the problem of display clutter. The primary contributors to clutter were the use of large map-scale factors, the use of traffic data blocks, and the presentation of more than a few aircraft. In terms of task performance, the cockpit displayed traffic information was found to provide excellent overall situation awareness.

  6. Texas International Airlines LOFT program

    NASA Technical Reports Server (NTRS)

    Sommerville, J.

    1981-01-01

    A line-oriented flight training program which allows the crew to work as a team to solve all problems, abnormal or emergency, within the crew concept. A line-oriented check ride takes place every six months for the pilot as a proficiency check. There are advantages and disadvantages to this program. One disadvantage is that since it is designed as a check-ride, the scenarios must be structured so that the average pilot will complete the check-ride without complication. This system is different from a proficiency check which can be stopped at a problem area so training to proficiency can take place before proceeding with the check.

  7. Management of cosmic radiation exposure for aircraft crew in Japan.

    PubMed

    Yasuda, Hiroshi; Sato, Tatsuhiko; Yonehara, Hidenori; Kosako, Toshiso; Fujitaka, Kazunobu; Sasaki, Yasuhito

    2011-07-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y(-1). The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Institute of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program.

  8. Towards an Integrated Approach to Cabin Service English Curriculum Design: A Case Study of China Southern Airlines' Cabin Service English Training Course

    ERIC Educational Resources Information Center

    Xiaoqin, Liu; Wenzhong, Zhu

    2016-01-01

    This paper has reviewed the history of EOP (training) development and then illustrated the curriculum design of cabin service English training from the three perspectives of ESP, CLIL and Business Discourse. It takes the cabin crew English training of China Southern Airlines (CZ) as the case and puts forward an operational framework composed of…

  9. A Gold Standards Approach to Training Instructors to Evaluate Crew Performance

    NASA Technical Reports Server (NTRS)

    Baker, David P.; Dismukes, R. Key

    2003-01-01

    The Advanced Qualification Program requires that airlines evaluate crew performance in Line Oriented Simulation. For this evaluation to be meaningful, instructors must observe relevant crew behaviors and evaluate those behaviors consistently and accurately against standards established by the airline. The airline industry has largely settled on an approach in which instructors evaluate crew performance on a series of event sets, using standardized grade sheets on which behaviors specific to event set are listed. Typically, new instructors are given a class in which they learn to use the grade sheets and practice evaluating crew performance observed on videotapes. These classes emphasize reliability, providing detailed instruction and practice in scoring so that all instructors within a given class will give similar scores to similar performance. This approach has value but also has important limitations; (1) ratings within one class of new instructors may differ from those of other classes; (2) ratings may not be driven primarily by the specific behaviors on which the company wanted the crews to be scored; and (3) ratings may not be calibrated to company standards for level of performance skill required. In this paper we provide a method to extend the existing method of training instructors to address these three limitations. We call this method the "gold standards" approach because it uses ratings from the company's most experienced instructors as the basis for training rater accuracy. This approach ties the training to the specific behaviors on which the experienced instructors based their ratings.

  10. Crew Alertness Management on the Flight Deck: Cognitive and Vigilance Performance

    NASA Technical Reports Server (NTRS)

    Dinges, David F.

    1998-01-01

    This project had three broad goals: (1) to identify environmental and organismic risks to performance of long-haul cockpit crews; (2) to assess how cognitive and psychomotor vigilance performance, and subjective measures of alertness, were affected by work-rest schedules typical of long-haul cockpit crews; and (3) to determine the alertness-promoting effectiveness of behavioral and technological countermeasures to fatigue on the flight deck. During the course of the research, a number of studies were completed in cooperation with the NASA Ames Fatigue Countermeasures Program. The publications emerging from this project are listed in a bibliography in the appendix. Progress toward these goals will be summarized below according to the period in which it was accomplished.

  11. Stochastic Modeling of Airlines' Scheduled Services Revenue

    NASA Technical Reports Server (NTRS)

    Hamed, M. M.

    1999-01-01

    Airlines' revenue generated from scheduled services account for the major share in the total revenue. As such, predicting airlines' total scheduled services revenue is of great importance both to the governments (in case of national airlines) and private airlines. This importance stems from the need to formulate future airline strategic management policies, determine government subsidy levels, and formulate governmental air transportation policies. The prediction of the airlines' total scheduled services revenue is dealt with in this paper. Four key components of airline's scheduled services are considered. These include revenues generated from passenger, cargo, mail, and excess baggage. By addressing the revenue generated from each schedule service separately, air transportation planners and designers arc able to enhance their ability to formulate specific strategies for each component. Estimation results clearly indicate that the four stochastic processes (scheduled services components) are represented by different Box-Jenkins ARIMA models. The results demonstrate the appropriateness of the developed models and their ability to provide air transportation planners with future information vital to the planning and design processes.

  12. The Temporal Configuration of Airline Networks

    NASA Technical Reports Server (NTRS)

    Burghouwt, Guillaume; deWit, Jaap

    2003-01-01

    The deregulation of US aviation in 1978 resulted in the reconfiguration of airline networks into hub-and-spoke systems, spatially concentrated around a small number of central airports or 'hubs' through which an airline operates a number of daily waves of flights. A hub-and-spoke network requires a concentration of traffic in both space and time. In contrast to the U.S. airlines, European airlines had entered the phase of spatial network concentration long before deregulation. Bilateral negotiation of traffic fights between governments forced European airlines to focus their networks spatially on small number of 'national' airports. In general, these star-shaped networks were not coordinated in time. Transfer opportunities at central airports were mostly created 'by accident'. With the deregulation of the EU air transport market from 1988 on, a second phase of airline network concentration started. European airlines concentrated their networks in time by adopting or intensifying wave-system structures in their flight schedules. Temporal concentration may increase the competitive position of the network in a deregulated market because of certain cost and demand advantages.

  13. Stochastic Modeling of Airlines' Scheduled Services Revenue

    NASA Technical Reports Server (NTRS)

    Hamed, M. M.

    1999-01-01

    Airlines' revenue generated from scheduled services account for the major share in the total revenue. As such, predicting airlines' total scheduled services revenue is of great importance both to the governments (in case of national airlines) and private airlines. This importance stems from the need to formulate future airline strategic management policies, determine government subsidy levels, and formulate governmental air transportation policies. The prediction of the airlines' total scheduled services revenue is dealt with in this paper. Four key components of airline's scheduled services are considered. These include revenues generated from passenger, cargo, mail, and excess baggage. By addressing the revenue generated from each schedule service separately, air transportation planners and designers are able to enhance their ability to formulate specific strategies for each component. Estimation results clearly indicate that the four stochastic processes (scheduled services components) are represented by different Box-Jenkins ARIMA models. The results demonstrate the appropriateness of the developed models and their ability to provide air transportation planners with future information vital to the planning and design processes.

  14. Evaluation of Cabin Crew Technical Knowledge

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa G.; Chute, Rebecca D.; Jordan, Kevin

    1998-01-01

    Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or essen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research (Chute & Wiener, 1996) indicates that light attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports (National Transportation Safety Board, 1992; Transportation Safety Board of Canada, 1995; Chute & Wiener, 1996). The present study explored both flight attendant technical knowledge and flight attendant and dot expectations of flight attendant technical knowledge. To assess the technical knowledge if cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily :ompleted a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendants.

  15. Error prevention as developed in airlines.

    PubMed

    Logan, Timothy J

    2008-01-01

    The airline industry is a high-risk endeavor. Tens of thousands of flights depart each day carrying millions of passengers with the potential for catastrophic consequences. To manage and mitigate this risk, airline operators, labor unions, and the Federal Aviation Administration have developed a partnership approach to improving safety. This partnership includes cooperative programs such as the Aviation Safety Action Partnership and the Flight Operational Quality Assurance. It also involves concentrating on the key aspects of aircraft maintenance reliability and employee training. This report discusses recent enhancements within the airline industry in the areas of proactive safety programs and the move toward safety management systems that will drive improvements in the future.

  16. Error Prevention as Developed in Airlines

    SciTech Connect

    Logan, Timothy J.

    2008-05-01

    The airline industry is a high-risk endeavor. Tens of thousands of flights depart each day carrying millions of passengers with the potential for catastrophic consequences. To manage and mitigate this risk, airline operators, labor unions, and the Federal Aviation Administration have developed a partnership approach to improving safety. This partnership includes cooperative programs such as the Aviation Safety Action Partnership and the Flight Operational Quality Assurance. It also involves concentrating on the key aspects of aircraft maintenance reliability and employee training. This report discusses recent enhancements within the airline industry in the areas of proactive safety programs and the move toward safety management systems that will drive improvements in the future.

  17. Commercial Crew Program Crew Safety Strategy

    NASA Technical Reports Server (NTRS)

    Vassberg, Nathan; Stover, Billy

    2015-01-01

    The purpose of this presentation is to explain to our international partners (ESA and JAXA) how NASA is implementing crew safety onto our commercial partners under the Commercial Crew Program. It will show them the overall strategy of 1) how crew safety boundaries have been established; 2) how Human Rating requirements have been flown down into programmatic requirements and over into contracts and partner requirements; 3) how CCP SMA has assessed CCP Certification and CoFR strategies against Shuttle baselines; 4) Discuss how Risk Based Assessment (RBA) and Shared Assurance is used to accomplish these strategies.

  18. Cockpit resource management training at People Express

    NASA Technical Reports Server (NTRS)

    Bruce, Keith D.; Jensen, Doug

    1987-01-01

    In January 1986 in a continuing effort to maintain and improve flight safety and solve some Cockpit Resource Management (CRM) problems, People Express implemented a new CRM training program. It is a continuously running program, scheduled over the next three years and includes state-of-the-art full-mission simulation (LOFT), semi-annual seminar workshops and a comprehensive academic program authored by Robert W. Mudge of Cockpit Management Resources Inc. That program is outlined and to maximize its contribution to the workshop's goals, is organized into four topic areas: (1) Program content: the essential elements of resource management training; (2) Training methods: the strengths and weaknesses of current approaches; (3) Implementation: the implementation of CRM training; and (4) Effectiveness: the effectiveness of training. It is confined as much as possible to concise descriptions of the program's basic components. Brief discussions of rationale are included, however no attempt is made to discuss or review popular CRM tenets or the supporting research.

  19. Using Visualization in Cockpit Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2005-01-01

    In order to safely operate their aircraft, pilots must make rapid decisions based on integrating and processing large amounts of heterogeneous information. Visual displays are often the most efficient method of presenting safety-critical data to pilots in real time. However, care must be taken to ensure the pilot is provided with the appropriate amount of information to make effective decisions and not become cognitively overloaded. The results of two usability studies of a prototype airflow hazard visualization cockpit decision support system are summarized. The studies demonstrate that such a system significantly improves the performance of helicopter pilots landing under turbulent conditions. Based on these results, design principles and implications for cockpit decision support systems using visualization are presented.

  20. Collective efficacy in a high-fidelity simulation of an airline operations center

    NASA Astrophysics Data System (ADS)

    Jinkerson, Shanna

    This study investigated the relationships between collective efficacy, teamwork, and team performance. Participants were placed into teams, where they worked together in a high-fidelity simulation of an airline operations center. Each individual was assigned a different role to represent different jobs within an airline (Flight Operations Coordinator, Crew Scheduling, Maintenance, Weather, Flight Scheduling, or Flight Planning.) Participants completed a total of three simulations with an After Action Review between each. Within this setting, both team performance and teamwork behaviors were shown to be positively related to expectations for subsequent performance (collective efficacy). Additionally, teamwork and collective efficacy were not shown to be concomitantly related to subsequent team performance. A chi-square test was used to evaluate existence of performance spirals, and they were not supported. The results of this study were likely impacted by lack of power, as well as a lack of consistency across the three simulations.

  1. Crew roles and interactions in scientific space exploration

    NASA Astrophysics Data System (ADS)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-10-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members' training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human space flight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future space flight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future space flights.

  2. Crew Roles and Interactions in Scientific Space Exploration

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Bleacher, Jacob E.

    2013-01-01

    Future piloted space exploration missions will focus more on science than engineering, a change which will challenge existing concepts for flight crew tasking and demand that participants with contrasting skills, values, and backgrounds learn to cooperate as equals. In terrestrial space flight analogs such as Desert Research And Technology Studies, engineers, pilots, and scientists can practice working together, taking advantage of the full breadth of all team members training to produce harmonious, effective missions that maximize the time and attention the crew can devote to science. This paper presents, in a format usable as a reference by participants in the field, a successfully tested crew interaction model for such missions. The model builds upon the basic framework of a scientific field expedition by adding proven concepts from aviation and human spaceflight, including expeditionary behavior and cockpit resource management, cooperative crew tasking and adaptive leadership and followership, formal techniques for radio communication, and increased attention to operational considerations. The crews of future spaceflight analogs can use this model to demonstrate effective techniques, learn from each other, develop positive working relationships, and make their expeditions more successful, even if they have limited time to train together beforehand. This model can also inform the preparation and execution of actual future spaceflights.

  3. Aeronautical Decision Making - Cockpit Resource Management

    DTIC Science & Technology

    1989-01-01

    of this effort to establish a universal CRM evaluation methodology useful throughout the 7 Codes icd/or AA industry. The author’s participation in the...on communication) to the decision training and evaluation being offered to the single-person cockpit elsewhere described as ADM. From a historical...risk assessment skills. 5) Learning to consider all resources available. 6) Learning to how evaluate your flight and decision making skills. Recent

  4. General Aviation (FAR 23) Cockpit Standardization Analysis

    DTIC Science & Technology

    1978-03-01

    Cockpit Geu,,ral area was subdivided into: Dimensional Criteria, Seat Belts and Restraintn, Windscreen Visibility, Ventilation and Environment, Doors-Access...helt# and Restraints b. Altimeter b. Indicator C. Windacreen Vslibility a. Attitude Gyro e’ WarnLn d. Ventilation and Environment 4. Directional Gyro d...Cabin Ventilation (CO) 11 Light Selector switches 3 Wanin~g Light. 42h fictrioal qvitlihes 24 Control Lothe 12 KGT Case. 2 Elevator Cuotr,,i 2

  5. The structure of cockpit management attitudes

    NASA Technical Reports Server (NTRS)

    Gregorich, S. E.; Helmreich, R. L.; Wilhelm, J. A.

    1990-01-01

    A revised version of the Cockpit Management Attitudes Questionnaire (CMAQ) is introduced. Factor analyses of responses from 3 different samples reveal comparable factor structure (previous attempts to factor analyze this measure had produced equivocal results). Implications for the measurement of attitudes and the assessment of attitude change are discussed. It is argued that the CMAQ will benefit both special training programs and efforts to explore attitude-performance linkages in air-transport operations.

  6. Fatigue mitigation effects of en-route napping on commercial airline pilots flying international routes

    NASA Astrophysics Data System (ADS)

    Baldwin, Jarret Taylor

    The introduction of ultra-long range commercial aircraft and the evolution of the commercial airline industry has provided new opportunities for air carriers to fly longer range international route segments while deregulation, industry consolidation, and the constant drive to reduce costs wherever possible has pressured airline managements to seek more productivity from their pilots. At the same time, advancements in the understanding of human physiology have begun to make their way into flight and duty time regulations and airline scheduling practices. In this complex and ever changing operating environment, there remains an essential need to better understand how these developments, and other daily realities facing commercial airline pilots, are affecting their fatigue management strategies as they go about their rituals of getting to and from their homes to work and performing their flight assignments. Indeed, the need for commercial airline pilots to have access to better and more effective fatigue mitigation tools to combat fatigue and insure that they are well rested and at the top of their game when flying long-range international route segments has never been greater. This study examined to what extent the maximum fatigue states prior to napping, as self-accessed by commercial airline pilots flying international route segments, were affected by a number of other common flight assignment related factors. The study also examined to what extent the availability of scheduled en-route rest opportunities, in an onboard crew rest facility, affected the usage of en-route napping as a fatigue mitigation strategy, and to what extent the duration of such naps affected the perceived benefits of such naps as self-accessed by commercial airline pilots flying international route segments. The study utilized an online survey tool to collect data on crew position, prior flight segments flown in the same duty period, augmentation, commuting, pre-flight rest obtained in the

  7. M2-F1 cockpit

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This photo shows the cockpit configuration of the M2-F1 wingless lifting body. With a top speed of about 120 knots, the M2-F1 had a simple instrument panel. Besides the panel itself, the ribs of the wooden shell (left) and the control stick (center) are also visible. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C-47

  8. Perspectives of those impacted: airline pilot's perspective.

    PubMed

    Butler, G C; Nicholas, J; Lackland, D T; Friedberg, W

    2000-11-01

    The airline pilot operates within an environment that consists of circadian dysrhythmia, reduced atmospheric pressure, mild hypoxia, low humidity, and exposure to sound, vibration, cosmic-radiation, and magnetic-field exposure. These occupational exposures present physiological challenges to the long term health of the airline pilot. In particular, exposure to cosmic radiation and its carcinogenic potential have recently received considerable attention. Given the complexity of the environment and possible synergistic exposures, there is an immediate requirement for comprehensive research into both cosmic-radiation and magnetic-field exposures in airline pilots. In response, the Airline Pilots Association International in conjunction with the Medical University of South Carolina (Department of Biometry and Epidemiology) has initiated an extensive research program into these occupational exposures. These investigations include ground based calculations, flight-dose estimates, epidemiological survey and exposure assessment, and biological marker analysis.

  9. Corporate/commuter airlines meteorological requirements

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.

    1985-01-01

    The meteorological information requirements of corporate and commuter airlines are reviewed. The skill level and needs of this class of aviator were assessed. An overview of the methodology by which meteorological data is communicated to these users is presented.

  10. Neurobiological differences in mental rotation and instrument interpretation in airline pilots

    PubMed Central

    Sladky, Ronald; Stepniczka, Irene; Boland, Edzard; Tik, Martin; Lamm, Claus; Hoffmann, André; Buch, Jan-Philipp; Niedermeier, Dominik; Field, Joris; Windischberger, Christian

    2016-01-01

    Airline pilots and similar professions require reliable spatial cognition abilities, such as mental imagery of static and moving three-dimensional objects in space. A well-known task to investigate these skills is the Shepard and Metzler mental rotation task (SMT), which is also frequently used during pre-assessment of pilot candidates. Despite the intuitive relationship between real-life spatial cognition and SMT, several studies have challenged its predictive value. Here we report on a novel instrument interpretation task (IIT) based on a realistic attitude indicator used in modern aircrafts that was designed to bridge the gap between the abstract SMT and a cockpit environment. We investigated 18 professional airline pilots using fMRI. No significant correlation was found between SMT and IIT task accuracies. Contrasting both tasks revealed higher activation in the fusiform gyrus, angular gyrus, and medial precuneus for IIT, whereas SMT elicited significantly stronger activation in pre- and supplementary motor areas, as well as lateral precuneus and superior parietal lobe. Our results show that SMT skills per se are not sufficient to predict task accuracy during (close to) real-life instrument interpretation. While there is a substantial overlap of activation across the task conditions, we found that there are important differences between instrument interpretation and non-aviation based mental rotation. PMID:27323913

  11. NASA Research to Support the Airlines

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a PowerPoint presentation that was a review of NASA projects that support airline operations. It covered NASA tasks that have provided new tools to the airline operations center and flight deck including the Flight Awareness Collaboration Tool, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. This material is very similar to other previously approved presentations with the same title.

  12. Position-specific behaviors and their impact on crew performance: Implications for training

    NASA Technical Reports Server (NTRS)

    Law, J. Randolph

    1993-01-01

    The present study was motivated by results from a preliminary report documenting the impact of specific crewmembers on overall crew performance (Wilhelm & Law, 1992), and a cross-airline cross-fleet project investigating human factors behaviors of commercial aviation flightcrews (Helmreich, Butler, Whilhelm, & Lofaro, 1992). The purpose of the current investigation is to study how position-specific behaviors impact flightcrew performance, and how these position-specific behaviors differ between two airlines and two flying environments. Implications for training will also be addressed.

  13. Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers

    NASA Technical Reports Server (NTRS)

    Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry

    2006-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based

  14. STS-109 Crew Training

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Footage shows the crew of STS-109 (Commander Scott Altman, Pilot Duane Carey, Payload Commander John Grunsfeld, and Mission Specialists Nancy Currie, James Newman, Richard Linnehan, and Michael Massimino) during various parts of their training. Scenes show the crew's photo session, Post Landing Egress practice, training in Dome Simulator, Extravehicular Activity Training in the Neutral Buoyancy Laboratory (NBL), and using the Virtual Reality Laboratory Robotic Arm. The crew is also seen tasting food as they choose their menus for on-orbit meals.

  15. Aviation Accidents: CRM to Maintaining the Share of Airlines. Case Study on Accidents Airlines in China

    ERIC Educational Resources Information Center

    Alnuaimi, Qussay A. B.

    2015-01-01

    We present Aviation Cost Risk management (CRM) methodology designed for Airlines Company, who needs to run projects beyond their normal. These airlines are critical to the survival of these organizations, such as the development and performance. The Aviation crisis can have considerable impact upon the value of the firm. Risk managers must focus…

  16. Multimodal Perception and Multicriterion Control of Nested Systems. 2; Constraints on Crew Members During Space Vehicle Abort, Entry, and Landing

    NASA Technical Reports Server (NTRS)

    Riccio, Gary E.; McDonald, P. Vernon; Irvin, Gregg E.; Bloomberg, Jacob J.

    1998-01-01

    This report reviews the operational demands made of a Shuttle pilot or commander within the context of a proven empirical methodology for describing human sensorimotor performance and whole-body coordination in mechanically and perceptually complex environments. The conclusions of this review pertain to a) methods for improving our understanding of the psychophysics and biomechanics of visual/manual control and whole-body coordination in space vehicle cockpits; b) the application of scientific knowledge about human perception and performance in dynamic inertial conditions to the development of technology, procedures, and training for personnel in space vehicle cockpits; c) recommendations for mitigation of safety and reliability concerns about human performance in space vehicle cockpits; and d) in-flight evaluation of flight crew performance during nominal and off-nominal launch and reentry scenarios.

  17. Relationship between Brazilian airline pilot errors and time of day.

    PubMed

    de Mello, M T; Esteves, A M; Pires, M L N; Santos, D C; Bittencourt, L R A; Silva, R S; Tufik, S

    2008-12-01

    Flight safety is one of the most important and frequently discussed issues in aviation. Recent accident inquiries have raised questions as to how the work of flight crews is organized and the extent to which these conditions may have been contributing factors to accidents. Fatigue is based on physiologic limitations, which are reflected in performance deficits. The purpose of the present study was to provide an analysis of the periods of the day in which pilots working for a commercial airline presented major errors. Errors made by 515 captains and 472 co-pilots were analyzed using data from flight operation quality assurance systems. To analyze the times of day (shifts) during which incidents occurred, we divided the light-dark cycle (24:00) in four periods: morning, afternoon, night, and early morning. The differences of risk during the day were reported as the ratio of morning to afternoon, morning to night and morning to early morning error rates. For the purposes of this research, level 3 events alone were taken into account, since these were the most serious in which company operational limits were exceeded or when established procedures were not followed. According to airline flight schedules, 35% of flights take place in the morning period, 32% in the afternoon, 26% at night, and 7% in the early morning. Data showed that the risk of errors increased by almost 50% in the early morning relative to the morning period (ratio of 1:1.46). For the period of the afternoon, the ratio was 1:1.04 and for the night a ratio of 1:1.05 was found. These results showed that the period of the early morning represented a greater risk of attention problems and fatigue.

  18. Wireless Crew Communication Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Archer, Ronald D.; Romero, Andy; Juge, David

    2016-01-01

    Ongoing discussions with crew currently onboard the ISS as well as the crew debriefs from completed ISS missions indicate that issues associated with the lack of wireless crew communication results in increased crew task completion times and lower productivity, creates cable management issues, and increases crew frustration.

  19. Data link air traffic control and flight deck environments: Experiment in flight crew performance

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy; Mcgann, Alison; Corker, Kevin

    1993-01-01

    This report describes an experiment undertaken in a full mission simulation environment to investigate the performance impact of, and human/system response to, data-linked Air Traffic Control (ATC) and automated flight deck operations. Subjects were twenty pilots (ten crews) from a major United States air carrier. Crews flew the Advanced Concepts Flight Simulator (ACFS), a generic 'glass cockpit' simulator at NASA Ames. The method of data link used was similar to the data link implementation plans for a next-generation aircraft, and included the capability to review ATC messages and directly enter ATC clearance information into the aircraft systems. Each crew flew experimental scenarios, in which data reflecting communication timing, errors and clarifications, and procedures were collected. Results for errors and clarifications revealed an interaction between communication modality (voice v. data link) and communication type (air/ground v. intracrew). Results also revealed that voice crews initiated ATC contact significantly more than data link crews. It was also found that data link crews performed significantly more extraneous activities during the communication task than voice crews. Descriptive data from the use of the review menu indicate the pilot-not-flying accessing the review menu most often, and also suggest diffulty in accessing the target message within the review menu structure. The overall impact of communication modality upon air/ground communication and crew procedures is discussed.

  20. A Laboratory Glass-Cockpit Flight Simulator for Automation and Communications Research

    NASA Technical Reports Server (NTRS)

    Pisanich, Gregory M.; Heers, Susan T.; Shafto, Michael G. (Technical Monitor)

    1995-01-01

    A laboratory glass-cockpit flight simulator supporting research on advanced commercial flight deck and Air Traffic Control (ATC) automation and communication interfaces has been developed at the Aviation Operations Branch at the NASA Ames Research Center. This system provides independent and integrated flight and ATC simulator stations, party line voice and datalink communications, along with video and audio monitoring and recording capabilities. Over the last several years, it has been used to support the investigation of flight human factors research issues involving: communication modality; message content and length; graphical versus textual presentation of information, and human accountability for automation. This paper updates the status of this simulator, describing new functionality in the areas of flight management system, EICAS display, and electronic checklist integration. It also provides an overview of several experiments performed using this simulator, including their application areas and results. Finally future enhancements to its ATC (integration of CTAS software) and flight deck (full crew operations) functionality are described.

  1. STS-47 Crew Briefing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri answer questions from the press about the upcoming Endeavour mission and the crew's personal views of the mission.

  2. Crew Earth Observations

    NASA Technical Reports Server (NTRS)

    Runco, Susan

    2009-01-01

    Crew Earth Observations (CEO) takes advantage of the crew in space to observe and photograph natural and human-made changes on Earth. The photographs record the Earth's surface changes over time, along with dynamic events such as storms, floods, fires and volcanic eruptions. These images provide researchers on Earth with key data to better understand the planet.

  3. Exploring flight crew behaviour

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  4. Commercial Crew Medical Ops

    NASA Technical Reports Server (NTRS)

    Heinbaugh, Randall; Cole, Richard

    2016-01-01

    Provide commercial partners with: center insight into NASA spaceflight medical experience center; information relative to both nominal and emergency care of the astronaut crew at landing site center; a basis for developing and sharing expertise in space medical factors associated with returning crew.

  5. Crew Communication as a Factor in Aviation Accidents

    NASA Technical Reports Server (NTRS)

    Goguen, J.; Linde, C.; Murphy, M.

    1986-01-01

    The crew communication process is analyzed. Planning and explanation are shown to be well-structured discourse types, described by formal rules. These formal rules are integrated with those describing the other most important discourse type within the cockpit: the command-and-control speech act chain. The latter is described as a sequence of speech acts for making requests (including orders and suggestions), for making reports, for supporting or challenging statements, and for acknowledging previous speech acts. Mitigation level, a linguistic indication of indirectness and tentativeness in speech, was an important variable in several hypotheses, i.e., the speech of subordinates is more mitigated than the speech of superiors, the speech of all crewmembers is less mitigated when they know that they are in either a problem or emergency situation, and mitigation is a factor in failures of crewmembers to initiate discussion of new topics or have suggestions ratified by the captain. Test results also show that planning and explanation are more frequently performed by captains, are done more during crew- recognized problems, and are done less during crew-recognized emergencies. The test results also indicated that planning and explanation are more frequently performed by captains than by other crewmembers, are done more during crew-recognized problems, and are done less during-recognized emergencies.

  6. Service Quality in the U.S. Airline Industry: Variations in Performance Within Airlines and Between Airlines and the Industry

    NASA Technical Reports Server (NTRS)

    Rhoades, Dawna L.; Waguespack, Blaise, Jr.

    2000-01-01

    This study examined the service quality of 25 U.S. airlines (1987-1996) using data from the Department of Transportation's Air Travel Consumer Report. After a total quality and total complaint rate was calculated for these airlines, a 95 percent confidence interval was placed around the yearly and company means calculated to examine those cases that were significantly different from the mean. Results indicate that while the major carriers are converging toward a higher level of quality, there continues to be significant yearly variation. The service quality of regional carriers was much lower than major carriers and showed much greater variation.

  7. The Future of Regulation in the Airline Industry

    NASA Technical Reports Server (NTRS)

    Cherington, P. W.; Hill, J. J.

    1972-01-01

    The Federal regulation of airlines is analyzed to predict the amount of regulation to be expected in the future. It is stated that the regulatory powers will increase because of the advantages that such regulation provides to the airlines. Six propositions are submitted as guidelines for future airlines regulation. The loss of revenue experienced by the airlines is examined and methods for improving the economic situation are defined.

  8. The microbiological composition of airliner cabin air.

    PubMed

    Wick, R L; Irvine, L A

    1995-03-01

    Hundreds of millions of passengers travel on U.S. airliners annually. These large numbers, together with the close proximity required onboard, raise a concern about microbiologic disease transmission in cabin air. Previous air quality surveys generally concentrated on environmental tobacco smoke and particulate matter. They largely ignored the microorganisms also present. We sampled the microbiologic climate of 45 domestic and international flights. We also sampled common locations in a major southwestern city. The concentration of microorganisms in airline cabin air is much lower than in ordinary city locations. We conclude that the small number of microorganisms found in U.S. airliner cabin environments does not contribute to the risk of disease transmission among passengers.

  9. Can a glass cockpit display help (or hinder) performance of novices in simulated flight training?

    PubMed

    Wright, Stephen; O'Hare, David

    2015-03-01

    The analog dials in traditional GA aircraft cockpits are being replaced by integrated electronic displays, commonly referred to as glass cockpits. Pilots may be trained on glass cockpit aircraft or encounter them after training on traditional displays. The effects of glass cockpit displays on initial performance and potential transfer effects between cockpit display configurations have yet to be adequately investigated. Flight-naïve participants were trained on either a simulated traditional display cockpit or a simulated glass display cockpit. Flight performance was measured in a test flight using either the same or different cockpit display. Loss of control events and accuracy in controlling altitude, airspeed and heading, workload, and situational awareness were assessed. Preferences for cockpit display configurations and opinions on ease of use were also measured. The results revealed consistently poorer performance on the test flight for participants using the glass cockpit compared to the traditional cockpit. In contrast the post-flight questionnaire data revealed a strong subjective preference for the glass cockpit over the traditional cockpit displays. There was only a weak effect of prior training. The specific glass cockpit display used in this study was subjectively appealing but yielded poorer flight performance in participants with no previous flight experience than a traditional display. Performance data can contradict opinion data. The design of glass cockpit displays may present some difficulties for pilots in the very early stages of training.

  10. F-18 cockpit and instrument panel

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Dryden Flight Research Center's F/A-18 chase and support aircraft retains the basic fighter plane cockpit controls with some exceptions. The pilot's center control stick is relatively typical of a modern fighter aircraft. This F-18 has no weapons delivery capability. The primary cockpit displays include a left- and right-side cathode-ray tube display, referred to as the DDIs, and the heads-up display (HUD). The DDIs and HUD are generally used to display primary flight condition information such as airspeed, altitude, altitude rate, attitude, heading, etc. Other flight conditions displayed include angle of attack (AOA), Mach number, and load factor. The HUD also provides primary flight condition information to the pilot without having to refer to the DDIs. Select flight controls information also can be presented on the HUD. The twenty pushbuttons located on the periphery of each DDI are used to select a variety of displays for pilot interrogation of F-18 systems. These displays are pilot selectable and menu driven.

  11. Cockpit weather graphics using mobile satellite communications

    NASA Technical Reports Server (NTRS)

    Seth, Shashi

    1993-01-01

    Many new companies are pushing state-of-the-art technology to bring a revolution in the cockpits of General Aviation (GA) aircraft. The vision, according to Dr. Bruce Holmes - the Assistant Director for Aeronautics at National Aeronautics and Space Administration's (NASA) Langley Research Center, is to provide such an advanced flight control system that the motor and cognitive skills you use to drive a car would be very similar to the ones you would use to fly an airplane. We at ViGYAN, Inc., are currently developing a system called the Pilot Weather Advisor (PWxA), which would be a part of such an advanced technology flight management system. The PWxA provides graphical depictions of weather information in the cockpit of aircraft in near real-time, through the use of broadcast satellite communications. The purpose of this system is to improve the safety and utility of GA aircraft operations. Considerable effort is being extended for research in the design of graphical weather systems, notably the works of Scanlon and Dash. The concept of providing pilots with graphical depictions of weather conditions, overlaid on geographical and navigational maps, is extremely powerful.

  12. 15 CFR 806.9 - Airlines and ship operators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Airlines and ship operators. 806.9...) BUREAU OF ECONOMIC ANALYSIS, DEPARTMENT OF COMMERCE DIRECT INVESTMENT SURVEYS § 806.9 Airlines and ship operators. Foreign stations, ticket offices, and terminal and port facilities of U.S. airlines and...

  13. 15 CFR 806.9 - Airlines and ship operators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Airlines and ship operators. 806.9...) BUREAU OF ECONOMIC ANALYSIS, DEPARTMENT OF COMMERCE DIRECT INVESTMENT SURVEYS § 806.9 Airlines and ship operators. Foreign stations, ticket offices, and terminal and port facilities of U.S. airlines and...

  14. 15 CFR 806.9 - Airlines and ship operators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Airlines and ship operators. 806.9...) BUREAU OF ECONOMIC ANALYSIS, DEPARTMENT OF COMMERCE DIRECT INVESTMENT SURVEYS § 806.9 Airlines and ship operators. Foreign stations, ticket offices, and terminal and port facilities of U.S. airlines and...

  15. A Full Mission Simulator Study of Aircrew Performances: the Measurement of Crew Coordination and Decisionmaking Factors and Their Relationships to Flight Task Performances

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.

    1984-01-01

    Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.

  16. Crew Transportation Plan

    NASA Technical Reports Server (NTRS)

    Zeitler, Pamela S. (Compiler); Mango, Edward J.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives.

  17. STS-111 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Launched aboard the Space Shuttle Endeavor on June 6, 2002, these four astronauts comprised the prime crew for NASA's STS-111 mission. Astronaut Kenneth D. Cockrell (front right) was mission commander, and astronaut Paul S. Lockhart (front left) was pilot. Astronauts Philippe Perrin (rear left), representing the French Space Agency, and Franklin R. Chang-Diaz were mission specialists assigned to extravehicular activity (EVA) work on the International Space Station (ISS). In addition to the delivery and installation of the Mobile Base System (MBS), this crew dropped off the Expedition Five crew members at the orbital outpost, and brought back the Expedition Four trio at mission's end.

  18. STS-63 crew insignia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Designed by the crew members, the crew patch depicts the Orbiter maneuving to rendezvous with Russia's Space Station Mir. The name is printed in Cyrillic on the side of the station. Visible in the Orbiter's payload bay are the commercial space laboratory Spacehab and the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) satellite which are major payloads on the flight. The six points on the rising sun and the three stars are symbolic of the mission's Space Transportation System (STS) numerical designation. Flags of the United States and Russia at the bottom of the patch symbolize the cooperative operations of this mission. The crew will be flying aboard the space shuttle Discovery.

  19. STS-121 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2006-01-01

    These seven astronauts take a break from training to pose for the STS-121 crew portrait. From the left are mission specialists Stephanie D. Wilson, and Michael E. Fossum, Commander Steven W. Lindsey, mission specialist Piers J. Sellers, pilot Mark E. Kelly; European Space Agency (ESA) astronaut and mission specialist Thomas Reiter of Germany; and mission specialist Lisa M. Nowak. The crew members are attired in training versions of their shuttle launch and entry suit. The crew, first ever to launch on Independence Day, tested new equipment and procedures to improve shuttle safety, as well as delivered supplies and made repairs to the space station.

  20. An analysis of the application of AI to the development of intelligent aids for flight crew tasks

    NASA Technical Reports Server (NTRS)

    Baron, S.; Feehrer, C.

    1985-01-01

    This report presents the results of a study aimed at developing a basis for applying artificial intelligence to the flight deck environment of commercial transport aircraft. In particular, the study was comprised of four tasks: (1) analysis of flight crew tasks, (2) survey of the state-of-the-art of relevant artificial intelligence areas, (3) identification of human factors issues relevant to intelligent cockpit aids, and (4) identification of artificial intelligence areas requiring further research.

  1. 76 FR 51119 - Application of California-Palomar Airlines, Inc.; D/B/A California Pacific Airlines for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... Office of the Secretary Application of California-Palomar Airlines, Inc.; D/B/A California Pacific... directing all interested persons to show cause why it should not issue an order finding California-Palomar Airlines, Inc. d/b/a California Pacific Airlines fit, willing, and able, and awarding to it a...

  2. Cultural variation of perceptions of crew behaviour in multi-pilot aircraft.

    PubMed

    Hörmann, H J

    2001-09-01

    As the "last line of defence" pilots in commercial aviation often have to counteract effects of unexpected system flaws that could endanger the safety of a given flight. In order to timely detect and mitigate consequences of latent or active failures, effective team behaviour of the crew members is an indispensable condition. While this fact is generally agreed in the aviation community, there seems to be a wide range of concepts how crews should interact most effectively. Within the framework of the European project JARTEL the cultural robustness of evaluations of crew behaviour was examined. 105 instructor pilots from 14 different airlines representing 12 European countries participated in this project. The instructors' evaluations of crew behaviours in eight video scenarios will be compared in relation to cultural differences on Hofstede's dimensions of Power Distance and Individualism.

  3. Crew Transportation Operations Standards

    NASA Technical Reports Server (NTRS)

    Mango, Edward J.; Pearson, Don J. (Compiler)

    2013-01-01

    The Crew Transportation Operations Standards contains descriptions of ground and flight operations processes and specifications and the criteria which will be used to evaluate the acceptability of Commercial Providers' proposed processes and specifications.

  4. Expedition Seven Crew Members

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This crew portrait of Expedition Seven, Cosmonaut Yuri I. Malenchenko, Expedition Seven mission commander (left), and Astronaut Edward T. Lu, Expedition Seven NASA ISS science officer and flight engineer (right) was taken while in training at the Gagarin Cosmonaut Training Center in Star City, Russia. Destined for the International Space Station (ISS), the two-man crew launched from the Baikonur Cosmodrome, Kazakhstan on April 26, 2003. aboard a Soyez TMA-1 spacecraft.

  5. Survey of commercial airline pilots' hearing loss

    NASA Technical Reports Server (NTRS)

    Begault, D. R.; Wenzel, E. M.; Tran, L. L.; Anderson, M. R.

    1998-01-01

    64 commercial airline pilots (ages 35-64 yr, Mdn: 53) were surveyed regarding hearing loss and tinnitus. Within specific age groups, the proportions responding positively exceed the corresponding proportions in the general population reported by the National Center for Health Statistics.

  6. Interfaces Visualize Data for Airline Safety, Efficiency

    NASA Technical Reports Server (NTRS)

    2014-01-01

    As the A-Train Constellation orbits Earth to gather data, NASA scientists and partners visualize, analyze, and communicate the information. To this end, Langley Research Center awarded SBIR funding to Fairfax, Virginia-based WxAnalyst Ltd. to refine the company's existing user interface for Google Earth to visualize data. Hawaiian Airlines is now using the technology to help manage its flights.

  7. Objectives of the Airline Firm: Theory

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.

    1972-01-01

    Theoretical models are formulated for airline firm operations that revolve around alternative formulations of managerial goals which these firms are persuing in practice. Consideration is given to the different objective functions which the companies are following in lieu of profit maximization.

  8. Predictions of Cockpit Simulator Experimental Outcome Using System Models

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1984-01-01

    This study involved predicting the outcome of a cockpit simulator experiment where pilots used cockpit displays of traffic information (CDTI) to establish and maintain in-trail spacing behind a lead aircraft during approach. The experiments were run on the NASA Ames Research Center multicab cockpit simulator facility. Prior to the experiments, a mathematical model of the pilot/aircraft/CDTI flight system was developed which included relative in-trail and vertical dynamics between aircraft in the approach string. This model was used to construct a digital simulation of the string dynamics including response to initial position errors. The model was then used to predict the outcome of the in-trail following cockpit simulator experiments. Outcome included performance and sensitivity to different separation criteria. The experimental results were then used to evaluate the model and its prediction accuracy. Lessons learned in this modeling and prediction study are noted.

  9. The UNO Aviation Monograph Series: The Airline Quality Rating 1997

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    1997-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline performance on combined multiple factors important to consumers. Development history and calculation details for the AQR rating system are detailed in The Airline Quality Rating 1991 issued in April, 1991, by the National Institute for Aviation Research at Wichita State University. This current report, Airline Rating 1997, contains monthly Airline Quality Rating scores for 1996. Additional copies are available by contacting Wichita State University or the University of Nebraska at Omaha. The Airline Quality Rating (AQR) 1997 is a summary of a month-by-month quality ratings for the nine major domestic U.S. airlines operating during 1996. Using the Airline Quality Rating system and monthly performance data for each airline for the calendar year of 1996, individual and comparative ratings are reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for major domestic airlines across the 12 month period of 1996, and industry average results. Also comparative Airline Quality Rating data for 1991 through 1995 are included to provide a longer term view of quality in the industry.

  10. The UNO Aviation Monograph Series: The Airline Quality Rating 1998

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    1998-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline performance on combined multiple factors important to consumers. Development history and calculation details for the AQR rating system are detailed in The Airline Quality Rating 1991 issued in April, 1991, by the National Institute for Aviation Research at Wichita State University. This current report, Airline Quality Rating 1998, contains monthly Airline Quality Rating scores for 1997. Additional copies are available by contacting Wichita State University or University of Nebraska at Omaha. The Airline Quality Rating 1998 is a summary of month-by-month quality ratings for the ten major U.S. airlines operating during 1997. Using the Airline Quality Rating system and monthly performance data for each airline for the calendar year of 1997, individual and comparative ratings are reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for major airlines domestic operations for the 12 month period of 1997, and industry average results. Also, comparative Airline Quality Rating data for 1991 through 1996 are included to provide a longer term view of quality in the industry.

  11. Cockpit display of hazardous wind shear information

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Hansman, R. John, Jr.

    1990-01-01

    Information on cockpit display of wind shear information is given in viewgraph form. Based on the current status of windshear sensors and candidate data dissemination systems, the near-term capabilities for windshear avoidance will most likely include: (1) Ground-based detection: TDWR (Terminal Doppler Weather Radar), LLWAS (Low-Level Windshear Alert System), Automated PIREPS; (2) Ground-Air datalinks: Air traffic control voice channels, Mode-S digital datalink, ACARS alphanumeric datalink. The possible datapaths for integration of these systems are illustrated in a diagram. In the future, airborne windshear detection systems such as lidars, passive IR detectors, or airborne Doppler radars may also become available. Possible future datalinks include satellite downlink and specialized en route weather channels.

  12. Polyplanar optic display for cockpit application

    SciTech Connect

    Veligdan, J.; Biscardi, C.; Brewster, C.; DeSanto, L.; Freibott, W.

    1998-04-01

    The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.

  13. Cockpit resource management - Exploring the attitude-performance linkage

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.; Foushee, H. C.; Benson, R.; Russini, W.

    1985-01-01

    Measured attitudes regarding cockpit management were contrasted for pilots whose line flying performance was independently evaluated by check airmen as above or below average. A highly significant discriminant function was obtained indicating that these attitudes are significant predictors of behavior. The performance of 95.7 percent of the pilots was correctly classified by the analysis. Implications of the results for cockpit resource management training and pilot selection are discussed.

  14. Prediction of anthropometric accommodation in aircraft cockpits

    NASA Astrophysics Data System (ADS)

    Zehner, Gregory Franklin

    Designing aircraft cockpits to accommodate the wide range of body sizes existing in the U.S. population has always been a difficult problem for Crewstation Engineers. The approach taken in the design of military aircraft has been to restrict the range of body sizes allowed into flight training, and then to develop standards and specifications to ensure that the majority of the pilots are accommodated. Accommodation in this instance is defined as the ability to: (1) Adequately see, reach, and actuate controls; (2) Have external visual fields so that the pilot can see to land, clear for other aircraft, and perform a wide variety of missions (ground support/attack or air to air combat); and (3) Finally, if problems arise, the pilot has to be able to escape safely. Each of these areas is directly affected by the body size of the pilot. Unfortunately, accommodation problems persist and may get worse. Currently the USAF is considering relaxing body size entrance requirements so that smaller and larger people could become pilots. This will make existing accommodation problems much worse. This dissertation describes a methodology for correcting this problem and demonstrates the method by predicting pilot fit and performance in the USAF T-38A aircraft based on anthropometric data. The methods described can be applied to a variety of design applications where fitting the human operator into a system is a major concern. A systematic approach is described which includes: defining the user population, setting functional requirements that operators must be able to perform, testing the ability of the user population to perform the functional requirements, and developing predictive equations for selecting future users of the system. Also described is a process for the development of new anthropometric design criteria and cockpit design methods that assure body size accommodation is improved in the future.

  15. Application of Human-Autonomy Teaming (HAT) Patterns to Reduced Crew Operations (RCO)

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Brandt, Summer L.; Lachter, Joel; Matessa, Mike; Sadler, Garrett; Battiste, Henri

    2016-01-01

    As part of the Air Force - NASA Bi-Annual Research Council Meeting, slides will be presented on recent Reduced Crew Operations (RCO) work. Unmanned aerial systems, robotics, advanced cockpits, and air traffic management are all examples of domains that are seeing dramatic increases in automation. While automation may take on some tasks previously performed by humans, humans will still be required, for the foreseeable future, to remain in the system. The collaboration with humans and these increasingly autonomous systems will begin to resemble cooperation between teammates, rather than simple task allocation. It is critical to understand this human-autonomy teaming (HAT) to optimize these systems in the future. One methodology to understand HAT is by identifying recurring patterns of HAT that have similar characteristics and solutions. A methodology for identifying HAT patterns to an advanced cockpit project is discussed.

  16. Cognitive engineering in aerospace application: Pilot interaction with cockpit automation

    NASA Technical Reports Server (NTRS)

    Sarter, Nadine R.; Woods, David D.

    1993-01-01

    Because of recent incidents involving glass-cockpit aircraft, there is growing concern with cockpit automation and its potential effects on pilot performance. However, little is known about the nature and causes of problems that arise in pilot-automation interaction. The results of two studies that provide converging, complementary data on pilots' difficulties with understanding and operating one of the core systems of cockpit automation, the Flight Management System (FMS) is reported. A survey asking pilots to describe specific incidents with the FMS and observations of pilots undergoing transition training to a glass cockpit aircraft served as vehicles to gather a corpus on the nature and variety of FMS-related problems. The results of both studies indicate that pilots become proficient in standard FMS operations through ground training and subsequent line experience. But even with considerable line experience, they still have difficulties tracking FMS status and behavior in certain flight contexts, and they show gaps in their understanding of the functional structure of the system. The results suggest that design-related factors such as opaque interfaces contribute to these difficulties which can affect pilots' situation awareness. The results of this research are relevant for both the design of cockpit automation and the development of training curricula specifically tailored to the needs of glass cockpits.

  17. Hazard evaluation and operational cockpit display of ground-measured windshear data

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Hansman, R. John, Jr.

    1993-01-01

    Low-altitude windshear is the leading weather-related cause of fatal aviation accidents in the U.S. Since 1964, there have been 26 accidents attributed to windshear resulting in over 500 fatalities. Low-altitude windshear can take several forms, including macroscopic forms such as cold-warm gustfronts down to the small, intense downdrafts known as microbursts. Microbursts are particularly dangerous and difficult to detect due to their small size, short duration, and occurrence under both heavy precipitation and virtually dry conditions. For these reasons, the real-time detection of windshear hazards is a very active field of research. Also, the advent of digital ground-to-air datalinks and electronic flight instrumentation opens up many options for implementation of windshear alerts in the terminal area environment. Study is required to determine the best content, format, timing, and cockpit presentation of windshear alerts in the modern ATC environment to best inform the flight crew without significantly increasing crew workload.

  18. A Correlational Study of How Airline Customer Service and Consumer Perception of Airline Customer Service Affect the Air Rage Phenomenon

    NASA Technical Reports Server (NTRS)

    Hunter, Joyce A.

    2007-01-01

    Between 1995 and 2000, customer service declined throughout the airline industry, as reported in February 2001 by the U.S. Department of Transportation (2001). One of the biggest problems today within the airline industry is the constant complaining from customers regarding the deterioraton of service (McCollough, Berry, & Yadav, 2000). Since 1995, unfortunately no airline has been immune from service deterioration, as reported by the Airline Quality Rating, an annual report by two airline industry experts who analyzed Department of Transportation statistics (Harrison & Kleinsasser, 1999). The airline' refusal to recognize the issue of customer service has perpetuated an environment that has become dangerous and detrimental to the traveling public as well as to airline employees, which in turn has fueled a new phenomenon, now referred to as "air rage".

  19. 14 CFR 25.777 - Cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... any member of this flight crew, from 5′2″ to 6′3″ in height, is seated with the seat belt and shoulder... pilots' seats, so that there is full and unrestricted movement of each control without interference from... control must be located forward of the throttles and must be operable by each pilot when seated with...

  20. Fatigue and Workload in Four-Man C-5A Cockpit Crews (Volant Galaxy).

    DTIC Science & Technology

    1980-08-01

    STATEMi NT BETTER THAN SAME AS WORSE THAN I. VERY LIVELY 2. EXTREMELY TIRED 3. QUITE FRESH 4. SLIGHTLY POOPED W 2hi S. EXTREMELY PEPPY 6. SOMEWHAT...FRESH .3 7. PETFREO OUT 8. VERY REFRESHED W 9. FAIRLY WELL POOPED 0 _o 10. READY TO DROP SAM FraM 136 SUBJECTIVE FATIGUE CHECKCARD .5fP 76 Figure 2. On

  1. Crew-Centered Cockpit Design (CCCD) Field Demonstration Program. Volume 1

    DTIC Science & Technology

    1993-12-01

    e.g., when drawing an indicator needle , ar- rowheads are not available for use. This lack of arrowheads extends the amount of time and effort required...This requirement creates problems when items within these nonsymmetric objects (e.g., a needle inside an altimeter) are animated; the needle appears...infrared (FLIR): (1) off-axis sensor; (2) tank size detect at five nautical miles (NM); (3) head steerable 64 Table 6.1.1.2- 1. Prioritized System

  2. KC-135 Crew Reduction Feasibility Demonstration Simulation Study. Volume 2. Cockpit Design

    DTIC Science & Technology

    1992-03-01

    in Figure 31 provided the same capabilities for the NAV2 radio as were just described for NAV1 . c. Line 5 : Selecting L3 in Figure 31, toggled the...113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) I 5 . PAGE COUNT Final I FROM ( fCt O TO LItl Mar 1992 75 16. SUPPLEMENTARY NOTATION Volume 1 is...RRU), (2) Electronic Attitude Director Indicator (EADI), (3) Electronic Heading Situation Indicator (EHSI), (4) Control Display Unit (CDU), ( 5 ) Color

  3. Assured Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, D. A.; Craig, J. W.; Drone, B.; Gerlach, R. H.; Williams, R. J.

    1991-01-01

    The developmental status is discussed regarding the 'lifeboat' vehicle to enhance the safety of the crew on the Space Station Freedom (SSF). NASA's Assured Crew Return Vehicle (ACRV) is intended to provide a means for returning the SSF crew to earth at all times. The 'lifeboat' philosophy is the key to managing the development of the ACRV which further depends on matrixed support and total quality management for implementation. The risk of SSF mission scenarios are related to selected ACRV mission requirements, and the system and vehicle designs are related to these precepts. Four possible ACRV configurations are mentioned including the lifting-body, Apollo shape, Discoverer shape, and a new lift-to-drag concept. The SCRAM design concept is discussed in detail with attention to the 'lifeboat' philosophy and requirements for implementation.

  4. Cross-cultural attitudes of flight crew regarding CRM

    NASA Technical Reports Server (NTRS)

    Merritt, Ashleigh

    1993-01-01

    This study asks if the Cockpit Management Attitude Questionnaire (CMAQ) can detect differences across countries, and/or across occupations. And if so, can those differences be interpreted? Research has shown that the CMAQ is sensitive to attitude differences between and within organizations, thereby demonstrating its effectiveness with American populations. But the CMAQ was originally designed by American researchers and psychometrically refined for American pilots. The items in the questionnaire, though general in nature, still reflect the ubiquitous Western bias, because the items were written by researchers from and for the one culture. Recognizing this constraint, this study is nonetheless interested in attitudes toward crew behavior, and how those attitudes may vary across country and occupation.

  5. Assured crew return vehicle

    NASA Technical Reports Server (NTRS)

    Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)

    1991-01-01

    A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.

  6. Crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Hawk, M. L.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.

    1975-01-01

    The study developed requirements, designed, developed, checked out and demonstrated the Procedures Generation Program (PGP). The PGP is a digital computer program which provides a computerized means of developing flight crew procedures based on crew action in the shuttle procedures simulator. In addition, it provides a real time display of procedures, difference procedures, performance data and performance evaluation data. Reconstruction of displays is possible post-run. Data may be copied, stored on magnetic tape and transferred to the document processor for editing and documentation distribution.

  7. STS-118 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These seven astronauts take a break from training to pose for the STS-118 crew portrait. Pictured from the left are astronauts Richard A. 'Rick' Mastracchio, mission specialist; Barbara R. Morgan, mission specialist; Charles O. Hobaugh, pilot; Scott J. Kelly, commander; Tracy E. Caldwell, Canadian Space Agency's Dafydd R. 'Dave' Williams, and Alvin Drew Jr., all mission specialists. The crew members are attired in training versions of their shuttle launch and entry suits. The main objective of the STS-118 mission was to install the fifth Starboard (S5) truss segment on the International Space Station (ISS).

  8. Wind shear measuring on board an airliner

    NASA Technical Reports Server (NTRS)

    Krauspe, P.

    1984-01-01

    A measurement technique which continuously determines the wind vector on board an airliner during takeoff and landing is introduced. Its implementation is intended to deliver sufficient statistical background concerning low frequency wind changes in the atmospheric boundary layer and extended knowledge about deterministic wind shear modeling. The wind measurement scheme is described and the adaptation of apparatus onboard an A300 airbus is shown. Preliminary measurements made during level flight demonstrate the validity of the method.

  9. Crew coordination issues of EVS approaches

    NASA Astrophysics Data System (ADS)

    Lorenz, Bernd; Korn, Bernd R.

    2004-08-01

    Enhanced Vision Systems (EVS) are currently developed with the goal to alleviate restrictions in airspace and airport capacity in low visibility conditions. Existing EVS-systems are based on IR-sensors although the penetration of bad weather (dense fog and light rain) by MMW-radar is remarkably better than in the infrared spectrum. But the quality of MMW radar is rather poor compared to IR images. However, the analysis of radar images can be simplified dramatically when simple passive radar retro-reflectors are used to mark the runway. This presentation is the third in a series of studies investigating the use of such simple landing aids. In the first study the feasibility of the radar PAPI concept was determined; the second one provided first promising human performance results in a low-fidelity simulation. The present study examined pilot performance, workload, situation awareness, and crew coordination issues in a high-fidelity simulation of 'Radar-PAPI' visual aids supporting a precision straight-in landing in low visibility (CAT-II). Simulation scenarios were completed in a fixed-base cockpit simulator involving six two-pilot flight-deck crews. Pilots could derive visual cues to correct lateral glide-path deviations from 13 pairs of runway-marking corner reflectors. Vertical deviations were indicated by a set of six diplane reflectors using intensity-coding to provide the PAPI categories needed for the correction of vertical deviations. The study compared three display formats and associated crew coordination issues: (1) PF views a head-down B-scope display and switches to visual landing upon PNF's call-out that runway is in sight; (2) PF views a head-down C-scope display and switches to visual landing upon PNF's call-out that runway is in sight; (3) PF views through a head-up display (HUD) that displays primary flight guidance information and receives vertical and lateral guidance from PNF who views a head-down B-scope. PNF guidance is terminated upon PF

  10. A Comprehensive Assessment of Biologicals Contained Within Commercial Airliner Cabin Air

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Osman, Shariff; Dekas, Anne; Stuecker, Tara; Newcombe, Dave; Piceno, Yvette; Fuhrman, J.; Andersen, Gary; Venkateswaran, Kasthuri; Bearman, Greg

    2006-01-01

    Gram-positive bacteria, Fusobacteria, Cyanobacteria, Deinococci, Bacterioidetes, Spirochetes, and Planctomyces in varying abundance. Neisseria meningitidis rDNA sequences were retrieved in great abundance from Airline A followed by Streptococcus oralis/mitis sequences. Pseudomonas synxantha sequences dominated Airline B clone libraries, followed by those of N. meningitidis and S. oralis/mitis. In Phase II, Airline C, sequences representative of more than 113 species, enveloping 12 classes of bacteria, were retrieved. Proteobacterial sequences were retrieved in greatest frequency (58% of all clone sequences), followed in short order by those stemming from Gram-positives bacteria (31% of all clone sequences). As for overall phylogenetic breadth, Gram-positive and alpha-proteobacteria seem to have a higher affinity for international flights, whereas beta-and gamma-proteobacteria are far more common about domestic cabin air parcels in Airline C samples. Ultimately, the majority of microbial species circulating throughout the cabin airs of commercial airliners are commensal, infrequently pathogenic normal flora of the human nasopharynx and respiratory system. Many of these microbes likely originate from the oral and nasal cavities, and lungs of passengers and flight crew and are disseminated unknowingly via routine conversation, coughing, sneezing, and stochastic passing of fomites. The data documented in this study will be useful to generate a baseline microbial population database and can be utilized to develop biosensor instrumentation for monitoring microbial quality of cabin or urban air.

  11. U.S. Airlines: Weak Financial Structure Threatens Competition

    DTIC Science & Technology

    1991-02-06

    carriers to compete and earn an adequate profit . Marketin2 Practices Limit the Ability of Airlines Entering New Markets to Compete Airline marketing...industry allows American and United each to receive over $300 million per year in excess of the costs of the service provided (including a reasonable profit ...Prices Have Worsened Carriers’ Financial Problems Airline industry profitability has been low for several years. The industry lost money in 4 out of the

  12. Crew Selection and Training

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1996-01-01

    This research addressed a number of issues relevant to the performance of teams in demanding environments. Initial work, conducted in the aviation analog environment, focused on developing new measures of performance related attitudes and behaviors. The attitude measures were used to assess acceptance of concepts related to effective teamwork and personal capabilities under stress. The behavioral measures were used to evaluate the effectiveness of flight crews operating in commercial aviation. Assessment of team issues in aviation led further to the evaluation and development of training to enhance team performance. Much of the work addressed evaluation of the effectiveness of such training, which has become known as Crew Resource Management (CRM). A second line of investigation was into personality characteristics that predict performance in challenging environments such as aviation and space. A third line of investigation of team performance grew out of the study of flight crews in different organizations. This led to the development of a theoretical model of crew performance that included not only individual attributes such as personality and ability, but also organizational and national culture. A final line of investigation involved beginning to assess whether the methodologies and measures developed for the aviation analog could be applied to another domain -- the performance of medical teams working in the operating room.

  13. STS-71 crew insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The STS-71 crew patch design depicts the orbiter Atlantis in the process of the first international docking mission with the Russian Space Station Mir. The names of the 10 astronauts and cosmonauts who will fly aboard the orbiter are shown along the outer

  14. Crew Module Overview

    NASA Technical Reports Server (NTRS)

    Redifer, Matthew E.

    2011-01-01

    The presentation presents an overview of the Crew Module development for the Pad Abort 1 flight test. The presentation describes the integration activity from the initial delivery of the primary structure through the installation of vehicle subsystems, then to flight test. A brief overview of flight test results is given.

  15. Commercial Crew Launch America

    NASA Technical Reports Server (NTRS)

    Thon, Jeffrey S.

    2016-01-01

    This presentation is intended to discuss NASA's long term human exploration goals of our solar system. The emphasis will be on how our CCP (Commercial Crew Program) supports our space bound human exploration goals by encouraging commercial entities to perform missions to LEO (Low Earth Orbit), thus allowing NASA to focus on beyond LEO human exploration missions.

  16. Enroute flight-path planning - Cooperative performance of flight crews and knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Galdes, Deb

    1989-01-01

    Interface design issues associated with the introduction of knowledge-based systems into the cockpit are discussed. Such issues include not only questions about display and control design, they also include deeper system design issues such as questions about the alternative roles and responsibilities of the flight crew and the computer system. In addition, the feasibility of using enroute flight path planning as a context for exploring such research questions is considered. In particular, the development of a prototyping shell that allows rapid design and study of alternative interfaces and system designs is discussed.

  17. Airline business continuity and IT disaster recovery sites.

    PubMed

    Haji, Jassim

    2016-01-01

    Business continuity is defined as the capability of the organisation to continue delivery of products or services at acceptable predefined levels following a disruptive incident. Business continuity is fast evolving to become a critical and strategic decision for any organisation. Transportation in general, and airlines in particular, is a unique sector with a specialised set of requirements, challenges and opportunities. Business continuity in the airline sector is a concept that is generally overlooked by the airline managements. This paper reviews different risks related to airline processes and will also propose solutions to these risks based on experiences and good industry practices.

  18. An Economic Model of U.S. Airline Operating Expenses

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2005-01-01

    This report presents a new economic model of operating expenses for 67 airlines. The model is based on data that the airlines reported to the United States Department of Transportation in 1999. The model incorporates expense-estimating equations that capture direct and indirect expenses of both passenger and cargo airlines. The variables and business factors included in the equations are detailed enough to calculate expenses at the flight equipment reporting level. Total operating expenses for a given airline are then obtained by summation over all aircraft operated by the airline. The model's accuracy is demonstrated by correlation with the DOT Form 41 data from which it was derived. Passenger airlines are more accurately modeled than cargo airlines. An appendix presents a concise summary of the expense estimating equations with explanatory notes. The equations include many operational and aircraft variables, which accommodate any changes that airline and aircraft manufacturers might make to lower expenses in the future. In 1999, total operating expenses of the 67 airlines included in this study amounted to slightly over $100.5 billion. The economic model reported herein estimates $109.3 billion.

  19. Getting a Crew into Orbit

    ERIC Educational Resources Information Center

    Riddle, Bob

    2011-01-01

    Despite the temporary setback in our country's crewed space exploration program, there will continue to be missions requiring crews to orbit Earth and beyond. Under the NASA Authorization Act of 2010, NASA should have its own heavy launch rocket and crew vehicle developed by 2016. Private companies will continue to explore space, as well. At the…

  20. An Analysis of Airline Costs. Lecture Notes for MIT Courses. 16.73 Airline Management and Marketing

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1972-01-01

    The cost analyst must understand the operations of the airline and how the activities of the airline are measured, as well as how the costs are incurred and recorded. The data source is usually a cost accounting process. This provides data on the cumulated expenses in various categories over a time period like a quarter, or year, and must be correlated by the analyst with cumulated measures of airline activity which seem to be causing this expense.

  1. Analysis of Crew Fatigue in AIA Guantanamo Bay Aviation Accident

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin B.; Miller, Donna L.; Co, Elizabeth L.; Lebacqz, J. Victor; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Flight operations can engender fatigue, which can affect flight crew performance, vigilance, and mood. The National Transportation Safety Board (NTSB) requested the NASA Fatigue Countermeasures Program to analyze crew fatigue factors in an aviation accident that occurred at Guantanamo Bay, Cuba. There are specific fatigue factors that can be considered in such investigations: cumulative sleep loss, continuous hours of wakefulness prior to the incident or accident, and the time of day at which the accident occurred. Data from the NTSB Human Performance Investigator's Factual Report, the Operations Group Chairman's Factual Report, and the Flight 808 Crew Statements were analyzed, using conservative estimates and averages to reconcile discrepancies among the sources. Analysis of these data determined the following: the entire crew displayed cumulative sleep loss, operated during an extended period of continuous wakefulness, and obtained sleep at times in opposition to the circadian disposition for sleep, and that the accident occurred in the afternoon window of physiological sleepiness. In addition to these findings, evidence that fatigue affected performance was suggested by the cockpit voice recorder (CVR) transcript as well as in the captain's testimony. Examples from the CVR showed degraded decision-making skills, fixation, and slowed responses, all of which can be affected by fatigue; also, the captain testified to feeling "lethargic and indifferent" just prior to the accident. Therefore, the sleep/wake history data supports the hypothesis that fatigue was a factor that affected crewmembers' performance. Furthermore, the examples from the CVR and the captain's testimony support the hypothesis that the fatigue had an impact on specific actions involved in the occurrence of the accident.

  2. Crew decision making under stress

    NASA Technical Reports Server (NTRS)

    Orasanu, J.

    1992-01-01

    Flight crews must make decisions and take action when systems fail or emergencies arise during flight. These situations may involve high stress. Full-missiion flight simulation studies have shown that crews differ in how effectively they cope in these circumstances, judged by operational errors and crew coordination. The present study analyzed the problem solving and decision making strategies used by crews led by captains fitting three different personality profiles. Our goal was to identify more and less effective strategies that could serve as the basis for crew selection or training. Methods: Twelve 3-member B-727 crews flew a 5-leg mission simulated flight over 1 1/2 days. Two legs included 4 abnormal events that required decisions during high workload periods. Transcripts of videotapes were analyzed to describe decision making strategies. Crew performance (errors and coordination) was judged on-line and from videotapes by check airmen. Results: Based on a median split of crew performance errors, analyses to date indicate a difference in general strategy between crews who make more or less errors. Higher performance crews showed greater situational awareness - they responded quickly to cues and interpreted them appropriately. They requested more decision relevant information and took into account more constraints. Lower performing crews showed poorer situational awareness, planning, constraint sensitivity, and coordination. The major difference between higher and lower performing crews was that poorer crews made quick decisions and then collected information to confirm their decision. Conclusion: Differences in overall crew performance were associated with differences in situational awareness, information management, and decision strategy. Captain personality profiles were associated with these differences, a finding with implications for crew selection and training.

  3. STS-112 Crew Interviews - Wolf

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-112 Mission Specialist David Wolf is seen during this preflight interview, where he first answers questions on his career path and role models. Other questions cover mission goals, ISS (International Space Station) Expedition 5 spacecrew, crew training, the S1 Truss and its radiators, the MBS (Mobile Base Structure), his experience onboard Mir, and his EVAs (extravehicular activities) on the coming mission. The EVAs are the subject of several questions. Wolf discusses his crew members, and elsewhere discusses Pilot Pamela Melroy's role as an IV crew member during EVAs. In addition, Wolf answers questions on transfer operations, the SHIMMER experiment, and his thoughts on multinational crews and crew bonding.

  4. STS-120 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These seven astronauts took a break from training to pose for the STS-120 crew portrait. Pictured from the left are astronauts Scott E. Parazynski, Douglas H. Wheelock, Stephanie D. Wilson, all mission specialists; George D. Zamka, pilot; Pamela A. Melroy, commander; Daniel M. Tani, Expedition 16 flight engineer; and Paolo A. Nespoli, mission specialist representing the European Space Agency (ESA). The crew members were attired in training versions of their shuttle launch and entry suits. Tani joined Expedition 16 as flight engineer after launching to the International Space Station (ISS) and is scheduled to return home on mission STS-122. STS-120 launched October 23, 2007 with the main objectives of installing the U.S. Node 2, Harmony, and the relocation and deployment of the P6 truss to its permanent location.

  5. STS-67 crew insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Observation and remote exploration of the Universe in the ultraviolet wavelengths of light are the focus of the STS-67/ASTRO-2 mission, as depicted in the crew patch designed by the crew members. The insignia shows the ASTRO-2 telescopes in the Space Shuttle Endeavour's payload bay, orbiting high above Earth's atmosphere. The three sets of rays, diverging from the telescope on the patch atop the Instrument Pointing System (IPS), correspond to the three ASTRO-2 telescopes - the Hopkins Ultraviolet Telescope (HUT), The Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE). The telescopes are coaligned to simultaneously view the same astronomical object, as shown by the convergence of rays on the NASA symbol. This symbol also represents the excellence of the union of the NASA teams and the universality's in the exploration of the universe through astronomy. The celestial targets of ASTRO-2 include the observation of planets, stars and gala

  6. Concurrent airline fleet allocation and aircraft design with profit modeling for multiple airlines

    NASA Astrophysics Data System (ADS)

    Govindaraju, Parithi

    A "System of Systems" (SoS) approach is particularly beneficial in analyzing complex large scale systems comprised of numerous independent systems -- each capable of independent operations in their own right -- that when brought in conjunction offer capabilities and performance beyond the constituents of the individual systems. The variable resource allocation problem is a type of SoS problem, which includes the allocation of "yet-to-be-designed" systems in addition to existing resources and systems. The methodology presented here expands upon earlier work that demonstrated a decomposition approach that sought to simultaneously design a new aircraft and allocate this new aircraft along with existing aircraft in an effort to meet passenger demand at minimum fleet level operating cost for a single airline. The result of this describes important characteristics of the new aircraft. The ticket price model developed and implemented here enables analysis of the system using profit maximization studies instead of cost minimization. A multiobjective problem formulation has been implemented to determine characteristics of a new aircraft that maximizes the profit of multiple airlines to recognize the fact that aircraft manufacturers sell their aircraft to multiple customers and seldom design aircraft customized to a single airline's operations. The route network characteristics of two simple airlines serve as the example problem for the initial studies. The resulting problem formulation is a mixed-integer nonlinear programming problem, which is typically difficult to solve. A sequential decomposition strategy is applied as a solution methodology by segregating the allocation (integer programming) and aircraft design (non-linear programming) subspaces. After solving a simple problem considering two airlines, the decomposition approach is then applied to two larger airline route networks representing actual airline operations in the year 2005. The decomposition strategy serves

  7. Development of diagnostics in the search of an explanation for toxic airline syndrome 1

    PubMed Central

    Schopfer, Lawrence M.; Furlong, Clement E.; Lockridge, Oksana

    2010-01-01

    Toxic airline syndrome is assumed to be caused by exposure to tri-cresyl phosphate, an additive in engine lubricants and hydraulic fluids, which is activated to the toxic 2-(o-cresyl)-4H-1,3,2-benzodioxaphosphoran-2-one (CBDP). At present there is no laboratory evidence to support intoxication of airline crew by CBDP. Our goal was to develop methods for testing in vivo exposure by identifying and characterizing biomarkers. Mass spectrometry was used to study the reaction of CBDP with human albumin, free tyrosine, and human butyrylcholinesterase. Human albumin made a covalent bond with CBDP, adding a mass of 170 to tyrosine 411 to yield the ortho-cresyl phosphotyrosine derivative. Human butyrylcholinesterase made a covalent bond with CBDP on serine 198 to yield 5 adducts with added masses of 80, 108, 156, 170, and 186. The most abundant adduct had an added mass of 80 from phosphate (HPO3), a surprising result since no pesticide or nerve agent is known to yield phosphorylated serine with an added mass of 80. The next most abundant adduct had an added mass of 170 to form ortho-cresyl phosphoserine. It is concluded that toxic gases or oil mists in cabin air may form adducts on plasma butyrylcholinesterase and albumin, detectable by mass spectrometry. PMID:20447373

  8. Crew Skills and Training

    NASA Technical Reports Server (NTRS)

    Jones, Thomas; Burbank, Daniel C.; Eppler, Dean; Garrison, Robert; Harvey, Ralph; Hoffman, Paul; Schmitt, Harrison

    1998-01-01

    One of the major focus points for the workshop was the topic of crew skills and training necessary for the Mars surface mission. Discussions centered on the mix of scientific skills necessary to accomplish the proposed scientific goals, and the training environment that can bring the ground and flight teams to readiness. Subsequent discussion resulted in recommendations for specific steps to begin the process of training an experienced Mars exploration team.

  9. STS-112 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    JOHNSON SPACE CENTER, HOUSTON, TEXAS -- (STS112-S-002) These five astronauts and cosmonaut take a break from training to pose for the STS-112 crew portrait. Astronauts Pamela A. Melroy and Jeffrey S. Ashby, pilot and commander respectively, are in the cen ter of the photo. The mission specialists are from left to right, astronauts Sandra H. Magnus, David A. Wolf and Piers J. Sellers, and cosmonaut Fyodor Yurchikhin, who represents Rosaviakosmos.

  10. Flight Crew Health Maintenance

    NASA Technical Reports Server (NTRS)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  11. Space weather effects and commerical airlines

    NASA Astrophysics Data System (ADS)

    Jones, J.; Bentley, R.; Hunter, R.; Taylor, G.; Thomas, D.

    Space Weather (SW) phenomena can effect many areas of commercial airline operations including avionics, communications and GPS navigation systems. Of particular importance at present is the recently introduced EU legislation requiring the monitoring of aircrew radiation exposure, including any variations at aircraft altitudes due to solar activity. The Mullard Space Science Laboratory is collaborating with Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory on a 3- year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether computer models currently used to predict radiation exposure of aircrew are adequate. It also aims to determine whether solar or geomagnetic activity can cause significant modifications to the doses. This presentation will begin by showing some of the preliminary results obtained so far. As an example, we present a comparison of flight doses measured following the 14t h July 2000 X - class flare that was accompanied by a major Solar Particle Event (SPE). The results highlight the importance of a range of external factors that can strongly influence how SPEs may effect the measured dose at aircraft altitudes. At present, any SPE contributions in the airlines' dose records can only be poorly estimated retrospectively. Ideally, it would be better to try to avoid operating during these possibly significant radiation - enhancing events by utilising SW information (alerts, warnings, etc.). However, doing so poses many difficult operational problems for such a heavily regulated international industry, in terms of safety, security and procedures. Therefore, the use of timely SW information, which is still very unreliable, in a similar manner to terrestrial weather will require agreement from the International Civil Aviation Organisation (ICAO) and International Air Transport Association (IATA) to Air Traffic Control and Aviation Regulatory Authority's. This

  12. STS-99 Crew Insignia

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-99 crew members designed the flight insignia for the Shuttle Radar Topography Mission (SRTM), the most ambitious Earth mapping mission to date. Two radar anternas, one located in the Shuttle bay and the other located on the end of a 60-meter deployable mast, was used during the mission to map Earth's features. The goal was to provide a 3-dimensional topographic map of the world's surface up to the Arctic and Antarctic Circles. In the patch, the clear portion of Earth illustrates the radar beams penetrating its cloudy atmosphere and the unique understanding of the home planet that is provided by space travel. The grid on Earth reflects the mapping character of the SRTM mission. The patch depicts the Space Shuttle Endeavour orbiting Earth in a star spangled universe. The rainbow along Earth's horizon resembles an orbital sunrise. The crew deems the bright colors of the rainbow as symbolic of the bright future ahead because of human beings' venturing into space. The crew of six launched aboard the Space Shuttle Endeavor on February 11, 2000 and completed 222 hours of around the clock radar mapping gathering enough information to fill more than 20,000 CDs.

  13. Detection of structural deterioration and associated airline maintenance problems

    NASA Technical Reports Server (NTRS)

    Henniker, H. D.; Mitchell, R. G.

    1972-01-01

    Airline operations involving the detection of structural deterioration and associated maintenance problems are discussed. The standard approach to the maintenance and inspection of aircraft components and systems is described. The frequency of inspections and the application of preventive maintenance practices are examined. The types of failure which airline transport aircraft encounter and the steps taken to prevent catastrophic failure are reported.

  14. Holographic Weapons Sight as Crew Optical Alignment Sight

    NASA Technical Reports Server (NTRS)

    Merancy, Nujoud; Dehmlow, Brian; Brazzel, Jack P.

    2011-01-01

    Crew Optical Alignment Sights (COAS) are used by spacecraft pilots to provide a visual reference to a target spacecraft for lateral relative position during rendezvous and docking operations. NASA s Orion vehicle, which is currently under development, has not included a COAS in favor of automated sensors, but the crew office has requested such a device be added for situational awareness and contingency support. The current Space Shuttle COAS was adopted from Apollo heritage, weighs several pounds, and is no longer available for procurement which would make re-use difficult. In response, a study was conducted to examine the possibility of converting a commercially available weapons sight to a COAS for the Orion spacecraft. The device used in this study was the XPS series Holographic Weapon Sight (HWS) procured from L-3 EOTech. This device was selected because the targeting reticule can subtend several degrees, and display a graphic pattern tailored to rendezvous and docking operations. Evaluations of the COAS were performed in both the Orion low-fidelity mockup and rendezvous simulations in the Reconfigurable Operational Cockpit (ROC) by crewmembers, rendezvous engineering experts, and flight controllers at Johnson Space Center. These evaluations determined that this unit s size and mounting options can support proper operation and that the reticule visual qualities are as good as or better than the current Space Shuttle COAS. The results positively indicate that the device could be used as a functional COAS and supports a low-cost technology conversion solution.

  15. 8. Interior of cockpit showing pilot consoles and flight engineer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Interior of cockpit showing pilot consoles and flight engineer seat with instrument panel. View to east. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  16. 6. Detail of forward fuselage showing open cockpit hatch and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Detail of forward fuselage showing open cockpit hatch and ladder. View to southeast. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  17. 7. Interior of cockpit showing pilot and copilot seats with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Interior of cockpit showing pilot and co-pilot seats with console and overhead instrument panels. View to northeast. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Aircraft, On Operational Apron covering northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  18. 14 CFR 121.315 - Cockpit check procedure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Cockpit check procedure. 121.315 Section 121.315 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... emergencies. The procedures must be designed so that a flight crewmember will not need to rely upon his...

  19. 14 CFR 121.315 - Cockpit check procedure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Cockpit check procedure. 121.315 Section 121.315 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... emergencies. The procedures must be designed so that a flight crewmember will not need to rely upon his...

  20. 14 CFR 121.315 - Cockpit check procedure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Cockpit check procedure. 121.315 Section 121.315 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... emergencies. The procedures must be designed so that a flight crewmember will not need to rely upon his...

  1. 14 CFR 121.315 - Cockpit check procedure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Cockpit check procedure. 121.315 Section 121.315 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... emergencies. The procedures must be designed so that a flight crewmember will not need to rely upon his...

  2. 14 CFR 121.315 - Cockpit check procedure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Cockpit check procedure. 121.315 Section 121.315 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... emergencies. The procedures must be designed so that a flight crewmember will not need to rely upon his...

  3. 46 CFR 178.420 - Drainage of cockpit vessels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of...

  4. 46 CFR 178.420 - Drainage of cockpit vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of...

  5. 46 CFR 178.420 - Drainage of cockpit vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of...

  6. 46 CFR 178.420 - Drainage of cockpit vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of...

  7. 46 CFR 178.420 - Drainage of cockpit vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Drainage of cockpit vessels. 178.420 Section 178.420 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) INTACT STABILITY AND SEAWORTHINESS Drainage of Weather Decks § 178.420 Drainage of...

  8. 14 CFR 27.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... paragraph (a)(2) of this section may be met: (1) By installing a cockpit-mounted area microphone located in...; or (2) By installing a continually energized or voice-actuated lip microphone at the first and second pilot stations. The microphone specified in this paragraph must be so located and, if necessary,...

  9. 14 CFR 27.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... paragraph (a)(2) of this section may be met: (1) By installing a cockpit-mounted area microphone located in...; or (2) By installing a continually energized or voice-actuated lip microphone at the first and second pilot stations. The microphone specified in this paragraph must be so located and, if necessary,...

  10. 14 CFR 25.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements of paragraph (a)(2) of this section must be met by installing a cockpit-mounted area microphone.... The microphone must be so located and, if necessary, the preamplifiers and filters of the recorder... first channel, from each boom, mask, or hand-held microphone, headset, or speaker used at the...

  11. 14 CFR 25.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements of paragraph (a)(2) of this section must be met by installing a cockpit-mounted area microphone.... The microphone must be so located and, if necessary, the preamplifiers and filters of the recorder... first channel, from each boom, mask, or hand-held microphone, headset, or speaker used at the...

  12. 14 CFR 23.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... cockpit-mounted area microphone, located in the best position for recording voice communications... deck when directed to those stations. The microphone must be so located and, if necessary, the... on a separate channel: (1) For the first channel, from each boom, mask, or handheld...

  13. 14 CFR 27.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... paragraph (a)(2) of this section may be met: (1) By installing a cockpit-mounted area microphone located in...; or (2) By installing a continually energized or voice-actuated lip microphone at the first and second pilot stations. The microphone specified in this paragraph must be so located and, if necessary,...

  14. 14 CFR 23.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... cockpit-mounted area microphone, located in the best position for recording voice communications... deck when directed to those stations. The microphone must be so located and, if necessary, the... on a separate channel: (1) For the first channel, from each boom, mask, or handheld...

  15. 14 CFR 23.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... cockpit-mounted area microphone, located in the best position for recording voice communications... deck when directed to those stations. The microphone must be so located and, if necessary, the... on a separate channel: (1) For the first channel, from each boom, mask, or handheld...

  16. 14 CFR 25.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... requirements of paragraph (a)(2) of this section must be met by installing a cockpit-mounted area microphone.... The microphone must be so located and, if necessary, the preamplifiers and filters of the recorder... first channel, from each boom, mask, or hand-held microphone, headset, or speaker used at the...

  17. 14 CFR 23.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... cockpit-mounted area microphone, located in the best position for recording voice communications... deck when directed to those stations. The microphone must be so located and, if necessary, the... on a separate channel: (1) For the first channel, from each boom, mask, or handheld...

  18. 14 CFR 25.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... requirements of paragraph (a)(2) of this section must be met by installing a cockpit-mounted area microphone.... The microphone must be so located and, if necessary, the preamplifiers and filters of the recorder... first channel, from each boom, mask, or hand-held microphone, headset, or speaker used at the...

  19. 14 CFR 23.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... cockpit-mounted area microphone, located in the best position for recording voice communications... deck when directed to those stations. The microphone must be so located and, if necessary, the... on a separate channel: (1) For the first channel, from each boom, mask, or handheld...

  20. 14 CFR 27.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... paragraph (a)(2) of this section may be met: (1) By installing a cockpit-mounted area microphone located in...; or (2) By installing a continually energized or voice-actuated lip microphone at the first and second pilot stations. The microphone specified in this paragraph must be so located and, if necessary,...

  1. 14 CFR 27.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... paragraph (a)(2) of this section may be met: (1) By installing a cockpit-mounted area microphone located in...; or (2) By installing a continually energized or voice-actuated lip microphone at the first and second pilot stations. The microphone specified in this paragraph must be so located and, if necessary,...

  2. 14 CFR 25.1457 - Cockpit voice recorders.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements of paragraph (a)(2) of this section must be met by installing a cockpit-mounted area microphone.... The microphone must be so located and, if necessary, the preamplifiers and filters of the recorder... first channel, from each boom, mask, or hand-held microphone, headset, or speaker used at the...

  3. General Aviation Cockpit Weather Information System Simulation Studies

    NASA Technical Reports Server (NTRS)

    McAdaragh, Ray; Novacek, Paul

    2003-01-01

    This viewgraph presentation provides information on two experiments on the effectiveness of a cockpit weather information system on a simulated general aviation flight. The presentation covers the simulation hardware configuration, the display device screen layout, a mission scenario, conclusions, and recommendations. The second experiment, with its own scenario and conclusions, is a follow-on experiment.

  4. Magnetic field exposure of commercial airline pilots.

    PubMed

    Hood; Nicholas; Butler; Lackland; Hoel; Mohr

    2000-10-01

    PURPOSE: Airline pilots are exposed to magnetic fields generated by the aircraft's electrical and electronic systems. The purpose of this study was to directly measure the flight deck magnetic fields to which commercial airline pilots are exposed when flying on different aircraft types over a 75-hour flight-duty month.METHODS: Magentic field measurements were taken using personal dosimeters capable of measuring magnetic fields in the 40-800 Hz frequency range. Dosimeters were carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. The data were analyzed by aircraft type, with statistics based on block hours. Block hours begin when the aircraft departs the gate prior to take off and end when the aircraft returns to the gate after landing.RESULTS: Approximately 1008 block hours were recorded at a sampling rate of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200.CONCLUSIONS: Measured flight deck magnetic field levels were substantially above the 0.8 to 1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure.

  5. Lightning effects on aircraft: A cockpit perspective

    NASA Astrophysics Data System (ADS)

    Plumer, J. A.

    1980-05-01

    Typical conditions in which strikes have been experienced by large and small aircraft are described, together with effects as experienced by flight crews. Most strikes have occurred when the aircraft is flying at between 3000 and 5000 meters altitude, where the outside air temperature is within 5 deg of 0 C and there exists a light to moderate amount of precipitation. Strikes to aircraft have, however, occurred at altitudes as high as 12,000 m and also when the aircraft are parked on the ground. If an aircraft approaches a highly electrified region it may actually trigger a strike, especially if the aircraft is large and causes a significant perturbation in the nearby electric field. Aircraft lightning strike mechanisms, effects to avionics and electric power systems, engine effects, and effects to personnel are addressed.

  6. Cockpit automation - In need of a philosophy

    NASA Technical Reports Server (NTRS)

    Wiener, E. L.

    1985-01-01

    Concern has been expressed over the rapid development and deployment of automatic devices in transport aircraft, due mainly to the human interface and particularly the role of automation in inducing human error. The paper discusses the need for coherent philosophies of automation, and proposes several approaches: (1) flight management by exception, which states that as long as a crew stays within the bounds of regulations, air traffic control and flight safety, it may fly as it sees fit; (2) exceptions by forecasting, where the use of forecasting models would predict boundary penetration, rather than waiting for it to happen; (3) goal-sharing, where a computer is informed of overall goals, and subsequently has the capability of checking inputs and aircraft position for consistency with the overall goal or intentions; and (4) artificial intelligence and expert systems, where intelligent machines could mimic human reason.

  7. Cockpit to helmet optical wireless link: prototype hardware demonstration

    NASA Astrophysics Data System (ADS)

    Watson, M. A.; White, H. J.; Aldridge, N. B.; Lam, J.; Atkinson, R.

    2009-09-01

    This paper describes recent progress in developing a wireless optical link between the fuselage of a cockpit and an aviation helmet. Such a link is desired to replace the physical umbilical cable existing in current cockpit systems, for reasons of potential bandwidth, immunity to EM interference, and freedom from physical constraints within the cockpit. The link concept consists of multiple transmitters embedded in the cockpit fuselage, each sending video (or symbology) data out in a cone of light over free space, which is detected by an array of receivers positioned on the helmet - the data is then sent to the eyepieces or visor of the pilot (after any intermediate processing). The design is such that one of these links is always maintained throughout possible movement of the head. In a recent proof-of-principle demonstration we showed uncompressed, 100 Mbps video data streamed live from the fuselage of a cockpit simulator to an angled cluster of silicon-based receivers mounted on the helmet, via a pair of ~1 Watt free-space lasers operating at 810 nm. Fast Ethernet media converters were used here for convenience and cost. The bespoke optical and electrical link components were developed in close collaboration with suppliers. The system performance arises from: the high dynamic range of the receivers (up to 25 dB), which are equipped with optical antennae to magnify the optical gain; the high power of the lasers; and the switching electronics used to control the signal path on the helmet. Future potential improvements to the technology are discussed, with an indication of wireless link requirements for relevant BAE Systems applications.

  8. Line-oriented flight training: Northwest Airlines

    NASA Technical Reports Server (NTRS)

    Nunn, H. T.

    1981-01-01

    An exemption from certain FAA regulations which stereotype simulator flight training was obtained and pilots with current line experience were used to prepare and develop scenarios for a program in which each crew member would be trained to recognize and properly use all available resouces. The development of the scenarios for training to proficiency and pilot reaction to the training sessions are discussed.

  9. Crew appliance study

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Reysa, R. P.; Russell, D. J.

    1975-01-01

    Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.

  10. Apollo 1 Prime Crew

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Portrait of the Apollo 1 prime crew for first manned Apollo space flight. From left to right are: Edward H. White II, Virgil I. 'Gus' Grissom, and Roger B. Chaffee. On January 27, 1967 at 5:31 p.m. CST (6:31 local time) during a routine simulated launch test onboard the Apollo Saturn V Moon rocket, an electrical short circuit inside the Apollo Command Module ignited the pure oxygen environment and within a matter of seconds all three Apollo 1 crewmembers perished.

  11. STS-63 crew portrait

    NASA Technical Reports Server (NTRS)

    1994-01-01

    With the United States and Russian flags in the background, five NASA astronauts and a Russian cosmonaut named to fly aboard the Space Shuttle Discovery for the the STS-63 mission pose for the flight crew portrait at JSC. Left to right (front row) are Janice E. Voss, mission specialist, Eileen M. Collins, pilot; James D. Wetherbee, mission commander; and Vladimir Titov of the Russian Space Agency, mission specialist. In the rear are Bernard A. Harris Jr., payload commander; and C. Michael Foale, mission specialist.

  12. STS-115 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These six astronauts take a break from training to pose for the STS-115 crew portrait. Astronauts Brent W. Jett, Jr. (right) and Christopher J. Ferguson, commander and pilot, respectively, flank the mission insignia. The mission specialists are, from left to right, astronauts Heidemarie M. Stefanyshyn-Piper, Joseph R. (Joe) Tanner, Daniel C. Burbank, and Steven G. MacLean, who represents the Canadian Space Agency. This mission continued the assembly of the International Space Station (ISS) with the installation of the truss segments P3 and P4.

  13. STS-39 Crew Portrait

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The STS-39 crew portrait includes 7 astronauts. Pictured are Charles L. Veach, mission specialist 5; Michael L. Coats, commander; Gregory J. Harbaugh, mission specialist 2; Donald R. McMonagle, mission specialist 4; L. Blaine Hammond, pilot; Richard J. Hieb, mission specialist 3; and Guion S. Buford, Jr., mission specialist 1. Launched aboard the Space Shuttle Discovery on April 28, 1991 at 7:33:14 am (EDT), STS-39 was a Department of Defense (DOD) mission. The primary unclassified payload included the Air Force Program 675 (AFP-675), the Infrared Background Signature Survey (IBSS), and the Shuttle Pallet Satellite II (SPAS II).

  14. 41 CFR 301-10.121 - What classes of airline accommodations are available?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-class. The basic class of accommodation by airlines that is normally the lowest fare offered regardless of airline terminology used. For reference purposes only, coach-class may also be referred to by airlines as “tourist class,” “economy class,” or as “single class” when the airline offers only one...

  15. Space Station Freedom crew training.

    PubMed

    Bobko, K J; Gibson, E G; Maroney, S A; Muccio, J D

    1990-01-01

    The nature of the Space Station Freedom Program presents an array of new and enhanced challenges which need to be addressed en route to developing an effective and affordable infrastructure for crew training. Such an infrastructure is essential for the safety and success of the program. The three major challenges that affect crew training are the long lifetime of the program (thirty years), the interdependence of successive increments, and the participation of the three International Partners (Canada, European Space Agency, and Japan) and a myriad of experimenters. This paper addresses these major challenges as they drive the development of a crew training capability and the actual conduct of crew training.

  16. Medical emergencies on board commercial airlines: is documentation as expected?

    PubMed Central

    2012-01-01

    Introduction The purpose of this study was to perform a descriptive, content-based analysis on the different forms of documentation for in-flight medical emergencies that are currently provided in the emergency medical kits on board commercial airlines. Methods Passenger airlines in the World Airline Directory were contacted between March and May 2011. For each participating airline, sample in-flight medical emergency documentation forms were obtained. All items in the sample documentation forms were subjected to a descriptive analysis and compared to a sample "medical incident report" form published by the International Air Transport Association (IATA). Results A total of 1,318 airlines were contacted. Ten airlines agreed to participate in the study and provided a copy of their documentation forms. A descriptive analysis revealed a total of 199 different items, which were summarized into five sub-categories: non-medical data (63), signs and symptoms (68), diagnosis (26), treatment (22) and outcome (20). Conclusions The data in this study illustrate a large variation in the documentation of in-flight medical emergencies by different airlines. A higher degree of standardization is preferable to increase the data quality in epidemiologic aeromedical research in the future. PMID:22397530

  17. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    NASA Technical Reports Server (NTRS)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display

  18. Crew Factors in Flight Operations XII: A Survey of Sleep Quantity and Quality in On-Board Crew Rest Facilities

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin B.; Co, Elizabeth L.; Miller, Donna L.; Dinges, David F.

    2000-01-01

    Many aircraft operated on long-haul commercial airline flights are equipped with on-board crew rest facilities, or bunks, to allow crewmembers to rest during the flight. The primary objectives of this study were to gather data on how the bunks were used, the quantity and quality of sleep obtained by flight crewmembers in the facilities, and the factors that affected their sleep. A retrospective survey comprising 54 questions of varied format addressed demographics, home sleep habits, and bunk sleep habits. Crewmembers from three airlines with long-haul fleets carrying augmented crews consisting of B747-100/200, B747-400, and MD-11 aircraft equipped with bunks returned a total of 1404 completed surveys (a 37% response rate). Crewmembers from the three carriers were comparable demographically, although one carrier had older, more experienced flight crewmembers. Each group, on average, rated themselves as "good" or "very good" sleepers at home, and all groups obtained about the same average amount of sleep each night. Most were able to sleep in the bunks, and about two thirds indicated that these rest opportunities benefited their subsequent flight deck alertness and performance. Comfort, environment, and physiology (e.g., being ready for sleep) were identified as factors that most promoted sleep. Factors cited as interfering with sleep included random noise, thoughts, heat, and the need to use the bathroom. These factors, in turn, suggest potential improvements to bunk facilities and their use. Ratings of the three aircraft types suggested differences among facilities. Bunks in the MD-11 were rated significantly better than either of the B747 types, and the B747-400 bunks received better ratings than did the older, B747-100/200 facilities.

  19. Deployable Crew Quarters

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo

    2008-01-01

    The deployable crew quarters (DCQ) have been designed for the International Space Station (ISS). Each DCQ would be a relatively inexpensive, deployable boxlike structure that is designed to fit in a rack bay. It is to be occupied by one crewmember to provide privacy and sleeping functions for the crew. A DCQ comprises mostly hard panels, made of a lightweight honeycomb or matrix/fiber material, attached to each other by cloth hinges. Both faces of each panel are covered with a layer of Nomex cloth and noise-suppression material to provide noise isolation from ISS. On Earth, the unit is folded flat and attached to a rigid pallet for transport to the ISS. On the ISS, crewmembers unfold the unit and install it in place, attaching it to ISS structural members by use of soft cords (which also help to isolate noise and vibration). A few hard pieces of equipment (principally, a ventilator and a smoke detector) are shipped separately and installed in the DCQ unit by use of a system of holes, slots, and quarter-turn fasteners. Full-scale tests showed that the time required to install a DCQ unit amounts to tens of minutes. The basic DCQ design could be adapted to terrestrial applications to satisfy requirements for rapid deployable emergency shelters that would be lightweight, portable, and quickly erected. The Temporary Early Sleep Station (TeSS) currently on-orbit is a spin-off of the DCQ.

  20. Laminar Flow Control Leading Edge Systems in Simulated Airline Service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.

  1. Application of Core Theory to the Airline Industry

    NASA Technical Reports Server (NTRS)

    Raghavan, Sunder

    2003-01-01

    Competition in the airline industry has been fierce since the industry was deregulated in 1978. The proponents of deregulation believed that more competition would improve efficiency and reduce prices and bring overall benefits to the consumer. In this paper, a case is made based on core theory that under certain demand and cost conditions more competition can actually lead to harmful consequences for industries like the airline industry or cause an empty core problem. Practices like monopolies, cartels, price discrimination, which is considered inefficient allocation of resources in many other industries, can actually be beneficial in the case of the airline industry in bringing about an efficient equilibrium.

  2. STATUS AND FUTURE POSSIBILITIES OF DOMESTIC FLIGHTS BY FOREIGN AIRLINES

    NASA Astrophysics Data System (ADS)

    Hibino, Naohiko; Kobayashi, Yuki; Morichi, Shigeru

    As a regional strategy, it is very important for local cities that international flights are put into service to local airports and to increase tourists. It is problemati c for the airlines that their international flights are put into service directly between the local airport and the international airport since it is difficult for them to secure the number of passengers needed to operate the aircraft. Co ncerning 1-stop flights, there is a good possibility of securing number of passengers. Therefore, the study illustrated the possibilities of domestic airline flights by foreign airlines as international flights.

  3. Impact of scaling and body movement on contaminant transport in airliner cabins

    NASA Astrophysics Data System (ADS)

    Mazumdar, Sagnik; Poussou, Stephane B.; Lin, Chao-Hsin; Isukapalli, Sastry S.; Plesniak, Michael W.; Chen, Qingyan

    2011-10-01

    Studies of contaminant transport have been conducted using small-scale models. This investigation used validated Computational Fluid Dynamics (CFD) to examine if a small-scale water model could reveal the same contaminant transport characteristics as a full-scale airliner cabin. But due to similarity problems and the difficulty of scaling the geometry, a perfect scale up from a small water model to an actual air model was found to be impossible. The study also found that the seats and passengers tended to obstruct the lateral transport of the contaminants and confine their spread to the aisle of the cabin. The movement of a crew member or a passenger could carry a contaminant in its wake to as many rows as the crew member or passenger passed. This could be the reason why a SARS infected passenger could infect fellow passengers who were seated seven rows away. To accurately simulate the contaminant transport, the shape of the moving body should be a human-like model.

  4. B-52B Cockpit Instrument Panel

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows a close-up view of the instrument panel in the cockpit of NASA's B-52 research aircraft. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the HiMAT, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster

  5. Air Travel and TB: an airline perspective.

    PubMed

    Dowdall, Nigel P; Evans, Anthony D; Thibeault, Claude

    2010-03-01

    The commercial airline industry in the 21st century is a global business, able to transport large numbers of people to almost any part of the world within a few hours. There has long been concern in public health circles about the potential for transmission of communicable diseases, such as TB, on board aircraft. The recent threats from novel and emerging infectious diseases including SARS and pandemic flu has facilitated unprecedented levels of cooperation between international industry representatives, regulators and public health authorities in addressing the issues of air travel and communicable disease. This paper reviews the regulatory environment, ways in which the risks are mitigated through aspects of aircraft design, opportunities for prevention by identifying individuals who may be suffering from a communicable disease prior to flight and the approach used in managing suspected cases of communicable disease on board aircraft.

  6. NASA satellite helps airliners avoid ozone concentrations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Results from a test to determine the effectiveness of satellite data for helping airlines avoid heavy concentrations of ozone are reported. Information from the Total Ozone Mapping Spectrometer, aboard the Nimbus-7 was transmitted, for use in meteorological forecast activities. The results show: (1) Total Ozone Mapping Spectrometer profile of total ozone in the atmosphere accurately represents upper air patterns and can be used to locate meteorological activity; (2) route forecasting of highly concentrated ozone is feasible; (3) five research aircraft flights were flown in jet stream regions located by the Total Ozone Mapping Spectrometer to determine winds, temperatures, and air composition. It is shown that the jet stream is coincides with the area of highest total ozone gradient, and low total ozone amounts are found where tropospheric air has been carried along above the tropopause on the anticyclonic side of the subtropical jet stream.

  7. Cosmic Radiation and Cataracts in Airline Pilots

    NASA Astrophysics Data System (ADS)

    Rafnsson, V.; Olafsdottir, E.; Hrafnkelsson, J.; de Angelis, G.; Sasaki, H.; Arnarson, A.; Jonasson, F.

    Nuclear cataracts have been associated with ionising radiation exposure in previous studies. A population based case-control study on airline pilots has been performed to investigate whether employment as a commercial pilot and consequent exposure to cosmic radiation were associated to lens opacification, when adjusted for known risk factors for cataracts. Cases of opacification of the ocular lens were found in surveys among pilots and a random sample of the Icelandic population. Altogether 445 male subjects underwent a detailed eye examination and answered a questionnaire. Information from the airline company on the 79 pilots employment time, annual hours flown per aircraft type, the timetables and the flight profiles made calculation of individual cumulated radiation dose (mSv) possible. Lens opacification were classified and graded according to WHO simplified cataracts grading system using slit lamp. The odds ratio from logistic regression of nuclear cataracts risk among cases and controls was 3.02 (95% CI 1.44 to 6.35) for pilots compared with non-pilots, adjusted for age, smoking and sunbathing habits, whereas that of cortical cataracts risk among cases and controls was lower than unity (non significant) for pilots compared with non-pilots in a logistic regression analysis adjusted for same factors. Length of employment as a pilot and cumulated radiation dose (mSv) were significantly related to the risk of nuclear cataracts. So the association between radiation exposure of pilots and the risk of nuclear cataracts, adjusted for age, smoking and sunbathing habits, indicates that cosmic radiation may be cause of nuclear cataract among commercial pilots.

  8. Flight Crew Health Stabilization Program

    NASA Technical Reports Server (NTRS)

    Johnston, Smith L.

    2010-01-01

    This document establishes the policy and procedures for the HSP and is authorized through the Director, Johnson Space Center (JSC). This document delineates the medical operations requirements for the HSP. The HSP goals are accomplished through an awareness campaign and procedures such as limiting access to flight crewmembers, medical screening, and controlling flight crewmember activities. NASA's Human Space Flight Program uses strategic risk mitigation to achieve mission success while protecting crew health and safety. Infectious diseases can compromise crew health and mission success, especially in the immediate preflight period. The primary purpose of the Flight Crew Health Stabilization Program (HSP) is to mitigate the risk of occurrence of infectious disease among astronaut flight crews in the immediate preflight period. Infectious diseases are contracted through direct person-to-person contact, and through contact with infectious material in the environment. The HSP establishes several controls to minimize crew exposure to infectious agents. The HSP provides a quarantine environment for the crew that minimizes contact with potentially infectious material. The HSP also limits the number of individuals who come in close contact with the crew. The infection-carrying potential of these primary contacts (PCs) is minimized by educating them in ways to avoid infections and avoiding contact with the crew if they are or may be sick. The transmission of some infectious diseases can be greatly curtailed by vaccinations. PCs are strongly encouraged to maintain updated vaccinations.

  9. STS-71 preflight crew portrait

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Crew members for the STS-71 mission and the related Mir missions assembled for a crew portrait at JSC. In front are, left to right, Vladimir N. Dezhurov, Robert L. Gibson and Anatoliy Y. Solovyev, mission commanders for Mir-18, STS-71 and Mir-19, respecti

  10. Flight crew health stabilization program

    NASA Technical Reports Server (NTRS)

    Wooley, B. C.; Mccollum, G. W.

    1975-01-01

    The flight crew health stabilization program was developed to minimize or eliminate the possibility of adverse alterations in the health of flight crews during immediate preflight, flight, and postflight periods. The elements of the program, which include clinical medicine, immunology, exposure prevention, and epidemiological surveillance, are discussed briefly. No crewmember illness was reported for the missions for which the program was in effect.

  11. Crew Transportation Technical Management Processes

    NASA Technical Reports Server (NTRS)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  12. STS-58 Crew Insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-58 crew insignia depicts the Space Shuttle Columbia with a Spacelab module in its payload bay in orbit around Earth. The Spacelab and the lettering 'Spacelab Life Sciences II' highlight its primary mission. An Extended Duration Orbiter (EDO) support pallet is shown in the aft payload bay, stressing the length of the mission. The hexagonal shape of the patch depicts the carbon ring. Encircling the inner border of the patch is the double helix of DNA. Its yellow background represents the sun. Both medical and veterinary caducei are shown to represent the STS-58 life sciences experiments. The position of the spacecraft in orbit about Earth with the United States in the background symbolizes the ongoing support of the American people for scientific research.

  13. Crew Interviews: Treschev

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sergei Treschev is a Cosmonaut of the Rocket Space Corporation Energia, (RSC), from Volynsky District, Lipetsk Region (Russia). He graduated from Moscow Energy Institute. After years of intense training with RSC Energia, he was selected as International Space Station (ISS) Increment 5 flight engineer. The Expedition-Five crew (two Russian cosmonauts and one American astronaut) will stay on the station for approximately 5 months. The Multipurpose Logistics Module, or MPLM, will carry experiment racks and three stowage and resupply racks to the station. The mission will also install a component of the Canadian Arm called the Mobile Base System (MBS) to the Mobile Transporter (MT) installed during STS-110. This completes the Canadian Mobile Servicing System, or MSS. The mechanical arm will now have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites.

  14. An analysis of short haul airline operating costs

    NASA Technical Reports Server (NTRS)

    Kanafani, A.; Taghavi, S.

    1975-01-01

    The demand and supply characteristics of short haul air transportation systems are investigated in terms of airline operating costs. Direct, indirect, and ground handling costs are included. Supply models of short haul air transportation systems are constructed.

  15. Some airline experience in preventing engine rotor failures

    NASA Technical Reports Server (NTRS)

    Morelli, J. J.

    1977-01-01

    Methods used by airlines, with the assistance of the engine manufacturers to achieve control over the type of problems which lead to uncontained failure and avoid many potential problems are discussed.

  16. STS-69 Crew members display 'Dog Crew' patches

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Following their arrival at KSC's Shuttle Landing Facility, the five astronauts assigned to Space Shuttle Mission STS-69 display the unofficial crew patch for their upcoming spaceflight: the Dog Crew II patch. Mission Commander David M. Walker (center) and Payload Commander James S. Voss (second from right) previously flew together on Mission STS-53, the final dedicated Department of Defense flight on the Space Shuttle. A close comradery formed among Walker, Voss and the rest of the crew, and they dubbed themselves the 'dogs of war', with each of the STS-53 'Dog Crew' members assigned a 'dog tag' or nickname. When the STS-69 astronauts also became good buddies, they decided it was time for the Dog Crew II to be named. Walker's dog tag is Red Dog, Voss's is Dogface, Pilot Kenneth D. Cockrell (second from left) is Cujo, space rookie and Mission Specialist Michael L. Gernhardt (left) is Under Dog, and Mission Specialist James H. Newman (right) is Pluato. The Dog Crew II patch features a bulldog peering out from a doghouse shaped like the Space Shuttle and lists the five crew member's dog names. The five astronauts are scheduled to lift off on the fifth Shuttle flight of the year at 11:04 a.m. EDT, August 31, aboard the Space Shuttle Endeavour.

  17. The Empirical Analysis of Impact of Alliances on Airline Operations

    NASA Technical Reports Server (NTRS)

    Iatrou, Kostas; Alamdari, Fariba

    2003-01-01

    Airline alliances are dominating the current air transport industry with the largest carriers of the world belonging to one of the four alliance groupings - "Wings", Star Alliance, one world, SkyTeam - which represent 56% of world Revenue Passenger Kilometers. Although much research has been carried out to evaluate the impact of alliance membership on performance of airlines, it would be of interest to ascertain the degree of impact perceived by participating airlines in alliances. It is the purpose of this paper to gather the opinion of all the airlines, belonging to the four global alliance groupings on the impact alliances have had on their traffic and on their performance in general To achieve this, a comprehensive survey of the alliance management departments of airlines participating in the four global strategic alliances was carried out. With this framework the survey has examined which type of cooperation among carriers (FFP, Code Share, Strategic Alliance without antitrust immunity, Strategic Alliance with antitrust immunity) has produced the most positive impact on traffic and which type of route (short haul, long haul, hub-hub, hub-non hub, non hub-non hub) has been mostly affected. In addition, the respondent airlines quantified the effect alliances have had on specific areas of their operation, such as load factors, traffic, costs, revenue and fares. Their responses have been analysed under each global alliances grouping, under airline and under geographic region to establish which group, type of carrier and geographic region has benefited most. The results show that each of the four global alliances groupings has experienced different results according to the type of collaboration agreed amongst their member airlines.

  18. F18 Life Support: APECS and EDOX Cockpit Integration

    NASA Technical Reports Server (NTRS)

    Herrick, Paul

    1998-01-01

    Two systems are currently being integrated into the F18 Hornet support aircraft at NASA Dryden Flight Research Center (DFRC). The first system is the Aircrew Personal Environmental Control System (APECS). The system is designed to increase aircrew performance by combating heat stress in the cockpit. The second system is the Extended Duration Oxygen System (EDOX). This system will provide additional redundancy and oxygen system duration to the F18 without extensive modification to the current system.

  19. Beyond the cockpit: The visual world as a flight instrument

    NASA Technical Reports Server (NTRS)

    Johnson, W. W.; Kaiser, M. K.; Foyle, D. C.

    1992-01-01

    The use of cockpit instruments to guide flight control is not always an option (e.g., low level rotorcraft flight). Under such circumstances the pilot must use out-the-window information for control and navigation. Thus it is important to determine the basis of visually guided flight for several reasons: (1) to guide the design and construction of the visual displays used in training simulators; (2) to allow modeling of visibility restrictions brought about by weather, cockpit constraints, or distortions introduced by sensor systems; and (3) to aid in the development of displays that augment the cockpit window scene and are compatible with the pilot's visual extraction of information from the visual scene. The authors are actively pursuing these questions. We have on-going studies using both low-cost, lower fidelity flight simulators, and state-of-the-art helicopter simulation research facilities. Research results will be presented on: (1) the important visual scene information used in altitude and speed control; (2) the utility of monocular, stereo, and hyperstereo cues for the control of flight; (3) perceptual effects due to the differences between normal unaided daylight vision, and that made available by various night vision devices (e.g., light intensifying goggles and infra-red sensor displays); and (4) the utility of advanced contact displays in which instrument information is made part of the visual scene, as on a 'scene linked' head-up display (e.g., displaying altimeter information on a virtual billboard located on the ground).

  20. STS-112 crew leave the crew transport vehicle after landing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- As the STS-112 crew leaves the crew transport vehicle, they are greeted by mission managers and guests. The crew, from left, are Mission Specialists David Wolf, Fyodor Yurchikhin and Sandra Magnus; Pilot Pamela Melroy; Piers Sellers (talking to Acting Deputy Director JoAnn Morgan) and Commander Jeffrey Ashby (talking to Launch Director Mike Leinbach). Morgan is also Director of External Relations and Business Development. The crew returned to KSC after completing a 4.5-million-mile journey to the International Space Station. Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m. Mission elapsed time was 10:19:58:44. Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment. .

  1. Flight Crew Integration (FCI) ISS Crew Comments Database & Products Summary

    NASA Technical Reports Server (NTRS)

    Schuh, Susan

    2016-01-01

    This Crew Debrief Data provides support for design and development of vehicles, hardware, requirements, procedures, processes, issue resolution, lessons learned, consolidation and trending for current Programs; and much of the data is also used to support development of future Programs.

  2. STS-116 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This is the STS-116 Crew Portrait. Pictured on the front row from left to right are: William Oefelein, pilot; Joan Higginbotham, mission specialist; and Mark Polansky, commander. On the back row, left to right, are: Robert Curbeam, Nicholas Patrick, Sunita Williams, and the European Space Agency's Christer Fuglesang, all mission specialists. Williams joined Expedition 14 in progress to serve as flight engineer aboard the International Space Station (ISS). Launched aboard the Space Shuttle Discovery on December 9, 2006, the seven delivered two high profile Marshall Space Flight Center (MSFC') payloads: The Lab-On-A Chip Application Development Portable Test System (LOCAD-PTS) and the Water Delivery System, a vital component of the Station's Oxygen Generation System. The primary mission objective was to deliver and install the P5 truss element. The P5 installation was conducted during the first of three space walks, and involved use of both the shuttle and station's robotic arms. The remainder of the mission included a major reconfiguration and activation of the ISS electrical and thermal control systems, as well as delivery of Zvezda Service Module debris panels, which will increase ISS protection from potential impacts of micro-meteorites and orbital debris.

  3. STS-112 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These 5 astronauts and cosmonaut, all members of the STS-112 mission, pose for a crew portrait. Pictured from left to right are: Astronauts Sandra H. Magnus, mission specialist; David A. Wolf, mission specialist; Pamela A. Melroy, pilot; Jeffrey S. Ashby, commander; Piers J. Sellers, mission specialist; and cosmonaut Fyodor Yurchikhin, mission specialist representing Rosaviakosmos. STS-112 launched aboard the Space Shuttle Atlantis October 7, 2002 for an 11-day mission completing three sessions of Extra Vehicular Activity(EVA). Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the railway on the ISS providing a mobile work platform for future extravehicular activities by astronauts.

  4. EMS response to an airliner crash.

    PubMed

    Dasgupta, Shuvra; French, Simone; Williams-Johnson, Jean; Hutson, Rhonda; Hart, Nicole; Wong, Mark; Williams, Eric; Espinosa, Kurdell; Maycock, Celeste; Edwards, Romayne; McCartney, Trevor; Cawich, Shamir; Crandon, Ivor

    2012-06-01

    This report of an aircraft crash at a major airport in Kingston, Jamaica examines the response of the local Emergency Medical Services (EMS). Factors that impacted the response are discussed, and the need for more disaster simulation exercises is highlighted. The objective of this case report was to document the response of EMS personnel to the crash of American Airlines Flight 331, and to utilize the information to examine and improve the present protocol. While multiple errors can occur during a mass-casualty event, these can be reduced by frequent simulation exercises during which various personnel practice and learn designated roles. Efficient triage, proper communication, and knowledge of the roles are important in ensuring the best possible outcome. While the triage system and response of the EMS personnel were effective for this magnitude of catastrophe, more work is needed in order to meet predetermined standards. Ways in which this can be overcome include: (1) hosting more disaster simulation exercises; (2) encouraging more involvement with first responders; and (3) strengthening the links in the local EMS system. Vigorous public education must be instituted and maintained.

  5. Communication indices of crew coordination

    NASA Technical Reports Server (NTRS)

    Kanki, B. G.; Lozito, S.; Foushee, H. C.

    1989-01-01

    The relationship between communication patterns and performance in 10 two-person flightcrews is explored with the aim of identifying speech variations which differentiate low- and high-error full mission simulator flights. Verbal data, transcribed from the videotaped performances, are treated as interactive sequences of speech events in which statements spoken by one crewmember are considered within the context of the other crewmember's prior and subsequent speech. Specific speech patterns characterized each crew, but the overriding findings included: a) marked homogeneity of patterns characterizing low-error crews, interpreted as the adoption of a standard form of communicating, and b) heterogeneity of patterns characterizing high-error crews, interpreted as the relative absence of a conventionalized form. Because conventions are regularities which confirm the expectations of those involved, predictability of crewmember behavior should be greater when standard conventions are followed. We conclude that such a practice can facilitate the coordination process and enhance crew performance.

  6. Commercial Crew Planning Status Forum

    NASA Video Gallery

    NASA presents an overview of common themes captured from industry responses provided to NASA's Commercial Crew Initiative Request for Information (RFI) published on May 21, 2010. The forum includes...

  7. Industry Consolidation and Future Airline Network Structures in Europe

    NASA Technical Reports Server (NTRS)

    Dennis, Nigel

    2003-01-01

    In the current downturn in demand for air travel, major airlines are revising and rationalizing their networks in an attempt to improve financial performance and strengthen their defences against both new entrants and traditional rivals. Expansion of commercial agreements or alliances with other airlines has become a key reaction to the increasingly competitive marketplace. In the absence, for regulatory reasons, of cross-border mergers these are the principal means by which the industry can consolidate internationally. This paper analyzes the developments which have been taking place and attempts to itentify the implications for airline network structures and the function of different hub airports. The range of services available to passengers in long-haul markets to/from Europe is evaluated before and after recent industry reorganization. Hubs are crucial to interlink the route networks of parmers in an alliance. However, duplication between nearby hub airports that find themselves within the same airline alliance can lead to loss of service at the weaker locations. The extent to which the alliance hubs in Europe duplicate or complement each other in terms of network coverage is assessed and this methodology also enables the optimal partnerships for "unattached" airlines to be identified. The future role of the various European hubs is considered under different scenarios of global alliance development. The paper concludes by considering possible longer-term developments. In an environment where the low-cost carriers will provide a major element of customer choice, it is suggested that the traditional airlines will retrench around their hubs, surrendering many secondary cities to the low-cost sector. Further reduction in the number of alliances could threaten more of the European hubs. For both regulatory and commercial reasons, the end result may be just one airline alliance - so recreating in the deregulated market the historic rule of IATA.

  8. Space Shuttle Wireless Crew Communications

    NASA Technical Reports Server (NTRS)

    Armstrong, R. W.; Doe, R. A.

    1982-01-01

    The design, development, and performance characteristics of the Space Shuttle's Wireless Crew Communications System are discussed. This system allows Space Shuttle crews to interface with the onboard audio distribution system without the need for communications umbilicals, and has been designed through the adaptation of commercially available hardware in order to minimize development time. Testing aboard the Space Shuttle Orbiter Columbia has revealed no failures or design deficiencies.

  9. Coordinated crew performance in commercial aircraft operations

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.

    1977-01-01

    A specific methodology is proposed for an improved system of coding and analyzing crew member interaction. The complexity and lack of precision of many crew and task variables suggest the usefulness of fuzzy linguistic techniques for modeling and computer simulation of the crew performance process. Other research methodologies and concepts that have promise for increasing the effectiveness of research on crew performance are identified.

  10. ISS Crew Transportation and Services Requirements Document

    NASA Technical Reports Server (NTRS)

    Bayt, Robert L. (Compiler); Lueders, Kathryn L. (Compiler)

    2016-01-01

    The ISS Crew Transportation and Services Requirements Document (CCT-REQ-1130) contains all technical, safety, and crew health medical requirements that are mandatory for achieving a Crew Transportation System Certification that will allow for International Space Station delivery and return of NASA crew and limited cargo. Previously approved on TN23183.

  11. The Actual Gemini 9 Prime Crew

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Gemini 9 backup crew members are, Commander, Thomas P. Stafford and pilot Eugene A. Cernan. The back-up crew became the prime crew when on February 28, 1966 the prime crew for the Gemini 9 mission were killed when their twin seat T- 38 trainer jet aircraft crashed into a building during a landing approach in bad weather.

  12. Heat stress in front and rear cockpits of F-4 aircraft

    SciTech Connect

    Nunneley, S.A.; Stribley, R.F.; Allan, J.R.

    1981-05-01

    The thermal stresses encountered in the front and rear cockpits of F-4 aircraft flying low-level missions in warm, moderately humid weather and physiological responses to these stresses are investigated. Measurements of ground and cockpit environmental temperatures and subject skin and core temperatures were acquired for the preflight taxi, low-level flight, ordnance delivery and postflight taxi phases of 36 flights of F-4E aircraft performed to simulate low-level ground attack missions. Cockpit dry-bulb temperatures are found to exceed those on the ground during ground operations, and to decrease in flight in the front, but not the rear, cockpit. A linear relationship between cockpit dry bulb and temperatures is also found in each of the mission phases, along with increases in skin and core temperatures with cockpit temperatures and sweat rates depending both on cockpit temperatures and the amount of clothing worn. Adverse physiological effects related to nausea and acceleration tolerances are also noted. It is concluded that the cockpit cooling system of the F-4 allows the development of operationally significant heat stress, which may be corrected by better design and testing of the cooling system.

  13. 46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450...

  14. 46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450...

  15. 46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450...

  16. 46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450...

  17. 46 CFR 116.1120 - Drainage of cockpit vessels, well deck vessels, and open boats.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... boats. 116.1120 Section 116.1120 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL... Drainage of cockpit vessels, well deck vessels, and open boats. Drainage of cockpit vessels, well deck vessels, and open boats must meet the applicable requirements of §§ 178.420, 178.430, 178.440, 178.450...

  18. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  19. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  20. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  1. 14 CFR 25.779 - Motion and effect of cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Personnel and Cargo Accommodations § 25.779 Motion and effect of cockpit controls. Cockpit controls must be designed so that they.... Controls Motion and effect Aileron Right (clockwise) for right wing down. Elevator Rearward for nose...

  2. Device-Task Fidelity and Transfer of Training: Aircraft Cockpit Procedures Training.

    ERIC Educational Resources Information Center

    Prophet, Wallace W.; Boyd, H. Alton

    An evaluation was made of the training effectiveness of two cockpit procedures training devices, differing greatly in physical fidelity and cost, for use on the ground for a twin-engine, turboprop, fixed-wing aircraft. One group of students received training in cockpit procedures in a relatively expensive, sophisticated, computerized trainer,…

  3. Modeling of Space Radiation Exposure Estimation Program for Pilots, Crew and Passengers on Commercial Flights

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Dokgo, Kyunghwan; Choi, Enjin; Park, Jong-Sun; Kim, Kyung-Chan; Kim, Hang-Pyo

    2014-03-01

    There has been a rapid increase of the concern on the space radiation effect on pilots, crew and passengers at the commercial aircraft altitude (~ 10 km) recently. It is because domestic airline companies, Korean Air and Asiana Airlines have just begun operating the polar routes over the North Pole since 2006 and 2009 respectively. CARI-6 and CARI-6M are commonly used space radiation estimation programs which are provided officially by the U.S. federal aviation administration (FAA). In this paper, the route doses and the annual radiation doses for Korean pilots and cabin crew were estimated by using CARI-6M based on 2012 flight records. Also the modeling concept was developed for our own space radiation estimation program which is composed of GEANT4 and NRLMSIS00 models. The GEANT4 model is used to trace the incident particle transports in the atmosphere and the NRLMSIS00 model is used to get the background atmospheric densities of various neutral atoms at the aircraft altitude. Also presented are the results of simple integration tests of those models and the plan to include the space weather variations through the solar proton event (SPE) prediction model such as UMASEP and the galactic cosmic ray (GCR) prediction model such as Badhwar-O¡¯Neill 2010.

  4. Advisory Systems Save Time, Fuel for Airlines

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Heinz Erzberger never thought the sky was falling, but he knew it could benefit from enhanced traffic control. Throughout the 1990s, Erzberger led a team at Ames Research Center to develop a suite of automated tools to reduce restrictions and improve the efficiency of air traffic control operations. Called CTAS, or Center-TRACON (Terminal Radar Approach Control) Automation System, the software won NASA s Software of the Year award in 1998, and one of the tools in the suite - the traffic management advisor - was adopted by the Federal Aviation Administration and implemented at traffic control centers across the United States. Another one of the tools, Direct-To, has followed a different path. The idea behind Direct-To, explains Erzberger, a senior scientist at Ames, was that airlines could save fuel and money by shortening the routes they flew between take-off and landing. Aircraft are often limited to following established airways comprised of inefficient route segments. The routes are not easily adjusted because neither the pilot nor the aircraft controller can anticipate the constantly changing air traffic situation. To make the routes more direct while in flight, Erzberger came up with an idea for a software algorithm that could automatically examine air traffic in real-time, check to see if a shortcut was available, and then check for conflicts. If there were no conflicts and the shortcut saved more than 1 minute of flight time, the controller could be notified. "I was trying to figure out what goes on in the pilot and controller s minds when they decide to guide the aircraft in a certain way. That resulted in a different kind analysis," Erzberger says. As the engineer s idea went from theory to practice, in 2001, NASA demonstrated Direct-To in the airspace of Dallas-Ft. Worth. Estimations based on the demonstration found the technology was capable of saving 900 flying minutes per day for the aircraft in the test area.

  5. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: algorithm development and flight test results

    SciTech Connect

    Knox, C.E.; Vicroy, D.D.; Simmon, D.A.

    1985-05-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  6. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: Algorithm development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Vicroy, D. D.; Simmon, D. A.

    1985-01-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  7. Introduction to Trans Australia Airlines CRM training

    NASA Technical Reports Server (NTRS)

    Davidson, Jim

    1987-01-01

    Trans Australia believes that its excellent accident rate record is due to a number of factors. It has a good group of standard operating procedures, and its crews are pretty well self-disciplined and adhere to those procedures. But the other thing that it believes is a factor in its safety record is that perhaps it is also due to its preparedness to be innovative, to keep up with what is going on in the rest of the world and, if it looks to have value, then to be amongst the first to try it out. Trans Australia commenced a program similar to Line Oriented Flight Training (LOFT) fairly early in 1979--that being its first windshear program-- which leads to why they are doing a course of resource management training, which we have chosen to call Aircrew Team Management (ATM). This course is detailed in another presentation.

  8. Assessment of cockpit interface concepts for data link retrofit

    NASA Technical Reports Server (NTRS)

    Mccauley, Hugh W.; Miles, William L.; Dwyer, John P.; Erickson, Jeffery B.

    1992-01-01

    The problem is examined of retrofitting older generation aircraft with data link capability. The approach taken analyzes requirements for the cockpit interface, based on review of prior research and opinions obtained from subject matter experts. With this background, essential functions and constraints for a retrofit installation are defined. After an assessment of the technology available to meet the functions and constraints, candidate design concepts are developed. The most promising design concept is described in detail. Finally, needs for further research and development are identified.

  9. A Product Development Decision Model for Cockpit Weather Information System

    NASA Technical Reports Server (NTRS)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin; Johnson, Edward J., Jr. (Technical Monitor)

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  10. Cockpit integration from a pilot's point of view

    NASA Technical Reports Server (NTRS)

    Green, D. L.

    1982-01-01

    Extensive experience in both operational and engineering test flight was used to suggest straightforward changes to helicopter cockpit and control system design that would improve pilot performance in marginal and instrument flight conditions. Needed control system improvements considered include: (1) separation of yaw from cyclic force trim; (2) pedal force proportional to displacement rate; and (3) integration of engine controls in collective stick. Display improvements needed include: (1) natural cuing of yaw rate in attitude indicator; (2) collective position indication and radar altimeter placed within primary scan; and (3) omnidirectional display of full range airspeed data.

  11. A Product Development Decision Model for Cockpit Weather Information Systems

    NASA Technical Reports Server (NTRS)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  12. The relationship between labor unions and safety in US airlines: Is there a "union effect?"

    NASA Astrophysics Data System (ADS)

    Zapf, Renee Catherine

    Every airline union claims to work for safety and presents anecdotes where greater airline safety has been achieved through union efforts. The effect unionization has on safety outcomes in U.S. commercial airlines, however, wasn't found to be previously tested. Studies have shown that in industries such as coal mining, retail, and construction, unionization does lead to an increase in safety. This study evaluated the safety rates of 15 major US commercial airlines to compare the difference between unionized and non-unionized airlines. These safety rates were compared based on if and how long each airline's pilots and flight attendants have been unionized, to determine if unionization had an effect on safety outcomes. The 15 airlines included in the study identified as operating most of the years between 1990 and 2013, with annual departures averaging over 130,000, available through the Bureau of Transportation Statistics. Accident and Incident information was acquired through the National Transportation Safety Board database. The number of accident and incidents divided by the total departures at each airline was used as the safety rate. Union websites provided information on unionization at the airlines. Due to the complex nature of the aviation industry, a number of confounding factors could have affected the tests, including mergers, route structures, and legislation. To help control for these confounding factors, this study was limited to airlines with a stable presence in the industry over time, which limited the number of airlines included. No significant difference was found between unionized and non-unionized airlines in this study, though the mean safety rate of unionized airlines was found be better than non-unionized airlines. This study did not take into account safety improvements that were union-backed and eventually required at all airlines, regardless of unionization. Due to the large sample size of the small population the difference in safety rate

  13. [Experimental study on ergonomical color matching design of virtual crew cabin layout in manned spacecraft].

    PubMed

    Zhou, Q X; Qu, Z S; Wang, C H; Jiang, G H

    2001-12-01

    Objective. To approach general principles of color matching for crew module layout and to provide its ergonomical evaluation with basic data. Method. First, according to some ergonomic rules a virtual reality experimental system was set up, then 64 subjects of different ages and with some background of spaceflight were offered a color matching example according to their own choice in advance. Finally, all the hues, saturations, and lightnesses of the selected colors and their total number were statistically analyzed by SPSS 8.0 software. Result. After choosing the colors for items (standard cabinets, floor, handrails, supports and etc.) in the crew cabin, the mean kinds of color hue matching in the cockpit was 5. In addition, above half of subjects endorsed the example colors but its saturation and lightness were a little higher than those of the example every time. Although its distribution was discrete, there still was a common agreement on color matching (about 50%). Conclusion. When the color matching of crew module in long time flight was ergonomically designed, generally, cool and warm hues should be taken into consideration, and their total number need be controlled to be under 5 so as to satisfy human psychological characters.

  14. Use of Data Comm by Flight Crew in High-Density Terminal Areas

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Norman, Robert M.; Ellis, Kyle K. E.; Latorella, Kara A.; Comstock, James R.; Adams, Cathy A.

    2010-01-01

    This paper describes a collaborative FAA and NASA experiment using 22 commercial airline pilots to determine the effect of using Datalink Communication (Data Comm) to issue messages in busy, terminal area operations. Four conditions were defined that span current day to future flight deck equipage levels (voice communication only, Data Comm only, Data Comm with Moving Map Display, Data Comm with Moving Map displaying taxi route), and each condition was used to create an arrival and a departure scenario at the Boston Logan Airport. These eight scenarios were repeated twice for a total of 16 scenarios for each of the eleven crews. Quantitative data was collected on subject reaction time and eye tracking information. Questionnaires collected subjective feedback on workload and acceptability to the flight crew for using Data Comm in a busy terminal area. 95% of the Data Comm messages were responded to by the flight crew within one minute; however, post experiment debrief comments revealed almost unanimous consensus that two minutes was a reasonable expectation for crew response. Eye tracking data indicated an insignificant decrease in head-up time for the Pilot Flying when Data Comm was introduced; however, the Pilot Monitoring had significantly less head-up time. Data Comm workload was rated as operationally acceptable by both crew members in all conditions in flight at any altitude above the Final Approach Fix in terms of response time and workload. Results also indicate the use of Data Comm during surface operations was acceptable, the exception being the simultaneous use of voice, Data Comm, and audio chime required for an aircraft to cross an active runway. Many crews reported they believed Data Comm messages would be acceptable after the Final Approach Fix or to cross a runway if the message was not accompanied by a chime and there was not a requirement to immediately respond to the uplink message.

  15. Using Simulations to Investigate Decision Making in Airline Operations

    NASA Technical Reports Server (NTRS)

    Bruce, Peter J.; Gray, Judy H.

    2003-01-01

    This paper examines a range of methods to collect data for the investigation of decision-making in airline Operations Control Centres (OCCs). A study was conducted of 52 controllers in five OCCs of both domestic and international airlines in the Asia-Pacific region. A range of methods was used including: surveys, interviews, observations, simulations, and think-aloud protocol. The paper compares and evaluates the suitability of these techniques for gathering data and provides recommendations on the application of simulations. Keywords Data Collection, Decision-Making, Research Methods, Simulation, Think-Aloud Protocol.

  16. The Effect of Line Maintenance Activity on Airline Safety Quality

    NASA Technical Reports Server (NTRS)

    Rhoades, Dawna L.; Reynolds, Rosemarie; Waguespack, Blaise, Jr.; Williams, Michael

    2005-01-01

    One of the arguments against deregulation of the airline industry has been the possibility that financially troubled carriers would be tempted to lower line maintenance spending, thus lowering maintenance quality and decreasing the overall safety of the carrier. Given the financial crisis triggered by the events of 9/11: it appears to be a good time to revisit this issue. This paper examines the quality of airline line maintenance activity and examines the impact of maintenance spending on maintenance quality and overall safety. Findings indicate that increased maintenance spending is associated with increased line maintenance activity and increased overall safety quality for the major U.S. carriers.

  17. Risk Analysis for Unintentional Slide Deployment During Airline Operations.

    PubMed

    Ayra, Eduardo S; Insua, David Ríos; Castellanos, María Eugenia; Larbi, Lydia

    2015-09-01

    We present a risk analysis undertaken to mitigate problems in relation to the unintended deployment of slides under normal operations within a commercial airline. This type of incident entails relevant costs for the airline industry. After assessing the likelihood and severity of its consequences, we conclude that such risks need to be managed. We then evaluate the effectiveness of various countermeasures, describing and justifying the chosen ones. We also discuss several issues faced when implementing and communicating the proposed measures, thus fully illustrating the risk analysis process.

  18. Concorde with the airlines. [operating costs and performance

    NASA Technical Reports Server (NTRS)

    Leyman, C. S.

    1980-01-01

    The only supersonic aircraft in airline service, Concorde, offers the first actual test of supersonic cruise feasibility and the only real experience relative to passenger, airline, and community acceptance. The dominant characteristic of Concorde operations is low aircraft utilization, due partly to the restricted route network. Operating costs, the maintenance/reliability record and associated dispatch delays are discussed. Problems with overwater operations, and the secondary boom phenomena are examined. Monthly average load factors for various routes, major causes of technical delays, aircraft technical performance, and aircraft tracks are graphically depicted.

  19. Network bipartivity and the transportation efficiency of European passenger airlines

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Gómez-Gardeñes, Jesús

    2016-06-01

    The analysis of the structural organization of the interaction network of a complex system is central to understand its functioning. Here, we focus on the analysis of the bipartivity of graphs. We first introduce a mathematical approach to quantify bipartivity and show its implementation in general and random graphs. Then, we tackle the analysis of the transportation networks of European airlines from the point of view of their bipartivity and observe significant differences between traditional and low cost carriers. Bipartivity shows also that alliances and major mergers of traditional airlines provide a way to reduce bipartivity which, in its turn, is closely related to an increase of the transportation efficiency.

  20. Commercial Crew Development Program Overview

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2011-01-01

    NASA's Commercial Crew Development Program is designed to stimulate efforts within the private sector that will aid in the development and demonstration of safe, reliable, and cost-effective space transportation capabilities. With the goal of delivery cargo and eventually crew to Low Earth Orbit (LEO) and the International Space Station (ISS) the program is designed to foster the development of new spacecraft and launch vehicles in the commercial sector. Through Space Act Agreements (SAAs) in 2011 NASA provided $50M of funding to four partners; Blue Origin, The Boeing Company, Sierra Nevada Corporation, and SpaceX. Additional, NASA has signed two unfunded SAAs with ATK and United Space Alliance. This paper will give a brief summary of these SAAs. Additionally, a brief overview will be provided of the released version of the Commercial Crew Development Program plans and requirements documents.

  1. Readiness for First Crewed Flight

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to develop a generic framework for evaluating whether any given program has sufficiently complete and balanced plans in place to allow crewmembers to fly safely on a human spaceflight system for the first time (i.e., first crewed flight). The NESC assembled a small team which included experts with experience developing robotic and human spaceflight and aviation systems through first crewed test flight and into operational capability. The NESC team conducted a historical review of the steps leading up to the first crewed flights of Mercury through the Space Shuttle. Benchmarking was also conducted with the United States (U.S.) Air Force and U.S. Navy. This report contains documentation of that review.

  2. Expedition 7 Crew Training Clip

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This video shows the Expedition 7 crew of the International Space Station (ISS) during various training activities prior to launch. The crew consisted of Commander Yuri Malenchenko and Flight Engineer Ed Lu. At the virtual reality lab, the two astronauts work at a control panel, with Lu operating a joystick and speaking on earphones. Another section of the video shows Lu and Malenchenko inputting data into laptop computers, Lu testing an intercom and a video camera, and Lu using a machine to analyze blood samples from the crew. At the neutral buoyancy lab, the astronauts are helped in suit-up. The attachment of their gloves is shown. The video ends with Lu and Malenchenko lowered into a pool on a platform.

  3. STS-105 Mission Crew Portrait

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is the portrait of the astronaut and cosmonaut crewmembers comprising the STS-105 mission. The base crew (bottom center), left to right, are pilot Frederick W. (Rich) Sturckow, Mission Specialists Patrick G. Forester and Daniel T. Barry, and Commander Scott J. Horowitz. The upper right group are the International Space Station (ISS) Expedition Three crew, (left to right) Cosmonaut Mikhail Tyurin, flight engineer; Astronaut Frank L. Culbertson, Jr., commander; and Cosmonaut Vladimir N. Dezhurov, flight engineer. The upper left group are the ISS Expedition Two crew, (left to right) Astronaut James S. Voss, commander; Cosmonaut Yury V. Usachev, flight engineer; and Astronaut Susan J. Helms, flight engineer. The STS-105 was the 11th ISS assembly flight and launched on August 19, 2001 aboard the Space Shuttle Orbiter Discovery.

  4. Cockpit Displays to Support Hazard Awareness in Free Flight

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Carbonari, Ron; Merwin, Dave; Morphew, Ephimia; OBrien, Janelle V.

    1997-01-01

    Three experiments are described which each examine different aspects of the formatting and integration of cockpit displays of traffic information to support pilots in traffic avoidance planning. The first two experiments compared two-dimensional (coplanar) with three-dimensional (perspective) versions of a cockpit display of traffic information. In Experiment 1, 30 certified flight instructors flew a series of traffic conflict detection and avoidance maneuvers around an intruder aircraft, sometimes in the presence of a second intruder. The results revealed an advantage for the coplanar display, particularly when there was vertical intruder behavior. In Experiment 2, 17 instructors flew with the coplanar and perspective formats when weather information was either overlaid or displayed separately. Again performance was best with the coplanar display, particularly when the weather data were overlaid. The results of both experiments are also discussed in ten-ns of the traffic maneuver stereotypes exhibited by the pilots. Experiment 3 examined the benefits of the two different predictor elements used in the coplanar displays of Experiments 1 and 2. The study was carried out in a multitask context. These elements were both found to improve safety (reduce actual and predicted conflicts) and to reduce workload, although the different elements affected workload in different ways. Neither predictor element imposed a cost to concurrent task performance.

  5. Advanced helicopter cockpit and control configurations for helicopter combat missions

    NASA Technical Reports Server (NTRS)

    Haworth, Loran A.; Atencio, Adolph, Jr.; Bivens, Courtland; Shively, Robert; Delgado, Daniel

    1987-01-01

    Two piloted simulations were conducted by the U.S. Army Aeroflightdynamics Directorate to evaluate workload and helicopter-handling qualities requirements for single pilot operation in a combat Nap-of-the-Earth environment. The single-pilot advanced cockpit engineering simulation (SPACES) investigations were performed on the NASA Ames Vertical Motion Simulator, using the Advanced Digital Optical Control System control laws and an advanced concepts glass cockpit. The first simulation (SPACES I) compared single pilot to dual crewmember operation for the same flight tasks to determine differences between dual and single ratings, and to discover which control laws enabled adequate single-pilot helicopter operation. The SPACES II simulation concentrated on single-pilot operations and use of control laws thought to be viable candidates for single pilot operations workload. Measures detected significant differences between single-pilot task segments. Control system configurations were task dependent, demonstrating a need for inflight reconfigurable control system to match the optimal control system with the required task.

  6. Expedition-8 Crew Members Portrait

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a portrait of the Expedition-8 two man crew. Pictured left is Cosmonaut Alexander Y, Kaleri, Soyuz Commander and flight engineer; and Michael C. Foale (right), Expedition-8 Mission Commander and NASA ISS Science Officer. The crew posed for this portrait while training at the Gagarin Cosmonaut Training Center in Star City, Russia. The two were launched for the International Space Station (ISS) aboard a Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan, along with European Space Agency (ESA) Astronaut Pedro Duque of Spain, on October 18, 2003.

  7. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    -- In the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Sergei Krikalev (left), a cosmonaut from Russia; and Jerry L. Ross examine equipment that will be aboard Space Shuttle Endeavour. Launch of mission STS-88 is targeted for Dec. 3, 1998. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Other crew members are Commander Robert D. Cabana, Pilot Frederick W. 'Rick' Sturckow and Mission Specialists Nancy J. Currie and James H. Newman. STS- 88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  8. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Clad in their blue flight suits, STS-88 Mission Specialists (from left) Sergei Krikalev, a cosmonaut from Russia; Jerry L. Ross; and James H. Newman examine equipment from a toolbox that will be on the Space Shuttle Endeavour during their flight. Talking to Ross is Wayne Wedlake of United Space Alliance at Johnson Space Center, while Henry Thacker (facing camera), of Flight Crew Systems at KSC, looks on. Launch of mission STS-88 is targeted for Dec. 3, 1998. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT) in the Orbiter Processing Facility Bay 1 to familiarize themselves with the orbiter's midbody and crew compartments. STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  9. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    -- In the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists (left to right) Jerry L. Ross; Sergei Krikalev, a cosmonaut from Russia; and James H. Newman examine equipment that will be on the Space Shuttle Endeavour during their upcoming flight. Launch of Mission STS-88 is targeted for Dec. 3, 1998. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Other crew members are Commander Robert D. Cabana, Pilot Frederick W. 'Rick' Sturckow and Mission Specialist Nancy J. Currie. STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  10. Assured crew return capability Crew Emergency Return Vehicle (CERV) avionics

    NASA Technical Reports Server (NTRS)

    Myers, Harvey Dean

    1990-01-01

    The Crew Emergency Return Vehicle (CERV) is being defined to provide Assured Crew Return Capability (ACRC) for Space Station Freedom. The CERV, in providing the standby lifeboat capability, would remain in a dormat mode over long periods of time as would a lifeboat on a ship at sea. The vehicle must be simple, reliable, and constantly available to assure the crew's safety. The CERV must also provide this capability in a cost effective and affordable manner. The CERV Project philosophy of a simple vehicle is to maximize its useability by a physically deconditioned crew. The vehicle reliability goes unquestioned since, when needed, it is the vehicle of last resort. Therefore, its systems and subsystems must be simple, proven, state-of-the-art technology with sufficient redundancy to make it available for use as required for the life of the program. The CERV Project Phase 1'/2 Request for Proposal (RFP) is currently scheduled for release on October 2, 1989. The Phase 1'/2 effort will affirm the existing project requirements or amend and modify them based on a thorough evaluation of the contractor(s) recommendations. The system definition phase, Phase 2, will serve to define CERV systems and subsystems. The current CERV Project schedule has Phase 2 scheduled to begin October 1990. Since a firm CERV avionics design is not in place at this time, the treatment of the CERV avionics complement for the reference configuration is not intended to express a preference with regard to a system or subsystem.

  11. Understanding Crew Decision-Making in the Presence of Complexity: A Flight Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Daniels, Taumi S.; Evans, Emory; deHaag, Maarten Uijt; Duan, Pengfei

    2013-01-01

    Crew decision making and response have long been leading causal and contributing factors associated with aircraft accidents. Further, it is anticipated that future aircraft and operational environments will increase exposure to risks related to these factors if proactive steps are not taken to account for ever-increasing complexity. A flight simulation study was designed to collect data to help in understanding how complexity can, or may, be manifest. More specifically, an experimental apparatus was constructed that allowed for manipulation of information complexity and uncertainty, while also manipulating operational complexity and uncertainty. Through these manipulations, and the aid of experienced airline pilots, several issues have been discovered, related most prominently to the influence of information content, quality, and management. Flight crews were immersed in an environment that included new operational complexities suggested for the future air transportation system as well as new technological complexities (e.g. electronic flight bags, expanded data link services, synthetic and enhanced vision systems, and interval management automation). In addition, a set of off-nominal situations were emulated. These included, for example, adverse weather conditions, traffic deviations, equipment failures, poor data quality, communication errors, and unexpected clearances, or changes to flight plans. Each situation was based on one or more reference events from past accidents or incidents, or on a similar case that had been used in previous developmental tests or studies. Over the course of the study, 10 twopilot airline crews participated, completing over 230 flights. Each flight consisted of an approach beginning at 10,000 ft. Based on the recorded data and pilot and research observations, preliminary results are presented regarding decision-making issues in the presence of the operational and technological complexities encountered during the flights.

  12. State-of-the-art cockpit design for the HH-65A helicopters

    NASA Technical Reports Server (NTRS)

    Castleberry, D. E.; Mcelreath, M. Y.

    1982-01-01

    In the design of a HH-65A helicopter cockpit, advanced integrated electronics systems technology was employed to achieve several important goals for this multimission aircraft. They were: (1) integrated systems operation with consistent and simplified cockpit procedures; (2) mission-task-related cockpit displays and controls, and (3) reduced pilot instrument scan effort with excellent outside visibility. The integrated avionics system was implemented to depend heavily upon distributed but complementary processing, multiplex digital bus technology, and multifunction CRT controls and displays. This avionics system was completely flight tested and will soon enter operational service with the Coast Guard.

  13. The implementation of STOVL task-tailored control modes in a fighter cockpit

    NASA Technical Reports Server (NTRS)

    Whatley, David W.; Virnig, John C.; Bodden, David S.

    1990-01-01

    The implementation of Short Takeoff/Vertical Landing (STOVL) specific task tailored control modes in a supersonic fighter/attack aircraft cockpit is investigated. A detailed linear model exhibiting STOVL Level 1 handling qualities is implemented in a real time engineering workstation environment with an F-16 cockpit mock-up. Conventional F-16 control inceptors are utilized to achieve effective STOVL operation and reduced pilot workload throughout the transition to hover flight region. Favorable pilot comments indicate the existing F-16 cockpit configuration with a force sidestick is adaptable to STOVL operation.

  14. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the payload bay of Space Shuttle orbiter Endeavour, workers and STS-88 crew members on a movable work platform or bucket move closer to the rear of the orbiter's crew compartment. While Endeavour is being prepared for flight inside Orbiter Processing Facility Bay 1, the STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. A KSC worker (left) maneuvers the platform to give Mission Specialists Jerry L. Ross and James H. Newman (right) a closer look. Looking on is Wayne Wedlake of United Space Alliance at Johnson Space Center. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  15. Brain-wave measures of workload in advanced cockpits: The transition of technology from laboratory to cockpit simulator, phase 2

    NASA Technical Reports Server (NTRS)

    Horst, Richard L.; Mahaffey, David L.; Munson, Robert C.

    1989-01-01

    The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS.

  16. Examining Informal Learning in Commercial Airline Pilots' Communities of Practice

    ERIC Educational Resources Information Center

    Corns, Kevin M.

    2014-01-01

    A pragmatic sequential mixed methods research methodology was used to examine commercial airline pilots' (N =156) types and frequencies of informal learning activities, perceptions of workplace informal learning, and opinions on how organizations should support workplace informal learning outside of the formal learning environment. This study…

  17. Airline Transport Pilot-Airplane (Air Carrier) Written Test Guide.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is information useful to applicants who are preparing for the Airline Transport Pilot-Airplane (Air Carrier) Written Test. The guide describes the basic aeronautical knowledge and associated requirements for certification, as well as information on source material, instructions for taking the official test, and questions that are…

  18. Seafloor in the Malaysia Airlines Flight MH370 Search Area

    NASA Astrophysics Data System (ADS)

    Smith, Walter H. F.; Marks, Karen M.

    2014-05-01

    On the morning of 8 March 2014, Malaysia Airlines flight MH370, from Kuala Lumpur to Beijing, lost contact with air traffic control shortly after takeoff and vanished. While the world waited for any sign of the missing aircraft and the 239 people on board, authorities and scientists began to investigate what little information was known about the plane's actual movements.

  19. Zagreb and Tenerife: Airline Accidents Involving Linguistic Factors

    ERIC Educational Resources Information Center

    Cookson, Simon

    2009-01-01

    The International Civil Aviation Organization (ICAO) is currently implementing a program to improve the language proficiency of pilots and air traffic controllers worldwide. In justifying the program, ICAO has cited a number of airline accidents that were at least partly caused by language factors. Two accidents cited by ICAO are analysed in this…

  20. New-generation short-haul airliner uses advanced technology

    SciTech Connect

    Sanator, R.J.; Honczarenko, G.

    1982-06-01

    The Saab-Fairchild 340 is a twin-engined, low-wing, 34-passenger pressurized turboprop airplane. It incorporates a modern fuel efficient propulsion system and a new advanced technology wing, resulting in a new-generation airliner for the short-haul market.

  1. Orbiter Crew Compartment Integration-Stowage

    NASA Technical Reports Server (NTRS)

    Morgan, L. Gary

    2007-01-01

    This viewgraph presentation describes the Orbiter Crew Compartment Integration (CCI) stowage. The evolution of orbiter crew compartment stowage volume is also described, along with photographs presented of the on-orbit volume stowage capacity.

  2. Commercial Crew Program CCiCap Partners

    NASA Video Gallery

    NASA's Commercial Crew Program and its newest Commercial Crew Integrated Capability (CCiCap) partners are embracing the American spirit as they advance their integrated rocket and spacecraft design...

  3. Crew quarters for Space Station

    NASA Technical Reports Server (NTRS)

    Mount, F. E.

    1989-01-01

    The only long-term U.S. manned space mission completed has been Skylab, which has similarities as well as differences to the proposed Space Station. With the exception of Skylab missions, there has been a dearth of experience on which to base the design of the individual Space Station Freedom crew quarters. Shuttle missions commonly do not have sleep compartments, only 'sleeping arrangements'. There are provisions made for each crewmember to have a sleep restraint and a sleep liner, which are attached to a bulkhead or a locker. When the Shuttle flights began to have more than one working shift, crew quarters became necessary due to noise and other disturbances caused by crew task-related activities. Shuttle missions that have planned work shifts have incorporated sleep compartments. To assist in gaining more information and insight for the design of the crew quarters for the Space Station Freedom, a survey was given to current crewmembers with flight experience. The results from this survey were compiled and integrated with information from the literature covering space experience, privacy, and human-factors issues.

  4. Crew Scheduling of Space Operations Squadrons (SOPS)

    DTIC Science & Technology

    1993-11-01

    total number of midnight-shifs crew i works per cycle; OS total number of off-shifts crew i has per cycle; where DSt , NSi, SSt, MS&, and OSj e z + and i...the cycle length. Since each day-shift is worked by exactly one crew, then X DS1 = CL. (2-9) i-l Since crew schedules are equivalent, DSI = DS2

  5. Three input concepts for flight crew interaction with information presented on a large-screen electronic cockpit display

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    1990-01-01

    A piloted simulation study was conducted comparing three different input methods for interfacing to a large-screen, multiwindow, whole-flight-deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side-arm controller. The touch screen concept provided data entry through a capacitive touch screen. The voice concept utilized a speech recognition system with input through a head-worn microphone. No single input concept emerged as the most desirable method of interacting with the display. Subjective results, however, indicate that the voice concept was the most preferred method of data entry and had the most potential for future applications. The objective results indicate that, overall, the touch screen concept was the most effective input method. There was also significant differences between the time required to perform specific tasks and the input concept employed, with each concept providing better performance relative to a specific task. These results suggest that a system combining all three input concepts might provide the most effective method of interaction.

  6. Beyond the sterile cockpit. [dangers of automatic flight control

    NASA Technical Reports Server (NTRS)

    Wiener, E. L.

    1985-01-01

    Consideration is given to some of the negative aspects of the trend toward increased automation of aircraft flight decks. The history of automated devices for navigation, communications and detection on board aircraft is reviewed. Instances of automatic system failure are identified which have led to accidents, and the events surrounding the downing of Korean Airlines Flight 747 are reexamined within the context of a computer-based system failure. Finally, new software and interactive systems to reduce navigational error due to inadequate computer-assisted flight instruction (CAI) are described, with emphasis given to speech processing and intelligent CAI systems.

  7. 46 CFR 45.125 - Crew passageways.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Crew passageways. 45.125 Section 45.125 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES GREAT LAKES LOAD LINES Conditions of Assignment § 45.125 Crew passageways. The vessel must have means for protection of the crew from...

  8. 46 CFR 122.420 - Crew training.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Crew training. 122.420 Section 122.420 Shipping COAST... PASSENGERS OR WITH OVERNIGHT ACCOMMODATIONS FOR MORE THAN 49 PASSENGERS OPERATIONS Crew Requirements § 122.420 Crew training. (a) The owner, charterer, master, or managing operator shall instruct each...

  9. 30 CFR 250.606 - Crew instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Crew instructions. 250.606 Section 250.606... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.606 Crew instructions. Prior to engaging in well-workover operations, crew members shall be instructed in the...

  10. 30 CFR 250.1621 - Crew instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Crew instructions. 250.1621 Section 250.1621... OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1621 Crew instructions. Prior to engaging in well-completion or well-workover operations, crew members shall be instructed in the...

  11. 29 CFR 788.15 - Multiple crews.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Multiple crews. 788.15 Section 788.15 Labor Regulations... EMPLOYEES ARE EMPLOYED § 788.15 Multiple crews. In many cases an employer who operates a sawmill or concentration yard will be supplied with logs or other forestry products by several crews of persons who...

  12. 30 CFR 250.506 - Crew instructions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Crew instructions. 250.506 Section 250.506... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.506 Crew instructions. Prior to engaging in well-completion operations, crew members shall be instructed in the...

  13. 46 CFR 185.420 - Crew training.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Crew training. 185.420 Section 185.420 Shipping COAST...) OPERATIONS Crew Requirements § 185.420 Crew training. (a) The owner, charterer, master or managing operator... duties listed in the station bill required by § 185.514 of this part. (b) Training conducted on a...

  14. Human factors issues associated with the use of speech technology in the cockpit

    NASA Technical Reports Server (NTRS)

    Kersteen, Z. A.; Damos, D.

    1983-01-01

    The human factors issues associated with the use of voice technology in the cockpit are summarized. The formulation of the LHX avionics suite is described and the allocation of tasks to voice in the cockpit is discussed. State-of-the-art speech recognition technology is reviewed. Finally, a questionnaire designed to tap pilot opinions concerning the allocation of tasks to voice input and output in the cockpit is presented. This questionnaire was designed to be administered to operational AH-1G Cobra gunship pilots. Half of the questionnaire deals specifically with the AH-1G cockpit and the types of tasks pilots would like to have performed by voice in this existing rotorcraft. The remaining portion of the questionnaire deals with an undefined rotorcraft of the future and is aimed at determining what types of tasks these pilots would like to have performed by voice technology if anything was possible, i.e. if there were no technological constraints.

  15. Cockpit weather radar display demonstrator and ground-to-air sferics telemetry system

    NASA Technical Reports Server (NTRS)

    Nickum, J. D.; Mccall, D. L.

    1982-01-01

    The results of two methods of obtaining timely and accurate severe weather presentations in the cockpit are detailed. The first method described is a course up display of uplinked weather radar data. This involves the construction of a demonstrator that will show the feasibility of producing a course up display in the cockpit of the NASA simulator at Langley. A set of software algorithms was designed that could easily be implemented, along with data tapes generated to provide the cockpit simulation. The second method described involves the uplinking of sferic data from a ground based 3M-Ryan Stormscope. The technique involves transfer of the data on the CRT of the Stormscope to a remote CRT. This sferic uplink and display could also be included in an implementation on the NASA cockpit simulator, allowing evaluation of pilot responses based on real Stormscope data.

  16. Human factor implications of the Eurocopter AS332L-1 Super Puma cockpit

    NASA Technical Reports Server (NTRS)

    Padfield, R. Randall

    1993-01-01

    The purpose of this paper is to identify and describe some of the human factor problems which can occur in the cockpit of a modern civilian helicopter. After examining specific hardware and software problems in the cockpit design of the Eurocopter (Aerospatiale) AS332L-1 Super Puma, the author proposes several principles that can be used to avoid similar human factors problems in the design of future cockpits. These principles relate to the use and function of warning lights, the design of autopilots in two-pilot aircraft, and the labeling of switches and warning lights, specifically with respect to abbreviations and translations from languages other than English. In the final section of the paper, the author describes current trends in society which he suggests should be taken into consideration when designing future aircraft cockpits.

  17. STS-38 Mission Specialist Gemar climbs into T-38A cockpit at Ellington Field

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Mission Specialist (MS) Charles D. Gemar, smiling, pauses before climbing into T-38A aft cockpit at Ellington Field. The crewmembers are preparing for their departure to the Kennedy Space Center (KSC).

  18. Flight crew sleep during multiple layover polar flights

    NASA Technical Reports Server (NTRS)

    Sasaki, Mitsuo; Kurosaki, Yuko S.; Spinweber, Cheryl L.; Graeber, R. C.; Takahashi, Toshiharu

    1993-01-01

    This study investigated changes in sleep after multiple transmeridian flights. The subjects were 12 B747 airline pilots operating on the following polar flight: Tokyo (TYO)-Anchorage (ANC)-London (LON)-Anchorage-Tokyo. Sleep polysmonograms were recorded on two baseline nights (B1, B2), during layovers, and, after returning to Tokyo, two recovery nights were recorded (R1, R2). In ANC (outbound), total sleep time was reduced and, sleep efficiency was low (72.0 percent). In London, time in bed increased slightly, but sleep efficiency was still reduced. On return to ANC (inbound), there was considerable slow wave sleep rebound and multiple awakenings reduced sleep efficiency to 76.8 percent. Sleep efficiency on R2 was significantly lower than on B1 but not different from R1. To sum up, sleep of aircrews flying multiple transmeridian flights is disrupted during layovers and this effect persists during the two recovery nights. As a result, there is a marked cumulative sleep loss during multilegs polar route trip in comparison to single leg flights. These findings suggest that following such extensive transmeridian trips, crews should have at least three nights of recovery sleep in their home time zone before returning to duty.

  19. STS-112 crew during Crew Equipment Interface Test

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During a Crew Equipment Interface Test, STS-112 Mission Specialist Piers Sellers looks at the engine on Atlantis, the designated orbiter for the mission. On the 15th assembly flight to the International Space Station, Atlantis and crew will be ferrying the S1 Integrated Truss Structure. The S1 truss is the first starboard (right-side) truss segment, whose main job is providing structural support for the radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. The S1 truss will be attached to the S0 truss. STS-112 is currently scheduled for launch Aug. 22, 2002.

  20. Applications of AMLCDs in U.S. military cockpits

    NASA Astrophysics Data System (ADS)

    Michaels, Robert A.; Desjardins, Daniel D.; Daniels, Reginald; Hopper, Darrel G.

    1996-05-01

    Active matrix liquid crystal displays have become the flat panel technology of choice for new cockpits as well as for retrofits of existing ones. Systems such as F-22, F-18, F-16, and C-141 have already begun extensive development efforts over the last few years. More recently, JPATS, AH-64, P-3, KC-135, T-45, and T-38 have announced plans to use AMLCDs also. Because of the advantages that AMLCDs have to offer, the list of platforms that will implement them will continue to grow over the next several years. The Displays Branch in Wright Laboratory is continually analyzing current as well as potential programs. An update on this analysis program is presented.

  1. Binocular Camera for cockpit visibility of general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Barile, A. J.

    1981-04-01

    A history of cockpit visibility studies and requirements with regard to aircraft safety, human factors, collision avoidance, and accident investigations is presented. The Federal Aviation Administration's development of the Binocular Camera is reviewed, and the technical details of a new and improved camera are discussed. The Binocular Camera uses two 65 mm wide angle F6.8 lenses and covers an 88 1/2 deg field of vision. The camera produces images, representative of what the human eyes see before the brain integrates them into one, thus making it possible to analyze the effect of obstruction to vision. The improvements, applications, and uses of the camera in the research, development, and operations of general aviation aircraft are discussed.

  2. Multi-modal cockpit interface for improved airport surface operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J. (Inventor); Bailey, Randall E. (Inventor); Prinzel, III, Lawrence J. (Inventor); Kramer, Lynda J. (Inventor); Williams, Steven P. (Inventor)

    2010-01-01

    A system for multi-modal cockpit interface during surface operation of an aircraft comprises a head tracking device, a processing element, and a full-color head worn display. The processing element is configured to receive head position information from the head tracking device, to receive current location information of the aircraft, and to render a virtual airport scene corresponding to the head position information and the current aircraft location. The full-color head worn display is configured to receive the virtual airport scene from the processing element and to display the virtual airport scene. The current location information may be received from one of a global positioning system or an inertial navigation system.

  3. Situational awareness in the commercial aircraft cockpit - A cognitive perspective

    NASA Technical Reports Server (NTRS)

    Adams, Marilyn J.; Pew, Richard W.

    1990-01-01

    A cognitive theory is presented that has relevance for the definition and assessment of situational awareness in the cockpit. The theory asserts that maintenance of situation awareness is a constructive process that demands mental resources in competition with ongoing task performance. Implications of this perspective for assessing and improving situational awareness are discussed. It is concluded that the goal of inserting advanced technology into any system is that it results in an increase in the effectiveness, timeliness, and safety with which the system's activities can be accomplished. The inherent difficulties of the multitask situation are very often compounded by the introduction of automation. To maximize situational awareness, the dynamics and capabilities of such technologies must be designed with thorough respect for the dynamics and capabilities of human information-processing.

  4. Cockpit Considerations for Inertial-Affect and FTL Propulsion

    NASA Astrophysics Data System (ADS)

    Millis, M. G.

    Breakthroughs in propulsion physics (control over gravitational or inertial forces, propellant-less space drives, and faster-thanlight travel) may not appear imminent, but enough progress has been made to allow thoughtful speculation about their nature and implications. The implications to cockpit design include added degrees of motion, combination of operational regimes (near ground, orbit, and beyond), greater span of speed (from zero-speed hover to beyond light-speed), the need for new motion displays and navigational tracking methods, and the loss of familiar motion cues (pilot's inertia and visual cues) due to the separation of external and internal environments. The primary reference used to predict these possibilities is the 2009 book, Frontiers of Propulsion Science. These implications are detailed in terms of design requirements.

  5. Threat perception while viewing single intruder conflicts on a cockpit display of traffic information

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Palmer, E.

    1982-01-01

    Subjective estimates of the threat posed by a single intruder aircraft were determined by showing pilots photographs of a cockpit display of traffic information. The time the intruder was away from the point of minimum separation was found to be the major determinant of the perception of threat. When asked to choose a maneuver to reduce the conflict, pilots selected maneuvers with a bias toward those that would have kept the intruders in sight had they been visible out the cockpit window.

  6. Advanced automated glass cockpit certification: Being wary of human factors

    NASA Technical Reports Server (NTRS)

    Amalberti, Rene; Wilbaux, Florence

    1994-01-01

    This paper presents some facets of the French experience with human factors in the process of certification of advanced automated cockpits. Three types of difficulties are described: first, the difficulties concerning the hotly debated concept of human error and its non-linear relationship to risk of accident; a typology of errors to be taken into account in the certification process is put forward to respond to this issue. Next, the difficulties connected to the basically gradual and evolving nature of pilot expertise on a given type of aircraft, which contrasts with the immediate and definitive style of certifying systems. The last difficulties to be considered are those related to the goals of certification itself on these new aircraft and the status of findings from human factor analyses (in particular, what should be done with disappointing results, how much can the changes induced by human factors investigation economically affect aircraft design, how many errors do we need to accumulate before we revise the system, what should be remedied when human factor problems are discovered at the certification stage: the machine? pilot training? the rules? or everything?). The growth of advanced-automated glass cockpits has forced the international aeronautical community to pay more attention to human factors during the design phase, the certification phase and pilot training. The recent creation of a human factor desk at the DGAC-SFACT (Official French services) is a direct consequence of this. The paper is divided into three parts. Part one debates human error and its relationship with system design and accident risk. Part two describes difficulties connected to the basically gradual and evolving nature of pilot expertise on a given type of aircraft, which contrasts with the immediate and definitive style of certifying systems. Part three focuses on concrete outcomes of human factors for certification purposes.

  7. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Orbiter Processing Facility Bay 1, STS-88 Commander Robert D. Cabana makes a visual inspection of the windows on Space Shuttle orbiter Endeavour. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  8. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the payload bay of orbiter Endeavour in the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Jerry L. Ross (left) and James H. Newman (right foreground) get a close look at the Orbiter Docking System. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. While on orbit during STS-88, Unity will be latched atop the Orbiter Docking System in the forward section of Endeavour's payload bay for the mating of the two modules. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  9. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, STS-88 Mission Specialists Sergei Krikalev, a Russian cosmonaut, and Jerry L. Ross check out equipment on the Unity connecting module, primary payload on the mission. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Scheduled for launch on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for the International Space Station. The Unity connecting module will be mated to the Russian-built Zarya control module, already on orbit after a November launch. Unity will have two Pressurized Mating Adapters (PMAs) attached and 1 stowage rack installed inside. PMA-1 will connect U.S. and Russian elements; PMA-2 will provide a Shuttle docking location. Eventually, Unity's six ports will provide connecting points for the Z1 truss exterior framework, U.S. lab, airlock, cupola, Node 3, and the Multi-Purpose Logistics Module, as well as the control module. Zarya is a self-supporting active vehicle, providing propulsive control capability and power through the early assembly stages. It provides fuel storage capability and a rendezvous and docking capability to the Service Module.

  10. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the payload bay of Space Shuttle orbiter Endeavour in Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Jerry L. Ross (crouching at left) and James H. Newman (far right) get a close look at equipment. Looking on is Wayne Wedlake (far left), with United Space Alliance at Johnson Space Center, and a KSC worker (behind Newman) who is operating the movable work platform or bucket. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  11. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside Space Shuttle orbiter Endeavour in the Orbiter Processing Facility Bay 1, workers James Neilhouse (left) and Melissa Groening (right) watch while STS-88 Mission Specialists James H. Newman (second from left) and Sergei Krikalev, a Russian cosmonaut, check overhead equipment. STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  12. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Orbiter Processing Facility Bay 1, STS-88 Commander Robert D. Cabana watches from inside Space Shuttle orbiter Endeavour as worker Tracey Hackett cleans the outside of a window. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  13. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Station Processing Facility, STS-88 Mission Specialists Sergei Krikalev (left), a Russian cosmonaut; James H. Newman (center); and Jerry L. Ross conduct a sharp-edge inspection of the Unity connecting module, which is the primary payload on their upcoming mission. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  14. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Inside the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Sergei Krikalev (left), a Russian cosmonaut; and James H. Newman look over equipment for their upcoming flight. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.- built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  15. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Orbiter Processing Facility Bay 1, STS-88 Pilot Frederick W. Sturckow makes a visual inspection of windows on the Space Shuttle orbiter Endeavour. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for launch on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  16. STS-114: Discovery Crew Arrival

    NASA Technical Reports Server (NTRS)

    2005-01-01

    George Diller of NASA Public Affairs narrates the STS-114 Crew arrival at Kennedy Space Center aboard a Gulf Stream aircraft. They were greeted by Center Director Jim Kennedy. Commander Eileen Collins introduced each of her crew members and gave a brief description of their roles in the mission. Mission Specialist 3, Andrew Thomas will be the lead crew member on the inspection on flight day 2; he is the intravehicular (IV) crew member that will help and guide Mission Specialists Souichi Noguchi and Stephen Robinson during their spacewalks. Pilot James Kelly will be operating the shuttle systems in flying the Shuttle; he will be flying the space station robotic arm during the second extravehicular activity and he will be assisting Mission Specialist Wendy Lawrence during the other two extravehicular activities; he will be assisting on the rendezvous on flight day three, and landing of the shuttle. Commander Collins also mentioned Pilot Kelly's recent promotion to Colonel by the United States Air Force. Mission Specialist 1, Souichi Noguchi from JAXA (The Japanese Space Agency) will be flying on the flight deck for ascent; he will be doing three spacewalks on day 5, 7, and 9; He will be the photo/TV lead for the different types of cameras on board to document the flight and to send back the information to the ground for both technical and public affairs reasons. Mission Specialist 5, Charles Camada will be doing the inspection on flight day 2 with Mission Specialist Thomas and Pilot Kelly; he will be transferring the logistics off the shuttle and onto the space station and from the space station back to the shuttle; He will help set up eleven lap tops on board. Mission Specialist 4, Wendy Lawrence will lead the transfer of logistics to the space station; she is the space station arm operator during extravehicular activities 1 and 3; she will be carrying the 6,000 pounds of external storage platform from the shuttle payload bay over to the space station; she is also

  17. Military applications of a cockpit integrated electronic flight bag

    NASA Astrophysics Data System (ADS)

    Herman, Robert P.; Seinfeld, Robert D.

    2004-09-01

    Converting the pilot's flight bag information from paper to electronic media is being performed routinely by commercial airlines for use with an on-board PC. This concept is now being further advanced with a new class of electronic flight bags (EFB) recently put into commercial operation which interface directly with major on-board avionics systems and has its own dedicated panel mounted display. This display combines flight bag information with real time aircraft performance and maintenance data. This concept of an integrated EFB which is now being used by the commercial airlines as a level 1 certified system, needs to be explored for military applications. This paper describes a system which contains all the attributes of an Electronic Flight Bag with the addition of interfaces which are linked to military aircraft missions such as those for tankers, cargo haulers, search and rescue and maritime aircraft as well as GATM requirements. The adaptation of the integrated EFB to meet these military requirements is then discussed.

  18. Experimental Studies of Intent Information on Cockpit Traffic Displays

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Hansman, R. John, Jr.

    1997-01-01

    Intent information provides knowledge of another aircraft's current and future trajectory states. Prototype traffic displays were designed for four different levels of intent: No Intent, Rate, Commanded State, and Flight Management System (FMS)-Path. The TCAS Display was used as a baseline and represents the No Intent Level. The Rate, Commanded State, and FMS-Path Displays show increasing levels of intent information using TCAS-like symbology in addition to incorporating a conflict probe and profile view display. An experiment was run on the MIT Part Task Flight Simulator in which eight airline pilots flew five traffic scenarios with each of the four displays. Results show that pilots had fewer separation violations and maneuvered earlier with the three intent displays. Separation violations were reduced when pilots maneuvered earlier. A second experiment was run to compare performance between displaying intent information directly and incorporating it into a conflict probe. A different set of eight airline pilots flew four traffic scenarios with the TCAS and Commanded State Displays with and without the conflict probe. Conflict probes with two minute and long range look-ahead times were tested. Displaying conflict bands or showing intent information directly both led to fewer separation violations and earlier avoidance maneuvers than the base TCAS Display. Performance was similar between the two minute and long range look-ahead conflict probes. Pilots preferred all intent displays over the TCAS Display.

  19. Piloted Simulator Evaluation of Maneuvering Envelope Information for Flight Crew Awareness

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John; Shish, Kimberlee; Martin, Lynne

    2015-01-01

    The implementation and evaluation of an efficient method for estimating safe aircraft maneuvering envelopes are discussed. A Bayesian approach is used to produce a deterministic algorithm for estimating aerodynamic system parameters from existing noisy sensor measurements, which are then used to estimate the trim envelope through efficient high- fidelity model-based computations of attainable equilibrium sets. The safe maneuverability limitations are extended beyond the trim envelope through a robust reachability analysis derived from an optimal control formulation. The trim and maneuvering envelope limits are then conveyed to pilots through three axes on the primary flight display. To evaluate the new display features, commercial airline crews flew multiple challenging approach and landing scenarios in the full motion Advanced Concepts Flight Simulator at NASA Ames Research Center, as part of a larger research initiative to investigate the impact on the energy state awareness of the crew. Results show that the additional display features have the potential to significantly improve situational awareness of the flight crew.

  20. An alternative to radiance limits for vision enhancement device cockpit integration

    NASA Astrophysics Data System (ADS)

    Marasco, Peter L.

    2008-04-01

    With the introduction of the night-vision goggle (NVG) into vehicle cockpits, the transfer of visual information to the observer became more complex. The problem emanated from the image intensifier tube photocathode spectral response. NVGs were capable of sensing and amplifying visible cockpit light, making observation of the scene outside of the cockpit, the primary use for NVGs, difficult. Over the years, several documents were published outlining night vision imaging system (NVIS) compatible lighting performance. These documents limited the permissible amount of light visible to image intensifier tubes that cockpit displays could emit, enhancing pilot visual performance. Recent advances in short wave infrared (SWIR) sensor technology make it a possible alternative to image intensifiers for night imaging application. However, while popular SWIR cameras are not particularly sensitive to visible light, they may be sensitive to other display emissions not attenuated by state-of-the-art NVIS filters. This paper examines the possibility of expanding the traditional treatment of vehicle cockpit compatibility to include new, novel vision enhancement devices yet to be designed and vehicle cockpit geometry.

  1. Communications skills for CRM training

    NASA Technical Reports Server (NTRS)

    Shearer, M.

    1984-01-01

    A pilot training program in communication skills, listening, conflict solving, and task orientation, for a small but growing commuter airline is discussed. The interactions between pilots and management, and communication among crew members are examined. Methods for improvement of cockpit behavior management personnel relations are investigated.

  2. Glass-Cockpit Pilot Subjective Ratings of Predictive Information, Collocation, and Mission Status Graphics: An Analysis and Summary of the Future Focus of Flight Deck Research Survey

    NASA Technical Reports Server (NTRS)

    Bartolone, Anthony; Trujillo, Anna

    2002-01-01

    NASA Langley Research Center has been researching ways to improve flight crew decision aiding for systems management. Our current investigation is how to display a wide variety of aircraft parameters in ways that will improve the flight crew's situation awareness. To accomplish this, new means are being explored that will monitor the overall health of a flight and report the current status of the aircraft and forecast impending problems to the pilots. The initial step in this research was to conduct a survey addressing how current glass-cockpit commercial pilots would value a prediction of the status of critical aircraft systems. We also addressed how this new type of data ought to be conveyed and utilized. Therefore, two other items associated with predictive information were also included in the survey. The first addressed the need for system status, alerts and procedures, and system controls to be more logically grouped together, or collocated, on the flight deck. The second idea called for the survey respondents opinions on the functionality of mission status graphics; a display methodology that groups a variety of parameters onto a single display that can instantaneously convey a complete overview of both an aircraft's system and mission health.

  3. Composite Crew Module: Primary Structure

    NASA Technical Reports Server (NTRS)

    Kirsch, Michael T.

    2011-01-01

    In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center to design, build, and test a full-scale crew module primary structure, using carbon fiber reinforced epoxy based composite materials. The overall goal of the Composite Crew Module project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project's baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. This report discusses the project management aspects of the project including team organization, decision making, independent technical reviews, and cost and schedule management approach.

  4. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  5. Manned Mars mission crew factors

    NASA Technical Reports Server (NTRS)

    Santy, Patricia A.

    1986-01-01

    Crew factors include a wide range of concerns relating to the human system and its role in a Mars mission. There are two important areas which will play a large part in determining the crew for a Mars mission. The first relates to the goals and priorities determined for such a vast endeavor. The second is the design of the vehicle for the journey. The human system cannot be separated from the other systems in that vehicle. In fact it will be the human system which drives the development of many of the technical breakthroughs necessary to make a Mars mission successful. As much as possible, the engineering systems must adapt to the needs of the human system and its individual components.

  6. Orion Crew Module Aerodynamic Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Bibb, Karen L.; Brauckmann, Gregory J.; Rhode, Matthew N.; Owens, Bruce; Chan, David T.; Walker, Eric L.; Bell, James H.; Wilson, Thomas M.

    2011-01-01

    The Apollo-derived Orion Crew Exploration Vehicle (CEV), part of NASA s now-cancelled Constellation Program, has become the reference design for the new Multi-Purpose Crew Vehicle (MPCV). The MPCV will serve as the exploration vehicle for all near-term human space missions. A strategic wind-tunnel test program has been executed at numerous facilities throughout the country to support several phases of aerodynamic database development for the Orion spacecraft. This paper presents a summary of the experimental static aerodynamic data collected to-date for the Orion Crew Module (CM) capsule. The test program described herein involved personnel and resources from NASA Langley Research Center, NASA Ames Research Center, NASA Johnson Space Flight Center, Arnold Engineering and Development Center, Lockheed Martin Space Sciences, and Orbital Sciences. Data has been compiled from eight different wind tunnel tests in the CEV Aerosciences Program. Comparisons are made as appropriate to highlight effects of angle of attack, Mach number, Reynolds number, and model support system effects.

  7. Quarantined Apollo 11 Crew Debriefing

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named 'Eagle'', carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. The recovery operation took place in the Pacific Ocean where Navy para-rescue men recovered the capsule housing the 3-man Apollo 11 crew. The crew was airlifted to safety aboard the U.S.S. Hornet, where they were quartered in a Mobile Quarantine Facility (MQF) which served as their home until they reached the NASA Manned Spacecraft Center (MSC) Lunar Receiving Laboratory in Houston, Texas. The three are seen here at the MSC, still inside the MQF, undergoing their first debriefing on Sunday, August 3, 1969. Behind the glass are (L-R): Edwin Aldrin, Michael Collins, and Neil Armstrong.

  8. Future of Colombo Airport (CMB) as an Airline Hub

    NASA Technical Reports Server (NTRS)

    Jayalath, J. T. D.; Bandara, J. M. S. J.

    2001-01-01

    Aviation throughout the world has seen profound changes within the last two decades. Today more and more airports are looking for hub operations. However, as the success of hub operation would depend on a number of parameters such as geographic location, route network, facilities available, passengers' acceptance etc., not all airports would be able to operate as successful hubs. This paper investigates the possibility for (he Bandaranayake international airport, Colombo, Sri Lanka (CMB) to emerge as a hub airport in the South Asian region. It is found that CMB is situated in a geographically advantageous position in the region with respect to the airline route network. Comparison of travel distances between CMB and prominent O-D pairs and evaluation of airline schedules at relevant established hub airports indicates that CMB could operate as a directional hub serving the South Asian market if the number of destinations with daily flights could be increased.

  9. NASA Crew Launch Vehicle Overview

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2006-01-01

    The US. Vision for Space Exploration, announced January 2004, outlines the National Aeronautics and Space Administration s (NASA) strategic goals and objectives. These include: 1) Flying the Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human spaceflight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. Following the confirmation of the new NASA Administrator in April 2005, the Agency commissioned a team of aerospace subject matter experts from government and industry to perform the Exploration Systems Architecture Study (ESAS), which provided in-depth information for selecting the follow-on launch vehicle designs to enable these goals, The ESAS team analyzed a number of potential launch systems, with a focus on: (1) a human-rated launch vehicle for crew transport and (2) a heavy lift launch vehicle (HLLV) to carry cargo. After several months of intense study utilizing technical performance, budget, and schedule objectives, the results showed that the optimum architecture to meet the challenge of safe, reliable crew transport is a two-stage variant of the Space Shuttle propulsion system - utilizing the reusable Solid Rocket Booster (SRB) as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit. The CEV that this new Crew Launch Vehicle (CLV) lofts into space

  10. Determination of the flight equipment maintenance costs of commuter airlines

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Labor and materials costs associated with maintaining and operating 12 commuter airlines carrying an average of from 42 to 1,100 passengers daily in a variety of aircraft types were studied to determine the total direct maintenance cost per flight hour for the airframe, engine, and avionics and other instruments. The distribution of maintenance costs are analyzed for two carriers, one using turboprop aircraft and the other using piston engine aircraft.

  11. Determinants of Market Structure and the Airline Industry

    NASA Technical Reports Server (NTRS)

    Raduchel, W.

    1972-01-01

    The general economic determinants of market structure are outlined with special reference to the airline industry. Included are the following facets: absolute size of firms; distributions of firms by size; concentration; entry barriers; product and service differentiation; diversification; degrees of competition; vertical integration; market boundaries; and economies of scale. Also examined are the static and dynamic properties of market structure in terms of mergers, government policies, and economic growth conditions.

  12. Review of the Literature Related to Screening Airline Passenger Baggage.

    DTIC Science & Technology

    1994-10-01

    11 billion passengers and their carry-on items have passed through airport security checkpoints. According to the Federal Aviation Administration...Aviation Security establishes security requirements, inspects airline and airport security operations, and issues civil penalties for noncompliance with...operations areas and provide law enforcement support for the screening system and overall airport security requirements (FAA, 1991). The FAA’s role in aviation

  13. Measurement of cabin air quality aboard commercial airliners

    NASA Astrophysics Data System (ADS)

    Nagda, Niren L.; Koontz, Michael D.; Konheim, Arnold G.; Katharine Hammond, S.

    Between April and June 1989, 92 randomly selected flights were monitored to determine prevailing levels of environmental tobacco smoke (ETS) and other pollutants in the airliner cabin environment. The monitored flights included 69 smoking flights, 8 of which were international, and 23 nonsmoking flights, all of which were domestic. Selected ETS contaminants (nicotine, respirable suspended particles and carbon monoxide), as well as ozone, microbial aerosols, carbon dioxide and other environmental variables were measured in different parts of airliner cabins. Particle and nicotine concentrations were highest in the smoking section and were somewhat higher in the boundary region near smoking than in other no-smoking sections or on nonsmoking flights. Levels of these ETS tracers were correlated with smoking rates observed by field technicians, and their levels in the boundary section were higher when more proximate to the smoking section. CO 2 levels were sufficiently high and humidity levels were sufficiently low to pose potential comfort problems for aircraft occupants. Ozone levels were well within existing standards for airliner environments, and levels of microbial aerosols were below those in residential environments that have been characterized through cross-sectional studies.

  14. Molecular bacterial diversity and bioburden of commercial airliner cabin air.

    PubMed

    La Duc, Myron T; Stuecker, Tara; Venkateswaran, Kasthuri

    2007-11-01

    Culture-independent, biomarker-targeted bacterial enumeration and identification strategies were employed to estimate total bacterial burden and diversity within the cabin air of commercial airliners. Samples from each of 4 flights on 2 commercial carriers were collected via air-impingement. The total viable microbial population ranged from below detection limits to 4.1 x 10(6) cells/m(3) of air, as assessed by the ATP assay. A gradual accumulation of microbes was observed from the time of passenger boarding through mid-flight, followed by a sharp decline in bacterial abundance and viability from the initiation of descent through landing. Representatives of the alpha-, beta-, and gamma-Proteobacteria, as well as Gram-positive bacteria, were isolated in varying abundance. Neisseria meningitidis rRNA gene sequences were retrieved in great abundance from Airline A followed by Streptococcus oralis/mitis sequences. Pseudomonas synxantha sequences dominated Airline B clone libraries, followed by those of N. meningitidis and S. oralis/mitis. The cabin air samples examined herein housed low bacterial diversity and were often dominated by a particular subset of bacteria: opportunistic pathogenic inhabitants of the human respiratory tract and oral cavity.

  15. Developing a Fleet Standardization Index for Airline Planning

    NASA Technical Reports Server (NTRS)

    deBorgesPan, Alexis George; EspiritoSanto, Respicio A., Jr.

    2003-01-01

    Quantifying subjective aspects is a difficult task that requires a great dedication of time from researchers and analysts. Nevertheless, one of the main objectives of it is to pave the way for a better understanding of the focused aspects. Fleet standardization is one of these subjective aspects that is extremely difficult to mm into numbers. Although, it is of great importance to know the benefits that may come with a higher level of standardization for airlines, which may be economical advantages, maintenance facilitation and others. A more standardized fleet may represent lower costs of operations and maintenance facilitation and others. A more standardized fleet may represent lower costs of operations and maintenance plus a much better planning of routes and flights. This study presents the first step on developing an index, hereto called "Fleet Standardization Index" or FSI (or IPF in Portuguese, for "Indice de Padronizacao de Frotas"), that will allow senior airline planners to compare different fleets and also simulate some results from maintaining or renewing their fleets. Although being a preliminary study, the results obtained may already be tested to compare different fleets (different airlines) and also analyze some possible impacts of a fleet renewal before it takes place. Therefore, the main objective of this paper is to introduce the proposed IPF index and to demonstrate that it is inversely proportional to the number of different airplane models, engines and other equipment, such as avionics.

  16. Strategic Classification and Examination of the Development of Current Airline Alliance Activities

    NASA Technical Reports Server (NTRS)

    Wang, Zhi H.; Evans, Michael

    2002-01-01

    Previous research argues that despite the fact that strategic alliances have become an important feature of the world airline industry, little rigorous analysis has been done on the effects of these alliances. This is partially because there is a lack of precise definitions to specify different types of airline alliances in the literature. This research identifies several categories of airline alliances through a strategic classification of the current alliance activities involving the major airlines for the period 1989 to 1999. The classification enables this research to examine how strategic alliance activities are evolving, particularly to compare how airlines in North America, the European Union and the Asia Pacific region have committed to different alliances. Findings show that there is a significant difference between the number and scope of alliances adopted in the three aviation markets. These findings facilitate research to further analyse the impact of market liberalization on various formations of strategic airline alliances.

  17. How Do Airlines Perceive That Strategic Alliances Affect Their Individual Branding?

    NASA Technical Reports Server (NTRS)

    Kalligiannis, Konstantinos; Iatrou, Kostas; Mason, Keith

    2006-01-01

    Much research has been carried out to evaluate the impact of strategic alliance membership on the performance of airlines. However it would be of interest to identify how airlines perceive this impact in terms of branding by each of the three global alliance groupings. It is the purpose of this paper to gather the opinion of airlines, belonging to the three strategic alliance groups, on the impact that the strategic alliance brands have had on their individual brands and how do they perceive that this impact will change in the future. To achieve this, a comprehensive survey of the alliance management and marketing departments of airlines participating in the three global strategic alliances was required. The results from this survey give an indication whether the strategic airline alliances, which are often referred to as marketing agreements, enhance, damage or have no impact on the individual airline brands.

  18. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Lowered on a movable work platform or bucket inside the payload bay of orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (far right) and James H. Newman (second from right) get a close look at the Orbiter Docking System. At left is the bucket operator and Wayne Wedlake, with United Space Alliance at Johnson Space Center. The STS-88 crew members are in Orbiter Processing Facility Bay 1 to participate in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. While on orbit during STS-88, Unity will be latched atop the Orbiter Docking System in the forward section of Endeavour's payload bay for the mating of the two modules. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  19. STS-88 crew goes through Crew Equipment Interface Testing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As the bucket operator (left) lowers them into the open payload bay of the orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (second from left) and James H. Newman (second from right) do a sharp-edge inspection. At their right is Wayne Wedlake, with United Space Alliance at Johnson Space Center. Below them is the Orbiter Docking System, the remote manipulator system arm and a tunnel into the payload bay. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability.

  20. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains in the crew compartment trainer (CCT) located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Nelson, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, is strapped into his launch and entry station on the CCT middeck. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  1. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson trains in the crew compartment trainer (CCT) located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A. Nelson, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, peers out the open CCT side hatch and prepares to deploy inflatable slide. Technicians observe the activity from scaffolding on either side of the hatch. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options.

  2. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, crewmembers sit on flight deck of the crew compartment trainer (CCT) shuttle mockup. Pilot Richard O. Covey (left) at pilot station controls and Mission Specialist (MS) John M. Lounge (center) and MS David C. Hilmers on aft flight deck are wearing the new (navy blue) partial pressure suits (launch and entry suits (LESs)). During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. CCT shuttle mockup is located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A.

  3. STS-26 crew trains in JSC crew compartment trainer (CCT) shuttle mockup

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck tests cushion outside the crew compartment trainer (CCT) side hatch. Hauck, wearing new (navy blue) partial pressure suit (launch and entry suit (LES)) and helmet, tumbles out CCT side hatch onto cushion as technicians look on. During Crew Station Review (CSR) #3, the crew donned the new partial pressure suits and checked out crew escape system (CES) configurations to evaluate crew equipment and procedures related to emergency egress methods and proposed crew escape options. CCT is located in JSC's Shuttle Mockup and Integration Laboratory Bldg 9A.

  4. Research Pilot C. Gordon Fullerton in Cockpit of TU-144LL SST Flying Laboratory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA Research pilot C. Gordon Fullerton sits in cockpit of TU-144LL SST Flying Laboratory. Fullerton was one of two NASA pilots who flew the aircraft as part of a joint high speed research program. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in

  5. Exposure of aircraft crew to cosmic radiation: on-board intercomparison of various dosemeters.

    PubMed

    Bottollier-Depois, J-F; Trompier, F; Clairand, I; Spurny, F; Bartlett, D; Beck, P; Lewis, B; Lindborg, L; O'Sullivan, D; Roos, H; Tommasino, L

    2004-01-01

    Owing to their professional activity, flight crews may receive a dose of some millisieverts within a year; airline passengers may also be concerned. The effective dose is to be estimated using various experimental and calculation tools. The European project DOSMAX (Dosimetry of Aircrew Exposure during Solar Maximum) was initiated in 2000 extending to 2004 to complete studies over the current solar cycle during the solar maximum phase. To compare various dosemeters in real conditions simultaneously in the same radiation field, an intercomparison was organised aboard a Paris-Tokyo round-trip flight. Both passive and active detectors were used. Good agreement was observed for instruments determining the different components of the radiation field; the mean ambient dose equivalent for the round trip was 129 +/- 10 microSv. The agreement of values obtained for the total dose obtained by measurements and by calculations is very satisfying.

  6. Uncertainties that flight crews and dispatchers must consider when calculating the fuel needed for a flight

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.

    1996-01-01

    In 1993, fuel accounted for approximately 15 percent of an airline's expenses. Fuel consumption increases as fuel reserves increase because of the added weight to the aircraft. Calculating fuel reserves is a function of Federal Aviation Regulations, airline company policy, and factors that impact or are impacted by fuel usage enroute. This research studied how pilots and dispatchers determined the fuel needed for a flight and identified areas where improvements in methods may yield measurable fuel savings by (1) listing the uncertainties that contribute to adding contingency fuel, (2) obtaining the pilots' and dispatchers' perspective on how often each uncertainty occurred, and (3) obtaining pilots' and dispatchers' perspective on the fuel used for each occurrence. This study found that for the majority of the time, pilots felt that dispatchers included enough fuel. As for the uncertainties that flight crews and dispatchers account for, air traffic control accounts for 28% and weather uncertainties account for 58 percent. If improvements can be made in these two areas, a great potential exists to decrease the reserve required, and therefore, fuel usage without jeopardizing safety.

  7. The Study of Airline Merger and Acquisition in the Great China Area

    NASA Technical Reports Server (NTRS)

    Shon, Zhengyi

    2003-01-01

    The Asian financial crisis in the late 20 th century has some long lasting effect on the air transportation industry in Asia, especially in the Great China Area. Starting from 1998, airlines in both China and Taiwan suffered some serious financial losses due to the diminishing travel demand caused by the economic recession. Airlines were forced to cut price to attract passengers and hence crashed the market discipline. A number of airline mergers and acquisitions were then driven by the markets and the governments. After China and Taiwan have both entered the World Trade Organization, some mega-merging cases were finalized in late 2002 for better fitting the world's aviation competitions. This paper reviews the nine merging and acquiring cases in the Great China Area in the past 5 years. Almost all the airlines in the area were involved. The new groups of airlines and the survival airlines are introduced. Market response to the airline mergers will also be examined. A general look over the performance of the new airlines will be discussed. And the future of the market will also be analyzed. Finally, the practices and the impacts of current inter-state mergers in the Great China Area will be examined. The study has expected a highly concentrated domestic market in both China and Taiwan. Each of the market will be dominated by three major airline groups of their own. Cross-holding equity within these 6 leading aviation groups would also be possible after further deregulations.

  8. An Examination and Comparison of Airline and Navy Pilot Career Earnings

    DTIC Science & Technology

    1986-03-01

    an accurate picture of the probable average 1986 salary. This will be done in the following manner:Z6 I. The FAPA first year salary will be used. 2...984,573 $ 942,272 AOCP Source: Author 97 ’k TABLE 4$ AIRLINE PENSIONI PLANS Pension Plans 1984-1985 Majors Airlines National Airlines American 60% Airborne...May 29. Robert Joed.!cke and Mark Pin’erton The Airline Industy Picture Book, Shearson Lema-n--Brothers, (May 141 ’I 30. "Eastern Unions File Suits," A

  9. ISS Crew Transportation and Services Requirements Document

    NASA Technical Reports Server (NTRS)

    Lueders, Kathryn L. (Compiler)

    2015-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document with its sister documents, Crew Transportation Technical Management Processes (CCT-PLN-1120), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), and Crew Transportation Operations Standards (CCT-STD-1150), and International Space Station (ISS) to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase of the NASA Commercial Crew Program (CCP).

  10. Ultrawideband Electromagnetic Interference to Aircraft Radios: Results of Limited Functional Testing With United Airlines and Eagles Wings Incorporated, in Victorville, California

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Shaver, Timothy W.; Fuller, Gerald L.

    2002-01-01

    On February 14, 2002, the FCC adopted a FIRST REPORT AND ORDER, released it on April 22, 2002, and on May 16, 2002 published in the Federal Register a Final Rule, permitting marketing and operation of new products incorporating UWB technology. Wireless product developers are working to rapidly bring this versatile, powerful and expectedly inexpensive technology into numerous consumer wireless devices. Past studies addressing the potential for passenger-carried portable electronic devices (PEDs) to interfere with aircraft electronic systems suggest that UWB transmitters may pose a significant threat to aircraft communication and navigation radio receivers. NASA, United Airlines and Eagles Wings Incorporated have performed preliminary testing that clearly shows the potential for handheld UWB transmitters to cause cockpit failure indications for the air traffic control radio beacon system (ATCRBS), blanking of aircraft on the traffic alert and collision avoidance system (TCAS) displays, and cause erratic motion and failure of instrument landing system (ILS) localizer and glideslope pointers on the pilot horizontal situation and attitude director displays. This report provides details of the preliminary testing and recommends further assessment of aircraft systems for susceptibility to UWB electromagnetic interference.

  11. Culture in the Cockpit-CRM in a Multicultural World

    NASA Technical Reports Server (NTRS)

    Engle, Michael

    2000-01-01

    Crew Resource Management (CRM) is fundamentally a method for enhancing personal interactions among crewmembers so that safety and efficiency are increased, and at its core involves issues of culture and social interaction. Since CRM is increasingly being adopted by foreign carriers, it is important to evaluate standard CRM techniques from a cultural standpoint, especially if some of these techniques may be enhanced by adapting them to particular cultures. The purpose of this paper is to propose a model for an ideal CRM culture, and to suggest ways that CRM may be adapted to suit particular cultures. The research method was a simple literature search to gather data on CRM techniques and multicultural crews. The results indicate that CRM can be tailored to specific cultures for maximum effectiveness.

  12. Advanced crew procedures development techniques

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Benbow, R. L.; Mangiaracina, A. A.; Mcgavern, J. L.; Spangler, M. C.; Tatum, I. C.

    1975-01-01

    The development of an operational computer program, the Procedures and Performance Program (PPP), is reported which provides a procedures recording and crew/vehicle performance monitoring capability. The PPP provides real time CRT displays and postrun hardcopy of procedures, difference procedures, performance, performance evaluation, and training script/training status data. During post-run, the program is designed to support evaluation through the reconstruction of displays to any point in time. A permanent record of the simulation exercise can be obtained via hardcopy output of the display data, and via magnetic tape transfer to the Generalized Documentation Processor (GDP). Reference procedures data may be transferred from the GDP to the PPP.

  13. STS-41D Crew Portrait

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The crew assigned to the STS-41D mission included (seated left to right) Richard M. (Mike) Mullane, mission specialist; Steven A. Hawley, mission specialist; Henry W. Hartsfield, commander; and Michael L. (Mike) Coats, pilot. Standing in the rear are Charles D. Walker, payload specialist; and Judith A. (Judy) Resnik, mission specialist. Launched aboard the Space Shuttle Discovery August 30, 1984 at 8:41:50 am (EDT), the STS-41D mission deployed three satellites: the Satellite Business System SBS-D; the SYCOM IV-2 (also known as LEASAT-2); and the TELSTAR.

  14. STS-107 Crew Training Clip

    NASA Astrophysics Data System (ADS)

    2002-06-01

    The STS-107 is a Multidiscipline Microgravity and Earth Science Research Mission to conduct international scientific investigations in orbit. The crew consists of Payload Specialist Ilan Ramon, Commander Rick Husband, Pilot William McCool, and Mission Specialists David Brown, Laurel Clark, Michael Anderson, and Kalpana Chawla. The crewmembers are shown getting suited in the Pre-Launch Ingress and Egress training area. The other areas of training include Payload Experiment in Fixed Base/Spacehab, Mist Experiment Combustion Module 2, Phab 4 Experiment in CCT Mid-deck and Payload Experiment Demo-Protein Crystal Growth.

  15. STS-121 crew visits SSC

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Astronauts Steve Lindsey (left), Stephanie Wilson, Lisa Nowak and Piers Sellers meet with employees at NASA Stennis Space Center. The crewmembers on NASA's space shuttle mission STS-121, which launched July 4, 2006, thanked SSC's workers for their dedication and safe work history. `We feel blessed that you are a part of the NASA family,' Wilson said. All four expressed gratitude for the reliability of the space shuttle's main engines, which helped propel the STS-121 crew into orbit on their 13-day mission.

  16. Communication Research in Aviation and Space Operations: Symptoms and Strategies of Crew Coordination

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Hart, Sandra G. (Technical Monitor)

    1994-01-01

    The day-to-day operators of today's aerospace systems work under increasing pressures to accomplish more with less. They work in operational systems which are complex, technology-based, and high-risk; in which incidents and accidents have far-reaching and costly consequences. For these and other reasons, there is concern that the safety net formerly built upon redundant systems and abundant resources may become overburdened. Although we know that human ingenuity can overcome incredible odds, human nature can also fail in unpredictable ways. Over the last 20 years, a large percentage of aviation accidents and incidents have been attributed to human errors rather than hardware or environmental factors alone. A class of errors have been identified which are not due to a lack of individual, technical competencies. Rather, they are due to the failure of teams to utilize readily available resources or information in a timely fashion. These insights began a training revolution in the aviation industry called Cockpit Resource Management, which later became known as Crew Resource Management (CRM) as its concepts and applications extended to teams beyond the flightdeck. Then, as now, communication has been a cornerstone in CRM training since crew coordination and resource management largely resides within information transfer processes--both within flightcrews, and between flightcrews and the ground operations teams that support them. The research I will describe takes its roots in CRM history as we began to study communication processes in order to discover symptoms of crew coordination problems, as well as strategies of effective crew management. On the one hand, communication is often the means or the tool by which team members manage their resources, solve problems, maintain situational awareness and procedural discipline. Conversely, it is the lack of planning and resource management, loss of vigilance and situational awareness, and non-standard communications that are

  17. Development and evaluation of an intervention aiming to reduce fatigue in airline pilots: design of a randomised controlled trial

    PubMed Central

    2013-01-01

    Background A considerable percentage of flight crew reports to be fatigued regularly. This is partly caused by irregular and long working hours and the crossing of time zones. It has been shown that persistent fatigue can lead to health problems, impaired performance during work, and a decreased work-private life balance. It is hypothesized that an intervention consisting of tailored advice regarding exposure to daylight, optimising sleep, physical activity, and nutrition will lead to a reduction of fatigue in airline pilots compared to a control group, which receives a minimal intervention with standard available information. Methods/design The study population will consist of pilots of a large airline company. All pilots who posses a smartphone or tablet, and who are not on sick leave for more than four weeks at the moment of recruitment, will be eligible for participation. In a two-armed randomised controlled trial, participants will be allocated to an intervention group that will receive the tailored advice to optimise exposure to daylight, sleep, physical activity and nutrition, and a control group that will receive standard available information. The intervention will be applied using a smartphone application and a website, and will be tailored on flight- and participant-specific characteristics. The primary outcome of the study is perceived fatigue. Secondary outcomes are need for recovery, duration and quality of sleep, dietary and physical activity behaviours, work-private life balance, general health, and sickness absence. A process evaluation will be conducted as well. Outcomes will be measured at baseline and at three and six months after baseline. Discussion This paper describes the development of an intervention for airline pilots, consisting of tailored advice (on exposure to daylight and sleep-, physical activity, and nutrition) applied into a smartphone application. Further, the paper describes the design of the randomised controlled trial

  18. Application of FEM/SEA for prediction of aircraft cockpit noise

    NASA Astrophysics Data System (ADS)

    Engelstad, S. P.

    Interior noise restrictions in commercial and military aircraft has led to the need for accurate noise transmission prediction capabilities. Predictions are needed in the later aircraft design stages, so that the structural and acoustic changes and/or active control methods can be optimized with a minimal impact on weight and other considerations. The objective of the proposed paper is to investigate the use of the finite element method (FEM) and statistical energy analysis (SEA) method for the prediction of interior noise in an aircraft cockpit. For the cockpit configuration under study, the internal noise is dominated by low-frequency discrete resonant peaks (less than 500 Hz). After examining the available flight test cockpit internal noise data in conjunction with the canopy vibration data, it was concluded that the principal noise source is due to the external turbulent flow exciting the canopy and radiating into the cockpit. Thus the study focused on the resonant noise transmission of the canopy into the small enclosed cockpit air space. The frequency range of primary interest is well below the critical frequency range.

  19. Assessing the impact unique NVG filters have on human visual performance under simulated compatible cockpit lighting

    NASA Astrophysics Data System (ADS)

    Dixon, Sharon A.; Marasco, Peter L.

    2006-05-01

    The introduction of Night Vision Goggles (NVGs) into the cockpits of aircraft configured with head-up displays (HUDs) and colored cockpit instruments necessitated the addition of special NVG objective lens filters to ensure NVG/cockpit compatibility. Three classifications have been developed: Class A, B and C, all minus blue filters, but with different transmissivity characteristics customized to make NVGs compatible with particular cockpit configurations. Class C filters, designed for aircraft equipped with holographic HUDs, are constructed of applied reflective coatings with a built-in spectral notch for transmitting the correct light wavelength to make the projected HUD symbology readable. New absorptive glass technology was integrated into the design of an RG-665 minus-blue filter identical to a class B filter but with a physical pinhole and varying glass material thickness to fine tune the filter for optimal transmissivity for NVG/HUD compatibility. A study was conducted to examine the impact these two unique classifications of filters have on visual performance using simulated compatible cockpit lighting in a controlled laboratory. Results indicate the Class C filters significantly outperformed the RG-665 filters with the windscreen condition installed. A discussion of the properties of each type of filter and its effect on NVG visual performance are discussed in this paper.

  20. Video System for Viewing From a Remote or Windowless Cockpit

    NASA Technical Reports Server (NTRS)

    Banerjee, Amamath

    2009-01-01

    A system of electronic hardware and software synthesizes, in nearly real time, an image of a portion of a scene surveyed by as many as eight video cameras aimed, in different directions, at portions of the scene. This is a prototype of systems that would enable a pilot to view the scene outside a remote or windowless cockpit. The outputs of the cameras are digitized. Direct memory addressing is used to store the data of a few captured images in sequence, and the sequence is repeated in cycles. Cylindrical warping is used in merging adjacent images at their borders to construct a mosaic image of the scene. The mosaic-image data are written to a memory block from which they can be rendered on a head-mounted display (HMD) device. A subsystem in the HMD device tracks the direction of gaze of the wearer, providing data that are used to select, for display, the portion of the mosaic image corresponding to the direction of gaze. The basic functionality of the system has been demonstrated by mounting the cameras on the roof of a van and steering the van by use of the images presented on the HMD device.