Science.gov

Sample records for airline flight operations

  1. Flight Training Technology for Regional/Commuter Airline Operations: Regional Airline Association/NASA Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Lee, A. T. (Editor); Lauber, J. K. (Editor)

    1984-01-01

    Programs which have been developed for training commercial airline pilots and flight crews are discussed. The concept of cockpit resource management and the concomitant issues of management techniques, interpersonal communication, psychological factors, and flight stress are addressed. Training devices and simulation techniques are reported.

  2. Operational flight evaluation of the two-segment approach for use in airline service

    NASA Technical Reports Server (NTRS)

    Schwind, G. K.; Morrison, J. A.; Nylen, W. E.; Anderson, E. B.

    1975-01-01

    United Airlines has developed and evaluated a two-segment noise abatement approach procedure for use on Boeing 727 aircraft in air carrier service. In a flight simulator, the two-segment approach was studied in detail and a profile and procedures were developed. Equipment adaptable to contemporary avionics and navigation systems was designed and manufactured by Collins Radio Company and was installed and evaluated in B-727-200 aircraft. The equipment, profile, and procedures were evaluated out of revenue service by pilots representing government agencies, airlines, airframe manufacturers, and professional pilot associations. A system was then placed into scheduled airline service for six months during which 555 two-segment approaches were flown at three airports by 55 airline pilots. The system was determined to be safe, easy to fly, and compatible with the airline operational environment.

  3. Estimating Airline Operating Costs

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    The factors affecting commercial aircraft operating and delay costs were used to develop an airline operating cost model which includes a method for estimating the labor and material costs of individual airframe maintenance systems. The model permits estimates of aircraft related costs, i.e., aircraft service, landing fees, flight attendants, and control fees. A method for estimating the costs of certain types of airline delay is also described.

  4. Crew Factors in Flight Operations. 11; A Survey of Fatigue Factors in Regional Airline Operations

    NASA Technical Reports Server (NTRS)

    Co, Elizabeth L.; Gregory, Kevin B.; Johnson, Julie M.; Rosekind, Mark R.

    1999-01-01

    This report is the eleventh in a series on the physiological effects of flight operations on flight crews. A 119-question survey was completed by 1,424 flight crewmembers from 26 regional carriers to identify factors contributing to fatigue in regional airline operations. Eighty-nine percent of crewmembers identified fatigue as a moderate or serious concern with 88% reporting that it was a common occurrence and 92% reporting that, when it occurs, fatigue represents a moderate or serious safety issue. However, 86% reported they received no company training addressing fatigue issues. Identified fatigue factors included multiple flight segments, scheduling considerations, varying regulations, and others. The two most commonly cited fatigue factors regarded flying multiple (more than four) segments. Scheduling factors accounted for nine of the ten most common recommendations to reduce fatigue in regional operations. Differing requirements among regulations were cited as contributing to fatigue. Other identified factors were the flight deck environment, automation, and diet. The data suggested specific recommendations, including education of industry personnel about fatigue issues and examination of scheduling practices. Education plays a critical role in any effort to address fatigue. Analyzing scheduling practices and identifying potential improvements may result in reduced fatigue as well as other benefits to operations.

  5. Estimating airline operating costs

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1978-01-01

    A review was made of the factors affecting commercial aircraft operating and delay costs. From this work, an airline operating cost model was developed which includes a method for estimating the labor and material costs of individual airframe maintenance systems. The model, similar in some respects to the standard Air Transport Association of America (ATA) Direct Operating Cost Model, permits estimates of aircraft-related costs not now included in the standard ATA model (e.g., aircraft service, landing fees, flight attendants, and control fees). A study of the cost of aircraft delay was also made and a method for estimating the cost of certain types of airline delay is described.

  6. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 1

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 1 of the four major tasks included in the study. Task 1 compares flight plans based on forecasts with plans based on the verifying analysis from 33 days during the summer and fall of 1979. The comparisons show that: (1) potential fuel savings conservatively estimated to be between 1.2 and 2.5 percent could result from using more timely and accurate weather data in flight planning and route selection; (2) the Suitland forecast generally underestimates wind speeds; and (3) the track selection methodology of many airlines operating on the North Atlantic may not be optimum resulting in their selecting other than the optimum North Atlantic Organized Track about 50 percent of the time.

  7. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning: Summary report

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This summary report discusses the results of each of the four major tasks of the study. Task 1 compared airline flight plans based on operational forecasts to plans based on the verifying analyses and found that average fuel savings of 1.2 to 2.5 percent are possible with improved forecasts. Task 2 consisted of similar comparisons but used a model developed for the FAA by SRI International that simulated the impact of ATc diversions on the flight plans. While parts of Task 2 confirm the Task I findings, inconsistency with other data and the known impact of ATC suggests that other Task 2 findings are the result of errors in the model. Task 3 compares segment weather data from operational flight plans with the weather actually observed by the aircraft and finds the average error could result in fuel burn penalties (or savings) of up to 3.6 percent for the average 8747 flight. In Task 4 an in-depth analysis of the weather forecast for the 33 days included in the study finds that significant errors exist on 15 days. Wind speeds in the area of maximum winds are underestimated by 20 to 50 kts., a finding confirmed in the other three tasks.

  8. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 2

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.

  9. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 4

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 4 of the four major tasks included in the study. Task 4 uses flight plan segment wind and temperature differences as indicators of dates and geographic areas for which significant forecast errors may have occurred. An in-depth analysis is then conducted for the days identified. The analysis show that significant errors occur in the operational forecast on 15 of the 33 arbitrarily selected days included in the study. Wind speeds in an area of maximum winds are underestimated by at least 20 to 25 kts. on 14 of these days. The analysis also show that there is a tendency to repeat the same forecast errors from prog to prog. Also, some perceived forecast errors from the flight plan comparisons could not be verified by visual inspection of the corresponding National Meteorological Center forecast and analyses charts, and it is likely that they are the result of weather data interpolation techniques or some other data processing procedure in the airlines' flight planning systems.

  10. Flight selection at United Airlines

    NASA Technical Reports Server (NTRS)

    Traub, W.

    1980-01-01

    Airline pilot selection proceedures are discussed including psychogical and personality tests, psychomotor performance requirements, and flight skills evaluation. Necessary attitude and personality traits are described and an outline of computer selection, testing, and training techniques is given.

  11. Airline Operations Aid

    NASA Technical Reports Server (NTRS)

    1993-01-01

    C Language Integrated Production System (CLIPS), a NASA-developed expert systems program, is used by American Airlines for three purposes: as a rapid prototyping tool; to develop production prototypes; and to develop production application. An example of the latter is CLIPS' use in "Hub S1AAshing," a knowledge based system that recommends contingency plans when severe schedule reductions must be made. Hub S1AAshing has replaced a manual, labor intensive process. It saves time and allows Operations Control Coordinators to handle more difficult situations. Because the system assimilates much of the information necessary to facilitate educated decision making, it minimizes negative impact in situations where it is impossible to operate all flights.

  12. NASA Airline Operations Research Center

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.

    2016-01-01

    This is a PowerPoint presentation NASA airline operations center (AOC) research. It includes information on using IBM Watson in the AOC. It also reviews a dispatcher decision support tool call the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. It should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations with the same title.

  13. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 3

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.

  14. STATUS AND FUTURE POSSIBILITIES OF DOMESTIC FLIGHTS BY FOREIGN AIRLINES

    NASA Astrophysics Data System (ADS)

    Hibino, Naohiko; Kobayashi, Yuki; Morichi, Shigeru

    As a regional strategy, it is very important for local cities that international flights are put into service to local airports and to increase tourists. It is problemati c for the airlines that their international flights are put into service directly between the local airport and the international airport since it is difficult for them to secure the number of passengers needed to operate the aircraft. Co ncerning 1-stop flights, there is a good possibility of securing number of passengers. Therefore, the study illustrated the possibilities of domestic airline flights by foreign airlines as international flights.

  15. An Economic Model of U.S. Airline Operating Expenses

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2005-01-01

    This report presents a new economic model of operating expenses for 67 airlines. The model is based on data that the airlines reported to the United States Department of Transportation in 1999. The model incorporates expense-estimating equations that capture direct and indirect expenses of both passenger and cargo airlines. The variables and business factors included in the equations are detailed enough to calculate expenses at the flight equipment reporting level. Total operating expenses for a given airline are then obtained by summation over all aircraft operated by the airline. The model's accuracy is demonstrated by correlation with the DOT Form 41 data from which it was derived. Passenger airlines are more accurately modeled than cargo airlines. An appendix presents a concise summary of the expense estimating equations with explanatory notes. The equations include many operational and aircraft variables, which accommodate any changes that airline and aircraft manufacturers might make to lower expenses in the future. In 1999, total operating expenses of the 67 airlines included in this study amounted to slightly over $100.5 billion. The economic model reported herein estimates $109.3 billion.

  16. The advancement of a new human factors report--'The Unique Report'--facilitating flight crew auditing of performance/operations as part of an airline's safety management system.

    PubMed

    Leva, M C; Cahill, J; Kay, A M; Losa, G; McDonald, N

    2010-02-01

    This paper presents the findings of research relating to the specification of a new human factors report, conducted as part of the work requirements for the Human Integration into the Lifecycle of Aviation Systems project, sponsored by the European Commission. Specifically, it describes the proposed concept for a unique report, which will form the basis for all operational and safety reports completed by flight crew. This includes all mandatory and optional reports. Critically, this form is central to the advancement of improved processes and technology tools, supporting airline performance management, safety management, organisational learning and knowledge integration/information-sharing activities. Specifically, this paper describes the background to the development of this reporting form, the logic and contents of this form and how reporting data will be made use of by airline personnel. This includes a description of the proposed intelligent planning process and the associated intelligent flight plan concept, which makes use of airline operational and safety analyses information. Primarily, this new reporting form has been developed in collaboration with a major Spanish airline. In addition, it has involved research with five other airlines. Overall, this has involved extensive field research, collaborative prototyping and evaluation of new reports/flight plan concepts and a number of evaluation activities. Participants have included both operational and management personnel, across different airline flight operations processes. Statement of Relevance: This paper presents the development of a reporting concept outlined through field research and collaborative prototyping within an airline. The resulting reporting function, embedded in the journey log compiled at the end of each flight, aims at enabling employees to audit the operations of the company they work for.

  17. In-flight medical emergencies during airline operations: a survey of physicians on the incidence, nature, and available medical equipment

    PubMed Central

    Hinkelbein, Jochen; Neuhaus, Christopher; Böhm, Lennert; Kalina, Steffen; Braunecker, Stefan

    2017-01-01

    Background Data on the incidence of in-flight medical emergencies on-board civil aircraft are uncommon and rarely published. Such data could provide information regarding required medical equipment on-board aircraft and requisite training for cabin crew. The aim of the present study was to gather data on the incidences, nature, and medical equipment for in-flight medical emergencies by way of a survey of physician members of a German aerospace medical society. Materials and methods Using unipark.de (QuestBack GmbH, Cologne, Germany), an online survey was developed and used to gather specific information. Members of the German Society for Aviation and Space Medicine (Deutsche Gesellschaft für Luft- und Raumfahrtmedizin e.V.; DGLRM) were invited to participate in the survey during a 4-week period (21 March 2015 to 20 April 2015). Chi-square test was used for statistical analysis (p<0.05 was considered significant). Results Altogether, 121 members of the society responded to the survey (n=335 sent out). Of the 121 respondents, n=54 (44.6%) of the participants (89.9% male and 10.1% female; mean age, 54.1 years; n=121) were involved in at least one in-flight medical emergency. Demographic parameters in this survey were in concordance with the society members’ demographics. The mean duration of flights was 5.7 hours and the respondents performed 7.1 airline flights per year (median). Cardiovascular (40.0%) and neurological disorders (17.8%) were the most frequent diagnoses. The medical equipment (78.7%) provided was sufficient. An emergency diversion was undertaken in 10.6% of the cases. Although using a different method of data acquisition, this survey confirms previous data on the nature of emergencies and gives plausible numbers. Conclusion Our data strongly argue for the establishment of a standardized database for recording the incidence and nature of in-flight medical emergencies. Such a database could inform on required medical equipment and cabin crew training

  18. Determination of the flight equipment maintenance costs of commuter airlines

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Labor and materials costs associated with maintaining and operating 12 commuter airlines carrying an average of from 42 to 1,100 passengers daily in a variety of aircraft types were studied to determine the total direct maintenance cost per flight hour for the airframe, engine, and avionics and other instruments. The distribution of maintenance costs are analyzed for two carriers, one using turboprop aircraft and the other using piston engine aircraft.

  19. "American Way's" Flight Pattern: A Profile of American Airline's In-Flight Magazine.

    ERIC Educational Resources Information Center

    Rising, Suzanne

    The success of "American Way," American Airline's in-flight magazine, comes from three major factors: the success of American Airlines itself, the high advertising revenue of the magazine, and the quality editorial material produced. Beginning in 1966, "American Way" has evolved from a brochure of flight information and travel…

  20. 15 CFR 806.9 - Airlines and ship operators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Airlines and ship operators. 806.9...) BUREAU OF ECONOMIC ANALYSIS, DEPARTMENT OF COMMERCE DIRECT INVESTMENT SURVEYS § 806.9 Airlines and ship operators. Foreign stations, ticket offices, and terminal and port facilities of U.S. airlines and...

  1. 15 CFR 806.9 - Airlines and ship operators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Airlines and ship operators. 806.9...) BUREAU OF ECONOMIC ANALYSIS, DEPARTMENT OF COMMERCE DIRECT INVESTMENT SURVEYS § 806.9 Airlines and ship operators. Foreign stations, ticket offices, and terminal and port facilities of U.S. airlines and...

  2. 15 CFR 806.9 - Airlines and ship operators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Airlines and ship operators. 806.9...) BUREAU OF ECONOMIC ANALYSIS, DEPARTMENT OF COMMERCE DIRECT INVESTMENT SURVEYS § 806.9 Airlines and ship operators. Foreign stations, ticket offices, and terminal and port facilities of U.S. airlines and...

  3. Seafloor in the Malaysia Airlines Flight MH370 Search Area

    NASA Astrophysics Data System (ADS)

    Smith, Walter H. F.; Marks, Karen M.

    2014-05-01

    On the morning of 8 March 2014, Malaysia Airlines flight MH370, from Kuala Lumpur to Beijing, lost contact with air traffic control shortly after takeoff and vanished. While the world waited for any sign of the missing aircraft and the 239 people on board, authorities and scientists began to investigate what little information was known about the plane's actual movements.

  4. Line-oriented flight training: Northwest Airlines

    NASA Technical Reports Server (NTRS)

    Nunn, H. T.

    1981-01-01

    An exemption from certain FAA regulations which stereotype simulator flight training was obtained and pilots with current line experience were used to prepare and develop scenarios for a program in which each crew member would be trained to recognize and properly use all available resouces. The development of the scenarios for training to proficiency and pilot reaction to the training sessions are discussed.

  5. Operational Evaluatioin of Dynamic Weather Routes at American Airlines

    NASA Technical Reports Server (NTRS)

    McNally, David; Sheth, Kapil; Gong, Chester; Borchers, Paul; Osborne, Jeff; Keany, Desmond; Scott, Brennan; Smith, Steve; Sahlman, Scott; Lee, Chuhan; Cheng, Jinn-Hwei

    2013-01-01

    Dynamic Weather Routes (DWR) is a search engine that continuously and automatically analyzes inflight aircraft in en route airspace and proposes simple route amendments for more efficient routes around convective weather while considering sector congestion, traffic conflicts, and active Special Use Airspace. NASA and American Airlines (AA) are conducting an operational trial of DWR at the AA System Operations Center in Fort Worth, TX. The trial includes only AA flights in Fort Worth Center airspace. Over the period from July 31, 2012 through August 31, 2012, 45% of routes proposed by DWR and evaluated by AA users - air traffic control coordinators and flight dispatchers - were rated as acceptable as proposed or with some modifications. The wind-corrected potential flying time savings for these acceptable routes totals 470 flying min, and results suggest another 1,500 min of potential savings for flights not evaluated due to staffing limitations. A sector congestion analysis shows that in only two out of 83 DWR routes rated acceptable by AA staff were the flights predicted to fly through a congested sector inside of 30 min downstream of present position. This shows that users considered sector congestion data provided by DWR automation and in nearly all cases did not accept routes through over-capacity sectors. It is estimated that 12 AA flights were given reroute clearances as a direct result of DWR for a total savings of 67 flying min.

  6. Development and Preliminary Results of CTAS on Airline Operational Control Center Operations

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard; Beatty, Roger; Falcone, Richard; Engelland, Shawn; Tobias, Leonard (Technical Monitor)

    1998-01-01

    Continued growth and expansion of air traffic and increased air carrier economic pressures have mandated greater flexibility and collaboration in air traffic management. The ability of airspace users to select their own routes, so called "free-flight", and to more actively manage their fleet operations for maximum economic advantage are receiving great attention. A first step toward greater airspace user and service provider collaboration is information sharing. In this work, arrival scheduling and airspace management data generated by the NASA/FAA Center/TRACON Automation System (CTAS) and used by the FAA service provider is shared with an airline with extensive operations within the CTAS operational domain. The design and development of a specialized airline CTAS "repeater" system is described, as well as some preliminary results of the impact and benefits of this information on the air carrier's operations. FAA controller per aircraft scheduling information, such as that provided by CTAS, has never before been shared in real-time with an airline. Expected airline benefits include improved fleet planning and arrival gate management, more informed "hold-go" decisions, and avoidance of costly aircraft diversions to alternate airports when faced with uncertain airborne arrival delays.

  7. Development and Preliminary Results of CTAS on Airline Operational Control Center Operations

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard; Beatty, Roger; Engelland, Shawn

    2004-01-01

    Continued growth and expansion of air traffic and increased air carrier economic pressures have mandated greater flexibility and collaboration in air traffic management. The ability of airspace users to select their own routes, so called "free-flight", and to more actively manage their fleet operations for maximum economic advantage are receiving great attention. A first step toward greater airspace user and service provider collaboration is information sharing. In this work, arrival scheduling and airspace management data generated by the NASA/FAA Center/TRACON Automation System (CTAS) and used by the FAA service provider is shared with an airline with extensive operations within the CTAS operational domain. The design and development of a specialized airline CTAS "repeater" system is described, as well as some preliminary results of the impact and benefits of this information on the air carrier's operations. FAA controller per aircraft scheduling information, such as that provided by CTAS, has never before been shared in real-time with an airline. Expected airline benefits include improved fleet planning and arrival gate management, more informed "hold-go decisions, and avoidance of costly aircraft diversions to alternate airports when faced with uncertain airborne arrival delays.

  8. An analysis of short haul airline operating costs

    NASA Technical Reports Server (NTRS)

    Kanafani, A.; Taghavi, S.

    1975-01-01

    The demand and supply characteristics of short haul air transportation systems are investigated in terms of airline operating costs. Direct, indirect, and ground handling costs are included. Supply models of short haul air transportation systems are constructed.

  9. Enhancing Global Competitiveness: Benchmarking Airline Operational Performance in Highly Regulated Environments

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.; Kane, Karisa D.

    1998-01-01

    Enhancing competitiveness in the global airline industry is at the forefront of attention with airlines, government, and the flying public. The seemingly unchecked growth of major airline alliances is heralded as an enhancement to global competition. However, like many mega-conglomerates, mega-airlines will face complications driven by size regardless of the many recitations of enhanced efficiency. Outlined herein is a conceptual model to serve as a decision tool for policy-makers, managers, and consumers of airline services. This model is developed using public data for the United States (U.S.) major airline industry available from the U/S. Department of Transportation, Federal Aviation Administration, the National Aeronautics and Space Administration, the National Transportation Safety Board, and other public and private sector sources. Data points include number of accidents, pilot deviations, operational performance indicators, flight problems, and other factors. Data from these sources provide opportunity to develop a model based on a complex dot product equation of two vectors. A row vector is weighted for importance by a key informant panel of government, industry, and consumer experts, while a column vector is established with the factor value. The resulting equation, known as the national Airline Quality Rating (AQR), where Q is quality, C is weight, and V is the value of the variables, is stated Q=C[i1-19] x V[i1-19]. Looking at historical patterns of AQR results provides the basis for establishment of an industry benchmark for the purpose of enhancing airline operational performance. A 7 year average of overall operational performance provides the resulting benchmark indicator. Applications from this example can be applied to the many competitive environments of the global industry and assist policy-makers faced with rapidly changing regulatory challenges.

  10. A Behavioral Framework for Managing Massive Airline Flight Disruptions through Crisis Management, Organization Development, and Organization Learning

    NASA Astrophysics Data System (ADS)

    Larsen, Tulinda Deegan

    In this study the researcher provides a behavioral framework for managing massive airline flight disruptions (MAFD) in the United States. Under conditions of MAFD, multiple flights are disrupted throughout the airline's route network, customer service is negatively affected, additional costs are created for airlines, and governments intervene. This study is different from other studies relating to MAFD that have focused on the operational, technical, economic, financial, and customer service impacts. The researcher argues that airlines could improve the management of events that led to MAFD by applying the principles of crisis management where the entire organization is mobilized, rather than one department, adapting organization development (OD) interventions to implement change and organization learning (OL) processes to create culture of innovation, resulting in sustainable improvement in customer service, cost reductions, and mitigation of government intervention. At the intersection of crisis management, OD, and OL, the researcher has developed a new conceptual framework that enhances the resiliency of individuals and organizations in responding to unexpected-yet-recurring crises (e.g., MAFD) that impact operations. The researcher has adapted and augmented Lalonde's framework for managing crises through OD interventions by including OL processes. The OD interventions, coupled with OL, provide a framework for airline leaders to manage more effectively events that result in MAFD with the goal of improving passenger satisfaction, reducing costs, and preventing further government intervention. Further research is warranted to apply this conceptual framework to unexpected-yet-recurring crises that affect operations in other industries.

  11. Collective efficacy in a high-fidelity simulation of an airline operations center

    NASA Astrophysics Data System (ADS)

    Jinkerson, Shanna

    This study investigated the relationships between collective efficacy, teamwork, and team performance. Participants were placed into teams, where they worked together in a high-fidelity simulation of an airline operations center. Each individual was assigned a different role to represent different jobs within an airline (Flight Operations Coordinator, Crew Scheduling, Maintenance, Weather, Flight Scheduling, or Flight Planning.) Participants completed a total of three simulations with an After Action Review between each. Within this setting, both team performance and teamwork behaviors were shown to be positively related to expectations for subsequent performance (collective efficacy). Additionally, teamwork and collective efficacy were not shown to be concomitantly related to subsequent team performance. A chi-square test was used to evaluate existence of performance spirals, and they were not supported. The results of this study were likely impacted by lack of power, as well as a lack of consistency across the three simulations.

  12. The Empirical Analysis of Impact of Alliances on Airline Operations

    NASA Technical Reports Server (NTRS)

    Iatrou, Kostas; Alamdari, Fariba

    2003-01-01

    Airline alliances are dominating the current air transport industry with the largest carriers of the world belonging to one of the four alliance groupings - "Wings", Star Alliance, one world, SkyTeam - which represent 56% of world Revenue Passenger Kilometers. Although much research has been carried out to evaluate the impact of alliance membership on performance of airlines, it would be of interest to ascertain the degree of impact perceived by participating airlines in alliances. It is the purpose of this paper to gather the opinion of all the airlines, belonging to the four global alliance groupings on the impact alliances have had on their traffic and on their performance in general To achieve this, a comprehensive survey of the alliance management departments of airlines participating in the four global strategic alliances was carried out. With this framework the survey has examined which type of cooperation among carriers (FFP, Code Share, Strategic Alliance without antitrust immunity, Strategic Alliance with antitrust immunity) has produced the most positive impact on traffic and which type of route (short haul, long haul, hub-hub, hub-non hub, non hub-non hub) has been mostly affected. In addition, the respondent airlines quantified the effect alliances have had on specific areas of their operation, such as load factors, traffic, costs, revenue and fares. Their responses have been analysed under each global alliances grouping, under airline and under geographic region to establish which group, type of carrier and geographic region has benefited most. The results show that each of the four global alliances groupings has experienced different results according to the type of collaboration agreed amongst their member airlines.

  13. Concorde with the airlines. [operating costs and performance

    NASA Technical Reports Server (NTRS)

    Leyman, C. S.

    1980-01-01

    The only supersonic aircraft in airline service, Concorde, offers the first actual test of supersonic cruise feasibility and the only real experience relative to passenger, airline, and community acceptance. The dominant characteristic of Concorde operations is low aircraft utilization, due partly to the restricted route network. Operating costs, the maintenance/reliability record and associated dispatch delays are discussed. Problems with overwater operations, and the secondary boom phenomena are examined. Monthly average load factors for various routes, major causes of technical delays, aircraft technical performance, and aircraft tracks are graphically depicted.

  14. First Encounters of the Close Kind: The Formation Process of Airline Flight Crews

    DTIC Science & Technology

    1987-01-01

    Everyday there are over 16,500 major commercial airline flights (DC-9, 737 or larger) departing in the United States (G. Mercer, personal communication...ten persons . Yet despite these design and regulatory imperative, the majority of behavioral research in the airline industry has been directed at topics...Flight 90 came back down, hitting the 14th Street Bridge before it crashed into the ice covered Potomac River, killing 74 persons on the aircraft and

  15. 75 FR 17050 - Enhancing Airline Passenger Protections: Extension of Compliance Date for Posting of Flight Delay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ...: Extension of Compliance Date for Posting of Flight Delay Data on Web Sites AGENCY: Office of the Secretary... requires airlines to publish flight delay information on their Web sites. This extension is in response to... requirement to display flight delay data on Web sites in view of the extensive changes to carriers'...

  16. Airline Choice for Domestic Flights in Sao Paulo Metropolitan Area: An Application of the Conditional Logit Model

    NASA Technical Reports Server (NTRS)

    Moreno, Marcelo Baena

    2006-01-01

    Using the conditional (multinomial) LOGIT model, this paper addresses airline choice in the S o Paulo Metropolitan Area. There are two airports in this region, where two, three or even four airlines compete for passengers flying to an array of domestic destinations. The airline choice is believed to be a result of the tradeoff passengers face among flight cost, flight frequency and airline performance. It was found that the lowest fare better explains airline choice than the highest fare, whereas direct flight frequencies give better explanation to airline choice than indirect (connections and stops) and total (direct plus indirect) ones. Out of 15 variables tested, the lowest fare was the variable that best explained airline choice. However, its signal was counterintuitive (positive) possibly because the cheapest airline was offering few flights, so passengers overwhelmingly failed to choose the cheapest airline. The model specification most adjusted to the data considered the lowest fare, direct flight frequency in the travel day and period (morning or afternoon peak) and airline age. Passengers departing from S o Paulo-Guarulhos International Airport (GRU) airport make their airline choice in terms of cost whereas those from Sao Paulo-Congonhas Airport (CGH) airport do not. Finally, senior passengers place more importance on airline age than junior passengers.

  17. Modeling the impact of improved aircraft operations technologies on the environment and airline behavior

    NASA Astrophysics Data System (ADS)

    Foley, Ryan Patrick

    so that the demand and airline operations evolve over time. The studies indicate that, despite an increased cost, improved equipage provides benefits to airline profits as long as equipped airports are available. Improved equipage also reduces fuel burn on a per-flight basis, but depending on the percentage of equipped aircraft in the fleet, the overall airline fuel burn may increase. Improved equipage does increase capacity at busy airports - such as Chicago O'Hare - allowing a greater number of aircraft to operate at the airport on any given day. A sensitivity study indicates that, in the FLEET model, airline profits are most sensitive to changes in the underlying demand for air travel, followed by the price of jet fuel. Equipage related factors, such as the number of equipped airports in the network or the cost of improved equipage, have a comparatively minor influence on airline profit. Of these secondary factors, the assumed decrease in trip or segment distance enabled by improved equipage systems has the greatest impact on profit. Ability to retrofit aircraft and entry-in-service date of equipped aircraft has the greatest impact on the number of equipped aircraft in the fleet.

  18. Using Simulations to Investigate Decision Making in Airline Operations

    NASA Technical Reports Server (NTRS)

    Bruce, Peter J.; Gray, Judy H.

    2003-01-01

    This paper examines a range of methods to collect data for the investigation of decision-making in airline Operations Control Centres (OCCs). A study was conducted of 52 controllers in five OCCs of both domestic and international airlines in the Asia-Pacific region. A range of methods was used including: surveys, interviews, observations, simulations, and think-aloud protocol. The paper compares and evaluates the suitability of these techniques for gathering data and provides recommendations on the application of simulations. Keywords Data Collection, Decision-Making, Research Methods, Simulation, Think-Aloud Protocol.

  19. Risk Analysis for Unintentional Slide Deployment During Airline Operations.

    PubMed

    Ayra, Eduardo S; Insua, David Ríos; Castellanos, María Eugenia; Larbi, Lydia

    2015-09-01

    We present a risk analysis undertaken to mitigate problems in relation to the unintended deployment of slides under normal operations within a commercial airline. This type of incident entails relevant costs for the airline industry. After assessing the likelihood and severity of its consequences, we conclude that such risks need to be managed. We then evaluate the effectiveness of various countermeasures, describing and justifying the chosen ones. We also discuss several issues faced when implementing and communicating the proposed measures, thus fully illustrating the risk analysis process.

  20. United States Airline Transport Pilot International Flight Language Experiences, Report 2: Word Meaning and Pronunciation

    DTIC Science & Technology

    2010-04-01

    Europe everything above 5,000 or 6,000 or whatever is reported in flight level, for example, “flight level five zero.” In a romance language ...United States Airline Transport Pilot International Flight Language Experiences Report 2: Word Meaning and Pronunciation DOT/FAA/AM-10/7 Office of...International Flight Language Experiences Report 2: Word Meaning and Pronunciation 6. Performing Organization Code 7. Author(s) 8. Performing

  1. Airline Transport Pilot, Aircraft Dispatcher, and Flight Navigator. Question Book. Expires September 1, 1991.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This question book was developed by the Federal Aviation Administration (FAA) for testing applicants who are preparing for certification as airline transport pilots, aircraft dispatchers, or flight navigators. The publication contains several innovative features that are a departure from previous FAA publications related to air carrier personnel…

  2. A summary of investigations of severe turbulence incidents using airline flight records

    NASA Technical Reports Server (NTRS)

    Lester, P. F.; Wingrove, R. C.; Bach, R. E.

    1991-01-01

    Work done on the NASA-Ames data base of digital flight records from airliners involved in severe turbulence incidences is summarized. The summary includes descriptions of the archived cases, data processing procedures, estimated errors, analysis procedures, and significant results to date. Thirteen severe turbulence cases are listed.

  3. Staging Airliner Service

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2007-01-01

    There is a general consensus building that historically high fuel prices and greater public awareness of the emissions that result from burning fuel are going to be long-term concerns for those who design, build, and operate airliners. The possibility of saving both fuel and reducing emissions has rekindled interest in breaking very long-range airline flights into multiple stages or even adopting in-flight refueling. It is likely that staging will result in lower fuel burn, and recent published reports have suggested that the savings are substantial, particularly if the airliner is designed from the outset for this kind of operation. Given that staging runs against the design and operation historical trend, this result begs for further attention. This paper will examine the staging question, examining both analytic and numeric performance estimation methodologies to quantify the likely amount of fuel savings that can be expected and the resulting design impacts on the airliner.

  4. Bandwidth Enabled Flight Operations: Examining the Possibilities

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Renema, Fritz; Clancy, Dan (Technical Monitor)

    2002-01-01

    The Bandwidth Enabled Flight Operations project is a research effort at the NASA Ames Research Center to investigate the use of satellite communications to improve aviation safety and capacity. This project is a follow on to the AeroSAPIENT Project, which demonstrated methods for transmitting high bandwidth data in various configurations. For this research, we set a goal to nominally use only 10 percent of the available bandwidth demonstrated by AeroSAPIENT or projected by near-term technology advances. This paper describes the results of our research, including available satellite bandwidth, commercial and research efforts to provide these services, and some of the limiting factors inherent with this communications medium. It also describes our investigation into the needs of the stakeholders (Airlines, Pilots, Cabin Crews, ATC, Maintenance, etc). The paper also describes our development of low-cost networked flight deck and airline operations center simulations that were used to demonstrate two application areas: Providing real time weather information to the commercial flight deck, and enhanced crew monitoring and control for airline operations centers.

  5. Annualized TASAR Benefit Estimate for Alaska Airlines Operations

    NASA Technical Reports Server (NTRS)

    Henderson, Jeffrey

    2015-01-01

    The Traffic Aware Strategic Aircrew Request (TASAR) concept offers onboard automation for the purpose of advising the pilot of traffic compatible trajectory changes that would be beneficial to the flight. A fast-time simulation study was conducted to assess the benefits of TASAR to Alaska Airlines. The simulation compares historical trajectories without TASAR to trajectories developed with TASAR and evaluated by controllers against their objectives. It was estimated that between 8,000 and 12,000 gallons of fuel and 900 to 1,300 minutes could be saved annually per aircraft. These savings were applied fleet-wide to produce an estimated annual cost savings to Alaska Airlines in excess of $5 million due to fuel, maintenance, and depreciation cost savings. Switching to a more wind-optimal trajectory was found to be the use case that generated the highest benefits out of the three TASAR use cases analyzed. Alaska TASAR requests peaked at four to eight requests per hour in high-altitude Seattle center sectors south of Seattle-Tacoma airport.

  6. Airline Crew Training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The discovery that human error has caused many more airline crashes than mechanical malfunctions led to an increased emphasis on teamwork and coordination in airline flight training programs. Human factors research at Ames Research Center has produced two crew training programs directed toward more effective operations. Cockpit Resource Management (CRM) defines areas like decision making, workload distribution, communication skills, etc. as essential in addressing human error problems. In 1979, a workshop led to the implementation of the CRM program by United Airlines, and later other airlines. In Line Oriented Flight Training (LOFT), crews fly missions in realistic simulators while instructors induce emergency situations requiring crew coordination. This is followed by a self critique. Ames Research Center continues its involvement with these programs.

  7. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: algorithm development and flight test results

    SciTech Connect

    Knox, C.E.; Vicroy, D.D.; Simmon, D.A.

    1985-05-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  8. Planning fuel-conservative descents in an airline environmental using a small programmable calculator: Algorithm development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Vicroy, D. D.; Simmon, D. A.

    1985-01-01

    A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.

  9. Fractographic Examination of the Vertical Stabilizer and Rudder from American Airlines Flight 587

    NASA Technical Reports Server (NTRS)

    Fox, Matthew R.; Schultheisz, Carl R.; Reeder, James R.

    2005-01-01

    The first major structural component failure of a composite part on a commercial airplane occurred during the crash of American Airlines Flight 587. The fractured composite lugs that attached the vertical stabilizer to the aircraft tail and the fractured composite honeycomb rudder were examined as part of the National Transportation Safety Board investigation of the accident. In this paper the composite fractures are described and the resulting clues to the failure events are discussed.

  10. Passenger ride quality determined from commercial airline flights

    NASA Technical Reports Server (NTRS)

    Richards, L. G.; Kuhlthau, A. R.; Jacobson, I. D.

    1975-01-01

    The University of Virginia ride-quality research program is reviewed. Data from two flight programs, involving seven types of aircraft, are considered in detail. An apparatus for measuring physical variations in the flight environment and recording the subjective reactions of test subjects is described. Models are presented for predicting the comfort response of test subjects from the physical data, and predicting the overall comfort reaction of test subjects from their moment by moment responses. The correspondence of mean passenger comfort judgments and test subject response is shown. Finally, the models of comfort response based on data from the 5-point and 7-point comfort scales are shown to correspond.

  11. Procedures for estimating the frequency of commercial airline flights encountering high cabin ozone levels

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1979-01-01

    Three analytical problems in estimating the frequency at which commercial airline flights will encounter high cabin ozone levels are formulated and solved: namely, estimating flight-segment mean levels, estimating maximum-per-flight levels, and estimating the maximum average level over a specified flight interval. For each problem, solution procedures are given for different levels of input information - from complete cabin ozone data, which provides a direct solution, to limited ozone information, such as ambient ozone means and standard deviations, with which several assumptions are necessary to obtain the required estimates. Each procedure is illustrated by an example case calculation that uses simultaneous cabin and ambient ozone data obtained by the NASA Global Atmospheric Sampling Program. Critical assumptions are discussed and evaluated, and the several solutions for each problem are compared. Example calculations are also performed to illustrate how variations in lattitude, altitude, season, retention ratio, flight duration, and cabin ozone limits affect the estimated probabilities.

  12. In-Flight Characterization of the Electromagnetic Environment Inside an Airliner

    NASA Technical Reports Server (NTRS)

    Moeller, Karl J.; Dudley, Kenneth L.; Quach, Cuong C.; Koppen, Sandra V.

    2001-01-01

    In 1995, the NASA Langley Research Center conducted a series of experimental measurements that characterized the electromagnetic environment (EME) inside a Boeing 757 airliner while in flight, Measurements were made of the electromagnetic energy coupled into a commercially configured aircraft as it was flown in close proximity to ground-based radio frequency (RF) transmitters operating at approximately 26, 173. and 430 MHz. The goal of this experiment was to collect data for the verification of analytical predictions of the internal aircraft response to an external stimulus. This paper describes the experiment, presents the data collected by it, and discusses techniques used to compute both the magnitude of the electric field illuminating the aircraft and its direction of propagation relative to a coordinate system fixed to the aircraft. The latter is determined from Global Positioning System (GPS) and aircraft Inertial Reference Unit (IRU) data. The paper concludes with an examination of the shielding effectiveness of the test aircraft. as determined by comparison of' the measured internal EME and computed external EME.

  13. Materials Examination of the Vertical Stabilizer from American Airlines Flight 587

    NASA Technical Reports Server (NTRS)

    Fox, Matthew R.; Schultheisz, Carl R.; Reeder, James R.; Jensen, Brian J.

    2005-01-01

    The first in-flight failure of a primary structural component made from composite material on a commercial airplane led to the crash of American Airlines Flight 587. As part of the National Transportation Safety Board investigation of the accident, the composite materials of the vertical stabilizer were tested, microstructure was analyzed, and fractured composite lugs that attached the vertical stabilizer to the aircraft tail were examined. In this paper the materials testing and analysis is presented, composite fractures are described, and the resulting clues to the failure events are discussed.

  14. Sleep, alertness and alertness management among commercial airline pilots on short-haul and long-haul flights.

    PubMed

    Sallinen, Mikael; Sihvola, Maria; Puttonen, Sampsa; Ketola, Kimmo; Tuori, Antti; Härmä, Mikko; Kecklund, Göran; Åkerstedt, Torbjörn

    2017-01-01

    Airline pilots' sleep and on-duty alertness are important focus areas in commercial aviation. Until now, studies pertaining to this topic have mainly focused on specific characteristics of flights and thus a comprehensive picture of the matter is not well established. In addition, research knowledge of what airline pilots actually do to maintain their alertness while being on duty is scarce. To address these gaps in research knowledge, we conducted a field study on a representative sample of the airline pilots of a medium-sized airline. The sample consisted of 90 pilots, of whom 30 flew long-haul (LH) routes, 30 short-haul (SH) routes, and 30 flew both. A total of 86 pilots completed the measurements that lasted for almost two months per pilot. The measurements resulted in a total of 965 flight duty periods (FDPs) including SH flights and 627 FDPs including LH flights. During the measurement periods, sleep was measured by a diary and actigraphs, on-duty alertness by the Karolinska Sleepiness Scale (KSS) in all flight phases, and on-duty alertness management strategies by the diary. Results showed that SH and LH FDPs covering the whole domicile night (00:00-06:00 at home base) were most consistently associated with reduced sleep-wake ratio and subjective alertness. Approximately every 3rd FDP falling into this category involved a reduced sleep-wake ratio (1:3 or lower) and every 2nd a reduced level of subjective alertness (KSS rating 8-9 in at least one flight phase). The corresponding frequencies for the SH and LH FDPs that partly covered the domicile night were every 10th and every 5th FDP and for the pure non-night FDPs every 30th and every 36th FDP, respectively. The results also showed that the pilots tended to increase the use of effective on-duty alertness management strategies (consuming alertness-promoting products and taking strategic naps) in connection with the FDPs that overlapped the domicile night. Finally, the results showed that the frequency of

  15. Severe Turbulence and Maneuvering from Airline Flight Records

    NASA Technical Reports Server (NTRS)

    Wingrove, Rodney C.; Bach, R. E., Jr.

    1994-01-01

    Digital flight records from reported clear-air turbulence incidents are used to determine winds and turbulence, to determine maneuver g loads, and to analyze control problems. Many cases of severe turbulence are found downwind of mountains and thunderstorms where sharp, sudden jolts are associated with vortices in atmospheric waves. Other cases of severe turbulence are round in strong updrafts above thunderstorm buildups that may be undetected by onboard weather radar. An important finding is that there are large maneuvering loads in over half of the reported clear-air turbulence incidents. Maneuvering loads are determined through an analysis of the short-term variations in elevator deflection and aircraft pitch angle. For altitude control in mountain waves the results indicate that small pitch angle changes with proper timing are sufficient to counter variations in vertical wind. For airspeed control in strong mountain waves, however, there is neither the available thrust nor the quickness in engine response necessary to counter the large variations in winds.

  16. An analysis of airline landing flare data based on flight and training simulator measurements

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Schulman, T. M.; Clement, T. M.

    1982-01-01

    Landings by experienced airline pilots transitioning to the DC-10, performed in flight and on a simulator, were analyzed and compared using a pilot-in-the-loop model of the landing maneuver. By solving for the effective feedback gains and pilot compensation which described landing technique, it was possible to discern fundamental differences in pilot behavior between the actual aircraft and the simulator. These differences were then used to infer simulator fidelity in terms of specific deficiencies and to quantify the effectiveness of training on the simulator as compared to training in flight. While training on the simulator, pilots exhibited larger effective lag in commanding the flare. The inability to compensate adequately for this lag was associated with hard or inconsistent landings. To some degree this deficiency was carried into flight, thus resulting in a slightly different and inferior landing technique than exhibited by pilots trained exclusively on the actual aircraft.

  17. Preliminary Survey of Icing Conditions Measured During Routine Transcontinental Airline Operation

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.

    1952-01-01

    Icing data collected on routine operations by four DC-4-type aircraft equipped with NACA pressure-type icing-rate meters are presented as preliminary information obtained from a statistical icing data program sponsored by the NACA with the cooperation of many airline companies and the United States Air Force. The program is continuing on a much greater scale to provide large quantities of data from many air routes in the United States and overseas. Areas not covered by established air routes are also being included in the survey. The four aircraft which collected the data presented in this report were operated by United Air Lines over a transcontinental route from January through May, 1951. An analysis of the pressure-type icing-rate meter was satisfactory for collecting statistical data during routine operations. Data obtained on routine flight icing encounters from.these four instrumented aircraft, although insufficient for a conclusive statistical analysis, provide a greater quantity and considerably more realistic information than that obtained from random research flights. A summary of statistical data will be published when the information obtained daring the 1951-52 icing season and that to be obtained during the 1952-53 season can be analyzed and assembled. The 1951-52 data already analyzed indicate that the quantity, quality, and range of icing information being provided by this expanded program should afford a sound basis for ice-protection-system design by defining the important meteorological parameters of the icing cloud.

  18. NASA Research to Support the Airlines

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a PowerPoint presentation that was a review of NASA projects that support airline operations. It covered NASA tasks that have provided new tools to the airline operations center and flight deck including the Flight Awareness Collaboration Tool, Dynamic Weather Routes, Traffic Aware Strategic Aircrew Requests, and Airplane State Awareness and Prediction Technologies. This material is very similar to other previously approved presentations with the same title.

  19. Statistical Survey of Icing Data Measured on Scheduled Airline Flights over the United States and Canada from November 1951 to June 1952

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J

    1955-01-01

    A statistical survey and a preliminary analysis are made of icing data collected from scheduled flights over the United States and Canada from November 1951 to June 1952 by airline aircraft equipped with NACA pressure-type icing-rate meters. This interim report presents information obtained from a continuing program sponsored by the NACA with the cooperation of the airlines. An analysis of over 600 icing encounters logged by three airlines operating in the United States, one operating in Canada and one operating up the coast to Alaska, is presented. The icing conditions encountered provided relative frequencies of many icing-cloud variables, such as horizontal extent, vertical thickness, temperatures, icing rate, liquid-water content, and total ice accumulation. Liquid-water contents were higher than data from earlier research flights in layer-type clouds but slightly lower than previous data from cumulus clouds. Broken-cloud conditions, indicated by intermittent icing, accounted for nearly one-half of all the icing encounters. About 90 percent of the encounters did not exceed a distance of 120 miles, and continuous icing did not exceed 50 miles for 90 percent of the unbroken conditions. Icing cloud thicknesses measured during climbs and descents were less than 4500 feet for 90 percent of the vertical cloud traverses.

  20. Error prevention as developed in airlines.

    PubMed

    Logan, Timothy J

    2008-01-01

    The airline industry is a high-risk endeavor. Tens of thousands of flights depart each day carrying millions of passengers with the potential for catastrophic consequences. To manage and mitigate this risk, airline operators, labor unions, and the Federal Aviation Administration have developed a partnership approach to improving safety. This partnership includes cooperative programs such as the Aviation Safety Action Partnership and the Flight Operational Quality Assurance. It also involves concentrating on the key aspects of aircraft maintenance reliability and employee training. This report discusses recent enhancements within the airline industry in the areas of proactive safety programs and the move toward safety management systems that will drive improvements in the future.

  1. Error Prevention as Developed in Airlines

    SciTech Connect

    Logan, Timothy J.

    2008-05-01

    The airline industry is a high-risk endeavor. Tens of thousands of flights depart each day carrying millions of passengers with the potential for catastrophic consequences. To manage and mitigate this risk, airline operators, labor unions, and the Federal Aviation Administration have developed a partnership approach to improving safety. This partnership includes cooperative programs such as the Aviation Safety Action Partnership and the Flight Operational Quality Assurance. It also involves concentrating on the key aspects of aircraft maintenance reliability and employee training. This report discusses recent enhancements within the airline industry in the areas of proactive safety programs and the move toward safety management systems that will drive improvements in the future.

  2. A Flight Deck Decision Support Tool for Autonomous Airborne Operations

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin

    2002-01-01

    NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.

  3. THE LOSS OF MALAYSIA AIRLINES FLIGHT MH17: A FORENSIC AND HUMANITARIAN TASK.

    PubMed

    Ranson, David

    2015-06-01

    While forensic medical tasks are usually associated with supporting the criminal justice system, there are a range of forensic medical skills that can be brought to bear on addressing humanitarian activities. Disaster victim identification is a procedure that has achieved international standardisation through the work of a multinational Interpol Standing Committee. While part of a police organisation, it includes forensic pathologists, anthropologists, odontologists and molecular biologists who provide most of the specialist scientific input regarding identification that is integrated with police processes such as document examination and fingerprinting. The loss of Malaysian Airlines Flight MH17 represented a major activation of these procedures in an environment that had both humanitarian and forensic criminal investigation components. The information that is derived from the processes involved in disaster victim identification has a value that goes far beyond the determination of identity. It has an important humanitarian role in supporting the family and friends of the victims in their bereavement journey.

  4. Coping with Irregular Operations: Implications for a Free Flight Environment

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith; Davison, Jeannie; Rodvold, Michelle; Rosekind, Mark R. (Technical Monitor)

    1997-01-01

    Irregular operations involve disruption of scheduled airline operations. They ate of concern to the carriers because they cost money, require personnel effort, and may harm customer good will. Irregular operations may result from aircraft system malfunctions that take planes out of service or result in cancellations, Might system problems or passenger medical emergencies that require diversions, local airport problems that may close down a runway, or weather systems that restrict flow into airports or regions. At the heart of responding to irregular operations is distributed decision making by members of airline operations centers, pilots, and the air traffic control system. Six U.S. carriers participated in a study in which we observed strategies used by operations center personnel to handle various classes of irregular operations. We focused on situations that are most disruptive to regular operations and are most difficult to cope with. We also sought to identify classes of events that would be most affected by changes in the air traffic management system. How a carrier deals with disruptions to its schedule reflects its philosophy and primary goals, as well as its resources. Size and type of operations (short or long-haul) determine which problems have priority. Each airline has different technological support tools to aid in flight planning and replanning, and some carriers have established contingency procedures for coping with various situations. We also examined differences in extent and type of interaction between ABC personnel and various elements of the air traffic system as they managed various problems: who interacts with AM what situations prompt interaction, how often these occur, and the outcomes and Perceived benefits. Use of the expanded NRP program was also studied, along with its advantages to the individual companies. We also examined the implications of the proposed change to a free flight environment on airline strategies for coping with

  5. "A brilliant ball of fire." The sabotage of United Airlines Flight 629.

    PubMed

    Murphy, G K

    1986-03-01

    Among the known causes of aircraft disasters, sabotage is perhaps the most terrifying and difficult to comprehend. Bombs have been exploded in at least 34 commercial aircraft, with the resultant loss of more than 300 lives. Motives for these acts include profit, the deaths of certain persons, and politics. On November 1, 1955, United Airlines Flight 629, bound to Denver-Portland, exploded and burned in flight near Longmont, Colorado, a few minutes after takeoff, with the loss of all 44 on board. Investigation revealed that the plane had been destroyed by the explosion of a bomb that had been placed in the rear luggage hold in Denver. Twelve days after the disaster, John Gilbert Graham, the son of one of the female passengers, was arrested and charged with murder. He reportedly admitted placing a time bomb on board the aircraft, apparently in order to collect $37,500.00 in life insurance that he had taken on his mother's life. Though he soon recanted, he was convicted of murder and was executed. The potential for additional such crimes remains.

  6. Flight Operations Analysis Tool

    NASA Technical Reports Server (NTRS)

    Easter, Robert; Herrell, Linda; Pomphrey, Richard; Chase, James; Wertz Chen, Julie; Smith, Jeffrey; Carter, Rebecca

    2006-01-01

    Flight Operations Analysis Tool (FLOAT) is a computer program that partly automates the process of assessing the benefits of planning spacecraft missions to incorporate various combinations of launch vehicles and payloads. Designed primarily for use by an experienced systems engineer, FLOAT makes it possible to perform a preliminary analysis of trade-offs and costs of a proposed mission in days, whereas previously, such an analysis typically lasted months. FLOAT surveys a variety of prior missions by querying data from authoritative NASA sources pertaining to 20 to 30 mission and interface parameters that define space missions. FLOAT provides automated, flexible means for comparing the parameters to determine compatibility or the lack thereof among payloads, spacecraft, and launch vehicles, and for displaying the results of such comparisons. Sparseness, typical of the data available for analysis, does not confound this software. FLOAT effects an iterative process that identifies modifications of parameters that could render compatible an otherwise incompatible mission set.

  7. 78 FR 6067 - BE-37: Survey of U.S. Airline Operators' Foreign Revenues and Expenses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... public that it is conducting a mandatory survey titled Survey of U.S. Airline Operators' Foreign Revenues... Investment and Trade in Services Survey Act (22 U.S.C. 3101-3108, as amended). SUPPLEMENTARY INFORMATION... annual public reporting burden for this collection of information is 4 hours per response. Send...

  8. Flight test evaluation of the Stanford University/United Airlines differential GPS Category 3 automatic landing system

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.; Ncnally, B. David

    1995-01-01

    Test flights were conducted to evaluate the capability of Differential Global Positioning System (DGPS) to provide the accuracy and integrity required for International Civil Aviation Organization (ICAO) Category (CAT) 3 precision approach and landings. These test flights were part of a Federal Aviation Administration (FAA) program to evaluate the technical feasibility of using DGPS based technology for CAT 3 precision approach and landing applications. A United Airlines Boeing 737-300 (N304UA) was equipped with DGPS receiving equipment and additional computing capability provided by Stanford University. The test flights were conducted at NASA Ames Research Center's Crows Landing Flight Facility, Crows Landing, California. The flight test evaluation was based on completing 100 approaches and autolandings; 90 touch and go, and 10 terminating with a full stop. Two types of accuracy requirements were evaluated: 1) Total system error, based on the Required Navigation Performance (RNP), and 2) Navigation sensor error, based on ICAO requirements for the Microwave Landing System (MLS). All of the approaches and autolandings were evaluated against ground truth reference data provided by a laser tracker. Analysis of these approaches and autolandings shows that the Stanford University/United Airlines system met the requirements for a successful approach and autolanding 98 out of 100 approaches and autolandings, based on the total system error requirements as specified in the FAA CAT 3 Level 2 Flight Test Plan.

  9. Structural Analysis for the American Airlines Flight 587 Accident Investigation: Global Analysis

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Lovejoy, Andrew E.; Hilburger, Mark W.; Moore, David F.

    2005-01-01

    NASA Langley Research Center (LaRC) supported the National Transportation Safety Board (NTSB) in the American Airlines Flight 587 accident investigation due to LaRC's expertise in high-fidelity structural analysis and testing of composite structures and materials. A Global Analysis Team from LaRC reviewed the manufacturer s design and certification procedures, developed finite element models and conducted structural analyses, and participated jointly with the NTSB and Airbus in subcomponent tests conducted at Airbus in Hamburg, Germany. The Global Analysis Team identified no significant or obvious deficiencies in the Airbus certification and design methods. Analysis results from the LaRC team indicated that the most-likely failure scenario was failure initiation at the right rear main attachment fitting (lug), followed by an unstable progression of failure of all fin-to-fuselage attachments and separation of the VTP from the aircraft. Additionally, analysis results indicated that failure initiates at the final observed maximum fin loading condition in the accident, when the VTP was subjected to loads that were at minimum 1.92 times the design limit load condition for certification. For certification, the VTP is only required to support loads of 1.5 times design limit load without catastrophic failure. The maximum loading during the accident was shown to significantly exceed the certification requirement. Thus, the structure appeared to perform in a manner consistent with its design and certification, and failure is attributed to VTP loads greater than expected.

  10. Seafloor in the Expanded Malaysia Airlines Flight MH370 Search Area

    NASA Astrophysics Data System (ADS)

    Smith, W. H. F.; Marks, K. M.; Beaman, R. J.

    2014-12-01

    Smith and Marks (Eos Trans. AGU, 95(21), 27 May 2014) illustrated a map of the seafloor in the Malaysia Airlines Flight MH370 search area. This map showed a bathymetric model that is constructed from a combination of available ship soundings and depths estimated from satellite altimetry. They noted that available depth measurements covered only 5% of their study region, and that very few of these measurements were collected using modern multibeam and navigation systems. Recently the MH370 search has been expanded along the "7th Arc" to encompass newly prioritized underwater search areas identified in an Australian Transport Safety Bureau report (AE-2014-054, 26 June 2014). While the new "Priority" search area is within the Eos article Fig. 1, the new "Wide" search area extends beyond the region evaluated in Eos. Additionally, multibeam data that were not incorporated in the bathymetric model have been made available to us after the Eos article was published. This presentation will update and extend the study published in Eos. We will present illustrations of the expanded region, sounding coverage, and tectonic features that are associated with steep topographic slopes. Our results include comparisons of multibeam survey depths and bathymetric model depths. The standard deviation of the differences is 182 m, with the greatest differences (exceeding 1000 m) over steep topographic slopes, and the smallest over low-relief ocean floor. This is consistent with differences found by Smith and Sandwell (JGR, 99(B11), 1994) between soundings and bathymetric predictions from altimetry. Such depth differences are common where bathymetric model constraints are sparse, which is typical of many of the world's oceans.

  11. The Temporal Configuration of Airline Networks

    NASA Technical Reports Server (NTRS)

    Burghouwt, Guillaume; deWit, Jaap

    2003-01-01

    The deregulation of US aviation in 1978 resulted in the reconfiguration of airline networks into hub-and-spoke systems, spatially concentrated around a small number of central airports or 'hubs' through which an airline operates a number of daily waves of flights. A hub-and-spoke network requires a concentration of traffic in both space and time. In contrast to the U.S. airlines, European airlines had entered the phase of spatial network concentration long before deregulation. Bilateral negotiation of traffic fights between governments forced European airlines to focus their networks spatially on small number of 'national' airports. In general, these star-shaped networks were not coordinated in time. Transfer opportunities at central airports were mostly created 'by accident'. With the deregulation of the EU air transport market from 1988 on, a second phase of airline network concentration started. European airlines concentrated their networks in time by adopting or intensifying wave-system structures in their flight schedules. Temporal concentration may increase the competitive position of the network in a deregulated market because of certain cost and demand advantages.

  12. IOPS advisor: Research in progress on knowledge-intensive methods for irregular operations airline scheduling

    NASA Technical Reports Server (NTRS)

    Borse, John E.; Owens, Christopher C.

    1992-01-01

    Our research focuses on the problem of recovering from perturbations in large-scale schedules, specifically on the ability of a human-machine partnership to dynamically modify an airline schedule in response to unanticipated disruptions. This task is characterized by massive interdependencies and a large space of possible actions. Our approach is to apply the following: qualitative, knowledge-intensive techniques relying on a memory of stereotypical failures and appropriate recoveries; and quantitative techniques drawn from the Operations Research community's work on scheduling. Our main scientific challenge is to represent schedules, failures, and repairs so as to make both sets of techniques applicable to the same data. This paper outlines ongoing research in which we are cooperating with United Airlines to develop our understanding of the scientific issues underlying the practicalities of dynamic, real-time schedule repair.

  13. Laminar Flow Control Leading Edge Systems in Simulated Airline Service

    NASA Technical Reports Server (NTRS)

    Wagner, R. D.; Maddalon, D. V.; Fisher, D. F.

    1988-01-01

    Achieving laminar flow on the wings of a commercial transport involves difficult problems associated with the wing leading edge. The NASA Leading Edge Flight Test Program has made major progress toward the solution of these problems. The effectiveness and practicality of candidate laminar flow leading edge systems were proven under representative airline service conditions. This was accomplished in a series of simulated airline service flights by modifying a JetStar aircraft with laminar flow leading edge systems and operating it out of three commercial airports in the United States. The aircraft was operated as an airliner would under actual air traffic conditions, in bad weather, and in insect infested environments.

  14. Structural Analysis of the Right Rear Lug of American Airlines Flight 587

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Glaessgen, Edward H.; Mason, Brian H.; Krishnamurthy, Thiagarajan; Davila, Carlos G.

    2006-01-01

    A detailed finite element analysis of the right rear lug of the American Airlines Flight 587 - Airbus A300-600R was performed as part of the National Transportation Safety Board s failure investigation of the accident that occurred on November 12, 2001. The loads experienced by the right rear lug are evaluated using global models of the vertical tail, local models near the right rear lug, and a global-local analysis procedure. The right rear lug was analyzed using two modeling approaches. In the first approach, solid-shell type modeling is used, and in the second approach, layered-shell type modeling is used. The solid-shell and the layered-shell modeling approaches were used in progressive failure analyses (PFA) to determine the load, mode, and location of failure in the right rear lug under loading representative of an Airbus certification test conducted in 1985 (the 1985-certification test). Both analyses were in excellent agreement with each other on the predicted failure loads, failure mode, and location of failure. The solid-shell type modeling was then used to analyze both a subcomponent test conducted by Airbus in 2003 (the 2003-subcomponent test) and the accident condition. Excellent agreement was observed between the analyses and the observed failures in both cases. The moment, Mx (moment about the fuselage longitudinal axis), has significant effect on the failure load of the lugs. Higher absolute values of Mx give lower failure loads. The predicted load, mode, and location of the failure of the 1985- certification test, 2003-subcomponent test, and the accident condition are in very good agreement. This agreement suggests that the 1985-certification and 2003-subcomponent tests represent the accident condition accurately. The failure mode of the right rear lug for the 1985-certification test, 2003-subcomponent test, and the accident load case is identified as a cleavage-type failure. For the accident case, the predicted failure load for the right rear lug

  15. Perspectives of those impacted: airline pilot's perspective.

    PubMed

    Butler, G C; Nicholas, J; Lackland, D T; Friedberg, W

    2000-11-01

    The airline pilot operates within an environment that consists of circadian dysrhythmia, reduced atmospheric pressure, mild hypoxia, low humidity, and exposure to sound, vibration, cosmic-radiation, and magnetic-field exposure. These occupational exposures present physiological challenges to the long term health of the airline pilot. In particular, exposure to cosmic radiation and its carcinogenic potential have recently received considerable attention. Given the complexity of the environment and possible synergistic exposures, there is an immediate requirement for comprehensive research into both cosmic-radiation and magnetic-field exposures in airline pilots. In response, the Airline Pilots Association International in conjunction with the Medical University of South Carolina (Department of Biometry and Epidemiology) has initiated an extensive research program into these occupational exposures. These investigations include ground based calculations, flight-dose estimates, epidemiological survey and exposure assessment, and biological marker analysis.

  16. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... certain flight tests. (a) No person may operate a civil aircraft (except a manned free balloon) that is... used for a flight test for an airline transport pilot certificate or a class or type rating on...

  17. Evaluation of Improved Pushback Forecasts Derived from Airline Ground Operations Data

    NASA Technical Reports Server (NTRS)

    Carr, Francis; Theis, Georg; Feron, Eric; Clarke, John-Paul

    2003-01-01

    Accurate and timely predictions of airline pushbacks can potentially lead to improved performance of automated decision-support tools for airport surface traffic, thus reducing the variability and average duration of costly airline delays. One factor which affects the realization of these benefits is the level of uncertainty inherent in the turn processes. To characterize this inherent uncertainty, three techniques are developed for predicting time-to-go until pushback as a function of available ground-time; elapsed ground-time; and the status (not-started/in-progress/completed) of individual turn processes (cleaning, fueling, etc.). These techniques are tested against a large and detailed dataset covering approximately l0(exp 4) real-world turn operations obtained through collaboration with Deutsche Lufthansa AG. Even after the dataset is filtered to obtain a sample of turn operations with minimal uncertainty, the standard deviation of forecast error for all three techniques is lower-bounded away from zero, indicating that turn operations have a significant stochastic component. This lower-bound result shows that decision-support tools must be designed to incorporate robust mechanisms for coping with pushback demand stochasticity, rather than treating the pushback demand process as a known deterministic input.

  18. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    NASA Technical Reports Server (NTRS)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  19. The relationship between labor unions and safety in US airlines: Is there a "union effect?"

    NASA Astrophysics Data System (ADS)

    Zapf, Renee Catherine

    Every airline union claims to work for safety and presents anecdotes where greater airline safety has been achieved through union efforts. The effect unionization has on safety outcomes in U.S. commercial airlines, however, wasn't found to be previously tested. Studies have shown that in industries such as coal mining, retail, and construction, unionization does lead to an increase in safety. This study evaluated the safety rates of 15 major US commercial airlines to compare the difference between unionized and non-unionized airlines. These safety rates were compared based on if and how long each airline's pilots and flight attendants have been unionized, to determine if unionization had an effect on safety outcomes. The 15 airlines included in the study identified as operating most of the years between 1990 and 2013, with annual departures averaging over 130,000, available through the Bureau of Transportation Statistics. Accident and Incident information was acquired through the National Transportation Safety Board database. The number of accident and incidents divided by the total departures at each airline was used as the safety rate. Union websites provided information on unionization at the airlines. Due to the complex nature of the aviation industry, a number of confounding factors could have affected the tests, including mergers, route structures, and legislation. To help control for these confounding factors, this study was limited to airlines with a stable presence in the industry over time, which limited the number of airlines included. No significant difference was found between unionized and non-unionized airlines in this study, though the mean safety rate of unionized airlines was found be better than non-unionized airlines. This study did not take into account safety improvements that were union-backed and eventually required at all airlines, regardless of unionization. Due to the large sample size of the small population the difference in safety rate

  20. Circadian adaptation of airline pilots during extended duration operations between the USA and Asia.

    PubMed

    Gander, Philippa; van den Berg, Margo; Mulrine, Hannah; Signal, Leigh; Mangie, Jim

    2013-10-01

    This study tracked circadian adaptation among airline pilots before, during, and after trips where they flew from Seattle (SEA) or Los Angeles (LAX) to Asia (7--9 time zones westward), spent 7--12 d in Asia, and then flew back to the USA. In Asia, pilots' exposures to local time cues and sleep opportunities were constrained by duty (short-haul flights crossing ≤ 1 time zone/24 h). Fourteen captains and 16 first officers participated (median age = 56 versus 48 yrs, p.U) < 0.001). Their sleep was monitored (actigraphy, duty/sleep diaries) from 3 d pre-trip to 5 d post-trip. For every flight, Karolinska Sleepiness and Samn-Perelli Fatigue scales and 5-min psychomotor vigilance task (PVT) tests were completed pre-flight and at top of descent (TOD). Participants had ≥ 3 d free of duty prior to outbound flight(s). From 72--24 h prior to departure (baseline sleep), mean total sleep/24 h (TST) = 7.00 h (SD = 1.18 h) and mean sleep efficiency = 87% (SD = 4.9%). Most pilots (23/30) flew direct to and from Asia, but 7 LAX-based pilots flew via a 1-d layover in Honolulu (HNL). On flights with ≥ 2 pilots, mean total in-flight sleep varied from 0.40 to 2.09 h outbound and from 0.74 to 1.88 h inbound. Duty patterns in Asia were variable, with ≤ 2 flights/d (mean flight duration = 3.53 h, SD = 0.53 h). TST on days 17 in Asia did not differ from baseline (p.F) = 0.2031). However, mean sleep efficiency was significantly lower than baseline on days 5--7 (p.F) = 0.0041). More pilots were on duty between 20:00 and 24:00 h on days 57 (mean = 21%) than on days 24 (mean = 14%). Sleep propensity distribution phase markers and chi-square periodogram analyses suggest that adaptation to local time was complete by day 4 in Asia. On pre-flight PVT tests in Asia, the slowest 10% of responses improved for flights departing 14:00--19:59 h (p.F) = 0.0484). At TOD, the slowest 10% of responses improved across days for flights arriving 14:00--19:59 h (p.F) = 0.0349) and 20:00--01:59 h (p

  1. Left seat command or leadership flight, leadership training and research at North Central Airlines

    NASA Technical Reports Server (NTRS)

    Foster, G. C.; Garvey, M. C.

    1980-01-01

    The need for flight leadership training for flight deck crewmembers is addressed. A management grid is also described which provides a quantitative management language against which any number of management behaviors can be measured.

  2. 29 CFR 825.802 - Special rules for airline flight crew employees, calculation of leave.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flight crew employee needs to take FMLA leave for a two-hour physical therapy appointment, the employer... flight crew employees are subject to § 825.205(a)(2), the physical impossibility provision....

  3. 29 CFR 825.802 - Special rules for airline flight crew employees, calculation of leave.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flight crew employee needs to take FMLA leave for a two-hour physical therapy appointment, the employer... flight crew employees are subject to § 825.205(a)(2), the physical impossibility provision....

  4. In-flight monitoring of particle deposition in the environmental control systems of commercial airliners in China

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Xu, Qiuyu; Liu, Wei; Lin, Chao-Hsin; Wei, Daniel; Baughcum, Steven; Norris, Sharon; Chen, Qingyan

    2017-04-01

    Severe air pollution and low on-time performance of commercial flights in China could increase particle deposition in the environmental control systems (ECSs) of commercial airliners. The particles deposited in the ECSs could negatively affect the performance of the airplanes. In addition, particles that penetrate into the aircraft cabin could adversely impact the health of passengers and crew members. This investigation conducted simultaneous measurements of particle mass concentration and size distribution inside and outside the cabin during 64 commercial flights of Boeing 737 and Airbus 320 aircraft departing from or arriving at Tianjin Airport in China. The results showed that the PM2.5 mass concentration deposition in the ECSs of these airplanes ranged from 50% to 90%, which was much higher than that measured in an airplane with a ground air-conditioning unit. The average deposition rates of particles with diameters of 0.5-1 μm, 1-2 μm, 2-5 μm, 5-10 μm, and >10 μm were 89 ± 8%, 85 ± 13%, 80 ± 13%, 73 ± 15%, and 80 ± 14%, respectively. The in-flight measurement results indicated that the particle concentration in the breathing zone was higher than that in the air-supply zone, which implies a significant contribution by particles in the interior of the cabin. Such particles come from human emissions or particle resuspension from interior surfaces.

  5. Operational requirements for flight control and navigation systems for short haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Morrison, J. A.

    1978-01-01

    To provide a background for evaluating advanced STOL systems concepts, a number of short haul and STOL airline operations in the United States and one operation in Canada were studied. A study of flight director operational procedures for an advanced STOL research airplane, the Augmented Wing Jet STOL Research Airplane, was conducted using the STOLAND simulation facility located at the Ames Changes to the advanced digital flight control system (STOLAND) installed in the Augmentor Wing Airplane are proposed to improve the mode sequencing to simplify pilot procedures and reduce pilot workload.

  6. Study of short-haul aircraft operating economics. Phase 2: An analysis of the impact of jet modernization on local service airline operating costs

    NASA Technical Reports Server (NTRS)

    Andrastek, D. A.

    1976-01-01

    The objectives of this phase of the study were (1) to assess the 10 year operating cost trends of the local service airlines operating in the 1965 through 1974 period, (2) to glean from these trends the technological and operational parameters which were impacted most significantly by the transition to newer pure jet, short haul transports, and effected by changing fuel prices and cost of living indices, and (3) to develop, construct, and evaluate an operating cost forecasting model which would incorporate those factors which best predicted airline total operating cost behavior over that 10-year period.

  7. Flight summaries and temperature climatology at airliner cruise altitudes from GASP (Global Atmospheric Sampling Program) data

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Jasperson, W. H.

    1983-01-01

    Temperature data obtained by the Global Atmospheric Sampling Program (GASP) during the period March 1975 to July 1979 are compiled to form flight summaries of static air temperature and a geographic temperature climatology. The flight summaries include the height and location of the coldest observed temperature and the mean flight level, temperature and the standard deviation of temperature for each flight as well as for flight segments. These summaries are ordered by route and month. The temperature climatology was computed for all statistically independent temperture data for each flight. The grid used consists of 5 deg latitude, 30 deg longitude and 2000 feet vertical resolution from FL270 to FL430 for each month of the year. The number of statistically independent observations, their mean, standard deviation and the empirical 98, 50, 16, 2 and .3 probability percentiles are presented.

  8. Norwegian airline passengers are not more afraid of flying after the terror act of September 11. The flight anxiety, however, is significantly attributed to acts of terrorism

    PubMed Central

    Ekeberg, Øivind; Fauske, Berit; Berg-Hansen, Bente

    2014-01-01

    The aim of this paper is to study: (1) the prevalence of flight anxiety among Norwegian airline passengers; (2) situations that may be of concern during flights and situations not related to flying; (3) whether passengers feel more afraid after the terror act of September 11, 2001; and (4) whether passengers were more afraid in 2002 than in 1986.A questionnaire was distributed during domestic flights in Norway in 1986 and 2002. To asses flight anxiety, a six point scale was used, from 0 = not afraid at all, to 5 = always very afraid, and sometimes avoid flying because of that. A 10-cm visual analogue scale (VAS) was used to measure the degree of anxiety. There were 50.8% who were not afraid at all. There were 12 women (5.2%) and one man (0.4%) with flight phobia. However, 22 (4.5%) had cancelled flights because of anxiety during the last two years. Situations that caused most concern during flights were turbulence and fear of terrorism and highjacking. After September 11, 48% were not more afraid, 38% a little more, 10% moderately, 3% rather much and 2% very much. The passengers, however, were not more afraid of flying in 2002 than in 1986. About 3% of Norwegian airline passengers have a flight phobia. Women are significantly more concerned than men. The impact of the terror act September 11, 2001 was rather moderate. The level of flight anxiety among Norwegian airline passengers was not significantly different in 2002 and 1986. PMID:24934082

  9. Norwegian airline passengers are not more afraid of flying after the terror act of September 11. The flight anxiety, however, is significantly attributed to acts of terrorism.

    PubMed

    Ekeberg, Oivind; Fauske, Berit; Berg-Hansen, Bente

    2014-10-01

    The aim of this paper is to study: (1) the prevalence of flight anxiety among Norwegian airline passengers; (2) situations that may be of concern during flights and situations not related to flying; (3) whether passengers feel more afraid after the terror act of September 11, 2001; and (4) whether passengers were more afraid in 2002 than in 1986.A questionnaire was distributed during domestic flights in Norway in 1986 and 2002. To asses flight anxiety, a six point scale was used, from 0 = not afraid at all, to 5 = always very afraid, and sometimes avoid flying because of that. A 10-cm visual analogue scale (VAS) was used to measure the degree of anxiety. There were 50.8% who were not afraid at all. There were 12 women (5.2%) and one man (0.4%) with flight phobia. However, 22 (4.5%) had cancelled flights because of anxiety during the last two years. Situations that caused most concern during flights were turbulence and fear of terrorism and highjacking. After September 11, 48% were not more afraid, 38% a little more, 10% moderately, 3% rather much and 2% very much. The passengers, however, were not more afraid of flying in 2002 than in 1986. About 3% of Norwegian airline passengers have a flight phobia. Women are significantly more concerned than men. The impact of the terror act September 11, 2001 was rather moderate. The level of flight anxiety among Norwegian airline passengers was not significantly different in 2002 and 1986.

  10. The European project CASAM for the protection of commercial airliners in flight

    NASA Astrophysics Data System (ADS)

    Vergnolle, Jean-François

    2007-10-01

    As part of mass transportation systems, commercial aircraft are a potential target for terrorists because they represent one of the best achievements of our society. As a result, an attack would have a large psychological impact on people and economic activity. Several European Commission-funded Research and Technology programs, such as SAFEE and PALMA, are dedicated to technologies and systems that will be implemented onboard aircraft in the near future to increase the security of commercial flights. One of these programs, CASAM, is focusing on a potential solution to reduce aircraft vulnerability against Man Portable Air Defense Systems (MANPADS) during takeoff, ascent and landing. A specific onboard jamming system will be developed, meeting stringent yet competitive requirements that deal with high reliability, low cost and minimal installation constraints. The overall objective of the CASAM Project1 is to design and validate a closed-loop, laser-based DIRCM (Directed IR Countermeasure) module for jamming fired missiles. It will comply with commercial air transportation constraints, including the normal air traffic control rules. For example, the following aspects will be considered: - Environmental friendliness for ground objects and inhabitants close to airports, aircraft safety (maintenance, handling and usage) and high efficiency against the recognized threats; - Upgradability for further and future disseminated threats - Adherence to commercial operation budgets and processes

  11. Fuel Consumption Modeling of a Transport Category Aircraft Using Flight Operations Quality Assurance Data: A Literature Review

    NASA Technical Reports Server (NTRS)

    Stolzer, Alan J.

    2002-01-01

    Fuel is a major cost expense for air carriers. A typical airline spends 10% of its operating budget on the purchase of jet fuel, which even exceeds its expenditures on aircraft acquisitions. Thus, it is imperative that fuel consumption be managed as wisely as possible. The implementation of Flight Operations Quality Assurance (FOQA) programs at airlines may be able to assist in this management effort. The purpose of the study is to examine the literature regarding fuel consumption by air carriers, the literature related to air carrier fuel conservation efforts, and the literature related to the appropriate statistical methodologies to analyze the FOQA-derived data.

  12. 14 CFR 375.22 - Flight operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight operations. 375.22 Section 375.22 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... Flight operations. Flights of foreign civil aircraft in the United States shall be conducted...

  13. The Airline Quality Rating 2001

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2001-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, Airline Quality Rating 2001, reflects monthly Airline Quality Rating scores for 2000. AQR scores for the calendar year 2000 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating 2001 is a summary of month-by-month quality ratings for the ten major U.S. airlines operating during 2000. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, major airlines comparative performance for the calendar year of 2000 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for major airlines domestic operations for the 12 month period of 2000, and industry average results. Also, comparative Airline Quality Rating data for 1999 are included for each airline to provide historical perspective regarding performance quality in the industry.

  14. The Airline Quality Rating 2002

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2002-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, Airline Quality Rating 2002, reflects monthly Airline Quality Rating scores for 2001. AQR scores for the calendar year 2001 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating 2002 is a summary of month-by-month quality ratings for the 11 largest U.S. airlines operating during 2001. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2001 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2001, and industry average results. Also, comparative Airline Quality Rating data for 2000 are included for each airline to provide historical perspective regarding performance quality in the industry.

  15. The Airline Quality Rating 2003

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2003-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, the Airline Quality Rating 2003, reflects monthly Airline Quality Rating scores for 2002. AQR scores for the calendar year 2002 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating 2003 is a summary of month-by-month quality ratings for the 10 largest U.S. airlines operating during 2002. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of ontime arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2002 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2002, and industry average results. Also, comparative Airline Quality Rating data for 2001 are included for each airline to provide historical perspective regarding performance quality in the industry.

  16. In-Flight Medical Incapacitation and Impairment of U.S. Airline Pilots: 1993 to 1998

    DTIC Science & Technology

    2004-10-01

    diabetes , pulmonary embolism, cerebral vascular accident, atrial fibrillation, and intestinal hemorrhage of unknown etiology. For- tunately, none of... diabetes (4). Preston attributed the low incidence of cardiovascular groundings to possible Anglo-Saxon racial differences between this group of pilots...in-flight medical incapacita- tion included hypoxia (2), diabetes (1), decompression sickness (1), vascular (1), reaction to medication (1) and

  17. The Airline Quality Rating 1999

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    1999-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline performance on combined multiple criteria. This current report, Airline Quality Rating 1999, reflects an updated approach to calculating monthly Airline Quality Rating scores for 1998. AQR scores for the calendar year 1998 are based on 15 elements that focus on airline performance areas important to air travel consumers. The Airline Quality Rating is a summary of month-by-month quality ratings for the ten major U.S. airlines operating during 1998. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, major airlines comparative performance for the calendar year 1998 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for major airlines domestic operations for the 12 month period of 1998, and industry average results. Also, comparative Airline Quality Rating data for 1997, using the updated criteria, are included to provide a reference point regarding quality in the industry.

  18. Flight Operations . [Zero Knowledge to Mission Complete

    NASA Technical Reports Server (NTRS)

    Forest, Greg; Apyan, Alex; Hillin, Andrew

    2016-01-01

    Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.

  19. The Airline Quality Rating 2004

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    2004-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, the Airline Quality Rating 2004, reflects monthly Airline Quality Rating scores for 2003. AQR scores far the calendar year 2003 are based on 15 elemnts in four major areas that focus on airline performance aspects important to air travel consumers. The Airline Quality Rating 2004 is a summary of month-by-month quality ratings for U.S. airlines that have at least 1% of domestic passenger volume during 2003. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2003 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2003, and industry results. Also, comparative Airline Quality Rating data for 2002 are included, where available, to provide historical perspective

  20. The Airline Quality Rating 2004

    NASA Technical Reports Server (NTRS)

    Fink, Mary M. (Editor); Bowen, Brent D.; Headley, Dean E.

    2004-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline quality on combined multiple performance criteria. This current report, the Airline Quality Rating 2004, reflects monthly Airline Quality Rating scores for 2003. AQR scores for the calendar year 2003 are based on 15 elements in four major areas that focus on airline performance aspects important to air travel consumers. The Airline Quality Rating 2004 is a summary of month-by-month quality ratings for U.S. airlines that have at least 1 % of domestic passenger volume during 2003. Using the Airline Quality Rating system of weighted averages and monthly performance data in the areas of on-time arrivals, involuntary denied boardings, mishandled baggage, and a combination of 12 customer complaint categories, airlines comparative performance for the calendar year of 2003 is reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for domestic airline operations for the 12-month period of 2003, and industry results. Also, comparative Airline Quality Rating data for 2002 are included, where available, to provide historical perspective regarding performance quality in the industry.

  1. Design of a cooperative problem-solving system for enroute flight planning: An empirical study of its use by airline dispatchers

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, C. Elaine; Layton, Charles; Orasanu, Judith; Chappel, Sherry; Palmer, EV; Corker, Kevin

    1993-01-01

    In a previous report, an empirical study of 30 pilots using the Flight Planning Testbed was reported. An identical experiment using the Flight Planning Testbed (FPT), except that 27 airline dispatchers were studied, is described. Five general questions were addressed in this study: (1) under what circumstances do the introduction of computer-generated suggestions (flight plans) influence the planning behavior of dispatchers (either in a beneficial or adverse manner); (2) what is the nature of such influences (i.e., how are the person's cognitive processes changed); (3) how beneficial are the general design concepts underlying FPT (use of a graphical interface, embedding graphics in a spreadsheet, etc.); (4) how effective are the specific implementation decisions made in realizing these general design concepts; and (5) how effectively do dispatchers evaluate situations requiring replanning, and how effectively do they identify appropriate solutions to these situations.

  2. Medical assistance during commercial airline flights: analysis of 11 years experience of the Paris Emergency Medical Service (SAMU) between 1989 and 1999.

    PubMed

    Szmajer, M; Rodriguez, P; Sauval, P; Charetteur, M P; Derossi, A; Carli, P

    2001-08-01

    Emergencies arising during commercial airline flights may have serious consequences. We report the experience of the Paris Emergency Medical Service (SAMU) in providing in-flight assistance to Air France between 1989 and 1999. During this period medical advice was sought 380 times during the carriage of about 350 million passengers. Analysis of the patient files suggests that serious emergencies were rare and that cardiopulmonary resuscitation was required only exceptionally. However the relative frequency of cardiac and neurological emergencies in our analysis supports the necessity of carrying adequate medical equipment and of having direct access to expert medical advice. The results suggest the requirement for a rigorous prospective epidemiological study of in-flight emergencies to evaluate the effectiveness of current practice and possible modifications of equipment and protocols for patient management.

  3. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    NASA Astrophysics Data System (ADS)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this

  4. NACA Conference on Some Problems of Aircraft Operation Held at Lewis Flight Propulsion Lab., Cleveland, Ohio on October 9-10, 1950

    DTIC Science & Technology

    1950-10-10

    Problems of Aircraft Operation, Lewis Flight Propulsion Laboratory, Cleveland, Ohio, October 9 and 10, 1950: Addams , W. J. United Airlines Allen, J. J...Kartveli, Alexander: Propulsion Analysis for Long-Rangce Transport Airplanes. Aero. Eng. Rev., vol. 9, no. 6, Jane 1950, pp. 12-15, 69. 80 2. Hamilton

  5. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  6. Mission operations and command assurance: Flight operations quality improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Potts, Sherrill S.; Witkowski, Mona M.

    1994-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous solving among flight teams and provides continuous process improvement to reduce risk in mission operations by addressing human factors. The MO&CA task has evolved from participating as a member of the spacecraft team, to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  7. NASA Structural Analysis Report on the American Airlines Flight 587 Accident - Local Analysis of the Right Rear Lug

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S; Glaessgen, Edward H.; Mason, Brian H; Krishnamurthy, Thiagarajan; Davila, Carlos G

    2005-01-01

    A detailed finite element analysis of the right rear lug of the American Airlines Flight 587 - Airbus A300-600R was performed as part of the National Transportation Safety Board s failure investigation of the accident that occurred on November 12, 2001. The loads experienced by the right rear lug are evaluated using global models of the vertical tail, local models near the right rear lug, and a global-local analysis procedure. The right rear lug was analyzed using two modeling approaches. In the first approach, solid-shell type modeling is used, and in the second approach, layered-shell type modeling is used. The solid-shell and the layered-shell modeling approaches were used in progressive failure analyses (PFA) to determine the load, mode, and location of failure in the right rear lug under loading representative of an Airbus certification test conducted in 1985 (the 1985-certification test). Both analyses were in excellent agreement with each other on the predicted failure loads, failure mode, and location of failure. The solid-shell type modeling was then used to analyze both a subcomponent test conducted by Airbus in 2003 (the 2003-subcomponent test) and the accident condition. Excellent agreement was observed between the analyses and the observed failures in both cases. From the analyses conducted and presented in this paper, the following conclusions were drawn. The moment, Mx (moment about the fuselage longitudinal axis), has significant effect on the failure load of the lugs. Higher absolute values of Mx give lower failure loads. The predicted load, mode, and location of the failure of the 1985-certification test, 2003-subcomponent test, and the accident condition are in very good agreement. This agreement suggests that the 1985-certification and 2003- subcomponent tests represent the accident condition accurately. The failure mode of the right rear lug for the 1985-certification test, 2003-subcomponent test, and the accident load case is identified as a

  8. A study of commuter airline economics

    NASA Technical Reports Server (NTRS)

    Summerfield, J. R.

    1976-01-01

    Variables are defined and cost relationships developed that describe the direct and indirect operating costs of commuter airlines. The study focused on costs for new aircraft and new aircraft technology when applied to the commuter airline industry. With proper judgement and selection of input variables, the operating costs model was shown to be capable of providing economic insight into other commuter airline system evaluations.

  9. 76 FR 23109 - Enhancing Airline Passenger Protections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... flights. For example, Condor Flugdienst Airlines (Condor) states that it sees no reason to enforce a... carriers that commented, Condor Airlines notes that when a longer delay becomes inevitable, Condor has... medical attention, Condor states that its flight attendants are capable of providing basic first aid...

  10. Simulated-airline-service flight tests of laminar-flow control with perforated-surface suction system

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Braslow, Albert L.

    1990-01-01

    The effectiveness and practicality of candidate leading edge systems for suction laminar flow control transport airplanes were investigated in a flight test program utilizing a modified JetStar airplane. The leading edge region imposes the most severe conditions on systems required for any type of laminar flow control. Tests of the leading edge systems, therefore, provided definitive results as to the feasibility of active laminar flow control on airplanes. The test airplane was operated under commercial transport operating procedures from various commercial airports and at various seasons of the year.

  11. Alertness management in flight operations - Strategic napping

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gander, Philippa H.; Dinges, David F.

    1991-01-01

    Strategic napping in two different flight operation environments is considered to illustrate its application as a fatigue countermeasure. Data obtained from commercial short-haul and long-haul operations demonstrated the utility and current practices of strategic napping. A preplanned cockpit nap acted as an acute 'safety valve' for the sleep loss, circadian disruption, and fatigue that occurs in long-haul flying.

  12. Hypersonic Flight: Time To Go Operational

    DTIC Science & Technology

    2013-02-14

    AIR WAR COLLEGE AIR UNIVERSITY HYPERSONIC FLIGHT: TIME TO GO OPERATIONAL by Robert A. Dietrick, Lt Col, USAF A Research Report...threats are increasing and could jeopardize the ability of the US Air Force to effectively conduct global strike by 2032. Scramjet powered hypersonic ...flight could be a key capability by reducing time to strike and increasing survivability. Historically, the key challenges preventing hypersonic

  13. EUSO Operations: Flight and Ground

    NASA Astrophysics Data System (ADS)

    Catalano, O.; Espirito Santo, M. C.; Gugliotta, G.; Pimenta, M.; Tua, P.; EUSO Collaboration

    2003-07-01

    The EUSO operations concept is described. Both the on-board and onground systems play an important role on operations. Since no permanent contact with the payload is provided, a considerable autonomy of the on-board system is required. The fulfilment of the scientific goals of the mission and the safety of the instrument require the definition of different operational modes and procedures. On-board, scientific and housekeeping data are collected and sent to ground, and control of the instrument subsystems is performed, based on on-board autonomous procedures and on telecommands sent from ground. On ground, telemetry is received, processed, monitored and archived. Telecommands are prepared for uplink, according to a defined mission activity planning.

  14. Food irradiation and airline catering

    SciTech Connect

    Preston, F.S.

    1988-04-01

    Food poisoning from contaminated airline food can produce serious consequences for airline crew and passengers and can hazard flight. While irradiation of certain foodstuffs has been practised in a number of countries for some years, application of the process has not been made to complete meals. This paper considers the advantages, technical considerations, costs and possible application to airline meals. In addition, the need to educate the public in the advantages of the process in the wake of incidents such as Chernobyl is discussed.

  15. Mission operations and command assurance: Instilling quality into flight operations

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.

  16. Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray

    2013-01-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  17. Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.

    2013-05-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  18. 14 CFR 91.143 - Flight limitation in the proximity of space flight operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight limitation in the proximity of space flight operations. 91.143 Section 91.143 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Flight Rules General § 91.143 Flight limitation in the proximity of space flight operations....

  19. 14 CFR 91.143 - Flight limitation in the proximity of space flight operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight limitation in the proximity of space flight operations. 91.143 Section 91.143 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Flight Rules General § 91.143 Flight limitation in the proximity of space flight operations....

  20. 14 CFR 91.143 - Flight limitation in the proximity of space flight operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight limitation in the proximity of space flight operations. 91.143 Section 91.143 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Flight Rules General § 91.143 Flight limitation in the proximity of space flight operations....

  1. 14 CFR 91.143 - Flight limitation in the proximity of space flight operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight limitation in the proximity of space flight operations. 91.143 Section 91.143 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Flight Rules General § 91.143 Flight limitation in the proximity of space flight operations....

  2. 14 CFR 91.143 - Flight limitation in the proximity of space flight operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight limitation in the proximity of space flight operations. 91.143 Section 91.143 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Flight Rules General § 91.143 Flight limitation in the proximity of space flight operations....

  3. (abstract) Mission Operations and Control Assurance: Flight Operations Quality Improvements

    NASA Technical Reports Server (NTRS)

    Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Witkowski, Mona M.

    1993-01-01

    Mission Operations and Command Assurance (MO&CA), a recent addition to flight operations teams at JPL. provides a system level function to instill quality in mission operations. MO&CA's primary goal at JPL is to help improve the operational reliability for projects during flight. MO&CA tasks include early detection and correction of process design and procedural deficiencies within projects. Early detection and correction are essential during development of operational procedures and training of operational teams. MO&CA's effort focuses directly on reducing the probability of radiating incorrect commands to a spacecraft. Over the last seven years at JPL, MO&CA has become a valuable asset to JPL flight projects. JPL flight projects have benefited significantly from MO&CA's efforts to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit directly from previous and ongoing experience. Since MO&CA, like Total Quality Management (TQM), focuses on continuous improvement of processes and elimination of rework, we recommend that this effort be continued on NASA flight projects.

  4. Current and Future Flight Operating Systems

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan

    2007-01-01

    This viewgraph presentation reviews the current real time operating system (RTOS) type in use with current flight systems. A new RTOS model is described, i.e. the process model. Included is a review of the challenges of migrating from the classic RTOS to the Process Model type.

  5. Procedures in complex systems: the airline cockpit.

    PubMed

    Degani, A; Wiener, E L

    1997-05-01

    In complex human-machine systems, successful operations depend on an elaborate set of procedures which are specified by the operational management of the organization. These procedures indicate to the human operator (in this case the pilot) the manner in which operational management intends to have various tasks done. The intent is to provide guidance to the pilots and to ensure a safe, logical, efficient, and predictable (standardized) means of carrying out the objectives of the job. However, procedures can become a hodge-podge. Inconsistent or illogical procedures may lead to noncompliance by operators. Based on a field study with three major airlines, the authors propose a model for procedure development called the "Four P's": philosophy, policies, procedures, and practices. Using this model as a framework, the authors discuss the intricate issue of designing flight-deck procedures, and propose a conceptual approach for designing any set of procedures. The various factors, both external and internal to the cockpit, that must be considered for procedure design are presented. In particular, the paper addresses the development of procedures for automated cockpits--a decade-long, and highly controversial issue in commercial aviation. Although this paper is based on airline operations, we assume that the principles discussed here are also applicable to other high-risk supervisory control systems, such as space flight, manufacturing process control, nuclear power production, and military operations.

  6. Fuel conservation integrated into airline economics

    SciTech Connect

    Ferguson, D.R.

    1981-01-01

    Fuel conservation efforts at most major airlines involve close scrutiny and intensive analysis in all areas - flight, maintenance and ground handling. Yet, despite the concern and attention devoted, the fundamental question of fuel saving versus time trade-offs remains unanswered. This paper introduces and defines the concept ''The value of an airplane to an airline is that airplane's earning power.

  7. Space flight operations communications phraseology and techniques

    NASA Technical Reports Server (NTRS)

    Noneman, S. R.

    1986-01-01

    Communications are a critical link in space flight operations. Specific communications phraseology and techniques have been developed to allow rapid and clear transfer of information. Communications will be clear and brief through the use of procedural words and phrases. Communications protocols standardize the required information transferred. The voicing of letters and numbers is discussed. The protocols used in air-to-ground communications are given. A glossary of communications terminology is presented in the appendix.

  8. Flight Operations for Higher Harmonic Control Research

    DTIC Science & Technology

    1991-03-01

    Harmonic Control System," Journal of the American Helicopter Society, January 1985. 7. McKeown, J.C., "Helicopter Design Requirements ," Lecture notes...0 NAVAL POSTGRADUATE SCHOOL Monterey, California AD-A242 478 ,j’ STATS4 G’CtAD’%3P’ THESIS FLIGHT OPERATIONS FOR HIGHER HARMONIC CONTROL RESEARCH by...SECURITY CLASSIFICATION OF THIS PAGE Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 la REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE

  9. Flight Awareness Collaboration Tool Development

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a PowerPoint presentation covering airline operations center (AOC) research. It reviews a dispatcher decision support tool called the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. FACT should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations.

  10. Airline Wheelchair

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Accutron Tool & Instrument Co.'s wheelchair was designed to increase mobility within the airplane. Utilizing NASA's structural analysis and materials engineering technologies, it allows passage through narrow airline aisles to move passengers to their seats and give access to lavatories. Stable, durable, comfortable and easy to handle, it's made of composite materials weighing only 17 pounds, yet is able to support a 200 pound person. Folded easily and stored when not in use.

  11. 14 CFR 375.33 - Transit flights, irregular operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Transit flights, irregular operations....

  12. 14 CFR 375.33 - Transit flights, irregular operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Transit flights, irregular operations....

  13. 14 CFR 375.33 - Transit flights, irregular operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Transit flights, irregular operations....

  14. 14 CFR 375.33 - Transit flights, irregular operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Transit flights, irregular operations....

  15. 14 CFR 375.33 - Transit flights, irregular operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Authorized Operations § 375.33 Transit flights, irregular operations. Foreign civil aircraft carrying... mail are transferred to another aircraft. Flights involving stops under such circumstances may, however... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Transit flights, irregular operations....

  16. 32 CFR 707.11 - Flight operations lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing...

  17. 32 CFR 707.11 - Flight operations lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing...

  18. 32 CFR 707.11 - Flight operations lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing...

  19. 32 CFR 707.11 - Flight operations lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Flight operations lights. 707.11 Section 707.11... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.11 Flight operations lights. Naval vessels engaged in night flight operations may display various arrangements of light systems containing...

  20. Space Flight Resource Management for ISS Operations

    NASA Technical Reports Server (NTRS)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  1. Knowledge representation in space flight operations

    NASA Technical Reports Server (NTRS)

    Busse, Carl

    1989-01-01

    In space flight operations rapid understanding of the state of the space vehicle is essential. Representation of knowledge depicting space vehicle status in a dynamic environment presents a difficult challenge. The NASA Jet Propulsion Laboratory has pursued areas of technology associated with the advancement of spacecraft operations environment. This has led to the development of several advanced mission systems which incorporate enhanced graphics capabilities. These systems include: (1) Spacecraft Health Automated Reasoning Prototype (SHARP); (2) Spacecraft Monitoring Environment (SME); (3) Electrical Power Data Monitor (EPDM); (4) Generic Payload Operations Control Center (GPOCC); and (5) Telemetry System Monitor Prototype (TSM). Knowledge representation in these systems provides a direct representation of the intrinsic images associated with the instrument and satellite telemetry and telecommunications systems. The man-machine interface includes easily interpreted contextual graphic displays. These interactive video displays contain multiple display screens with pop-up windows and intelligent, high resolution graphics linked through context and mouse-sensitive icons and text.

  2. A Comparison of Center/TRACON Automation System and Airline Time of Arrival Predictions

    NASA Technical Reports Server (NTRS)

    Heere, Karen R.; Zelenka, Richard E.

    2000-01-01

    Benefits from information sharing between an air traffic service provider and a major air carrier are evaluated. Aircraft arrival time schedules generated by the NASA/FAA Center/TRACON Automation System (CTAS) were provided to the American Airlines System Operations Control Center in Fort Worth, Texas, during a field trial of a specialized CTAS display. A statistical analysis indicates that the CTAS schedules, based on aircraft trajectories predicted from real-time radar and weather data, are substantially more accurate than the traditional airline arrival time estimates, constructed from flight plans and en route crew updates. The improvement offered by CTAS is especially advantageous during periods of heavy traffic and substantial terminal area delay, allowing the airline to avoid large predictive errors with serious impact on the efficiency and profitability of flight operations.

  3. Space Flight Operations Center local area network

    NASA Technical Reports Server (NTRS)

    Goodman, Ross V.

    1988-01-01

    The existing Mission Control and Computer Center at JPL will be replaced by the Space Flight Operations Center (SFOC). One part of the SFOC is the LAN-based distribution system. The purpose of the LAN is to distribute the processed data among the various elements of the SFOC. The SFOC LAN will provide a robust subsystem that will support the Magellan launch configuration and future project adaptation. Its capabilities include (1) a proven cable medium as the backbone for the entire network; (2) hardware components that are reliable, varied, and follow OSI standards; (3) accurate and detailed documentation for fault isolation and future expansion; and (4) proven monitoring and maintenance tools.

  4. Space weather effects and commerical airlines

    NASA Astrophysics Data System (ADS)

    Jones, J.; Bentley, R.; Hunter, R.; Taylor, G.; Thomas, D.

    Space Weather (SW) phenomena can effect many areas of commercial airline operations including avionics, communications and GPS navigation systems. Of particular importance at present is the recently introduced EU legislation requiring the monitoring of aircrew radiation exposure, including any variations at aircraft altitudes due to solar activity. The Mullard Space Science Laboratory is collaborating with Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory on a 3- year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether computer models currently used to predict radiation exposure of aircrew are adequate. It also aims to determine whether solar or geomagnetic activity can cause significant modifications to the doses. This presentation will begin by showing some of the preliminary results obtained so far. As an example, we present a comparison of flight doses measured following the 14t h July 2000 X - class flare that was accompanied by a major Solar Particle Event (SPE). The results highlight the importance of a range of external factors that can strongly influence how SPEs may effect the measured dose at aircraft altitudes. At present, any SPE contributions in the airlines' dose records can only be poorly estimated retrospectively. Ideally, it would be better to try to avoid operating during these possibly significant radiation - enhancing events by utilising SW information (alerts, warnings, etc.). However, doing so poses many difficult operational problems for such a heavily regulated international industry, in terms of safety, security and procedures. Therefore, the use of timely SW information, which is still very unreliable, in a similar manner to terrestrial weather will require agreement from the International Civil Aviation Organisation (ICAO) and International Air Transport Association (IATA) to Air Traffic Control and Aviation Regulatory Authority's. This

  5. Future of Colombo Airport (CMB) as an Airline Hub

    NASA Technical Reports Server (NTRS)

    Jayalath, J. T. D.; Bandara, J. M. S. J.

    2001-01-01

    Aviation throughout the world has seen profound changes within the last two decades. Today more and more airports are looking for hub operations. However, as the success of hub operation would depend on a number of parameters such as geographic location, route network, facilities available, passengers' acceptance etc., not all airports would be able to operate as successful hubs. This paper investigates the possibility for (he Bandaranayake international airport, Colombo, Sri Lanka (CMB) to emerge as a hub airport in the South Asian region. It is found that CMB is situated in a geographically advantageous position in the region with respect to the airline route network. Comparison of travel distances between CMB and prominent O-D pairs and evaluation of airline schedules at relevant established hub airports indicates that CMB could operate as a directional hub serving the South Asian market if the number of destinations with daily flights could be increased.

  6. 14 CFR 121.689 - Flight release form: Supplemental operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the flight is released. (b) The aircraft flight release must contain, or have attached to it, weather... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight release form: Supplemental... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Records and Reports § 121.689...

  7. 14 CFR 121.689 - Flight release form: Supplemental operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the flight is released. (b) The aircraft flight release must contain, or have attached to it, weather... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight release form: Supplemental... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Records and Reports § 121.689...

  8. 14 CFR 121.689 - Flight release form: Supplemental operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the flight is released. (b) The aircraft flight release must contain, or have attached to it, weather... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight release form: Supplemental... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Records and Reports § 121.689...

  9. 14 CFR 121.689 - Flight release form: Supplemental operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the flight is released. (b) The aircraft flight release must contain, or have attached to it, weather... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight release form: Supplemental... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Records and Reports § 121.689...

  10. 14 CFR 121.689 - Flight release form: Supplemental operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the flight is released. (b) The aircraft flight release must contain, or have attached to it, weather... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight release form: Supplemental... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Records and Reports § 121.689...

  11. Initial flight qualification and operational maintenance of X-29A flight software

    NASA Technical Reports Server (NTRS)

    Earls, Michael R.; Sitz, Joel R.

    1989-01-01

    A discussion is presented of some significant aspects of the initial flight qualification and operational maintenance of the flight control system softward for the X-29A technology demonstrator. Flight qualification and maintenance of complex, embedded flight control system software poses unique problems. The X-29A technology demonstrator aircraft has a digital flight control system which incorporates functions generally considered too complex for analog systems. Organizational responsibilities, software assurance issues, tools, and facilities are discussed.

  12. Trends and individual differences in response to short-haul flight operations

    NASA Technical Reports Server (NTRS)

    Chidester, Thomas R.

    1990-01-01

    A survey of airline pilots was undertaken to determine normative patterns and individual differences in mood and sleep during short-haul flight operations. The results revealed that over the course of a typical 2-d trip, pilots experience a decline in positive mood, or activity, and an increase in negative mood, or tension. On layovers, pilots report experiencing sleep of shorter duration and poorer quality than at home. These patterns are very similar to those reported by Gander and Graeber (1987) and by Gander et al. (1988), using high-fidelity sleep and activity monitoring equipment. Examination of the impact of two personality dimensions extracted from the Jenkins Activity Survey measure of the Type A personality, Achievement Striving and Impatience/Irritability, suggested that Impatience/Irritability may serve as a marker of individuals most likely to experience health-related problems on trips. Achievement Striving may serve as a predictor of performance in crew settings.

  13. Jet transport flight operations using cockpit display of traffic information during instrument meteorological conditions: Simulation evaluation

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Wells, Douglas C.

    1986-01-01

    A simulation study was undertaken to evaluate flight operations using cockpit display of traffic information (CDTI) in a conventional jet transport aircraft. Eight two-person airline flight crews participated as test subjects flying simulated terminal area approach and departure operations under instrument meteorological conditions (IMC). A fixed-base cockpit simulator configured with a full complement of conventional electromechanical instrumentation to permit full workload operations was utilized. Traffic information was displayed on a color cathode-ray tube (CRT) mounted above the throttle quadrant in the typical weather radar location. A transparent touchpanel overlay was utilized for pilot interface with the display. Air traffic control (ATC) simulation included an experienced controller and full partyline radio environment for evaluation of pilot-controlled self-separation and traffic situation monitoring tasks. Results of the study revealed the CDTI to be well received by the test subjects as a useful system which could be incorporated into an existing jet transport cockpit. Crew coordination and consistent operating procedures were identified as important considerations in operational implementation of traffic displays. Cockpit workload was increased with active CDTI tasks. However, all test subjects rated the increase to be acceptable.

  14. Quadrocopter Control Design and Flight Operation

    NASA Technical Reports Server (NTRS)

    Karwoski, Katherine

    2011-01-01

    A limiting factor in control system design and analysis for spacecraft is the inability to physically test new algorithms quickly and cheaply. Test flights of space vehicles are costly and take much preparation. As such, EV41 recently acquired a small research quadrocopter that has the ability to be a test bed for new control systems. This project focused on learning how to operate, fly, and maintain the quadrocopter, as well as developing and testing protocols for its use. In parallel to this effort, developing a model in Simulink facilitated the design and analysis of simple control systems for the quadrocopter. Software provided by the manufacturer enabled testing of the Simulink control system on the vehicle.

  15. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    2001-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  16. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    1999-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue counter-measure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  17. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    NASA Technical Reports Server (NTRS)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  18. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Coggeshall, R. L.

    1985-01-01

    The flight service experience of 111 graphite-epoxy spoilers on 737 transport aircraft and related ground based environmental exposure of graphite-epoxy material specimens is covered. Spoilers have been installed on 28 aircraft representing seven major airlines operating throughout the world. An extended flight service evaluation program of 15 years is presently underway. As of December 1984, a total of 2,092, 155 spoiler flight hours and 2,954,814 spoiler landings had been accumulated by this fleet.

  19. A Simulation Based Approach for Contingency Planning for Aircraft Turnaround Operation System Activities in Airline Hubs

    NASA Technical Reports Server (NTRS)

    Adeleye, Sanya; Chung, Christopher

    2006-01-01

    Commercial aircraft undergo a significant number of maintenance and logistical activities during the turnaround operation at the departure gate. By analyzing the sequencing of these activities, more effective turnaround contingency plans may be developed for logistical and maintenance disruptions. Turnaround contingency plans are particularly important as any kind of delay in a hub based system may cascade into further delays with subsequent connections. The contingency sequencing of the maintenance and logistical turnaround activities were analyzed using a combined network and computer simulation modeling approach. Experimental analysis of both current and alternative policies provides a framework to aid in more effective tactical decision making.

  20. Crew Factors in Flight Operations XIV: Alertness Management in Regional Flight Operations Education Module

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  1. Crew Factors in Flight Operations XII: A Survey of Sleep Quantity and Quality in On-Board Crew Rest Facilities

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin B.; Co, Elizabeth L.; Miller, Donna L.; Dinges, David F.

    2000-01-01

    Many aircraft operated on long-haul commercial airline flights are equipped with on-board crew rest facilities, or bunks, to allow crewmembers to rest during the flight. The primary objectives of this study were to gather data on how the bunks were used, the quantity and quality of sleep obtained by flight crewmembers in the facilities, and the factors that affected their sleep. A retrospective survey comprising 54 questions of varied format addressed demographics, home sleep habits, and bunk sleep habits. Crewmembers from three airlines with long-haul fleets carrying augmented crews consisting of B747-100/200, B747-400, and MD-11 aircraft equipped with bunks returned a total of 1404 completed surveys (a 37% response rate). Crewmembers from the three carriers were comparable demographically, although one carrier had older, more experienced flight crewmembers. Each group, on average, rated themselves as "good" or "very good" sleepers at home, and all groups obtained about the same average amount of sleep each night. Most were able to sleep in the bunks, and about two thirds indicated that these rest opportunities benefited their subsequent flight deck alertness and performance. Comfort, environment, and physiology (e.g., being ready for sleep) were identified as factors that most promoted sleep. Factors cited as interfering with sleep included random noise, thoughts, heat, and the need to use the bathroom. These factors, in turn, suggest potential improvements to bunk facilities and their use. Ratings of the three aircraft types suggested differences among facilities. Bunks in the MD-11 were rated significantly better than either of the B747 types, and the B747-400 bunks received better ratings than did the older, B747-100/200 facilities.

  2. STS-1 operational flight profile. Volume 6: Abort analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The abort analysis for the cycle 3 Operational Flight Profile (OFP) for the Space Transportation System 1 Flight (STS-1) is defined, superseding the abort analysis previously presented. Included are the flight description, abort analysis summary, flight design groundrules and constraints, initialization information, general abort description and results, abort solid rocket booster and external tank separation and disposal results, abort monitoring displays and discussion on both ground and onboard trajectory monitoring, abort initialization load summary for the onboard computer, list of the key abort powered flight dispersion analysis.

  3. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    NASA Technical Reports Server (NTRS)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  4. Operations Research Flight Ground Service Education/Outreach

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2011-01-01

    This viewgraph presentation describes a nutritional biochemistry assessment of astronauts in preflight, in-flight, and post-flight operations. In-flight collections of blood and urine samples from astronauts to test the effects of Vitamin K, Pro K, Vitamin D, Omega-3 Fatty Acids, Iron, and Sodium in spaceflight is shown. A demonstration of a 1-carbon metabolism pathway that determines the existence of enzymes and polymorphisms is also presented.

  5. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  6. Operational efficiency: Automatic ascent flight design

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Major objectives, milestones, key contacts, major accomplishments, technology issues, and candidate programs of the automatic ascent flight design are outlined. Topics discussed include: advanced avionics concepts; advanced training concepts; telerobotics/telepresence; integrated command and control; advanced software integration; atmospheric adaptive guidance; and health status and monitoring concept. This presentation is represented by viewgraphs only.

  7. A psychophysiological assessment of operator workload during simulated flight missions

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur F.; Sirevaag, Erik J.; Braune, Rolf

    1987-01-01

    The applicability of the dual-task event-related (brain) potential (ERP) paradigm to the assessment of an operator's mental workload and residual capacity in a complex situation of a flight mission was demonstrated using ERP measurements and subjective workload ratings of student pilots flying a fixed-based single-engine simulator. Data were collected during two separate 45-min flights differing in difficulty; flight demands were examined by dividing each flight into four segments: takeoff, straight and level flight, holding patterns, and landings. The P300 ERP component in particular was found to discriminate among the levels of task difficulty in a systematic manner, decreasing in amplitude with an increase in task demands. The P300 amplitude is shown to be negatively correlated with deviations from command headings across the four flight segments.

  8. NASA Flight Operations of Ikhana and Global Hawk

    NASA Technical Reports Server (NTRS)

    Posada, Herman

    2010-01-01

    This slide presentation reviews the flight operations for NASA's Ikhana and Globalhawk unmanned aerial vehicles. It includes information on the ground support systems, vehicle specifications, payloads, mission planning and the 2007 Western States Fire Mission Objectives.

  9. Training Interventions for Reducing Flight Mishaps

    DTIC Science & Technology

    2008-12-01

    data recorders, and (e) line operations safety audits ( LOSA ), Each illuminates a different aspect of flight operations. Helmreich, Wilhelm, Klinect, and...Merritt, (2001) studied threats to safcty and the nature of errors in three airlines using LOSAs . Striking differences were observed among these air

  10. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  11. NASA Flight Operations of Ikhana and Global Hawk

    NASA Technical Reports Server (NTRS)

    Posada, Herman D.

    2009-01-01

    This viewgraph presentation reviews the flight operations of Ikhana and Global Hawk Fire missions. The Ikhana fire missions modifications, ground systems, flight operations, range safety zones, primary and secondary emergency landing sites, and the Ikhana western states fire missions of 2007 are described, along with The Global Hawk specs, a description of the Global Hawk Pacific Science Campaign (GloPac '09) and GloPac payloads.

  12. 14 CFR 437.53 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition...

  13. 14 CFR 437.53 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition...

  14. 14 CFR 437.53 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition...

  15. 14 CFR 437.53 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition...

  16. 14 CFR 437.53 - Pre-flight and post-flight operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the United States and returning the reusable suborbital rocket and any support equipment to a safe condition...

  17. Impact of environmental constraints and aircraft technology on airline fleet composition

    NASA Astrophysics Data System (ADS)

    Moolchandani, Kushal A.

    maximum CO2 emissions that the airline can cause, taxes on airlines for excess emissions, and the use of biofuels. The results obtained indicate that implementation of very strict policies that place a heavy penalty on airlines for environmental inefficiency would lead to a drastic decline in market demand served as well as airline profits. For example, to achieve a 50% reduction of CO2 emissions by 2050 from the 2005 levels, the airlines would need to leave as much as 45% of predicted market demand unmet, thereby significantly reducing their profits. Taxing airlines for excess emissions would lead them to use large aircraft for short distance operations to reduce CO2 produced per seat mile, decreasing the total number of flights. Since taxation provides an economic motive for airlines to seek low emissions operations procedures, it can be an effective means of achieving emissions reduction goals. Finally the use of biofuels, under some assumption of biofuel availability and cost, helps reduce emissions without compromising market demand or airline profits.

  18. Sopite Syndrome in Operational Flight Training.

    DTIC Science & Technology

    1998-09-01

    and the amount he or she experienced during their activities of everyday life . These estimates were rated on visual analog scales ranging from zero...each experience during everyday life . The scales ranged from zero (feeling wide awake and alert) to 100 (extreme drowsiness and being unable to stay...fatigue, both for their experiences during flight (at their worst during a challenging training day) and in general ( everyday life outside the training

  19. Developing a Fleet Standardization Index for Airline Planning

    NASA Technical Reports Server (NTRS)

    deBorgesPan, Alexis George; EspiritoSanto, Respicio A., Jr.

    2003-01-01

    Quantifying subjective aspects is a difficult task that requires a great dedication of time from researchers and analysts. Nevertheless, one of the main objectives of it is to pave the way for a better understanding of the focused aspects. Fleet standardization is one of these subjective aspects that is extremely difficult to mm into numbers. Although, it is of great importance to know the benefits that may come with a higher level of standardization for airlines, which may be economical advantages, maintenance facilitation and others. A more standardized fleet may represent lower costs of operations and maintenance facilitation and others. A more standardized fleet may represent lower costs of operations and maintenance plus a much better planning of routes and flights. This study presents the first step on developing an index, hereto called "Fleet Standardization Index" or FSI (or IPF in Portuguese, for "Indice de Padronizacao de Frotas"), that will allow senior airline planners to compare different fleets and also simulate some results from maintaining or renewing their fleets. Although being a preliminary study, the results obtained may already be tested to compare different fleets (different airlines) and also analyze some possible impacts of a fleet renewal before it takes place. Therefore, the main objective of this paper is to introduce the proposed IPF index and to demonstrate that it is inversely proportional to the number of different airplane models, engines and other equipment, such as avionics.

  20. Cassini Attitude Control Flight Software: from Development to In-Flight Operation

    NASA Technical Reports Server (NTRS)

    Brown, Jay

    2008-01-01

    The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.

  1. The UNO Aviation Monograph Series: The Airline Quality Rating 1998

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    1998-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline performance on combined multiple factors important to consumers. Development history and calculation details for the AQR rating system are detailed in The Airline Quality Rating 1991 issued in April, 1991, by the National Institute for Aviation Research at Wichita State University. This current report, Airline Quality Rating 1998, contains monthly Airline Quality Rating scores for 1997. Additional copies are available by contacting Wichita State University or University of Nebraska at Omaha. The Airline Quality Rating 1998 is a summary of month-by-month quality ratings for the ten major U.S. airlines operating during 1997. Using the Airline Quality Rating system and monthly performance data for each airline for the calendar year of 1997, individual and comparative ratings are reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for major airlines domestic operations for the 12 month period of 1997, and industry average results. Also, comparative Airline Quality Rating data for 1991 through 1996 are included to provide a longer term view of quality in the industry.

  2. Management training for cockpit crews at Piedmont flight

    NASA Technical Reports Server (NTRS)

    Sifford, J. C.

    1984-01-01

    A brief history of Piedmont Airlines' flight operations is presented. A captain-management seminar conducted regularly by Piedmont is discussed. Piedmont's approach to cockpit resource management (CRM) is reviewed, and the relationship of CRM training to other aspects of flight training is addressed. Future leadership research plans and CRM training is considered along with critical training issues.

  3. Navigation Flight Operations for Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Vaughan, Robin M.; Kallemeyn, Pieter H., Jr.; Spencer, David A.; Braun, Robert D.

    2004-01-01

    On July 4, 1997, Mars Pathfinder became the first spacecraft to land on the surface of Mars in 21 years. Pathfinder was launched on December 4, 1996 and spent seven months en route to the red planet. This report discusses the navigation flight experience for the Mars Pathfinder interplanetary cruise. In particular, orbit determination and maneuver design and execution results are presented. Special emphasis is given to the navigation role in the days and hours leading up to and including the Entry, Descent, and Landing (EDL) phase.

  4. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: flight termination system; command control system; tracking; telemetry; communications; flight safety... demonstration of the compatibility of the onboard launch vehicle flight termination system with the command control system. (7) Flight termination system component storage, operating, and service life. A......

  5. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: flight termination system; command control system; tracking; telemetry; communications; flight safety... demonstration of the compatibility of the onboard launch vehicle flight termination system with the command control system. (7) Flight termination system component storage, operating, and service life. A......

  6. 14 CFR 415.127 - Flight safety system design and operation data.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: flight termination system; command control system; tracking; telemetry; communications; flight safety... demonstration of the compatibility of the onboard launch vehicle flight termination system with the command control system. (7) Flight termination system component storage, operating, and service life. A......

  7. Cassini's Test Methodology for Flight Software Verification and Operations

    NASA Technical Reports Server (NTRS)

    Wang, Eric; Brown, Jay

    2007-01-01

    The Cassini spacecraft was launched on 15 October 1997 on a Titan IV-B launch vehicle. The spacecraft is comprised of various subsystems, including the Attitude and Articulation Control Subsystem (AACS). The AACS Flight Software (FSW) and its development has been an ongoing effort, from the design, development and finally operations. As planned, major modifications to certain FSW functions were designed, tested, verified and uploaded during the cruise phase of the mission. Each flight software upload involved extensive verification testing. A standardized FSW testing methodology was used to verify the integrity of the flight software. This paper summarizes the flight software testing methodology used for verifying FSW from pre-launch through the prime mission, with an emphasis on flight experience testing during the first 2.5 years of the prime mission (July 2004 through January 2007).

  8. Synthetic Vision Enhanced Surface Operations and Flight Procedures Rehearsal Tool

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Kramer, Lynda J.

    2006-01-01

    Limited visibility has been cited as predominant causal factor for both Controlled-Flight-Into-Terrain (CFIT) and runway incursion accidents. NASA is conducting research and development of Synthetic Vision Systems (SVS) technologies which may potentially mitigate low visibility conditions as a causal factor to these accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Two experimental evaluation studies were performed to determine the efficacy of two concepts: 1) head-worn display application of SVS technology to enhance transport aircraft surface operations, and 2) three-dimensional SVS electronic flight bag display concept for flight plan preview, mission rehearsal and controller-pilot data link communications interface of flight procedures. In the surface operation study, pilots evaluated two display devices and four display modes during taxi under unlimited and CAT II visibility conditions. In the mission rehearsal study, pilots flew approaches and departures in an operationally-challenged airport environment, including CFIT scenarios. Performance using the SVS concepts was compared to traditional baseline displays with paper charts only or EFB information. In general, the studies evince the significant situation awareness and enhanced operational capabilities afforded from these advanced SVS display concepts. The experimental results and conclusions from these studies are discussed along with future directions.

  9. The UNO Aviation Monograph Series: The Airline Quality Rating 1997

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.

    1997-01-01

    The Airline Quality Rating (AQR) was developed and first announced in early 1991 as an objective method of comparing airline performance on combined multiple factors important to consumers. Development history and calculation details for the AQR rating system are detailed in The Airline Quality Rating 1991 issued in April, 1991, by the National Institute for Aviation Research at Wichita State University. This current report, Airline Rating 1997, contains monthly Airline Quality Rating scores for 1996. Additional copies are available by contacting Wichita State University or the University of Nebraska at Omaha. The Airline Quality Rating (AQR) 1997 is a summary of a month-by-month quality ratings for the nine major domestic U.S. airlines operating during 1996. Using the Airline Quality Rating system and monthly performance data for each airline for the calendar year of 1996, individual and comparative ratings are reported. This research monograph contains a brief summary of the AQR methodology, detailed data and charts that track comparative quality for major domestic airlines across the 12 month period of 1996, and industry average results. Also comparative Airline Quality Rating data for 1991 through 1995 are included to provide a longer term view of quality in the industry.

  10. Optimizing Air Transportation Service to Metroplex Airports. Par 2; Analysis Using the Airline Schedule Optimization Model (ASOM)

    NASA Technical Reports Server (NTRS)

    Donoue, George; Hoffman, Karla; Sherry, Lance; Ferguson, John; Kara, Abdul Qadar

    2010-01-01

    The air transportation system is a significant driver of the U.S. economy, providing safe, affordable, and rapid transportation. During the past three decades airspace and airport capacity has not grown in step with demand for air transportation; the failure to increase capacity at the same rate as the growth in demand results in unreliable service and systemic delay. This report describes the results of an analysis of airline strategic decision-making that affects geographic access, economic access, and airline finances, extending the analysis of these factors using historic data (from Part 1 of the report). The Airline Schedule Optimization Model (ASOM) was used to evaluate how exogenous factors (passenger demand, airline operating costs, and airport capacity limits) affect geographic access (markets-served, scheduled flights, aircraft size), economic access (airfares), airline finances (profit), and air transportation efficiency (aircraft size). This analysis captures the impact of the implementation of airport capacity limits, as well as the effect of increased hedged fuel prices, which serve as a proxy for increased costs per flight that might occur if auctions or congestion pricing are imposed; also incorporated are demand elasticity curves based on historical data that provide information about how passenger demand is affected by airfare changes.

  11. Interfaces Visualize Data for Airline Safety, Efficiency

    NASA Technical Reports Server (NTRS)

    2014-01-01

    As the A-Train Constellation orbits Earth to gather data, NASA scientists and partners visualize, analyze, and communicate the information. To this end, Langley Research Center awarded SBIR funding to Fairfax, Virginia-based WxAnalyst Ltd. to refine the company's existing user interface for Google Earth to visualize data. Hawaiian Airlines is now using the technology to help manage its flights.

  12. Management of Operational Support Requirements for Manned Flight Missions

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Instruction establishes responsibilities for managing the system whereby operational support requirements are levied for support of manned flight missions including associated payloads. This management system will ensure that support requirements are properly requested and responses are properly obtained to meet operational objectives.

  13. Aviation Weather for Pilots and Flight Operations Personnel.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    The revised Aviation Weather book discusses each aspect of weather as it relates to aircraft operations and flight safety. The book is not an aircraft operating manual and omits all reference to specific weather services. Much of the book has been devoted to marginal, hazardous, and violent weather. It teaches pilots to learn to appreciate good…

  14. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Coggeshall, Randy L.

    1987-01-01

    The ninth flight service report was prepared in compliance with the requirements of Contract NAS1-11668. It covers the flight service experience of 111 graphite-epoxy spoilers on 737 transport aircraft and related ground-based environmental exposure of graphite epoxy material specimens for the period 1 Jan. 1985 through 31 Dec. 1986. Spoilers have been installed on 28 aircraft representing seven major airlines operating throughout the world. An extended flight service evaluation program of 15 years is presently underway. As of 31 Dec. 1986, a total of 3,339,608 spoiler flight-hours and 3,320,952 spoiler landings had been accumulated by this fleet.

  15. 14 CFR 63.23 - Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Special purpose flight engineer and flight.... 63.23 Section 63.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil...

  16. 14 CFR 63.23 - Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Special purpose flight engineer and flight.... 63.23 Section 63.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil...

  17. 14 CFR 63.23 - Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Special purpose flight engineer and flight.... 63.23 Section 63.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil...

  18. 14 CFR 63.23 - Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Special purpose flight engineer and flight.... 63.23 Section 63.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil...

  19. 14 CFR 63.23 - Special purpose flight engineer and flight navigator certificates: Operation of U.S.-registered...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Special purpose flight engineer and flight.... 63.23 Section 63.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... purpose flight engineer and flight navigator certificates: Operation of U.S.-registered civil...

  20. Another Approach to Enhance Airline Safety: Using Management Safety Tools

    NASA Technical Reports Server (NTRS)

    Lu, Chien-tsug; Wetmore, Michael; Przetak, Robert

    2006-01-01

    The ultimate goal of conducting an accident investigation is to prevent similar accidents from happening again and to make operations safer system-wide. Based on the findings extracted from the investigation, the "lesson learned" becomes a genuine part of the safety database making risk management available to safety analysts. The airline industry is no exception. In the US, the FAA has advocated the usage of the System Safety concept in enhancing safety since 2000. Yet, in today s usage of System Safety, the airline industry mainly focuses on risk management, which is a reactive process of the System Safety discipline. In order to extend the merit of System Safety and to prevent accidents beforehand, a specific System Safety tool needs to be applied; so a model of hazard prediction can be formed. To do so, the authors initiated this study by reviewing 189 final accident reports from the National Transportation Safety Board (NTSB) covering FAR Part 121 scheduled operations. The discovered accident causes (direct hazards) were categorized into 10 groups Flight Operations, Ground Crew, Turbulence, Maintenance, Foreign Object Damage (FOD), Flight Attendant, Air Traffic Control, Manufacturer, Passenger, and Federal Aviation Administration. These direct hazards were associated with 36 root factors prepared for an error-elimination model using Fault Tree Analysis (FTA), a leading tool for System Safety experts. An FTA block-diagram model was created, followed by a probability simulation of accidents. Five case studies and reports were provided in order to fully demonstrate the usefulness of System Safety tools in promoting airline safety.

  1. SpaceX Readies Operational Flight

    NASA Video Gallery

    SpaceX is set to launch the first of a dozen operational missions for NASA to deliver more than 1,000 pounds of supplies to the International Space Station on Oct. 7. Launch time is 8:35 p.m. from ...

  2. Risk assessment of high altitude free flight commercial aircraft operations

    SciTech Connect

    Kimura, C.Y.; Sandquist, G.M.; Slaughter, D.M.; Sanzo, D.L.

    1998-04-23

    A quantitative model is under development to assess the safety and efficiency of commercial aircraft operations under the Free Flight Program proposed for air traffic control for the US National Airspace System. The major objective of the Free Flight Program is to accommodate the dramatic growth anticipated in air traffic in the US. However, the potential impacts upon aircraft safety from implementing the Program have not been fully explored and evaluated. The model is directed at assessing aircraft operations at high altitude over the continental US airspace since this action is the initial step for Free Flight. Sequential steps with analysis, assessment, evaluation, and iteration will be required to satisfactorily accomplish the complete transition of US commercial aircraft traffic operations.

  3. LANDSAT-D flight segment operations manual. Appendix B: OBC software operations

    NASA Technical Reports Server (NTRS)

    Talipsky, R.

    1981-01-01

    The LANDSAT 4 satellite contains two NASA standard spacecraft computers and 65,536 words of memory. Onboard computer software is divided into flight executive and applications processors. Both applications processors and the flight executive use one or more of 67 system tables to obtain variables, constants, and software flags. Output from the software for monitoring operation is via 49 OBC telemetry reports subcommutated in the spacecraft telemetry. Information is provided about the flight software as it is used to control the various spacecraft operations and interpret operational OBC telemetry. Processor function descriptions, processor operation, software constraints, processor system tables, processor telemetry, and processor flow charts are presented.

  4. Relationship between Brazilian airline pilot errors and time of day.

    PubMed

    de Mello, M T; Esteves, A M; Pires, M L N; Santos, D C; Bittencourt, L R A; Silva, R S; Tufik, S

    2008-12-01

    Flight safety is one of the most important and frequently discussed issues in aviation. Recent accident inquiries have raised questions as to how the work of flight crews is organized and the extent to which these conditions may have been contributing factors to accidents. Fatigue is based on physiologic limitations, which are reflected in performance deficits. The purpose of the present study was to provide an analysis of the periods of the day in which pilots working for a commercial airline presented major errors. Errors made by 515 captains and 472 co-pilots were analyzed using data from flight operation quality assurance systems. To analyze the times of day (shifts) during which incidents occurred, we divided the light-dark cycle (24:00) in four periods: morning, afternoon, night, and early morning. The differences of risk during the day were reported as the ratio of morning to afternoon, morning to night and morning to early morning error rates. For the purposes of this research, level 3 events alone were taken into account, since these were the most serious in which company operational limits were exceeded or when established procedures were not followed. According to airline flight schedules, 35% of flights take place in the morning period, 32% in the afternoon, 26% at night, and 7% in the early morning. Data showed that the risk of errors increased by almost 50% in the early morning relative to the morning period (ratio of 1:1.46). For the period of the afternoon, the ratio was 1:1.04 and for the night a ratio of 1:1.05 was found. These results showed that the period of the early morning represented a greater risk of attention problems and fatigue.

  5. The Line Operations Safety Audit Program: Transitioning From Flight Operations to Maintenance and Ramp Operations

    DTIC Science & Technology

    2011-09-01

    Jiao Ma and Mark Pedigo Saint Louis University St. Louis, MO 63103 Lauren Blackwell Oak Ridge National Laboratory Oak Ridge, TN 37831 Kevin Gildea...Kali Holcomb, and Carla Hackworth Civil Aerospace Medical Institute Federal Aviation Administration Oklahoma City, OK 73125 John J. Hiles Flight...Maintenance and Ramp Operations 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Ma J,1 Pedigo M,1 Blackwell

  6. Vortex flap flight test operations, a safe approach

    NASA Technical Reports Server (NTRS)

    Dicarlo, Daniel J.; Elliott, James R.

    1993-01-01

    A flight test experiment was conducted at the Langley Research Center to evaluate a wing leading-edge vortex flap concept designed for use on an aircraft with highly swept wings. The flap concept was designed as a modification to the wing leading edge of an F-106B airplane. The flight testing required operations at conditions that would exceed the structural load envelope of the basic airplane in order to acquire desired research data for the modified configuration. Accordingly, the operational envelope of the modified aircraft was incrementally expanded and real-time monitoring of airframe strains at critical wing locations was mandated to insure safety of flight. The flight tests were conducted in two phases: Phase I to establish baseline data with the unmodified wing, and Phase II to determine the effects of the vortex flap on performance, handling qualities, and flow field characteristics. This paper focuses on a description of the approach and procedures used to provide the strain-gage monitoring to insure structural integrity. Highlights of the wing modification and the overall operation are also included. Within a -year period, 110 research flights were successfully completed, providing researchers with sufficient data to assess the potential benefits ascribed to the vortex flap concept without encountering severe structural problems or mishaps.

  7. Medical emergencies on board commercial airlines: is documentation as expected?

    PubMed Central

    2012-01-01

    Introduction The purpose of this study was to perform a descriptive, content-based analysis on the different forms of documentation for in-flight medical emergencies that are currently provided in the emergency medical kits on board commercial airlines. Methods Passenger airlines in the World Airline Directory were contacted between March and May 2011. For each participating airline, sample in-flight medical emergency documentation forms were obtained. All items in the sample documentation forms were subjected to a descriptive analysis and compared to a sample "medical incident report" form published by the International Air Transport Association (IATA). Results A total of 1,318 airlines were contacted. Ten airlines agreed to participate in the study and provided a copy of their documentation forms. A descriptive analysis revealed a total of 199 different items, which were summarized into five sub-categories: non-medical data (63), signs and symptoms (68), diagnosis (26), treatment (22) and outcome (20). Conclusions The data in this study illustrate a large variation in the documentation of in-flight medical emergencies by different airlines. A higher degree of standardization is preferable to increase the data quality in epidemiologic aeromedical research in the future. PMID:22397530

  8. The microbiological composition of airliner cabin air.

    PubMed

    Wick, R L; Irvine, L A

    1995-03-01

    Hundreds of millions of passengers travel on U.S. airliners annually. These large numbers, together with the close proximity required onboard, raise a concern about microbiologic disease transmission in cabin air. Previous air quality surveys generally concentrated on environmental tobacco smoke and particulate matter. They largely ignored the microorganisms also present. We sampled the microbiologic climate of 45 domestic and international flights. We also sampled common locations in a major southwestern city. The concentration of microorganisms in airline cabin air is much lower than in ordinary city locations. We conclude that the small number of microorganisms found in U.S. airliner cabin environments does not contribute to the risk of disease transmission among passengers.

  9. A Conceptual Design of a Short Takeoff and Landing Regional Jet Airliner

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2010-01-01

    Most jet airliner conceptual designs adhere to conventional takeoff and landing performance. Given this predominance, takeoff and landing performance has not been critical, since it has not been an active constraint in the design. Given that the demand for air travel is projected to increase dramatically, there is interest in operational concepts, such as Metroplex operations that seek to unload the major hub airports by using underutilized surrounding regional airports, as well as using underutilized runways at the major hub airports. Both of these operations require shorter takeoff and landing performance than is currently available for airliners of approximately 100-passenger capacity. This study examines the issues of modeling performance in this now critical flight regime as well as the impact of progressively reducing takeoff and landing field length requirements on the aircraft s characteristics.

  10. Initiating Sustainable Operations at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Orrell, Josh

    2003-01-01

    Marshall Space Flight Center conducted a preliminary sustainability assessment to identify sustainable projects for potential implementation at its facility in Huntsville, Alabama. This presentation will discuss the results of that assessment, highlighting current and future initiatives aimed at integrating sustainability into daily operations.

  11. An Analysis of Airline Costs. Lecture Notes for MIT Courses. 16.73 Airline Management and Marketing

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1972-01-01

    The cost analyst must understand the operations of the airline and how the activities of the airline are measured, as well as how the costs are incurred and recorded. The data source is usually a cost accounting process. This provides data on the cumulated expenses in various categories over a time period like a quarter, or year, and must be correlated by the analyst with cumulated measures of airline activity which seem to be causing this expense.

  12. Operational computer graphics in the flight dynamics environment

    NASA Technical Reports Server (NTRS)

    Jeletic, James F.

    1989-01-01

    Over the past five years, the Flight Dynamics Division of the National Aeronautics and Space Administration's (NASA's) Goddard Space Flight Center has incorporated computer graphics technology into its operational environment. In an attempt to increase the effectiveness and productivity of the Division, computer graphics software systems have been developed that display spacecraft tracking and telemetry data in 2-d and 3-d graphic formats that are more comprehensible than the alphanumeric tables of the past. These systems vary in functionality from real-time mission monitoring system, to mission planning utilities, to system development tools. Here, the capabilities and architecture of these systems are discussed.

  13. Translating Research Into Airline Practice: Case Studies In Collaboration

    NASA Technical Reports Server (NTRS)

    Dismukes, R. Key; Chappell, Sherry; Daniel, Doug; Mancuso, Vince; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Airline training departments are avid customers for research that will help them enhance the effectiveness of training and the safety of flight operations. However, various factors often make it difficult for training department managers to draw upon the large body of human factors research, e.g.: research may not address the specific questions facing the training departments, the research literature may not be in a form that training managers can readily interpret, researchers' recommendations may be too expensive or impractical to implement, etc. This panel will discuss ways in which researchers can work with training departments to design research and translate findings into products that airlines can use readily. This collaboration is most effective when it is an integral part of the study from its inception. To illustrate the process of collaboration we will use as a case study the recently completed LOFT (Line Oriented Flight Training) Debriefing research project. We will summarize the findings from that study and discuss how we translated those findings into two training tools: a manual on how to facilitate LOFT debriefings and a video that illustrates facilitation techniques in a realistically enacted debriefing. In some cases, instead of starting a new research project, training department needs can be addressed by reviewing the existing research literature and using expert opinion to develop products that specifically address those needs. To illustrate this approach we will discuss a recent informal working group of scientists and airline personnel that met to develop training material to enhance situation awareness. This group reviewed scientific literature and ASRS (Aviation Safety Reporting System) reports, analyzed contributing factors, and produced a model for managing situation awareness.

  14. Verification and Implementation of Operations Safety Controls for Flight Missions

    NASA Technical Reports Server (NTRS)

    Jones, Cheryl L.; Smalls, James R.; Carrier, Alicia S.

    2010-01-01

    Approximately eleven years ago, the International Space Station launched the first module from Russia, the Functional Cargo Block (FGB). Safety and Mission Assurance (S&MA) Operations (Ops) Engineers played an integral part in that endeavor by executing strict flight product verification as well as continued staffing of S&MA's console in the Mission Evaluation Room (MER) for that flight mission. How were these engineers able to conduct such a complicated task? They conducted it based on product verification that consisted of ensuring that safety requirements were adequately contained in all flight products that affected crew safety. S&MA Ops engineers apply both systems engineering and project management principles in order to gain a appropriate level of technical knowledge necessary to perform thorough reviews which cover the subsystem(s) affected. They also ensured that mission priorities were carried out with a great detail and success.

  15. Assessing the status of airline safety culture and its relationship to key employee attitudes

    NASA Astrophysics Data System (ADS)

    Owen, Edward L.

    The need to identify the factors that influence the overall safety environment and compliance with safety procedures within airline operations is substantial. This study examines the relationships between job satisfaction, the overall perception of the safety culture, and compliance with safety rules and regulations of airline employees working in flight operations. A survey questionnaire administered via the internet gathered responses which were converted to numerical values for quantitative analysis. The results were grouped to provide indications of overall average levels in each of the three categories, satisfaction, perceptions, and compliance. Correlations between data in the three sets were tested for statistical significance using two-sample t-tests assuming equal variances. Strong statistical significance was found between job satisfaction and compliance with safety rules and between perceptions of the safety environment and safety compliance. The relationship between job satisfaction and safety perceptions did not show strong statistical significance.

  16. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Operator informing space flight participant... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight participant § 460.45 Operator informing space flight participant of risk....

  17. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Operator informing space flight participant... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight participant § 460.45 Operator informing space flight participant of risk....

  18. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Operator informing space flight participant... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight participant § 460.45 Operator informing space flight participant of risk....

  19. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Operator informing space flight participant... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight participant § 460.45 Operator informing space flight participant of risk....

  20. 14 CFR 460.45 - Operator informing space flight participant of risk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Operator informing space flight participant... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING HUMAN SPACE FLIGHT REQUIREMENTS Launch and Reentry with a Space Flight participant § 460.45 Operator informing space flight participant of risk....

  1. Detection of structural deterioration and associated airline maintenance problems

    NASA Technical Reports Server (NTRS)

    Henniker, H. D.; Mitchell, R. G.

    1972-01-01

    Airline operations involving the detection of structural deterioration and associated maintenance problems are discussed. The standard approach to the maintenance and inspection of aircraft components and systems is described. The frequency of inspections and the application of preventive maintenance practices are examined. The types of failure which airline transport aircraft encounter and the steps taken to prevent catastrophic failure are reported.

  2. System security in the space flight operations center

    NASA Technical Reports Server (NTRS)

    Wagner, David A.

    1988-01-01

    The Space Flight Operations Center is a networked system of workstation-class computers that will provide ground support for NASA's next generation of deep-space missions. The author recounts the development of the SFOC system security policy and discusses the various management and technology issues involved. Particular attention is given to risk assessment, security plan development, security implications of design requirements, automatic safeguards, and procedural safeguards.

  3. Flight controller alertness and performance during MOD shiftwork operations

    NASA Technical Reports Server (NTRS)

    Kelly, Sean M.; Rosekind, Mark R.; Dinges, David F.; Miller, Donna L.; Gillen, Kelly A.; Gregory, Kevin B.; Aguilar, Ronald D.; Smith, Roy M.

    1994-01-01

    Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations. During STS operations, MOD personnel provide 24 hr. coverage of critical tasks. A joint JSC and ARC project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during STS-53 in Dec. 1992. The study measures included a background questionnaire, a subjective daily logbook completed on a 24 hr. basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen Flight controllers representing the 3 Orbit shifts participated. The initial results clearly support further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further extended duration orbiters, timelines and planning for 24 circadian disruption will remain highly relevant in the MOD environment.

  4. Geostationary Operational Environmental Satellite (GOES)-8 mission flight experience

    NASA Technical Reports Server (NTRS)

    Noonan, C. H.; Mcintosh, R. J.; Rowe, J. N.; Defazio, R. L.; Galal, K. F.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 spacecraft was launched on April 13, 1994, at 06:04:02 coordinated universal time (UTC), with separation from the Atlas-Centaur launch vehicle occurring at 06:33:05 UTC. The launch was followed by a series of complex, intense operations to maneuver the spacecraft into its geosynchronous mission orbit. The Flight Dynamics Facility (FDF) of the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) was responsible for GOES-8 attitude, orbit maneuver, orbit determination, and station acquisition support during the ascent phase. This paper summarizes the efforts of the FDF support teams and highlights some of the unique challenges the launch team faced during critical GOES-8 mission support. FDF operations experience discussed includes: (1) The abort of apogee maneuver firing-1 (AMF-1), cancellation of AMF-3, and the subsequent replans of the maneuver profile; (2) The unexpectedly large temperature dependence of the digital integrating rate assembly (DIRA) and its effect on GOES-8 attitude targeting in support of perigee raising maneuvers; (3) The significant effect of attitude control thrusting on GOES-8 orbit determination solutions; (4) Adjustment of the trim tab to minimize torque due to solar radiation pressure; and (5) Postlaunch analysis performed to estimate the GOES-8 separation attitude. The paper also discusses some key FDF GOES-8 lessons learned to be considered for the GOES-J launch which is currently scheduled for May 19, 1995.

  5. Flight controller alertness and performance during spaceflight shiftwork operations.

    PubMed

    Kelly, S M; Rosekind, M R; Dinges, D F; Miller, D L; Gillen, K A; Gregory, K B; Aguilar, R D; Smith, R M

    1998-09-01

    Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations personnel. During Space Transportation System (STS) operations, Mission Operations Directorate (MOD) personnel provide 24-hr. coverage of critical tasks. A joint NASA Johnson Space Center and NASA Ames Research Center project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during the STS-53 mission in December 1992. The study measures included a Background Questionnaire, a subjective daily logbook completed on a 24-hour basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen flight controllers representing the 3 Orbit shifts participated. The initial results clearly support the need for further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. Countermeasure strategies specific to the MOD environment are being developed to minimize the adverse effects of fatigue, sleep loss, and circadian disruption engendered by shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further EDO (extended duration orbiters), and timelines and planning for 24-hour Space Station operations continue, alertness and performance issues related to sleep and circadian disruption will remain highly relevant in the MOD environment.

  6. Wind shear measuring on board an airliner

    NASA Technical Reports Server (NTRS)

    Krauspe, P.

    1984-01-01

    A measurement technique which continuously determines the wind vector on board an airliner during takeoff and landing is introduced. Its implementation is intended to deliver sufficient statistical background concerning low frequency wind changes in the atmospheric boundary layer and extended knowledge about deterministic wind shear modeling. The wind measurement scheme is described and the adaptation of apparatus onboard an A300 airbus is shown. Preliminary measurements made during level flight demonstrate the validity of the method.

  7. U.S. Airline Transport Pilot International Flight Language Experiences, Report 6: Native English-Speaking Controllers Communicating With Non-Native English-Speaking Pilots

    DTIC Science & Technology

    2011-03-01

    English - speaking pilot and you are on the same flight path and you suspect that pilot is low in English language proficiency skills ...native speaker of English (or English dialect). 2. Controllers need to develop greater patience with non-native English - speaking pilots. Once interna...when a non-native English - speaking pilot and you are on the same flight path and you suspect that pilot is low in English language proficiency skills

  8. Key drivers of airline loyalty.

    PubMed

    Dolnicar, Sara; Grabler, Klaus; Grün, Bettina; Kulnig, Anna

    2011-10-01

    This study investigates drivers of airline loyalty. It contributes to the body of knowledge in the area by investigating loyalty for a number of a priori market segments identified by airline management and by using a method which accounts for the multi-step nature of the airline choice process. The study is based on responses from 687 passengers. Results indicate that, at aggregate level, frequent flyer membership, price, the status of being a national carrier and the reputation of the airline as perceived by friends are the variables which best discriminate between travellers loyal to the airline and those who are not. Differences in drivers of airline loyalty for a number of segments were identified. For example, loyalty programs play a key role for business travellers whereas airline loyalty of leisure travellers is difficult to trace back to single factors. For none of the calculated models satisfaction emerged as a key driver of airline loyalty.

  9. Flight Operations for the LCROSS Lunar Impactor Mission

    NASA Technical Reports Server (NTRS)

    Tompkins, Paul D.; Hunt, Rusty; D'Ortenzio, Matt D.; Strong, James; Galal, Ken; Bresina, John L.; Foreman, Darin; Barber, Robert; Shirley, Mark; Munger, James; Drucker, Eric

    2010-01-01

    The LCROSS (Lunar CRater Observation and Sensing Satellite) mission was conceived as a low-cost means of determining the nature of hydrogen concentrated at the polar regions of the moon. Co-manifested for launch with LRO (Lunar Reconnaissance Orbiter), LCROSS guided its spent Centaur upper stage into the Cabeus crater as a kinetic impactor, and observed the impact flash and resulting debris plume for signs of water and other compounds from a Shepherding Spacecraft. Led by NASA Ames Research Center, LCROSS flight operations spanned 112 days, from June 18 through October 9, 2009. This paper summarizes the experiences from the LCROSS flight, highlights the challenges faced during the mission, and examines the reasons for its ultimate success.

  10. Eye Tracking Metrics for Workload Estimation in Flight Deck Operation

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle; Schnell, Thomas

    2010-01-01

    Flight decks of the future are being enhanced through improved avionics that adapt to both aircraft and operator state. Eye tracking allows for non-invasive analysis of pilot eye movements, from which a set of metrics can be derived to effectively and reliably characterize workload. This research identifies eye tracking metrics that correlate to aircraft automation conditions, and identifies the correlation of pilot workload to the same automation conditions. Saccade length was used as an indirect index of pilot workload: Pilots in the fully automated condition were observed to have on average, larger saccadic movements in contrast to the guidance and manual flight conditions. The data set itself also provides a general model of human eye movement behavior and so ostensibly visual attention distribution in the cockpit for approach to land tasks with various levels of automation, by means of the same metrics used for workload algorithm development.

  11. 14 CFR 135.69 - Restriction or suspension of operations: Continuation of flight in an emergency.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.69 Restriction or suspension of operations: Continuation of flight in an emergency. (a) During operations under this part, if a certificate holder or pilot...: Continuation of flight in an emergency. 135.69 Section 135.69 Aeronautics and Space FEDERAL...

  12. 14 CFR 135.69 - Restriction or suspension of operations: Continuation of flight in an emergency.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.69 Restriction or suspension of operations: Continuation of flight in an emergency. (a) During operations under this part, if a certificate holder or pilot...: Continuation of flight in an emergency. 135.69 Section 135.69 Aeronautics and Space FEDERAL...

  13. 14 CFR 135.69 - Restriction or suspension of operations: Continuation of flight in an emergency.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.69 Restriction or suspension of operations: Continuation of flight in an emergency. (a) During operations under this part, if a certificate holder or pilot...: Continuation of flight in an emergency. 135.69 Section 135.69 Aeronautics and Space FEDERAL...

  14. 14 CFR 135.69 - Restriction or suspension of operations: Continuation of flight in an emergency.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.69 Restriction or suspension of operations: Continuation of flight in an emergency. (a) During operations under this part, if a certificate holder or pilot...: Continuation of flight in an emergency. 135.69 Section 135.69 Aeronautics and Space FEDERAL...

  15. 14 CFR 135.69 - Restriction or suspension of operations: Continuation of flight in an emergency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 135.69 Restriction or suspension of operations: Continuation of flight in an emergency. (a) During operations under this part, if a certificate holder or pilot...: Continuation of flight in an emergency. 135.69 Section 135.69 Aeronautics and Space FEDERAL...

  16. 14 CFR 91.858 - Special flight authorizations for non-revenue Stage 2 operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Special flight authorizations for non..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Operating Noise Limits § 91.858 Special flight authorizations for non-revenue Stage 2...

  17. 14 CFR 121.615 - Dispatch or flight release over water: Flag and supplemental operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Dispatch or flight release over water: Flag...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.615 Dispatch or flight release over water: Flag and supplemental...

  18. 14 CFR 121.615 - Dispatch or flight release over water: Flag and supplemental operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Dispatch or flight release over water: Flag...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.615 Dispatch or flight release over water: Flag and supplemental...

  19. 14 CFR 121.615 - Dispatch or flight release over water: Flag and supplemental operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Dispatch or flight release over water: Flag...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.615 Dispatch or flight release over water: Flag and supplemental...

  20. 14 CFR 121.615 - Dispatch or flight release over water: Flag and supplemental operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Dispatch or flight release over water: Flag...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.615 Dispatch or flight release over water: Flag and supplemental...

  1. 14 CFR 121.615 - Dispatch or flight release over water: Flag and supplemental operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Dispatch or flight release over water: Flag...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.615 Dispatch or flight release over water: Flag and supplemental...

  2. High-Speed Civil Transport Forecast: Simulated Airlines Scenarios for Mach 1.6, Mach 2.0, and Mach 2.4 Configurations for Year 2015

    NASA Technical Reports Server (NTRS)

    Metwally, Munir

    1996-01-01

    The report describes the development of a database of fuel burn and emissions from projected High Speed Civil Transport (HSCT) fleets that reflect actual airlines' networks, operational requirement, and traffic flow as operated by simulated world wide airlines for Mach 1.6, 2.0, and 2.4 HSCT configurations. For the year 2015, McDonnell Douglas Corporation created two supersonic commercial air traffic networks consisting of origin-destination city pair routes and associated traffic levels. The first scenario represented a manufacturing upper limit producible HSCT fleet availability by year 2015. The fleet projection of the Mach 2.4 configuration for this scenario was 1059 units with a traffic capture of 70 percent. The second scenario focused on the number of units that can minimally be produced by the year 2015. Using realistic production rates, the HSCT fleet projection amounts to 565 units. The traffic capture associated with this fleet was estimated at 40 percent. The airlines network was extracted from the actual networks of 21 major world airlines. All the routes were screened for suitability for HSCT operations. The route selection criteria included great circle distance, difference between flight path distance and great circle distance to avoid overland operations, and potential flight frequency.

  3. Design and Development of a Flight Route Modification, Logging, and Communication Network

    NASA Technical Reports Server (NTRS)

    Merlino, Daniel K.; Wilson, C. Logan; Carboneau, Lindsey M.; Wilder, Andrew J.; Underwood, Matthew C.

    2016-01-01

    There is an overwhelming desire to create and enhance communication mechanisms between entities that operate within the National Airspace System. Furthermore, airlines are always extremely interested in increasing the efficiency of their flights. An innovative system prototype was developed and tested that improves collaborative decision making without modifying existing infrastructure or operational procedures within the current Air Traffic Management System. This system enables collaboration between flight crew and airline dispatchers to share and assess optimized flight routes through an Internet connection. Using a sophisticated medium-fidelity flight simulation environment, a rapid-prototyping development, and a unified modeling language, the software was designed to ensure reliability and scalability for future growth and applications. Ensuring safety and security were primary design goals, therefore the software does not interact or interfere with major flight control or safety systems. The system prototype demonstrated an unprecedented use of in-flight Internet to facilitate effective communication with Airline Operations Centers, which may contribute to increased flight efficiency for airlines.

  4. Global measurements of gaseous and aerosol trace species in the upper troposphere and lower stratosphere from daily flights of 747 airliners

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1976-01-01

    Extensive measurements include ozone, carbon monoxide, water vapor, and aerosol and condensation nuclei number density. Less extensive measurements include chlorofluoromethanes, sulfates and nitrates. Certain meteorological and flight information are also recorded at the time of these measurements. World routes range in latitude from about 60 deg N near North America to about 40 deg S over Australia and 23 deg S over South America. Typical data show significant changes in ozone, carbon monoxide, and water vapor when crossing the tropopause either during changes in altitude or at cruise altitude. These gases as well as light scattering particles and condensation nuclei exhibit considerable variability along a flight route.

  5. Flight Dynamics Operations: Methods and Lessons Learned from Space Shuttle Orbit Operations

    NASA Technical Reports Server (NTRS)

    Cutri-Kohart, Rebecca M.

    2011-01-01

    The Flight Dynamics Officer is responsible for trajectory maintenance of the Space Shuttle. This paper will cover high level operational considerations, methodology, procedures, and lessons learned involved in performing the functions of orbit and rendezvous Flight Dynamics Officer and leading the team of flight dynamics specialists during different phases of flight. The primary functions that will be address are: onboard state vector maintenance, ground ephemeris maintenance, calculation of ground and spacecraft acquisitions, collision avoidance, burn targeting for the primary mission, rendezvous, deorbit and contingencies, separation sequences, emergency deorbit preparation, mass properties coordination, payload deployment planning, coordination with the International Space Station, and coordination with worldwide trajectory customers. Each of these tasks require the Flight Dynamics Officer to have cognizance of the current trajectory state as well as the impact of future events on the trajectory plan in order to properly analyze and react to real-time changes. Additionally, considerations are made to prepare flexible alternative trajectory plans in the case timeline changes or a systems failure impact the primary plan. The evolution of the methodology, procedures, and techniques used by the Flight Dynamics Officer to perform these tasks will be discussed. Particular attention will be given to how specific Space Shuttle mission and training simulation experiences, particularly off-nominal or unexpected events such as shortened mission durations, tank failures, contingency deorbit, navigation errors, conjunctions, and unexpected payload deployments, have influenced the operational procedures and training for performing Space Shuttle flight dynamics operations over the history of the program. These lessons learned can then be extended to future vehicle trajectory operations.

  6. Support of Helicopter 'Free Flight' Operations in the 1996 Olympics

    NASA Technical Reports Server (NTRS)

    Branstetter, James R.; Cooper, Eric G.

    1996-01-01

    The microcosm of activity surrounding the 1996 Olympic Games provided researchers an opportunity for demonstrating state-of-the art technology in the first large-scale deployment of a prototype digital communication/navigation/surveillance system in a confined environment. At the same time it provided an ideal opportunity for transportation officials to showcase the merits of an integrated transportation system in meeting the operational needs to transport time sensitive goods and provide public safety services under real-world conditions. Five aeronautical CNS functions using a digital datalink system were chosen for operational flight testing onboard 91 aircraft, most of them helicopters, participating in the Atlanta Short-Haul Transportation System. These included: GPS-based Automatic Dependent Surveillance, Cockpit Display of Traffic Information, Controller-Pilot Communications, Graphical Weather Information (uplink), and Automated Electronic Pilot Reporting (downlink). Atlanta provided the first opportunity to demonstrate, in an actual operating environment, key datalink functions which would enhance flight safety and situational awareness for the pilot and supplement conventional air traffic control. The knowledge gained from such a large-scale deployment will help system designers in development of a national infrastructure where aircraft would have the ability to navigate autonomously.

  7. Physics of Colloids in Space: Flight Hardware Operations on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Bailey, Arthur E.; Jankovsky, Amy L.; Lorik, Tibor

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was launched on Space Shuttle STS-100 in April 2001 and integrated into EXpedite the PRocess of Experiments to Space Station Rack 2 on the International Space Station (ISS). This microgravity fluid physics investigation is being conducted in the ISS U.S. Lab 'Destiny' Module over a period of approximately thirteen months during the ISS assembly period from flight 6A through flight 9A. PCS is gathering data on the basic physical properties of simple colloidal suspensions by studying the structures that form. A colloid is a micron or submicron particle, be it solid, liquid, or gas. A colloidal suspension consists of these fine particles suspended in another medium. Common colloidal suspensions include paints, milk, salad dressings, cosmetics, and aerosols. Though these products are routinely produced and used, we still have much to learn about their behavior as well as the underlying properties of colloids in general. The long-term goal of the PCS investigation is to learn how to steer the growth of colloidal structures to create new materials. This experiment is the first part of a two-stage investigation conceived by Professor David Weitz of Harvard University (the Principal Investigator) along with Professor Peter Pusey of the University of Edinburgh (the Co-Investigator). This paper describes the flight hardware, experiment operations, and initial science findings of the first fluid physics payload to be conducted on ISS: The Physics of Colloids in Space.

  8. U.S. Airline Transport Pilot International Flight Language Experiences, Report 4: Non-Native English-Speaking Controllers Communicating with Native English-Speaking Pilots

    DTIC Science & Technology

    2010-08-01

    make sure everybody’s on a headset or an earpiece to begin with, through the departure and the arrival phase. (An earpiece helps me understand better...5 Wear an earpiece or headset 3 Message Production From the Flight Deck Speech Production Enunciate, remove tension from my voice; speak

  9. Objectives of the Airline Firm: Theory

    NASA Technical Reports Server (NTRS)

    Kneafsey, J. T.

    1972-01-01

    Theoretical models are formulated for airline firm operations that revolve around alternative formulations of managerial goals which these firms are persuing in practice. Consideration is given to the different objective functions which the companies are following in lieu of profit maximization.

  10. Operational requirements for flight control and navigation systems for short haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Morrison, J. A.

    1976-01-01

    Operational procedures for use in an assumed short haul transport route were evaluated. The curved path approaches in airline use by large jet airplanes were studied. The characteristics of these approaches were included in development of operational procedures for transitions and approaches by a jet STOL transport. These procedures were used in a simulation experiment and were satisfactory for autoflight operation. A minimum turn radius of 3,000 ft. for a 180 final turn was determined for the wind conditions tested. The accuracy of the approaches was very good.

  11. Commuter Airline Forecasts,

    DTIC Science & Technology

    1981-05-01

    indicated earlier, all-cargo operators are moving toward larger turboprop and even jet aircraft. The growth in size of aircraft in this segement of the...CAB Part 298 data, and Air Traffic Activity data were accumulated by geographic entity, year and quarter, and class of service. The geographic entities...Traffic Statistics. Flights and trip segments that originated or terminated in the ( same geographic entity were assigned to that area. The number of times

  12. A Theory of False Cognitive Expectancies in Airline Pilots

    NASA Astrophysics Data System (ADS)

    Cortes, Antonio I.

    The Theory of False Cognitive Expectancies was developed by studying high reliability flight operations. Airline pilots depend extensively on cognitive expectancies to perceive, understand, and predict actions and events. Out of 1,363 incident reports submitted by airline pilots to the National Aeronautics and Space Administration Aviation Safety Reporting System over a year's time, 110 reports were found to contain evidence of 127 false cognitive expectancies in pilots. A comprehensive taxonomy was developed with six categories of interest. The dataset of 127 false expectancies was used to initially code tentative taxon values for each category. Intermediate coding through constant comparative analysis completed the taxonomy. The taxonomy was used for the advanced coding of chronological context-dependent visualizations of expectancy factors, known as strands, which depict the major factors in the creation and propagation of each expectancy. Strands were mapped into common networks to detect highly represented expectancy processes. Theoretical integration established 11 sources of false expectancies, the most common expectancy errors, and those conspicuous factors worthy of future study. The most prevalent source of false cognitive expectancies within the dataset was determined to be unconscious individual modeling based on past events. Integrative analyses also revealed relationships between expectancies and flight deck automation, unresolved discrepancies, and levels of situation awareness. Particularly noteworthy were the findings that false expectancies can combine in three possible permutations to diminish situation awareness and examples of how false expectancies can be unwittingly transmitted from one person to another. The theory resulting from this research can enhance the error coding process used during aircraft line oriented safety audits, lays the foundation for developing expectancy management training programs, and will allow researchers to proffer

  13. Comparison of myocardial ischemia during intense mental stress using flight simulation in airline pilots with coronary artery disease to that produced with conventional mental and treadmill exercise stress testing.

    PubMed

    Doorey, Andrew; Denenberg, Barry; Sagar, Vidya; Hanna, Tracy; Newman, Jack; Stone, Peter H

    2011-09-01

    Mental stress increases cardiovascular morbidity and mortality. Although laboratory mental stress often causes less myocardial ischemia than exercise stress (ES), it is unclear whether mental stress is intrinsically different or differences are due to less hemodynamic stress with mental stress. We sought to evaluate the hemodynamic and ischemic response to intense realistic mental stress created by modern flight simulators and compare this response to that of exercise treadmill testing and conventional laboratory mental stress (CMS) testing in pilots with coronary disease. Sixteen airline pilots with angiographically documented coronary disease and documented myocardial ischemia during ES were studied using maximal treadmill ES, CMS, and aviation mental stress (AMS) testing. AMS testing was done in a sophisticated simulator using multiple system failures as stressors. Treadmill ES testing resulted in the highest heart rate, but AMS caused a higher blood pressure response than CMS. Maximal rate-pressure product was not significantly different between ES and AMS (25,646 vs 23,347, p = 0.08), although these were higher than CMS (16,336, p <0.0001). Despite similar hemodynamic stress induced by ES and AMS, AMS resulted in significantly less ST-segment depression and nuclear ischemia than ES. Differences in induction of ischemia by mental stress compared to ES do not appear to be due to the creation of less hemodynamic stress. In conclusion, even with equivalent hemodynamic stress, intense realistic mental stress induced by flight simulators results in significantly less myocardial ischemia than ES as measured by ST-segment depression and nuclear ischemia.

  14. Avoiding Human Error in Mission Operations: Cassini Flight Experience

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2012-01-01

    Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.

  15. 14 CFR Table C to Part 117 - Flight Duty Period: Augmented Operations

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight Duty Period: Augmented Operations C Table C to Part 117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...—Flight Duty Period: Augmented Operations Scheduled time of start (acclimated time) Maximum flight...

  16. Advisory Systems Save Time, Fuel for Airlines

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Heinz Erzberger never thought the sky was falling, but he knew it could benefit from enhanced traffic control. Throughout the 1990s, Erzberger led a team at Ames Research Center to develop a suite of automated tools to reduce restrictions and improve the efficiency of air traffic control operations. Called CTAS, or Center-TRACON (Terminal Radar Approach Control) Automation System, the software won NASA s Software of the Year award in 1998, and one of the tools in the suite - the traffic management advisor - was adopted by the Federal Aviation Administration and implemented at traffic control centers across the United States. Another one of the tools, Direct-To, has followed a different path. The idea behind Direct-To, explains Erzberger, a senior scientist at Ames, was that airlines could save fuel and money by shortening the routes they flew between take-off and landing. Aircraft are often limited to following established airways comprised of inefficient route segments. The routes are not easily adjusted because neither the pilot nor the aircraft controller can anticipate the constantly changing air traffic situation. To make the routes more direct while in flight, Erzberger came up with an idea for a software algorithm that could automatically examine air traffic in real-time, check to see if a shortcut was available, and then check for conflicts. If there were no conflicts and the shortcut saved more than 1 minute of flight time, the controller could be notified. "I was trying to figure out what goes on in the pilot and controller s minds when they decide to guide the aircraft in a certain way. That resulted in a different kind analysis," Erzberger says. As the engineer s idea went from theory to practice, in 2001, NASA demonstrated Direct-To in the airspace of Dallas-Ft. Worth. Estimations based on the demonstration found the technology was capable of saving 900 flying minutes per day for the aircraft in the test area.

  17. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows both astronauts reviewing procedures and checking CRT screen data.

  18. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows Overmyer pointing to data on Panel 7 (F7) CRT 1 screen.

  19. Development of flying qualities criteria for single pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Bar-Gill, A.; Nixon, W. B.; Miller, G. E.

    1982-01-01

    Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed.

  20. The B-747 flight control system maintenance and reliability data base for cost effectiveness tradeoff studies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Primary and automatic flight controls are combined for a total flight control reliability and maintenance cost data base using information from two previous reports and additional cost data gathered from a major airline. A comparison of the current B-747 flight control system effects on reliability and operating cost with that of a B-747 designed for an active control wing load alleviation system is provided.

  1. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    NASA Technical Reports Server (NTRS)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  2. The 747 primary flight control systems reliability and maintenance study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The major operational characteristics of the 747 Primary Flight Control Systems (PFCS) are described. Results of reliability analysis for separate control functions are presented. The analysis makes use of a NASA computer program which calculates reliability of redundant systems. Costs for maintaining the 747 PFCS in airline service are assessed. The reliabilities and cost will provide a baseline for use in trade studies of future flight control system design.

  3. STS-1 operational flight profile. Volume 5: Descent, cycle 3

    NASA Technical Reports Server (NTRS)

    Moore, R.; Baker, A.; Hite, R.; Hochstein, A.; Lyons, J.; Strong, K.

    1980-01-01

    The trajectory data presented are to be used for orbiter systems and subsystems evalation, flight and mission control center software verification, flight techniques and timeline development, crew training, and evaluation of operational mission suitability. The entry profile is very similar to cycle 2, however, elevon and body flap temperature margins have increased and the elevon schedule was changed. The terminal area energy management (TAEM) profile was completely reshaped to conform with new angle of attack constraints and left hand turn around the heading alignment cylinder. Also, the entry/TAEM interface was adjusted to minimize guidance induced angle of attack transients across the interface. The approach and landing phase was reshaped for a 20 deg glideslope and reduced velocity at touchdown. The definition of the runway threshold was standardized for all landing sites. This results in a shift at Edwards Air Force Base in aim points and touchdown relative to the threshold of 1000 feet. The rollout remains essentially unchanged with the exception of the speedbrake, which is now deployed to 50 percent at touchdown.

  4. Integrated Approach to Flight Crew Training

    NASA Technical Reports Server (NTRS)

    Carroll, J. E.

    1984-01-01

    The computer based approach used by United Airlines for flight training is discussed. The human factors involved in specific aircraft accidents are addressed. Flight crew interaction and communication as they relate to training and flight safety are considered.

  5. Implementation of Enhanced Propulsion Control Modes for Emergency Flight Operation

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Chin, Jeffrey C.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2011-01-01

    Aircraft engines can be effective actuators to help pilots avert or recover from emergency situations. Emergency control modes are being developed to enhance the engines performance to increase the probability of recovery under these circumstances. This paper discusses a proposed implementation of an architecture that requests emergency propulsion control modes, allowing the engines to deliver additional performance in emergency situations while still ensuring a specified safety level. In order to determine the appropriate level of engine performance enhancement, information regarding the current emergency scenario (including severity) and current engine health must be known. This enables the engine to operate beyond its nominal range while minimizing overall risk to the aircraft. In this architecture, the flight controller is responsible for determining the severity of the event and the level of engine risk that is acceptable, while the engine controller is responsible for delivering the desired performance within the specified risk range. A control mode selector specifies an appropriate situation-specific enhanced mode, which the engine controller then implements. The enhanced control modes described in this paper provide additional engine thrust or response capabilities through the modification of gains, limits, and the control algorithm, but increase the risk of engine failure. The modifications made to the engine controller to enable the use of the enhanced control modes are described, as are the interaction between the various subsystems and importantly, the interaction between the flight controller/pilot and the propulsion control system. Simulation results demonstrate how the system responds to requests for enhanced operation and the corresponding increase in performance.

  6. Use of eternal flight unmanned aircraft in military operations

    NASA Astrophysics Data System (ADS)

    Kök, Zafer

    2014-06-01

    Unmanned Aerial Vehicles (UAV), are planned to use solar energy, are being more common and interesting gradually. Today, these systems are very promising while fossil fuels are diminishing rapidly. Academic research is still being conducted to develop unmanned aerial systems which will store energy during day time and use it during night time. Development of unmanned aerial systems, which have eternal flight or very long loiter periods, could be possible by such an energy management. A UAV, which can fly very long time, could provide many advantages that cannot be obtained by conventional aircrafts and satellites. Such systems can be operated as fixed satellites on missions with very low cost in circumstances that require continuous intelligence. By improving automation systems these vehicles could be settled on operation area autonomously and can be grounded easily in case of necessities and maintenance. In this article, the effect of solar powered UAV on operation area has been done a literature review, to be used in surveillance and reconnaissance missions.

  7. Apollo experience report: Flight planning for manned space operations

    NASA Technical Reports Server (NTRS)

    Oneill, J. W.; Cotter, J. B.; Holloway, T. W.

    1972-01-01

    The history of flight planning for manned space missions is outlined, and descriptions and examples of the various evolutionary phases of flight data documents from Project Mercury to the Apollo Program are included. Emphasis is given to the Apollo flight plan. Time line format and content are discussed in relationship to the manner in which they are affected by the types of flight plans and various constraints.

  8. The Wallops Flight Facility Rapid Response Range Operations Initiative

    NASA Technical Reports Server (NTRS)

    Underwood, Bruce E.; Kremer, Steven E.

    2004-01-01

    While the dominant focus on short response missions has appropriately centered on the launch vehicle and spacecraft, often overlooked or afterthought phases of these missions have been launch site operations and the activities of launch range organizations. Throughout the history of organized spaceflight, launch ranges have been the bane of flight programs as the source of expense, schedule delays, and seemingly endless requirements. Launch Ranges provide three basic functions: (1) provide an appropriate geographical location to meet orbital other mission trajectory requirements, (2) provide project services such as processing facilities, launch complexes, tracking and data services, and expendable products, and (3) assure safety and property protection to participating personnel and third-parties. The challenge with which launch site authorities continuously struggle, is the inherent conflict arising from projects whose singular concern is execution of their mission, and the range s need to support numerous simultaneous customers. So, while tasks carried out by a launch range committed to a single mission pale in comparison to efforts of a launch vehicle or spacecraft provider and could normally be carried out in a matter of weeks, major launch sites have dozens of active projects separate sponsoring organizations. Accommodating the numerous tasks associated with each mission, when hardware failures, weather, maintenance requirements, and other factors constantly conspire against the range resource schedulers, make the launch range as significant an impediment to responsive missions as launch vehicles and their cargo. The obvious solution to the launch site challenge was implemented years ago when the Department of Defense simply established dedicated infrastructure and personnel to dedicated missions, namely an Inter Continental Ballistic Missile. This however proves to be prohibitively expensive for all but the most urgent of applications. So the challenge

  9. Advanced transport operating system software upgrade: Flight management/flight controls software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  10. Fatigue mitigation effects of en-route napping on commercial airline pilots flying international routes

    NASA Astrophysics Data System (ADS)

    Baldwin, Jarret Taylor

    The introduction of ultra-long range commercial aircraft and the evolution of the commercial airline industry has provided new opportunities for air carriers to fly longer range international route segments while deregulation, industry consolidation, and the constant drive to reduce costs wherever possible has pressured airline managements to seek more productivity from their pilots. At the same time, advancements in the understanding of human physiology have begun to make their way into flight and duty time regulations and airline scheduling practices. In this complex and ever changing operating environment, there remains an essential need to better understand how these developments, and other daily realities facing commercial airline pilots, are affecting their fatigue management strategies as they go about their rituals of getting to and from their homes to work and performing their flight assignments. Indeed, the need for commercial airline pilots to have access to better and more effective fatigue mitigation tools to combat fatigue and insure that they are well rested and at the top of their game when flying long-range international route segments has never been greater. This study examined to what extent the maximum fatigue states prior to napping, as self-accessed by commercial airline pilots flying international route segments, were affected by a number of other common flight assignment related factors. The study also examined to what extent the availability of scheduled en-route rest opportunities, in an onboard crew rest facility, affected the usage of en-route napping as a fatigue mitigation strategy, and to what extent the duration of such naps affected the perceived benefits of such naps as self-accessed by commercial airline pilots flying international route segments. The study utilized an online survey tool to collect data on crew position, prior flight segments flown in the same duty period, augmentation, commuting, pre-flight rest obtained in the

  11. Robustness of airline route networks

    NASA Astrophysics Data System (ADS)

    Lordan, Oriol; Sallan, Jose M.; Escorihuela, Nuria; Gonzalez-Prieto, David

    2016-03-01

    Airlines shape their route network by defining their routes through supply and demand considerations, paying little attention to network performance indicators, such as network robustness. However, the collapse of an airline network can produce high financial costs for the airline and all its geographical area of influence. The aim of this study is to analyze the topology and robustness of the network route of airlines following Low Cost Carriers (LCCs) and Full Service Carriers (FSCs) business models. Results show that FSC hubs are more central than LCC bases in their route network. As a result, LCC route networks are more robust than FSC networks.

  12. Justice Department Airline Merger Policy

    NASA Technical Reports Server (NTRS)

    Farmer, D. A.

    1972-01-01

    Justice Department airline merger policy is developed within the context of the Federal Aviation Act, in which there is an unusually explicit reliance on competition as a means of fulfilling statutory goals. The economics of the airline industry appear to indicate that low concentration and vigorous competition are particularly viable and desirable. Several factors, including existing regulatory policy, create incentives for airlines to merge whether or not an individual merger promotes or conflicts with the public interest. Specific benefits to the public should be identified and shown to clearly outweight the detriments, including adverse competitive impact, in order for airline mergers to be approved.

  13. Business-IT Alignment Maturity: The Correlation of Performance Indicators and Alignment Maturity within the Commercial Airline Industry

    ERIC Educational Resources Information Center

    Ryan, Timothy K.

    2010-01-01

    During the period from 1978 to 2009, more than 200 commercial airlines were forced to merge, cease operations, or file for bankruptcy protection. The purpose of this quantitative study is to evaluate the global commercial airline industry from an IT-business alignment perspective and correlate the alignment maturity level of each airline with…

  14. Space shuttle orbiter guidance, naviagation and control software functional requirements: Horizontal flight operations

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The shuttle GN&C software functions for horizontal flight operations are defined. Software functional requirements are grouped into two categories: first horizontal flight requirements and full mission horizontal flight requirements. The document privides the intial step in the shuttle GN&C software design process. It also serves as a management tool to identify analyses which are required to define requirements.

  15. Flight Operations reunion for the Apollo 11 20th anniversary of the first manned lunar landing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The following major areas are presented: (1) the Apollo years; (2) official flight control manning list for Apollo 11; (3) original mission control emblem; (4) foundations of flight control; (5) Apollo-11 20th anniversary program and events; (6) Apollo 11 mission operations team certificate; (7) Apollo 11 mission summary (timeline); and (8) Apollo flight control team photographs and biographies.

  16. 76 FR 52231 - Restrictions on Operators Employing Former Flight Standards Service Aviation Safety Inspectors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ...] RIN 2120-AJ36 Restrictions on Operators Employing Former Flight Standards Service Aviation Safety... preceding 2-year period directly served as, or was directly responsible for the oversight of, a Flight... with promoting the safe flight of civil aircraft in air commerce by prescribing regulations and...

  17. Towards a Decision Support System for Space Flight Operations

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Hogle, Charles; Ruszkowski, James

    2013-01-01

    The Mission Operations Directorate (MOD) at the Johnson Space Center (JSC) has put in place a Model Based Systems Engineering (MBSE) technological framework for the development and execution of the Flight Production Process (FPP). This framework has provided much added value and return on investment to date. This paper describes a vision for a model based Decision Support System (DSS) for the development and execution of the FPP and its design and development process. The envisioned system extends the existing MBSE methodology and technological framework which is currently in use. The MBSE technological framework currently in place enables the systematic collection and integration of data required for building an FPP model for a diverse set of missions. This framework includes the technology, people and processes required for rapid development of architectural artifacts. It is used to build a feasible FPP model for the first flight of spacecraft and for recurrent flights throughout the life of the program. This model greatly enhances our ability to effectively engage with a new customer. It provides a preliminary work breakdown structure, data flow information and a master schedule based on its existing knowledge base. These artifacts are then refined and iterated upon with the customer for the development of a robust end-to-end, high-level integrated master schedule and its associated dependencies. The vision is to enhance this framework to enable its application for uncertainty management, decision support and optimization of the design and execution of the FPP by the program. Furthermore, this enhanced framework will enable the agile response and redesign of the FPP based on observed system behavior. The discrepancy of the anticipated system behavior and the observed behavior may be due to the processing of tasks internally, or due to external factors such as changes in program requirements or conditions associated with other organizations that are outside of

  18. Flight simulator with IR and MMW radar image generation capabilities

    NASA Astrophysics Data System (ADS)

    Bonjean, Maxime E.; Lapierre, Fabian D.; Schiefele, Jens; Verly, Jacques G.

    2006-05-01

    In the future, modern airliners will use enhanced-synthesic vision systems (ESVS) to improve aeronautical operations in bad weather conditions. Before ESVS are effectively found aboard airliners, one must develop a multisensor flight simulator capable of synthetizing, in real time, images corresponding to a variety of imaging modalities. We present a real-time simulator called ARIS (Airborne Radar and Infrared Simulator) which is capable of generating two such imaging modalities: a forward-looking infrared (FLIR) and a millimeter-wave radar (MMWR) imaging system. The proposed simulator is modular sothat additional imaging modalities can be added. Example of images generated by the simulator are shown.

  19. STS-1 operational flight profile. Volume 4: Onorbit profile-cycle 3.1.1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The orbital flight test (OFT) phase of the shuttle program consists of four orbital flights beginning in November 1980and continuing through 1981. The major purpose of the OFT program is to demonstrate and verify shuttle systems and flight capabilities by satisfying the OFT requirements, is presented. The onorbit portion of the operational flight profile (OFP) for the first Space Transportation System-1 (STS-1) flight is presented. This onorbit document (volume 4) is one in a series that, taken together, will define the STS-1 OFP. This OFP onorbit document represents a combination of the STS-1 ground rules and constraints and the initialization data. The STS-1 flight activities described reflect the trajectory, consumable, crew activity, and flight requirement baseline as of May 1, 1980. Flight plans for the ascent, onorbit, and descent phases of the test flight are presented.

  20. Operational and research aspects of a radio-controlled model flight test program

    NASA Technical Reports Server (NTRS)

    Budd, Gerald D.; Gilman, Ronald L.; Eichstedt, David

    1993-01-01

    The operational and research aspects of a subscale, radio-controlled model flight test program are presented. By using low-cost free-flying models, an approach was developed for obtaining research-quality vehicle performance and aerodynamic information. The advantages and limitations learned by applying this approach to a specific flight test program are described. The research quality of the data acquired shows that model flight testing is practical for obtaining consistent and repeatable flight data.

  1. Flight Validation of On-Demand Operations: The Deep Space One Beacon Monitor Operations Experiment

    NASA Technical Reports Server (NTRS)

    Wyatt, Jay; Sherwood, Rob; Sue, Miles; Szijjarto, John

    2000-01-01

    After a brief overview of the operational concept, this paper will provide a detailed description of the _as-flown_ flight software components, the DS1 experiment plan, and experiment results to date. Special emphasis will be given to experiment results and lessons learned since the basic system design has been previously reported. Mission scenarios where beacon operations is highly applicable will be described. Detailed cost savings estimates for a sample science mission will be provided as will cumulative savings that are possible over the next fifteen years of NASA missions.

  2. Crew factors in flight operations 2: Psychophysiological responses to short-haul air transport operations

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Graeber, R. Curtis; Foushee, H. Clayton; Lauber, John K.; Connell, Linda J.

    1994-01-01

    Seventy-four pilots were monitored before, during, and after 3- or 4-day commercial short-haul trip patterns. The trips studied averaged 10.6 hr of duty per day with 4.5 hr of flight time and 5.5 flight segments. The mean rest period lasted 12.5 hr and occurred progressively earlier across successive days. On trip nights, subjects took longer to fall asleep, slept less, woke earlier, and reported lighter, poorer sleep with more awakenings than on pretrip nights. During layovers, subjective fatigue and negative affect were higher, and positive affect and activation lower, than during pretrip, in-flight, or posttrip. Pilots consumed more caffeine, alcohol, and snacks on trip days than either pretrip or posttrip. Increases in heart rate over mid-cruise were observed during descent and landing, and were greater for the pilot flying. Heart-rate increases were greater during takeoff and descent under instrument meteorological conditions (IMC) than under visual meteorological conditions (VMC). The following would be expected to reduce fatigue in short-haul operations: regulating duty hours, as well as flight hours; scheduling rest periods to begin at the same time of day, or progressively later, across the days of a trip; and educating pilots about alternatives to alcohol as a means of relaxing before sleep.

  3. Magnetic field exposure of commercial airline pilots.

    PubMed

    Hood; Nicholas; Butler; Lackland; Hoel; Mohr

    2000-10-01

    PURPOSE: Airline pilots are exposed to magnetic fields generated by the aircraft's electrical and electronic systems. The purpose of this study was to directly measure the flight deck magnetic fields to which commercial airline pilots are exposed when flying on different aircraft types over a 75-hour flight-duty month.METHODS: Magentic field measurements were taken using personal dosimeters capable of measuring magnetic fields in the 40-800 Hz frequency range. Dosimeters were carried by either the Captain or the First Officer on Boeing 737/200, Boeing 747/400, Boeing 767/300ER, and Airbus 320 aircraft. The data were analyzed by aircraft type, with statistics based on block hours. Block hours begin when the aircraft departs the gate prior to take off and end when the aircraft returns to the gate after landing.RESULTS: Approximately 1008 block hours were recorded at a sampling rate of 3 seconds. Total block time exposure to the pilots ranged from a harmonic geometric mean of 6.7 milliGauss (mG) for the Boeing 767/300ER to 12.7 mG for the Boeing 737/200.CONCLUSIONS: Measured flight deck magnetic field levels were substantially above the 0.8 to 1 mG level typically found in the home or office and suggest the need for further study to evaluate potential health effects of long-term exposure.

  4. Anthropometry of Airline Stewardesses

    DTIC Science & Technology

    1975-03-01

    dimensions of the airline stewardesses who, as will be shown below, differ significantly in many respects from other female populations. Lacking...measurements over clothing were negligible except for one dimension , bust circumference. In this instance, arrange- ments were made with the clinic nurse...metatarsal- phalangeal joints. N 422 MEAN 8.81 + 0.02 CM. S.D. 0.47 ± 0.02 CM. MINIMUM 7.50 CM. MAXIMUM 10.50 CM. C.V. 5.29 % 3.47 ± 0.01

  5. NASA Dryden Flight Research Center: Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.

  6. Metroplex Optimization Model Expansion and Analysis: The Airline Fleet, Route, and Schedule Optimization Model (AFRS-OM)

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Ferguson, John; Hoffman, Karla; Donohue, George; Beradino, Frank

    2012-01-01

    This report describes the Airline Fleet, Route, and Schedule Optimization Model (AFRS-OM) that is designed to provide insights into airline decision-making with regards to markets served, schedule of flights on these markets, the type of aircraft assigned to each scheduled flight, load factors, airfares, and airline profits. The main inputs to the model are hedged fuel prices, airport capacity limits, and candidate markets. Embedded in the model are aircraft performance and associated cost factors, and willingness-to-pay (i.e. demand vs. airfare curves). Case studies demonstrate the application of the model for analysis of the effects of increased capacity and changes in operating costs (e.g. fuel prices). Although there are differences between airports (due to differences in the magnitude of travel demand and sensitivity to airfare), the system is more sensitive to changes in fuel prices than capacity. Further, the benefits of modernization in the form of increased capacity could be undermined by increases in hedged fuel prices

  7. Crew Factors in Flight Operations. 8; A Survey of Fatigue Factors in Corporate/Executive A Viation Operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Co, Elizabeth L.; Gregory, Kevin B.; Miller, Donna L.

    2000-01-01

    Corporate flight crews face unique challenges including unscheduled flights, quickly changing schedules, extended duty days, long waits, time zone changes, and peripheral tasks. Most corporate operations are regulated by Part 91 FARs which set no flight or duty time limits. The objective of this study was to identify operationally significant factors that may influence fatigue, alertness, and performance in corporate operations. In collaboration with the National Business Aircraft Association and the Flight Safety Foundation, NASA developed and distributed a retrospective survey comprising 107 questions addressing demographics, home sleep habits, flight experience, duty schedules, fatigue during operations, and work environment. Corporate crewmembers returned 1,488 surveys. Respondents averaged 45.2 years of age, had 14.9 years of corporate flying experience, and 9,750 total flight hours. The majority (89%) rated themselves as 'good' or 'very good' sleepers at home. Most (82%) indicated they are subject to call for duty and described an average duty day of 9.9 h. About two-thirds reported having a daily duty time limit and over half (57%) reported a daily flight time limit. Nearly three-quarters (71%) acknowledged having 'nodded off' during a flight. Only 21% reported that their flight departments offer training on fatigue issues. Almost three-quarters (74%) described fatigue as a 'moderate' or 'serious' concern, and a majority (61%) characterized it as a common occurrence. Most (85%) identified fatigue as a 'moderate' or 'serious' safety issue.

  8. Concurrent airline fleet allocation and aircraft design with profit modeling for multiple airlines

    NASA Astrophysics Data System (ADS)

    Govindaraju, Parithi

    A "System of Systems" (SoS) approach is particularly beneficial in analyzing complex large scale systems comprised of numerous independent systems -- each capable of independent operations in their own right -- that when brought in conjunction offer capabilities and performance beyond the constituents of the individual systems. The variable resource allocation problem is a type of SoS problem, which includes the allocation of "yet-to-be-designed" systems in addition to existing resources and systems. The methodology presented here expands upon earlier work that demonstrated a decomposition approach that sought to simultaneously design a new aircraft and allocate this new aircraft along with existing aircraft in an effort to meet passenger demand at minimum fleet level operating cost for a single airline. The result of this describes important characteristics of the new aircraft. The ticket price model developed and implemented here enables analysis of the system using profit maximization studies instead of cost minimization. A multiobjective problem formulation has been implemented to determine characteristics of a new aircraft that maximizes the profit of multiple airlines to recognize the fact that aircraft manufacturers sell their aircraft to multiple customers and seldom design aircraft customized to a single airline's operations. The route network characteristics of two simple airlines serve as the example problem for the initial studies. The resulting problem formulation is a mixed-integer nonlinear programming problem, which is typically difficult to solve. A sequential decomposition strategy is applied as a solution methodology by segregating the allocation (integer programming) and aircraft design (non-linear programming) subspaces. After solving a simple problem considering two airlines, the decomposition approach is then applied to two larger airline route networks representing actual airline operations in the year 2005. The decomposition strategy serves

  9. STS-1 operational flight profile. Volume 5: Descent, cycle 3. Appendix C: Monte Carlo dispersion analysis

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The results of three nonlinear the Monte Carlo dispersion analyses for the Space Transportation System 1 Flight (STS-1) Orbiter Descent Operational Flight Profile, Cycle 3 are presented. Fifty randomly selected simulation for the end of mission (EOM) descent, the abort once around (AOA) descent targeted line are steep target line, and the AOA descent targeted to the shallow target line are analyzed. These analyses compare the flight environment with system and operational constraints on the flight environment and in some cases use simplified system models as an aid in assessing the STS-1 descent flight profile. In addition, descent flight envelops are provided as a data base for use by system specialists to determine the flight readiness for STS-1. The results of these dispersion analyses supersede results of the dispersion analysis previously documented.

  10. 14 CFR Table C to Part 117 - Flight Duty Period: Augmented Operations

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight Duty Period: Augmented Operations C Table C to Part 117 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...: Augmented Operations Scheduled time of start (acclimated time) Maximum flight duty period (hours) based...

  11. Pan American World Airways flight training: A new direction. Flight operations resource management

    NASA Technical Reports Server (NTRS)

    Butler, Roy

    1987-01-01

    The Pan Am Flight Training Department shares the experiences it is having in its attempt to integrate cockpit resource management philosophies into its training programs. A slide-tape presentation on Pan Am's new direction in flight training is presented and briefly discussed.

  12. ISS Update: Expedition 34 Flight Director Describes Station Science Operations

    NASA Video Gallery

    NASA Public Affairs Officer Josh Byerly interviews Chris Edelen, Expedition 34 Lead Flight Director, at Johnson Space Center’s Mission Control Center. Edelen has overseen the research and utiliza...

  13. Synthetic Vision for Airliners and General Aviaion

    NASA Technical Reports Server (NTRS)

    1999-01-01

    'Video News Release'(?) for AWIN, the Aviation Weather Information Network. Includes animations. Narration: Bad weather and poor visibility can be potentially hazardous to aircraft and flight crews. Both can contribute to deadly accidents. The NASA Aviation Safety Program is working on innovative cockpit technologies that could help pilots avoid flying into rough weather, terrain or obstacles. Aviation Weather Information (AWIN) - a 'weather channel' in the sky - would give flight crews, air-traffic controllers and airline dispatchers timely moving map displays to help them make better re-routing decisions. 'Synthetic vision' would offer pilots a clear electronic picture including topography, traffic, even airport runways. Sensors, sattellites and terrain databases would create a kind of virtual-reality of what's outside - no matter what the weather or time of day. NASA isn't working alone to make air travel safer, it is teamed with the Federal Aviation Administration (FAA) and industry to develop new systems for airliners and general aviation aircraft. Their partnership is expected to make a difference worldwide and ensure many safe and smooth landings

  14. Vertically operating flight vehicle for drilling and agricultural use

    NASA Technical Reports Server (NTRS)

    Pabst, W.

    1986-01-01

    The invention deals with an aircraft which ascends and descends vertically and which is used for recreational aircraft, as well as for drilling and in agriculture. The invention combines the floating effect of a parachute with the helicopter to develop a flight vehicle with multiple uses which go beyond those of contemporary flight vehicles. Both hub mechanisms and thrust power are implemented to achieve this goal. Four designs are described in detail.

  15. Measurement of cabin air quality aboard commercial airliners

    NASA Astrophysics Data System (ADS)

    Nagda, Niren L.; Koontz, Michael D.; Konheim, Arnold G.; Katharine Hammond, S.

    Between April and June 1989, 92 randomly selected flights were monitored to determine prevailing levels of environmental tobacco smoke (ETS) and other pollutants in the airliner cabin environment. The monitored flights included 69 smoking flights, 8 of which were international, and 23 nonsmoking flights, all of which were domestic. Selected ETS contaminants (nicotine, respirable suspended particles and carbon monoxide), as well as ozone, microbial aerosols, carbon dioxide and other environmental variables were measured in different parts of airliner cabins. Particle and nicotine concentrations were highest in the smoking section and were somewhat higher in the boundary region near smoking than in other no-smoking sections or on nonsmoking flights. Levels of these ETS tracers were correlated with smoking rates observed by field technicians, and their levels in the boundary section were higher when more proximate to the smoking section. CO 2 levels were sufficiently high and humidity levels were sufficiently low to pose potential comfort problems for aircraft occupants. Ozone levels were well within existing standards for airliner environments, and levels of microbial aerosols were below those in residential environments that have been characterized through cross-sectional studies.

  16. Development flight tests of JetStar LFC leading-edge flight test experiment

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Fischer, Michael C.

    1987-01-01

    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.

  17. Pilot In Command: A Feasibility Assessment of Autonomous Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Ballin, Mark G.; Krishnamurthy, Karthik

    2004-01-01

    Several years of NASA research have produced the air traffic management operational concept of Autonomous Flight Management with high potential for operational feasibility, significant system and user benefits, and safety. Among the chief potential benefits are demand-adaptive or scalable capacity, user flexibility and autonomy that may finally enable truly successful business strategies, and compatibility with current-day operations such that the implementation rate can be driven from within the user community. A concept summary of Autonomous Flight Management is provided, including a description of how these operations would integrate in shared airspace with existing ground-controlled flight operations. The mechanisms enabling the primary benefits are discussed, and key findings of a feasibility assessment of airborne autonomous operations are summarized. Concept characteristics that impact safety are presented, and the potential for initially implementing Autonomous Flight Management is discussed.

  18. Airline Flight Crew Technical Corrections Act

    THOMAS, 111th Congress

    Rep. Bishop, Timothy H. [D-NY-1

    2009-02-09

    03/23/2009 Referred to the Subcommittee on Workforce Protections. (All Actions) Notes: For further action, see S.1422, which became Public Law 111-119 on 12/21/2009. Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  19. The building blocks for JWST I&T to operations: from simulator to flight units

    NASA Astrophysics Data System (ADS)

    Wasiak, Francis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Fatig, Curtis; Jones, Ronald; Jackson, Wallace

    2012-09-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project's building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  20. 14 CFR 61.157 - Flight proficiency.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Airline Transport Pilots § 61.157 Flight proficiency. (a) General. (1) The practical test for an airline transport pilot certificate is given for—...

  1. Environmental Impact Analysis Process. Environmental Impact Statement. Supersonic Flight Operations in the Reserve Military Operations Area, Holloman AFB, New Mexico

    DTIC Science & Technology

    1983-09-01

    mexicanus Muskrat Ondatra zibethica OLD WORLD RATS AND MICE MURIDAE Black Rat Rattus rattus House Mouse Mus musculus PORCUPINE ERETHIZONIDAE 5 Porcupine...carpet was a band about 16 feet wide parallel to the curved flight track. At the point where the overpressure is twice the nominal carpet, the width...iEFER TO: AS3 mU BJECT: Environmental Impact Statement - Supersonic Flight Operations in the Reserve Military Operations Area, Holloman AFB, New Mexico

  2. Designing a Better Spacecraft: Assessing Flight Operability of Human Rated Spacecraft

    NASA Technical Reports Server (NTRS)

    Crocker, Alan R.

    2009-01-01

    The design of a human rated spacecraft is a complex and costly process requiring the integrated assessment of many individual criteria. Historically, it has been difficult to include in that integrated assessment the design s full impact on the flight operations community and its costs. The unique "operability requirements" have not been well understood, nor has there been a well-defined set of criteria for assessing operability. As a result, flight operations organizations and program managers are often faced with difficult and costly operations phase implementations. In response, the Mission Operations Directorate at NASA s Lyndon B. Johnson Space Center has established a formal technique to evaluate and communicate the operational characteristics of spacecraft system designs for the Constellation Program. This process is not intended to replace or replicate other critical assessments such as risk, reliability and safety assessments. Instead, this new technique adds to the assessment toolset a means to address the concerns and potential cost drivers that are unique to the operational phase of a program and the flight operations community. This paper describes the implementation and application of this "Spacecraft Flight Operability Assessment Scale" in supporting vehicle design efforts. The six key factors of flight operability are defined, with guiding principles and goals stated for each factor. A standardized rating technique provides feedback that is useful to both the operations and program management communities. Sample assessments of legacy spacecraft, including the Space Shuttle and International Space Station systems, are provided to provide real world examples of this technique s application.

  3. A Technique for the Assessment of Flight Operability Characteristics of Human Rated Spacecraft

    NASA Technical Reports Server (NTRS)

    Crocker, Alan

    2010-01-01

    In support of new human rated spacecraft development programs, the Mission Operations Directorate at NASA Johnson Space Center has implemented a formal method for the assessment of spacecraft operability. This "Spacecraft Flight Operability Assessment Scale" defines six key themes of flight operability, with guiding principles and goals stated for each factor. A standardized rating technique provides feedback that is useful to the operations, design and program management communities. Applicability of this concept across the program structure and life cycle is addressed. Examples of operationally desirable and undesirable spacecraft design characteristics are provided, as is a sample of the assessment scale product.

  4. Hyper-X (X-43A) Flight Test Range Operations

    NASA Technical Reports Server (NTRS)

    Lux-Baumann, Jessica; Burkes, Darryl A.

    2005-01-01

    The Hyper-X program flew X-43A research vehicles to hypersonic speeds over the Pacific Ocean in March and November 2004 from the Western Aeronautical Test Range, NASA Dryden Flight Research Center, Edwards, California. The program required multiple telemetry ground stations to provide continuous coverage of the captive carry, launch, boost, experiment, and descent phases of these missions. An overview is provided of vehicle telemetry and distributed assets that supported telemetry acquisition, best-source selection, radar tracking, video tracking, flight termination systems, and voice communications. Real-time data display and processing are discussed, and postflight analysis and comparison of data acquired are presented.

  5. Operation and performance of the Ciba-Corning 512 coagulation monitor during parabolic flight

    NASA Technical Reports Server (NTRS)

    Gocke, Robyn; Lloyd, Charles W.; Greenthaner, Nancy K.

    1991-01-01

    The goal was to assess the functionality and evaluate the procedures and operations required to operate the Ciba-Corning 512 Coagulation Monitor during parabolic flight. This monitor determines the clotting characteristics of blood. The analyzer operates by laser detection of the cessation of blood flow in a capillary channel within a test cartridge. Test simulator results were excellent for both pre-and post-flight. In-flight results were not obtained due to the warm-up time required for the simulator. Since this is an electronic function only, the expected results on the simulator would be the same in zero-g.

  6. Outsourcing as an Airline Strategy

    NASA Technical Reports Server (NTRS)

    Rutner, Stephen M.; Brown, John H.

    1999-01-01

    Since the deregulation of the airline industry, carriers have searched for any method to improve their competitive position. At the same time, there has been a growth in the use of Third Party Logistics throughout corporate America. This paper presents an overview of the Third Party Logistics system of outsourcing and insourcing within the airline industry. This discussion generated a number of propositions, possible future scenarios and opportunities for empirical testing.

  7. Outsourcing as an Airline Strategy

    NASA Technical Reports Server (NTRS)

    Brown, John H.; Rutner, Stephen M.

    1999-01-01

    Since the deregulation of the airline industry, carriers have searched for any method to improve their competitive position. At the same time, there has been a growth in the use of Third Party Logistics throughout corporate America, This paper presents an overview of the Third Party Logistics system of outsourcing and insourcing within the airline industry. This discussion generated a number of propositions, possible future scenarios and opportunities for empirical testing.

  8. MSFC Doppler Lidar Science experiments and operations plans for 1981 airborne test flight

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Bilbro, J. W.; Kaufman, J. W.

    1981-01-01

    The flight experiment and operations plans for the Doppler Lidar System (DLS) are provided. Application of DLS to the study of severe storms and local weather penomena is addressed. Test plans involve 66 hours of flight time. Plans also include ground based severe storm and local weather data acquisition.

  9. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate...

  10. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate...

  11. Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.

    2013-01-01

    Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.

  12. What to Expect During In-Flight Operations

    NASA Technical Reports Server (NTRS)

    Kosobud, Beth; Perry, Marc; Schwanbeck, Nichole

    2017-01-01

    Executing human research on ISS has to navigate a unique risk environment. NASA planning efforts focus on an investigation's in-flight success but much of the threats to research objectives are not mitigated. A balanced requirement set affords the ability to remain flexible for each subject's data set while protecting the study's integrity across all subjects.

  13. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Stoecklin, R. L.

    1976-01-01

    The flight-service experience of 110 graphite-epoxy spoilers on 737 transport aircraft and related ground-based environmental exposure of graphite-epoxy material specimens is reported. Spoilers were installed on each of 27 aircraft representing seven major airlines operating throughout the world. Based on visual, ultrasonic, and destructive testing, there is no evidence of moisture migration into the honeycomb core and no core corrosion. Tests of removed spoilers and of ground-based exposure specimens after the second year of service indicate modest changes in composite strength.

  14. Evaluation of Flight Attendant Technical Knowledge

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa G.; Chute, Rebecca D.; Rosekind, Mark (Technical Monitor)

    1997-01-01

    Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or lessen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research indicates that flight attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports. Chute and Wiener describe five factors which may produce communication barriers between cockpit and cabin crews: the historical background of aviation, the physical separation of the two crews, psychosocial issues, regulatory factors, and organizational factors. By examining these areas of division we can identify possible bridges and address the implications of deficient cockpit/cabin communication on flight safety. Flight attendant operational knowledge may provide some mitigation of these barriers. The present study explored both flight attendant technical knowledge and flight attendant and pilot expectations of flight attendant technical knowledge. To assess the technical knowledge of cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily completed a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendant operational knowledge and pilots' and flight attendants' expected and desired levels of technical knowledge. Implications for training will be discussed.

  15. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  16. 14 CFR 13.401 - Flight Operational Quality Assurance Program: Prohibition against use of data for enforcement...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight Operational Quality Assurance Program: Prohibition against use of data for enforcement purposes. 13.401 Section 13.401 Aeronautics and... ENFORCEMENT PROCEDURES Flight Operational Quality Assurance Programs § 13.401 Flight Operational...

  17. Pilot in Command: An Illustration of Autonomous Flight Management

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Ponthieux, Joseph G.

    2004-01-01

    Several years of NASA research have produced the concept for air traffic management called "Distributed Air/Ground Traffic Management," a major operational advancement that should significantly increase the capacity of the National Airspace System. A key component, "Autonomous Flight Management," introduces a new class of aircraft operations in which pilots are authorized to freely maneuver and execute optimal trajectories independent from air traffic controllers. These aircraft operators would benefit from significant increases in flexibility to optimize all flight operations and from avoiding most of the delays associated with ground-controlled operations. Responsibilities for aircraft separation and arrival flow conformance are transferred to the flight deck, and the pilots use computerized decision-support tools to accomplish these tasks. A research prototype of these tools called the "Autonomous Operations Planner" is being developed at the NASA Langley Research Center. This 14-minute video illustrates Autonomous Flight Management from the airline pilot's perspective.

  18. STS-33 MS Carter operates translation hand control (THC) on aft flight deck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Mission Specialist (MS) Manley L. Carter, Jr operates translation hand control (THC) at the aft flight deck onorbit station while peering out overhead window W7. Carter's communications kit assembly headset microphone extends across his face.

  19. Flight management concepts compatible with air traffic control

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1986-01-01

    With the advent of airline deregulation and increased competition, the need for cost efficient airline operations is critical. This paper summarizes past research efforts and planned research thrusts toward the development of compatible flight management and air traffic control systems that promise increased operational effectiveness and efficiency. Potential capacity improvements resulting from a time-based ATC simulation (fast-time) are presented. Advanced display concepts with time guidance and velocity vector information to allow the flight crew to play an important role in the future ATC environment are discussed. Results of parametric sensitivity analyses are also presented that quantify the fuel/cost penalties for idle-thrust mismodeling and wind-modeling errors.

  20. Evaluation of Standard Gear Metrics in Helicopter Flight Operation

    NASA Technical Reports Server (NTRS)

    Mosher, M.; Pryor, A. H.; Huff, E. M.

    2002-01-01

    Each false alarm made by a machine monitoring system carries a high price tag. The machine must be taken out of service, thoroughly inspected with possible disassembly, and then made ready for service. Loss of use of the machine and the efforts to inspect it are costly. In addition, if a monitoring system is prone to false alarms, the system will soon be turned off or ignored. For aircraft applications, one growing concern is that the dynamic flight environment differs from the laboratory environment where fault detection methods are developed and tested. Vibration measurements made in flight are less stationary than those made in a laboratory, or test facility, and thus a given fault detection method may produce more false alarms in flight than might be anticipated. In 1977. Stewart introduced several metrics, including FM0 and FM4, for evaluating the health of a gear. These metrics are single valued functions of the vibration signal that indicate if the signal deviates from an ideal model of the signal. FM0 is a measure of the ratio of the peak-to-peak level to the harmonic energy in the signal. FM4 is the kurtosis of the signal with the gear mesh harmonics and first order side bands removed. The underlying theory is that a vibration signal from a gear in good condition is expected to be dominated by a periodic signal at the gear mesh frequency. If one or a small number of gear teeth contain damage or faults, the signal will change, possibly showing increased amplitude, local phase changes or both near the damaged region of the gear. FM0 increases if a signal contains a local increase in amplitude. FM4 increases if a signal contains a local increase in amplitude or local phase change in a periodic signal. Over the years, other single value metrics were also introduced to detect the onset and growth of damage in gears. These various metrics have detected faults in several gear tests in experimental test rigs. Conditions in these tests have been steady state in the

  1. Simulated airline service experience with laminar-flow control leading-edge systems

    NASA Technical Reports Server (NTRS)

    Maddalon, Dal V.; Fisher, David F.; Jennett, Lisa A.; Fischer, Michael C.

    1987-01-01

    The first JetStar leading edge flight test was made November 30, 1983. The JetStar was flown for more than 3 years. The titanium leading edge test articles today remain in virtually the same condition as they were in on that first flight. No degradation of laminar flow performance has occurred as a result of service. The JetStar simulated airline service flights have demonstrated that effective, practical leading edge systems are available for future commercial transports. Specific conclusions based on the results of the simulated airline service test program are summarized.

  2. Centralized Contractor Operated Initial Flight Screening Program at Pueblo, Colorado

    DTIC Science & Technology

    2006-03-23

    cope with any subsequent mission impact as a result of these happenings. (2) Flexibility — Cope with rapidly changing situations or conditions...completion of this EA and the signature of a finding of no significant impact upon the environment. The apparent successful offeror’s main base of...be phased in over a two year period. FINDING OF NO SIGNIFICANT IMPACT (FONSI) FOR CENTRALIZED CONTRACTOR OPERA TED USAF INITIAL FLIGHT

  3. Sustained Flight Operations in Navy P-3 Aircraft.

    DTIC Science & Technology

    1990-04-01

    endurancoeq and resting blood chemistry. Postdeployment lung capacity, blood chemistry values, grip strength, and leg endur’ance all improved while leg...showing no trends in changes over each flight. Following the 6-month deployment, aerobic capacity decreased, lung capacity improved, blood-chemistry...standard pulmonary function test (25) was performed (Jaeger Pneumo- screen II, Gerroany) to assess lung flow and volume characteristics. Vital capacity (VC

  4. Air Data Report Improves Flight Safety

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Aviation Safety Program in the NASA Aeronautics Research Mission Directorate, which seeks to make aviation safer by developing tools for flight data analysis and interpretation and then by transferring these tools to the aviation industry, sponsored the development of Morning Report software. The software, created at Ames Research Center with the assistance of the Pacific Northwest National Laboratory, seeks to detect atypicalities without any predefined parameters-it spots deviations and highlights them. In 2004, Sagem Avionics Inc. entered a licensing agreement with NASA for the commercialization of the Morning Report software, and also licensed the NASA Aviation Data Integration System (ADIS) tool, which allows for the integration of data from disparate sources into the flight data analysis process. Sagem Avionics incorporated the Morning Report tool into its AGS product, a comprehensive flight operations monitoring system that helps users detect irregular or divergent practices, technical flaws, and problems that might develop when aircraft operate outside of normal procedures. Sagem developed AGS in collaboration with airlines, so that the system takes into account their technical evolutions and needs, and each airline is able to easily perform specific treatments and to build its own flight data analysis system. Further, the AGS is designed to support any aircraft and flight data recorders.

  5. Concept of Operations for Integrated Intelligent Flight Deck Displays and Decision Support Technologies

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Prinzel, Lawrence J.; Kramer, Lynda J.; Young, Steve D.

    2011-01-01

    The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging developments

  6. Pilot interaction with cockpit automation - Operational experiences with the Flight Management System

    NASA Technical Reports Server (NTRS)

    Sarter, Nadine B.; Woods, David D.

    1992-01-01

    Results are presented of two studies on the potential effect of cockpit automation on the pilot's performance, which provide data on pilots' difficulties with understanding and operating one of the core systems of cockpit automation, the Flight Management System (FMS). The results of both studies indicate that, although pilots do become proficient in standard FMS operations through ground training and subsequent flight experience, they still have difficulties tracking the FMS status and behavior in certain flight contexts and show gaps in the understanding of the functional structure of the system. The results suggest that design-related factors such as opaque interfaces contribute to these difficulties, which can affect the pilot's situation awareness.

  7. Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport

    NASA Astrophysics Data System (ADS)

    Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh

    2013-09-01

    From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport

  8. Alertness management in two-person long-haul flight operations

    NASA Technical Reports Server (NTRS)

    Rosekind, M. R.; Gander, P. H.

    1992-01-01

    Long-haul flight operations involve cumulative sleep loss, circadian disruption, and extended and irregular duty schedules. These factors reduce pilot alertness and performance on the flightdeck. Conceptually and operationally, alertness management in flight operations can be divided into preventive strategies and operational countermeasures. Preventive strategies are utilized prior to a duty period to mitigate or reduce the effects of sleep loss, circadian disruption and fatigue during subsequent flight operations. Operational countermeasures are used during operations as acute techniques for maintaining performance and alertness. Results from previous NASA Ames field studies document the sleep loss and circadian disruption in three-person long-haul flying and illustrate the application of preventive strategies and operational countermeasures. One strategy that can be used in both a preventive and operational manner is strategic napping. The application and effectiveness of strategic napping in long-haul operations will be discussed. Finally, long-haul flying in two-person highly automated aircraft capable of extended range operations will create new challenges to maintaining pilot alertness and performance. Alertness management issues in this flight environment will be explored.

  9. Crew Factors in Flight Operations 7: Psychophysiological Responses to Overnight Cargo Operations

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Gregory, Kevin B.; Connell, Linda J.; Miller, Donna L.; Graeber, R. Curtis; Rosekind, Mark R.

    1996-01-01

    To document the psychophysiological effects of flying overnight cargo operations, 41 B-727 crew members (average age 38 yr) were monitored before, during, and after one of two typical 8-day trip patterns. During daytime layovers, the average sleep episode was 3 hr (41%) shorter than nighttime sleeps and was rated as lighter, less restorative, and poorer overall. Sleep was frequently split into several episodes and totaled 1.2 hr less per 24 hr than on pretrip days. Each trip pattern included a night off, which was an effective countermeasure against the accumulating sleep debt. The organization of sleep during daytime layovers reflected the interaction of duty timing with circadian physiology. The circadian temperature rhythm did not adapt completely to the inverted wake-rest schedule on duty days, being delayed by about 3 hr. Highest subjective fatigue and lowest activation occurred around the time of the temperature minimum. On duty days, reports of headaches increased by 400%, of congested nose by 200%, and of burning eyes by 900%. Crew members also reported eating more snacks. Compared with daytime short-haul air-transport operations, the overnight cargo trips included fewer duty and flight hours, and had longer layovers. Overnight cargo crews also averaged 5.4 yr younger than their daytime short-haul counterparts. On trips, both groups lost a comparable amount of sleep per 24 hr, but the overnight cargo crews had shorter individual sleep episodes and more broken sleep. These data clearly demonstrate that overnight cargo operations, like other night work, involve physiological disruption not found in comparable daytime operations.

  10. STS-1 operational flight profile. Volume 3: Ascent, cycle 3

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The ascent opeational flight profile for the space transportation system 1 flight is designed (1) to limit the maximum undispersed dynamic pressure to 580 lb/sq ft, (2) to follow the design load indicator profiles where q alpha is a specified profile and q beta is desired to be as close to zero as passible, and (3) to maximize nominal and abort performance. Significant trajectory parameters achieved are presented. A maximum dynamic pressure of 575 lb/sq ft was achieved, a minimum q alpha of -2187 lb-deg/sq ft was achieved, and q beta was limited to approximately + or - 100 lb-deg/sq ft in the high q region of the trajectory. The trajectory performance allows a press to main engine cutoff capability with one space shuttle main engine out at 262 seconds ground elapsed time. The orbital maneuvering system burns achieve a final orbit of 150.9 x 149.9 x 149.8 n. mi. and the desired inclination of 40.3 degrees.

  11. Market Potential Study for Standing Cabin Concept for Domestic Low-Cost Commercial Airlines in Malaysia

    NASA Astrophysics Data System (ADS)

    Romli, Fairuz I.; Dasuki, Norhafizah; Yazdi Harmin, Mohammad

    2016-02-01

    An affordable air transportation has become the operational aim of many airlines these days. This is to cater the growing air travel demands from people of different social and economic status. One of the revolutionary proposals to reduce the operational costs, hence the flight ticket price, is by introducing the so-called standing cabin concept. This concept involves transporting passengers during the entire flight in their standing position with a proper support of a vertical seat. As can be expected with many new inventions, despite its clear advantages, the concept has been met with mixed reactions from the public. This study intends to establish whether the standing cabin concept has a market potential to be implemented for domestic flights in Malaysia. The public perception is determined from collected data through a survey done at two major local low-cost airport terminals. It can be concluded from the results that the concept has a good market potential for application on flights with duration of less than two hours.

  12. Helicity operators for mesons in flight on the lattice

    SciTech Connect

    Christopher E. Thomas; Edwards, Robert G.; Dudek, Jozef J.

    2012-01-20

    Motivated by the desire to construct meson-meson operators of definite relative momentum in order to study resonances in lattice QCD, we present a set of single-meson interpolating fields at non-zero momentum that respect the reduced symmetry of a cubic lattice in a finite cubic volume. These operators follow from the subduction of operators of definite helicity into irreducible representations of the appropriate little groups. We show their effectiveness in explicit computations where we find that the spectrum of states interpolated by these operators is close to diagonal in helicity, admitting a description in terms of single-meson states of identified JPC. Lastly, the variationally determined optimal superpositions of the operators for each state give rapid relaxation in Euclidean time to that state, ideal for the construction of meson-meson operators and for the evaluation of matrix elements at finite momentum.

  13. Helicity operators for mesons in flight on the lattice

    DOE PAGES

    Christopher E. Thomas; Edwards, Robert G.; Dudek, Jozef J.

    2012-01-20

    Motivated by the desire to construct meson-meson operators of definite relative momentum in order to study resonances in lattice QCD, we present a set of single-meson interpolating fields at non-zero momentum that respect the reduced symmetry of a cubic lattice in a finite cubic volume. These operators follow from the subduction of operators of definite helicity into irreducible representations of the appropriate little groups. We show their effectiveness in explicit computations where we find that the spectrum of states interpolated by these operators is close to diagonal in helicity, admitting a description in terms of single-meson states of identified JPC.more » Lastly, the variationally determined optimal superpositions of the operators for each state give rapid relaxation in Euclidean time to that state, ideal for the construction of meson-meson operators and for the evaluation of matrix elements at finite momentum.« less

  14. Air Travel and TB: an airline perspective.

    PubMed

    Dowdall, Nigel P; Evans, Anthony D; Thibeault, Claude

    2010-03-01

    The commercial airline industry in the 21st century is a global business, able to transport large numbers of people to almost any part of the world within a few hours. There has long been concern in public health circles about the potential for transmission of communicable diseases, such as TB, on board aircraft. The recent threats from novel and emerging infectious diseases including SARS and pandemic flu has facilitated unprecedented levels of cooperation between international industry representatives, regulators and public health authorities in addressing the issues of air travel and communicable disease. This paper reviews the regulatory environment, ways in which the risks are mitigated through aspects of aircraft design, opportunities for prevention by identifying individuals who may be suffering from a communicable disease prior to flight and the approach used in managing suspected cases of communicable disease on board aircraft.

  15. NASA satellite helps airliners avoid ozone concentrations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Results from a test to determine the effectiveness of satellite data for helping airlines avoid heavy concentrations of ozone are reported. Information from the Total Ozone Mapping Spectrometer, aboard the Nimbus-7 was transmitted, for use in meteorological forecast activities. The results show: (1) Total Ozone Mapping Spectrometer profile of total ozone in the atmosphere accurately represents upper air patterns and can be used to locate meteorological activity; (2) route forecasting of highly concentrated ozone is feasible; (3) five research aircraft flights were flown in jet stream regions located by the Total Ozone Mapping Spectrometer to determine winds, temperatures, and air composition. It is shown that the jet stream is coincides with the area of highest total ozone gradient, and low total ozone amounts are found where tropospheric air has been carried along above the tropopause on the anticyclonic side of the subtropical jet stream.

  16. Crew factors in flight operations. Part 3: The operational significance of exposure to short-haul air transport operations

    NASA Technical Reports Server (NTRS)

    Foushee, H. C.; Lauber, J. K.; Baetge, M. M.; Acomb, D. B.

    1986-01-01

    Excessive flightcrew fatigue has potentially serious safety consequences. Laboratory studies have implicated fatigue as a causal factor associated with varying levels of performance deterioration depending on the amount of fatigue and the type of measure utilized in assessing performance. These studies have been of limited utility because of the difficulty of relating laboratory task performance to the demands associated with the operation of a complex aircraft. The performance of 20 volunteer twin-jet transport crews is examined in a full-mission simulator scenario that included most aspects of an actual line operation. The scenario included both routine flight operations and an unexpected mechanical abnormality which resulted in a high level of crew workload. Half of the crews flew the simulation within two to three hours after completing a three-day, high-density, short-haul duty cycle (Post-Duty condition). The other half flew the scenario after a minimum of three days off duty (Pre-Duty) condition). The results revealed that, not surprisingly, Post-Duty crews were significantly more fatigued than Pre-Duty crews. However, a somewhat counter-intuitive pattern of results emerged on the crew performancemeasures. In general, the performance of Post-Duty crews was significantly better than that of Pre-Duty crews, as rated by an expert observer on a number of dimensions relevant to flight safety. Analyses of the flightcrew communication patterns revealed that Post-Duty crews communicated significantly more overall, suggesting, as has previous research, that communication is a good predictor of overall crew performance.

  17. Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Luigi; Meixner, Hilda; Sancho, Francisco; Damiano, Antimo; Lazaro, David

    2007-01-01

    The 19th of October 2006 at 16:28 UTC the first MetOp satellite (MetOp A) was successfully launched from the Baykonur cosmodrome by a Soyuz/Fregat launcher. After only three days of LEOP operations, performed by ESOC, the satellite was handed over to EUMETSAT, who is since then taking care of all satellite operations. MetOp A is the first European operational satellite for meteorology flying in a Low Earth Orbit (LEO), all previous satellites operated by EUMETSAT, belonging to the METEOSAT family, being located in the Geo-stationary orbit. To ensure safe operations for a LEO satellite accurate and continuous commanding from ground of the on-board AOCS is required. That makes the operational transition at the end of the LEOP quite challenging, as the continuity of the Flight Dynamics operations is to be maintained. That means that the main functions of the Flight Dynamics have to be fully validated on-flight during the LEOP, before taking over the operational responsibility on the spacecraft, and continuously monitored during the entire mission. Due to the nature of a meteorological operational mission, very stringent requirements in terms of overall service availability (99 % of the collected data), timeliness of processing of the observation data (3 hours after sensing) and accuracy of the geo-location of the meteorological products (1 km) are to be fulfilled. That translates in tight requirements imposed to the Flight Dynamics facility (FDF) in terms of accuracy, timeliness and availability of the generated orbit and clock solutions; a detailed monitoring of the quality of these products is thus mandatory. Besides, being the accuracy of the image geo-location strongly related with the pointing performance of the platform and with the on-board timing stability, monitoring from ground of the behaviour of the on-board sensors and clock is needed. This paper presents an overview of the Flight Dynamics operations performed during the different phases of the MetOp A

  18. An Operational evaluation of head up displays for civil transport operations. NASA/FAA phase 3 report

    NASA Technical Reports Server (NTRS)

    Lauber, J. K.; Bray, R. S.; Harrison, R. L.; Hemingway, J. C.; Scott, B. C.

    1982-01-01

    The advantages and disadvantages of head-up displays (HUDs) in commercial jet transport approach and landing operations was evaluated. Ten airline captains currently qualified in the B-727 aircraft flew a series of instrument landing system (ILS) and nonprecision approaches in a motion base simulator using both a flight director HUD concept and a flightpath HUD concept as well as conventional head-down instruments under a variety of environmental and operational conditions to assess: (1) the potential benefits of these HUDs in airline operations; (2) problems which might be associated with their use; and (3) flight crew training requirements and flight crew operating procedures suitable for use with the HUDs. Results are presented in terms of objective simulator based performance measures, subject pilot opinion and rating data, and observer data.

  19. Cassini Attitude Control Operations Flight Rules and How They are Enforced

    NASA Technical Reports Server (NTRS)

    Burk, Thomas; Bates, David

    2008-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. Cassini deployed the European-built Huygens probe which descended through the Titan atmosphere and landed on its surface on January 14, 2005. Operating the Cassini spacecraft is a complex scientific, engineering, and management job. In order to safely operate the spacecraft, a large number of flight rules were developed. These flight rules must be enforced throughout the lifetime of the Cassini spacecraft. Flight rules are defined as any operational limitation imposed by the spacecraft system design, hardware, and software, violation of which would result in spacecraft damage, loss of consumables, loss of mission objectives, loss and/or degradation of science, and less than optimal performance. Flight rules require clear description and rationale. Detailed automated methods have been developed to insure the spacecraft is continuously operated within these flight rules. An overview of all the flight rules allocated to the Cassini Attitude Control and Articulation Subsystem and how they are enforced is presented in this paper.

  20. Integrated Procedures for Flight and Ground Operations Using International Standards

    NASA Technical Reports Server (NTRS)

    Ingalls, John

    2011-01-01

    Imagine astronauts using the same Interactive Electronic Technical Manuals (IETM's) as the ground personnel who assemble or maintain their flight hardware, and having all of that data interoperable with design, logistics, reliability analysis, and training. Modern international standards and their corresponding COTS tools already used in other industries provide a good foundation for streamlined technical publications in the space industry. These standards cover everything from data exchange to product breakdown structure to business rules flexibility. Full Product Lifecycle Support (PLCS) is supported. The concept is to organize, build once, reuse many ways, and integrate. This should apply to all future and some current launch vehicles, payloads, space stations/habitats, spacecraft, facilities, support equipment, and retrieval ships.

  1. Southwest Airlines: lessons in loyalty.

    PubMed

    D'Aurizio, Patricia

    2008-01-01

    Southwest Airlines continues to garner accolades in the areas of customer service, workforce management, and profitability. Since both the health care and airlines industries deal with a service rather than a product, the customer experience depends on the people who deliver that experience. Employees' commitment or "loyalty" to their customers, their employer, and their work translates into millions of dollars of revenue. What employee wants to work for "the worst employer in town?" Nine loyalty lessons from Southwest can be carried over to the health care setting for the benefit of employees and patients.

  2. LDSD POST2 Simulation and SFDT-1 Pre-Flight Launch Operations Analyses

    NASA Technical Reports Server (NTRS)

    Bowes, Angela L.; Davis, Jody L.; Dutta, Soumyo; Striepe, Scott A.; Ivanov, Mark C.; Powell, Richard W.; White, Joseph

    2015-01-01

    The Low-Density Supersonic Decelerator (LDSD) Project's first Supersonic Flight Dynamics Test (SFDT-1) occurred June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all SFDT-1 flight phases from drop to splashdown. These POST2 simulations were used to validate the targeting parameters developed for SFDT- 1, predict performance and understand the sensitivity of the vehicle and nominal mission designs, and to support flight test operations with trajectory performance and splashdown location predictions for vehicle recovery. This paper provides an overview of the POST2 simulations developed for LDSD and presents the POST2 simulation flight dynamics support during the SFDT-1 launch, operations, and recovery.

  3. HOPE real time flight operations analyses for return to earth phase, part A

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The results of the HOPE (H-2 Orbiting Plane) real time flight operation analysis for return to earth phase are presented. The analyses of the flight parameter real time estimation accuracy was conducted (including definition of the estimate system operation, close examination of required function and programs, and study on the verification and experiment plans) and the following two items of the system verification and experiment are proposed: (1) utilization of the ETS-X (Engineering Test Satellite-X); and (2) utilization of mock-up landing experiment plane. The study on the limit of deviation from the flight path was conducted, and various factors to improve the flight path deviation are outlined.

  4. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  5. A flight research program to develop airborne systems for improved terminal area operations

    NASA Technical Reports Server (NTRS)

    Reeder, J. P.

    1974-01-01

    The research program considered is concerned with the solution of operational problems for the approximate time period from 1980 to 2000. The problems are related to safety, weather effects, congestion, energy conservation, noise, atmospheric pollution, and the loss in productivity caused by delays, diversions, and schedule stretchouts. The terminal configured vehicle (TCV) program is to develop advanced flight-control capability. The various aspects of the TCV program are discussed, giving attention to avionics equipment, the piloted simulator, terminal-area environment simulation, the Wallops research facility, flight procedures, displays and human factors, flight activities, and questions of vortex-wake reduction and tracking.

  6. LDSD POST2 Modeling Enhancements in Support of SFDT-2 Flight Operations

    NASA Technical Reports Server (NTRS)

    White, Joseph; Bowes, Angela L.; Dutta, Soumyo; Ivanov, Mark C.; Queen, Eric M.

    2016-01-01

    Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all flight phases from drop to splashdown for the Low-Density Supersonic Decelerator (LDSD) project's first and second Supersonic Flight Dynamics Tests (SFDT-1 and SFDT-2) which took place June 28, 2014 and June 8, 2015, respectively. This paper describes the modeling improvements incorporated into the LDSD POST2 simulations since SFDT-1 and presents how these modeling updates affected the predicted SFDT-2 performance and sensitivity to the mission design. The POST2 simulation flight dynamics support during the SFDT-2 launch, operations, and recovery is also provided.

  7. Upper stage in-flight retargeting to enhance geosynchronous satellite operations

    NASA Technical Reports Server (NTRS)

    Lee, Otto W. K.

    1990-01-01

    Real time utilization of propellant reserves that are not needed is available with the implementation of the in-flight retargeting capability for the Centaur Upper Stage. Application to a performance critical, geosynchronous mission is discussed. The operational duration of the satellite may be increased by selectively choosing the appropriate final orbit injection conditions. During ascent Centaur evaluates the amount of propellant excess available and adjusts the final orbit target to consume the excess. Typical satellite mission requirements are introduced to illustrate the mission analysis process to determine the pre-flight nominal target and the in-flight retarget function.

  8. Flight evaluation of two-segment approaches using area navigation guidance equipment

    NASA Technical Reports Server (NTRS)

    Schwind, G. K.; Morrison, J. A.; Nylen, W. E.; Anderson, E. B.

    1976-01-01

    A two-segment noise abatement approach procedure for use on DC-8-61 aircraft in air carrier service was developed and evaluated. The approach profile and procedures were developed in a flight simulator. Full guidance is provided throughout the approach by a Collins Radio Company three-dimensional area navigation (RNAV) system which was modified to provide the two-segment approach capabilities. Modifications to the basic RNAV software included safety protection logic considered necessary for an operationally acceptable two-segment system. With an aircraft out of revenue service, the system was refined and extensively flight tested, and the profile and procedures were evaluated by representatives of the airlines, airframe manufacturers, the Air Line Pilots Association, and the Federal Aviation Adminstration. The system was determined to be safe and operationally acceptable. It was then placed into scheduled airline service for an evaluation during which 180 approaches were flown by 48 airline pilots. The approach was determined to be compatible with the airline operational environment, although operation of the RNAV system in the existing terminal area air traffic control environment was difficult.

  9. Flight and mission operations support for Voyager spacecraft launching and Viking-Mars mission

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Jet Propulsion Laboratory during fiscal year 1976-1977 are summarized. Areas covered include ongoing and planned flight projects, DSN operations and development, research and advanced development in science and engineering, and civil systems projects. In addition, administrative and operational facilities and developments are described.

  10. Operation IceBridge Science_Flight_3

    NASA Video Gallery

    On October 20, 2009, the NASA DC-8 flew over the Antarctic to conduct surveys of the Pine Island Glacier. This survey is part of Operation IceBridge - an airborne science mission gathering data on ...

  11. Captain upgrade CRM training: A new focus for enhanced flight operations

    NASA Technical Reports Server (NTRS)

    Taggart, William R.

    1993-01-01

    Crew Resource Management (CRM) research has resulted in numerous payoffs of applied applications in flight training and standardization of air carrier flight operations. This paper describes one example of how basic research into human factors and crew performance was used to create a specific training intervention for upgrading new captains for a major United States air carrier. The basis for the training is examined along with some of the specific training methods used, and several unexpeced results.

  12. Design and implementation of the flight dynamics system for COMS satellite mission operations

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Sun; Hwang, Yoola; Kim, Hae-Yeon; Kim, Jaehoon

    2011-04-01

    The first Korean multi-mission geostationary Earth orbit satellite, Communications, Ocean, and Meteorological Satellite (COMS) was launched by an Ariane 5 launch vehicle in June 26, 2010. The COMS satellite has three payloads including Ka-band communications, Geostationary Ocean Color Imager, and Meteorological Imager. Although the COMS spacecraft bus is based on the Astrium Eurostar 3000 series, it has only one solar array to the south panel because all of the imaging sensors are located on the north panel. In order to maintain the spacecraft attitude with 5 wheels and 7 thrusters, COMS should perform twice a day wheel off-loading thruster firing operations, which affect on the satellite orbit. COMS flight dynamics system provides the general on-station functions such as orbit determination, orbit prediction, event prediction, station-keeping maneuver planning, station-relocation maneuver planning, and fuel accounting. All orbit related functions in flight dynamics system consider the orbital perturbations due to wheel off-loading operations. There are some specific flight dynamics functions to operate the spacecraft bus such as wheel off-loading management, oscillator updating management, and on-station attitude reacquisition management. In this paper, the design and implementation of the COMS flight dynamics system is presented. An object oriented analysis and design methodology is applied to the flight dynamics system design. Programming language C# within Microsoft .NET framework is used for the implementation of COMS flight dynamics system on Windows based personal computer.

  13. The role of engineering in the flight equipment purchasing process

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The role of the airline engineering department in the flight equipment acquisition process is examined. The data for the study was collected from six airlines. The principal findings of the study include: (1) engineering activities permeate, but do not dominate the airline flight equipment decision process. (2) The principal criterion for the flight equipment acquisition decision is return on investment. (3) The principal sources of information for the airline engineering departments in the monitoring process are the manufacturers of equipment. Subsidiary information sources include NASA publications and conferences, among others and (4) The engineering department is the principal communication channel for technical information.

  14. United Airlines LOFT training

    NASA Technical Reports Server (NTRS)

    Cavanagh, D.; Traub, B.

    1981-01-01

    Line oriented training is used in a broader, more generic sense that as a specific program under FAR 12.1409 and AC 120-35. A company policy was adopted more than twenty years ago requiring that all pilot checks and recurrent training be conducted with a full crew occupying the seats they occupy on the line. Permission was obtained to reschedule the hours for recurrent proficiency training to include one and one-half hours of LOFT flight. The number of emergencies and abnormal procedures which could be undertaken were considered and the introduction of an a occasional incapacitation revealed which person is the most difficult to replace on the widebodies. By using the LOFT concept, every training period can be structured like a typical line flight. The use of LOFT in simulator syllabus development and problems that need to be refined are discussed.

  15. Inter-annual variations of CO2 observed by commercial airliner in the CONTRAIL project

    NASA Astrophysics Data System (ADS)

    Sawa, Yousuke; Machida, Toshinobu; Matsueda, Hidekazu; Niwa, Yosuke; Umezawa, Taku

    2016-04-01

    Since 2005, we have conducted an observation program for greenhouse gases using the passenger aircraft of the Japan Airlines named Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL). Over the past 10 years, successful operation of Continuous CO2 Measuring Equipment (CME) has delivered more than 6 million in-situ CO2 data from about 12000 flights between Japan and Europe, Australia, North America, or Asia. The large number of CME data enable us to well characterize spatial distributions and seasonal changes of CO2 in wide regions of the globe especially the Asia-Pacific regions. While the mean growth rates for the past 10 years were about 2 ppm/year, large growth rates of about 3 ppm/year were found in the wide latitudinal bands from 30S to 70N from the second half of 2012 to the first half of 2013. The multiyear data sets have the potential to help understand the global/regional CO2 budget. One good example is the significant inter-annual difference in CO2 vertical profiles observed over Singapore between October 2014 and October 2015, which is attributable to the massive biomass burnings in Indonesia in 2015.

  16. LANDSAT-D flight segment operations manual, volume 2

    NASA Technical Reports Server (NTRS)

    Varhola, J.

    1981-01-01

    Functions, performance capabilities, modes of operation, constraints, redundancy, commands, and telemetry are described for the thematic mapper; the global positioning system; the direct access S-band; the multispectral scanner; the payload correction; the thermal control subsystem; the solar array retention, deployment, and jettison assembly; and the boom antenna retention, deployment, and jettison assembly for LANDSAT 4.

  17. Operational Concept for Flight Crews to Participate in Merging and Spacing of Aircraft

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.

    2006-01-01

    The predicted tripling of air traffic within the next 15 years is expected to cause significant aircraft delays and create a major financial burden for the airline industry unless the capacity of the National Airspace System can be increased. One approach to improve throughput and reduce delay is to develop new ground tools, airborne tools, and procedures to reduce the variance of aircraft delivery to the airport, thereby providing an increase in runway throughput capacity and a reduction in arrival aircraft delay. The first phase of the Merging and Spacing Concept employs a ground based tool used by Air Traffic Control that creates an arrival time to the runway threshold based on the aircraft s current position and speed, then makes minor adjustments to that schedule to accommodate runway throughput constraints such as weather and wake vortex separation criteria. The Merging and Spacing Concept also employs arrival routing that begins at an en route metering fix at altitude and continues to the runway threshold with defined lateral, vertical, and velocity criteria. This allows the desired spacing interval between aircraft at the runway to be translated back in time and space to the metering fix. The tool then calculates a specific speed for each aircraft to fly while enroute to the metering fix based on the adjusted land timing for that aircraft. This speed is data-linked to the crew who fly this speed, causing the aircraft to arrive at the metering fix with the assigned spacing interval behind the previous aircraft in the landing sequence. The second phase of the Merging and Spacing Concept increases the timing precision of the aircraft delivery to the runway threshold by having flight crews using an airborne system make minor speed changes during enroute, descent, and arrival phases of flight. These speed changes are based on broadcast aircraft state data to determine the difference between the actual and assigned time interval between the aircraft pair. The

  18. Alertness Management In Flight Operations: A NASA Education and Training Module

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Lebacqz, Victor J.; Gander, Philippa H.; Co, Elizabeth L.; Weldon, Keri J.; Smith, Roy M.; Miller, Donna L.; Gregory, Kevin B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Since 1980, the NASA Ames Fatigue Countermeasures Program has been conducting research on sleep, circadian rhythms, and fatigue in a variety of flight operations 1. An original goal of the program was to return the scientific and operational knowledge to the aviation industry. To meet this goal, the NASA Ames Fatigue Countermeasures Program has created an Education and Training Module entitled, "Strategies for Alertness Management in Flight Operations." The Module was designed to meet three objectives: 1) explain the current state of knowledge about the physiological mechanisms underlying fatigue, 2) demonstrate how this knowledge can be applied to improve flight crew sleep, performance, and alertness, and 3) offer countermeasure recommendations. The Module is composed of two components: 1) a 60-minute live presentation provided by a knowledgeable individual and 2) a NASA/FAA Technical Memorandum (TM) that contains the presentation materials and appendices with complementary information. The TM is provided to all individuals attending the live presentation. The Module content is divided into three parts: 1) basic information on sleep, sleepiness, circadian rhythms, fatigue, and how flight operations affect these physiological factors, 2) common misconceptions about sleep, sleepiness, and fatigue, and 3) alertness management strategies. The Module is intended for pilots, management personnel, schedulers, flight attendants, and the many other individuals involved in the aviation system.

  19. Why do airlines want and use thrust reversers? A compilation of airline industry responses to a survey regarding the use of thrust reversers on commercial transport airplanes

    NASA Technical Reports Server (NTRS)

    Yetter, Jeffrey A.

    1995-01-01

    Although thrust reversers are used for only a fraction of the airplane operating time, their impact on nacelle design, weight, airplane cruise performance, and overall airplane operating and maintenance expenses is significant. Why then do the airlines want and use thrust reversers? In an effort to understand the airlines need for thrust reversers, a survey of the airline industry was made to determine why and under what situations thrust reversers are currently used or thought to be needed. The survey was intended to help establish the cost/benefits trades for the use of thrust reversers and airline opinion regarding alternative deceleration devices. A compilation and summary of the responses given to the survey questionnaire is presented.

  20. Constraint and Flight Rule Management for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Barreiro, J.; Chachere, J.; Frank, J.; Bertels, C.; Crocker, A.

    2010-01-01

    The exploration of space is one of the most fascinating domains to study from a human factors perspective. Like other complex work domains such as aviation (Pritchett and Kim, 2008), air traffic management (Durso and Manning, 2008), health care (Morrow, North, and Wickens, 2006), homeland security (Cooke and Winner, 2008), and vehicle control (Lee, 2006), space exploration is a large-scale sociotechnical work domain characterized by complexity, dynamism, uncertainty, and risk in real-time operational contexts (Perrow, 1999; Woods et al, 1994). Nearly the entire gamut of human factors issues - for example, human-automation interaction (Sheridan and Parasuraman, 2006), telerobotics, display and control design (Smith, Bennett, and Stone, 2006), usability, anthropometry (Chaffin, 2008), biomechanics (Marras and Radwin, 2006), safety engineering, emergency operations, maintenance human factors, situation awareness (Tenney and Pew, 2006), crew resource management (Salas et al., 2006), methods for cognitive work analysis (Bisantz and Roth, 2008) and the like -- are applicable to astronauts, mission control, operational medicine, Space Shuttle manufacturing and assembly operations, and space suit designers as they are in other work domains (e.g., Bloomberg, 2003; Bos et al, 2006; Brooks and Ince, 1992; Casler and Cook, 1999; Jones, 1994; McCurdy et al, 2006; Neerincx et aI., 2006; Olofinboba and Dorneich, 2005; Patterson, Watts-Perotti and Woods, 1999; Patterson and Woods, 2001; Seagull et ai, 2007; Sierhuis, Clancey and Sims, 2002). The human exploration of space also has unique challenges of particular interest to human factors research and practice. This chapter provides an overview of those issues and reports on some of the latest research results as well as the latest challenges still facing the field.

  1. Progress in Operational Analysis of Launch Vehicles in Nonstationary Flight

    NASA Technical Reports Server (NTRS)

    James, George; Kaouk, Mo; Cao, Timothy

    2013-01-01

    This paper presents recent results in an ongoing effort to understand and develop techniques to process launch vehicle data, which is extremely challenging for modal parameter identification. The primary source of difficulty is due to the nonstationary nature of the situation. The system is changing, the environment is not steady, and there is an active control system operating. Hence, the primary tool for producing clean operational results (significant data lengths and data averaging) is not available to the user. This work reported herein uses a correlation-based two step operational modal analysis approach to process the relevant data sets for understanding and development of processes. A significant drawback for such processing of short time histories is a series of beating phenomena due to the inability to average out random modal excitations. A recursive correlation process coupled to a new convergence metric (designed to mitigate the beating phenomena) is the object of this study. It has been found in limited studies that this process creates clean modal frequency estimates but numerically alters the damping.

  2. Molecular bacterial diversity and bioburden of commercial airliner cabin air.

    PubMed

    La Duc, Myron T; Stuecker, Tara; Venkateswaran, Kasthuri

    2007-11-01

    Culture-independent, biomarker-targeted bacterial enumeration and identification strategies were employed to estimate total bacterial burden and diversity within the cabin air of commercial airliners. Samples from each of 4 flights on 2 commercial carriers were collected via air-impingement. The total viable microbial population ranged from below detection limits to 4.1 x 10(6) cells/m(3) of air, as assessed by the ATP assay. A gradual accumulation of microbes was observed from the time of passenger boarding through mid-flight, followed by a sharp decline in bacterial abundance and viability from the initiation of descent through landing. Representatives of the alpha-, beta-, and gamma-Proteobacteria, as well as Gram-positive bacteria, were isolated in varying abundance. Neisseria meningitidis rRNA gene sequences were retrieved in great abundance from Airline A followed by Streptococcus oralis/mitis sequences. Pseudomonas synxantha sequences dominated Airline B clone libraries, followed by those of N. meningitidis and S. oralis/mitis. The cabin air samples examined herein housed low bacterial diversity and were often dominated by a particular subset of bacteria: opportunistic pathogenic inhabitants of the human respiratory tract and oral cavity.

  3. Evaluating Nextgen Closely Spaced Parallel Operations Concepts with Validated Human Performance Models: Flight Deck Guidelines

    NASA Technical Reports Server (NTRS)

    Hooey, Becky Lee; Gore, Brian Francis; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.

  4. Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) Rendezvous Proximity Operations Design and Trade Studies

    NASA Astrophysics Data System (ADS)

    Griesbach, J.; Westphal, J. J.; Roscoe, C.; Hawes, D. R.; Carrico, J. P.

    2013-09-01

    The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The program encompasses the entire system evolution including system design, acquisition, satellite construction, launch, mission operations, and final disposal. The satellite is scheduled for launch in Fall 2015 with a 1-year mission lifetime. This paper provides a brief mission overview but will then focus on the current design and driving trade study results for the RPO mission specific processor and relevant ground software. The current design involves multiple on-board processors, each specifically tasked with providing mission critical capabilities. These capabilities range from attitude determination and control to image processing. The RPO system processor is responsible for absolute and relative navigation, maneuver planning, attitude commanding, and abort monitoring for mission safety. A low power processor running a Linux operating system has been selected for implementation. Navigation is one of the RPO processor's key tasks. This entails processing data obtained from the on-board GPS unit as well as the on-board imaging sensors. To do this, Kalman filters will be hosted on the processor to ingest and process measurements for maintenance of position and velocity estimates with associated uncertainties. While each satellite carries a GPS unit, it will be used sparsely to conserve power. As such, absolute navigation will mainly consist of propagating past known states, and relative navigation will be considered to be of greater importance. For relative observations

  5. Precooled turbojet engine flight experiment using balloon-based operation vehicle

    NASA Astrophysics Data System (ADS)

    Fujita, K.; Sawai, S.; Kobayashi, H.; Tsuboi, N.; Taguchi, H.; Kojima, T.; Okai, K.; Sato, T.; Miyaji, Koji

    2006-07-01

    Development of the Balloon-based Operation Vehicle (BOV) is currently in progress for the first flight scheduled in 2006. In a series of BOV experiments, a vehicle in a wing-body configuration is lifted by a high-altitude balloon and dropped, after which the microgravity experiments will be performed onboard the vehicle under favor of the quasi-free-fall environments. Although the BOV is originally designed for the microgravity experiments, various types of experiments can also be performed in a hypersonic flight at lower altitudes. One candidate currently under review is a flight experiment of a precooled turbojet engine in reduced dimension. In this article, an overview of the BOV experiment is introduced, and the current development status of the BOV and a flight model of the precooled turbojet engine is presented. The aerodynamic load and the aerodynamic characteristics of the BOV are obtained by computational fluid-dynamic analyses and wind-tunnel experiments.

  6. Significant factors of aviation insurance and risk management strategy: an empirical study of Taiwanese airline carriers.

    PubMed

    Lin, Yi Hsin; Chang, Yu Hern

    2008-04-01

    Aviation insurance premiums have become a heavy burden for the airline industry since September 11, 2001. Although the industry must constantly balance its operations between profitability and safety, the reality is that airlines are in the business of making money. Therefore, their ability to reduce cost and manage risk is a key factor for success. Unlike past research, which used subjective judgment methods, this study applied quantitative historical data (1999-2000) and gray relation analysis to identify the primary factors influencing ratemaking for aviation insurance premiums. An empirical study of six airlines in Taiwan was conducted to determine these factors and to analyze the management strategies used to deal with them. Results showed that the loss experience and performance of individual airlines were the key elements associated with aviation insurance premiums paid by each airline. By identifying and understanding the primary factors influencing ratemaking for aviation insurance, airlines will better understand their relative operational strengths and weaknesses, and further help top management identify areas for further improvement. Knowledge of these factors combined with effective risk management strategies, may result in lower premiums and operating costs for airline companies.

  7. ATC contingency operations in the en-route flight regime

    NASA Technical Reports Server (NTRS)

    Lyman, E. G.

    1981-01-01

    Air traffic control (ATC) operations were examined to learn what factors of controller performance should be given consideration in the design and development of future automation systems enhancing ATC. Contingencies were of two types: those constraining airspace usage or traffic flow (i.e., weather); and those related to system and equipment usage (i.e., radar/radio status). Examination of controller response to contingencies and workload pressures showed differing effects on controller allocations of effort among the three primary function of planning, monitoring, and informaton transfer. Automation advancements oriented towards aiding the controller in performing monitoring tasks may offer the most substantial safety benefit.

  8. Automating the training development process for mission flight operations

    NASA Technical Reports Server (NTRS)

    Scott, Carol J.

    1994-01-01

    Traditional methods of developing training do not effectively support the changing needs of operational users in a multimission environment. The Automated Training Development System (ATDS) provides advantages over conventional methods in quality, quantity, turnaround, database maintenance, and focus on individualized instruction. The Operations System Training Group at the JPL performed a six-month study to assess the potential of ATDS to automate curriculum development and to generate and maintain course materials. To begin the study, the group acquired readily available hardware and participated in a two-week training session to introduce the process. ATDS is a building activity that combines training's traditional information-gathering with a hierarchical method for interleaving the elements. The program can be described fairly simply. A comprehensive list of candidate tasks determines the content of the database; from that database, selected critical tasks dictate which competencies of skill and knowledge to include in course material for the target audience. The training developer adds pertinent planning information about each task to the database, then ATDS generates a tailored set of instructional material, based on the specific set of selection criteria. Course material consistently leads students to a prescribed level of competency.

  9. Combustor Operability and Performance Verification for HIFiRE Flight 2

    NASA Technical Reports Server (NTRS)

    Storch, Andrea M.; Bynum, Michael; Liu, Jiwen; Gruber, Mark

    2011-01-01

    As part of the Hypersonic International Flight Research Experimentation (HIFiRE) Direct-Connect Rig (HDCR) test and analysis activity, three-dimensional computational fluid dynamics (CFD) simulations were performed using two Reynolds-Averaged Navier Stokes solvers. Measurements obtained from ground testing in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) were used to specify inflow conditions for the simulations and combustor data from four representative tests were used as benchmarks. Test cases at simulated flight enthalpies of Mach 5.84, 6.5, 7.5, and 8.0 were analyzed. Modeling parameters (e.g., turbulent Schmidt number and compressibility treatment) were tuned such that the CFD results closely matched the experimental results. The tuned modeling parameters were used to establish a standard practice in HIFiRE combustor analysis. Combustor performance and operating mode were examined and were found to meet or exceed the objectives of the HIFiRE Flight 2 experiment. In addition, the calibrated CFD tools were then applied to make predictions of combustor operation and performance for the flight configuration and to aid in understanding the impacts of ground and flight uncertainties on combustor operation.

  10. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Hoffman, D. J.; Stoecklin, R. L.

    1980-01-01

    The flight service experience of 111 graphite-epoxy spoilers on 737 transport aircraft and related ground based enviromental exposure of graphite-epoxy material specimens is reported. Spoilers were installed on 28 aircraft representing seven major airlines operating throughout the world. Over 1,188,367 spoiler flight hours and 1,786,837 spoiler landings were accumulated by this fleet. Tests of removed spoilers and ground-based exposure specimens after the fifth year of service indicate modest changes in composite strength properties. Two incidents of trailing edge delamination with subsequent core corrosion were observed. Based on visual, ultrasonic, and destructive testing, there has been no evidence of moisture migration into the honeycomb core and no core corrosion.

  11. Air Traffic Control: Economics of Flight

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2004-01-01

    Contents include the following: 1. Commercial flight is a partnership. Airlines. Pilots. Air traffic control. 2. Airline schedules and weather problems can cause delays at the airport. Delays are inevitable in de-regulated industry due to simple economics. 3.Delays can be mitigated. Build more runways/technology. Increase airspace supply. 4. Cost/benefit analysis determine justification.

  12. Deep reconditioning of batteries during DSCS 3 flight operations

    NASA Technical Reports Server (NTRS)

    Thierfelder, H. E.; Stearns, R. J.; Jones, P. W.

    1985-01-01

    Deep reconditioning of batteries is defined as discharge below the 1.0 volt/cell level to a value of about 1.0 volt/battery. This type of reconditioning was investigated for use on the Defense Satellite Communications System (DSCS) spacecraft, and has been used during the first year of orbital operation. Prior to launch of the spacecraft, the deep reconditioning was used during the battery life test, which has now complete fourteen eclipse periods. Reconditioning was performed prior to each eclipse period of the life test, and is scheduled to be used prior to each eclipse period in orbit. The battery data for discharge and recharge is presented for one of the life test reconditioning cycles, and for each of the three batteries during the reconditioning cycles between eclipse period no.1 and eclipse period no.2 in Earth orbit.

  13. International cooperative study of aircrew layover sleep Operational summary

    NASA Technical Reports Server (NTRS)

    Graeber, R. Curtis; Dement, William C.; Nicholson, Anthony N.; Sasaki, Mitsuo; Wegmann, Hans M.

    1986-01-01

    The findings of this cooperative study of layover sleep have direct implications for flight operations. In the consensus view of the principal investigators, these can be divided into their relevance for eastward or westward flight. Eastward flight produced more sleep disruption than westward. Different sleep and scheduling strategies are recommended for each flight direction, and the importance of individual crewmember factors is discussed in relation to age and circadian type. Despite the limitations of this study with regard to trip simplicity and the baseline data, the results for each airline are highly consistent and should be applicable to a wide range of long-haul crewmembers and carriers.

  14. Cosmic Radiation and Cataracts in Airline Pilots

    NASA Astrophysics Data System (ADS)

    Rafnsson, V.; Olafsdottir, E.; Hrafnkelsson, J.; de Angelis, G.; Sasaki, H.; Arnarson, A.; Jonasson, F.

    Nuclear cataracts have been associated with ionising radiation exposure in previous studies. A population based case-control study on airline pilots has been performed to investigate whether employment as a commercial pilot and consequent exposure to cosmic radiation were associated to lens opacification, when adjusted for known risk factors for cataracts. Cases of opacification of the ocular lens were found in surveys among pilots and a random sample of the Icelandic population. Altogether 445 male subjects underwent a detailed eye examination and answered a questionnaire. Information from the airline company on the 79 pilots employment time, annual hours flown per aircraft type, the timetables and the flight profiles made calculation of individual cumulated radiation dose (mSv) possible. Lens opacification were classified and graded according to WHO simplified cataracts grading system using slit lamp. The odds ratio from logistic regression of nuclear cataracts risk among cases and controls was 3.02 (95% CI 1.44 to 6.35) for pilots compared with non-pilots, adjusted for age, smoking and sunbathing habits, whereas that of cortical cataracts risk among cases and controls was lower than unity (non significant) for pilots compared with non-pilots in a logistic regression analysis adjusted for same factors. Length of employment as a pilot and cumulated radiation dose (mSv) were significantly related to the risk of nuclear cataracts. So the association between radiation exposure of pilots and the risk of nuclear cataracts, adjusted for age, smoking and sunbathing habits, indicates that cosmic radiation may be cause of nuclear cataract among commercial pilots.

  15. Future Flight Central

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA 'Future Flight Central,' the world's first full-scale virtual airport control tower, opened December 13, 1999 at NASA Ames Research Center, Moffett Field, California. Constructed at a cost of $10 million, the two story facility was jointly funded by NASA and the Federal Aviation Administration (FAA). The facility is designed to test ways to solve potential air and ground traffic problems at commercial airports under realistic airport conditions and configurations. The facility provides an opportunity for airlines and airports to mitigate passenger delays by fine tuning airport hub operations, gate management, ramp movement procedures, and various other airport improvements. Twelve rear projection screens provide a seamless 360 degree high- resolution view of the airport or other screens being depicted. The imaging system, powered by supercomputers, provides a realistic view of weather conditions, enviromental and seasonal effects and the movement of up to 200 active aircraft and ground vehicles.

  16. Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Wright, C.; Couluris, G. J.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.

  17. Crew factors in flight operations. Part 4: Sleep and wakefulness in international aircrews

    NASA Technical Reports Server (NTRS)

    Graeber, R. C.

    1986-01-01

    Physiological recordings of sleep and wakefulness in operating international (B-747) flight crews were obtained. Crews spent their first layover (48 h) of a trip in a sleep laboratory where standardized EEG, electro-oculograph (EOC), and electromyograph (EMG) sleep recordings were carried out whenever volunteers chose to sleep. During periods of wakefulness they underwent multiple sleep latency tests every 2 h in order to assess daytime drowsiness. The same standardized recordings were carried out at a home-based laboratory before departure. Approximately four crews each participated in flights over 7 to 9 time zones on five routes. All participants were encouraged to use whatever sleep-wake strategies they thought would provide them with the most satisfactory crew rest. Overall, layover sleep quality was not seriously disturbed, but eastward flights produced greater sleep disruption. The contributors of individual factors and the usefulness of various sleep strategies are discussed in the individual laboratory reports and in an operational summary.

  18. The Payload Operations Center (POC) at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph show the Safety Coordination Manager (SCM) at a work station. The SCM monitors science experiments to ensure they are conducted in a safe manner in accordance with strict safety regulations.

  19. Flight crew fatigue III: North Sea helicopter air transport operations.

    PubMed

    Gander, P H; Barnes, R M; Gregory, K B; Graeber, R C; Connell, L J; Rosekind, M R

    1998-09-01

    We studied 32 helicopter pilots before, during, and after 4-5 d trips from Aberdeen, Scotland, to service North Sea oil rigs. On duty days, subjects awoke 1.5 h earlier than pretrip or posttrip, after having slept nearly an hour less. Subjective fatigue was greater posttrip than pretrip. By the end of trip days, fatigue was greater and mood more negative than by the end of pretrip days. During trips, daily caffeine consumption increased 42%, reports of headache doubled, reports of back pain increased 12-fold, and reports of burning eyes quadrupled. In the cockpits studied, thermal discomfort and high vibration levels were common. Subjective workload during preflight, taxi, climb, and cruise was related to the crewmembers' ratings of the quality of the aircraft systems. During descent and approach, workload was affected by weather at the landing site. During landing, it was influenced by the quality of the landing site and air traffic control. Beginning duty later, and greater attention to aircraft comfort and maintenance, should reduce fatigue in these operations.

  20. Advanced software development workstation: Object-oriented methodologies and applications for flight planning and mission operations

    NASA Technical Reports Server (NTRS)

    Izygon, Michel

    1993-01-01

    The work accomplished during the past nine months in order to help three different organizations involved in Flight Planning and in Mission Operations systems, to transition to Object-Oriented Technology, by adopting one of the currently most widely used Object-Oriented analysis and Design Methodology is summarized.

  1. Present and future of vision systems technologies in commercial flight operations

    NASA Astrophysics Data System (ADS)

    Ward, Jim

    2016-05-01

    The development of systems to enable pilots of all types of aircraft to see through fog, clouds, and sandstorms and land in low visibility has been widely discussed and researched across aviation. For military applications, the goal has been to operate in a Degraded Visual Environment (DVE), using sensors to enable flight crews to see and operate without concern to weather that limits human visibility. These military DVE goals are mainly oriented to the off-field landing environment. For commercial aviation, the Federal Aviation Agency (FAA) implemented operational regulations in 2004 that allow the flight crew to see the runway environment using an Enhanced Flight Vision Systems (EFVS) and continue the approach below the normal landing decision height. The FAA is expanding the current use and economic benefit of EFVS technology and will soon permit landing without any natural vision using real-time weather-penetrating sensors. The operational goals of both of these efforts, DVE and EFVS, have been the stimulus for development of new sensors and vision displays to create the modern flight deck.

  2. On-Board File Management and Its Application in Flight Operations

    NASA Technical Reports Server (NTRS)

    Kuo, N.

    1998-01-01

    In this paper, the author presents the minimum functions required for an on-board file management system. We explore file manipulation processes and demonstrate how the file transfer along with the file management system will be utilized to support flight operations and data delivery.

  3. The Naturalistic Flight Deck System: An Integrated System Concept for Improved Single-Pilot Operations

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Goodrich, Kenneth H.; Cox, David E.; Jackson, Bruce; Palmer, Michael T.; Pope, Alan T.; Schlecht, Robin W.; Tedjojuwono, Ken K.; Trujillo, Anna C.; Williams, Ralph A.; Kinney, J. Bryan; Barry, John S., Jr.

    2007-01-01

    This paper reviews current and emerging operational experiences, technologies, and human-machine interaction theories to develop an integrated flight system concept designed to increase the safety, reliability, and performance of single-pilot operations in an increasingly accommodating but stringent national airspace system. This concept, know as the Naturalistic Flight Deck (NFD), uses a form of human-centered automation known as complementary-automation (or complemation) to structure the relationship between the human operator and the aircraft as independent, collaborative agents having complimentary capabilities. The human provides commonsense knowledge, general intelligence, and creative thinking, while the machine contributes specialized intelligence and control, extreme vigilance, resistance to fatigue, and encyclopedic memory. To support the development of the NFD, an initial Concept of Operations has been created and selected normal and non-normal scenarios are presented in this document.

  4. Oceanic Flights and Airspace: Improving Efficiency by Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Fernandes, Alicia Borgman; Rebollo, Juan; Koch, Michael

    2016-01-01

    Oceanic operations suffer from multiple inefficiencies, including pre-departure planning that does not adequately consider uncertainty in the proposed trajectory, restrictions on the routes that a flight operator can choose for an oceanic crossing, time-consuming processes and procedures for amending en route trajectories, and difficulties exchanging data between Flight Information Regions (FIRs). These inefficiencies cause aircraft to fly suboptimal trajectories, burning fuel and time that could be conserved. A concept to support integration of existing and emerging capabilities and concepts is needed to transition to an airspace system that employs Trajectory Based Operations (TBO) to improve efficiency and safety in oceanic operations. This paper describes such a concept and the results of preliminary activities to evaluate the concept, including a stakeholder feedback activity, user needs analysis, and high level benefits analysis.

  5. Concept report: Experimental vector magnetograph (EXVM) operational configuration balloon flight assembly

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The observational limitations of earth bound solar studies has prompted a great deal of interest in recent months in being able to gain new scientific perspectives through, what should prove to be, relatively low cost flight of the magnetograph system. The ground work done by TBE for the solar balloon missions (originally planned for SOUP and GRID) as well as the rather advanced state of assembly of the EXVM has allowed the quick formulation of a mission concept for the 30 cm system currently being assembled. The flight system operational configuration will be discussed as it is proposed for short duration flight (on the order of one day) over the continental United States. Balloon hardware design requirements used in formulation of the concept are those set by the National Science Balloon Facility (NSBF), the support agency under NASA contract for flight services. The concept assumes that the flight hardware assembly would come together from three development sources: the scientific investigator package, the integration contractor package, and the NSBF support system. The majority of these three separate packages can be independently developed; however, the computer control interfaces and telemetry links would require extensive preplanning and coordination. A special section of this study deals with definition of a dedicated telemetry link to be provided by the integration contractor for video image data for pointing system performance verification. In this study the approach has been to capitalize to the maximum extent possible on existing hardware and system design. This is the most prudent step that can be taken to reduce eventual program cost for long duration flights. By fielding the existing EXVM as quickly as possible, experience could be gained from several short duration flight tests before it became necessary to commit to major upgrades for long duration flights of this system or of the larger 60 cm version being considered for eventual development.

  6. Use of Data Comm by Flight Crew to Conduct Interval Management Operations to Parallel Dependent Runways

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Hubbs, Clay; Shay, Rick; Karanian, James

    2011-01-01

    The Interval Management (IM) concept is being developed as a method to maintain or increase high traffic density airport arrival throughput while allowing aircraft to conduct near idle thrust descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR1) experiment at NASA Langley Research Center used 24 commercial pilots to examine IM procedures to conduct parallel dependent runway arrival operations while maintaining safe but efficient intervals behind the preceding aircraft. The use of IM procedures during these operations requires a lengthy and complex clearance from Air Traffic Control (ATC) to the participating aircraft, thereby making the use of Controller Pilot Data Link Communications (CPDLC) highly desirable as the communication method. The use of CPDLC reduces the need for voice transmissions between controllers and flight crew, and enables automated transfer of IM clearance elements into flight management systems or other aircraft avionics. The result is reduced crew workload and an increase in the efficiency of crew procedures. This paper focuses on the subset of data collected related to the use of CPDLC for IM operations into a busy airport. Overall, the experiment and results were very successful, with the mean time under 43 seconds for the flight crew to load the clearance into the IM spacing tool, review the calculated speed, and respond to ATC. An overall mean rating of Moderately Agree was given when the crews were asked if the use of CPDLC was operationally acceptable as simulated in this experiment. Approximately half of the flight crew reported the use of CPDLC below 10,000 for IM operations was unacceptable, with 83% reporting below 5000 was unacceptable. Also described are proposed modifications to the IM operations that may reduce CPDLC Respond time to less than 30 seconds and should significantly reduce the complexity of crew procedures, as well as follow-on research issues for operational use of CPDLC during IM

  7. Airline Safety: A Comparative Analysis.

    DTIC Science & Technology

    1987-01-01

    Some Empirical Findings," Management Science 25 (November 1979)s 1045-1056. 2. Air Carrier Traffic Statistics , published monthly by U.S. Civil...Times, various issues 1976-1986. 6. Traffic, ICAO Digest of Statistics , Series T, various editions 1976-1980. 7. World Airline Accident Summary...34 statistical license" and added the rankings from each of the four measures considered separately to produce a final ranking shown in Table 2.2 [7

  8. Assessing Dual Sensor Enhanced Flight Vision Systems to Enable Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.

    2016-01-01

    Flight deck-based vision system technologies, such as Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS), may serve as a revolutionary crew/vehicle interface enabling technologies to meet the challenges of the Next Generation Air Transportation System Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety of current-day Visual Flight Rules (VFR) operations and maintain the operational tempos of VFR irrespective of the weather and visibility conditions. One significant challenge lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility, pilot workload and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 ft runway visual range by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs as they made approaches to runways with and without touchdown zone and centerline lights. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance, workload, and situation awareness during extremely low visibility approach and landing operations was assessed. Results indicate that all EFVS concepts flown resulted in excellent approach path tracking and touchdown performance without any workload penalty. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.

  9. Manual Control Aspects of Orbital Flight

    NASA Technical Reports Server (NTRS)

    Brody, Adam R. (Editor); Ellis, Stephen R. (Editor)

    1990-01-01

    A brief description of several laboratories' current research in the general area of manual control of orbital flight is presented. With an operational-space-station era (and its increased traffic levels) approaching, now is an opportune time to investigate issues such as docking and rendezvous profiles and course-planning aids. The tremendous increase in the capabilities of computers and computer graphics has made extensive study possible and economical. It is time to study these areas, from a human factors and manual control perspective in order to preclude the occurrence of problems analogous to those that occurred in the airline and other related industries.

  10. Review of the Literature Related to Screening Airline Passenger Baggage.

    DTIC Science & Technology

    1994-10-01

    11 billion passengers and their carry-on items have passed through airport security checkpoints. According to the Federal Aviation Administration...Aviation Security establishes security requirements, inspects airline and airport security operations, and issues civil penalties for noncompliance with...operations areas and provide law enforcement support for the screening system and overall airport security requirements (FAA, 1991). The FAA’s role in aviation

  11. Longitudinal flying qualities criteria for single-pilot instrument flight operations

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Bar-Gill, A.

    1983-01-01

    Modern estimation and control theory, flight testing, and statistical analysis were used to deduce flying qualities criteria for General Aviation Single Pilot Instrument Flight Rule (SPIFR) operations. The principal concern is that unsatisfactory aircraft dynamic response combined with high navigation/communication workload can produce problems of safety and efficiency. To alleviate these problems. The relative importance of these factors must be determined. This objective was achieved by flying SPIFR tasks with different aircraft dynamic configurations and assessing the effects of such variations under these conditions. The experimental results yielded quantitative indicators of pilot's performance and workload, and for each of them, multivariate regression was applied to evaluate several candidate flying qualities criteria.

  12. Evidence Based Medicine in Space Flight: Evaluation of Inflight Vision Data for Operational Decision-Making

    NASA Technical Reports Server (NTRS)

    Van Baalen, Mary; Mason, Sara; Foy, Millennia; Wear, Mary; Taiym, Wafa; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William

    2015-01-01

    Due to recently identified vision changes associated with space flight, JSC Space and Clinical Operations (SCO) implemented broad mission-related vision testing starting in 2009. Optical Coherence Tomography (OCT), 3 Tesla Brain and Orbit MRIs, Optical Biometry were implemented terrestrially for clinical monitoring. While no inflight vision testing was in place, already available onorbit technology was leveraged to facilitate in-flight clinical monitoring, including visual acuity, Amsler grid, tonometry, and ultrasonography. In 2013, on-orbit testing capabilities were expanded to include contrast sensitivity testing and OCT. As these additional testing capabilities have been added, resource prioritization, particularly crew time, is under evaluation.

  13. STS-35 MS Hoffman operates ASTRO-1 MPC on OV-102's aft flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Mission Specialist (MS) Jeffrey A. Hoffman, wearing headset and monitoring closed circuit television (CCTV) display screen, operates the Astronomy Laboratory 1 (ASTRO-1) manual pointing controller (MPC) on the aft flight deck of Columbia, Orbiter Vehicle (OV) 102. MPC is used to position the instrument pointing system (IPS) and its three ultraviolet telescopes in OV-102's payload bay (PLB). Hoffman and other crewmembers were able to command the IPS to record astronomical data using the MPC. At Hoffman's left are the onorbit station control panels and the two aft flight deck viewing windows W9 and W10.

  14. NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.

    2001-01-01

    To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.

  15. Clearing the airways: advocacy and regulation for smoke-free airlines

    PubMed Central

    Holm, A; Davis, R

    2004-01-01

    Objective: To examine the advocacy and regulatory history surrounding bans on smoking in commercial airliners. Methods: Review of historical documents, popular press articles, and other sources to trace the timeline of events leading up to the US ban on smoking in airliners and subsequent efforts by airlines and other nations. Results: In early years, efforts by flight attendants and health advocates to make commercial airliners smoke-free were not productive. Advocacy efforts between 1969 and 1984 resulted in maintenance of the status quo, with modest exceptions (creation of smoking and non-smoking sections of aircraft, and a ban on cigar and pipe smoking). Several breakthrough events in the mid 1980s, however, led to an abrupt turnaround in regulatory efforts. The first watershed event was the publication in 1986 of the National Academy of Science's report on the airliner cabin environment, which recommended banning smoking on all commercial flights. Subsequently, following concerted lobbying efforts by health advocates, Congress passed legislation banning smoking on US domestic flights of less than two hours, which became effective in 1988. The law was made permanent and extended to flights of less than six hours in 1990. This landmark legislation propelled the adoption of similar rules internationally, both by airlines and their industry's governing bodies. Though the tobacco industry succeeded in stalling efforts to create smoke-free airways, it was ultimately unable to muster sufficient grassroots support or scientific evidence to convince the general public or policymakers that smoking should continue to be allowed on airlines. Conclusions: The movement to ban smoking in aircraft represents a case study in effective advocacy for smoke-free workplaces. Health advocates, with crucial assistance from flight attendants, used an incremental advocacy process to push for smoking and non-smoking sections on US commercial flights, then for smoking bans on short

  16. Autonomous Flight Rules Concept: User Implementation Costs and Strategies

    NASA Technical Reports Server (NTRS)

    Cotton, William B.; Hilb, Robert

    2014-01-01

    The costs to implement Autonomous Flight Rules (AFR) were examined for estimates in acquisition, installation, training and operations. The user categories were airlines, fractional operators, general aviation and unmanned aircraft systems. Transition strategies to minimize costs while maximizing operational benefits were also analyzed. The primary cost category was found to be the avionics acquisition. Cost ranges for AFR equipment were given to reflect the uncertainty of the certification level for the equipment and the extent of existing compatible avionics in the aircraft to be modified.

  17. Disrupting Aviation: An Exploratory Study of the Opportunities and Risks of Tablet Computers in Commercial Flight Operations

    ERIC Educational Resources Information Center

    Boyne, Matthew

    2013-01-01

    Commercial flight operational safety has dramatically improved in the last 30 years because of enhanced crew coordination, communication, leadership and team development. Technology insertion into cockpit operations, however, has been shown to create crew distractions, resulting in flight safety risks, limited use given policy limitations and…

  18. Preparation of Flight Operations and IWS Integration of the CELIAS Experiment on the SOHO Spacecraft

    NASA Technical Reports Server (NTRS)

    Ipavich, Fred

    1996-01-01

    During this reporting time period, the following activities took place: (1) generation of several versions of the CELIAS (STOF/SEM/CTOF/MTOF/DPU) commissioning timeline for the first 180 days after launch; (2) identification of several problems with the CELIAS portion of the Project Data Base (PDB); (3) attendance of the Science Operations Working Group (SOWG) Meetings (November 1994, February 1995, May 1995) and Flight Operations Review Meeting (July 1995); (4) participation in Flight Operation Simulations SIM 1 (November 14-18, 1994), SIM 2 (May 1-4, 1995) and SIM3 (August 7-11, 1995); and (5) participation in the Ground System Compatibility Test Rehearsal (April 24-28) 1995), GSCT #2 (May 30-June 14, 1995), GSCT #3 (September 12-22 1995), and GSCT #4b (October 30-November 5, 1995).

  19. Work, exercise, and space flight. 1: Operations, environment, and effects of spaceflight

    NASA Technical Reports Server (NTRS)

    Thornton, William

    1989-01-01

    The selection, training, and operations of space flight impose significant physical demands which seem to be adequately met by the existing physical training facilities and informal individual exercise programs. The professional astronaut population has, by selection, better than average health and physical capacity. The essentials of life on earth are adequately met by the spacecraft. However, as the human body adapts to weightlessness, it is compromised for the usual life on earth, but readaptation is rapid. Long term flight without countermeasures will produce major changes in the cardiovascular, respiratory, musculoskeletal and neuromuscular systems. There is strong theoretical and experimental evidence from 1-g studies and limited in-flight evidence to believe that exercise is a key counter-measure to many of these adaptations.

  20. Meteorology and Wake Vortex Influence on American Airlines FL-587 Accident

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Rutishauser, David K.; Switzer, George F.

    2004-01-01

    The atmospheric environment surrounding the crash of American Airlines Flight 587 is investigated. Examined are evidence for any unusual atmospheric conditions and the potential for encounters with aircraft wake vortices. Computer simulations are carried out with two different vortex prediction models and a Large Eddy Simulation model. Wind models are proposed for studying aircraft and pilot response to the wake vortex encounter.

  1. Understanding Current Safety Issues for Trajectory Based Operations

    NASA Technical Reports Server (NTRS)

    Feary, Michael; Stewart, Michael

    2016-01-01

    Increases in procedural complexity were investigated as a possible contributor to flight path deviations in airline operations. Understanding current operational issues and their causes must be embraced to maintain current safety standards while increasing future functionality. ASRS data and expert narratives were used to discover factors relating to pilot deviations. Our investigation pointed to ATC intervention, automation confusion, procedure design, and mixed equipment as primary issues. Future work will need to include objective data and mitigation strategies.

  2. Disorders of the menstrual cycle in airline stewardesses.

    PubMed

    Iglesias, R; Terrés, A; Chavarria, A

    1980-05-01

    Of 200 airline stewardesses, 39% underwent unfavourable changes in the menstrual cycle after commencing aeronautical activities while 11% who had previous disorders healed soon after joining the company. Although 48% of the stewardesses underwent changes in menstruation during flight, in about half of these the menstrual flow increased and in the other half it decreased or disappeared, only to reappear with greater intensity after the flight; 38% of the stewardesses manifected suffering from pelvic discomfort after long flights. Sufficient research in this field has not been done. Therefore, it is difficult to trace the exact origin and mechanism of these changes in the menstrual cycle. Stress and internal desynchronitation due to disruption of circadian rhythm may intervene in generating these disorders.

  3. Formulation and demonstration of a robust mean variance optimization approach for concurrent airline network and aircraft design

    NASA Astrophysics Data System (ADS)

    Davendralingam, Navindran

    Conceptual design of aircraft and the airline network (routes) on which aircraft fly on are inextricably linked to passenger driven demand. Many factors influence passenger demand for various Origin-Destination (O-D) city pairs including demographics, geographic location, seasonality, socio-economic factors and naturally, the operations of directly competing airlines. The expansion of airline operations involves the identificaion of appropriate aircraft to meet projected future demand. The decisions made in incorporating and subsequently allocating these new aircraft to serve air travel demand affects the inherent risk and profit potential as predicted through the airline revenue management systems. Competition between airlines then translates to latent passenger observations of the routes served between OD pairs and ticket pricing---this in effect reflexively drives future states of demand. This thesis addresses the integrated nature of aircraft design, airline operations and passenger demand, in order to maximize future expected profits as new aircraft are brought into service. The goal of this research is to develop an approach that utilizes aircraft design, airline network design and passenger demand as a unified framework to provide better integrated design solutions in order to maximize expexted profits of an airline. This is investigated through two approaches. The first is a static model that poses the concurrent engineering paradigm above as an investment portfolio problem. Modern financial portfolio optimization techniques are used to leverage risk of serving future projected demand using a 'yet to be introduced' aircraft against potentially generated future profits. Robust optimization methodologies are incorporated to mitigate model sensitivity and address estimation risks associated with such optimization techniques. The second extends the portfolio approach to include dynamic effects of an airline's operations. A dynamic programming approach is

  4. Variations Among Pilots from Different Flight Operations in Party Line Information Requirements for Situation Awareness

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy; Hansman, John

    1997-01-01

    Current air traffic control communications use shared VHF voice frequencies from which pilots can obtain 'party line' information (PLI) by overhearing communications addressed to other aircraft. Previous studies have shown that pilots perceive PLI to be important. There is concern that some critical PLI may be lost in the proposed data link environment, where communications will be discretely addressed. Different types of flight operations will be equipped with data link equipment at different times, generating a mixed environment in which some pilots will rely on PLI, while others will receive their information by data link. To research the importance, availability, and accuracy of PLI and to query pilots on the information they feel is necessary for global situation awareness, a survey was distributed to pilots. The pilots were selected from four flight operation groups to study the variations in PLI requirements in the mixed data link environment. Pilots perceived PLI to be important overall, with specific traffic and weather information elements identified as critical. Most PLI elements followed a pattern of higher perceived importance during terminal area operations, final approach, and landing. Pilots from the different flight operation groups identified some elements as particularly important. In a free-response question designed to identify the information requirements for global situation awareness, pilots frequently indicated a need for traffic and weather information. The results of this survey reveal specific concerns to be addressed when implementing data link communications.

  5. Preparation of Flight Operations and IWS Integration of the CELIAS Experiment on the SOHO Spacecraft

    NASA Technical Reports Server (NTRS)

    Ipavich, Fred

    1996-01-01

    During this annual progress report time period, the following activities took place: (1) Generation of several versions of the CELIAS (STOF/SEM/CTOF/MTOF/DPU) commissioning timeline for the first 180 days after launch. These were written and submitted by A. Galvin after consultation (phone, fax, e-mail, meetings) with the CELIAS Instrument Manager and Lead-Co-I's. (2) Identification of several problems with the CELIAS portion of the Project Data Base (PDB). (3) Meetings with the Flight Operations Team regarding PDB, critical commands, etc. (4) Attend Science Operations Working Group (SOWG) Meetings (November 1994, February 1995, May 1995) and Flight Operations Review Meeting (July 1995). (5) Participate in Flight Operation Simulations SIM 1 (November 14-18, 1994), SIM 2 (May 1-4, 1995) and SIM3 (August 7-11, 1995). (6) Participate in the Ground System Compatibility Test Rehearsal (April 24- 28, 1995), GSCT #2 (May 30-June 14, 1995), GSCT #3 (September 12-22, 1995), and GSCT #4b (October 30-November 5, 1995). A small portion of the documentation for the above cited activities is appended.

  6. Winglets for the Airlines

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Originally developed as part of the Aircraft Energy Efficiency Program in the 1970's, winglets are now used by long-ranging aircraft as well as business jets and smaller planes. The winglet is an upturned wingtip, a lifting surface designed to operate in the wingtip "vortex," a whirlpool of air at an airplane's wingtips. It takes advantage of the turbulent vortex flow by producing forward thrust. This reduces drag and improves fuel efficiency. After McDonnell Douglas conducted wind tunnel tests of winglets in 1978-79, the technology was incorporated into the MD-11, their large payload, long range airplane. There are now more than 100 MD-11s in service.

  7. STS payloads mission control study continuation phase A-1. Volume 2-C, task 3: Identification of joint activities and estimation of resources in preparation for joint flight operations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.

  8. Flight results from a study of aided inertial navigation applied to landing operations

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Carson, T. M.; Merrick, R. B.; Schmidt, S. F.; Conrad, B.

    1973-01-01

    An evaluation is presented of the approach and landing performance of a Kalman filter aided inertial navigation system using flight data obtained from a series of approaches and landings of the CV-340 aircraft at an instrumented test area. A description of the flight test is given, in which data recorded included: (1) accelerometer signals from the platform of an INS; (2) three ranges from the Ames-Cubic Precision Ranging System; and (3) radar and barometric altimeter signals. The method of system evaluation employed was postflight processing of the recorded data using a Kalman filter which was designed for use on the XDS920 computer onboard the CV-340 aircraft. Results shown include comparisons between the trajectories as estimated by the Kalman filter aided system and as determined from cinetheodolite data. Data start initialization of the Kalman filter, operation at a practical data rate, postflight modeling of sensor errors and operation under the adverse condition of bad data are illustrated.

  9. Integrated Neural Flight and Propulsion Control System

    NASA Technical Reports Server (NTRS)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  10. General Aviation Flight Test of Advanced Operations Enabled by Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Hughhes, Monica F.; Parrish, Russell V.; Takallu, Mohammad A.

    2014-01-01

    A flight test was performed to compare the use of three advanced primary flight and navigation display concepts to a baseline, round-dial concept to assess the potential for advanced operations. The displays were evaluated during visual and instrument approach procedures including an advanced instrument approach resembling a visual airport traffic pattern. Nineteen pilots from three pilot groups, reflecting the diverse piloting skills of the General Aviation pilot population, served as evaluation subjects. The experiment had two thrusts: 1) an examination of the capabilities of low-time (i.e., <400 hours), non-instrument-rated pilots to perform nominal instrument approaches, and 2) an exploration of potential advanced Visual Meteorological Conditions (VMC)-like approaches in Instrument Meteorological Conditions (IMC). Within this context, advanced display concepts are considered to include integrated navigation and primary flight displays with either aircraft attitude flight directors or Highway In The Sky (HITS) guidance with and without a synthetic depiction of the external visuals (i.e., synthetic vision). Relative to the first thrust, the results indicate that using an advanced display concept, as tested herein, low-time, non-instrument-rated pilots can exhibit flight-technical performance, subjective workload and situation awareness ratings as good as or better than high-time Instrument Flight Rules (IFR)-rated pilots using Baseline Round Dials for a nominal IMC approach. For the second thrust, the results indicate advanced VMC-like approaches are feasible in IMC, for all pilot groups tested for only the Synthetic Vision System (SVS) advanced display concept.

  11. Microwave power transmission system studies. Volume 3, section 8: Mechanical systems and flight operations

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    The efforts and recommendations associated with preliminary design and concept definition for mechanical systems and flight operations are presented. Technical discussion in the areas of mission analysis, antenna structural concept, configuration analysis, assembly and packaging with associated costs are presented. Technology issues for the control system, structural system, thermal system and assembly including cost and man's role in assembly and maintenance are identified. Background and desired outputs for future efforts are discussed.

  12. Future direction in airline marketing

    NASA Technical Reports Server (NTRS)

    Colussy, D. A.

    1972-01-01

    The rapid growth and broadening of the air travel market, coupled with a more sophisticated consumer, will dramatically change airline marketing over the next decade. Discussed is the direction this change is likely to take and its implications for companies within the industry. New conceptualization approaches are required if the full potential of this expanding market is to be fully realized. Marketing strategies are developed that will enable various elements of the travel industry to compete not only against each other but also with other products that are competing for the consumer's discretionary income.

  13. Consumer Marketing and the Airline Industry

    NASA Technical Reports Server (NTRS)

    Roy, W. R.

    1972-01-01

    The fundamentals of consumer marketing as applied to the airline industry are considered. An attempt is made to boil down the mystique and jargon which frequently surround the subject of marketing. Topics covered include: (1) The marketing concept; (2) consumer expectations from airlines; (3) planning of marketing strategy; and (4) the roles of advertising, sales, and middlemen.

  14. Airline Careers. Aviation Careers Series. Revised.

    ERIC Educational Resources Information Center

    Zaharevitz, Walter

    This booklet, one in a series on aviation careers, outlines the variety of careers available in airlines. The first part of the booklet provides general information about careers in the airline industry, including salaries, working conditions, job requirements, and projected job opportunities. In the main part of the booklet, the following 22 job…

  15. EMS response to an airliner crash.

    PubMed

    Dasgupta, Shuvra; French, Simone; Williams-Johnson, Jean; Hutson, Rhonda; Hart, Nicole; Wong, Mark; Williams, Eric; Espinosa, Kurdell; Maycock, Celeste; Edwards, Romayne; McCartney, Trevor; Cawich, Shamir; Crandon, Ivor

    2012-06-01

    This report of an aircraft crash at a major airport in Kingston, Jamaica examines the response of the local Emergency Medical Services (EMS). Factors that impacted the response are discussed, and the need for more disaster simulation exercises is highlighted. The objective of this case report was to document the response of EMS personnel to the crash of American Airlines Flight 331, and to utilize the information to examine and improve the present protocol. While multiple errors can occur during a mass-casualty event, these can be reduced by frequent simulation exercises during which various personnel practice and learn designated roles. Efficient triage, proper communication, and knowledge of the roles are important in ensuring the best possible outcome. While the triage system and response of the EMS personnel were effective for this magnitude of catastrophe, more work is needed in order to meet predetermined standards. Ways in which this can be overcome include: (1) hosting more disaster simulation exercises; (2) encouraging more involvement with first responders; and (3) strengthening the links in the local EMS system. Vigorous public education must be instituted and maintained.

  16. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    NASA Technical Reports Server (NTRS)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  17. The effects of Crew Resource Mangement (CRM) training in airline maintenance: Results following three years' experience

    NASA Technical Reports Server (NTRS)

    Taylor, J. C.; Robertson, M. M.

    1995-01-01

    This report describes three years' evaluation of the effects of one airline's Crew Resources Management (CRM) training operation for maintenance. This evaluation focuses on the post-training attitudes of maintenance managers' and technical support professionals, their reported behaviors, and the safety, efficiency and dependable maintenance performance of their units. The results reveal a strong positive effect of the training. The overall program represents the use of CRM training as a long-term commitment to improving performance through effective communication at all levels in airline maintenance operations. The initial findings described in our previous progress reports are reinforced and elaborated here. The current results benefit from the entire pre-post training survey, which now represents total attendance of all managers and staff professionals. Additionally there are now full results from the two-month, six-month, and 12-month follow-up questionnaires, together with as many as 33 months of post-training performance data, using several indicators. In this present report, we examine participants' attitudes, their reported behaviors following the training, the performance of their work units, and the relationships among these variables. Attitudes include those measured immediately before and after the training as well as participants' attitudes months after their training. Performance includes measures, by work units, of on-time flight departures, on-schedule maintenance releases, occupational and aircraft safety, and efficient labor costs. We report changes in these performance measures following training, as well their relationships with the training participants' attitudes. Highlights of results from this training program include increased safety and improved costs associated with positive attitudes about the use of more assertive communication, and the improved management of stress. Improved on-time performance is also related to those improved

  18. Enhanced Flight Vision Systems Operational Feasibility Study Using Radar and Infrared Sensors

    NASA Technical Reports Server (NTRS)

    Etherington, Timothy J.; Kramer, Lynda J.; Severance, Kurt; Bailey, Randall E.; Williams, Steven P.; Harrison, Stephanie J.

    2015-01-01

    Approach and landing operations during periods of reduced visibility have plagued aircraft pilots since the beginning of aviation. Although techniques are currently available to mitigate some of the visibility conditions, these operations are still ultimately limited by the pilot's ability to "see" required visual landing references (e.g., markings and/or lights of threshold and touchdown zone) and require significant and costly ground infrastructure. Certified Enhanced Flight Vision Systems (EFVS) have shown promise to lift the obscuration veil. They allow the pilot to operate with enhanced vision, in lieu of natural vision, in the visual segment to enable equivalent visual operations (EVO). An aviation standards document was developed with industry and government consensus for using an EFVS for approach, landing, and rollout to a safe taxi speed in visibilities as low as 300 feet runway visual range (RVR). These new standards establish performance, integrity, availability, and safety requirements to operate in this regime without reliance on a pilot's or flight crew's natural vision by use of a fail-operational EFVS. A pilot-in-the-loop high-fidelity motion simulation study was conducted at NASA Langley Research Center to evaluate the operational feasibility, pilot workload, and pilot acceptability of conducting straight-in instrument approaches with published vertical guidance to landing, touchdown, and rollout to a safe taxi speed in visibility as low as 300 feet RVR by use of vision system technologies on a head-up display (HUD) without need or reliance on natural vision. Twelve crews flew various landing and departure scenarios in 1800, 1000, 700, and 300 RVR. This paper details the non-normal results of the study including objective and subjective measures of performance and acceptability. The study validated the operational feasibility of approach and departure operations and success was independent of visibility conditions. Failures were handled within the

  19. The Transition from Spacecraft Development Ot Flight Operation: Human Factor Considerations

    NASA Technical Reports Server (NTRS)

    Basilio, Ralph R.

    2000-01-01

    In the field of aeronautics and astronautics, a paradigm shift has been witnessed by those in academia, research and development, and private industry. Long development life cycles and the budgets to support such programs and projects has given way to aggressive task schedules and leaner resources to draw from all the while challenging assigned individuals to create and produce improved products of processes. however, this "faster, better, cheaper" concept cannot merely be applied to the design, development, and test of complex systems such as earth-orbiting of interplanetary robotic spacecraft. Full advantage is not possible without due consideration and application to mission operations planning and flight operations, Equally as important as the flight system, the mission operations system consisting of qualified personnel, ground hardware and software tools, and verified and validated operational processes, should also be regarded as a complex system requiring personnel to draw upon formal education, training, related experiences, and heuristic reasoning in engineering an effective and efficient system. Unquestionably, qualified personnel are the most important elements of a mission operations system. This paper examines the experiences of the Deep Space I Project, the first in a series of new technology in-flight validation missions sponsored by the United States National Aeronautics and Space Administration (NASA), specifically, in developing a subsystems analysis and technology validation team comprised of former spacecraft development personnel. Human factor considerations are investigated from initial concept/vision formulation; through operational process development; personnel test and training; to initial uplink product development and test support. Emphasis has been placed on challenges and applied or recommended solutions, so as to provide opportunities for future programs and projects to address and disposition potential issues and concerns as early

  20. Tom McMurtry - chief of Dryden Flight Operations with STS mated to 747 SCA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Thomas C. McMurtry in front of the 747 Shuttle Carrier Aircraft. He graduated in June 1957 from the University of Notre Dame with a Bachelor of Science degree in Mechanical Engineering. McMurtry had been part of the university's Navy ROTC program, and after graduation he joined the Navy as a pilot. Before retiring from the Navy in 1964 as a Lieutenant, he graduated from the U.S. Navy Test Pilot School, and had flown such aircraft as the F9F, A3D, A4D, F3D, F-8, A-6, and S-2. McMurtry was then a consultant for the Lockheed Corporation until joining NASA as a research pilot in 1967. While at the Dryden Flight Research Center, he was co-project pilot on the F-8 Digital Fly-By-Wire program, and the 747 Shuttle Carrier Aircraft, as well as project pilot on the F-15 Digital Electronic Engine Control (DEEC) project, the KC-135 Winglets, the F-8 Supercritical Wing project, and the AD-1 Oblique Wing Project. He also made research flights in NASA's YF-12C aircraft (actually a modified SR-71). McMurtry made the last glide flight of the X-24B lifting body on November 26, 1975, and was co-pilot of the 747 Shuttle Carrier Aircraft on the first free flight of the space shuttle Enterprise on August 12, 1977. He was involved in several remotely piloted research vehicle programs, including the FAA/NASA 720 Controlled Impact Demonstration and the 3/8 F-15 Spin Research Vehicle. During McMurtry's 32 years as a pilot and manager at Dryden, he received numerous awards. These include the NASA Exceptional Service Award for his work on the F-8 Supercritical Wing, and the Iven C. Kincheloe Award from the Society of Experimental Test Pilots for his role as chief pilot on the AD-1 project, the NASA Distinguished Service Medal, and the 1999 Milton O. Thomson Lifetime Achievement Award. McMurtry also held a number of management positions at Dryden, including Chief Pilot, Director of Flight Operations, Associate Director of Flight Operations, and was the acting Chief Engineer at the time of his

  1. A compiler and validator for flight operations on NASA space missions

    NASA Astrophysics Data System (ADS)

    Fonte, Sergio; Politi, Romolo; Capria, Maria Teresa; Giardino, Marco; De Sanctis, Maria Cristina

    2016-07-01

    In NASA missions the management and the programming of the flight systems is performed by a specific scripting language, the SASF (Spacecraft Activity Sequence File). In order to perform a check on the syntax and grammar it is necessary a compiler that stress the errors (eventually) found in the sequence file produced for an instrument on board the flight system. In our experience on Dawn mission, we developed VIRV (VIR Validator), a tool that performs checks on the syntax and grammar of SASF, runs a simulations of VIR acquisitions and eventually finds violation of the flight rules of the sequences produced. The project of a SASF compiler (SSC - Spacecraft Sequence Compiler) is ready to have a new implementation: the generalization for different NASA mission. In fact, VIRV is a compiler for a dialect of SASF; it includes VIR commands as part of SASF language. Our goal is to produce a general compiler for the SASF, in which every instrument has a library to be introduced into the compiler. The SSC can analyze a SASF, produce a log of events, perform a simulation of the instrument acquisition and check the flight rules for the instrument selected. The output of the program can be produced in GRASS GIS format and may help the operator to analyze the geometry of the acquisition.

  2. Level of operator control and changes in heart rate variability during simulated flight maintenance.

    PubMed

    Tattersall, A J; Hockey, G R

    1995-12-01

    The demands of dynamic monitoring and fault diagnosis for flight engineer trainees were examined in relation to changes in heart rate (HR) and two spectral analysis measures (midfrequency: 0.07-0.14 Hz; high frequency: 0.15-0.40 Hz) of heart rate variability (HRV). Eleven trainee flight engineers were studied, as part of their training and assessment, over three 3-h sessions in a cockpit simulator. During each session, faults and incidents programmed into the system had to be detected, diagnosed, and corrected. Electrocardiograms were taken, and each session was recorded on videotape. Work phases were classified from video analysis of flight maintenance activities, using Rasmussen's cognitive control taxonomy, into monitoring, routine (rule-based), and problem-solving (knowledge-based) phases. HR and HRV were found to be sensitive to different phases of the work environment. HRV was suppressed during the mentally demanding problem-solving mode of the level flight phase, but only for the midfrequency component. Elevated heart rate, in contrast, was associated with the more generally stressful takeoff and landing phases. The findings support both the use of HRV as a physiological index of mental effort and its value in operational contexts, and the value of ecologically derived methods of evaluating differences in work demands in complex systems.

  3. X-43A Fluid and Environmental Systems: Ground and Flight Operation and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Vachon, Michael Jacob; Grindle, Thomas J.; St.John, Clinton W.; Dowdell, David B.

    2005-01-01

    The X-43A Hyper-X program demonstrated the first successful flights of an airframe integrated scramjet powered hypersonic vehicle. The X-43A vehicles established successive world records for jet-powered vehicles at speeds of Mach 7 and Mach 10. The X-43A vehicle is a subscale version of proposed hypersonic reconnaissance strike aircraft. Scaled down to a length of 12 ft (3.66 m), the lifting body design with high fineness ratio resulted in very small internal space available for fluid systems and their corresponding environmental conditioning systems. Safe testing and operation of the X-43A fluid and environmental systems was critical for mission success, not only for the safety of the flight crew in the NASA B-52B carrier aircraft, but also to maintain the reliability of vehicle systems while exposed to dynamics and hostile conditions encountered during the boost trajectory. The X-43A fluid and environmental systems successfully managed explosive, pyrophoric, inert, and very high pressure gases without incident. This report presents a summary of the checkout and flight validation of the X-43A fluid systems. The testing used for mission assurance is summarized. System performance during captive carry and launch flights is presented. The lessons learned are also discussed.

  4. Mission Operations and Data Systems Directorate's operational/development network (MODNET) at Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A brief, informal narrative is provided that summarizes the results of all work accomplished during the period of the contract; June 1, 1987 through September 30, 1988; in support of Mission Operations and Data Systems Directorate's Operational Development Network (MODNET). It includes descriptions of work performed in each functional area and recommendations and conclusions based on the experience and results obtained.

  5. Development of a Free-Flight Simulation Infrastructure

    NASA Technical Reports Server (NTRS)

    Miles, Eric S.; Wing, David J.; Davis, Paul C.

    1999-01-01

    In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.

  6. Planned flight test of a mercury ion auxiliary propulsion system. 1: Objectives, systems descriptions, and mission operations

    NASA Technical Reports Server (NTRS)

    Power, J. C.

    1978-01-01

    A planned flight test of an 8 cm diameter, electron-bombardment mercury ion thruster system is described. The primary objective of the test is to flight qualify the 5 mN (1 mlb.) thruster system for auxiliary propulsion applications. A seven year north-south stationkeeping mission was selected as the basis for the flight test operating profile. The flight test, which will employ two thruster systems, will also generate thruster system space performance data, measure thruster-spacecraft interactions, and demonstrate thruster operation in a number of operating modes. The flight test is designated as SAMSO-601 and will be flown aboard the shuttle-launched Air Force space test program P80-1 satellite in 1981. The spacecraft will be 3- axis stabilized in its final 740 km circular orbit, which will have an inclination of approximately greater than 73 degrees. The spacecraft design lifetime is three years.

  7. Planned flight test of a mercury ion auxiliary propulsion system. I - Objectives, systems descriptions, and mission operations

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1978-01-01

    A planned flight test of an 8-cm diameter, electron-bombardment mercury ion thruster system is described. The primary objective of the test is to flight qualify the 5 mN thruster system for auxiliary propulsion applications. A seven year north-south stationkeeping mission was selected as the basis for the flight test operating profile. The flight test, which will employ two thruster systems, will also generate thruster system space performance data, measure thruster-spacecraft interactions, and demonstrate thruster operation in a number of operating modes. The flight test is designated as SAMSO-601 and will be flown aboard the Shuttle-launched Air Force Space Test Program P80-1 satellite in 1981. The spacecraft will be 3-axis stabilized in its final 740 km circular orbit, which will have an inclination of at least 73 degrees. The spacecraft design lifetime is three years.

  8. A Vision and Roadmap for Increasing User Autonomy in Flight Operations in the National Airspace

    NASA Technical Reports Server (NTRS)

    Cotton, William B.; Hilb, Robert; Koczo, Stefan; Wing, David

    2016-01-01

    The purpose of Air Transportation is to move people and cargo safely, efficiently and swiftly to their destinations. The companies and individuals who use aircraft for this purpose, the airspace users, desire to operate their aircraft according to a dynamically optimized business trajectory for their specific mission and operational business model. In current operations, the dynamic optimization of business trajectories is limited by constraints built into operations in the National Airspace System (NAS) for reasons of safety and operational needs of the air navigation service providers. NASA has been developing and testing means to overcome many of these constraints and permit operations to be conducted closer to the airspace user's changing business trajectory as conditions unfold before and during the flight. A roadmap of logical steps progressing toward increased user autonomy is proposed, beginning with NASA's Traffic Aware Strategic Aircrew Requests (TASAR) concept that enables flight crews to make informed, deconflicted flight-optimization requests to air traffic control. These steps include the use of data communications for route change requests and approvals, integration with time-based arrival flow management processes under development by the Federal Aviation Administration (FAA), increased user authority for defining and modifying downstream, strategic portions of the trajectory, and ultimately application of self-separation. This progression takes advantage of existing FAA NextGen programs and RTCA standards development, and it is designed to minimize the number of hardware upgrades required of airspace users to take advantage of these advanced capabilities to achieve dynamically optimized business trajectories in NAS operations. The roadmap is designed to provide operational benefits to first adopters so that investment decisions do not depend upon a large segment of the user community becoming equipped before benefits can be realized. The issues of

  9. Public health response to commercial airline travel of a person with Ebola virus infection - United States, 2014.

    PubMed

    Regan, Joanna J; Jungerman, Robynne; Montiel, Sonia H; Newsome, Kimberly; Objio, Tina; Washburn, Faith; Roland, Efrosini; Petersen, Emily; Twentyman, Evelyn; Olaiya, Oluwatosin; Naughton, Mary; Alvarado-Ramy, Francisco; Lippold, Susan A; Tabony, Laura; McCarty, Carolyn L; Kinsey, Cara Bicking; Barnes, Meghan; Black, Stephanie; Azzam, Ihsan; Stanek, Danielle; Sweitzer, John; Valiani, Anita; Kohl, Katrin S; Brown, Clive; Pesik, Nicki

    2015-01-30

    Before the current Ebola epidemic in West Africa, there were few documented cases of symptomatic Ebola patients traveling by commercial airline, and no evidence of transmission to passengers or crew members during airline travel. In July 2014 two persons with confirmed Ebola virus infection who were infected early in the Nigeria outbreak traveled by commercial airline while symptomatic, involving a total of four flights (two international flights and two Nigeria domestic flights). It is not clear what symptoms either of these two passengers experienced during flight; however, one collapsed in the airport shortly after landing, and the other was documented to have fever, vomiting, and diarrhea on the day the flight arrived. Neither infected passenger transmitted Ebola to other passengers or crew on these flights. In October 2014, another airline passenger, a U.S. health care worker who had traveled domestically on two commercial flights, was confirmed to have Ebola virus infection. Given that the time of onset of symptoms was uncertain, an Ebola airline contact investigation in the United States was conducted. In total, follow-up was conducted for 268 contacts in nine states, including all 247 passengers from both flights, 12 flight crew members, eight cleaning crew members, and one federal airport worker (81 of these contacts were documented in a report published previously). All contacts were accounted for by state and local jurisdictions and followed until completion of their 21-day incubation periods. No secondary cases of Ebola were identified in this investigation, confirming that transmission of Ebola during commercial air travel did not occur.

  10. Flight Test Analysis of the Forces and Moments Imparted on a B737-100 Aircraft During Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher L.; Smith, Sonya T.; Vicroy, Dan D.

    2000-01-01

    Several of our major airports are operating at or near their capacity limit, increasing congestion and delays for travelers. As a result, the National Aeronautics and Space Administration (NASA) has been working in conjunction with the Federal Aviation Administration (FAA), airline operators, and the airline industry to increase airport capacity and safety. As more and more airplanes are placed into the terminal area the probability of encountering wake turbulence is increased. The NASA Langley Research Center conducted a series of flight tests from 1995 through 1997 to develop a wake encounter and wake-measurement data set with the accompanying atmospheric state information. The purpose of this research is to use the data from those flights to compute the wake-induced forced and moments exerted on the aircraft The calculated forces and moments will then be compiled into a database that can be used by wake vortex researchers to compare with experimental and computational results.

  11. 14 CFR 121.695 - Disposition of load manifest, dispatch release, and flight plans: Domestic and flag operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Disposition of load manifest, dispatch... OPERATIONS Records and Reports § 121.695 Disposition of load manifest, dispatch release, and flight plans... cargo and passenger distribution); (2) A copy of the dispatch release; and (3) A copy of the flight...

  12. 14 CFR 121.695 - Disposition of load manifest, dispatch release, and flight plans: Domestic and flag operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Disposition of load manifest, dispatch... OPERATIONS Records and Reports § 121.695 Disposition of load manifest, dispatch release, and flight plans... cargo and passenger distribution); (2) A copy of the dispatch release; and (3) A copy of the flight...

  13. 14 CFR 121.695 - Disposition of load manifest, dispatch release, and flight plans: Domestic and flag operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Disposition of load manifest, dispatch... OPERATIONS Records and Reports § 121.695 Disposition of load manifest, dispatch release, and flight plans... cargo and passenger distribution); (2) A copy of the dispatch release; and (3) A copy of the flight...

  14. 14 CFR 121.695 - Disposition of load manifest, dispatch release, and flight plans: Domestic and flag operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Disposition of load manifest, dispatch... OPERATIONS Records and Reports § 121.695 Disposition of load manifest, dispatch release, and flight plans... cargo and passenger distribution); (2) A copy of the dispatch release; and (3) A copy of the flight...

  15. 14 CFR 121.695 - Disposition of load manifest, dispatch release, and flight plans: Domestic and flag operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Disposition of load manifest, dispatch... OPERATIONS Records and Reports § 121.695 Disposition of load manifest, dispatch release, and flight plans... cargo and passenger distribution); (2) A copy of the dispatch release; and (3) A copy of the flight...

  16. Airline Chair-rest Deconditioning: Induction of Immobilization Thromboemboli?

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Rehrer, N. J.; Mohler, S. R.; Quach, D. T.; Evans, D. G.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    Air passenger miles will likely double by year 2020. The altered and restrictive environment in an airliner cabin can influence hematological homeostasis in passengers and crew. Flight-related deep various thromboemboli (DVT) have been associated with at least 577 deaths on 42 of 120 airlines from 1977 to 1984 (25 deaths/million departures), whereas many such cases go unreported. However, there are four major factors that could influence formation of possible flight-induced DVT: sleeping accomodations (via sitting immobilization), travelers' medical history (via tissue injury), cabin environmental factors (via lower partial pressure of oxygen and lower relative humidity), and the more encompassing chair-rest deconditioning (C-RD) syndrome. There is ample evidence that recent injury and surgery (especially in deconditioned hospitalized patients) facilitate thrombophlebitis and formation of DVT that may be exacerbated by the immobilization of prolonged air travel. In the healthy flying population immobilization factors associated with prolonged (> 5 hr) C-RID such as total body dehydration, hypovolemia and increased blood viscosity, and reduced various blood flow (pooling) in the legs may facilitate formation of DVT. However, data from at least four case-controlled epidemiological studies did not confirm a direct causative relationship between air travel and DART, but factors such as history of vascular thromboemboli, various insufficiency, chronic heart failure, obesity, immobile standing position, more than 3 pregnancies, infectious disease, long-distance travel, muscular trauma and violent physical effort were significantly more frequent in DVT patients than in controls. Thus, there is no clear, direct evidence yet that prolonged sitting in airliner seats, or prolonged experimental chair-rest- or bed- rest-deconditioning treatments cause deep various thromboemboli in healthy people.

  17. Airline chair-rest deconditioning: induction of immobilisation thromboemboli?

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Rehrer, Nancy J.; Mohler, Stanley R.; Quach, David T.; Evans, David G.

    2004-01-01

    Air passenger miles will likely double by year 2020. The altered and restrictive environment in an airliner cabin can influence haematological homeostasis in passengers and crew. Flight-related deep venous thromboemboli (DVT) have been associated with at least 577 deaths on 42 of 120 airlines from 1977 to 1984 (25 deaths/million departures), whereas many such cases go unreported. However, there are four major factors that could influence formation of possible flight-induced DVT: sleeping accommodations (via sitting immobilisation); travellers' medical history (via tissue injury); cabin environmental factors (via lower partial pressure of oxygen and lower relative humidity); and the more encompassing chair-rest deconditioning (C-RD) syndrome. There is ample evidence that recent injury and surgery (especially in deconditioned hospitalised patients) facilitate thrombophlebitis and formation of DVT that may be exacerbated by the immobilisation of prolonged air travel.In the healthy flying population, immobilisation factors associated with prolonged (>5 hours) C-RD such as total body dehydration, hypovolaemia and increased blood viscosity, and reduced venous blood flow (pooling) in the legs may facilitate formation of DVT. However, data from at least four case-controlled epidemiological studies did not confirm a direct causative relationship between air travel and DVT, but factors such as a history of vascular thromboemboli, venous insufficiency, chronic heart failure, obesity, immobile standing position, more than three pregnancies, infectious disease, long-distance travel, muscular trauma and violent physical effort were significantly more frequent in DVT patients than in controls. Thus, there is no clear, direct evidence yet that prolonged sitting in airliner seats, or prolonged experimental chair-rest or bed-rest deconditioning treatments cause DVT in healthy people.

  18. The Route Analysis Based On Flight Plan

    NASA Astrophysics Data System (ADS)

    Feriyanto, Nur; Saleh, Chairul; Fauzi, Achmad; Rachman Dzakiyullah, Nur; Riza Iwaputra, Kahfi

    2016-02-01

    Economic development effects use of air transportation since the business process in every aspect was increased. Many people these days was prefer using airplane because it can save time and money. This situation also effects flight routes, many airlines offer new routes to deal with competition. Managing flight routes is one of the problems that must be faced in order to find the efficient and effective routes. This paper investigates the best routes based on flight performance by determining the amount of block fuel for the Jakarta-Denpasar flight route. Moreover, in this work compares a two kinds of aircraft and tracks by calculating flight distance, flight time and block fuel. The result shows Jakarta-Denpasar in the Track II has effective and efficient block fuel that can be performed by Airbus 320-200 aircraft. This study can contribute to practice in making an effective decision, especially helping executive management of company due to selecting appropriate aircraft and the track in the flight plan based on the block fuel consumption for business operation.

  19. Using Web 2.0 (and Beyond?) in Space Flight Operations Control Centers

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2010-01-01

    Word processing was one of the earliest uses for small workstations, but we quickly learned that desktop computers were far more than e-typewriters. Similarly, "Web 2.0" capabilities, particularly advanced search engines, chats, wikis, blogs, social networking, and the like, offer tools that could significantly improve our efficiency at managing the avalanche of information and decisions needed to operate space vehicles in realtime. However, could does not necessarily equal should. We must wield two-edged swords carefully to avoid stabbing ourselves. This paper examines some Web 2.0 tools, with an emphasis on social media, and suggests which ones might be useful or harmful in real-time space operations co rnotl environments, based on the author s experience as a Payload Crew Communicator (PAYCOM) at Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC) for the International Space Station (ISS) and on discussions with other space flight operations control organizations and centers. There is also some discussion of an offering or two that may come from beyond the current cyber-horizon.

  20. STS-35 Mission Manager Actions Room at the Marshall Space Flight Center Spacelab Payload Operations

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Due to loss of data used for pointing and operating the ultraviolet telescopes, MSFC ground teams were forced to aim the telescopes with fine tuning by the flight crew. This photo captures the activities at the Mission Manager Actions Room during the mission.

  1. Flight Test of a Head-Worn Display as an Equivalent-HUD for Terminal Operations

    NASA Technical Reports Server (NTRS)

    Shelton, K. J.; Arthur, J. J., III; Prinzel, L. J., III; Nicholas, S. N.; Williams, S. P.; Bailey, R. E.

    2015-01-01

    Research, development, test, and evaluation of flight deck interface technologies is being conducted by NASA to proactively identify, develop, and mature tools, methods, and technologies for improving overall aircraft safety of new and legacy vehicles operating in the Next Generation Air Transportation System (NextGen). Under NASA's Aviation Safety Program, one specific area of research is the use of small Head-Worn Displays (HWDs) as a potential equivalent display to a Head-up Display (HUD). Title 14 of the US CFR 91.175 describes a possible operational credit which can be obtained with airplane equipage of a HUD or an "equivalent"' display combined with Enhanced Vision (EV). A successful HWD implementation may provide the same safety and operational benefits as current HUD-equipped aircraft but for significantly more aircraft in which HUD installation is neither practical nor possible. A flight test was conducted to evaluate if the HWD, coupled with a head-tracker, can provide an equivalent display to a HUD. Approach and taxi testing was performed on-board NASA's experimental King Air aircraft in various visual conditions. Preliminary quantitative results indicate the HWD tested provided equivalent HUD performance, however operational issues were uncovered. The HWD showed significant potential as all of the pilots liked the increased situation awareness attributable to the HWD's unique capability of unlimited field-of-regard.

  2. SWIFT BAT Loop Heat Pipe Thermal System Characteristics and Ground/Flight Operation Procedure

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    The SWIFT Burst Alert Telescope (BAT) Detector Array has a total power dissipation of 208 W. To meet the stringent temperature gradient and thermal stability requirements in the normal operational mode, and heater power budget in both the normal operational and safehold modes, the Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate (DAP), and two loop heat pipes (LHPs) transport heat fiom the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array XA1 ASIC temperatures. The radiator has the AZ-Tek AZW-LA-II low-alpha white paint as the thermal coating and is located on the anti-sun side of the spacecraft. This paper presents the characteristics, ground operation and flight operation procedures of the LHP thermal system.

  3. Crew Factors in Flight Operations XV: Alertness Management in General Aviation Education Module

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Co, Elizabeth L.; Neri, David F.; Oyung, Raymond L.; Mallis, Melissa M.; Cannon, Mary M. (Technical Monitor)

    2002-01-01

    Regional operations encompass a broad range of pilots and equipment. This module is intended to help all those involved in regional aviation, including pilots, schedulers, dispatchers, maintenance technicians, policy makers, and others, to understand the physiological factors underlying fatigue, how flight operations affect fatigue, and what can be done to counteract fatigue and maximize alertness and performance in their operations. The overall purpose of this module is to promote aviation safety, performance, and productivity. It is intended to meet three specific objectives: (1) to explain the current state of knowledge about the physiological mechanisms underlying fatigue; (2) to demonstrate how this knowledge can be applied to improving flight crew sleep, performance, and alertness; and (3) to offer strategies for alertness management. Aviation Safety Reporting System (ASRS) and National Transportation Safety Board (NISH) reports are used throughout this module to demonstrate that fatigue is a safety issue in the regional operations community. The appendices at the end of this module include the ASRS reports used for the examples contained in this publication, brief introductions to sleep disorders and relaxation techniques, summaries of relevant NASA publications, and a list of general readings on sleep, sleep disorders, and circadian rhythms.

  4. Stochastic Modeling of Airlines' Scheduled Services Revenue

    NASA Technical Reports Server (NTRS)

    Hamed, M. M.

    1999-01-01

    Airlines' revenue generated from scheduled services account for the major share in the total revenue. As such, predicting airlines' total scheduled services revenue is of great importance both to the governments (in case of national airlines) and private airlines. This importance stems from the need to formulate future airline strategic management policies, determine government subsidy levels, and formulate governmental air transportation policies. The prediction of the airlines' total scheduled services revenue is dealt with in this paper. Four key components of airline's scheduled services are considered. These include revenues generated from passenger, cargo, mail, and excess baggage. By addressing the revenue generated from each schedule service separately, air transportation planners and designers arc able to enhance their ability to formulate specific strategies for each component. Estimation results clearly indicate that the four stochastic processes (scheduled services components) are represented by different Box-Jenkins ARIMA models. The results demonstrate the appropriateness of the developed models and their ability to provide air transportation planners with future information vital to the planning and design processes.

  5. Stochastic Modeling of Airlines' Scheduled Services Revenue

    NASA Technical Reports Server (NTRS)

    Hamed, M. M.

    1999-01-01

    Airlines' revenue generated from scheduled services account for the major share in the total revenue. As such, predicting airlines' total scheduled services revenue is of great importance both to the governments (in case of national airlines) and private airlines. This importance stems from the need to formulate future airline strategic management policies, determine government subsidy levels, and formulate governmental air transportation policies. The prediction of the airlines' total scheduled services revenue is dealt with in this paper. Four key components of airline's scheduled services are considered. These include revenues generated from passenger, cargo, mail, and excess baggage. By addressing the revenue generated from each schedule service separately, air transportation planners and designers are able to enhance their ability to formulate specific strategies for each component. Estimation results clearly indicate that the four stochastic processes (scheduled services components) are represented by different Box-Jenkins ARIMA models. The results demonstrate the appropriateness of the developed models and their ability to provide air transportation planners with future information vital to the planning and design processes.

  6. Mariner Mars 1971 project. Volume 3: Mission operations system implementation and standard mission flight operations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Mariner Mars 1971 mission which was another step in the continuing program of planetary exploration in search of evidence of exobiological activity, information on the origin and evolution of the solar system, and basic science data related to the study of planetary physics, geology, planetology, and cosmology is reported. The mission plan was designed for two spacecraft, each performing a separate but complementary mission. However, a single mission plan was actually used for Mariner 9 because of failure of the launch vehicle for the first spacecraft. The implementation is described, of the Mission Operations System, including organization, training, and data processing development and operations, and Mariner 9 spacecraft cruise and orbital operations through completion of the standard mission from launch to solar occultation in April 1972 are discussed.

  7. Flight crew sleep during multiple layover polar flights

    NASA Technical Reports Server (NTRS)

    Sasaki, Mitsuo; Kurosaki, Yuko S.; Spinweber, Cheryl L.; Graeber, R. C.; Takahashi, Toshiharu

    1993-01-01

    This study investigated changes in sleep after multiple transmeridian flights. The subjects were 12 B747 airline pilots operating on the following polar flight: Tokyo (TYO)-Anchorage (ANC)-London (LON)-Anchorage-Tokyo. Sleep polysmonograms were recorded on two baseline nights (B1, B2), during layovers, and, after returning to Tokyo, two recovery nights were recorded (R1, R2). In ANC (outbound), total sleep time was reduced and, sleep efficiency was low (72.0 percent). In London, time in bed increased slightly, but sleep efficiency was still reduced. On return to ANC (inbound), there was considerable slow wave sleep rebound and multiple awakenings reduced sleep efficiency to 76.8 percent. Sleep efficiency on R2 was significantly lower than on B1 but not different from R1. To sum up, sleep of aircrews flying multiple transmeridian flights is disrupted during layovers and this effect persists during the two recovery nights. As a result, there is a marked cumulative sleep loss during multilegs polar route trip in comparison to single leg flights. These findings suggest that following such extensive transmeridian trips, crews should have at least three nights of recovery sleep in their home time zone before returning to duty.

  8. Situation Awareness Information Requirements for Commercial Airline Pilots

    NASA Technical Reports Server (NTRS)

    Endsley, Mica R.; Farley, Todd C.; Jones, William M.; Midkiff, Alan H.; Hansman, R. John

    1998-01-01

    Situation awareness is presented as a fundamental requirement for good airmanship, forming the basis for pilot decision making and performance. To develop a better understanding of the role of situation awareness in flying, an analysis was performed to determine the specific situation awareness information requirements for commercial aircraft pilots. This was conducted as a goal-directed task analysis in which pilots' major goals, subgoals, decisions, and associated situation awareness information requirements were delineated based on elicitation from experienced commercial airline pilots. A determination of the major situation awareness information requirements for visual and instrument flight was developed from this analysis, providing a foundation for future system development which seeks to enhance pilot situation awareness and provide a basis for the development of situation awareness measures for commercial flight.

  9. Minimum Equipment Lists, Flight Rules and ... Past, Present and Future of Safety Pre-Determined Decisions for Operations

    NASA Astrophysics Data System (ADS)

    Herd, A.; Wolff, M.

    2012-01-01

    Extended mission operations, such as human spaceflight to Mars provide an opportunity for take current human exploration beyond Low Earth Orbit, such as the operations undertaken on the International Space Station (ISS). This opportunity also presents a challenge in terms of extending what we currently understand as "remote operations" performed on ISS, offering learning beyond that gained from the successful moon- lander expeditions. As such there is a need to assess how the existing operations concept of ground support teams directing (and supporting) on-orbit ISS operations can be applied in the extended mission concept. The current mission support concept involves three interacting operations products - a short term plan, crew procedures and flight rules. Flight rules (for ISS operations) currently provide overall planning, engineering and operations constraints (including those derived from a safety perspective) in the form of a rule book. This paper will focus specifically on flight rules, and describe the current use of them, and assess the future role of flight rules to support exploration, including the deployment of decision support tools (DSTs) to ensure flight rule compliancy for missions with minimal ground support. Taking consideration of the historical development of pre-planned decisions, and their manifestation within the operations environment, combined with the extended remoteness of human exploration missions, we will propose a future development of this product and a platform on which it could be presented.

  10. Theory and operation of a three-gate time-of-flight velocity analyzer

    NASA Technical Reports Server (NTRS)

    Martus, K. E.; Orient, O. J.; Hodges, R. R.; Chutjian, A.

    1993-01-01

    Theoretical considerations and test results are presented for a new-type velocity analyzer for incident fast neutral particles, positive ions, and negative ions. Velocity analysis is carried out by means of a pulsed, three-gate time-of-flight (TOF) technique capable of eliminating alias velocities (harmonics) to sixth order. In addition the design and operation are presented of a four-element ion lens system, with small spherical and chromatic aberrations, suitable for interfacing a large-diameter ion beam from the TOF section with a subsequent mass analyzer.

  11. Shuttle Flight Operations Contract Generator Maintenance Facility Land Use Control Implementation Plan (LUCIP)

    NASA Technical Reports Server (NTRS)

    Applegate, Joseph L.

    2014-01-01

    This Land Use Control Implementation Plan (LUCIP) has been prepared to inform current and potential future users of the Kennedy Space Center (KSC) Shuttle Flight Operations Contract Generator Maintenance Facility (SFOC; SWMU 081; "the Site") of institutional controls that have been implemented at the Site1. Although there are no current unacceptable risks to human health or the environment associated with the SFOC, an institutional land use control (LUC) is necessary to prevent human health exposure to antimony-affected groundwater at the Site. Controls will include periodic inspection, condition certification, and agency notification.

  12. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.; Bertels, Christie

    2010-01-01

    This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.

  13. Corporate/commuter airlines meteorological requirements

    NASA Technical Reports Server (NTRS)

    Olcott, J. W.

    1985-01-01

    The meteorological information requirements of corporate and commuter airlines are reviewed. The skill level and needs of this class of aviator were assessed. An overview of the methodology by which meteorological data is communicated to these users is presented.

  14. Military applications of a cockpit integrated electronic flight bag

    NASA Astrophysics Data System (ADS)

    Herman, Robert P.; Seinfeld, Robert D.

    2004-09-01

    Converting the pilot's flight bag information from paper to electronic media is being performed routinely by commercial airlines for use with an on-board PC. This concept is now being further advanced with a new class of electronic flight bags (EFB) recently put into commercial operation which interface directly with major on-board avionics systems and has its own dedicated panel mounted display. This display combines flight bag information with real time aircraft performance and maintenance data. This concept of an integrated EFB which is now being used by the commercial airlines as a level 1 certified system, needs to be explored for military applications. This paper describes a system which contains all the attributes of an Electronic Flight Bag with the addition of interfaces which are linked to military aircraft missions such as those for tankers, cargo haulers, search and rescue and maritime aircraft as well as GATM requirements. The adaptation of the integrated EFB to meet these military requirements is then discussed.

  15. User type certification for advanced flight control systems

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D.; Abbott, David W.

    1994-01-01

    Advanced avionics through flight management systems (FMS) coupled with autopilots can now precisely control aircraft from takeoff to landing. Clearly, this has been the most important improvement in aircraft since the jet engine. Regardless of the eventual capabilities of this technology, it is doubtful that society will soon accept pilotless airliners with the same aplomb they accept driverless passenger trains. Flight crews are still needed to deal with inputing clearances, taxiing, in-flight rerouting, unexpected weather decisions, and emergencies; yet it is well known that the contribution of human errors far exceed those of current hardware or software systems. Thus human errors remain, and are even increasing in percentage as the largest contributor to total system error. Currently, the flight crew is regulated by a layered system of certification: by operation, e.g., airline transport pilot versus private pilot; by category, e.g., airplane versus helicopter; by class, e.g., single engine land versus multi-engine land; and by type (for larger aircraft and jet powered aircraft), e.g., Boeing 767 or Airbus A320. Nothing in the certification process now requires an in-depth proficiency with specific types of avionics systems despite their prominent role in aircraft control and guidance.

  16. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  17. Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization.

    PubMed

    Chung, Sai Ho; Ma, Hoi Lam; Chan, Hing Kai

    2016-12-09

    This article concerns the assignment of buffer time between two connected flights and the number of reserve crews in crew pairing to mitigate flight disruption due to flight arrival delay. Insufficient crew members for a flight will lead to flight disruptions such as delays or cancellations. In reality, most of these disruption cases are due to arrival delays of the previous flights. To tackle this problem, many research studies have examined the assignment method based on the historical flight arrival delay data of the concerned flights. However, flight arrival delays can be triggered by numerous factors. Accordingly, this article proposes a new forecasting approach using a cascade neural network, which considers a massive amount of historical flight arrival and departure data. The approach also incorporates learning ability so that unknown relationships behind the data can be revealed. Based on the expected flight arrival delay, the buffer time can be determined and a new dynamic reserve crew strategy can then be used to determine the required number of reserve crews. Numerical experiments are carried out based on one year of flight data obtained from 112 airports around the world. The results demonstrate that by predicting the flight departure delay as the input for the prediction of the flight arrival delay, the prediction accuracy can be increased. Moreover, by using the new dynamic reserve crew strategy, the total crew cost can be reduced. This significantly benefits airlines in flight schedule stability and cost saving in the current big data era.

  18. Operational Lessons Learned from the Ares I-X Flight Test

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.

    2010-01-01

    The Ares I-X flight test, launched in 2009, is the first test of the Ares I crew launch vehicle. This development flight test evaluated the flight dynamics, roll control, and separation events, but also provided early insights into logistical, stacking, launch, and recovery operations for Ares I. Operational lessons will be especially important for NASA as the agency makes the transition from the Space Shuttle to the Constellation Program, which is designed to be less labor-intensive. The mission team itself comprised only 700 individuals over the life of the project compared to the thousands involved in Shuttle and Apollo missions; while missions to and beyond low-Earth orbit obviously will require additional personnel, this lean approach will serve as a model for future Constellation missions. To prepare for Ares I-X, vehicle stacking and launch infrastructure had to be modified at Kennedy Space Center's Vehicle Assembly Building (VAB) as well as Launch Complex (LC) 39B. In the VAB, several platforms and other structures designed for the Shuttle s configuration had to be removed to accommodate the in-line, much taller Ares I-X. Vehicle preparation activities resulted in delays, but also in lessons learned for ground operations personnel, including hardware deliveries, cable routing, transferred work and custodial paperwork. Ares I-X also proved to be a resource challenge, as individuals and ground service equipment (GSE) supporting the mission also were required for Shuttle or Atlas V operations at LC 40/41 at Cape Canaveral Air Force Station. At LC 39B, several Shuttle-specific access arms were removed and others were added to accommodate the in-line Ares vehicle. Ground command, control, and communication (GC3) hardware was incorporated into the Mobile Launcher Platform (MLP). The lightning protection system at LC 39B was replaced by a trio of 600-foot-tall towers connected by a catenary wire to account for the much greater height of the vehicle. Like Shuttle

  19. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    NASA Technical Reports Server (NTRS)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  20. Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods

    NASA Technical Reports Server (NTRS)

    Stolzer, Alan J.; Halford, Carl

    2007-01-01

    In a previous study, multiple regression techniques were applied to Flight Operations Quality Assurance-derived data to develop parsimonious model(s) for fuel consumption on the Boeing 757 airplane. The present study examined several data mining algorithms, including neural networks, on the fuel consumption problem and compared them to the multiple regression results obtained earlier. Using regression methods, parsimonious models were obtained that explained approximately 85% of the variation in fuel flow. In general data mining methods were more effective in predicting fuel consumption. Classification and Regression Tree methods reported correlation coefficients of .91 to .92, and General Linear Models and Multilayer Perceptron neural networks reported correlation coefficients of about .99. These data mining models show great promise for use in further examining large FOQA databases for operational and safety improvements.

  1. Along-Track Products from NASA's Operation IceBridge Flight Line Data

    NASA Astrophysics Data System (ADS)

    Rogers, S. R.; Scambos, T. A.; Raup, B. H.; Haran, T. M.; Kaminski, M. L.

    2011-12-01

    NSIDC Operation IceBridge data portal to facilitate browsing and preliminary analysis of areas overflown by Operation IceBridge. Development directions for the IceBridge along-track products are: combining airborne gravity and ice thickness measurements to generate an estimated sub-glacial rock density, more extensive layer-tracking software, and parameters leading to along-flight estimates of snow accumulation (or surface net mass balance) from the shallow radars. NSIDC will also seek to integrate the emerging gridded VAP from the IceBridge Science Team with the along-track products we develop.

  2. Flight tests with a data link used for air traffic control information exchange

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.; Scanlon, Charles H.

    1991-01-01

    Previous studies showed that air traffic control (ATC) message exchange with a data link offers the potential benefits of increased airspace system safety and efficiency. To accomplish these benefits, data link can be used to reduce communication errors and relieve overloaded ATC voice radio frequencies, which hamper efficient message exchange during peak traffic periods. Flight tests with commercial airline pilots as test subjects were conducted in the NASA Transport Systems Research Vehicle Boeing 737 airplane to contrast flight operations that used current voice communications with flight operations that used data link to transmit both strategic and tactical ATC clearances during a typical commercial airflight from takeoff to landing. The results of these tests that used data link as the primary communication source with ATC showed flight crew acceptance, a perceived reduction in crew work load, and a reduction in crew communication errors.

  3. Aviation Accidents: CRM to Maintaining the Share of Airlines. Case Study on Accidents Airlines in China

    ERIC Educational Resources Information Center

    Alnuaimi, Qussay A. B.

    2015-01-01

    We present Aviation Cost Risk management (CRM) methodology designed for Airlines Company, who needs to run projects beyond their normal. These airlines are critical to the survival of these organizations, such as the development and performance. The Aviation crisis can have considerable impact upon the value of the firm. Risk managers must focus…

  4. Crew factors in flight operations 9: Effects of planned cockpit rest on crew performance and alertness in long-haul operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Graeber, R. Curtis; Dinges, David F.; Connell, Linda J.; Rountree, Michael S.; Spinweber, Cheryl L.; Gillen, Kelly A.

    1994-01-01

    This study examined the effectiveness of a planned cockpit rest period to improve alertness and performance in long-haul flight operations. The Rest Group (12 crew members) was allowed a planned 40 minute rest period during the low workload, cruise portion of the flight, while the No-Rest Group (9 crew members) had a 40 minute planned control period when they maintained usual flight activities. Measures used in the study included continuous ambulatory recordings of brain wave and eye movement activity, a reaction time/vigilance task, a wrist activity monitor, in-flight fatigue and alertness ratings, a daily log for noting sleep periods, meals, exercise, flight and duty periods, and the NASA Background Questionnaire. The Rest Group pilots slept on 93 percent of the opportunities, falling asleep in 5.6 minutes and sleeping for 25.8 minutes. This nap was associated with improved physiological alertness and performance compared to the No-Rest Group. The benefits of the nap were observed through the critical descent and landing phases of flight. The nap did not affect layover sleep or the cumulative sleep debt. The nap procedures were implemented with minimal disruption to usual flight operations and there were no reported or identified concerns regarding safety.

  5. Civil helicopter flight research. [for CH-53 helicopter

    NASA Technical Reports Server (NTRS)

    Snyder, W. J.; Schoultz, M. B.

    1976-01-01

    The paper presents a description of the NASA CH-53 Civil Helicopter Research Aircraft and discusses preliminary results of the aircraft flight research performed to evaluate factors and requirements for future helicopter transport operations. The CH-53 equipped with a 16-seat airline-type cabin and instrumented for flight research studies in noise, vibration, handling qualities, passenger acceptance, fuel utilization, terminal area maneuvers, and gust response. Predicted fuel usage for typical short-haul missions is compared with actual fuel use. Pilot ratings for an IFR handling quality task for three levels of stability augmentation are presented, and the effects of internal noise, vibration, and motion on passenger acceptance are discussed. Future planned CH-53 flight research within the Civil Helicopter Technology Program is discussed.

  6. 78 FR 34935 - Revisions to Operational Requirements for the Use of Enhanced Flight Vision Systems (EFVS) and to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... operators to use an Enhanced Flight Vision System (EFVS) in lieu of natural vision to continue descending... proficiency would be required for operators who use EFVS in lieu of natural vision to descend below decision... zone elevation. Natural vision must be used below 100 feet. Sections 121.651(c), 125.325,...

  7. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Alaska Federal Special Federal Aviation Regulation No. 97 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 97 Special Federal Aviation Regulation No. 97—Special Operating.... Expiration date This Special Federal Aviation Regulation will remain in effect until rescinded....

  8. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Alaska Federal Special Federal Aviation Regulation No. 97 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 97 Special Federal Aviation Regulation No. 97—Special Operating.... Expiration date This Special Federal Aviation Regulation will remain in effect until rescinded....

  9. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Alaska Federal Special Federal Aviation Regulation No. 97 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 97 Special Federal Aviation Regulation No. 97—Special Operating.... Expiration date This Special Federal Aviation Regulation will remain in effect until rescinded....

  10. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Alaska Federal Special Federal Aviation Regulation No. 97 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 97 Special Federal Aviation Regulation No. 97—Special Operating.... Expiration date This Special Federal Aviation Regulation will remain in effect until rescinded....

  11. 14 CFR Special Federal Aviation... - Special Operating Rules for the Conduct of Instrument Flight Rules (IFR) Area Navigation (RNAV...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Alaska Federal Special Federal Aviation Regulation No. 97 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 97 Special Federal Aviation Regulation No. 97—Special Operating... covered under this SFAR. Section 5. Expiration date This Special Federal Aviation Regulation will...

  12. 14 CFR 13.401 - Flight Operational Quality Assurance Program: Prohibition against use of data for enforcement...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... description of the operator's plan for collecting and analyzing flight recorded data from line operations on a... Program: Prohibition against use of data for enforcement purposes. 13.401 Section 13.401 Aeronautics and... Assurance Program: Prohibition against use of data for enforcement purposes. (a) Applicability. This...

  13. 14 CFR 437.31 - Verification of operating area containment and key flight-safety event limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...(a) to contain its reusable suborbital rocket's instantaneous impact point within an operating area... limits on the ability of the reusable suborbital rocket to leave the operating area; or (2) Abort... requirements of § 437.59 to conduct any key flight-safety event so that the reusable suborbital...

  14. 14 CFR 437.31 - Verification of operating area containment and key flight-safety event limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...(a) to contain its reusable suborbital rocket's instantaneous impact point within an operating area... limits on the ability of the reusable suborbital rocket to leave the operating area; or (2) Abort... requirements of § 437.59 to conduct any key flight-safety event so that the reusable suborbital...

  15. 14 CFR 437.31 - Verification of operating area containment and key flight-safety event limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...(a) to contain its reusable suborbital rocket's instantaneous impact point within an operating area... limits on the ability of the reusable suborbital rocket to leave the operating area; or (2) Abort... requirements of § 437.59 to conduct any key flight-safety event so that the reusable suborbital...

  16. 14 CFR 437.31 - Verification of operating area containment and key flight-safety event limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...(a) to contain its reusable suborbital rocket's instantaneous impact point within an operating area... limits on the ability of the reusable suborbital rocket to leave the operating area; or (2) Abort... requirements of § 437.59 to conduct any key flight-safety event so that the reusable suborbital...

  17. 14 CFR 437.31 - Verification of operating area containment and key flight-safety event limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...(a) to contain its reusable suborbital rocket's instantaneous impact point within an operating area... limits on the ability of the reusable suborbital rocket to leave the operating area; or (2) Abort... requirements of § 437.59 to conduct any key flight-safety event so that the reusable suborbital...

  18. 14 CFR 13.401 - Flight Operational Quality Assurance Program: Prohibition against use of data for enforcement...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... analysis of digital flight data gathered during aircraft operations, including data currently collected... analysis of FOQA data from multiple aircraft operations. (c) Requirements. In order for paragraph (e) of... action that analysis of the data indicates is necessary in the interest of safety; (3) Procedures...

  19. Enhanced Flight Vision Systems and Synthetic Vision Systems for NextGen Approach and Landing Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K. E.; Williams, Steven P.; Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.

    2013-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment with equivalent efficiency as visual operations. To meet this potential, research is needed for effective technology development and implementation of regulatory standards and design guidance to support introduction and use of SVS/EFVS advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. A fixed-base pilot-in-the-loop simulation test was conducted at NASA Langley Research Center that evaluated the use of SVS/EFVS in NextGen low visibility approach and landing operations. Twelve crews flew approach and landing operations in a simulated NextGen Chicago O'Hare environment. Various scenarios tested the potential for using EFVS to conduct approach, landing, and roll-out operations in visibility as low as 1000 feet runway visual range (RVR). Also, SVS was tested to evaluate the potential for lowering decision heights (DH) on certain instrument approach procedures below what can be flown today. Expanding the portion of the visual segment in which EFVS can be used in lieu of natural vision from 100 feet above the touchdown zone elevation to touchdown and rollout in visibilities as low as 1000 feet RVR appears to be viable as touchdown performance was acceptable without any apparent workload penalties. A lower DH of 150 feet and/or possibly reduced visibility minima using SVS appears to be viable when implemented on a Head-Up Display, but the landing data suggests further study for head-down implementations.

  20. On the design of flight-deck procedures

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl L.

    1994-01-01

    In complex human-machine systems, operations, training, and standardization depend on a elaborate set of procedures which are specified and mandated by the operational management of the organization. The intent is to provide guidance to the pilots, to ensure a logical, efficient, safe, and predictable means of carrying out the mission objectives. In this report the authors examine the issue of procedure use and design from a broad viewpoint. The authors recommend a process which we call 'The Four P's:' philosophy, policies, procedures, and practices. We believe that if an organization commits to this process, it can create a set of procedures that are more internally consistent, less confusing, better respected by the flight crews, and that will lead to greater conformity. The 'Four-P' model, and the guidelines for procedural development in appendix 1, resulted from cockpit observations, extensive interviews with airline management and pilots, interviews and discussion at one major airframe manufacturer, and an examination of accident and incident reports. Although this report is based on airline operations, we believe that the principles may be applicable to other complex, high-risk systems, such as nuclear power production, manufacturing process control, space flight, and military operations.

  1. Estimation of tuberculosis risk on a commercial airliner.

    PubMed

    Ko, Gwangpyo; Thompson, Kimberly M; Nardell, Edward A

    2004-04-01

    This article estimates the risk of tuberculosis (TB) transmission on a typical commercial airliner using a simple one box model (OBM) and a sequential box model (SBM). We used input data derived from an actual TB exposure on an airliner, and we assumed a hypothetical scenario that a highly infectious TB source case (i.e., 108 infectious quanta per hour) travels as a passenger on an 8.7-hour flight. We estimate an average risk of TB transmission on the order of 1 chance in 1,000 for all passengers using the OBM. Applying the more realistic SBM, we show that the risk and incidence decrease sharply in a stepwise fashion in cabins downstream from the cabin containing the source case assuming some potential for airflow from more contaminated to less contaminated cabins. We further characterized spatial variability in the risk within the cabin by modeling a previously reported TB outbreak in an airplane to demonstrate that the TB cases occur most likely within close proximity of the source TB patient.

  2. Human Flight to Lunar and Beyond - Re-Learning Operations Paradigms

    NASA Technical Reports Server (NTRS)

    Kenny, Edward (Ted); Statman, Joseph

    2016-01-01

    For the first time since the Apollo era, NASA is planning on sending astronauts on flights beyond LEO. The Human Space Flight (HSF) program started with a successful initial flight in Earth orbit, in December 2014. The program will continue with two Exploration Missions (EM): EM-1 will be unmanned and EM-2, carrying astronauts, will follow. NASA established a multi-center team to address the communications, and related tacking/navigation needs. This paper will focus on the lessons learned by the team designing the architecture and operations for the missions. Many of these Beyond Earth Orbit lessons had to be re-learned, as the HSF program has operated for many years in Earth orbit. Unlike the Apollo missions that were largely tracked by a dedicated ground network, the HSF planned missions will be tracked (at distances beyond GEO) by the DSN, a network that mostly serves robotic missions. There have been surprising challenges to the DSN as unique modern human spaceflight needs stretch the experience base beyond that of tracking robotic missions in deep space. Close interaction between the DSN and the HSF community to understand the unique needs (e.g. 2-way voice) resulted in a Concept of Operations (ConOps) that leverages both the deep space robotic and the Human LEO experiences. Several examples will be used to highlight the unique challenges the team faced in establishing the communications and tracking capabilities for HSF missions beyond Earth Orbit, including: Navigation. At LEO, HSF missions can rely on GPS devices for orbit determination. For Lunar-and-beyond HSF missions, techniques such as precision 2-way and 3-way Doppler and ranging, Delta-Difference-of-range, and eventually possibly on-board navigation will be used. At the same time, HSF presents a challenge to navigators, beyond those presented by robotic missions - navigating a dynamic/"noisy" spacecraft. Impact of latency - the delay associated with Round-Trip-Light-Time (RTLT). Imagine trying to

  3. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... assigned pilot in command during the en route cruise portion of the flight, by a pilot who holds an airline... second in command, and is qualified as pilot in command of that aircraft during the en route...

  4. 14 CFR 121.543 - Flight crewmembers at controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... assigned pilot in command during the en route cruise portion of the flight, by a pilot who holds an airline... second in command, and is qualified as pilot in command of that aircraft during the en route...

  5. First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations

    NASA Technical Reports Server (NTRS)

    Kahle, R.; Kazeminejad, B.; Kirschner, M.; Yoon, Y.; Kiehling, R.; D'Amico, S.

    2007-01-01

    TerraSAR-X is an advanced synthetic aperture radar satellite system for scientific and commercial applications that is realized in a public-private partnership between the German Aerospace Center (DLR) and the Astrium GmbH. TerraSAR-X was launched at June 15, 2007 on top of a Russian DNEPR-1 rocket into a 514 km sun-synchronous dusk-dawn orbit with an 11-day repeat cycle and will be operated for a period of at least 5 years during which it will provide high resolution SAR-data in the X-band. Due to the objectives of the interferometric campaigns the satellite has to comply to tight orbit control requirements, which are formulated in the form of a 250 m toroidal tube around a pre-flight determined reference trajectory (see [1] for details). The acquisition of the reference orbit was one of the main and key activities during the Launch and Early Orbit Phase (LEOP) and had to compensate for both injection errors and spacecraft safe mode attitude control thruster activities. The paper summarizes the activities of GSOC flight dynamics team during both LEOP and early Commissioning Phase, where the main tasks have been 1) the first-acquisition support via angle-tracking and GPS-based orbit determination, 2) maneuver planning for target orbit acquisition and maintenance, and 3) precise orbit and attitude determination for SAR processing support. Furthermore, a presentation on the achieved results and encountered problems will be addressed.

  6. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    NASA Technical Reports Server (NTRS)

    Dittemore, Gary D.

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.

  7. ESA's billion star surveyor - Flight operations experience from Gaia's first 1.5 Years

    NASA Astrophysics Data System (ADS)

    Milligan, D.; Rudolph, A.; Whitehead, G.; Loureiro, T.; Serpell, E.; di Marco, F.; Marie, J.; Ecale, E.

    2016-10-01

    This paper details the initial in-flight mission operations experience from ESA's ultra-precise Gaia spacecraft. Tasked with mapping the positions and movements of 1 billion stars to unprecedented precision (to the 10 s of micro-arc-second level, comparable to the width of a coin on the Moon as viewed from Earth). ESA's Science cornerstone mission is expected to also discover and chart 100,000's of new objects including near Earth Asteroids, exoplanets, brown dwarfs and Quasars. After a flawless launch 19 Dec 2013, Gaia was brought the circa 1.5 million kms into L2 via a sequence of technically demanding orbit transfer manoeuvres using onboard thrusters in thrust vectoring mode. Starting in parallel to this, and lasting 6 months, the full spacecraft was commissioned and brought gradually up to the highest operational mode. A number of problems were detected and tackled during commissioning and early routine phase operations. An apparent dimming of the on-board laser and imaged stars, was tracked down to water ice building up inside the telescope enclosure. Also apparent was more straylight than expected. Elsewhere, a micro-propulsion thruster developed unexpected performance levels and a back-up chemical thruster suffered a failed latch valve. These issues, like several others, were dealt with and solved in a series of review meetings, in-orbit special operations and newly developed procedures and on-board software changes. After commissioning Gaia was working so well that it was producing approximately 45% more science data than originally foreseen, primarily since it was able to see stars fainter than required. The mission operations concept was quickly adapted to partially automate ground operations and increase ground station time to allow the full scientific potential of Gaia to be realised.

  8. Remote Sensing of In-Flight Icing Conditions: Operational, Meteorological, and Technological Considerations

    NASA Technical Reports Server (NTRS)

    Ryerson, Charles C.

    2000-01-01

    Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to

  9. STS-57 MS2 Sherlock operates RMS THC on OV-105's aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Mission Specialist 2 (MS2) Nancy J. Sherlock operates the remote manipulator system (RMS) translation hand control (THC) while observing extravehicular activity (EVA) outside viewing window W10 on the aft flight deck of Endeavour, Orbiter Vehicle (OV) 105. Positioned at the onorbit station, Sherlock moved EVA astronauts in the payload bay (PLB). Payload Commander (PLC) G. David Low with his feet anchored to a special restraint device on the end of the RMS arm held MS3 Peter J.K. Wisoff during the RMS maneuvers. The activity represented an evaluation of techniques which might be used on planned future missions -- a 1993 servicing visit to the Hubble Space Telescope (HST) and later space station work -- which will require astronauts to frequently lift objects of similar sized bulk. Note: Just below Sherlock's left hand a 'GUMBY' toy watches the actvity.

  10. Flight operations and performance of Skylab life support and environmental control systems

    NASA Technical Reports Server (NTRS)

    Hopson, G. D.; Littles, J. W.; Patterson, W. C.

    1974-01-01

    The design and performance of the Skylab thermal and environmental control systems is considered. The Orbital Workshop had a combined active and passive thermal control system. The refrigeration system was designed to store food and biomedical samples and to cool drinking water. The atmosphere control system included active humidity control, molecular sieves and charcoal canisters to control carbon dioxide, odor, and contaminants, and the gas supply system. Mission support preparation, including instrumentation, ground data system, system troubleshooting, and training, is surveyed. Major in-flight anomalies occurred with the thermal control system when the meteoroid shield was lost during SL-1 ascent and when the Airlock Module coolant loop malfunctioned during SL-2 manned operations. The atmosphere control system performed without major anomaly throughout the manned missions.

  11. Improved Airport Noise Modeling for High Altitudes and Flexible Flight Operations

    NASA Technical Reports Server (NTRS)

    Forsyth, David W.; Follet, Jesse I.

    2006-01-01

    The FAA's Integrated Noise Model (INM) is widely used to estimate noise in the vicinity of airports. This study supports the development of standards by which the fleet data in the INM can be updated. A comparison of weather corrections to noise data using INM Spectral Classes is made with the Boeing integrated method. The INM spectral class method is shown to work well, capturing noise level differences due to weather especially at long distances. Two studies conducted at the Denver International Airport are included in the appendices. The two studies adopted different approaches to modeling flight operations at the airport. When compared to the original, year 2000, results, it is apparent that changes made to the INM in terms of modeling processes and databases have resulted in improved agreement between predicted and measured noise levels.

  12. Flight Simulator Evaluation of Enhanced Propulsion Control Modes for Emergency Operation

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan, S; Sowers, T.; Owen, A., Karl; Fulton, Christopher, E.; Chicatelli, Amy, K.

    2012-01-01

    This paper describes piloted evaluation of enhanced propulsion control modes for emergency operation of aircraft. Fast Response and Overthrust modes were implemented to assess their ability to help avoid or mitigate potentially catastrophic situations, both on the ground and in flight. Tests were conducted to determine the reduction in takeoff distance achievable using the Overthrust mode. Also, improvements in Dutch roll damping, enabled by using yaw rate feedback to the engines to replace the function of a stuck rudder, were investigated. Finally, pilot workload and ability to handle the impaired aircraft on approach and landing were studied. The results showed that improvement in all aspects is possible with these enhanced propulsion control modes, but the way in which they are initiated and incorporated is important for pilot comfort and perceived benefit.

  13. Concept of Operations Evaluation for Mitigating Space Flight-Relevant Medical Issues in a Planetary Habitat

    NASA Technical Reports Server (NTRS)

    Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy

    2010-01-01

    Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments

  14. Human Flight to Lunar and Beyond - Re-Learning Operations Paradigms

    NASA Technical Reports Server (NTRS)

    Kenny, Ted; Statman, Joseph

    2016-01-01

    For the first time since the Apollo era, NASA is planning on sending astronauts on flights beyond Low-Earth Orbit (LEO). The Human Space Flight (HSF) program started with a successful initial flight in Earth orbit, in December 2014. The program will continue with two Exploration Missions (EM) to Lunar orbit: EM-1 will be unmanned and EM-2, carrying astronauts, will follow. NASA established a multi-center team to address the communications, and related navigation, needs. This paper will focus on the lessons learned in the team, planning for the missions' parts that are beyond Earth orbit. Many of these lessons had to be re-learned, as the HSF program after operated for many years in Earth orbit. Fortunately, the experience base from tracking robotic missions in deep space by the Deep Space Network (DSN) and close interaction with the HSF community to understand the unique needs (e.g. 2-way voice) resulted in a ConOps that leverages of both the deep space robotic and the Human LEO experiences. Several examples will be used to highlight the unique operational needs for HSF missions beyond Earth Orbit, including: - Navigation. At LEO, HSF missions can rely on Global Positioning System (GPS) devices for orbit determination. For Lunar-and-beyond HSF missions, techniques such as precision 2-way and 3-way Doppler and ranging, Delta-Difference-of-range, and eventually on-board navigation will be used. - Impact of latency - the delay associated with Round-Trip-Light-Time (RTLT). Imagine trying to have a 2-way discussion (audio or video) with an astronaut, with a 2-3 sec delay inserted (for Lunar distances) or 20 minutes delay (for Mars distances). - Balanced communications link. For robotic missions, there has been a heavy emphasis on the downlink data rates, bringing back science data from the instruments on-board the spacecraft. Uplink data rates were of secondary importance, used to send commands to the spacecraft. The ratio of downlink-to-uplink data rates was often 10

  15. Cultural changes (1986-96) in a Norwegian airline company.

    PubMed

    Mjøs, Kjell

    2002-02-01

    The purpose of the study was to investigate cultural changes in a Norwegian airline company over a time span of 10 years. A questionnaire including parameters characterizing culture was administered to air crews in 1986 (n = 137) and in 1996 (n = 50). The performance part of a simulator study in 1996 indicated a significant reduction in operational failures compared with the 1986 study. The data further demonstrated significant changes in cultural variables, such as reduced Dominance and Masculinity, and improved Social climate and Communication. The direction of change in scores on the cultural variables corresponded with the principles on which the remedial actions were based.

  16. A tobacco industry study of airline cabin air quality: dropping inconvenient findings

    PubMed Central

    Neilsen, K; Glantz, S

    2004-01-01

    Objective: To examine an industry funded and controlled study of in flight air quality (IFAQ). Methods: Systematic search of internal tobacco industry documents available on the internet and at the British American Tobacco Guildford Depository. Results: Individuals from several tobacco industry companies, led by Philip Morris, designed, funded, conducted, and controlled the presentation of results of a study of IFAQ for the Scandinavian airline SAS in 1988 while attempting to minimise the appearance of industry control. Industry lawyers and scientists deleted results unfavourable to the industry's position from the study before delivering it to the airline. The published version of the study further downplayed the results, particularly with regard to respirable suspended particulates. The study ignored the health implications of the results and instead promoted the industry position that ventilation could solve problems posed by secondhand smoke. Conclusions: Sponsoring IFAQ studies was one of several tactics the tobacco industry employed in attempts to reverse or delay implementation of in-flight smoking restrictions. As a result, airline patrons and employees, particularly flight attendants, continued to be exposed to pollution from secondhand smoke, especially particulates, which the industry's own consultants had noted exceeded international standards. This case adds to the growing body of evidence that scientific studies associated with the tobacco industry cannot be taken at face value. PMID:14985613

  17. Research and guidelines for implementing Fatigue Risk Management Systems for the French regional airlines.

    PubMed

    Cabon, Philippe; Deharvengt, Stephane; Grau, Jean Yves; Maille, Nicolas; Berechet, Ion; Mollard, Régis

    2012-03-01

    This paper describes research that aims to provide the overall scientific basis for implementation of a Fatigue Risk Management System (FRMS) for French regional airlines. The current research has evaluated the use of different tools and indicators that would be relevant candidates for integration into the FRMS. For the Fatigue Risk Management component, results show that biomathematical models of fatigue are useful tools to help an airline to prevent fatigue related to roster design and for the management of aircrew planning. The Fatigue Safety assurance includes two monitoring processes that have been evaluated during this research: systematic monitoring and focused monitoring. Systematic monitoring consists of the analysis of existing safety indicators such as Air Safety Reports (ASR) and Flight Data Monitoring (FDM). Results show a significant relationship between the hours of work and the frequency of ASR. Results for the FDM analysis show that some events are significantly related to the fatigue risk associated with the hours of works. Focused monitoring includes a website survey and specific in-flight observations and data collection. Sleep and fatigue measurements have been collected from 115 aircrews over 12-day periods (including rest periods). Before morning duties, results show a significant sleep reduction of up to 40% of the aircrews' usual sleep needs leading to a clear increase of fatigue during flights. From these results, specific guidelines are developed to help the airlines to implement the FRMS and for the airworthiness to oversight the implementation of the FRMS process.

  18. In-Flight Operation of the Dawn Ion Propulsion System Through Orbit Capture at Vesta

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.; Brophy, John R.; Mikes, Steven C.

    2011-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta -II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. Onboard the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide most of the ?V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer among Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer among Ceres science orbits. The first 80 days after launch were dedicated to the initial checkout of the spacecraft which was followed by about ten months of full-power thrusting leading to a Mars gravity assist in February 2009 that provided 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. Deterministic thrusting for heliocentric transfer to Vesta resumed in June 2009 and was concluded with orbit capture at Vesta in July 2011. IPS was operated for approximately 23,400 hours, consumed approximately 250 kg of xenon, and provided a delta-V of approximately 6.7 km/s to achieve orbit capture at Vesta. IPS performance characteristics are very close to the expected performance characteristics based on analysis performed pre-launch. The only significant problem to have occurred over the almost four years of IPS operations in flight was the temporary failure of a valve driver board in DCIU-1, resulting in a loss of thrust of approximately 29 hours. Thrusting operations resumed after switching to DCIU-2, and power cycling conducted after orbit capture indicates DCIU-1 is completely operational. After about three weeks of survey operations IPS will be used to maneuver the

  19. Service Quality in the U.S. Airline Industry: Variations in Performance Within Airlines and Between Airlines and the Industry

    NASA Technical Reports Server (NTRS)

    Rhoades, Dawna L.; Waguespack, Blaise, Jr.

    2000-01-01

    This study examined the service quality of 25 U.S. airlines (1987-1996) using data from the Department of Transportation's Air Travel Consumer Report. After a total quality and total complaint rate was calculated for these airlines, a 95 percent confidence interval was placed around the yearly and company means calculated to examine those cases that were significantly different from the mean. Results indicate that while the major carriers are converging toward a higher level of quality, there continues to be significant yearly variation. The service quality of regional carriers was much lower than major carriers and showed much greater variation.

  20. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service... to the International Air Services Transit Agreement in transit across the United States may not...