Science.gov

Sample records for airplane cabin noise

  1. Prediction of airplane cabin noise due to engine shock cell excitation using statistical energy analysis

    NASA Astrophysics Data System (ADS)

    Marshall, Steven E.

    As part of the effort in the 1980's to design fuel efficient propulsion systems (unducted fan engines) for large commercial airplanes, procedures were developed for predicting interior noise using statistical energy analysis (SEA). Due to stable fuel process and deregulation in the airline industry, the emphasis for propulsion systems on commercial airplanes shifted to higher thrust and lower operating costs. In order to preserve and enhance the knowledge acquired using SEA to predict cabin noise for propeller airplanes, potential noise control applications for more conventional airplane configurations were investigated. The present paper records an effort to extend the experience acquired using statistical energy analysis for unducted fan engines to noise generated by turbofan engine exhaust. The technique is applied to the generic case of a large commercial airplane with twin, wing-mounted engines. Results are presented from an evaluation of the noise source based on an uncommon set of flight test data. Model construction is decribed and prediction results compared to the flight test data. It is then demonstrated how SEA is used to prioritize the transmission paths and judge the merit of the common noise suppression techniques.

  2. Cabin acoustical noise

    NASA Astrophysics Data System (ADS)

    Homick, J. L.

    1981-12-01

    Using a hand-held sound pressure level meter the crew made one octave band and A-weight sound level measurements at four locations in the Orbiter on Mission Day 1. The data were voice recorded and transmitted to the ground prior to the first inflight sleep period. The data obtained are summarized. From a physiological point of view the noise levels measured on STS-1 were not hazardous to the crewmens' hearing.

  3. Propeller tip vortex - A possible contributor to aircraft cabin noise

    NASA Astrophysics Data System (ADS)

    Miller, B. A.; Dittmar, J. H.; Jeracki, R. J.

    1982-01-01

    Wind tunnel model tests support the hypothesis that a propeller tip vortex may subject a downstream wing surface to greater excitation than would be experienced by the aircraft fuselage side wall exposed to propeller-generated noise, ultimately transmitting this structural response to incident dynamic pressure to the cabin interior. Even if structure-borne excitations are less efficient than airborne excitations in the creation of cabin noise, the higher level of the former could still govern cabin noise levels.

  4. The variation in pressure in the cabin of an airplane in flight

    NASA Technical Reports Server (NTRS)

    Gough, Melvin N

    1931-01-01

    The pressure in the cabin of a Fairchild cabin monoplane wa surveyed in flight, and was found to decrease with increased air speed over the fuselage and to vary with the number and location of openings in the cabin. The maximum depression of 2.2 inches of water (equivalent pressure altitude at sea level of 152 feet) occurred at the high speed of the airplane in level flight with the cabin closed.

  5. Cabin Noise Studies for the Orion Spacecraft Crew Module

    NASA Technical Reports Server (NTRS)

    Dandaroy, Indranil; Chu, S. Reynold; Larson, Lauren; Allen, Christopher S.

    2010-01-01

    Controlling cabin acoustic noise levels in the Crew Module (CM) of the Orion spacecraft is critical for adequate speech intelligibility, to avoid fatigue and to prevent any possibility of temporary and permanent hearing loss. A vibroacoustic model of the Orion CM cabin has been developed using Statistical Energy Analysis (SEA) to assess compliance with acoustic Constellation Human Systems Integration Requirements (HSIR) for the on-orbit mission phase. Cabin noise in the Orion CM needs to be analyzed at the vehicle-level to assess the cumulative acoustic effect of various Orion systems at the crewmember's ear. The SEA model includes all major structural and acoustic subsystems inside the CM including the Environmental Control and Life Support System (ECLSS), which is the primary noise contributor in the cabin during the on-orbit phase. The ECLSS noise sources used to excite the vehicle acoustic model were derived using a combination of established empirical predictions and fan development acoustic testing. Baseline noise predictions were compared against acoustic HSIR requirements. Key noise offenders and paths were identified and ranked using noise transfer path analysis. Parametric studies were conducted with various acoustic treatment packages in the cabin to reduce the noise levels and define vehicle-level mass impacts. An acoustic test mockup of the CM cabin has also been developed and noise treatment optimization tests were conducted to validate the results of the analyses.

  6. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered airplanes. 121.331 Section 121.331 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE:...

  7. Preliminary thoughts on helicopter cabin noise prediction methods

    NASA Astrophysics Data System (ADS)

    Pollard, J. S.

    The problems of predicting helicopter cabin noise are discussed with particular reference to the Lynx helicopter. Available methods such as modal analysis adopted for propeller noise prediction do not cope with the higher frequency discrete tone content of helicopter gear noise, with the airborne and structureborne noise contributions. Statistical energy analysis methods may be the answer but until these are developed, one has to rely on classical noise transmission analysis and transfer function methods.

  8. Annoyance caused by propeller airplane flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1984-01-01

    Laboratory experiments were conducted to provide information on quantifying the annoyance response of people to propeller airplane noise. The items of interest were current noise metrics, tone corrections, duration corrections, critical band corrections, and the effects of engine type, operation type, maximum takeoff weight, blade passage frequency, and blade tip speed. In each experiment, 64 subjects judged the annoyance of recordings of propeller and jet airplane operations presented at d-weighted sound pressure levels of 70, 80, and 90 dB in a testing room which simulates the outdoor acoustic environment. The first experiment examined 11 propeller airplanes with maximum takeoff weights greater than or equal to 5700 kg. The second experiment examined 14 propeller airplanes weighting 5700 kg or less. Five jet airplanes were included in each experiment. For both the heavy and light propeller airplanes, perceived noise level and perceived level (Stevens Mark VII procedure) predicted annoyance better than other current noise metrics.

  9. Comments on the use of structureborne noise analysis for large commercial airplanes

    NASA Astrophysics Data System (ADS)

    Marshall, Steven E.; Butzel, Leo M.

    In a business climate of continuous cost reduction, noise control engineers are ever more dependent on computer simulation in lieu of testing. Several analytical methodologies have been applied to predicting structureborne transmission, fuselage response, and passenger cabin noise. In order to facilitate problem solution, simplifying assumptions are typically made related to the structural configurations or boundary conditions. Yet, results from the same prediction schemes demonstrate significant cabin noise sensitivity to the simplifications themselves. This paper is submitted in support of the objectives and activities of the Institute of Noise Control Engineers (INCE) Structureborne Noise Technical Subcommittee. The characteristic dynamic behavior of commercial transport fuselage structure as related to geometry-frequency scales and to engineering/customer issues are briefly described. Then, recommendations are extended with regard to concerns and interests associated with cabin noise within Boeing airplanes.

  10. Recent advances in active control of aircraft cabin noise

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal; Fuller, Christopher

    2002-11-01

    Active noise control techniques can provide significant reductions in aircraft interior noise levels without the structural modifications or weight penalties usually associated with passive techniques, particularly for low frequency noise. Our main objective in this presentation is to give a review of active control methods and their applications to aircraft cabin noise reduction with an emphasis on recent advances and challenges facing the noise control engineer in the practical application of these techniques. The active noise control method using secondary acoustic sources, e.g., loudspeakers, as control sources for tonal noise reduction is first discussed with results from an active noise control flight test demonstration. An innovative approach of applying control forces directly to the fuselage structure using piezoelectric actuators, known as active structural acoustic control (ASAC), to control cabin noise is then presented. Experimental results from laboratory ASAC tests conducted on a full-scale fuselage and from flight tests on a helicopter will be discussed. Finally, a hybrid active/passive noise control approach for achieving significant broadband noise reduction will be discussed. Experimental results of control of broadband noise transmission through an aircraft structure will be presented.

  11. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  12. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977,...

  13. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977,...

  14. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977,...

  15. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977,...

  16. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977,...

  17. Aircraft cabin noise prediction and optimization

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1985-01-01

    Theoretical and experimental studies were conducted to determine the noise transmission into acoustic enclosures ranging from simple rectangular box models to full scale light aircraft in flight. The structural models include simple, stiffened, curved stiffened, and orthotropic panels and double wall windows. The theoretical solutions were obtained by model analysis. Transfer matrix and finite element procedures were utilized. Good agreement between theory and experiment has been achieved. An efficient acoustic add-on treatment was developed for interior noise control in a twin engine light aircraft.

  18. Graphical and Statistical Analysis of Airplane Passenger Cabin RF Coupling Paths to Avionics

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha; Ely, Jay; Vahala, Linda

    2003-01-01

    Portable wireless technology provides many benefits to modern day travelers. Over the years however, numerous reports have cited portable electronic devices (PEDs) as a possible cause of electromagnetic interference (EMI) to aircraft navigation and communication radio systems. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various radio receiver antennas installed on the aircraft. Measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas is defined herein as interference path loss (IPL). IPL data is required for assessing the threat of PEDs to aircraft radios, and is very dependent upon airplane size, the interfering transmitter position within the airplane, and the location of the particular antenna for the aircraft system of concern. NASA Langley Research Center, Eagles Wings Inc., and United Airlines personnel performed extensive IPL measurements on several Boeing 737 airplanes.

  19. Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes. Volume 3: October 1978 - July 1979

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Jasperson, W. H.

    1985-01-01

    Measurements of ozone concentrations at cruise altitudes both outside and in the cabin of a Boeing 747SP and Boeing 747-100 airliners in routine commercial service are presented. Plotted and tabulated data are identified by route and are arranged chronologically for each airplane. These data were taken at 5- or 10-min intervals by automated instruments used in the NASA Global Atmospheric Sampling Program (GASP). All GASP cabin ozone data obtained from October 1978 to early July 1979 are presented.

  20. Annoyance due to multiple airplane noise exposure

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1980-01-01

    A laboratory study was conducted to investigate the annoyance effects of multiple aircraft noise exposure in which 250 subjects judged the annoyance of half-hour periods of airplane noise simulative of typical indoor home exposures. The variables of the aircraft noise exposure were the peak noise level of flyovers, which was constant within each period, and the number of flyovers. Each subject judged 5 of the possible 25 factorial combinations of level and number. Other variables investigated included the experience of the test subjects in making annoyance judgments and their home exposure to airplane noise. The annoyance judgments increased with both noise level and number of flyovers. The increased annoyance produced by doubling the number of flyovers was found to be the equivalent of a 4 to 6 db increase in noise level. The sensitivity of the subjects to changes in both noise level and number of flyovers increased with laboratory experience. Although the means of the annoyance judgments made in the laboratory were found to decrease with the subjects' home exposure to aircraft noise, the subjects' sensitivities to changes in both level and number were unaffected by their home exposure.

  1. Flight Test Measurements From The Tu- 144LL Structure/Cabin Noise Experiment

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Rackl, Robert G.; Andrianov, Eduard V.

    2000-01-01

    During the period September 1997 to February 1998, the Tupolev 144 Supersonic Flyine Laboratory was used to obtain data for the purpose of enlarging the data base used by models for the prediction of cabin noise in supersonic passenger airplanes. Measured were: turbulent boundary layer pressure fluctuations on the fuselage in seven instrumented window blanks distributed over the length of the fuselage; structural response with accelerometers on skin panels close to those window blanks-, interior noise with microphones at the same fuselage bay stations as those window blanks. Flight test points were chosen to cover much of the TU- 144's flight envelope, as well as to obtain as large a unit Reynolds number range as possible at various Mach numbers: takeoff, landing, six subsonic cruise conditions, and eleven supersonic conditions up to Mach 2. Engine runups and reverberation times were measured with a stationary aircraft. The data in the form of time histories of the acoustic signals, together with auxiliary data and basic MATLAB processing modules, are available on CD-R disks.

  2. Optimum Noise Reduction Methods for the Interior of Vehicles and Aircraft Cabins

    NASA Astrophysics Data System (ADS)

    Tavossi, Ph. D., Hasson M.

    The most effective methods of noise reduction in vehicles and Aircraft cabins are investigated. The first goal is to determine the optimal means of noise mitigation without change in external shape of the vehicle, or aircraft cabin exterior such as jet engine or fuselage design, with no significant added weight. The second goal is to arrive at interior designs that can be retrofitted to the existing interiors, to reduce overall noise level for the passengers. The physical phenomena considered are; relaxation oscillations, forced vibrations with non-linear damping and sub-harmonic resonances. The negative and positive damping coefficients and active noise cancelations methods are discussed. From noise power-spectrum for a prototype experimental setup, the most energetic vibration modes are determined, that require the highest damping. The proposed technique will utilize the arrangement of uniformly distributed open Helmholtz resonators, with sound absorbing surface. They are tuned to the frequencies that correspond to the most energetic noise levels. The resonators dissipate noise energy inside the vehicle, or aircraft cabin, at the peak frequencies of the noise spectrum, determined for different vehicle or aircraft cabin, interior design models.

  3. Noise abatement technology options for conventional turboprop airplanes. Final report

    SciTech Connect

    Galloway, W.J.; Wilby, J.F.

    1981-06-01

    The practical application of noise control technology to new and derivative conventional turboprop airplanes likely to come into service in the 1980's has been analyzed with a view to determining noise control cost/benefits. The analysis identifies feasible noise control methods, applies them to four study airplanes, and presents the noise reductions in terms of the equivalent perceived noise level at takeoff, sideline and approach locations, and the effect on the area within selected EPNL contours. Noise reductions of up to 8.3 dB for takeoff and 10.7 dB for approach are calculated for the study airplanes but, for most cases, the changes are less than 5 dB. Weight and cost increases associated with the noise control treatments are determined under the assumption there they are no changes to airplane performance or fuel consumption.

  4. Effects of road traffic background noise on judgments of individual airplane noises. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1979-01-01

    Two laboratory experiments were conducted to investigate the effects of road-traffic background noise on judgments of individual airplane flyover noises. In the first experiment, 27 subjects judged a set of 16 airplane flyover noises in the presence of traffic-noise sessions of 30-min duration consisting of the combinations of 3 traffic-noise types and 3 noise levels. In the second experiment, 24 subjects judged the same airplane flyover noises in the presence of traffic-noise sessions of 10-min duration consisting of the combinations of 2 traffic-noise types and 4 noise levels. In both experiments the airplane noises were judged less annoying in the presence of high traffic-noise levels than in the presence of low traffic-noise levels.

  5. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.

    1982-01-01

    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions.

  6. Annoyance Caused by Propeller Airplane Flyover Noise: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1981-01-01

    The annoyance response of people to the noise of propeller airplane flyovers was examined. The specific items of interest were: (1) the annoyance prediction ability of current noise metrics; (2) the effect of tone corrections on prediction ability; (3) the effect of duration corrections on prediction ability; and (4) the effect of 'critical band' corrections on the prediction ability of perceived noise level. Preliminary analyses of the data obtained from two experiments are presented. The first experiment examined 11 propeller airplanes with maximum takeoff weights greater than or equal to 5700 kg. The second experiment examined 14 propeller airplanes weighting 5700 kg or less. Also included in each experiment were five different commercial service jet airplanes. Each airplane noise was presented at D-weighted sound pressure levels of 70, 80, and 90 dB to subjects in a testing room which simulates the outdoor acoustic environment. Subjects judged 108 stimuli in the first experiment and 132 stimuli in the second experiment. Perceived noise level predicted annoyance better than A, D, or E-weighted sound pressure level. Corrections for tones greater than of equal to 500 Hz generally improved prediction ability for the heavier propeller airplanes.

  7. Cabin Noise Control for Twin Engine General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Slazak, M.

    1982-01-01

    An analytical model based on modal analysis was developed to predict the noise transmission into a twin-engine light aircraft. The model was applied to optimize the interior noise to an A-weighted level of 85 dBA. To achieve the required noise attenuation, add-on treatments in the form of honeycomb panels, damping tapes, acoustic blankets, septum barriers and limp trim panels were added to the existing structure. The added weight of the noise control treatment is about 1.1 percent of the total gross take-off weight of the aircraft.

  8. Effects of propeller rotation direction on airplane interior noise levels

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.; Daniels, E. F.

    1985-01-01

    Interior noise measurements for upsweeping and downsweeping movement of the propeller blade tips past the fuselage were made on a twin-engine airplane and on two simplified fuselage models. Changes in interior noise levels of as much as 8 dB reversal of propeller rotation direction were measured for some configurations and test conditions.

  9. Simultaneous cabin and ambient ozone measurements on two Boeing 747 airplanes, volume 1

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.; Holdeman, J. D.; Nastrom, G. D.

    1979-01-01

    Measurements of zone concentrations both outside and in the cabin of an airline operated Boeing 747SP and Boeing 747-100 airliner are presented. Plotted data and the corresponding tables of observations taken at altitude between the departure and destination airports of each flight are arranged chronologically for the two aircraft. Data were taken at five or ten minute intervals by automated instrumentation used in the NACA Global Atmospheric Sampling Program.

  10. USAF bioenvironmental noise data handbook. Volume 168: MB-3 tester, pressurized cabin leakage, aircraft

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-06-01

    The MB-3 Tester is an electric motor-driven cabin leakage tester designed to furnish pressurized air to the aircraft at controlled pressures and temperatures during ground pressurization of aircraft cockpits and pressurized compartments. This report provides measured data defining the bioacoustic environments produced by this unit operating at a normal rated/load condition. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors.

  11. Noise reduction studies for the U-10 airplane

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Connor, A. B.; Hubbard, H. H.; Dingeldein, R. C.

    1975-01-01

    A study was undertaken by the NASA Langley Research Center to determine the noise reduction potential of the U-10 airplane in order to reduce its aural detection distance. Static and flyover noise measurements were made to document the basic airplane noise signature. Two modifications to the airplane configuration are suggested as having the best potential for substantially reducing aural detection distance with small penalty to airplane performance or stability and control. These modifications include changing the present 3-blade propeller to a 5-blade propeller, changing the propeller diameter, and changing the propeller gear ratio, along with the use of an engine exhaust muffler. The aural detection distance corresponding to normal cruising flight at an altitude of 1,000 ft over grassy terrain is reduced from 28,000 ft (5.3 miles) to about 50 percent of that value for modification 1, and to about 25 percent for modification 2. For the aircraft operating at an altitude of 300 ft, the analysis indicates that relatively straightforward modifications could reduce the aural detection distance to approximately 0.9 mile. Operation of the aircraft at greatly reduced engine speed (1650 rpm) with a 1.3-cu-ft muffler provides aural detection distances slightly lower than modification 1.

  12. 14 CFR 91.815 - Agricultural and fire fighting airplanes: Noise operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Agricultural and fire fighting airplanes... RULES Operating Noise Limits § 91.815 Agricultural and fire fighting airplanes: Noise operating limitations. (a) This section applies to propeller-driven, small airplanes having standard...

  13. 14 CFR 91.815 - Agricultural and fire fighting airplanes: Noise operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Agricultural and fire fighting airplanes... RULES Operating Noise Limits § 91.815 Agricultural and fire fighting airplanes: Noise operating limitations. (a) This section applies to propeller-driven, small airplanes having standard...

  14. 14 CFR 91.815 - Agricultural and fire fighting airplanes: Noise operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Agricultural and fire fighting airplanes... RULES Operating Noise Limits § 91.815 Agricultural and fire fighting airplanes: Noise operating limitations. (a) This section applies to propeller-driven, small airplanes having standard...

  15. The effect of airplane noise on the inhabitants of areas near Okecie Airport in Warsaw

    NASA Technical Reports Server (NTRS)

    Koszarny, Z.; Maziarka, S.; Szata, W.

    1981-01-01

    The state of health and noise annoyance among persons living in areas near Okecie airport exposed to various intensities of noise was evaluated. Very high annoyance effects of airplane noise of intensities over 100 dB (A) were established. A connection between the airplane noise and certain ailments complained about by the inhabitants was demonstrated.

  16. 14 CFR 91.815 - Agricultural and fire fighting airplanes: Noise operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: Noise operating limitations. 91.815 Section 91.815 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... RULES Operating Noise Limits § 91.815 Agricultural and fire fighting airplanes: Noise operating... indicate that the airplane has not been shown to comply with the noise limits under part 36 of this...

  17. Airplane transport isolators may loose leak tightness after rapid cabin decompression.

    PubMed

    Albrecht, Roland; Kunz, Andres; Voelckel, Wolfgang G

    2015-01-01

    Air medical transport of patients suffering of highly infectious diseases is typically performed employing portable isolation chambers. Although the likelihood of decompression flight emergencies is low, sustainability of the devices used is crucial. When a standard isolation unit was subjected to an explosive cabin decompression of 493 hPa, simulating a 32808 ft flight level accident, leak tightness of the unit was lost due to rupture of the bag caused by over expansion. When the pressure chamber experiment was repeated with a modified unit, distension was minimized by an additional compensation air bag, thus ensuring leak tightness. PMID:25887737

  18. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  19. 14 CFR 91.815 - Agricultural and fire fighting airplanes: Noise operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., as effective on January 1, 1966) or for dispensing fire fighting materials. (b) If the Airplane Flight Manual, or other approved manual material information, markings, or placards for the airplane indicate that the airplane has not been shown to comply with the noise limits under part 36 of this...

  20. 14 CFR 25.832 - Cabin ozone concentration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cabin ozone concentration. 25.832 Section... Cabin ozone concentration. (a) The airplane cabin ozone concentration during flight must be shown not to... demonstrate that either— (1) The airplane cannot be operated at an altitude which would result in cabin...

  1. 14 CFR 125.113 - Cabin interiors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....113 Cabin interiors. (a) Upon the first major overhaul of an airplane cabin or refurbishing of the... following requirements must be replaced with materials that meet these requirements: (1) For an airplane for... April 30, 1972. (2) For an airplane for which the application for the type certificate was filed on...

  2. Noise reduction studies for the OV-1 airplane

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Connor, A. B.; Copeland, W. L.; Dibble, A. C., Jr.

    1975-01-01

    A study has been conducted to define possible modifications to the OV-1 aircraft to reduce its aural detection distance. This effort involved documenting the noise characteristics of the airplane, devising modifications to reduce the noise, estimating the reduction in detection distance, and evaluating aircraft performance as a result of these modifications. It was found that the main noise source on this aircraft is the propeller and hence modifications only to the propeller and the propeller drive system are proposed. Modifications involving only the propeller are noted to involve no increase in weight but they result in only a modest decrease in aural detection distance. In order to obtain substantial decreases in aural detection distance, modifications involving changes both to the propeller and the engine-propeller gearing are required.

  3. A research to reduce interior noise in general aviation airplanes. General aviation interior noise study

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Muirhead, V. U.; Smith, H. W.; Peschier, T. D.

    1977-01-01

    The construction, calibration, and properties of a facility for measuring sound transmission through aircraft type panels are described along with the theoretical and empirical methods used. Topics discussed include typical noise source, sound transmission path, and acoustic cabin properties and their effect on interior noise. Experimental results show an average sound transmission loss in the mass controlled frequency region comparable to theoretical predictions. The results also verify that transmission losses in the stiffness controlled region directly depend on the fundamental frequency of the panel. Experimental and theoretical results indicate that increases in this frequency, and consequently in transmission loss, can be achieved by applying pressure differentials across the specimen.

  4. Flight Test Measurements From The Tu-144LL Structure/Cabin Noise Follow-On Experiment

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Rackl, Robert G.; Andrianov, Eduard V.

    2000-01-01

    This follow-on flight experiment on the TU-144LL Supersonic Flying Laboratory, conducted during the period September 1998 to April 1999, was a continuation of previous Structure/Cabin Noise Experiment 2.1. Data was obtained over a wide range of altitudes and Mach numbers. Measured were: turbulent boundary layer pressure fluctuations on the fuselage over its length; structural response on skin panels using accelerometers; and flow direction over three windows using 'flow cones'. The effect of steps in the flow was also measured using two window blank pairs; each pair bridged by a plate which created small sharp forward and aft facing steps. The effect of transducer flushness with the exterior surface was also measured during flight. Height test points were chosen to cover much of the TU-144's flight envelope, as well as to obtain as large a unit Reynolds number range as possible at various Mach numbers: takeoff, subsonic, transonic, and supersonic cruise conditions up to Mach 2. Data on engine runups and background noise were acquired on the ground. The data in the form of time histories of the acoustic signals, together with auxiliary data and basic MATLAB processing modules, are available on CD-R disks.

  5. Low frequency cabin noise reduction based on the intrinsic structural tuning concept: The theory and the experimental results, phase 2. [jet aircraft noise

    NASA Technical Reports Server (NTRS)

    Sengupta, G.

    1978-01-01

    Low frequency cabin noise and sonically induced stresses in an aircraft fuselage may be reduced by intrinsic tuning of the various structural members such as the skin, stringers, and frames and then applying damping treatments on these members. The concept is also useful in identifying the key structural resonance mechanisms controlling the fuselage response to broadband random excitation and in developing suitable damping treatments for reducing the structural response in various frequency ranges. The mathematical proof of the concept and the results of some laboratory and field tests on a group of skin-stringer panels are described. In the so-called stiffness-controlled region, the noise transmission may actually be controlled by stiffener resonances, depending upon the relationship between the natural frequencies of the skin bay and the stiffeners. Therefore, cabin noise in the stiffness-controlled region may be effectively reduced by applying damping treatments on the stiffeners.

  6. Methods of reducing low frequency cabin noise and sonically induced stresses, based on the intrinsic structural tuning concept

    NASA Technical Reports Server (NTRS)

    Sengupta, G.

    1977-01-01

    Control of low frequency interior noise has been difficult in all commercial and general aviation aircraft, since the existing sound attenuation techniques are less effective at these frequencies. Therefore low frequency cabin noise and sonically induced stresses can be reduced mainly by a proper design of the fuselage structure. For this purpose, a concept based on intrinsic tuning and damping of fuselage structural elements has been under development at Boeing for the past three years. This paper describes the results of some laboratory and field tests that were conducted for evaluation of the concept.

  7. En route noise levels from propfan test assessment airplane

    NASA Technical Reports Server (NTRS)

    Garber, Donald P.; Willshire, William L., Jr.

    1994-01-01

    The en route noise test was designed to characterize propagation of propfan noise from cruise altitudes to the ground. In-flight measurements of propfan source levels and directional patterns were made by a chase plane flying in formation with the propfan test assessment (PTA) airplane. Ground noise measurements were taken during repeated flights over a distributed microphone array. The microphone array on the ground was used to provide ensemble-averaged estimates of mean flyover noise levels, establish confidence limits for those means, and measure propagation-induced noise variability. Even for identical nominal cruise conditions, peak sound levels for individual overflights varied substantially about the average, particularly when overflights were performed on different days. Large day-to-day variations in peak level measurements appeared to be caused by large day-to-day differences in propagation conditions and tended to obscure small variations arising from operating conditions. A parametric evaluation of the sensitivity of this prediction method to weather measurement and source level uncertainties was also performed. In general, predictions showed good agreement with measurements. However, the method was unable to predict short-term variability of ensemble-averaged data within individual overflights. Although variations in absorption appear to be the dominant factor in variations of peak sound levels recorded on the ground, accurate predictions of those levels require that a complete description of operational conditions be taken into account. The comprehensive and integrated methods presented in this paper have adequately predicted ground-measured sound levels. On average, peak sound levels were predicted within 3 dB for each of the three different cruise conditions.

  8. Laboratory study of annoyance to combined airplane and road-traffic noise

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1979-01-01

    The annoyance of noise, which consisted of both separate and combined airplane and road-traffic noises, was studied. The subjects judged each session as to how annoyed they were in the simulated living room laboratory environment and as to how annoyed they were if they heard the noise in their home during day, evening, and night periods. The airplane noises, for equal session levels were judged significantly more annoying than the road traffic noises for the separate sessions. For the combined sessions, an interaction was found between the airplane noise and traffic noise levels, which was not adequately assessed by the total energy concept. Significant differences were found between the projected home responses for the day, evening, and night periods.

  9. Noise characteristics of the O-1 airplane and some approaches to noise reduction

    NASA Technical Reports Server (NTRS)

    Connor, A. B.; Hilton, D. A.; Copeland, W. L.; Clark, L. R.

    1975-01-01

    A brief study of the O-1A airplane to determine possible means for reducing the aircraft aural detection distance was conducted. This effort involved measuring the noise signature of the basic airplane, devising methods to attenuate the noise, and then estimating the effect of several selected modifications on the aural detection distance of the aircraft. A relatively simple modification utilizing a 6.5 ft diameter, six-blade propeller and including a muffler having a volume of 0.725 cu ft is indicated to reduce the aural detection distance of the O-1 aircraft from about 6 miles at an altitude of 1,000 ft and 2 to 3 miles at an altitude of 300 ft to approximately half these values. The flyover noise data suggest that routing the exhaust stacks up and over the wing would provide immediate noise reduction of about 5 dB with an attendant reduction in detection distance. Furthermore, all these studies confirm the work of other investigators that the 1/3 octave band (center frequency=125 cps) is the most critical in reducing aural detection distance.

  10. Wireless Network Simulation in Aircraft Cabins

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Youssef, Mennatoallah; Vahala, Linda

    2004-01-01

    An electromagnetic propagation prediction tool was used to predict electromagnetic field strength inside airplane cabins. A commercial software package, Wireless Insite, was used to predict power levels inside aircraft cabins and the data was compared with previously collected experimental data. It was concluded that the software could qualitatively predict electromagnetic propagation inside the aircraft cabin environment.

  11. 14 CFR 25.841 - Pressurized cabins.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Pressurized cabins. 25.841 Section 25.841 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Pressurization § 25.841 Pressurized cabins. (a) Pressurized cabins...

  12. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplane must be able to maintain a cabin pressure altitude of not more than 15,000 feet in event of any... following valves, controls, and indicators, for controlling cabin pressure: (1) Two pressure relief valves... indicate to the pilot the pressure differential, the cabin pressure altitude, and the rate of change...

  13. 14 CFR 125.113 - Cabin interiors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Cabin interiors. 125.113 Section 125.113 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS....113 Cabin interiors. (a) Upon the first major overhaul of an airplane cabin or refurbishing of...

  14. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2012-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  15. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2011-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  16. All-theoretical prediction of cabin noise due to impingement of propeller vortices on a wing structure

    NASA Technical Reports Server (NTRS)

    Martinez, R.; Cole, J. E., III; Martini, K.; Westagard, A.

    1987-01-01

    Reported calculations of structure-borne cabin noise for a small twin engine aircraft powered by tractor propellers rely on the following three-stage methodological breakup of the problem: (1) the unsteady-aerodynamic prediction of wing lift harmonics caused by the whipping action of the vortex system trailed from each propeller; (2) the associated wing/fuselage structural response; (3) the cabin noise field for the computed wall vibration. The first part--the estimate of airloads--skirts a full-fledged aeroelastic situation by assuming the wing to be fixed in space while cancelling the downwash field of the cutting vortices. The model is based on an approximate high-frequency lifting-surface theory justified by the blade rate and flight Mach number of application. Its results drive a finite-element representation of the wing accounting for upper and lower skin surfaces, spars, ribs, and the presence of fuel. The fuselage, modeled as a frame-stiffened cylindrical shell, is bolted to the wing.

  17. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests on or After.... G Appendix G to Part 36—Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller... measuring noise and adjusting these data to standard conditions, for propeller driven small airplanes...

  18. A noise study of the A-6 airplane and techniques for reducing its aural detection distance

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Connor, A. B.; Hubbard, H. H.

    1975-01-01

    A study was undertaken to determine the noise reduction potential of the A-6 airplane in order to reduce its aural detection distance. Static and flyby noise measurements were taken to document the basic airplane signature. The low-frequency noise which is generally most critical for aural detection was found to be broad-band in nature from this airplane, and its source is the turbojet engine exhaust. High-frequency compressor noise, which is characteristic of turbojet powerplants, and which is prominent at close range for this airplane, has no measurable effect on aural detection distance. The use of fluted-engine exhaust nozzles to change the far-field noise spectra is suggested as a possible means for reducing the aural detection distances. Detection distances associated with eight-lobe and four-lobe nozzles are estimated for a 1,000-foot altitude and grassy terrain to decrease from 4 miles to about 3 miles, and from 3 miles to about 2 miles for a 300-foot altitude and grassy terrain.

  19. Socio-psychological airplane noise investigation in the districts of three Swiss airports: Zurich, Geneva and Basel

    NASA Technical Reports Server (NTRS)

    Graf, R.; Mueller, R.; Meier, H. P.

    1980-01-01

    The results of noise measurements and calculations are available in the form of noise maps for each of the three areas. To measure the stress due to airplane noise the Noise and Number Index (NNI) was applied. In the vicinities of the airports, 400 households were randomly selected in each of the three noise zones (of 10 NNI intervals each). A total of 3939 questionnaires could be evaluated, one quarter of which came from areas without airplane noise. Concurrently, traffic noise was measured in areas of Basel and expressed in sum total levels L sub 50 and the reaction of 944 persons was elicited by interrogation.

  20. Annoyance from Road Traffic, Trains, Airplanes and from Total Environmental Noise Levels.

    PubMed

    Ragettli, Martina S; Goudreau, Sophie; Plante, Céline; Perron, Stéphane; Fournier, Michel; Smargiassi, Audrey

    2016-01-01

    There is a lack of studies assessing the exposure-response relationship between transportation noise and annoyance in North America. Our aims were to investigate the prevalence of noise annoyance induced by road traffic, trains and airplanes in relation to distance to transportation noise sources, and to total environmental noise levels in Montreal, Canada; annoyance was assessed as noise-induced disturbance. A telephone-based survey among 4336 persons aged >18 years was conducted. Exposure to total environmental noise (A-weighted outdoor noise levels-LAeq24h and day-evening-night equivalent noise levels-Lden) for each study participant was determined using a statistical noise model (land use regression-LUR) that is based on actual outdoor noise measurements. The proportion of the population annoyed by road traffic, airplane and train noise was 20.1%, 13.0% and 6.1%, respectively. As the distance to major roads, railways and the Montreal International Airport increased, the percentage of people disturbed and highly disturbed due to the corresponding traffic noise significantly decreased. When applying the statistical noise model we found a relationship between noise levels and disturbance from road traffic and total environmental noise, with Prevalence Proportion Ratios (PPR) for highly disturbed people of 1.10 (95% CI: 1.07-1.13) and 1.04 (1.02-1.06) per 1 dB(A) Lden, respectively. Our study provides the first comprehensive information on the relationship between transportation noise levels and disturbance in a Canadian city. LUR models are still in development and further studies on transportation noise induced annoyance are consequently needed, especially for sources other than road traffic. PMID:26729143

  1. Annoyance from Road Traffic, Trains, Airplanes and from Total Environmental Noise Levels

    PubMed Central

    Ragettli, Martina S.; Goudreau, Sophie; Plante, Céline; Perron, Stéphane; Fournier, Michel; Smargiassi, Audrey

    2015-01-01

    There is a lack of studies assessing the exposure-response relationship between transportation noise and annoyance in North America. Our aims were to investigate the prevalence of noise annoyance induced by road traffic, trains and airplanes in relation to distance to transportation noise sources, and to total environmental noise levels in Montreal, Canada; annoyance was assessed as noise-induced disturbance. A telephone-based survey among 4336 persons aged >18 years was conducted. Exposure to total environmental noise (A-weighted outdoor noise levels—LAeq24h and day-evening-night equivalent noise levels—Lden) for each study participant was determined using a statistical noise model (land use regression—LUR) that is based on actual outdoor noise measurements. The proportion of the population annoyed by road traffic, airplane and train noise was 20.1%, 13.0% and 6.1%, respectively. As the distance to major roads, railways and the Montreal International Airport increased, the percentage of people disturbed and highly disturbed due to the corresponding traffic noise significantly decreased. When applying the statistical noise model we found a relationship between noise levels and disturbance from road traffic and total environmental noise, with Prevalence Proportion Ratios (PPR) for highly disturbed people of 1.10 (95% CI: 1.07–1.13) and 1.04 (1.02–1.06) per 1 dB(A) Lden, respectively. Our study provides the first comprehensive information on the relationship between transportation noise levels and disturbance in a Canadian city. LUR models are still in development and further studies on transportation noise induced annoyance are consequently needed, especially for sources other than road traffic. PMID:26729143

  2. Helicopter cabin noise: Methods of source and path identification and characterization

    NASA Technical Reports Server (NTRS)

    Murray, B. S.; Wilby, J. F.

    1978-01-01

    Internal noise sources in a helicopter are considered. These include propulsion machinery, comprising engine and transmission, and turbulent boundary layer effects. It is shown that by using relatively simple concepts together with careful experimental work it is possible to generate reliable data on which to base the design of high performance noise control treatments.

  3. [Electronic noise compensation for improving speech discrimination in airplane pilots].

    PubMed

    Matschke, R G; Pösselt, C; Veit, I; Andresen, U

    1989-02-01

    Noise exposure measurements were performed in pilots of the Federal Navy during realistic flight situations. The ambient noise levels during regular flight service were maintained at levels nearly all the time above 90 dB. To avoid occupational hearing loss, the "Noise Injury Prevention Code" issued by the insurers would demand wearing personal ear protection, e.g. ear plugs. But such equipment in the aircraft cockpit would have precisely the opposite effect, because one of the reasons for possible damage to hearing is radio communication. To be able to understand radio traffic in spite of the noisy environment, headphone volume must be raised above the noise of the engines. The use of ear plugs can be of only limited value. Whereas pilots with normal hearing show only little impairment of speech intelligibility, those with noise-induced hearing loss show substantial impairment that varies in proportion to their hearing loss. Communication abilities may be drastically reduced which may compromise the reliability of radio traffic. Cockpit noise has its maximum intensity around 125 Hz and flight helmets and ear defenders are not very effective in low frequency ranges. Sennheiser electronic KG developed an active noise compensation circuit, which makes use of the "anti noise" principle. Here the outside noises picked up by two microphones integrated into the headset are processed electronically in such a way that they largely neutralise the original noise. It had to be made sure that the radio traffic signal was not also compensated and that the signal to noise ratio was clearly increased.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2706059

  4. Noise propagation from a four-engine, propeller-driven airplane

    NASA Technical Reports Server (NTRS)

    Willshire, William L., Jr.

    1987-01-01

    A flight experiment was conducted to investigate the propagation of periodic low-frequency noise from a propeller-driven airplane. The test airplane was a large four-engine, propeller-driven airplane flown at altitudes from 15 to 500 m over the end of an 1800-m-long, 22-element microphone array. The acoustic data were reduced by a one-third octave-band analysis. The primary propagation quantities computed were lateral attenuation and ground effects, both of which become significant at shallow elevation angles. Scatter in the measured results largely obscured the physics of the low-frequency noise propagation. Variability of the noise source, up to 9.5 dB over a 2-sec interval, was the major contributor to the data scatter. The microphones mounted at ground level produced more consistent results with less scatter than those mounted 1.2 m above ground. The ground noise levels were found to be greater on the port side than on the starboard side.

  5. Sleep Disturbance from Road Traffic, Railways, Airplanes and from Total Environmental Noise Levels in Montreal

    PubMed Central

    Perron, Stéphane; Plante, Céline; Ragettli, Martina S.; Kaiser, David J.; Goudreau, Sophie; Smargiassi, Audrey

    2016-01-01

    The objective of our study was to measure the impact of transportation-related noise and total environmental noise on sleep disturbance for the residents of Montreal, Canada. A telephone-based survey on noise-related sleep disturbance among 4336 persons aged 18 years and over was conducted. LNight for each study participant was estimated using a land use regression (LUR) model. Distance of the respondent’s residence to the nearest transportation noise source was also used as an indicator of noise exposure. The proportion of the population whose sleep was disturbed by outdoor environmental noise in the past 4 weeks was 12.4%. The proportion of those affected by road traffic, airplane and railway noise was 4.2%, 1.5% and 1.1%, respectively. We observed an increased prevalence in sleep disturbance for those exposed to both rail and road noise when compared for those exposed to road only. We did not observe an increased prevalence in sleep disturbance for those that were both exposed to road and planes when compared to those exposed to road or planes only. We developed regression models to assess the marginal proportion of sleep disturbance as a function of estimated LNight and distance to transportation noise sources. In our models, sleep disturbance increased with proximity to transportation noise sources (railway, airplane and road traffic) and with increasing LNight values. Our study provides a quantitative estimate of the association between total environmental noise levels estimated using an LUR model and sleep disturbance from transportation noise. PMID:27529260

  6. Sleep Disturbance from Road Traffic, Railways, Airplanes and from Total Environmental Noise Levels in Montreal.

    PubMed

    Perron, Stéphane; Plante, Céline; Ragettli, Martina S; Kaiser, David J; Goudreau, Sophie; Smargiassi, Audrey

    2016-01-01

    The objective of our study was to measure the impact of transportation-related noise and total environmental noise on sleep disturbance for the residents of Montreal, Canada. A telephone-based survey on noise-related sleep disturbance among 4336 persons aged 18 years and over was conducted. LNight for each study participant was estimated using a land use regression (LUR) model. Distance of the respondent's residence to the nearest transportation noise source was also used as an indicator of noise exposure. The proportion of the population whose sleep was disturbed by outdoor environmental noise in the past 4 weeks was 12.4%. The proportion of those affected by road traffic, airplane and railway noise was 4.2%, 1.5% and 1.1%, respectively. We observed an increased prevalence in sleep disturbance for those exposed to both rail and road noise when compared for those exposed to road only. We did not observe an increased prevalence in sleep disturbance for those that were both exposed to road and planes when compared to those exposed to road or planes only. We developed regression models to assess the marginal proportion of sleep disturbance as a function of estimated LNight and distance to transportation noise sources. In our models, sleep disturbance increased with proximity to transportation noise sources (railway, airplane and road traffic) and with increasing LNight values. Our study provides a quantitative estimate of the association between total environmental noise levels estimated using an LUR model and sleep disturbance from transportation noise. PMID:27529260

  7. A subjective evaluation of synthesized STOL airplane noises

    NASA Technical Reports Server (NTRS)

    Powell, C. A., Jr.

    1973-01-01

    A magnitude-estimation experiment was conducted to evaluate the subjective annoyance of the noise generated by possible future turbofan STOL aircraft as compared to that of several current CTOL aircraft. In addition, some of the units used to scale the magnitude of aircraft noise were evaluated with respect to their applicability to STOL noise. Twenty test subjects rated their annoyance to a total of 119 noises over a range of 75 PNdb to 105 PNdb. Their subjective ratings were compared with acoustical analysis of the noises in terms of 28 rating scale units. The synthesized STOL noises of this experiment were found to be slightly more annoying than the conventional CTOL noises at equal levels of PNL and EPNL. Over the range of levels investigated the scaling units, with a few exceptions, were capable of predicting the points of equal annoyance for all of the noises with plus or minus 3 dB. The inclusion of duration corrections, in general, improved the predictive capabilities of the various scaling units; however, tone corrections reduced their predictive capabilities.

  8. Comparison of low-frequency noise levels of the Concorde supersonic transport with other commercial service airplanes

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Mccurdy, D. A.

    1978-01-01

    Fifty-two airplane noise recordings, made at several locations around Dulles International Airport, were analyzed to compare the low-frequency noise levels of the Concorde supersonic transport with those of other commercial jet airplanes. Comparisons of the relative low-frequency noise levels which were produced at close and distant locations for departures and arrivals were made for three noise measures: the sound pressure level in the 1/3 octave band centered at 20 Hz, the total sound pressure level in the 1/3 octave bands with center frequencies less than or equal to 125 Hz, and the total sound pressure level in the 1/3 octave bands with center frequencies less than or equal to 500 Hz. Although the absolute noise levels for Concorde were found, in general, to be higher than those for the other airplane types, the level of low-frequency noise of the Concorde relative to the perceived noise level (PNL), effective perceived noise level (EPNL), and overall sound pressure level (OASPL) was within the range established by the other airplane types, except for the arrival operations of four-engine, narrow-body airplanes. The measure OASPL was found to be a significantly better predictor of low-frequency noise level than PNL or EPNL.

  9. Subjective response to combined noise and vibration during flight of a large twin-jet airplane

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.

    1976-01-01

    A NASA twin-jet airplane was used to obtain controlled noise and vibration environments during flight while obtaining subjective responses from 13 passenger-subjects (6 females and 7 males). Subjective ratings of overall comfort, comfort when considering only vibration, and comfort when considering only noise were obtained during times of different vibration and noise environments. Passenger-subjects were able to distinguish and rate noise better than vibration. In addition, there was a statistically significant difference in ratings of ride comfort due to both sex type and flight experience. Males rated flying discomfort much more severely than females when rating the overall ride and the ride when considering only the noise environment. Experienced passengers also rated the overall ride to be more uncomfortable than inexperienced passengers.

  10. Experiments to Determine Neighborhood Reactions to Light Airplanes With and Without External Noise Reduction

    NASA Technical Reports Server (NTRS)

    Elwell, Fred S

    1953-01-01

    The work reported was part of a program of experimentation with external noise reduction on light airplanes. This particular study was in effect a byproduct survey conceived to utilize already available equipment and personnel to further the findings of the original research and to determine reactions in populated neighborhoods to light aircraft with and without noise-reduction equipment. The findings indicate that at the 10 sites within and about metropolitan Boston the degree of noise reduction previously found to be aerodynamically and structurally feasible did eliminate substantially all neighborhood objections to noise per se. The evidence clearly suggests that, when the noise nuisance is minimized to the extent found feasible, the number and severity of other objections also diminish -- evidently because the flight operations are noticed less when heard less.

  11. Experimental study of noise reduction for an unstiffened cylindrical model of an airplane fuselage

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Daniels, E. F.

    1981-01-01

    Noise reduction measurements were made for a simplified model of an airplane fuselage consisting of an unstiffened aluminum cylinder 0.5 m in diameter by 1.2 m long with a 1.6-mm-thick wall. Noise reduction was first measured with a reverberant field pink-noise load on the cylinder exterior. Next, noise reduction was measured by using a propeller to provide a more realistic noise load on the cylinder. Structural resonance frequencies and acoustic reverberation times for the cylinder interior volume were also measured. Comparison of data from the relatively simple test using reverberant-field noise with data from the more complex propeller-noise tests indicates some similarity in both the overall noise reduction and the spectral distribution. However, all of the test parameters investigated (propeller speed, blade pitch, and tip clearance) had some effect on the noise-reduction spectra. Thus, the amount of noise reduction achieved appears to be somewhat dependent upon the spectral and spatial characteristics of the flight conditions. Information is also presented on cyclinder resonance frequencies, damping, and characteristics of propeller-noise loads.

  12. Bower Cabin

    SciTech Connect

    Harold Drollinger

    2007-11-02

    The Bower Cabin, located in southern Nevada, was built and occupied by B.M. Bower and her family during the early 1920s. Bower, a prominent writer of western novels, had over 90 novels to her credit. She wrote 11 of the stories while living at the cabin and, at times, incorporated the surrounding landscape features, including the cabin site itself, into them. The site was subsequently used by a gang of rustlers and for a mining base camp. Archaeological research has identified the remnants of the main structures at the site as well as the artifact material and nearby mining activities associated with the Bower and later occupations.

  13. Analysis of Vibratory Excitation of Gear Systems as a Contributor to Aircraft Interior Noise. [helicopter cabin noise

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1979-01-01

    Application of the transfer function approach to predict the resulting interior noise contribution requires gearbox vibration sources and paths to be characterized in the frequency domain. Tooth-face deviations from perfect involute surfaces were represented in terms of Legendre polynomials which may be directly interpreted in terms of tooth-spacing errors, mean and random deviations associated with involute slope and fullness, lead mismatch and crowning, and analogous higher-order components. The contributions of these components to the spectrum of the static transmission error is discussed and illustrated using a set of measurements made on a pair of helicopter spur gears. The general methodology presented is applicable to both spur and helical gears.

  14. Noise measurements of turboprop airplanes at different overflight elevations

    NASA Technical Reports Server (NTRS)

    Mueller, K.

    1990-01-01

    In order to establish criteria for the regulation of propfan aircraft engine noise emissions, measurement tests of overhead flights of a METRO-3 and a FOKKER-50 aircraft were performed. The decibel levels captured by the ground car microphone are tabulated according to the height of the microphone from the ground as the recording vehicle followed the aircraft through the test flight patterns. Microphone heights of 1.5 and 10 meters from the ground are recorded and correlated to the flight altitudes of the aircraft, which ranged from 5182-6401 meters.

  15. 14 CFR Appendix B to Part 36 - Noise Levels for Transport Category and Jet Airplanes Under § 36.103

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise Levels for Transport Category and Jet Airplanes Under § 36.103 B Appendix B to Part 36 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App. B Appendix B to Part...

  16. Noise reduction studies for the Cessna model 337 (0-2) airplane

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Connor, A. B.; Dingeldein, R. C.

    1975-01-01

    A study was undertaken to determine the noise reduction potential of the 0-2 airplane in order to reduce its aural detection distance. Static and flyover noise measurements were made to document the noise signature of the unmodified airplane. The results show that significant reductions in aural detection distance can be achieved by the combination of propeller geometry changes and the addition of engine exhaust mufflers. The best results were estimated for the aircraft equipped with a six-blade propeller operating at 3/4 engine speed in combination with a 3.49 cubic foot exhaust muffler installed on each engine. Detection distance for the modified aircraft is estimated to be reduced from about 4-1/4 miles to about 1-1/2 miles when the aircraft is operating at an altitude of 1,000 ft over grassy terrain. Reducing the altitude to 300 ft over a leafy jungle ground cover should reduce the aural detection distance to 0.9 miles. Reduced aural detection distances were also indicated for a modification utilizing a direct-drive six-blade propeller of reduced radius along with smaller exhaust mufflers.

  17. Ground noise measurements during landing, take-off, and flyby operations of a four-engine turbopropeller STOL airplane

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.; Maglieri, D. J.

    1971-01-01

    Noise measurements were obtained for a four-engine turbopropeller STOL airplane during a Federal Aviation Administration flight evaluation program at the National Aviation Facilities Experimental Center. These noise measurements involved landing-approach, takeoff-climbout, and flyby operations of the airplane. A total of 13 measuring positions were used to define the noise characteristics around a simulated STOL port. The results are presented in the form of both physical and subjective measurements. An appendix is included to present tabulated values of various subjective reaction units which may be significant for the planning and operation of STOL ports. The main source of noise produced by this vehicle was found to be the propeller, and noise levels decrease generally in accordance with the inverse-distance law for distances up to about 457 meters. For similar slant ranges, somewhat lower noise levels were experienced during flyby than during takeoff or landing.

  18. Measurements and predictions of flyover and static noise of an afterburning turbofan engine in an F-111 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.

    1979-01-01

    The noise of the TF30 afterburning turbofan engine in an F-111 airplane was determined from static (ground) and flyover tests. Exhaust temperatures and velocity profiles were measured for a range of power settings. Comparisons were made between predicted and measured jet mixing, internal, and shock noise. It was found that the noise produced at static conditions was dominated by jet mixing noise, and was adequately predicted by current methods. The noise produced during flyovers exhibited large contributions from internally generated noise in the forward arc. For flyovers with the engine at nonafterburning power, the internal noise, shock noise, and jet mixing noise were accurately predicted. During flyovers with afterburning power settings, however, additional internal noise believed to be due to the afterburning process was evident; its level was as much as 8 decibels above the nonafterburning internal noise.

  19. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to December 22, 1988 F Appendix F to Part 36 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE...

  20. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to December 22, 1988 F Appendix F to Part 36 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE...

  1. Field evaluation of proposed ICAO annex 16 takeoff noise certification procedure for propeller-driven airplanes not exceeding 5700 kg

    NASA Astrophysics Data System (ADS)

    Heller, H. H.; Splettstoesser, W. R.; Ahlswede, M.; Anders, K. P.; Spiegel, K. H.

    1983-09-01

    Five propeller driven airplanes with a takeoff mass ranging from 650 to 4375 kg were tested, using the Takeoff Noise Certification Procedure for Propeller-driven Aeroplanes not Exceeding 5700 kg proposed by the Alternative Certification Subgroup of the ICAO Committee on Aircraft Noise (CAN)/Working Group C. Field tests show the procedure to be entirely feasible, if more time-consuming than the conventional horizontal flyover noise certification test procedure. Utilizing available data, certification noise limits are proposed for noise-metrics Maximum A-weighted Level, and Sound Exposure Level.

  2. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Metallic pressurized cabin structures. 23... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. For normal, utility, and...

  3. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Metallic pressurized cabin structures. 23... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. Link to an amendment published at 76...

  4. [Communication and noise. Speech intelligibility of airplane pilots with and without active noise compensation].

    PubMed

    Matschke, R G

    1994-08-01

    Noise exposure measurements were performed with pilots of the German Federal Navy during flight situations. The ambient noise levels during regular flight were maintained at levels above a 90 dB A-weighted level. This noise intensity requires wearing ear protection to avoid sound-induced hearing loss. To be able to understand radio communication (ATC) in spite of a noisy environment, headphone volume must be raised above the noise of the engines. The use of ear plugs in addition to the headsets and flight helmets is only of limited value because personal ear protection affects the intelligibility of ATC. Whereas speech intelligibility of pilots with normal hearing is affected to only a smaller degree, pilots with pre-existing high-frequency hearing losses show substantial impairments of speech intelligibility that vary in proportion to the hearing deficit present. Communication abilities can be reduced drastically, which in turn can affect air traffic security. The development of active noise compensation devices (ANC) that make use of the "anti-noise" principle may be a solution to this dilemma. To evaluate the effectiveness of an ANC-system and its influence on speech intelligibility, speech audiometry was performed with a German standardized test during simulated flight conditions with helicopter pilots. Results demonstrate the helpful effect on speech understanding especially for pilots with noise-induced hearing losses. This may help to avoid pre-retirement professional disability. PMID:7960953

  5. Ozone contamination in aircraft cabins: Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The global atmospheric sampling program pertaining to the problem of ozone contamination in commercial airplane cabins is described. Specifically, analyses of GASP data have: confirmed the occurrence of high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; defined ambient ozone climatology at commercial airplane cruise altitudes, including tabulation of encounter frequency data which were not available before GASP; and outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data, and verified these procedures against cabin measurements.

  6. 14 CFR 125.113 - Cabin interiors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Cabin interiors. 125.113 Section 125.113 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20...

  7. 14 CFR 125.113 - Cabin interiors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Cabin interiors. 125.113 Section 125.113 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20...

  8. 14 CFR 125.113 - Cabin interiors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Cabin interiors. 125.113 Section 125.113 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20...

  9. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests on or After December 22, 1988 G Appendix G to Part 36 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  10. Investigation of coaxial jet noise and inlet choking using an F-111A airplane

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.

    1973-01-01

    Measurements of engine noise generated by an F-111A airplane positioned on a thrustmeasuring platform were made at angles of 0 deg to 160 deg from the aircraft heading. Sound power levels, power spectra, and directivity patterns are presented for jet exit velocities between 260 feet per second and 2400 feet per second. The test results indicate that the total acoustic power was proportional to the eighth power of the core jet velocity for core exhaust velocities greater than 300 meters per second (985 feet per second) and that little or no mixing of the core and fan streams occurred. The maximum sideline noise was most accurately predicted by using the average jet velocity for velocities above 300 meters per second (985 feet per second). The acoustic power spectrum was essentially the same for the single jet flow of afterburner operation and the coaxial flow of the nonafterburning condition. By varying the inlet geometry and cowl position, reductions in the sound pressure level of the blade passing frequency on the order of 15 decibels to 25 decibels were observed for inlet Mach numbers of 0.8 to 0.9.

  11. Application of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Macgregor, G. R.

    1992-01-01

    Finite element analysis (FEA), statistical energy analysis (SEA), and a power flow method (computer program PAIN) were used to assess low frequency interior noise associated with advanced propeller installations. FEA and SEA models were used to predict cabin noise and vibration and evaluate suppression concepts for structure-borne noise associated with the shaft rotational frequency and harmonics (less than 100 Hz). SEA and PAIN models were used to predict cabin noise and vibration and evaluate suppression concepts for airborne noise associated with engine radiated propeller tones. Both aft-mounted and wing-mounted propeller configurations were evaluated. Ground vibration test data from a 727 airplane modified to accept a propeller engine were used to compare with predictions for the aft-mounted propeller. Similar data from the 767 airplane was used for the wing-mounted comparisons.

  12. An assessment of propeller aircraft noise reduction technology

    NASA Technical Reports Server (NTRS)

    Metzger, F. Bruce

    1995-01-01

    This report is a review of the literature regarding propeller airplane far-field noise reduction. Near-field and cabin noise reduction are not specifically addressed. However, some of the approaches used to reduce far-field noise produce beneficial effects in the near-field and in the cabin. The emphasis is on propeller noise reduction but engine exhaust noise reduction by muffling is also addressed since the engine noise becomes a significant part of the aircraft noise signature when propeller noise is reduced. It is concluded that there is a substantial body of information available that can be used as the basis to reduce propeller airplane noise. The reason that this information is not often used in airplane design is the associated weight, cost, and performance penalties. It is recommended that the highest priority be given to research for reducing the penalties associated with lower operating RPM and propeller diameter while increasing the number of blades. Research to reduce engine noise and explore innovative propeller concepts is also recommended.

  13. 14 CFR Appendix B to Part 36 - Noise Levels for Transport Category and Jet Airplanes Under § 36.103

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... specified in section B36.5 at the following points on level terrain: (a) Lateral full-power reference noise... centerline of the runway above which the airplane, at full takeoff power, reaches a height of 2,133 feet (650... °F (25 °C, i.e., ISA+10 °C); (iii) Relative humidity of 70 per cent; (iv) Zero wind. (v) In...

  14. Effects of airplane characteristics and takeoff noise and field length constraints on engine cycle selection for a Mach 2.32 cruise application

    NASA Technical Reports Server (NTRS)

    Whitlow, J. B., Jr.

    1976-01-01

    Sideline noise and takeoff field length were varied for two types of Mach 2.32 cruise airplane to determine their effect on engine cycle selection. One of these airplanes was the NASA/Langley-LTV arrow wing while the other was a Boeing modified delta-plus-tail derived from the earlier 2707-300 concept. Advanced variable cycle engines were considered. A more conventional advanced low bypass turbofan engine was used as a baseline for comparison. Appropriate exhaust nozzle modifications were assumed, where needed, to allow all engines to receive either an inherent co-annular or annular jet noise suppression benefit. All the VCE's out-performed the baseline engine by substantial margins in a design range comparison, regardless of airplane choice or takeoff restrictions. The choice among the three VCE's considered, however, depends on the field length, noise level, and airplane selected.

  15. The annoyance caused by airplane noise in the vicinity of Orly Airport and the reaction of neighboring residents

    NASA Technical Reports Server (NTRS)

    Francois, J.

    1981-01-01

    General conclusions and the technical appendix of a report on the attitudes of people living near Orly Airport (Paris) toward airplane noise are presented. The noise was found to be very disruptive of residents' lifestyle and well being, although differences in perceived nuisance were noted. The factors inducing people to protest and who they blame for the present situation are discussed. It was found that the public image of protestors was generally positive and that people who did not protest were viewed as passive, uncaring, or else connected to aviation.

  16. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a... passenger cabin occupants. (3) For first-aid treatment of occupants who for physiological reasons...

  17. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a... passenger cabin occupants. (3) For first-aid treatment of occupants who for physiological reasons...

  18. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a... passenger cabin occupants. (3) For first-aid treatment of occupants who for physiological reasons...

  19. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a... passenger cabin occupants. (3) For first-aid treatment of occupants who for physiological reasons...

  20. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and for first aid; turbine engine powered airplanes with pressurized cabins. 121.333 Section 121.333... for emergency descent and for first aid; turbine engine powered airplanes with pressurized cabins. (a... passenger cabin occupants. (3) For first-aid treatment of occupants who for physiological reasons...

  1. An estimate of the enroute noise of an advanced turboprop airplane NASA-TM-87302 E-3020 NAS 1.15:87302 HC A02/MF A01

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1986-01-01

    The enroute noise of an Advanced Turboprop powered aircraft was estimated. The measured noise levels were roughly equivalent in annoyance to the noise 15.24 m from an automobile traveling at 80 km/h. It is felt that these levels would not illicit noise complaints from urban areas during the day but might be a slight annoyance in rural areas or in urban areas at night. Although it is not felt that the enroute noise is a major problem, it is indicated that a reduction in the enroute noise could improve the acceptability of advance turboprop airplanes.

  2. In-flight cabin smoke control.

    PubMed

    Eklund, T I

    1996-12-31

    Fatal accidents originating from in-flight cabin fires comprise only about 1% of all fatal accidents in the civil jet transport fleet. Nevertheless, the impossibility of escape during flight accentuates the hazards resulting from low visibility and toxic gases. Control of combustion products in an aircraft cabin is affected by several characteristics that make the aircraft cabin environment unique. The aircraft fuselage is pressurized in flight and has an air distribution system which provides ventilation jets from the ceiling level air inlets running along the cabin length. A fixed quantity of ventilation air is metered into the cabin and air discharge is handled primarily by pressure controlling outflow valves in the rear lower part of the fuselage. Earlier airplane flight tests on cabin smoke control used generators producing minimally buoyant smoke products that moved with and served as a telltales for overall cabin ventilation flows. Analytical studies were done with localized smoke production to predict the percent of cabin length that would remain smoke-free during continuous generation. Development of a buoyant smoke generator allowed simulation of a fire plume with controllable simulated temperature and heat release rates. Tests on a Boeing 757, modified to allow smoke venting out through the top of the cabin, showed that the buoyant smoke front moved at 0.46m/s (1.5ft/sec) with and 0.27m/sec (0.9ft/sec) against, the axial ventilation airflow. Flight tests in a modified Boeing 727 showed that a ceiling level counterflow of about 0.55m/sec (1.8ft/sec) was required to arrest the forward movement of buoyant smoke. A design goal of 0.61m/s (2ft/sec) axial cabin flow would require a flow rate of 99m3/min (3500ft3/min) in a furnished Boeing 757. The current maximum fresh air cabin ventilation flow is 78m3/min (2756 ft3/min). Experimental results indicate that buoyancy effects cause smoke movement behaviour that is not predicted by traditional design analyses and

  3. A study of the performance of an Olson type active noise controller and the possibility of the reduction of cabin noise

    NASA Astrophysics Data System (ADS)

    Keith, S. E.; Scholaert, H. S. B.

    1981-03-01

    Designed to reduce sound levels by means of an electronic transducing system, the active noise controller is a basic feedback control system composed of a speaker, microphone, amplifier and control unit. Because the scheme can be effective in reducing low frequency noise, it is of particular interest to aircraft manufacturers since attenuation of low frequency noise to increase passenger comfort can be at once costly and cumbersome when conventional sound absorption methods are employed. Olson and May's pioneering work in the 1950's in developing an electronic sound absorber which appeared to be successful over small volumes in a unidirectional sound field is re-examined as well as more recent developments in an effort to test their suitability to the aircraft industry. The results suggest only limited possible use for all systems studied.

  4. Treated cabin acoustic prediction using statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Ingraham, Steven T.; Moore, James A.

    1987-01-01

    The application of statistical energy analysis (SEA) to the modeling and design of helicopter cabin interior noise control treatment is demonstrated. The information presented here is obtained from work sponsored at NASA Langley for the development of analytic modeling techniques and the basic understanding of cabin noise. Utility and executive interior models are developed directly from existing S-76 aircraft designs. The relative importance of panel transmission loss (TL), acoustic leakage, and absorption to the control of cabin noise is shown using the SEA modeling parameters. It is shown that the major cabin noise improvement below 1000 Hz comes from increased panel TL, while above 1000 Hz it comes from reduced acoustic leakage and increased absorption in the cabin and overhead cavities.

  5. 75 FR 52807 - Aviation Rulemaking Advisory Committee; Transport Airplane and Engine Issues-New Task

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee; Transport Airplane and Engine... INFORMATION CONTACT: Jeff Gardlin, Airframe/Cabin Safety Branch, ANM-115, Transport Airplane Directorate... obtaining advice and recommendations on flammability requirements for interior materials on...

  6. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.); E. O. 11514, March 5, 1970 and 14 CFR... significantly alter the noise level of the airplane when the nose is recorded at the required measuring point... 10 dB(A), a takeoff measurement point nearer to the start of the takeoff roll must be used and...

  7. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.); E. O. 11514, March 5, 1970 and 14 CFR... significantly alter the noise level of the airplane when the nose is recorded at the required measuring point... 10 dB(A), a takeoff measurement point nearer to the start of the takeoff roll must be used and...

  8. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.); E. O. 11514, March 5, 1970 and 14 CFR... significantly alter the noise level of the airplane when the nose is recorded at the required measuring point... 10 dB(A), a takeoff measurement point nearer to the start of the takeoff roll must be used and...

  9. Evaluation of the ride quality of a light twin engine airplane using a ride quality meter

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1989-01-01

    A ride quality meter was used to establish the baseline ride quality of a light twin-engine airplane planned for use as a test bed for an experimental gust alleviation system. The ride quality meter provides estimates of passenger ride discomfort as a function of cabin noise and vibration (acceleration) in five axes (yaw axis omitted). According to the ride quality meter, in smooth air the cabin noise was the dominant source of passenger discomfort, but the total discomfort was approximately the same as that for the smooth-air condition. The researcher's subjective opinion, however, is that the total ride discomfort was much worse in the moderate turbulence than it was in the smooth air. The discrepancy is explained by the lack of measurement of the low-frequency accelerations by the ride quality meter.

  10. Ground noise measurements during static and flyby operations of the Cessna 02-T turbine powered airplane

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.; Lawton, B. W.

    1975-01-01

    The field noise measurements on the Cessna 02-T turbine powered propeller aircraft are presented. The objective of the study was to obtain the basic noise characteristics of the aircraft during static ground runs and flyover tests, to identify the sources of the noise, and to correlate the noises with the aircraft operating conditions. The results are presented in the form of a overall noise levels, radiation patterns, and frequency spectra. The noise characteristics of the turbine powered aircraft are compared with those of the reciprocating engine powered aircraft.

  11. A research program to reduce interior noise in general aviation airplanes: Noise reduction through a cavity-backed flexible plate

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Vandam, C. P. G.

    1978-01-01

    A prediction method is reported for noise reduction through a cavity-backed panel. The analysis takes into account only cavity modes in one direction. The results of this analysis were to find the effect of acoustic stiffness of a backing cavity on the panel behavior. The resulting changes in the noise reduction through the panel are significant.

  12. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  13. 77 FR 42455 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... and Procedures (44 FR 11034, February 26, 1979), (3) Will not affect intrastate aviation in Alaska... at any time located on the left cabin panel, adjacent to the front seat, to the instrument panel. We... airplanes with magneto switches located on the left cabin panel, adjacent to the front seat, were caused...

  14. Potential Subjective Effectiveness of Active Interior Noise Control in Propeller Airplanes

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Sullivan, Brenda M.

    2000-01-01

    Active noise control technology offers the potential for weight-efficient aircraft interior noise reduction, particularly for propeller aircraft. However, there is little information on how passengers respond to this type of interior noise control. This paper presents results of two experiments that use sound quality engineering practices to determine the subjective effectiveness of hypothetical active noise control (ANC) systems in a range of propeller aircraft. The two experiments differed by the type of judgments made by the subjects: pair comparisons based on preference in the first and numerical category scaling of noisiness in the second. Although the results of the two experiments were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference. The reductions in subjective response due to the ANC conditions were predicted with reasonable accuracy by reductions in measured loudness level. Inclusion of corrections for the sound quality characteristics of tonality and fluctuation strength in multiple regression models improved the prediction of the ANC effects.

  15. Noise prevention

    NASA Astrophysics Data System (ADS)

    Methods for noise abatement are discussed. Noise nuisance, types of noise (continuous, fluctuating, intermittent, pulsed), and types of noise abatement (absorption, vibration damping, isolation) are defined. Rockwool panels, industrial ceiling panels, baffles, acoustic foam panels, vibration dampers, acoustic mats, sandwich panels, isolating cabins and walls, ear protectors, and curtains are presented.

  16. Analysis of in-flight acoustic data for a twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Wilby, E. G.

    1988-01-01

    Acoustic measurements were made on the exterior and interior of a general aviation turboprop airplane during four flight tests. The test conditions were carefully controlled and repeated for each flight in order to determine data variability. For the first three flights the cabin was untreated and for the fourth flight the fuselage was treated with glass fiber batts. On the exterior, measured propeller harmonic sound pressure levels showed typical standard deviations of +1.4 dB, -2.3 dB, and turbulent boundary layer pressure levels, +1.2 dB, -1.6. Propeller harmonic levels in the cabin showed greater variability, with typical standard deviations of +2.0 dB, -4.2 dB. When interior sound pressure levels from different flights with different cabin treatments were used to evaluate insertion loss, the standard deviations were typically plus or minus 6.5 dB. This is due in part to the variability of the sound pressure level measurements, but probably is also influenced by changes in the model characteristics of the cabin. Recommendations are made for the planning and performance of future flight tests to measure interior noise of propeller-driven aircraft, either high-speed advanced turboprop or general aviation propellers.

  17. In-flight acoustic measurements on a light twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Mcdaniel, C. D.; Wilby, E. G.

    1985-01-01

    Four series of flight tests were conducted to measure sound pressure levels inside and outside the cabin of a twin-engined turboprop airplane. Particular emphasis was placed on harmonics of the propeller blade passage frequency. The cabin was unfurnished for the first three flights, when the main objective was to investigate the repeatability of the data. For the fourth flight, the cabin was treated with fiberglass batts. Typically, the exterior sound pressure levels were found to vary 3 to 5 dB for a given harmonic, but variations as high as 8 dB were observed. The variability of harmonic levels within the cabin was slightly higher but depended on control of the relative phase between the propellers; when phase was not controlled the average variability was about 10 dB. Noise reductions provided by the fuselage structure were in the range of 20 to 40 dB, when an exterior microphone in the plane of rotation of the propeller was used as reference.

  18. 58. View of Writer's Cabin (or Three Pines Cabin) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. View of Writer's Cabin (or Three Pines Cabin) and path looking from the southeast (similar to HALS no. LA-1-35) - Briarwood: The Caroline Dormon Nature Preserve, 216 Caroline Dormon Road, Saline, Bienville Parish, LA

  19. Continued research on selected parameters to minimize community annoyance from airplane noise

    NASA Technical Reports Server (NTRS)

    Frair, L.

    1981-01-01

    Results from continued research on selected parameters to minimize community annoyance from airport noise are reported. First, a review of the initial work on this problem is presented. Then the research focus is expanded by considering multiobjective optimization approaches for this problem. A multiobjective optimization algorithm review from the open literature is presented. This is followed by the multiobjective mathematical formulation for the problem of interest. A discussion of the appropriate solution algorithm for the multiobjective formulation is conducted. Alternate formulations and associated solution algorithms are discussed and evaluated for this airport noise problem. Selected solution algorithms that have been implemented are then used to produce computational results for example airports. These computations involved finding the optimal operating scenario for a moderate size airport and a series of sensitivity analyses for a smaller example airport.

  20. Psycho-acoustic evaluation of the indoor noise in cabins of a naval vessel using a back-propagation neural network algorithm

    NASA Astrophysics Data System (ADS)

    Han, Hyung-Suk

    2012-12-01

    The indoor noise of a ship is usually determined using the A-weighted sound pressure level. However, in order to better understand this phenomenon, evaluation parameters that more accurately reflect the human sense of hearing are required. To find the level of the satisfaction index of the noise inside a naval vessel such as "Loudness" and "Annoyance", psycho-acoustic evaluation of various sound recordings from the naval vessel was performed in a laboratory. The objective of this paper is to develop a single index of "Loudness" and "Annoyance" for noise inside a naval vessel according to a psycho-acoustic evaluation by using psychological responses such as Noise Rating (NR), Noise Criterion (NC), Room Criterion (RC), Preferred Speech Interference Level (PSIL) and loudness level. Additionally, in order to determine a single index of satisfaction for noise such as "Loudness" and "Annoyance", with respect to a human's sense of hearing, a back-propagation neural network is applied.

  1. Propeller aircraft interior noise model: User's manual for computer program

    NASA Astrophysics Data System (ADS)

    Wilby, E. G.; Pope, L. D.

    1985-01-01

    A computer program entitled PAIN (Propeller Aircraft Interior Noise) has been developed to permit calculation of the sound levels in the cabin of a propeller-driven airplane. The fuselage is modeled as a cylinder with a structurally integral floor, the cabin sidewall and floor being stiffened by ring frames, stringers and floor beams of arbitrary configurations. The cabin interior is covered with acoustic treatment and trim. The propeller noise consists of a series of tones at harmonics of the blade passage frequency. Input data required by the program include the mechanical and acoustical properties of the fuselage structure and sidewall trim. Also, the precise propeller noise signature must be defined on a grid that lies in the fuselage skin. The propeller data are generated with a propeller noise prediction program such as the NASA Langley ANOPP program. The program PAIN permits the calculation of the space-average interior sound levels for the first ten harmonics of a propeller rotating alongside the fuselage. User instructions for PAIN are given in the report. Development of the analytical model is presented in NASA CR 3813.

  2. Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Darrach, Muray

    2007-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) identifies gases that are present in minute quantities in the International Space Station (ISS) breathing air that could harm the crew s health. If successful, instruments like VCAM could accompany crewmembers during long-duration exploration missions to the Moon or traveling to Mars.

  3. Cabin fire simulator lavatory tests

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Klinck, D. M.

    1980-01-01

    All tests were conducted in the Douglas Cabin Fire Simulator under in-flight ventilation conditions. All tests were allowed to continue for a period of one hour. Data obtained during these tests included: heat flux and temperatures of the lavatory; cabin temperature variations; gas analyses for O2, CO2, CO, HF, HC1, and HCN; respiration and electrocardiogram data on instrumented animal subjects (rats) exposed in the cabin; and color motion pictures. All tests resulted in a survivable cabin condition; however, occupants of the cabin would have been subjected to noxious fumes.

  4. In-flight measurement of propeller noise on the fuselage of an airplane

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G.; Ranaudo, Richard; Woodward, Richard P.

    1989-01-01

    In-flight measurements of propeller noise on the fuselage of an OV-10A aircraft were obtained using a horizontal and a vertical microphone array. A wide range of flight conditions were tested including changes in angle of attack, sideslip angle, power coefficient, helical tip Mach number and advance ratio, and propeller direction of rotation. Results show a dependence of the level and directivity of the tones on the angle of attack and on the sideslip angle with the propeller direction of rotation, which is similar to results obtained in wind tunnel tests with advanced propeller designs. The level of the tones at each microphone increases with increasing angle of attack for inboard-down propeller rotation and decreases for inboard-up rotation. The level also increases with increasing slideslip angle for both propeller directions of rotation. Increasing the power coefficient results in a slight increase in the level of the tones. A strong shock wave is generated by the propeller blades even at relatively low helical tip Mach numbers resulting in high harmonic levels. As the helical tip Mach number and the advance ratio are increased, the level of the higher harmonics increases much faster than the level of the blade passage frequency.

  5. 89. Puckett Cabin. The cabin constructed by John Puckett around ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. Puckett Cabin. The cabin constructed by John Puckett around 1865 is a good example of the one-room log cabin once common to the mountains. This was the home of Mrs. Oleana Puckett who died in 1939 at the age of 102. She worked as a midwife in the surrounding area, assisting in the delivery of more than 1,000 children. View looking east. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  6. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 17-second flight crew recognition and reaction time must be applied between cabin altitude warning... prevent the cabin altitude from exceeding the cabin altitude-time history shown in Figure 1 of this... maximum time the cabin altitude may exceed 25,000 feet is 2 minutes; time starting when the cabin...

  7. Spacecraft Crew Cabin Condensation Control

    NASA Technical Reports Server (NTRS)

    Carrillo, Laurie Y.; Rickman, Steven L.; Ungar, Eugene K.

    2013-01-01

    A report discusses a new technique to prevent condensation on the cabin walls of manned spacecraft exposed to the cold environment of space, as such condensation could lead to free water in the cabin. This could facilitate the growth of mold and bacteria, and could lead to oxidation and weakening of the cabin wall. This condensation control technique employs a passive method that uses spacecraft waste heat as the primary wallheating mechanism. A network of heat pipes is bonded to the crew cabin pressure vessel, as well as the pipes to each other, in order to provide for efficient heat transfer to the cabin walls and from one heat pipe to another. When properly sized, the heat-pipe network can maintain the crew cabin walls at a nearly uniform temperature. It can also accept and distribute spacecraft waste heat to maintain the pressure vessel above dew point.

  8. 45. Peaks of Otter, Rosser Cabin. The cabin had been ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Peaks of Otter, Rosser Cabin. The cabin had been interpreted by the National Park Service ad Polly Woods Ordinary since its relocation from the present location of Abbott Lake. Looking north. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  9. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  10. Ground Measurements of Airplane Shock-Wave Noise at Mach Numbers to 2.0 and at Altitudes to 60,000 Feet

    NASA Technical Reports Server (NTRS)

    Lina, Lindsay J.; Maglieri, Domenic J.

    1960-01-01

    The intensity of shock-wave noise at the ground resulting from flights at Mach numbers to 2.0 and altitudes to 60,000 feet was measured. Meagurements near the ground track for flights of a supersonic fighter and one flight of a supersonic bomber are presented. Level cruising flight at an altitude of 60,000 feet and a Mach number of 2.0 produced sonic booms which were considered to be tolerable, and it is reasonable t o expect that cruising flight at higher altitudes will produce booms of tolerable intensity for airplanes of the size and weight of the test airplanes. The measured variation of sonic-boom intensity with altitude was in good agreement with the variation calculated by an equation given in NASA Technical Note D-48. The effect of Mach number on the ground overpressure is small between Mach numbers of 1.4 and 2.0, a result in agreement with the theory. No amplification of the shock-wave overpressures due to refraction effects was apparent near the cutoff Mach number. A method for estimating the effect of fligh-path angle on cutoff Mach number is shown. Experimental results indicate agreement with the method, since a climb maneuver produced booms of a much decreased intensity as compared with the intensity of those measured in level flight at about the same altitude and Mach number. Comparison of sound pressure levels for the fighter and bomber airp lanes indicated little effect of either airplane size or weight at an altitude of 40,000 feet.

  11. Aircraft cabin water spray disbenefits study

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Porter, Kent W.

    1993-01-01

    The concept of utilizing a cabin water spray system (CWSS) as a means of increasing passenger evacuation and survival time following an accident has received considerable publicity and has been the subject of testing by the regulatory agencies in both the United States and Europe. A test program, initiated by the CAA in 1987, involved the regulatory bodies in both Europe and North America in a collaborative research effort to determine the benefits and 'disbenefits' (disadvantages) of a CWSS. In order to obtain a balanced opinion of an onboard CWSS, NASA, and FAA requested the Boeing Commercial Airplane Group to investigate the potential 'disbenefits' of the proposed system from the perspective of the manufacturer and an operator. This report is the result of a year-long, cost-sharing contract study between the Boeing Commercial Airplane Group, NASA, and FAA. Delta Air Lines participated as a subcontract study team member and investigated the 'return to service' costs for an aircraft that would experience an uncommanded operation of a CWSS without the presence of fire. Disbenefits identified include potential delays in evacuation, introduction of 'common cause failure' in redundant safety of flight systems, physiological problems for passengers, high cost of refurbishment for inadvertent discharge, and potential to negatively affect other safety systems.

  12. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  13. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  14. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  15. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  16. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  17. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... emergency procedure. A 17-second flight crew recognition and reaction time must be applied between cabin... pressurization system must prevent the cabin altitude from exceeding the cabin altitude-time history shown in... exceeds 25,000 feet, the maximum time the cabin altitude may exceed 25,000 feet is 2 minutes;...

  18. 14 CFR 23.841 - Pressurized cabins.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... emergency procedure. A 17-second flight crew recognition and reaction time must be applied between cabin... pressurization system must prevent the cabin altitude from exceeding the cabin altitude-time history shown in... exceeds 25,000 feet, the maximum time the cabin altitude may exceed 25,000 feet is 2 minutes;...

  19. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  20. A research program to reduce interior noise in general aviation airplanes. Influence of depressurization and damping material on the noise reduction characteristics of flat and curved stiffened panels

    NASA Technical Reports Server (NTRS)

    Navaneethan, R.; Streeter, B.; Koontz, S.; Roskam, J.

    1981-01-01

    Some 20 x 20 aluminum panels were studied in a frequency range from 20 Hz to 5000 Hz. The noise sources used were a swept sine wave generator and a random noise generator. The effect of noise source was found to be negligible. Increasing the pressure differential across the panel gave better noise reduction below the fundamental resonance frequency due to an increase in stiffness. The largest increase occurred in the first 1 psi pressure differential. The curved, stiffened panel exhibited similar behavior, but with a lower increase of low frequency noise reduction. Depressurization on these panels resulted in decreased noise reduction at higher frequencies. The effect of damping tapes on the overall noise reduction values of the test specimens was small away from the resonance frequency. In the mass-law region, a slight and proportional improvement in noise reduction was observed by adding damping material. Adding sound absorbtion material to a panel with damping material beneficially increased noise reduction at high frequencies.

  1. Estimation of Flight Trajectories by Using GPS Data Measured in Airliner Cabin

    NASA Astrophysics Data System (ADS)

    Totoki, Hironori; Wickramasinghe, Navinda Kithmal; Hamada, Taturo; Miyazawa, Yoshikazu

    Flight trajectory of a passenger aircraft is critical for the research and development of future air traffic control system. Generally, though, flight data are closed to the public view. In this paper a simple method is introduced to estimate flight trajectories using a commercial GPS receiver at a cabin of an in-flight airplane and numerical weather data. Barometric pressure altitude and Mach number were evaluated at the study. Results prove that airplanes follow almost exactly the predetermined airway and cruising altitude. Maximum deviation was recorded only at a magnitude of several dozen meters.

  2. 14 CFR Appendix B to Part 36 - Noise Levels for Transport Category and Jet Airplanes Under § 36.103

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for the calculation of atmospheric absorption coefficients. (i) Sea level atmospheric pressure of 2116 pounds per square foot (psf) (1013.25 hPa); (ii) Ambient sea-level air temperature of 77 °F (25 °C, i.e... effective perceived noise level expressed in EPNdB, as calculated using the procedures of appendix A of...

  3. 14 CFR Appendix B to Part 36 - Noise Levels for Transport Category and Jet Airplanes Under § 36.103

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for the calculation of atmospheric absorption coefficients. (i) Sea level atmospheric pressure of 2116 pounds per square foot (psf) (1013.25 hPa); (ii) Ambient sea-level air temperature of 77 °F (25 °C, i.e... effective perceived noise level expressed in EPNdB, as calculated using the procedures of appendix A of...

  4. 14 CFR Appendix B to Part 36 - Noise Levels for Transport Category and Jet Airplanes Under § 36.103

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for the calculation of atmospheric absorption coefficients. (i) Sea level atmospheric pressure of 2116 pounds per square foot (psf) (1013.25 hPa); (ii) Ambient sea-level air temperature of 77 °F (25 °C, i.e... effective perceived noise level expressed in EPNdB, as calculated using the procedures of appendix A of...

  5. Furry pet allergens, fungal DNA and microbial volatile organic compounds (MVOCs) in the commercial aircraft cabin environment.

    PubMed

    Fu, Xi; Lindgren, Torsten; Guo, Moran; Cai, Gui-Hong; Lundgren, Håkan; Norbäck, Dan

    2013-06-01

    There has been concern about the cabin environment in commercial aircraft. We measured cat, dog and horse allergens and fungal DNA in cabin dust and microbial volatile organic compounds (MVOCs) in cabin air. Samples were collected from two European airline companies, one with cabins having textile seats (TSC) and the other with cabins having leather seats (LSC), 9 airplanes from each company. Dust was vacuumed from seats and floors in the flight deck and different parts of the cabin. Cat (Fel d1), dog (Can f1) and horse allergens (Equ cx) were analyzed by ELISA. Five sequences of fungal DNA were analyzed by quantitative PCR. MVOCs were sampled on charcoal tubes in 42 TSC flights, and 17 compounds were analyzed by gas chromatography mass spectrometry (GC-MS) with selective ion monitoring (SIM). MVOC levels were compared with levels in homes from Nordic countries. The weight of dust was 1.8 times larger in TSC cabins as compared to LSC cabins (p < 0.001). In cabins with textile seats, the geometric mean (GM) concentrations of Fel d1, Can f1 and Equ cx were 5359 ng g(-1), 6067 ng g(-1), and 13 703 ng g(-1) (GM) respectively. Levels of Fel d1, Can f1 and Equ cx were 50 times, 27 times and 75 times higher respectively, in TSC cabins as compared to LSC cabins (p < 0.001). GM levels of Aspergillus/Penicillium DNA, Aspergillus versicolor DNA, Stachybotrys chartarum DNA and Streptomyces DNA were all higher in TSC as compared to LSC (p < 0.05). The sum of MVOCs in cabin air (excluding butanols) was 3192 ng m(-3) (GM), 3.7 times higher than in homes (p < 0.001) and 2-methyl-1-butanol and 3-methyl-1-butanol concentrations were 15-17 times higher as compared to homes (p < 0.001). Concentrations of isobutanol, 1-butanol, dimethyldisulfide, 2-hexanone, 2-heptanone, 3-octanone, isobutyl acetate and ethyl-2-methylbutyrate were lower in cabin air as compared to homes (p < 0.05). In conclusion, textile seats are much more contaminated by pet allergens and fungal DNA than leather

  6. Aircraft Cabin Environmental Quality Sensors

    SciTech Connect

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  7. Development and testing of cabin sidewall acoustic resonators for the reduction of cabin tone levels in propfan-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.; Prydz, R. A.; Balena, F. J.

    1991-01-01

    The use of Helmholtz resonators to increase the sidewall transmission loss (TL) in aircraft cabin sidewalls is evaluated. Development, construction, and test of an aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Laboratory and flight test results are discussed. Resonators (448) were located between the enclosure trim panels and the fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a propfan fundamental blade passage frequency (235 Hz). After flight testing on the PTA aircraft, noise reduction (NR) tests were performed with the enclosure in the Kelly Johnson Research and Development Center Acoustics Laboratory. Broadband and tonal excitations were used in the laboratory. Tonal excitation simulated the propfan flight test excitation. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. Increases in NR of up to 11 dB were measured. The effects of flanking, sidewall absorption, cabin absorption, resonator loading of trim panels, and panel vibrations are presented. Resonator and sidewall panel design and test are discussed.

  8. Takeoff and landing performance and noise measurements of a deflected slipstream STOL airplane with interconnected propellers and rotating cylinder flaps

    NASA Technical Reports Server (NTRS)

    Weiberg, J. A.; Giulianetti, D.; Gambucci, B.; Innis, R. C.

    1973-01-01

    A YOV-10A aircraft was modified to incorporate rotating cylinder flaps and interconnected propellers with Lycoming T-53-L11 engines. Flight tests were made to evaluate the low speed handling qualities and performance characteristics. The flight test results indicated that landings could be made with approach speeds of 55 to 65 knots (CL = 4.5) and descent angles of 6 deg to 8 deg for total flap angles of 60 deg to 75 deg. At higher flap angles, deterioration of stability and control characteristics precluded attempts at landing. The noise level on the ground under an 8 deg landing approach path was below 86 PNdB at distances beyond 1 nautical mile from touchdown. Takeoffs were made with 30 deg to 45 deg flaps at lift off speeds of 75 to 80 knots and climb angles of 4 deg to 8 deg. Noise levels were below 83 PNdB at 3.5 nautical miles from the start of ground roll.

  9. 14 CFR 91.863 - Transfers of Stage 2 airplanes with base level.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Transfers of Stage 2 airplanes with base... Noise Limits § 91.863 Transfers of Stage 2 airplanes with base level. (a) Stage 2 airplanes may be... the corresponding number of Stage 2 airplanes. (b) No portion of a U.S. operator's base...

  10. Correlation and assessment of structural airplane crash data with flight parameters at impact

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1982-01-01

    Crash deceleration pulse data from a crash dynamics program on general aviation airplanes and from transport crash data were analyzed. Structural airplane crash data and flight parameters at impact were correlated. Uncoupled equations for the normal and longitudinal floor impulses in the cabin area of the airplane were derived, and analytical expressions for structural crushing during impact and horizontal slide out were also determined. Agreement was found between experimental and analytical data for general aviation and transport airplanes over a relatively wide range of impact parameter. Two possible applications of the impulse data are presented: a postcrash evaluation of crash test parameters and an assumed crash scenario.

  11. Prediction of car cabin environment by means of 1D and 3D cabin model

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Pokorný, J.; Jícha, M.

    2012-04-01

    Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.

  12. Noise

    MedlinePlus

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  13. 36 CFR 13.176 - Cabins in wilderness areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Cabins in wilderness areas... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins Public Use Cabins § 13.176 Cabins in wilderness areas. The use and occupancy of a cabin or other structure located in a designated wilderness area...

  14. 36 CFR 13.176 - Cabins in wilderness areas.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Cabins in wilderness areas... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins Public Use Cabins § 13.176 Cabins in wilderness areas. The use and occupancy of a cabin or other structure located in a designated wilderness area...

  15. 36 CFR 13.176 - Cabins in wilderness areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Cabins in wilderness areas... INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins Public Use Cabins § 13.176 Cabins in wilderness areas. The use and occupancy of a cabin or other structure located in a designated wilderness area...

  16. An Approximate Method of Calculation of Relative Humidity Required to Prevent Frosting on Inside of Aircraft Pressure Cabin Windows, Special Report

    NASA Technical Reports Server (NTRS)

    Jones, Alun R.

    1940-01-01

    This report has been prepare in response to a request for information from an aircraft company. A typical example was selected for the presentation of an approximate method of calculation of the relative humidity required to prevent frosting on the inside of a plastic window in a pressure type cabin on a high speed airplane. The results of the study are reviewed.

  17. 50 CFR 26.35 - Cabin sites.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Cabin sites. 26.35 Section 26.35 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM PUBLIC ENTRY AND USE Public Use and Recreation § 26.35 Cabin sites. (a) There shall be no new private cabin site...

  18. 50 CFR 26.35 - Cabin sites.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Cabin sites. 26.35 Section 26.35 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM PUBLIC ENTRY AND USE Public Use and Recreation § 26.35 Cabin sites. (a) There shall be no new private cabin site...

  19. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Stage 1 airplane prior to the change in type design, in addition to the provisions of paragraph (b) of... the change in type design, may not exceed either (A) each Stage 3 noise limit by more than 3 EPNdB, or... bypass ratio of 2 or more before a change in type design— (i) The airplane may not be a Stage 1...

  20. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Stage 1 airplane prior to the change in type design, in addition to the provisions of paragraph (b) of... the change in type design, may not exceed either (A) each Stage 3 noise limit by more than 3 EPNdB, or... bypass ratio of 2 or more before a change in type design— (i) The airplane may not be a Stage 1...

  1. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Stage 1 airplane prior to the change in type design, in addition to the provisions of paragraph (b) of... the change in type design, may not exceed either (A) each Stage 3 noise limit by more than 3 EPNdB, or... bypass ratio of 2 or more before a change in type design— (i) The airplane may not be a Stage 1...

  2. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Stage 1 airplane prior to the change in type design, in addition to the provisions of paragraph (b) of... the change in type design, may not exceed either (A) each Stage 3 noise limit by more than 3 EPNdB, or... bypass ratio of 2 or more before a change in type design— (i) The airplane may not be a Stage 1...

  3. 14. View of front of privy associated with Free Cabin, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of front of privy associated with Free Cabin, facing south. Privy is located approximately 150' south of free cabin - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  4. Orange County Outdoor School: Cabin Leader's Manual.

    ERIC Educational Resources Information Center

    Orange County Dept. of Education, Santa Ana, CA.

    Presented in five sections, the manual furnishes cabin leaders (high school students) with background information concerning philosophy, teaching, objectives, daily schedule, and cabin leader responsibilities in the Orange County Outdoor School program. The welcome section contains the history of the Outdoor School, staff responsibilities,…

  5. 14 CFR 121.215 - Cabin interiors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Cabin interiors. 121.215 Section 121.215 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.215 Cabin interiors....

  6. Discover Presidential Log Cabins. Teacher's Discussion Guide.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    Discover Presidential Log Cabins is a set of materials designed to help educate 6-8 grade students about the significance of three log cabin sites occupied by George Washington, Ulysses Grant, Abraham Lincoln, and Theodore Roosevelt. This teacher's discussion guide is intended for use as part of a larger, comprehensive social studies program, and…

  7. 50 CFR 26.35 - Cabin sites.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM PUBLIC ENTRY AND USE Public Use and Recreation § 26.35 Cabin sites. (a) There shall be no new private cabin site permits issued for national wildlife refuges. All appropriate provisions of 43 CFR part 21 apply to the phaseout of existing permits on national wildlife refuges. (b)...

  8. 50 CFR 26.35 - Cabin sites.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM PUBLIC ENTRY AND USE Public Use and Recreation § 26.35 Cabin sites. (a) There shall be no new private cabin site permits issued for national wildlife refuges. All appropriate provisions of 43 CFR part 21 apply to the phaseout of existing permits on national wildlife refuges. (b)...

  9. 50 CFR 26.35 - Cabin sites.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... NATIONAL WILDLIFE REFUGE SYSTEM PUBLIC ENTRY AND USE Public Use and Recreation § 26.35 Cabin sites. (a) There shall be no new private cabin site permits issued for national wildlife refuges. All appropriate provisions of 43 CFR part 21 apply to the phaseout of existing permits on national wildlife refuges. (b)...

  10. Vibro-acoustic analysis procedures for the evaluation of the sound insulation characteristics of agricultural machinery cabins

    NASA Astrophysics Data System (ADS)

    Desmet, W.; Pluymers, B.; Sas, P.

    2003-09-01

    Over the last few years, customer demands regarding acoustic performance, along with the tightening of legal regulations on noise emission levels and human exposure to noise, have made the noise and vibration properties into important design criteria for agricultural machinery cabins. In this framework, both experimental analysis procedures for prototype testing as well as reliable numerical prediction tools for early design assessment are compulsory for an efficient optimization of the cabin noise and vibration comfort. This paper discusses several numerical approaches, which are based on the finite element and boundary element method, in terms of their practical use for airborne sound insulation predictions. To illustrate the efficiency and reliability of the various vibro-acoustic analysis procedures, the numerical procedures are applied for the case of a harvester driver's cabin and validated with experimental results.

  11. Cabin Environment Physics Risk Model

    NASA Technical Reports Server (NTRS)

    Mattenberger, Christopher J.; Mathias, Donovan Leigh

    2014-01-01

    This paper presents a Cabin Environment Physics Risk (CEPR) model that predicts the time for an initial failure of Environmental Control and Life Support System (ECLSS) functionality to propagate into a hazardous environment and trigger a loss-of-crew (LOC) event. This physics-of failure model allows a probabilistic risk assessment of a crewed spacecraft to account for the cabin environment, which can serve as a buffer to protect the crew during an abort from orbit and ultimately enable a safe return. The results of the CEPR model replace the assumption that failure of the crew critical ECLSS functionality causes LOC instantly, and provide a more accurate representation of the spacecraft's risk posture. The instant-LOC assumption is shown to be excessively conservative and, moreover, can impact the relative risk drivers identified for the spacecraft. This, in turn, could lead the design team to allocate mass for equipment to reduce overly conservative risk estimates in a suboptimal configuration, which inherently increases the overall risk to the crew. For example, available mass could be poorly used to add redundant ECLSS components that have a negligible benefit but appear to make the vehicle safer due to poor assumptions about the propagation time of ECLSS failures.

  12. Aircraft Cabin Turbulence Warning Experiment

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Larcher, Kenneth

    2006-01-01

    New turbulence prediction technology offers the potential for advance warning of impending turbulence encounters, thereby allowing necessary cabin preparation time prior to the encounter. The amount of time required for passengers and flight attendants to be securely seated (that is, seated with seat belts fastened) currently is not known. To determine secured seating-based warning times, a consortium of aircraft safety organizations have conducted an experiment involving a series of timed secured seating trials. This demonstrative experiment, conducted on October 1, 2, and 3, 2002, used a full-scale B-747 wide-body aircraft simulator, human passenger subjects, and supporting staff from six airlines. Active line-qualified flight attendants from three airlines participated in the trials. Definitive results have been obtained to provide secured seating-based warning times for the developers of turbulence warning technology

  13. Electromagnetic Propagation Prediction Inside Aircraft Cabins

    NASA Technical Reports Server (NTRS)

    Hankins, Genevieve; Vahala, Linda; Beggs, John H.

    2004-01-01

    Electromagnetic propagation models for signal strength prediction within aircraft cabins are essential for evaluating and designing a wireless communication system to be implemented onboard aircraft. A model was developed using Wireless Valley's SitePlanner; which is commercial grade software intended for predictions within office buildings. The performance of the model was evaluated through a comparison with test data measurements taken on several aircraft. The comparison concluded that the model can accurately predict power propagation within the cabin. This model can enhance researchers understanding of power propagation within aircraft cabins and will aid in future research.

  14. 14 CFR 36.103 - Noise limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Noise limits. 36.103 Section 36.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS... Noise limits. (a) For subsonic transport category large airplanes and subsonic jet airplanes...

  15. 14 CFR 36.103 - Noise limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Noise limits. 36.103 Section 36.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS... Noise limits. (a) For subsonic transport category large airplanes and subsonic jet airplanes...

  16. 14 CFR 36.103 - Noise limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Noise limits. 36.103 Section 36.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS... Noise limits. (a) For subsonic transport category large airplanes and subsonic jet airplanes...

  17. 14 CFR 36.103 - Noise limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Noise limits. 36.103 Section 36.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS... Noise limits. (a) For subsonic transport category large airplanes and subsonic jet airplanes...

  18. Physical and situational inequality on airplanes predicts air rage.

    PubMed

    DeCelles, Katherine A; Norton, Michael I

    2016-05-17

    We posit that the modern airplane is a social microcosm of class-based society, and that the increasing incidence of "air rage" can be understood through the lens of inequality. Research on inequality typically examines the effects of relatively fixed, macrostructural forms of inequality, such as socioeconomic status; we examine how temporary exposure to both physical and situational inequality, induced by the design of environments, can foster antisocial behavior. We use a complete set of all onboard air rage incidents over several years from a large, international airline to test our predictions. Physical inequality on airplanes-that is, the presence of a first class cabin-is associated with more frequent air rage incidents in economy class. Situational inequality-boarding from the front (requiring walking through the first class cabin) versus the middle of the plane-also significantly increases the odds of air rage in both economy and first class. We show that physical design that highlights inequality can trigger antisocial behavior on airplanes. More broadly, these results point to the importance of considering the design of environments-from airplanes to office layouts to stadium seating-in understanding both the form and emergence of antisocial behavior. PMID:27140642

  19. 14 CFR 91.819 - Civil supersonic airplanes that do not comply with part 36.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Civil supersonic airplanes that do not... RULES Operating Noise Limits § 91.819 Civil supersonic airplanes that do not comply with part 36. (a) Applicability. This section applies to civil supersonic airplanes that have not been shown to comply with...

  20. 14 CFR 91.819 - Civil supersonic airplanes that do not comply with part 36.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Civil supersonic airplanes that do not... RULES Operating Noise Limits § 91.819 Civil supersonic airplanes that do not comply with part 36. (a) Applicability. This section applies to civil supersonic airplanes that have not been shown to comply with...

  1. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    NASA Technical Reports Server (NTRS)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  2. A study of helicopter interior noise reduction

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Clevenson, S. A.

    1975-01-01

    The interior noise levels of existing helicopters are discussed along with an ongoing experimental program directed towards reducing these levels. Results of several noise and vibration measurements on Langley Research Center's Civil Helicopter Research Aircraft are presented, including measurements taken before and after installation of an acoustically-treated cabin. The predominant noise source in this helicopter is the first stage planetary gear-clash in the main gear box, both before and after installation of the acoustically treated cabin. Noise reductions of up to 20 db in some octave bands may be required in order to obtain interior noise levels comparable to commercial jet transports.

  3. [Risk of noise-induced hearing loss caused by radio communication? Audiologic findings in helicopter crews and pilots of propeller airplanes].

    PubMed

    Matschke, R G

    1987-12-01

    The affects of noise on the human inner ear have been well known for a long time, and measures to prevent occupational noise-induced hearing loss show a clear reduction in the statistics of morbidity. Nevertheless, there are working environments in which the use of ear protection seems to be inapplicable, because communication by speech is indispensable, for example in the cockpit of aircraft. Noise exposure measurements were performed on pilots of helicopters and propeller-machines of the German Federal Navy during realistic flight situations. The ambient noise levels during regular flight service were maintained at levels between 89 dB and 120 dB. Sound protection by flight-helmets and headphones is not only neutralised while using radio and intercom, but the noise during radio-communication is even louder than the noise of the engines. The use of ear protection to avoid excessive noise exposure is only of limited effectiveness. While pilots with normal hearing show only little impairment of speech intelligibility, those with noise-induced hearing loss show substantial impairment that varies in proportion to their hearing loss. Communication abilities may be drastically reduced which may compromise the reliability of radio-communication. The problem may be possibly solved in future by an electronic compensation system for noise. PMID:3429278

  4. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 4: Airplane evaluation and analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The retrofit of JT8D-109 (refan) engines are evaluated on a 727-200 airplane in terms of airworthiness, performance, and noise. Design of certifiable hardware, manufacture, and ground testing of the essential nacelle components is included along with analysis of the certifiable airplane design to ensure airworthiness compliance and to predict the in-flight performance and noise characteristics of the modified airplane. The analyses confirm that the 727 refan airplane is certifiable. The refan airplane range would be 15% less that of the baseline airplane and block fuel would be increased by 1.5% to 3%. However, with this particular 727-200 model, with a brake release gross weight of 172,500 lb (78,245 kg), it is possible to operate the airplane (with minor structural modifications) at higher gross weights and increase the range up to 15% over the 727-200 (baseline) airplane. The refan airplane FAR Part 36 noise levels would be 6 to 8 EPNdB (effective perceived noise in decibels) below the baseline. Noise footprint studies showed that approach noise contour areas are small compared to takeoff areas. The 727 refan realizes a 68% to 83% reduction in annoyance-weighted area when compared to the 727-200 over a range of gross weights and operational procedures.

  5. Airplane Balance

    NASA Technical Reports Server (NTRS)

    Huguet, L

    1921-01-01

    The authors argue that the center of gravity has a preponderating influence on the longitudinal stability of an airplane in flight, but that manufacturers, although aware of this influence, are still content to apply empirical rules to the balancing of their airplanes instead of conducting wind tunnel tests. The author examines the following points: 1) longitudinal stability, in flight, of a glider with coinciding centers; 2) the influence exercised on the stability of flight by the position of the axis of thrust with respect to the center of gravity and the whole of the glider; 3) the stability on the ground before taking off, and the influence of the position of the landing gear. 4) the influence of the elements of the glider on the balance, the possibility of sometimes correcting defective balance, and the valuable information given on this point by wind tunnel tests; 5) and a brief examination of the equilibrium of power in horizontal flight, where the conditions of stability peculiar to this kind of flight are added to previously existing conditions of the stability of the glider, and interfere in fixing the safety limits of certain evolutions.

  6. Cabin cruising altitudes for regular transport aircraft.

    PubMed

    2008-04-01

    The adverse physiological effects of flight, caused by ascent to altitude and its associated reduction in barometric pressure, have been known since the first manned balloon flights in the 19th century. It soon became apparent that the way to protect the occupant of an aircraft from the effects of ascent to altitude was to enclose either the individual, or the cabin, in a sealed or pressurized environment. Of primary concern in commercial airline transport operations is the selection of a suitable cabin pressurization schedule that assures adequate oxygen partial pressures for all intended occupants. For the past several decades, 8000 ft has been accepted as the maximum operational cabin pressure altitude in the airline industry. More recent research findings on the physiological and psycho-physiological effects of mild hypoxia have provided cause for renewed discussion of the "acceptability" of a maximum cabin cruise altitude of 8000 ft; however, we did not find sufficient scientific data to recommend a change in the cabin altitude of transport category aircraft. The Aerospace Medical Association (AsMA) should support further research to evaluate the safety, performance and comfort of occupants at altitudes between 5000 and 10,000 ft. PMID:18457303

  7. Noise control mechanisms of inside aircraft

    NASA Astrophysics Data System (ADS)

    Zverev, A. Ya.

    2016-07-01

    World trends in the development of methods and approaches to noise reduction in aircraft cabins are reviewed. The paper discusses the mechanisms of passive and active noise and vibration control, application of "smart" and innovative materials, new approaches to creating all fuselage-design elements, and other promising directions of noise control inside aircraft.

  8. 3. VIEW OF STONE CABIN I. CAMERA POINTED EASTNORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF STONE CABIN I. CAMERA POINTED EAST-NORTHEAST. - Florida Mountain Mining Sites, Stone Cabin I, West slope Florida Mountain, Northeast Empire Mine below summit, Silver City, Owyhee County, ID

  9. 1. VIEW OF STONE CABIN I AND LANDSCAPE TO THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF STONE CABIN I AND LANDSCAPE TO THE NORTH. CAMERA POINTED NORTH. - Florida Mountain Mining Sites, Stone Cabin I, West slope Florida Mountain, Northeast Empire Mine below summit, Silver City, Owyhee County, ID

  10. 2. VIEW OF STONE CABIN I FROM SOUTHEAST CORNER. CAMERA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF STONE CABIN I FROM SOUTHEAST CORNER. CAMERA POINTED WEST. - Florida Mountain Mining Sites, Stone Cabin I, West slope Florida Mountain, Northeast Empire Mine below summit, Silver City, Owyhee County, ID

  11. 1. STONE CABIN II FROM ABOVE NORTHEAST CORNER. CAMERA POINTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. STONE CABIN II FROM ABOVE NORTHEAST CORNER. CAMERA POINTED WEST. - Florida Mountain Mining Sites, Stone Cabin II, West slope Florida Mountain, East of Empire State Mine below summit, Silver City, Owyhee County, ID

  12. 3. STONE CABIN II FROM ABOVE SOUTHEAST CORNER. CAMERA POINTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. STONE CABIN II FROM ABOVE SOUTHEAST CORNER. CAMERA POINTED NORTH. - Florida Mountain Mining Sites, Stone Cabin II, West slope Florida Mountain, East of Empire State Mine below summit, Silver City, Owyhee County, ID

  13. 4. CLOSEUP VIEW OF CHIMNEY STONE CABIN I. CAMERA POINTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CLOSEUP VIEW OF CHIMNEY STONE CABIN I. CAMERA POINTED EAST-NORTHEAST. - Florida Mountain Mining Sites, Stone Cabin I, West slope Florida Mountain, Northeast Empire Mine below summit, Silver City, Owyhee County, ID

  14. 2. STONE CABIN II FROM MIDNORTHERN WALL. CAMERA POINTED SOUTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. STONE CABIN II FROM MID-NORTHERN WALL. CAMERA POINTED SOUTH. - Florida Mountain Mining Sites, Stone Cabin II, West slope Florida Mountain, East of Empire State Mine below summit, Silver City, Owyhee County, ID

  15. View of center portion of tower with closeup of cabin, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of center portion of tower with close-up of cabin, facing southeast - Cold Mountain Fire Lookout Station, Cabin, Krassel District, Frank Church River of No Return Wilderness, Dixie, Idaho County, ID

  16. 5. View of immediate setting of Free Cabin across State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of immediate setting of Free Cabin across State Route 121/U.S. Highway 25/Peach Orchard Road, facing west. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  17. 79. Rocky Knob Recreation area housekeeping cabin with stone chimney ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. Rocky Knob Recreation area housekeeping cabin with stone chimney mimicking the log cabins of the Southern Appalachians. Looking south. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  18. On the way to extended noise reductions in propeller aircraft

    NASA Astrophysics Data System (ADS)

    Kiers, R. F. C.

    1984-08-01

    Origins of cabin noise in propeller driven aircraft (PDE) and the importance of further reductions are described. Trends in propeller technology and fuselage construction are aimed at the development of extremely fuel-efficient PDE. However, the related increase of cabin noise levels urges the extension of noise reduction in PDE. Fokker noise reduction methodology for meeting the challenge of maintaining and improving noise levels in future PDE is discussed. Additional noise reduction is hard to obtain. Sophisticated techniques were used to acquire the necessary data and take effective noise reduction measures.

  19. Human Factors in Cabin Accident Investigations

    NASA Technical Reports Server (NTRS)

    Chute, Rebecca D.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Human factors has become an integral part of the accident investigation protocol. However, much of the investigative process remains focussed on the flight deck, airframe, and power plant systems. As a consequence, little data has been collected regarding the human factors issues within and involving the cabin during an accident. Therefore, the possibility exists that contributing factors that lie within that domain may be overlooked. The FAA Office of Accident Investigation is sponsoring a two-day workshop on cabin safety accident investigation. This course, within the workshop, will be of two hours duration and will explore relevant areas of human factors research. Specifically, the three areas of discussion are: Information transfer and resource management, fatigue and other physical stressors, and the human/machine interface. Integration of these areas will be accomplished by providing a suggested checklist of specific cabin-related human factors questions for investigators to probe following an accident.

  20. The shuttle orbiter cabin atmospheric revitalization systems

    NASA Technical Reports Server (NTRS)

    Ward, C. F.; Owens, W. L.

    1975-01-01

    The Orbiter Atmospheric Revitalization Subsystem (ARS) and Pressure Control Subsystem (ARPCS) are designed to provide the flight crew and passengers with a pressurized environment that is both life-supporting and within crew comfort limitations. The ARPCS is a two-gas (oxygen-nitrogen) system that obtains oxygen from the Power Reactant Supply and Distribution (PRSD) subsystem and nitrogen from the nitrogen storage tanks. The ARS includes the water coolant loop; cabin CO2, odor, humidity and temperature control; and avionics cooling. Baseline ARPCS and ARS changes since 1973 include removal of the sublimator from the water coolant loop, an increase in flowrates to accommodate increased loads, elimination of the avionics bay isolation from the cabin, a decision to have an inert vehicle during ferry flight, elimination of coldwall tubing around windows and hatches, and deletion of the cabin heater.

  1. A Cabin Air Separator for EVA Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  2. A directional spotlight baffle for control cabins

    NASA Astrophysics Data System (ADS)

    Anderson, K. W.; Clark, B. A. J.

    1980-10-01

    Direct overhead lighting in control cabins frequently gives rise to unwanted bright images of the luminaries in the windows and these images may degrade the cabin operator's view of the external world. A directional baffle incorporating light traps which allow a high ratio of wanted to unwanted illumination from a specific conventional spotlamp is described. In practical tests, images from the spotlamp baffle combination were practically inconspicuous both in day and night conditions. A general method of design is described for extension of the principle to other types of spotlamps.

  3. 36 CFR 13.176 - Cabins in wilderness areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 13.176 Section 13.176 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Cabins Public Use Cabins § 13.176 Cabins in wilderness areas... visitor services, but not to the exclusion of the general public. Use of Temporary Facilities Related...

  4. 14 CFR 121.578 - Cabin ozone concentration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Cabin ozone concentration. 121.578 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.578 Cabin ozone concentration... successfully demonstrated to the Administrator that the concentration of ozone inside the cabin will not...

  5. 2. GENERAL VIEW: MAIN DRIVEWAY: CORD CABIN IS TO THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW: MAIN DRIVEWAY: CORD CABIN IS TO THE RIGHT OF KIOSK THE FAGEOL CABIN IS IN THE BACKGROUND. - Camp Richardson Resort, Cord Cabin, U.S. Highway 89, 3 miles west of State Highway 50 & 89, South Lake Tahoe, El Dorado County, CA

  6. 14 CFR 36.103 - Noise limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise limits. 36.103 Section 36.103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes §...

  7. The Light Airplane

    NASA Technical Reports Server (NTRS)

    Driggs, Ivan H.

    1925-01-01

    This report begins with a review and analysis of the work being done to develop light airplanes in the U.S. and abroad. A technical discussion of the construction and innovations in light airplanes is then presented.

  8. Laboratory test and acoustic analysis of cabin treatment for propfan test assessment aircraft

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Gatineau, R. J.

    1991-01-01

    An aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Helmholtz resonators were attached to the cabin trim panels to increase the sidewall transmission loss (TL). Resonators (448) were located between the trim panels and fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a 235 Hz resonance frequency. After flight testing on the PTA aircraft, the enclosure was tested in the Kelly Johnson R and D Center Acoustics Lab. Laboratory noise reduction (NR) test results are discussed. The enclosure was placed in a Gulfstream 2 fuselage section. Broadband (138 dB overall SPL) and tonal (149 dB overall SPL) excitations were used in the lab. Tonal excitation simulated the propfan flight test excitation. The fundamental tone was stepped in 2 Hz intervals from 225 through 245 Hz. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. The effects of flanking, sidewall absorption, cabin adsorption, resonator loading of trim panels, and panel vibrations are presented. Increases in NR of up to 11 dB were measured.

  9. Congress holds hearings on airliner cabin IAQ

    SciTech Connect

    Cox, J.E.; Miro, C.R.

    1993-11-01

    This article reports on congressional hearings on airliner cabin IAQ. The topics of the article include lax enforcement of existing standards, inadequate standards, proposed new standards, epidemiological investigations of the possibility of transmission of airborne infectious diseases, and comparison of FAA standards with ASHRAE standards for buildings.

  10. 14 CFR 121.215 - Cabin interiors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Cabin interiors. 121.215 Section 121.215 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL...

  11. 14 CFR 121.215 - Cabin interiors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Cabin interiors. 121.215 Section 121.215 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL...

  12. 14 CFR 121.215 - Cabin interiors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Cabin interiors. 121.215 Section 121.215 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL...

  13. 14 CFR 121.215 - Cabin interiors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Cabin interiors. 121.215 Section 121.215 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL...

  14. Assembly auxiliary system for narrow cabins of spacecraft

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Shiqi; Wang, Junfeng

    2015-09-01

    Due to the narrow space and complex structure of spacecraft cabin, the existing asssembly systems can not well suit for the assembly process of cabin products. This paper aims to introduce an assembly auxiliary system for cabin products. A hierarchical-classification method is proposed to re-adjust the initial assembly relationship of cabin into a new hierarchical structure for efficient assembly planning. An improved ant colony algorithm based on three assembly principles is established for searching a optimizational assembly sequence of cabin parts. A mixed reality assembly environment is constructed with enhanced information to promote interaction efficiency of assembly training and guidance. Based on the machine vision technology, the inspection of left redundant objects and measurement of parts distance in inner cabin are efficiently performed. The proposed system has been applied to the assembly work of a spacecraft cabin with 107 parts, which includes cabin assembly planning, assembly training and assembly quality inspection. The application result indicates that the proposed system can be an effective assistant tool to cabin assembly works and provide an intuitive and real assembly experience for workers. This paper presents an assembly auxiliary system for spacecraft cabin products, which can provide technical support to the spacecraft cabin assembly industry.

  15. 14 CFR 36.101 - Noise measurement and evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Noise measurement and evaluation. 36.101... AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.101 Noise measurement and evaluation. For transport category large...

  16. 14 CFR 36.101 - Noise measurement and evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Noise measurement and evaluation. 36.101... AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.101 Noise measurement and evaluation. For transport category large...

  17. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... having no excessive sound absorption characteristics such as those caused by thick, matted, or tall grass, by shrubs, or by wooded areas. No obstructions which significantly influence the sound field from the... approved by the FAA. (7) Sound pressure level data for noise evaluation purposes must be obtained...

  18. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... terrain having no excessive sound absorption characteristics such as those caused by thick, matted, or tall grass, by shrubs, or by wooded areas. No obstructions which significantly influence the sound... procedures must be approved by the FAA. (7) Sound pressure level data for noise evaluation purposes must...

  19. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... having no excessive sound absorption characteristics such as those caused by thick, matted, or tall grass, by shrubs, or by wooded areas. No obstructions which significantly influence the sound field from the... approved by the FAA. (7) Sound pressure level data for noise evaluation purposes must be obtained...

  20. Investigation of acoustic properties of a rigid foam with application to noise reduction in light aircraft

    NASA Technical Reports Server (NTRS)

    Holmer, C. I.

    1972-01-01

    A analytic model of sound transmission into an aircraft cabin was developed as well as test procedures which appropriately rank order properties which affect sound transmission. The proposed model agrees well with available data, and reveals that the pertinent properties of an aircraft cabin for sound transmission include: stiffness of cabin walls at low frequencies (as this reflects on impedance of the walls) and cabin wall transmission loss and interior absorption at mid and high frequencies. Below 315 Hz the foam contributes substantially to wall stiffness and sound transmission loss of typical light aircraft cabin construction, and could potentially reduce cabin noise levels by 3-5 db in this frequency range at a cost of about 0:2 lb/sq. ft. of treated cabin area. The foam was found not to have significant sound absorbing properties.

  1. Net in-cabin emission rates of VOCs and contributions from outside and inside the aircraft cabin

    NASA Astrophysics Data System (ADS)

    Guan, Jun; Li, Zheng; Yang, Xudong

    2015-06-01

    Volatile organic compounds (VOCs) are one of the most important types of air pollutants in aircraft cabin. Balancing source intensity of VOCs and ventilation strategies is an essential conducive way to obtain acceptable aircraft cabin environment. This paper intends to develop a simplified model by a case study to estimate the net VOC emission rates of cabin interior, and contributions from outside and inside the aircraft cabin. In-flight continuous measurements of total VOCs (TVOC) in cabin air were made in six domestic flights in March 2013. The results indicate that the concentrations of TVOC mostly ranged from 0.20 mg m-3 to 0.40 mg m-3 in cabin air, which first increased at ascent, and then kept elevated during cruise, and decreased at descent in general. For further ventilation information, carbon dioxide (CO2) in supply air and re-circulated air was simultaneously observed as a ventilation tracer to calculate the bleed air ratios, outside airflow rates and total airflow rates in these flights. And thus, the emission rates derived from cabin interior and contributions of TVOC from bleed air and cabin interior were estimated for the whole flight accordingly. Results indicate that during the cruise phase, TVOC in cabin air mainly came from cabin interiors. However, contributions from outside air also became significant during taxiing on the ground, ascent and descent phases. The simplified model would be useful for developing better control strategies of aircraft cabin air quality.

  2. Crash tests of three identical low-wing single-engine airplane

    NASA Technical Reports Server (NTRS)

    Castle, C. B.; Alfaro-Bou, E.

    1983-01-01

    Three identical four place, low wing single engine airplane specimens with nominal masses of 1043 kg were crash tested under controlled free flight conditions. The tests were conducted at the same nominal velocity of 25 m/sec along the flight path. Two airplanes were crashed on a concrete surface (at 10 and 30 deg pitch angles), and one was crashed on soil (at a -30 deg pitch angle). The three tests revealed that the specimen in the -30 deg test on soil sustained massive structural damage in the engine compartment and fire wall. Also, the highest longitudinal cabin floor accelerations occurred in this test. Severe damage, but of lesser magnitude, occurred in the -30 deg test on concrete. The highest normal cabin floor accelerations occurred in this test. The least structural damage and lowest accelerations occurred in the 10 deg test on concrete.

  3. General problem of the airplane

    NASA Technical Reports Server (NTRS)

    Richard, Maurice; Richard, Paul

    1922-01-01

    A series of equations relating to airplanes are given and examples listed. Some of the equations listed include: the speed, altitude and carrying capacity of various airplanes; weight of an airplane; weight of various parts of an airplane; the polars of the wings; speeds of airplanes; radius of action.

  4. Acoustic control in a tractor cabin using two optimally designed Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Driesch, Patricia L.; Koopmann, Gary H.

    2003-10-01

    A virtual design methodology is developed to minimize the noise in enclosures with optimally designed, passive, 20 acoustic absorbers (Helmholtz resonators). A series expansion of eigenfunctions is used to represent the acoustic=20 absorbers as external volume velocities, eliminating the need for a solution of large matrix eigenvalue problems. A determination of this type (efficient model/reevaluation approach) significantly increases the design possibilities when optimization techniques are implemented. As a full-scale demonstration, the acoustic response from 90-190 Hz of a tractor cabin was investigated. The lowest cabin mode proposes a significant challenge to a noise control engineer since its anti-node is located near the head of the operator and often generates unacceptable sound-pressure levels. Exploiting the low-frequency capability of Helmholtz resonators, lumped parameter models of these resonators were coupled to the enclosure via an experimentally determined acoustic model of the tractor cabin. The virtual design methodology uses gradient optimization techniques as a post-processor for the modeling and analysis of the unmodified acoustic interior to determine optimal resonator characteristics. Using two optimally designed Helmholtz resonators, potential energy was experimentally reduced by 3.4 and 10.3 dB at 117 and 167 Hz, respectively.

  5. Speech intelligibility and speech quality of modified loudspeaker announcements examined in a simulated aircraft cabin.

    PubMed

    Pennig, Sibylle; Quehl, Julia; Wittkowski, Martin

    2014-01-01

    Acoustic modifications of loudspeaker announcements were investigated in a simulated aircraft cabin to improve passengers' speech intelligibility and quality of communication in this specific setting. Four experiments with 278 participants in total were conducted in an acoustic laboratory using a standardised speech test and subjective rating scales. In experiments 1 and 2 the sound pressure level (SPL) of the announcements was varied (ranging from 70 to 85 dB(A)). Experiments 3 and 4 focused on frequency modification (octave bands) of the announcements. All studies used a background noise with the same SPL (74 dB(A)), but recorded at different seat positions in the aircraft cabin (front, rear). The results quantify speech intelligibility improvements with increasing signal-to-noise ratio and amplification of particular octave bands, especially the 2 kHz and the 4 kHz band. Thus, loudspeaker power in an aircraft cabin can be reduced by using appropriate filter settings in the loudspeaker system. PMID:25183056

  6. Supersonic airplane study and design

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1993-01-01

    A supersonic airplane creates shocks which coalesce and form a classical N-wave on the ground, forming a double bang noise termed sonic boom. A recent supersonic commercial transport (the Concorde) has a loud sonic boom (over 100 PLdB) and low aerodynamic performance (cruise lift-drag ratio 7). To enhance the U.S. market share in supersonic transport, an airframer's market risk for a low-boom airplane has to be reduced. Computational fluid dynamics (CFD) is used to design airplanes to meet the dual constraints of low sonic boom and high aerodynamic performance. During the past year, a research effort was focused on three main topics. The first was to use the existing design tools, developed in past years, to design one of the low-boom wind-tunnel configurations (Ames Model 3) for testing at Ames Research Center in April 1993. The second was to use a Navier-Stokes code (Overflow) to support the Oblique-All-Wing (OAW) study at Ames. The third was to study an optimization technique applied on a Haack-Adams body to reduce aerodynamic drag.

  7. Interior noise control ground test studies for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.

    1989-01-01

    The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.

  8. Personal noise exposures of operators of agricultural tractors.

    PubMed

    Aybek, Ali; Kamer, H Atil; Arslan, Selçuk

    2010-03-01

    Approximately one million agricultural tractors are used in Turkey for crop production and about one-third of the population lives in rural areas. The objectives of this study were to determine sound pressure levels, A-weighted sound pressure levels, and the permissible exposure time for tractors without cabins, field-installed cabins, and original cabins at ear level of agricultural tractor operators for following machines: plows, cultivators, top soil cultivators, rotary tillers, tool combinations (harrow+roller), mechanical drills, pneumatic drills, chemical applicators, fertilizer applicators, drum mowers, balers, and forage harvesters. Variance analyses showed that type of operation, type of cabins, and operation x cabin interactions were statistically significant (P<0.01) both for sound pressure levels and equivalent (A-weighted) sound pressure levels. The use of original cabins had a greater effect in decreasing average sound pressures and resulted in more efficient noise insulation, especially at higher center frequencies compared to field-installed cabins whereas field-installed cabins proved to be more favorable compared to tractors without cabins. Sound pressure levels at 4000Hz center frequency was reduced 2-13dB and 4-18dB by using a field-installed cabin and an original cabin, respectively. The measured A-weighted equivalent sound pressure levels were compared to the threshold limit level, and was concluded that depending on the cabin types used, the operators could usually work from 4 to 6h a day without suffering from noise induced inconveniences while 2-3h is permissible for plowing and forage harvesting on tractors without cabins. Due to timeliness considerations in agricultural machine operations, a farmer would not be willing to interrupt the operation based on permissible exposure time set by the standards. Based on the findings of this study, particularly an original cabin is recommended to reduce machine-induced noise below the danger limit

  9. KSC inventor tests cabin pressure monitor

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jan Zysko (left) and Rich Mizell (right) test a Personal Cabin Pressure Altitude Monitor in an altitude chamber at Tyndall Air Force Base in Florida. Zysko invented the pager-sized monitor that alerts wearers of a potentially dangerous or deteriorating cabin pressure altitude condition, which can lead to life- threatening hypoxia. Zysko is chief of the KSC Spaceport Engineering and Technology directorate's data and electronic systems branch. Mizell is a Shuttle processing engineer. The monitor, which has drawn the interest of such organizations as the Federal Aviation Administration for use in commercial airliners and private aircraft, was originally designed to offer Space Shuttle and Space Station crew members added independent notification about any depressurization.

  10. Landing approach airframe noise measurements and analysis

    NASA Technical Reports Server (NTRS)

    Lasagna, P. L.; Mackall, K. G.; Burcham, F. W., Jr.; Putnam, T. W.

    1980-01-01

    Flyover measurements of the airframe noise produced by the AeroCommander, JetStar, CV-990, and B-747 airplanes are presented for various landing approach configurations. Empirical and semiempirical techniques are presented to correlate the measured airframe noise with airplane design and aerodynamic parameters. Airframe noise for the jet-powered airplanes in the clean configuration (flaps and gear retracted) was found to be adequately represented by a function of airplane weight and the fifth power of airspeed. Results show the airframe noise for all four aircraft in the landing configuration (flaps extended and gear down) also varied with the fifth power of airspeed, but this noise level could not be represented by the addition of a constant to the equation for clean-configuration airframe noise.

  11. A research program to reduce interior noise in general aviation airplanes: Investigation of the characteristics of an acoustic panel test facility

    NASA Technical Reports Server (NTRS)

    Grosveld, F.; Vanaken, J.

    1978-01-01

    Sound pressure levels in the test facility were studied that are caused by varying: (1) microphone positions; (2) equalizer setting; and (3) panel clamping forces. Measurements were done by using a Beranek tube or this Beranek tube in combinations with an extension tube and a special test section. In all configurations tests were executed with and without a test panel installed. The influence of the speaker back panel and the back panel of the Beranek tube on the sound pressure levels inside the test tube were also investigated. It is shown that the definition of noise reduction is more useful in relation to this test facility than transmission loss.

  12. Space Shuttle Hot Cabin Emergency Responses

    NASA Technical Reports Server (NTRS)

    Stepaniak, P.; Effenhauser, R. K.; McCluskey, R.; Gillis, D. B.; Hamilton, D.; Kuznetz, L. H.

    2005-01-01

    Methods: Human thermal tolerance, countermeasures, and thermal model data were reviewed and compared to existing shuttle ECS failure temperature and humidity profiles for each failure mode. Increases in core temperature associated with cognitive impairment was identified, as was metabolic heat generation of crewmembers, temperature monitoring, and communication capabilities after partial power-down and other limiting factors. Orbiter landing strategies and a hydration and salt replacement protocol were developed to put wheels on deck in each failure mode prior to development of significant cognitive impairment or collapse of crewmembers. Thermal tradeoffs for use of the Advanced Crew Escape Suit (ACES), Liquid Cooling Garment, integrated G-suit and Quick Don Mask were examined. candidate solutions involved trade-offs or conflicts with cabin oxygen partial pressure limits, system power-downs to limit heat generation, risks of alternate and emergency landing sites or compromise of Mode V-VIII scenarios. Results: Rehydration and minimized cabin workloads are required in all failure modes. Temperature/humidity profiles increase rapidly in two failure modes, and deorbit is recommended without the ACES, ICU and g-suit. This latter configuration limits several shuttle approach and landing escape modes and requires communication modifications. Additional data requirements were identified and engineering simulations were recommended to develop more current shuttle temperature and humidity profiles. Discussion: After failure of the shuttle ECS, there is insufficient cooling capacity of the ACES to protect crewmembers from rising cabin temperature and humidity. The LCG is inadequate for cabin temperatures above 76 F. Current shuttle future life policy makes it unlikely that major engineering upgrades necessary to address this problem will occur.

  13. Acceptance and control of aircraft interior noise and vibration

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Leatherwood, J. D.

    1980-01-01

    Ride quality criteria for noise, vibration, and their combination in the helicopter cabin environment are discussed. Results are presented of laboratory and field studies of passenger responses to interior noise and vibration during the performance of a listening task and during reverie, as well as to the interaction of noise with multi-frequency and multi-axis vibration. A study of means for reducing helicopter interior noise based on analytical, experimental and flight studies of the near-field noise source characteristics of the aircraft, the transmission of noise through aircraft structures and the attenuation of noise by various noise control treatments is then presented which has resulted in a reduction of 3 dB in helicopter cabin noise. Finally, a model under development to evaluate passenger acceptance of a helicopter noise and vibration environment is indicated which incorporates the observed noise and vibration effects on comfort and is expected to provide insights for more effective noise and vibration control.

  14. Full Scale Drag Tests on Various Parts of Fairchild (FC-2W2) Cabin Monoplane

    NASA Technical Reports Server (NTRS)

    Hernstein, William H , Jr

    1930-01-01

    The drag due to the various parts of a Fairchild (FC-2W2) cabin monoplane was measured at air speeds varying from 50 to 100 m.p.h., in the Twenty-Foot Propeller Research Tunnel of the National Advisory Committee for Aeronautics. It was found that the largest drag was due to the radial air-cooled engine. The measured drag due to the landing gear was also large, being about 4/5 of that due to the engine. Substituting Musselman type wheels for the standard wheels caused no change in the drag due to the landing gear. A small decrease in drag was effected by adding a turtle back to the airplane fuselage.

  15. Interior noise reduction in a large civil helicopter

    NASA Technical Reports Server (NTRS)

    Howlett, J. T.; Clevenson, S. A.; Rypf, J. A.; Snyder, W. J.

    1977-01-01

    The results of an evaluation of the effectiveness of current noise reduction technology in attaining acceptable levels of interior noise in a large (about 20,000 kg) passenger-carrying helicopter are presented. The helicopter studied is a modified CH-53A with a specially designed, acoustically treated passenger cabin. The acoustic treatment reduced the average A-weighted interior noise levels from 115 db to 87 db. The study suggests selected improvements in the acoustic treatment which could result in additional reduction in cabin noise levels. The resulting levels would be only slightly greater than the interior noise levels of current narrow-body jet transports.

  16. Design Concept for a Minimal Volume Spacecraft Cabin to Serve as a Mars Ascent Vehicle Cabin and Other Alternative Pressurized Vehicle Cabins

    NASA Technical Reports Server (NTRS)

    Howard, Robert L., Jr.

    2016-01-01

    The Evolvable Mars Campaign is developing concepts for human missions to the surface of Mars. These missions are round-trip expeditions, thereby requiring crew launch via a Mars Ascent Vehicle (MAV). A study to identify the smallest possible pressurized cabin for this mission has developed a conceptual vehicle referred to as the minimal MAV cabin. The origin of this concept will be discussed as well as its initial concept definition. This will lead to a description of possible configurations to integrate the minimal MAV cabin with ascent vehicle engines and propellant tanks. Limitations of this concept will be discussed, in particular those that argue against the use of the minimal MAV cabin to perform the MAV mission. However, several potential alternative uses for the cabin are identified. Finally, recommended forward work will be discussed, including current work in progress to develop a full scale mockup and conduct usability evaluations.

  17. Computational Aerodynamic Simulations of a Spacecraft Cabin Ventilation Fan Design

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue cost effectively, early attention to fan design, selection, and installation has been recommended, leading to an effort by NASA to examine the potential for small-fan noise reduction by improving fan aerodynamic design. As a preliminary part of that effort, the aerodynamics of a cabin ventilation fan designed by Hamilton Sundstrand has been simulated using computational fluid dynamics codes, and the computed solutions analyzed to quantify various aspects of the fan aerodynamics and performance. Four simulations were performed at the design rotational speed: two at the design flow rate and two at off-design flow rates. Following a brief discussion of the computational codes, various aerodynamic- and performance-related quantities derived from the computed flow fields are presented along with relevant flow field details. The results show that the computed fan performance is in generally good agreement with stated design goals.

  18. Comparative Analysis of Interference Pathloss Coupling Patterns on B-737 VS. B757 Airplanes

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha; Ely, Jay; Vahala, Linda

    2005-01-01

    Portable wireless technology provides many benefits to modern day travelers. Over the years however, numerous reports have cited portable electronic devices (PEDs) as a possible cause of electromagnetic interference (EMI) to aircraft navigation and communication radio systems. PEDs may act as transmitters, both intentional and unintentional, and their signals may be detected by the various radio receiver antennas installed on the aircraft. Measurement of the radiated field coupling between passenger cabin locations and aircraft communication and navigation receivers, via their antennas is defined herein as interference path loss (IPL). IPL data is required for assessing the threat of PEDs to aircraft radios, and is very dependent upon airplane size, the interfering transmitter position within the airplane, and the location of the particular antenna for the aircraft system of concern. NASA Langley Research Center, Eagles Wings Inc., and United Airlines personnel performed extensive IPL measurements on several Boeing 737 airplanes. In the Spring of 2004, extensive IPL measurements were also taken on several Boeing 757 airplanes under a cooperative agreement between NASA Langley Research Center and Delta Airlines. The objective of this paper is to analyze IPL measurement data, to better understand the impact on coupling levels based on the different locations of the aircraft radio antennas on B-757 and B-737 airplanes, and to provide a basis for future fuzzy logic modeling of airplane IPL. This effort will build upon previous fuzzy modeling of IPL data for B-737 airplane data.

  19. Ozone contamination in aircraft cabins: Objectives and approach

    NASA Technical Reports Server (NTRS)

    Perkins, P. J.

    1979-01-01

    Three panels were developed to solve the problem of ozone contamination in aircraft cabins. The problem is defined from direct in-flight measurements of ozone concentrations inside and outside airliners in their normal operations. Solutions to the cabin ozone problem are discussed under two areas: (1) flight planning to avoid high ozone concentrations, and (2) ozone destruction techniques installed in the cabin air systems.

  20. In-cabin ultrafine particle dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Bin

    To assess the total human health risks associated with human exposure to ultrafine particle (UFP), the concentrations and fates of UFPs in the in-cabin atmospheres must be understood. In order to assess human exposure more accurately and further prevent adverse health effects from UFP exposure in the in-cabins, it is essential to gain insight into UFP transport dynamics between in-cabin and outside atmospheres and the factors that are able to affect them. In this dissertation, mathematical model are developed and formulated as tools to improve the understanding of UFP dynamics in the in-cabin atmosphere. Under three different ventilation conditions, (i) Fan off-recirculation (RC) off, (ii) Fan on-RC off, and (iii) Fan on-RC on, the average modeled UFP I/O ratios were found to be 0.40, 0.25 and 0.10, respectively, and agree with the experimental data very well. Then, analysis focused on how the factors, such as ventilation settings, vehicle speed, filtration, penetration, and deposition, affect I/O ratios in broader categories of vehicle cabin microenvironments. Ventilation is the only mechanical process of exchanging air between the in-cabin and the outside. Under condition (ii), I/O ratio that varies from 0.2 to 0.7 was proportional to the airflow rate in the range of 0-360 m3/h. Under condition (iii), the modeled I/O ratio was inversely proportional to the airflow rate from mechanical ventilation within the range of 0.15-0.45 depending on the particle size. Significant variability of the penetration factor (5˜20%) was found due to the pressure difference. A coefficient "B" was successfully introduced to account for the electric charge effect on penetration factors. The effect of penetration on the I/O ratio was then evaluated by substituting penetration factor into the model. Under condition (i), the modeled I/O ratios increased linearly, up to ˜20%, within the penetration factor range. Under condition (iii), the effect of penetration factor is less but still

  1. Maximum vehicle cabin temperatures under different meteorological conditions

    NASA Astrophysics Data System (ADS)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  2. Maximum vehicle cabin temperatures under different meteorological conditions.

    PubMed

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76 degrees C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68 degrees C in the summer and 61 degrees C in the spring. Cloudy days in both the spring and summer were on average approximately 10 degrees C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses. PMID:19234721

  3. Community noise technology needs: Boeing's perspective

    NASA Technical Reports Server (NTRS)

    Nihart, Gene L.

    1992-01-01

    Airport community acceptance of High Speed Civil Transport (HSCT) noise levels will depend on the relative noise levels of airplanes flying at the time of introduction. The 85 dBA noise contours for the range of large subsonic airplanes that are expected to be in service in the early 21st century are shown as a shaded area. A certifiable HSCT noise contour as shown, would be somewhat wider along the runway, but about the same in the residential areas downrange. An HSCT noise rule should insure this noise capability.

  4. Evaluation of analysis techniques for low frequency interior noise and vibration of commercial aircraft

    NASA Technical Reports Server (NTRS)

    Landmann, A. E.; Tillema, H. F.; Marshall, S. E.

    1989-01-01

    The application of selected analysis techniques to low frequency cabin noise associated with advanced propeller engine installations is evaluated. Three design analysis techniques were chosen for evaluation including finite element analysis, statistical energy analysis (SEA), and a power flow method using element of SEA (computer program Propeller Aircraft Interior Noise). An overview of the three procedures is provided. Data from tests of a 727 airplane (modified to accept a propeller engine) were used to compare with predictions. Comparisons of predicted and measured levels at the end of the first year's effort showed reasonable agreement leading to the conclusion that each technique had value for propeller engine noise predictions on large commercial transports. However, variations in agreement were large enough to remain cautious and to lead to recommendations for further work with each technique. Assessment of the second year's results leads to the conclusion that the selected techniques can accurately predict trends and can be useful to a designer, but that absolute level predictions remain unreliable due to complexity of the aircraft structure and low modal densities.

  5. Measured Engine Installation Effects of Four Civil Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Senzig, David A.; Fleming, Gregg G.; Shepherd, Kevin P.

    2001-01-01

    The Federal Aviation Administration's Integrated Noise Model (INM) is one of the primary tools for land use planning around airports. The INM currently calculates airplane noise lateral attenuation using the methods contained in the Society of Automotive Engineer's Aerospace Information Report No. 1751 (SAE AIR 1751). Researchers have noted that improved lateral attenuation algorithms may improve airplane noise prediction. The authors of SAE AIR 1751 based existing methods on empirical data collected from flight tests using 1960s-technology airplanes with tail-mounted engines. To determine whether the SAE AIR 1751 methods are applicable for predicting the engine installation component of lateral attenuation for airplanes with wing-mounted engines, the National Aeronautics and Space Administration (NASA) sponsored a series of flight tests during September 2000 at their Wallops Flight Facility. Four airplanes, a Boeing 767-400, a Douglas DC-9, a Dassault Falcon 2000, and a Beech KingAir, were flown through a 20 microphone array. The airplanes were flown through the array at various power settings, flap settings, and altitudes to simulate take-off and arrival configurations. This paper presents the preliminary findings of this study.

  6. Risk factors for skin cancer among Finnish airline cabin crew.

    PubMed

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study. PMID:23316078

  7. Redesign of Transjakarta Bus Driver's Cabin

    NASA Astrophysics Data System (ADS)

    Mardi Safitri, Dian; Azmi, Nora; Singh, Gurbinder; Astuti, Pudji

    2016-02-01

    Ergonomic risk at work stations with type Seated Work Control was one of the problems faced by Transjakarta bus driver. Currently “Trisakti” type bus, one type of bus that is used by Transjakarta in corridor 9, serving route Pinang Ranti - Pluit, gained many complaints from drivers. From the results of Nordic Body Map questionnaires given to 30 drivers, it was known that drivers feel pain in the neck, arms, hips, and buttocks. Allegedly this was due to the seat position and the button/panel bus has a considerable distance range (1 meter) to be achieved by drivers. In addition, preliminary results of the questionnaire using Workstation Checklist identified their complaints about uncomfortable cushion, driver's seat backrest, and the exact position of the AC is above the driver head. To reduce the risk level of ergonomics, then did research to design the cabin by using a generic approach to designing products. The risk analysis driver posture before the design was done by using Rapid Upper Limb Assessment (RULA), Rapid Entire Body Assessment (REBA), and Quick Exposure Checklist (QEC), while the calculation of the moment the body is done by using software Mannequin Pro V10.2. Furthermore, the design of generic products was done through the stages: need metric-matrix, house of quality, anthropometric data collection, classification tree concept, concept screening, scoring concept, design and manufacture of products in the form of two-dimensional. While the design after design risk analysis driver posture was done by using RULA, REBA, and calculation of moments body as well as the design visualized using software 3DMax. From the results of analysis before the draft design improvements cabin RULA obtained scores of 6, REBA 9, and the result amounted to 57.38% QEC and moment forces on the back is 247.3 LbF.inch and on the right hip is 72.9 LbF.in. While the results of the proposed improvements cabin design RULA obtained scores of 3, REBA 4, and the moment of force on

  8. The Airplane Experiment.

    ERIC Educational Resources Information Center

    Larson, Lee; Grant, Roderick

    1991-01-01

    Presents an experiment to investigate centripetal force and acceleration that utilizes an airplane suspended on a string from a spring balance. Investigates the possibility that lift on the wings of the airplane accounts for the differences between calculated tension and measured tension on the string. (MDH)

  9. Metal Airplane Construction

    NASA Technical Reports Server (NTRS)

    1926-01-01

    It has long been thought that metal construction of airplanes would involve an increase in weight as compared with wood construction. Recent experience has shown that such is not the case. This report describes the materials used, treatment of, and characteristics of metal airplane construction.

  10. Laser vibrometry vibration measurements on vehicle cabins in running conditions: helicopter mock-up application

    NASA Astrophysics Data System (ADS)

    Revel, Gian Marco; Castellini, Paolo; Chiariotti, Paolo; Tomasini, Enrico Primo; Cenedese, Fausto; Perazzolo, Alessandro

    2011-10-01

    The present work deals with the analysis of problems and potentials of laser vibrometer measurements inside vehicle cabins in running conditions, with particular reference to helicopters where interior vibro-acoustic issues are very important. This paper describes the results of a systematic measurement campaign performed on an Agusta A109MKII mock-up. The aim is to evaluate the applicability of scanning laser Doppler vibrometer (SLDV) for tests in simulated flying conditions and to understand how performances of the technique are affected when the laser head is placed inside the cabin, thus being subjected to interfering inputs. First a brief description of the performed test cases and the used measuring set-ups are given. Comparative tests between the SLDV and accelerometers are presented, analyzing the achievable performances for the specific application. Results obtained measuring with the SLDV placed inside the helicopter cabin during operative excitation conditions are compared with those performed with the laser lying outside the mock-up, these last being considered as ``reference measurements.'' Finally, in order to give an estimate of the uncertainty level on measured signals, a study linking the admitted percentage of noise content on vibrometer signals due to laser head vibration levels will be introduced.

  11. Cabin Pressure Monitors Notify Pilots to Save Lives

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In 2013, San Diego-based Aviation Technology Inc. obtained an exclusive license for the technology behind the cabin pressure monitor invented at Kennedy Space Center and built its own version of the product. The Alt Alert is designed to save lives by alerting aircraft pilots and crews when cabin pressure becomes dangerously low.

  12. 4. STONE CABIN II CLOSEUP VIEW OF DOUBLE THICK FEATURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. STONE CABIN II CLOSEUP VIEW OF DOUBLE THICK FEATURE OF THE ROCK WALL. WALL PHOTOGRAPHED IS THE NORTHERNMOST WALL TAKEN FROM THE INTERIOR OF STRUCTURE. CAMERA POINTED NORTHWEST. - Florida Mountain Mining Sites, Stone Cabin II, West slope Florida Mountain, East of Empire State Mine below summit, Silver City, Owyhee County, ID

  13. 2. Onroom log cabin (right), log root cellar (center), tworoom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. On-room log cabin (right), log root cellar (center), two-room log cabin (left), and post-and-beam garage (background). View to southwest. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  14. 13. VIEW LOOKING AFT IN PILOTS' CABIN ON 'TWEEN DECK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW LOOKING AFT IN PILOTS' CABIN ON 'TWEEN DECK, SHOWING BUNKS, CABIN SKYLIGHT, WOOD STOVE (WITHOUT CHIMNEY PIPE) LADDERWAY, AND OPEN DOOR IN STERN BULKHEAD, GIVING ACCESS TO INTERIOR OF COUNTER - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  15. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. For normal, utility, and acrobatic... cabin must be evaluated under one of the following: (a) A fatigue strength investigation in which the structure is shown by tests, or by analysis supported by test evidence, to be able to withstand the...

  16. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. For normal, utility, and acrobatic... cabin must be evaluated under one of the following: (a) A fatigue strength investigation in which the structure is shown by tests, or by analysis supported by test evidence, to be able to withstand the...

  17. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. For normal, utility, and acrobatic... cabin must be evaluated under one of the following: (a) A fatigue strength investigation in which the structure is shown by tests, or by analysis supported by test evidence, to be able to withstand the...

  18. 4. View of immediate setting of Free Cabin along east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of immediate setting of Free Cabin along east side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing south. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  19. 2. View of immediate setting of Free Cabin along west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of immediate setting of Free Cabin along west side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing north. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  20. 1. View of immediate setting of Free Cabin along east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of immediate setting of Free Cabin along east side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing north. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  1. 3. View of immediate setting of Free Cabin along west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of immediate setting of Free Cabin along west side of State Route 121/U.S. Highway 25/Peach Orchard Road, facing south. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  2. 6. View of immediate setting from behind Free Cabin looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of immediate setting from behind Free Cabin looking towards State Route 121/U.S. Highway 25/Peach Orchard Road, facing east. - Free Cabin, State Route 121-U.S. Highway 25-Peach Orchard Road, Hephzibah, Richmond County, GA

  3. 14 CFR 91.819 - Civil supersonic airplanes that do not comply with part 36.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... part 21 of this chapter, no person may land or take off an airplane covered by this section for which... Stage 2 noise limits of part 36 in effect on October 13, 1977, using applicable trade-off provisions... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil supersonic airplanes that do...

  4. CABINS: Case-based interactive scheduler

    NASA Technical Reports Server (NTRS)

    Miyashita, Kazuo; Sycara, Katia

    1992-01-01

    In this paper we discuss the need for interactive factory schedule repair and improvement, and we identify case-based reasoning (CBR) as an appropriate methodology. Case-based reasoning is the problem solving paradigm that relies on a memory for past problem solving experiences (cases) to guide current problem solving. Cases similar to the current case are retrieved from the case memory, and similarities and differences of the current case to past cases are identified. Then a best case is selected, and its repair plan is adapted to fit the current problem description. If a repair solution fails, an explanation for the failure is stored along with the case in memory, so that the user can avoid repeating similar failures in the future. So far we have identified a number of repair strategies and tactics for factory scheduling and have implemented a part of our approach in a prototype system, called CABINS. As a future work, we are going to scale up CABINS to evaluate its usefulness in a real manufacturing environment.

  5. Evaluation of Cabin Crew Technical Knowledge

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa G.; Chute, Rebecca D.; Jordan, Kevin

    1998-01-01

    Accident and incident reports have indicated that flight attendants have numerous opportunities to provide the flight-deck crew with operational information that may prevent or essen the severity of a potential problem. Additionally, as carrier fleets transition from three person to two person flight-deck crews, the reliance upon the cabin crew for the transfer of this information may increase further. Recent research (Chute & Wiener, 1996) indicates that light attendants do not feel confident in their ability to describe mechanical parts or malfunctions of the aircraft, and the lack of flight attendant technical training has been referenced in a number of recent reports (National Transportation Safety Board, 1992; Transportation Safety Board of Canada, 1995; Chute & Wiener, 1996). The present study explored both flight attendant technical knowledge and flight attendant and dot expectations of flight attendant technical knowledge. To assess the technical knowledge if cabin crewmembers, 177 current flight attendants from two U.S. carriers voluntarily :ompleted a 13-item technical quiz. To investigate expectations of flight attendant technical knowledge, 181 pilots and a second sample of 96 flight attendants, from the same two airlines, completed surveys designed to capture each group's expectations of operational knowledge required of flight attendants. Analyses revealed several discrepancies between the present level of flight attendants.

  6. Structure-borne noise estimates for the PTA aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1990-01-01

    Estimates of the level of in-flight structure-borne noise transmission in the Propfan Test Assessment Aircraft were carried out for the first three blade passage frequencies. The procedure used combined the frequency response functions of wing strain to cabin sound pressure level (SPL) response obtained during ground test with in-flight measured wing strain response data. The estimated cabin average in-flight structure-borne noise levels varied from 64 to 84 dB, with an average level of 74 dB. The estimates showed little dependence on engine/propeller power, flight altitude, or flight Mach number. In general, the bare cabin noise levels decreased with increasing propeller tone, giving rise to a plausible structure-borne noise transmission problem at the higher blade passage tones. Without knowledge of the effects of a high insertion loss side wall treatment on structure-borne noise transmission, no quantitative conclusions could be made.

  7. Noise reduction of diesel engine for heavy duty vehicles

    SciTech Connect

    Miura, Y.; Arai, S.

    1989-01-01

    Noise reduction of diesel engines installed in heavy duty vehicles is one of the highest priorities from the viewpoints of meeting the regulations for urban traffic noise abatement and noise reduction in the cabin for lightening fatigue with comfortable long driving. It is necessary that noise reduction measures then be applied to those causes. All noise reduction measures for the diesel engine researched for the purpose of practical use are described in this paper.

  8. Acoustic Measurements of an Uninstalled Spacecraft Cabin Ventilation Fan Prototype

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Brown, Clifford A.; Shook, Tony D.; Winkel, James; Kolacz, John S.; Podboy, Devin M.; Loew, Raymond A.; Mirecki, Julius H.

    2012-01-01

    Sound pressure measurements were recorded for a prototype of a spacecraft cabin ventilation fan in a test in the NASA Glenn Acoustical Testing Laboratory. The axial fan is approximately 0.089 m (3.50 in.) in diameter and 0.223 m (9.00 in.) long and has nine rotor blades and eleven stator vanes. At design point of 12,000 rpm, the fan was predicted to produce a flow rate of 0.709 cu m/s (150 cfm) and a total pressure rise of 925 Pa (3.72 in. of water) at 12,000 rpm. While the fan was designed to be part of a ducted atmospheric revitalization system, no attempt was made to throttle the flow or simulate the installed configuration during this test. The fan was operated at six speeds from 6,000 to 13,500 rpm. A 13-microphone traversing array was used to collect sound pressure measurements along two horizontal planes parallel to the flow direction, two vertical planes upstream of the fan inlet and two vertical planes downstream of the fan exhaust. Measurements indicate that sound at blade passing frequency harmonics contribute significantly to the overall audible noise produced by the fan at free delivery conditions.

  9. Computer program to predict noise of general aviation aircraft: User's guide

    NASA Technical Reports Server (NTRS)

    Mitchell, J. A.; Barton, C. K.; Kisner, L. S.; Lyon, C. A.

    1982-01-01

    Program NOISE predicts General Aviation Aircraft far-field noise levels at FAA FAR Part 36 certification conditions. It will also predict near-field and cabin noise levels for turboprop aircraft and static engine component far-field noise levels.

  10. MLS: Airplane system modeling

    NASA Technical Reports Server (NTRS)

    Thompson, A. D.; Stapleton, B. P.; Walen, D. B.; Rieder, P. F.; Moss, D. G.

    1981-01-01

    Analysis, modeling, and simulations were conducted as part of a multiyear investigation of the more important airplane-system-related items of the microwave landing system (MLS). Particular emphasis was placed upon the airplane RF system, including the antenna radiation distribution, the cabling options from the antenna to the receiver, and the overall impact of the airborne system gains and losses upon the direct-path signal structure. In addition, effort was expended toward determining the impact of the MLS upon the airplane flight management system and developing the initial stages of a fast-time MLS automatic control system simulation model. Results ot these studies are presented.

  11. Gordon Bennett Airplane Cup

    NASA Technical Reports Server (NTRS)

    Margoulis, W

    1921-01-01

    The characteristics of the airplanes built for the Gordon Bennet Airplane Cup race that took place on September 28, 1920 are described. The airplanes are discussed from a aerodynamical point of view, with a number of new details concerning the French machines. Also discussed is the regulation of future races. The author argues that there should be no limitations on the power of the aircraft engines. He reasons that in the present state of things, liberty with regard to engine power does not lead to a search for the most powerful engine, but for one which is reliable and light, thus leading to progress.

  12. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  13. WATERCOLOR RENDERING OF CABIN JOHN BRIDGE SCAFFOLDING. CAPTAIN M.C. MEIGS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WATERCOLOR RENDERING OF CABIN JOHN BRIDGE SCAFFOLDING. CAPTAIN M.C. MEIGS, CHIEF ENGINEER; ALFRED RIVES, ASSISTANT ENGINEER, DELINEATOR. NOVEMBER 30, 1859 - Cabin John Aqueduct Bridge, MacArthur Boulevard, spanning Cabin John Creek at Parkway, Cabin John, Montgomery County, MD

  14. Patterns of measles transmission among airplane travelers.

    PubMed

    Edelson, Paul J

    2012-09-01

    With advanced air handling systems on modern aircraft and the high level of measles immunity in many countries, measles infection in air travelers may be considered a low-risk event. However, introduction of measles into countries where transmission has been controlled or eliminated can have substantial consequences both for the use of public health resources and for those still susceptible. In an effort to balance the relatively low likelihood of disease transmission among largely immune travelers and the risk to the public health of the occurrence of secondary cases resulting from importations, criteria in the United States for contact investigations for measles exposures consider contacts to be those passengers who are seated within 2 rows of the index case. However, recent work has shown that cabin air flow may not be as reliable a barrier to the spread of measles virus as previously believed. Along with these new studies, several reports have described measles developing after travel in passengers seated some distance from the index case. To understand better the potential for measles virus to spread on an airplane, reports of apparent secondary cases occurring in co-travelers of passengers with infectious cases of measles were reviewed. Medline™ was searched for articles in all languages from 1946 to week 1 of March 2012, using the search terms "measles [human] or rubeola" and ("aircraft" or "airplane" or "aeroplane" or "aviation" or "travel" or "traveler" or "traveller"); 45 citations were returned. Embase™ was searched from 1988 to week 11 2012, using the same search strategy; 95 citations were returned. Papers were included in this review if they reported secondary cases of measles occurring in persons traveling on an airplane on which a person or persons with measles also flew, and which included the seating location of both the index case(s) and the secondary case(s) on the plane. Nine reports, including 13 index cases and 23 apparent secondary cases

  15. 14 CFR 36.501 - Noise limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Noise limits. 36.501 Section 36.501 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS..., Commuter Category Airplanes § 36.501 Noise limits. (a) Compliance with this subpart must be shown for—...

  16. 14 CFR 36.501 - Noise limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Noise limits. 36.501 Section 36.501 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS..., Commuter Category Airplanes § 36.501 Noise limits. (a) Compliance with this subpart must be shown for—...

  17. 14 CFR 36.501 - Noise limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Noise limits. 36.501 Section 36.501 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS..., Commuter Category Airplanes § 36.501 Noise limits. (a) Compliance with this subpart must be shown for—...

  18. 14 CFR 36.501 - Noise limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Noise limits. 36.501 Section 36.501 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS..., Commuter Category Airplanes § 36.501 Noise limits. (a) Compliance with this subpart must be shown for—...

  19. Discussion of "Polybrominated diphenyl ethers in aircraft cabins--a source of human exposure?" by Anna Christiansson et al. [Chemosphere 73(10) (2008) 1654-1660].

    PubMed

    Schecter, Arnold; Colacino, Justin; Haffner, Darrah; Patel, Keyur; Opel, Matthias; Päpke, Olaf

    2010-01-01

    This paper presents new data on the levels of polybrominated diphenyl ethers (PBDEs) in American airline workers. This pilot study did not find elevated total PBDEs in the blood of nine flight attendants and one aircraft pilot who have worked in airplanes for at least the past 5 years. These findings are not consistent with the findings of elevated blood levels of PBDEs from the 2008 Christiansson et al. publication "Polybrominated diphenyl ethers in aircraft cabins - A source of human exposure?" We agree that more research needs to be done on larger, more representative samples of airline workers to better characterize exposure of airline workers and other frequent flyers to PBDEs. PMID:19863994

  20. General airplane performance

    NASA Technical Reports Server (NTRS)

    Rockfeller, W C

    1939-01-01

    Equations have been developed for the analysis of the performance of the ideal airplane, leading to an approximate physical interpretation of the performance problem. The basic sea-level airplane parameters have been generalized to altitude parameters and a new parameter has been introduced and physically interpreted. The performance analysis for actual airplanes has been obtained in terms of the equivalent ideal airplane in order that the charts developed for use in practical calculations will for the most part apply to any type of engine-propeller combination and system of control, the only additional material required consisting of the actual engine and propeller curves for propulsion unit. Finally, a more exact method for the calculation of the climb characteristics for the constant-speed controllable propeller is presented in the appendix.

  1. English airplane construction

    NASA Technical Reports Server (NTRS)

    Schwencke, D

    1930-01-01

    English airplane construction is presented with a particular emphasis on metal construction techniques. Steel rib and fuselage construction are discussed as well as the use of duralumin in construction.

  2. The Bristol "Badminton" Airplane

    NASA Technical Reports Server (NTRS)

    1926-01-01

    The Bristol Badminton, Type 99 airplane has a radial aircooled engine (a Bristol Jupiter 9 cylinder 450 HP.) and three fuel tanks. It is a single seat biplane weighing 1,840 lbs. empty and 2,460 lbs. loaded.

  3. Airplane Stress Analysis

    NASA Technical Reports Server (NTRS)

    Zahm, A F; Crook, L H

    1918-01-01

    Report presents stress analysis of individual components of an airplane. Normal and abnormal loads, sudden loads, simple stresses, indirect simple stresses, resultant unit stress, repetitive and equivalent stress, maximum steady load and stress are considered.

  4. 75 FR 39804 - Airworthiness Directives; The Boeing Company Model 757 Airplanes, Model 767 Airplanes, and Model...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... Model 757 Airplanes, Model 767 Airplanes, and Model 777-200 and -300 Series Airplanes AGENCY: Federal... directive (AD) for certain Model 757 airplanes, Model 767 airplanes, and Model 777-200 and -300 series...) that would apply to certain Model 757 airplanes, Model 767 airplanes, and Model 777-200 and -300...

  5. Stall-proof Airplanes

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1927-01-01

    My lecture has to do with the following questions. Is the danger of stalling necessarily inherent in the airplane in its present form and structure, or can it be diminished or eliminated by suitable means? Do we possess such means or devices and how must they operate? In this connection I will devote special attention to the exhibition of stall-proof airplanes by Fokker under the auspices of the English Air Ministry, which took place in Croyden last April.

  6. General Aviation Interior Noise. Part 3; Noise Control Measure Evaluation

    NASA Technical Reports Server (NTRS)

    Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)

    2002-01-01

    The work reported herein is an extension to the work accomplished under NASA Grant NAG1-2091 on the development of noise/source/path identification techniques for single engine propeller driven General Aviation aircraft. The previous work developed a Conditioned Response Analysis (CRA) technique to identify potential noise sources that contributed to the dominating tonal responses within the aircraft cabin. The objective of the present effort was to improve and verify the findings of the CRA and develop and demonstrate noise control measures for single engine propeller driven General Aviation aircraft.

  7. 13. CO'S STATEROOM (CABIN'S QUARTERS), PORT EXTERIOR. NOTE PORTHOLE AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. CO'S STATEROOM (CABIN'S QUARTERS), PORT EXTERIOR. NOTE PORTHOLE AND WOODEN FRAME WINDOWS. - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME

  8. 66. View across saloon toward open door of spare cabin, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. View across saloon toward open door of spare cabin, displayed as children's room, hanging bottle rack in foreground, beneath skylight. - Ship BALCLUTHA, 2905 Hyde Street Pier, San Francisco, San Francisco County, CA

  9. 19. View of interior of bridge operator's control cabin, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of interior of bridge operator's control cabin, with manual control levers at left, and electrical equipment cabinet at right; looking west - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI

  10. 14. DETAIL VIEW OF UNDERSIDE OF OPERATOR'S CABIN, SHOWING UTILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL VIEW OF UNDERSIDE OF OPERATOR'S CABIN, SHOWING UTILITY CONNECTIONS, LOOKING NORTH-NORTHEAST - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  11. 18. VIEW OF STAIRCASE LEADING TO SOCIAL HALL ON CABIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF STAIRCASE LEADING TO SOCIAL HALL ON CABIN (POOP) DECK, LOCATED IN CENTER OF FORWARD END OF DINING SALOON - Steam Schooner WAPAMA, Kaiser Shipyard No. 3 (Shoal Point), Richmond, Contra Costa County, CA

  12. 4. VIEW OF EMPIRE, STONE CABIN AND TIP TOP MINES. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF EMPIRE, STONE CABIN AND TIP TOP MINES. EMPIRE TAILING PILE IS VISIBLE IN LOWER CENTER (SLOPE WITH ORE CHUTE IS HIDDEN BY TREES ABOVE TAILINGS), TIP TOP IS VISIBLE IN RIGHT THIRD AND SLIGHTLY UPHILL IN ELEVATION FROM UPPER EMPIRE TAILINGS,(TO LOCATE, FIND THE V-SHAPED SPOT OF SNOW JUST BELOW THE RIDGE LINE ON FAR RIGHT OF IMAGE. TIP TOP BUILDING IS VISIBLE IN THE LIGHT AREA BELOW AND SLIGHTLY LEFT OF V-SHAPED SNOW SPOT), AND STONE CABIN II IS ALSO VISIBLE, (TO LOCATE, USE A STRAIGHT EDGE AND ALIGN WITH EMPIRE TAILINGS. THIS WILL DIRECT ONE THROUGH THE EDGE OF STONE CABIN II, WHICH IS THE DARK SPOT JUST BELOW THE POINT WHERE THE RIDGE LINE TREES STOP). STONE CABIN I IS LOCATED IN GENERAL VICINITY OF THE LONE TREE ON FAR LEFT RIDGE LINE. ... - Florida Mountain Mining Sites, Silver City, Owyhee County, ID

  13. 18. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, LOOKING NORTH, NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, LOOKING NORTH, NORTHEAST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  14. 19. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, DOORS TO INCLINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. UPPER STATION, FIRST FLOOR, OPERATOR'S CABIN, DOORS TO INCLINE PLANE CARS, LOOKING WEST. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA

  15. Boat Deck, Cabin Deck, Bridge Deck, Flat House Top, Stage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Boat Deck, Cabin Deck, Bridge Deck, Flat House Top, Stage Top, Mast House Top, Upper Deck, Flat House Tops, Forecastle Deck, Main Deck - American Racer, Suisun Bay Reserve Fleet, Benicia, Solano County, CA

  16. 63. VIEW SHOWING THE RELATIONSHIP BETWEEN THE SWITCH CABIN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW SHOWING THE RELATIONSHIP BETWEEN THE SWITCH CABIN AND THE LAMP/GENERATOR BUILDING FOUNDATION ADJACENT TO IT, LOOKING NORTHEAST - Independent Coal & Coke Company, Kenilworth, Carbon County, UT

  17. 17. DETAIL VIEW OF CUPOLA ATOP OPERATOR'S CABIN WHICH MOUNTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL VIEW OF CUPOLA ATOP OPERATOR'S CABIN WHICH MOUNTS SIGNAL HORNS, WEATHER VANE - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  18. 1. View of tower with cabin in the right foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of tower with cabin in the right foreground, facing southeast - Cold Mountain Fire Lookout Station, Lookout Tower, Krassel District, Frank Church River of No Return Wilderness, Dixie, Idaho County, ID

  19. 46 CFR 15.855 - Cabin watchmen and fire patrolmen.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vicinity of the cabins or staterooms and on each deck, to guard against and give alarm in case of fire or... a non-watertight hatch on the main deck. (5) Each alarm has an audible- and visual-alarm...

  20. 23. CONTEXTUAL VIEW OF CABIN SITE NO. TWO WITH TERRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CONTEXTUAL VIEW OF CABIN SITE NO. TWO WITH TERRY BIRK, FOREST ARCHAEOLOGIST (RIGHT), AND JOHN ELLIOTT, HISTORIAN (LEFT), FACING SOUTHWEST. - Genoa Peak Road, James Canyon Road, Glenbrook, Douglas County, NV

  1. Ultraviolet phototherapy: review of options for cabin dosimetry and operation

    NASA Astrophysics Data System (ADS)

    Amatiello, H.; Martin, C. J.

    2006-01-01

    Ultraviolet (UV) treatment dose is determined by the length of time that a patient spends in a phototherapy cabin. The output from UV fluorescent lamps declines with use and a method is needed to compensate for the change in irradiance and to identify and replace any lamps that fail. The decline in lamp output with age and the magnitudes of localized areas of low irradiance resulting from failed lamps have been measured and results used to assess different approaches to lamp replacement. In current cabin models, single failed lamps give cold spots with 7%-12% lower irradiances and replacements with new lamps give 3%-6% higher localized irradiances. However, cold spots with 30% lower irradiances may result from lamp failures in some older dual UVA/TL01 lamp cabins. The use of internal cabin detectors that can be employed to compensate for changes in irradiance level is beneficial. Cabins having pairs of internal detectors provide a reasonable reflection of the changes in irradiance that occur and the position of the patient in the cabin should not affect the treatment dose by more than ±6%. There should be a robust system to identify and replace failed lamps to minimize the risk of erythema.

  2. Aerodynamic Design and Computational Analysis of a Spacecraft Cabin Ventilation Fan

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2010-01-01

    Quieter working environments for astronauts are needed if future long-duration space exploration missions are to be safe and productive. Ventilation and payload cooling fans are known to be dominant sources of noise, with the International Space Station being a good case in point. To address this issue in a cost-effective way, early attention to fan design, selection, and installation has been recommended. Toward that end, NASA has begun to investigate the potential for small-fan noise reduction through improvements in fan aerodynamic design. Using tools and methodologies similar to those employed by the aircraft engine industry, most notably computational fluid dynamics (CFD) codes, the aerodynamic design of a new cabin ventilation fan has been developed, and its aerodynamic performance has been predicted and analyzed. The design, intended to serve as a baseline for future work, is discussed along with selected CFD results

  3. Propeller aircraft interior noise model

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.; Wilby, J. F.

    1984-01-01

    An analytical model was developed to predict the interior noise of propeller-driven aircraft. The fuselage model is that of a cylinder with a structurally-integral floor. The cabin sidewall is stiffened by stringers and ring frames, and the floor by longitudinal beams. The cabin interior is covered with a sidewall treatments consisting of layers of porous material and an impervious trim septum. Representation of the propeller pressure field is utilized as input data in the form of the propeller noise signature at a series of locations on a grid over the fuselage structure. Results obtained from the analytical model are compared with test data measured by NASA in a scale model cylindrical fuselage excited by a model propeller.

  4. UV disinfection system for cabin air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung; Blatchley, Ernest R.

    2009-10-01

    The air of indoor cabin environments is susceptible to contamination by airborne microbial pathogens. A number of air treatment processes are available for inactivation or removal of airborne pathogens; included among these processes is ultraviolet (UV) irradiation. The effectiveness of UV-based processes is known to be determined by the combined effects of UV dose delivery by the reactor and the UV dose-response behavior of the target microbe(s). To date, most UV system designs for air treatment have been based on empirical approaches, often involving crude representations of dose delivery and dose-response behavior. The objective of this research was to illustrate the development of a UV system for disinfection of cabin air based on well-defined methods of reactor and reaction characterization. UV dose-response behavior of a test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to a humidity chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm 2 accomplished 99.7% (2.5 log10 U) of the Bacillus subtilis spore inactivation, whereas 99.94% (3.2 log10 U) inactivation was accomplished at this same UV dose under 20% RH conditions. To determine reactor behavior, UV dose-response behavior was combined with simulated results of computational fluid dynamics (CFD) and radiation intensity field models. This modeling approach allowed estimating the UV dose distribution delivered by the reactor. The advantage of this approach is that simulation of many reactor configurations can be done in a relatively short period of time. Moreover, by

  5. Identification and proposed control of helicopter transmission noise at the source

    NASA Technical Reports Server (NTRS)

    Coy, John J.; Handschuh, Robert F.; Lewicki, David G.; Huff, Ronald G.; Krejsa, Eugene A.; Karchmer, Allan M.; Coy, John J.

    1988-01-01

    Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed.

  6. Identification and proposed control of helicopter transmission noise at the source

    NASA Technical Reports Server (NTRS)

    Coy, John J.; Handschuh, Robert F.; Lewicki, David G.; Huff, Ronald G.; Krejsa, Eugene A.; Karchmer, Allan M.

    1987-01-01

    Helicopter cabin interiors require noise treatment which is expensive and adds weight. The gears inside the main power transmission are major sources of cabin noise. Work conducted by the NASA Lewis Research Center in measuring cabin interior noise and in relating the noise spectrum to the gear vibration of the Army OH-58 helicopter is described. Flight test data indicate that the planetary gear train is a major source of cabin noise and that other low frequency sources are present that could dominate the cabin noise. Companion vibration measurements were made in a transmission test stand, revealing that the single largest contributor to the transmission vibration was the spiral bevel gear mesh. The current understanding of the nature and causes of gear and transmission noise is discussed. It is believed that the kinematical errors of the gear mesh have a strong influence on that noise. The completed NASA/Army sponsored research that applies to transmission noise reduction is summarized. The continuing research program is also reviewed.

  7. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  8. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  9. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  10. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  11. Helicopter internal noise

    NASA Astrophysics Data System (ADS)

    Niesl, G.; Laudien, E.

    1994-09-01

    Compared to fixed wing aircraft, helicopter interior noise is higher, and subjectively more annoying. This is mainly due to discrete frequencies by the main transmission system, and also from other components like main and tail rotor, engines, or cooling fans. Up to now, mainly passive measures have been used for interior noise reduction. Despite intensive experimental and theoretical investigation to improve acoustic treatment, their weight penalties remain high especially in the low frequency range. Here, active noise control offers additional capacities without excessive weight efforts. Loud-speaker based systems are sufficiently well developed for implementing a prototype system in the helicopter. Two other principles are in development: active panel control which introduces mechanical actuators to excite the cabin walls, and active control of gearbox struts with actuators in the load path between gearbox and fuselage.

  12. Preliminary Assessment of the Interior Noise Environment in the Large Civil Tiltrotor (LCTR2)

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Cabell, Randolph H.

    2011-01-01

    The second-generation Large Civil Tiltrotor (LCTR2) serves as a representative vehicle under the NASA Fundamental Aeronautics Program (FAP) Subsonic Rotary Wing (SRW) project with a design goal to transport 90 passengers over a distance of 1800 km at a speed of 550 km/hr. The tiltrotor combines the vertical lift capability of a helicopter with the speed, altitude, and range of a turboprop airplane. The blade-passage frequency of the four-bladed rotor is as low as 6.9 Hz during cruise conditions. The resulting low-frequency acoustic excitation and its harmonics, combined with the anticipated use of lightweight composite and sandwich materials for the fuselage sidewall, may pose a challenge to achieving acceptable interior noise levels. The objective of the present study is to perform a preliminary assessment of the expected interior noise environment in the LCTR2 cabin. The approach includes a combination of semi-empirical, analytical, and statistical energy analysis methods. Because the LCTR2 is a notional vehicle, the prediction approach was also applied to the XV-15 tiltrotor and Bombardier Q400 turobprop aircraft to compare predictions with publicly available experimental data. Guidance for the expected interior noise levels in the LCTR2 was obtained by considering both the predicted exterior noise levels and the transmission loss of a basic fuselage sidewall consisting of a skin, porous layer and a trim panel. Structural and acoustic resonances are expected to coincide with low order harmonics of the blade passage frequency. The estimated sound pressure levels in the LCTR2 may not be acceptable when evaluated against known characteristics of human response to low frequency sound.

  13. Ozone concentration in the cabin of a Gates Learjet measured simultaneously with atmospheric ozone concentrations

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Perkins, P. J.

    1978-01-01

    A Gates Learjet Model 23 was instrumented with monitors to measure simultaneously the atmospheric and the cabin concentrations of ozone at altitudes up to 13 kilometers. Six data flights were made in February 1978. Results indicated that only a small amount of the atmospheric ozone is destroyed in the cabin pressurization system. Ozone concentrations measured in the cabin near the conditioned-air outlets were only slightly lower than the atmospheric ozone concentration. For the two cabin configurations tested, the ozone retention in the cabin was 63 and 41 percent of the atmospheric ozone concentration. Maximum cabin ozone concentration measured during these flights was 410 parts per billion by volume.

  14. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.

    PubMed

    Solbu, Kasper; Daae, Hanne Line; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag Gunnar; Lindgren, Torsten; Bakke, Berit; Lundanes, Elsa; Molander, Paal

    2011-05-01

    Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max airplanes (n = 76, min-max 0.02-4.1 µg m(-3)). All samples were collected under normal flight conditions. However, the TCP concentration during ground testing in an airplane that had experienced leakage of turbine oil with subsequent contamination of the cabin and cockpit air, was an order of magnitude higher as compared to after engine replacement (p = 0.02). PMID:21399836

  15. Study of noise transmission through double wall aircraft windows

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1983-01-01

    Analytical and experimental procedures were used to predict the noise transmitted through double wall windows into the cabin of a twin-engine G/A aircraft. The analytical model was applied to optimize cabin noise through parametric variation of the structural and acoustic parameters. The parametric study includes mass addition, increase in plexiglass thickness, decrease in window size, increase in window cavity depth, depressurization of the space between the two window plates, replacement of the air cavity with a transparent viscoelastic material, change in stiffness of the plexiglass material, and different absorptive materials for the interior walls of the cabin. It was found that increasing the exterior plexiglass thickness and/or decreasing the total window size could achieve the proper amount of noise reduction for this aircraft. The total added weight to the aircraft is then about 25 lbs.

  16. Family of advanced commuter airplanes with a high degree of commonality

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The University of Kansas NASA/USRA Design Team worked on the design/evaluation of using 'family' concept in the case of a series of regional transport airplanes. Mission specifications for the four designs in the series are shown. Further design characteristics were specified as follows: (1) common cockpit instrumentation; (2) common structural and systems design (to as high a degree as possible); (3) jet-like ride quality and cabin environment; (4) identical handling qualities to allow for cross rating of pilots; and (5) low acquisition cost and low life-cycle costs

  17. Cabin fuselage structural design with engine installation and control system

    NASA Technical Reports Server (NTRS)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  18. Advanced Subsonic Airplane Design and Economic Studies

    NASA Technical Reports Server (NTRS)

    Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.

    1995-01-01

    A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.

  19. The evolution of airplanes

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Charles, J. D.; Lorente, S.

    2014-07-01

    The prevailing view is that we cannot witness biological evolution because it occurred on a time scale immensely greater than our lifetime. Here, we show that we can witness evolution in our lifetime by watching the evolution of the flying human-and-machine species: the airplane. We document this evolution, and we also predict it based on a physics principle: the constructal law. We show that the airplanes must obey theoretical allometric rules that unite them with the birds and other animals. For example, the larger airplanes are faster, more efficient as vehicles, and have greater range. The engine mass is proportional to the body size: this scaling is analogous to animal design, where the mass of the motive organs (muscle, heart, lung) is proportional to the body size. Large or small, airplanes exhibit a proportionality between wing span and fuselage length, and between fuel load and body size. The animal-design counterparts of these features are evident. The view that emerges is that the evolution phenomenon is broader than biological evolution. The evolution of technology, river basins, and animal design is one phenomenon, and it belongs in physics.

  20. Orbiter CCTV video signal noise analysis

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.; Blanke, L. R.; Pannett, R. F.

    1977-01-01

    The amount of steady state and transient noise which will couple to orbiter CCTV video signal wiring is predicted. The primary emphasis is on the interim system, however, some predictions are made concerning the operational system wiring in the cabin area. Noise sources considered are RF fields from on board transmitters, precipitation static, induced lightning currents, and induced noise from adjacent wiring. The most significant source is noise coupled to video circuits from associated circuits in common connectors. Video signal crosstalk is the primary cause of steady state interference, and mechanically switched control functions cause the largest induced transients.

  1. Helicopter internal noise control: Three case histories

    NASA Technical Reports Server (NTRS)

    Edwards, B. D.; Cox, C. R.

    1978-01-01

    Case histories are described in which measurable improvements in the cabin noise environments of the Bell 214B, 206B, and 222 were realized. These case histories trace the noise control efforts followed in each vehicle. Among the design approaches considered, the addition of a fluid pulsation damper in a hydraulic system and the installation of elastomeric engine mounts are highlighted. It is concluded that substantial weight savings result when the major interior noise sources are controlled by design, both in altering the noise producing mechanism and interrupting the sound transmission paths.

  2. Scanning Laser Doppler Vibrometer Measurements Inside Helicopter Cabins in Running Conditions: Problems and Mock-up Testing

    NASA Astrophysics Data System (ADS)

    Revel, G. M.; Castellini, P.; Chiariotti, P.; Tomasini, E. P.; Cenedese, F.; Perazzolo, A.

    2010-05-01

    The present work deals with the analysis of problems and potentials of laser vibrometer measurements inside helicopter cabins in running conditions. The paper describes the results of a systematic measurement campaign performed on an Agusta A109MKII mock-up. The aim is to evaluate the applicability of Scanning Laser Doppler Vibrometer (SLDV) for tests in simulated flying conditions and to understand how performances of the technique are affected when the laser head is placed inside the cabin, thus being subjected to interfering inputs. Firstly a brief description of the performed test cases and the used measuring set-ups are given. Comparative tests between SLDV and accelerometers are presented, analyzing the achievable performances for the specific application. Results obtained measuring with SLDV placed inside the helicopter cabin during operative excitation conditions are compared with those performed with the laser lying outside the mock-up, these last being considered as "reference measurements". Finally, in order to give an estimate of the uncertainty level on measured signals, a study linking the admitted percentage of noise content on vibrometer signals due to laser head vibration levels will be introduced.

  3. Scanning Laser Doppler Vibrometer Measurements Inside Helicopter Cabins in Running Conditions: Problems and Mock-up Testing

    SciTech Connect

    Revel, G. M.; Castellini, P.; Chiariotti, P.; Tomasini, E. P.; Cenedese, F.; Perazzolo, A.

    2010-05-28

    The present work deals with the analysis of problems and potentials of laser vibrometer measurements inside helicopter cabins in running conditions. The paper describes the results of a systematic measurement campaign performed on an Agusta A109MKII mock-up. The aim is to evaluate the applicability of Scanning Laser Doppler Vibrometer (SLDV) for tests in simulated flying conditions and to understand how performances of the technique are affected when the laser head is placed inside the cabin, thus being subjected to interfering inputs. Firstly a brief description of the performed test cases and the used measuring set-ups are given. Comparative tests between SLDV and accelerometers are presented, analyzing the achievable performances for the specific application. Results obtained measuring with SLDV placed inside the helicopter cabin during operative excitation conditions are compared with those performed with the laser lying outside the mock-up, these last being considered as 'reference measurements'. Finally, in order to give an estimate of the uncertainty level on measured signals, a study linking the admitted percentage of noise content on vibrometer signals due to laser head vibration levels will be introduced.

  4. 14 CFR 36.501 - Noise limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise limits. 36.501 Section 36.501 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Propeller Driven Small Airplanes and...

  5. Experimental study on the damping of FAST cabin suspension system

    NASA Astrophysics Data System (ADS)

    Li, Hui; Sun, Jing-hai; Zhang, Xin-yu; Zhu, Wen-bai; Pan, Gao-feng; Yang, Qing-ge

    2012-09-01

    The focus cabin suspension of the FAST telescope has structurally weak-stiffness dynamics with low damping performance, which makes it quite sensitive to wind-induced vibrations. A reasonable estimation about the damping is very important for the control performance evaluation of the prototype. It is a quite difficult task as the telescope is no at available yet. In the paper, a preliminary analysis is first made on the aerodynamic damping. Then a series of experimental models are tested for measuring the total damping. The scales of these models range from 10m to 50m in diameter while 6 test parameters are specially designed to check the damping sensitivity. The Ibrahim time domain (ITD) method is employed to identify the damping from the measured cabin response. The identification results indicate that the lowest damping ratio of the models is about 0.2%~0.4%. Friction-type cabin-cable joint seems to have main influence on the system damping.

  6. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  7. UHB demonstrator interior noise control flight tests and analysis

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Druez, P. M.; Kimbrough, A. J.; Brock, M. P.; Burge, P. L.; Mathur, G. P.; Cannon, M. R.; Tran, B. N.

    1989-01-01

    The measurement and analysis of MD-UHB (McDonnell Douglas Ultra High Bypass) Demonstrator noise and vibration flight test data are described as they relate to passenger cabin noise. The analyses were done to investigate the interior noise characteristics of advanced turboprop aircraft with aft-mounted engines, and to study the effectiveness of selected noise control treatments in reducing passenger cabin noise. The UHB Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB engine. For these tests, the UHB engine was a General Electric Unducted Fan, with either 8x8 or 10x8 counter-rotating propeller configurations. Interior noise level characteristics were studied for several altitudes and speeds, with emphasis on high altitude (35,000 ft), high speed (0.75 Mach) cruise conditions. The effectiveness of several noise control treatments was evaluated based on cabin noise measurements. The important airborne and structureborne transmission paths were identified for both tonal and broadband sources using the results of a sound intensity survey, exterior and interior noise and vibration data, and partial coherence analysis techniques. Estimates of the turbulent boundary layer pressure wavenumber-frequency spectrum were made, based on measured fuselage noise levels.

  8. UHB demonstrator interior noise control flight tests and analysis

    NASA Astrophysics Data System (ADS)

    Simpson, M. A.; Druez, P. M.; Kimbrough, A. J.; Brock, M. P.; Burge, P. L.; Mathur, G. P.; Cannon, M. R.; Tran, B. N.

    1989-10-01

    The measurement and analysis of MD-UHB (McDonnell Douglas Ultra High Bypass) Demonstrator noise and vibration flight test data are described as they relate to passenger cabin noise. The analyses were done to investigate the interior noise characteristics of advanced turboprop aircraft with aft-mounted engines, and to study the effectiveness of selected noise control treatments in reducing passenger cabin noise. The UHB Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB engine. For these tests, the UHB engine was a General Electric Unducted Fan, with either 8x8 or 10x8 counter-rotating propeller configurations. Interior noise level characteristics were studied for several altitudes and speeds, with emphasis on high altitude (35,000 ft), high speed (0.75 Mach) cruise conditions. The effectiveness of several noise control treatments was evaluated based on cabin noise measurements. The important airborne and structureborne transmission paths were identified for both tonal and broadband sources using the results of a sound intensity survey, exterior and interior noise and vibration data, and partial coherence analysis techniques. Estimates of the turbulent boundary layer pressure wavenumber-frequency spectrum were made, based on measured fuselage noise levels.

  9. Aerospace toxicology overview: aerial application and cabin air quality.

    PubMed

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  10. Exposure to tri-o-cresyl phosphate detected in jet airplane passengers

    PubMed Central

    Liyasova, Mariya; Li, Bin; Schopfer, Lawrence M.; Nachon, Florian; Masson, Patrick; Furlong, Clement E.; Lockridge, Oksana

    2011-01-01

    The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such “fume events”. Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serine of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24–48 hours after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. PMID:21723309

  11. Exposure to tri-o-cresyl phosphate detected in jet airplane passengers.

    PubMed

    Liyasova, Mariya; Li, Bin; Schopfer, Lawrence M; Nachon, Florian; Masson, Patrick; Furlong, Clement E; Lockridge, Oksana

    2011-11-01

    The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such "fume events". Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serine of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24-48 h after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. PMID:21723309

  12. 254. Doughton Park. View of the Martin Brinegar cabin which ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    254. Doughton Park. View of the Martin Brinegar cabin which was restored for interpretative purposed in 1941 with the preparation of measured drawings for the Historic American Buildings Survey. The actual restoration was carried out by WPA forces. The grounds around the cabin were treated as an interpretative landscape rather than a historic restoration. This one of two sites along the parkway where an individual homestead was relatively intact when it was obtained and kept as an interpretative display. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  13. A Design Basis for Spacecraft Cabin Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.

    2009-01-01

    Successful trace chemical contamination control is one of the components necessary for achieving good cabin atmospheric quality. While employing seemingly simple process technologies, sizing the active contamination control equipment must employ a reliable design basis for the trace chemical load in the cabin atmosphere. A simplified design basis that draws on experience gained from the International Space Station program is presented. The trace chemical contamination control design load refines generation source magnitudes and includes key chemical functional groups representing both engineering and toxicology challenges.

  14. 8. EARLY PHOTO OF THE CABIN WITH DOG TROT SECOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EARLY PHOTO OF THE CABIN WITH DOG TROT SECOND PEN AND CHIMNEY, PORCH, STEPS AND COMPOSITION ROOF. J. T. Young Jr., Annie Ruth Young, Bonnie Marie Young and Nadine Young, relatives of the photograph's donor, appear in the foreground. The structure in front of the house and to the right of the tree is a cage for pet squirrels. 2-1/4 x 2-1/4 copy negative, courtesy of former resident Preston Young. Photographer unknown, 1923. - Thomas Jefferson Walling Log Cabin, Henderson, Rusk County, TX

  15. High Performance Diesel Fueled Cabin Heater

    SciTech Connect

    Butcher, Tom

    2001-08-05

    Recent DOE-OHVT studies show that diesel emissions and fuel consumption can be greatly reduced at truck stops by switching from engine idle to auxiliary-fired heaters. Brookhaven National Laboratory (BNL) has studied high performance diesel burner designs that address the shortcomings of current low fire-rate burners. Initial test results suggest a real opportunity for the development of a truly advanced truck heating system. The BNL approach is to use a low pressure, air-atomized burner derived form burner designs used commonly in gas turbine combustors. This paper reviews the design and test results of the BNL diesel fueled cabin heater. The burner design is covered by U.S. Patent 6,102,687 and was issued to U.S. DOE on August 15, 2000.The development of several novel oil burner applications based on low-pressure air atomization is described. The atomizer used is a pre-filming, air blast nozzle of the type commonly used in gas turbine combustion. The air pressure used can b e as low as 1300 Pa and such pressure can be easily achieved with a fan. Advantages over conventional, pressure-atomized nozzles include ability to operate at low input rates without very small passages and much lower fuel pressure requirements. At very low firing rates the small passage sizes in pressure swirl nozzles lead to poor reliability and this factor has practically constrained these burners to firing rates over 14 kW. Air atomization can be used very effectively at low firing rates to overcome this concern. However, many air atomizer designs require pressures that can be achieved only with a compressor, greatly complicating the burner package and increasing cost. The work described in this paper has been aimed at the practical adaptation of low-pressure air atomization to low input oil burners. The objective of this work is the development of burners that can achieve the benefits of air atomization with air pressures practically achievable with a simple burner fan.

  16. Study of small turbofan engines applicable to single-engine light airplanes

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.

    1976-01-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  17. Automated airplane surface generation

    SciTech Connect

    Smith, R.E.; Cordero, Y.; Jones, W.

    1996-12-31

    An efficient methodology and software axe presented for defining a class of airplane configurations. A small set of engineering design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tall, horizontal tail, and canard components. Wing, canard, and tail surface grids axe manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage is described by an algebraic function with four design parameters. The computed surface grids are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations. Both batch and interactive software are discussed for applying the methodology.

  18. Testing airplane fabrics

    NASA Technical Reports Server (NTRS)

    Proll, A

    1924-01-01

    The following considerations determine the strength of airplane fabrics: 1. maximum air forces acting on the surfaces (including local stresses); 2. tensions produced in the fabrics, in the directions of both warp and filling; 3. factor of safety required. The question of the permissible depression of the fabric as affecting the aerodynamic requirements in regard to the maintenance of shape of the section, the tenacity and extensibility of the layer of dope, its strength and its permeability to water is almost as important.

  19. 14 CFR 121.578 - Cabin ozone concentration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Cabin ozone concentration. 121.578 Section 121.578 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND...

  20. 18. DETAIL VIEW OF A TYPICAL TOWER FROM OPERATOR'S CABIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL VIEW OF A TYPICAL TOWER FROM OPERATOR'S CABIN, LOOKING WEST-NORTHWEST (Vignetting caused by extreme camera shift required to hold entire tower in view) - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  1. Modeling flight attendants' exposures to pesticide in disinsected aircraft cabins.

    PubMed

    Zhang, Yong; Isukapalli, Sastry; Georgopoulos, Panos; Weisel, Clifford

    2013-12-17

    Aircraft cabin disinsection is required by some countries to kill insects that may pose risks to public health and native ecological systems. A probabilistic model has been developed by considering the microenvironmental dynamics of the pesticide in conjunction with the activity patterns of flight attendants, to assess their exposures and risks to pesticide in disinsected aircraft cabins under three scenarios of pesticide application. Main processes considered in the model are microenvironmental transport and deposition, volatilization, and transfer of pesticide when passengers and flight attendants come in contact with the cabin surfaces. The simulated pesticide airborne mass concentration and surface mass loadings captured measured ranges reported in the literature. The medians (means ± standard devitions) of daily total exposure intakes were 0.24 (3.8 ± 10.0), 1.4 (4.2 ± 5.7), and 0.15 (2.1 ± 3.2) μg day(-1) kg(-1) of body weight for scenarios of residual application, preflight, and top-of-descent spraying, respectively. Exposure estimates were sensitive to parameters corresponding to pesticide deposition, body surface area and weight, surface-to-body transfer efficiencies, and efficiency of adherence to skin. Preflight spray posed 2.0 and 3.1 times higher pesticide exposure risk levels for flight attendants in disinsected aircraft cabins than top-of-descent spray and residual application, respectively. PMID:24251734

  2. 4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOWER NOTTINGHAM MINE. DETAIL OF OBJECTS ASSOCIATED WITH CABIN 'B'; PIPE, WOOD, STOVE MATERIALS, AND COLLAPSED ROOT CELLAR IN CENTRAL AREA. VERTICAL, DARK PIPE IS VISIBLE IN CENTER/UPPER THIRD. CAMERA POINTED EAST. - Florida Mountain Mining Sites, Lower Nottingham Mine, Western slope of Florida Mountain, Silver City, Owyhee County, ID

  3. 1. Postandbeam garage (far left), oneroom log cabin (left of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Post-and-beam garage (far left), one-room log cabin (left of center), house (right of center), garden shed and outhouse (far right). View to west-southwest. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  4. 36 CFR 13.1306 - Public use cabins.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions §...

  5. 36 CFR 13.1306 - Public use cabins.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions §...

  6. 36 CFR 13.1306 - Public use cabins.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions §...

  7. 36 CFR 13.1306 - Public use cabins.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions §...

  8. 36 CFR 13.1306 - Public use cabins.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Public use cabins. 13.1306 Section 13.1306 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Kenai Fjords National Park General Provisions §...

  9. 17. VIEW FORWARD FROM THE CAPTAIN'S CABIN INTO THE ENGINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW FORWARD FROM THE CAPTAIN'S CABIN INTO THE ENGINE ROOM. THE OPENING IN THE BULKHEAD WAS CUT TO AID ENGINE REMOVAL. DECK BEAMS WERE ALSO CUT AWAY TO REMOVE ENGINE. PIPE IN FOREGROUND AT RIGHT IS ATTACHED TO A BOILER. - Auxiliary Fishing Schooner "Evelina M. Goulart", Essex Shipbuilding Museum, 66 Main Street, Essex, Essex County, MA

  10. 21. VIEW TO SOUTH. INTERIOR OF CONTROL CABIN FROM DOORWAY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW TO SOUTH. INTERIOR OF CONTROL CABIN FROM DOORWAY. INVERTED 'TEE'-SHAPED OBJECT IN LEFT CORNER AND LARGE WHITE WOODEN BEAM BOLTED TOGETHER TO FORM CAPSTAN UTILIZED FOR HAND OPERATION OF THE SWING SPAN. - Gianella Bridge, Spanning Sacramento River at State Highway 32, Hamilton City, Glenn County, CA

  11. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.

  12. Magnetic analyses of powders from exhausted cabin air filters

    NASA Astrophysics Data System (ADS)

    Winkler, Aldo; Sagnotti, Leonardo

    2013-04-01

    The automotive cabin air filter is a pleated-paper filter placed in the outside-air intake for the car's passenger compartment. Dirty and saturated cabin air filters significantly reduce the airflow from the outside and introduce particulate matter (PM) and allergens (for example, pollen) into the cabin air stream. Magnetic measurements and analyses have been carried out on powders extracted from exhausted cabin air filters to characterize their magnetic properties and to compare them to those already reported for powders collected from disk brakes, gasoline exhaust pipes and Quercus ilex leaves. This study is also aimed at the identification and quantification of the contribution of the ultrafine fraction, superparamagnetic (SP) at room temperature, to the overall magnetic properties of these powders. This contribution was estimated by interpreting and comparing data from FORCs, isothermal remanent magnetization vs time decay curves, frequency and field dependence of the magnetic susceptibility and out-of-phase susceptibility. The magnetic properties and the distribution of the SP particles are generally homogenous and independent of the brand of the car, of the model of the filter and of its level of usage. The relatively high concentration of magnetic PM trapped in these filters poses relevant questions about the air quality inside a car.

  13. 46 CFR 15.855 - Cabin watchmen and fire patrolmen.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of fire detectors, heat detectors, smoke detectors, and high-water alarms with audible- and visual... extraction hood per § 181.425 of this chapter. (3) Heat and/or smoke detectors are located in each galley... 46 Shipping 1 2010-10-01 2010-10-01 false Cabin watchmen and fire patrolmen. 15.855 Section...

  14. 46 CFR 15.855 - Cabin watchmen and fire patrolmen.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of fire detectors, heat detectors, smoke detectors, and high-water alarms with audible- and visual... extraction hood per § 181.425 of this chapter. (3) Heat and/or smoke detectors are located in each galley... 46 Shipping 1 2012-10-01 2012-10-01 false Cabin watchmen and fire patrolmen. 15.855 Section...

  15. 46 CFR 15.855 - Cabin watchmen and fire patrolmen.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., heat detectors, smoke detectors, and high-water alarms with audible- and visual-warning indicators, in... this chapter. (3) Heat and/or smoke detectors are located in each galley, public accommodation space... 46 Shipping 1 2014-10-01 2014-10-01 false Cabin watchmen and fire patrolmen. 15.855 Section...

  16. 46 CFR 15.855 - Cabin watchmen and fire patrolmen.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of fire detectors, heat detectors, smoke detectors, and high-water alarms with audible- and visual... extraction hood per § 181.425 of this chapter. (3) Heat and/or smoke detectors are located in each galley... 46 Shipping 1 2013-10-01 2013-10-01 false Cabin watchmen and fire patrolmen. 15.855 Section...

  17. Ozone contamination in aircraft cabins - Results from GASP data and analyses

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.

    1981-01-01

    The paper reviews results from the NASA Global Atmospheric Sampling Program (GASP) pertaining to the problem of ozone contamination in commercial aircraft cabins. Specifically, analyses of GASP data have (1) confirmed the high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; (2) defined ambient ozone climatology at commercial aircraft cruise altitudes, including tabulation of encounter frequency data; and (3) outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data and verified these procedures against cabin measurements.

  18. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  19. 77 FR 50644 - Airworthiness Directives; Cessna Airplane Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... 1134104-5 air conditioning (A/C) compressor motor; and (2) are certificated in any category. (d) Subject... certain Cessna Airplane Company Model 525 airplanes equipped with certain part number (P/N) air conditioning (A/C) compressor motors. This proposed AD was prompted by reports of smoke and/or fire in...

  20. Crew Survivability After a Rapid Cabin Depressurization Event

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2012-01-01

    Anecdotal evidence acquired through historic failure investigations involving rapid cabin decompression (e.g. Challenger, Columbia and Soyuz 11) show that full evacuation of the cabin atmosphere may occur within seconds. During such an event, the delta-pressure between the sealed suit ventilation system and the cabin will rise at the rate of the cabin depressurization; potentially at a rate exceeding the capability of the suit relief valve. It is possible that permanent damage to the suit pressure enclosure and ventilation loop components may occur as the integrated system may be subjected to delta pressures in excess of the design-to pressures. Additionally, as the total pressure of the suit ventilation system decreases, so does the oxygen available to the crew. The crew may be subjected to a temporarily incapacitating, but non-lethal, hypoxic environment. It is expected that the suit will maintain a survivable atmosphere on the crew until the vehicle pressure control system recovers or the cabin has otherwise attained a habitable environment. A common finding from the aforementioned reports indicates that the crew would have had a better chance at surviving the event had they been in a protective configuration, that is, in a survival suit. Making use of these lessons learned, the Constellation Program implemented a suit loop in the spacecraft design and required that the crew be in a protective configuration, that is suited with gloves on and visors down, during dynamic phases of flight that pose the greatest risk for a rapid and uncontrolled cabin depressurization event: ascent, entry, and docking. This paper details the evaluation performed to derive suit pressure garment and ventilation system performance parameters that would lead to the highest probability of crew survivability after an uncontrolled crew cabin depressurization event while remaining in the realm of practicality for suit design. This evaluation involved: (1) assessment of stakeholder

  1. Crew Survivability After a Rapid Cabin Depressurization Event

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2011-01-01

    Anecdotal evidence acquired through historic failure investigations involving rapid cabin decompression (e.g. Challenger, Columbia and Soyuz 11) show that full evacuation of the cabin atmosphere may occur within seconds. During such an event, the delta-pressure between the sealed suit ventilation system and the cabin will rise at the rate of the cabin depressurization; potentially at a rate exceeding the capability of the suit relief valve. It is possible that permanent damage to the suit pressure enclosure and ventilation loop components may occur as the integrated system may be subjected to delta pressures in excess of the design to pressures. Additionally, as the total pressure of the suit ventilation system decreases, so does the oxygen available to the crew. The crew may be subjected to a temporary incapacitating, but non-lethal, hypoxic environment. It is expected that the suit will maintain a survivable atmosphere on the crew until the vehicle pressure control system recovers or the cabin has otherwise attained a habitable environment. A common finding from the aforementioned reports indicates that the crew would have had a better chance at surviving the event had they been in a protective configuration, that is, in a survival suit. Making use of these lessons learned, the Constellation Program implemented a suit loop in the spacecraft design and required that the crew be in a protective configuration, that is suited with gloves on and visors down, during dynamic phases of flight that pose the greatest risk for a rapid and uncontrolled cabin depressurization event: ascent, entry, and docking. This paper details the evaluation performed to derive suit pressure garment and ventilation system performance parameters that would lead to the highest probability of crew survivability after an uncontrolled crew cabin depressurization event while remaining in the realm of practicality for suit design. This evaluation involved: (1) assessment of stakeholder

  2. Accelerations and Passenger Harness Loads Measured in Full-Scale Light-Airplane Crashes

    NASA Technical Reports Server (NTRS)

    Eiband, A. Martin; Simpkinson, Scott H.; Black, Dugald O.

    1953-01-01

    Full-scale light-airplane crashes simulating stall-spin accidents were conducted to determine the decelerations to which occupants are exposed and the resulting harness forces encountered in this type of accident. Crashes at impact speeds from 42 to 60 miles per hour were studied. The airplanes used were of the familiar steel-tube, fabric-covered, tandem, two-seat type. In crashes up to an impact speed of 60 miles per hour, crumpling of the forward fuselage structure prevented the maximum deceleration at the rear-seat location from exceeding 26 to 33g. This maximum g value appeared independent of the impact speed. Restraining forces in the seatbelt - shoulder-harness combination reached 5800 pounds. The rear-seat occupant can survive crashes of the type studied at impact speeds up to 60 miles per hour, if body movement is restrained by an adequate seatbelt-shoulder-harness combination so as to prevent injurious contact with obstacles normally present in the cabin. Inwardly collapsing cabin structure, however, is a potential hazard in the higher-speed crashes.

  3. An improved source model for aircraft interior noise studies

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Fuller, C. R.

    1985-01-01

    There is concern that advanced turboprop engines currently being developed may produce excessive aircraft cabin noise levels. This concern has stimulated renewed interest in developing aircraft interior noise reduction methods that do not significantly increase take off weight. An existing analytical model for noise transmission into aircraft cabins was utilized to investigate the behavior of an improved propeller source model for use in aircraft interior noise studies. The new source model, a virtually rotating dipole, is shown to adequately match measured fuselage sound pressure distributions, including the correct phase relationships, for published data. The virtually rotating dipole is used to study the sensitivity of synchrophasing effectiveness to the fuselage sound pressure trace velocity distribution. Results of calculations are presented which reveal the importance of correctly modeling the surface pressure phase relations in synchrophasing and other aircraft interior noise studies.

  4. Low-Noise Rotorcraft Blades

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    1994-01-01

    Blades of helicopter rotors, tilt rotors, and like reshaped to reduce noise, according to proposal. Planform features combination of rearward and forward sweep. Forward sweep over large outer portion of blade constitutes primary noise-reduction feature. Relieves some of compressive effect in tip region, with consequent reduction of noise from compressive sources. Performance at high advance ratio improved. Cabin vibration and loading noise reduced by load-averaging effect of double-sweep planform. Aft-swept section provides balancing of aerodynamic and other dynamic forces on blade along 1/4-chord line of straight inboard section and along projection of line to outermost blade radius. Possible for hub-hinge forces and moments to remain within practical bounds. Provides stabilizing blade forces and moments to counteract any instability caused by forward sweep.

  5. Source apportionment of airborne particles in commercial aircraft cabin environment: Contributions from outside and inside of cabin

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Guan, Jun; Yang, Xudong; Lin, Chao-Hsin

    2014-06-01

    Airborne particles are an important type of air pollutants in aircraft cabin. Finding sources of particles is conducive to taking appropriate measures to remove them. In this study, measurements of concentration and size distribution of particles larger than 0.3 μm (PM>0.3) were made on nine short haul flights from September 2012 to March 2013. Particle counts in supply air and breathing zone air were both obtained. Results indicate that the number concentrations of particles ranged from 3.6 × 102 counts L-1 to 1.2 × 105 counts L-1 in supply air and breathing zone air, and they first decreased and then increased in general during the flight duration. Peaks of particle concentration were found at climbing, descending, and cruising phases in several flights. Percentages of particle concentration in breathing zone contributed by the bleed air (originated from outside) and cabin interior sources were calculated. The bleed air ratios, outside airflow rates and total airflow rates were calculated by using carbon dioxide as a ventilation tracer in five of the nine flights. The calculated results indicate that PM>0.3 in breathing zone mainly came from unfiltered bleed air, especially for particle sizes from 0.3 to 2.0 μm. And for particles larger than 2.0 μm, contributions from the bleed air and cabin interior were both important. The results would be useful for developing better cabin air quality control strategies.

  6. Trend of airplane flight characteristics

    NASA Technical Reports Server (NTRS)

    Von Koppen, Joachim

    1933-01-01

    This report describes the development of airplane characteristics since the war and indicates the direction development should take in the immediate future. Some of the major topics include: the behavior of an airplane about its lateral, vertical, and longitudinal axes. Behavior at large angles of attack and landing characteristics are also included.

  7. Wireless Local Area Network Performance Inside Aircraft Passenger Cabins

    NASA Technical Reports Server (NTRS)

    Whetten, Frank L.; Soroker, Andrew; Whetten, Dennis A.; Whetten, Frank L.; Beggs, John H.

    2005-01-01

    An examination of IEEE 802.11 wireless network performance within an aircraft fuselage is performed. This examination measured the propagated RF power along the length of the fuselage, and the associated network performance: the link speed, total throughput, and packet losses and errors. A total of four airplanes: one single-aisle and three twin-aisle airplanes were tested with 802.11a, 802.11b, and 802.11g networks.

  8. Interior noise prediction methodology: ATDAC theory and validation

    NASA Technical Reports Server (NTRS)

    Mathur, Gopal P.; Gardner, Bryce K.

    1992-01-01

    The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.

  9. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding...

  10. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding...

  11. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories... airplanes that have a seating configuration, excluding pilot seats, of nine or less, a maximum...

  12. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding...

  13. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding...

  14. Structureborne noise control in advanced turboprop aircraft

    NASA Astrophysics Data System (ADS)

    Loeffler, Irvin J.

    1987-01-01

    Structureborne noise is discussed as a contributor to propeller aircraft interior noise levels that are nonresponsive to the application of a generous amount of cabin sidewall acoustic treatment. High structureborne noise levels may jeopardize passenger acceptance of the fuel-efficient high-speed propeller transport aircraft designed for cruise at Mach 0.65 to 0.85. These single-rotation tractor and counter-rotation tractor and pusher propulsion systems will consume 15 to 30 percent less fuel than advanced turbofan systems. Structureborne noise detection methodologies and the importance of development of a structureborne noise sensor are discussed. A structureborne noise generation mechanism is described in which the periodic components or propeller swirl produce periodic torques and forces on downstream wings and airfoils that are propagated to the cabin interior as noise. Three concepts for controlling structureborne noise are presented: (1) a stator row swirl remover, (2) selection of a proper combination of blade numbers in the rotor/stator system of a single-rotation propeller, and the rotor/rotor system of a counter-rotation propeller, and (3) a tuned mechanical absorber.

  15. Biological Network Inference and Analysis using SEBINI and CABIN

    SciTech Connect

    Taylor, Ronald C.; Singhal, Mudita

    2008-01-01

    Attaining a detailed understanding of the various biological networks in an organism lies at the core of the emerging discipline of systems biology. A precise description of the relationships formed between genes, mRNA molecules, and proteins is a necessary step toward a complete description of the dynamic behavior of an organism at the cellular level; and towards intelligent, efficient and directed modification of an organism. The importance of understanding such regulatory, signaling, and interaction networks has fueled the development of numerous in silico inference algorithms, as well as new experimental techniques and a growing collection of public databases. The Software Environment for BIological Network Inference (SEBINI) has been created to provide an interactive environment for the deployment, evaluation, and improvement of algorithms used to reconstruct the structure of biological regulatory and interaction networks. SEBINI can be used to analyze high-throughput gene expression, protein expression, or protein activation data via a suite of state-of-the-art network inference algorithms. It also allows algorithm developers to compare and train network inference methods on artificial networks and simulated gene expression perturbation data. SEBINI can therefore be used by software developers wishing to evaluate, refine, or combine inference techniques, as well as by bioinformaticians analyzing experimental data. Networks inferred from the SEBINI software platform can be further analyzed using the Collective Analysis of Biological Interaction Networks (CABIN) tool, which is exploratory data analysis software that enables integration and analysis of protein-protein interaction and gene-to-gene regulatory evidence obtained from multiple sources. The collection of edges in public databases, along with the confidence held in each edge (if available), can be fed into CABIN as one “evidence network”, using the Cytoscape SIF file format. Using CABIN, one may

  16. 77 FR 15291 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); 3. Will not... B4-622R airplanes; Model A300 C4-605R Variant F airplanes; and Model A300 F4-600R series airplanes... B4-603, B4-605R, and B4- 622R airplanes; Model A300 C4-605R Variant F airplanes; and Model A300...

  17. Simulations of ozone distributions in an aircraft cabin using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Rai, Aakash C.; Chen, Qingyan

    2012-07-01

    Ozone is a major pollutant of indoor air. Many studies have demonstrated the adverse health effect of ozone and the byproducts generated as a result of ozone-initiated reactive chemistry in an indoor environment. This study developed a Computational Fluid Dynamics (CFD) model to predict the ozone distribution in an aircraft cabin. The model was used to simulate the distribution of ozone in an aircraft cabin mockup for the following cases: (1) empty cabin; (2) cabin with seats; (3) cabin with soiled T-shirts; (4) occupied cabin with simple human geometry; and (5) occupied cabin with detailed human geometry. The agreement was generally good between the CFD results and the available experimental data. The ozone removal rate, deposition velocity, retention ratio, and breathing zone levels were well predicted in those cases. The CFD model predicted breathing zone ozone concentration to be 77-99% of the average cabin ozone concentration depending on the seat location. The ozone concentration at the breathing zone in the cabin environment can better assess the health risk to passengers and can be used to develop strategies for a healthier cabin environment.

  18. Towards an Integrated Approach to Cabin Service English Curriculum Design: A Case Study of China Southern Airlines' Cabin Service English Training Course

    ERIC Educational Resources Information Center

    Xiaoqin, Liu; Wenzhong, Zhu

    2016-01-01

    This paper has reviewed the history of EOP (training) development and then illustrated the curriculum design of cabin service English training from the three perspectives of ESP, CLIL and Business Discourse. It takes the cabin crew English training of China Southern Airlines (CZ) as the case and puts forward an operational framework composed of…

  19. Aircraft and airport noise control prospective outlook

    SciTech Connect

    Shapiro, N.

    1982-01-01

    In a perspective look at aircraft and airport noise control over the past ten years or more - or more is added here because the Federal Aviation Regulation Part 36 of 1969 is a more significant milestone for the air transportation system than is the Noise Control Act of 1972 - we see an appreciable reduction in the noise emitted by newly designed and newly produced airplanes, particularly those powered by the new high bypass engines, but only, at best, a moderate alleviation of airport noise. The change in airport noise exposure was the consequence of the introduction of some new, quieter airplanes into the airlines fleets and some operational modifications or restrictions at the airports.

  20. 14 CFR 91.859 - Modification to meet Stage 3 or Stage 4 noise levels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... noise levels. 91.859 Section 91.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Noise Limits § 91.859 Modification to meet Stage 3 or Stage 4 noise levels. For an airplane subject to... Stage 3 or Stage 4 noise levels....

  1. 14 CFR 91.859 - Modification to meet Stage 3 or Stage 4 noise levels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... noise levels. 91.859 Section 91.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Noise Limits § 91.859 Modification to meet Stage 3 or Stage 4 noise levels. For an airplane subject to... Stage 3 or Stage 4 noise levels....

  2. 14 CFR 91.859 - Modification to meet Stage 3 or Stage 4 noise levels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... noise levels. 91.859 Section 91.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Noise Limits § 91.859 Modification to meet Stage 3 or Stage 4 noise levels. For an airplane subject to... Stage 3 or Stage 4 noise levels....

  3. 14 CFR 91.859 - Modification to meet Stage 3 or Stage 4 noise levels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... noise levels. 91.859 Section 91.859 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Noise Limits § 91.859 Modification to meet Stage 3 or Stage 4 noise levels. For an airplane subject to... Stage 3 or Stage 4 noise levels....

  4. Reduced bleed air extraction for DC-10 cabin air conditioning

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  5. Pool fires in a simulated aircraft cabin interior with ventilation

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.; Cho, Y. I.; Shakkottai, P.

    1987-01-01

    Results of experiments conducted at the JPL to evaluate aircraft postcrash fire hazards are presented. The experiments were carried out in a one-third scale simulated aircraft cabin geometry to study pool fire and ventilation flow interactions. It is shown that wind-induced ventilation may significantly affect fire plume orientation, smoke transport, and heat fluxes and thus will affect subsequent fire spread and the immediate survivability of the passengers.

  6. Fast roadway detection using car cabin video camera

    NASA Astrophysics Data System (ADS)

    Krokhina, Daria; Blinov, Veniamin; Gladilin, Sergey; Tarhanov, Ivan; Postnikov, Vassili

    2015-12-01

    We describe a fast method for road detection in images from a vehicle cabin camera. Straight section of roadway is detected using Fast Hough Transform and the method of dynamic programming. We assume that location of horizon line in the image and the road pattern are known. The developed method is fast enough to detect the roadway on each frame of the video stream in real time and may be further accelerated by the use of tracking.

  7. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    NASA Technical Reports Server (NTRS)

    LeVan, M. Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there by W. Scot Appel under the direction of Dr. John E. Finn. Modeling work was performed at the University of Virginia and at Vanderbilt University by W. Scot Appel under the direction of M. Douglas LeVan. All three participants collaborated in all of the various phases of the research. The most comprehensive document describing the research is the Ph.D. dissertation of W. Scot Appel. Results have been published in several papers and presented in talks at technical conferences. All documents have been transmitted to Dr. John E. Finn.

  8. Trending of Overboard Leakage of ISS Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.; Leonard, Daniel J.; Ghariani, Ahmed

    2011-01-01

    The International Space Station (ISS) overboard leakage of cabin atmosphere is continually tracked to identify new or aggravated leaks and to provide information for planning of nitrogen supply to the ISS. The overboard leakage is difficult to trend with various atmosphere constituents being added and removed. Changes to nitrogen partial pressure is the nominal means of trending the overboard leakage. This paper summarizes the method of the overboard leakage trending and presents findings from the trending.

  9. Airborne exposure patterns from a passenger source in aircraft cabins

    PubMed Central

    Bennett, James S.; Jones, Byron W.; Hosni, Mohammad H.; Zhang, Yuanhui; Topmiller, Jennifer L.; Dietrich, Watts L.

    2015-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  10. Airborne exposure patterns from a passenger source in aircraft cabins.

    PubMed

    Bennett, James S; Jones, Byron W; Hosni, Mohammad H; Zhang, Yuanhui; Topmiller, Jennifer L; Dietrich, Watts L

    2013-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  11. Microbial assessment of cabin air quality on commercial airliners

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Stuecker, Tara; Bearman, Gregory; Venkateswaran, Kasthuri

    2005-01-01

    The microbial burdens of 69 cabin air samples collected from commercial airliners were assessed via conventional culture-dependent, and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 x10 4 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on R2A minimal medium, anywhere from 2% to 80% of these viable populations were cultivable. Five of the 29 samples examined exhibited higher cultivable counts than ATP derived viable counts, perhaps a consequence of the dormant nature (and thus lower concentration of intracellular ATP) of cells inhabiting these air cabin samples. Ribosomal RNA gene sequence analysis showed these samples to consist of a moderately diverse group of bacteria, including human pathogens. Enumeration of ribosomal genes via quantitative-PCR indicated that population densities ranged from 5 x 10 1 ' to IO 7 cells per 100 liters of air. Each of the aforementioned strategies for assessing overall microbial burden has its strengths and weaknesses; this publication serves as a testament to the power of their use in concert.

  12. Determination of On-Orbit Cabin Air Loss from the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Leonard, Daniel J.; Smith, Patrick J.

    2004-01-01

    The International Space Station (ISS) loses cabin atmosphere mass at some rate. Due to oxygen partial pressures fluctuations from metabolic usage, the total pressure is not a good data source for tracking total pressure loss. Using the nitrogen partial pressure is a good data source to determine the total on-orbit cabin atmosphere loss from the ISS, due to no nitrogen addition or losses. There are several important reasons to know the daily average cabin air loss of the ISS including logistics planning for nitrogen and oxygen. The total average daily cabin atmosphere loss was estimated from January 14 to April 9 of 2003. The total average daily cabin atmosphere loss includes structural leakages, Vozdukh losses, Carbon Dioxide Removal Assembly (CDRA) losses, and other component losses. The total average daily cabin atmosphere loss does not include mass lost during Extra-Vehicular Activities (EVAs), Progress dockings, Space Shuttle dockings, calibrations, or other specific one-time events.

  13. Impact of cabin environment on thermal protection system of crew hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao Wei; Zhao, Jing Quan; Zhu, Lei; Yu, Xi Kui

    2016-05-01

    Hypersonic crew vehicles need reliable thermal protection systems (TPS) to ensure their safety. Since there exists relative large temperature difference between cabin airflow and TPS structure, the TPS shield that covers the cabin is always subjected to a non-adiabatic inner boundary condition, which may influence the heat transfer characteristic of the TPS. However, previous literatures always neglected the influence of the inner boundary by assuming that it was perfectly adiabatic. The present work focuses on studying the impact of cabin environment on the thermal performance. A modified TPS model is created with a mixed thermal boundary condition to connect the cabin environment with the TPS. This helps make the simulation closer to the real situation. The results stress that cabin environment greatly influences the temperature profile inside the TPS, which should not be neglected in practice. Moreover, the TPS size can be optimized during the design procedure if taking the effect of cabin environment into account.

  14. Evaluation of cabin design based on the method of multiple attribute group decision-making

    NASA Astrophysics Data System (ADS)

    Li, Xiaowen; Lv, Linlin; Li, Ping

    2013-07-01

    New century, cabin design has become an important factor affecting the compact capability of modern naval vessels. Traditional cabin design, based on naval rules and designer's subjective feeling and experience, holds that weapons and equipments are more important than habitability. So crew's satisfaction is not high to ships designed by traditional methods. In order to solve this problem, the method of multiple attribute group decision-making was proposed to evaluate the cabin design projects. This method considered many factors affecting cabin design, established a target system, quantified fuzzy factors in cabin design, analyzed the need of crews and gave a reasonable evaluation on cabin design projects. Finally, an illustrative example analysis validates the effectiveness and reliability of this method.

  15. FAA/NASA En Route Noise Symposium

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A. (Compiler)

    1990-01-01

    Aircraft community noise annoyance is traditionally a concern only in localities near airports. The proposed introduction of large commercial airplanes with advanced turboprop propulsion systems with supersonic propellers has given rise to concerns of noise annoyance in areas previously considered not to be impacted by aircraft noise. A symposium was held to assess the current knowledge of factors important to the impact of en route noise and to aid in the formulation of FAA and NASA programs in the area. Papers were invited on human response to aircraft noise in areas with low ambient noise levels, aircraft noise heard indoors and outdoors, aircraft noise in recreational areas, detection of propeller and jet aircraft noise, and methodological issues relevant to the design of future studies.

  16. Incident-response monitoring technologies for aircraft cabin air quality

    NASA Astrophysics Data System (ADS)

    Magoha, Paul W.

    Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained

  17. A new theory for rapid calculation of the ground pattern of the incident sound intensity produced by a maneuvering jet airplane

    NASA Technical Reports Server (NTRS)

    Barger, R. L.

    1980-01-01

    An approximate method for computing the jet noise pattern of a maneuvering airplane is described. The method permits one to relate the noise pattern individually to the influences of airplane speed and acceleration, jet velocity and acceleration, and the flight path curvature. The analytic formulation determines the ground pattern directly without interpolation and runs rapidly on a minicomputer. Calculated examples including a climbing turn and a simple climb pattern with a gradual throttling back are presented.

  18. Gamma rays at airplane altitudes

    SciTech Connect

    Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J. )

    1990-03-20

    An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes.

  19. The structure of airplane fabrics

    NASA Technical Reports Server (NTRS)

    Walen, E Dean

    1920-01-01

    This report prepared by the Bureau of Standards for the National Advisory Committee for Aeronautics supplies the necessary information regarding the apparatus and methods of testing and inspecting airplane fabrics.

  20. Exposure to tri-o-cresyl phosphate detected in jet airplane passengers

    SciTech Connect

    Liyasova, Mariya; Li, Bin; Schopfer, Lawrence M.; Nachon, Florian; Masson, Patrick; Furlong, Clement E.; Lockridge, Oksana

    2011-11-15

    The aircraft cabin and flight deck ventilation are supplied from partially compressed unfiltered bleed air directly from the engine. Worn or defective engine seals can result in the release of engine oil into the cabin air supply. Aircrew and passengers have complained of illness following such 'fume events'. Adverse health effects are hypothesized to result from exposure to tricresyl phosphate mixed esters, a chemical added to jet engine oil and hydraulic fluid for its anti-wear properties. Our goal was to develop a laboratory test for exposure to tricresyl phosphate. The assay was based on the fact that the active-site serine of butyrylcholinesterase reacts with the active metabolite of tri-o-cresyl phosphate, cresyl saligenin phosphate, to make a stable phosphorylated adduct with an added mass of 80 Da. No other organophosphorus agent makes this adduct in vivo on butyrylcholinesterase. Blood samples from jet airplane passengers were obtained 24-48 h after completing a flight. Butyrylcholinesterase was partially purified from 25 ml serum or plasma, digested with pepsin, enriched for phosphorylated peptides by binding to titanium oxide, and analyzed by mass spectrometry. Of 12 jet airplane passengers tested, 6 were positive for exposure to tri-o-cresyl phosphate that is, they had detectable amounts of the phosphorylated peptide FGEpSAGAAS. The level of exposure was very low. No more than 0.05 to 3% of plasma butyrylcholinesterase was modified. None of the subjects had toxic symptoms. Four of the positive subjects were retested 3 to 7 months following their last airplane trip and were found to be negative for phosphorylated butyrylcholinesterase. In conclusion, this is the first report of an assay that detects exposure to tri-o-cresyl phosphate in jet airplane travelers. -- Highlights: Black-Right-Pointing-Pointer Travel on jet airplanes is associated with an illness, aerotoxic syndrome. Black-Right-Pointing-Pointer A possible cause is exposure to tricresyl

  1. [Hygienic assessment of the overall noise load in civilian aviation crews].

    PubMed

    Shkarinov, L N; Meĭman, M Iu; Lopashov, D V

    1990-01-01

    The contributors give a hygienic assessment of the overall noise load in Soviet Civil Aviation crews' labour conditions and propose an original technique for noise load measurements during the flight, including noise level measurements in the cabin, effectiveness of individual noise protection means, and measurements of noise resulting from individual radio communication devices. The communication devices are considered to bear major responsibility for noise load in modern aircraft crews. Conclusions are made with regard to the health related factors of noise load in off-flight state (when in the landing field) and off-duty conditions (at rest in airport hotels and recreation sites). PMID:2376339

  2. General Aviation Interior Noise. Part 2; In-Flight Source/Verification

    NASA Technical Reports Server (NTRS)

    Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)

    2002-01-01

    The technical approach made use of the Cessna Model 182E aircraft used in the previous effort as a test bed for noise control application. The present phase of the project reports on flight test results during application of various passive noise treatments in an attempt to verify the noise sources and paths for the aircraft. The data presented establishes the level of interior noise control that can be expected for various passive noise control applications within the aircraft cabin. Subsequent testing will address specific testing to demonstrate the technology available to meet a specified level of noise control by application of passive and/or active noise control technology.

  3. Airplane Upset Training Evaluation Report

    NASA Technical Reports Server (NTRS)

    Gawron, Valerie J.; Jones, Patricia M. (Technical Monitor)

    2002-01-01

    Airplane upset accidents are a leading factor in hull losses and fatalities. This study compared five types of airplane-upset training. Each group was composed of eight, non-military pilots flying in their probationary year for airlines operating in the United States. The first group, 'No aero / no upset,' was made up of pilots without any airplane upset training or aerobatic flight experience; the second group, 'Aero/no upset,' of pilots without any airplane-upset training but with aerobatic experience; the third group, 'No aero/upset,' of pilots who had received airplane-upset training in both ground school and in the simulator; the fourth group, 'Aero/upset,' received the same training as Group Three but in addition had aerobatic flight experience; and the fifth group, 'In-flight' received in-flight airplane upset training using an instrumented in-flight simulator. Recovery performance indicated that clearly training works - specifically, all 40 pilots recovered from the windshear upset. However few pilots were trained or understood the use of bank to change the direction of the lift vector to recover from nose high upsets. Further, very few thought of, or used differential thrust to recover from rudder or aileron induced roll upsets. In addition, recovery from icing-induced stalls was inadequate.

  4. Airplane design for gusts

    NASA Technical Reports Server (NTRS)

    Houbolt, J. C.

    1977-01-01

    There are two basic approaches used for the structural design of aircraft due to dust encounter. One is a discrete gust approach, the other is based on power spectral techniques. Both of these approaches are explained in this report. Tacit to the above approaches is the assumption that loading on the airplane arises primarily from vertical gusts. A study of atmospheric turbulence was made not only on the vertical component, but on the longitudinal and transverse gust components as well. An analysis was made to establish the loads that develop when explicit consideration is given to both the vertical and head-wind components. The results are reported. Also included in this report are brief comments on gust effects during approach and landing.

  5. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Acoustical change: Transport category large... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical...

  6. The influence of the noise environment on crew communications

    NASA Technical Reports Server (NTRS)

    Leverton, J. W.

    1978-01-01

    The noise environment and how it affects crew communications in helicopters is considered. The signal to noise (S/N) ratio at the microphone and the effect of the attenuation provided by the helmet is discussed. This shows that the most important aspect is the S/N ratio at the microphone, particularly when helmets with improved attenuation characteristics are considered. Evidence is presented which shows that in high noise environments, the system S/N ratio is well below that required and hence there is an urgent need to reduce the cabin noise levels and improve the microphone rejection properties. Emphasis is placed on environmental/acoustic considerations.

  7. 14 CFR 36.101 - Noise measurement and evaluation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Noise measurement and evaluation. 36.101 Section 36.101 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... and Jet Airplanes § 36.101 Noise measurement and evaluation. For transport category large...

  8. 14 CFR 36.101 - Noise measurement and evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise measurement and evaluation. 36.101 Section 36.101 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... and Jet Airplanes § 36.101 Noise measurement and evaluation. For transport category large...

  9. 14 CFR 36.101 - Noise measurement and evaluation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Noise measurement and evaluation. 36.101 Section 36.101 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... and Jet Airplanes § 36.101 Noise measurement and evaluation. For transport category large...

  10. Active control of interior noise in a business jet using piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Fuller, Chris R.; Gibbs, Gary P.

    Preliminary experiments on controlling interior noise in a medium sized business jet using small patch type piezoceramic actuators bonded to the fuselage are reported. The results demonstrate that the piezoceramic patch actuators have enough control authority for this application. In addition, for the dominant noise case of a cabin resonance, reasonable sound reductions with only four control inputs were measured throughout the cabin space except at one location. Results at the off-resonance case show reduced control performance. Important nonlinear behavior, most likely due to curving the flat piezoceramic actuators on attachment was identified.

  11. Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.

    1990-01-01

    Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.

  12. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Astrophysics Data System (ADS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-07-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  13. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-01-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  14. 78 FR 78705 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ...We are superseding Airworthiness Directive (AD) 2010-24-07 for all Airbus Model A318 series airplanes, Model A319 series airplanes, Model A320 series airplanes, and Model A321 series airplanes. AD 2010- 24-07 required repetitive inspections of the 80VU rack lower lateral fittings for damage, repetitive inspections of the 80VU rack lower central support for cracking, and corrective action if......

  15. 77 FR 12989 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ...We are adopting a new airworthiness directive (AD) for certain Airbus Model A330-200 series airplanes; Model A330-300 series airplanes; Model A340-200 series airplanes; and Model A340-300 series airplanes. This AD was prompted by a report that three failures of the retraction bracket occurred during fatigue testing before the calculated life limit of the main landing gear (MLG). This AD......

  16. The X-15 airplane - Lessons learned

    NASA Technical Reports Server (NTRS)

    Dana, William H.

    1993-01-01

    The X-15 rocket research airplane flew to an altitude of 354,000 ft and reached Mach 6.70. In almost 200 flights, this airplane was used to gather aerodynamic-heating, structural loads, stability and control, and atmospheric-reentry data. This paper describes the origins, design, and operation of the X-15 airplane. In addition, lessons learned from the X-15 airplane that are applicable to designing and testing the National Aero-Space Plane are discussed.

  17. Acoustic noise reduction. January 1970-November 1988 (Citations from the US Patent data base). Report for January 1970-November 1988

    SciTech Connect

    Not Available

    1988-12-01

    This bibliography contains citations of selected patents concerning methods, devices, and materials for acoustic-noise reduction. Included are noise-reduction techniques for engines, turbines, machinery, motor vehicles, pumps, aircraft cabins, and compressors. (Contains 189 citations fully indexed and including a title list.)

  18. Major Constituents Analysis for the Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Mandrake, Lukas; Bornstein, Benjamin J.; Madzunkov, Stojan; Macaskill, John A.

    2011-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) can provide a means for monitoring the air within enclosed environments such as the International Space Station, the Crew Exploration Vehicle (CEV), a Lunar habitat, or another vehicle traveling to Mars. The software processes a sum total spectra (counts vs. mass channel) with the intention of computing abundance ratios for N2, O2, CO2, Ar2, and H2O. A brute-force powerset expansion compares a library of expected mass lines with those found within the data. Least squares error is combined with a penalty term for using small peaks.

  19. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  20. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93...

  1. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  2. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93...

  3. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  4. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93...

  5. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  6. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93...

  7. 78 FR 68347 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... (74 FR 7549, February 18, 2009). Airbus also stated that for Model A340-541 and A340-642 airplanes.... Airbus stated that this requirement for Model A330 MRTT airplanes is equivalent to one in the NPRM (78 FR... (f) of AD 2009-04-07, Amendment 39-15813 (74 FR 7549, February 18, 2009). For all airplanes...

  8. 78 FR 28152 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ..., Amendment 39-16526 (75 FR 75878, December 7, 2010), exempted airplanes on which Airbus Modification 34804..., Amendment 39-16526 (75 FR 75878, December 7, 2010). Except for Model A318-121 and -122 airplanes, and except...) of AD 2010-24-07, Amendment 39-16526 (75 FR 75878, December 7, 2010). Except for airplanes on...

  9. 76 FR 77934 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... series airplanes. Since we issued AD 2005-23-02, Amendment 39-14360 (70 FR 69067, November 14, 2005), The... certain ACT equipped airplanes, produced after AD 2005-23-02, Amendment 39-14360 (70 FR 69067, November 14...-14360 (70 FR 69067, November 14, 2005). Applicability (c) This AD applies to Airbus airplanes listed...

  10. 77 FR 51717 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... visual inspection of the forward fitting at frame (FR) 40 on both sides of the airplane for cracks, and..., Amendment 39-16229 (75 FR cycles. 11435, March 11, 2010)), whichever occurs later; except, for airplanes... inspection for cracks of the forward fitting at FR 40 without nut removal on both sides of the airplane,...

  11. 76 FR 79560 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ... ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... airplanes; Model A330-223F and -243F airplanes; and Model A340-200, -300, -500, and -600 series...

  12. 77 FR 75833 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... fitting at frame (FR) 40 on both sides of the airplane for cracks, and repair if necessary. This new AD...-time detailed visual inspection of the forward fitting at FR 40 on both sides of the airplane, in..., Amendment 39- 16229 (75 FR 11435, March 11, 2010)), whichever occurs later; except, for airplanes that,...

  13. 77 FR 66772 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... date of AD 96-13-11, Amendment 39-9679 (61 FR 35122, July 5, 1996)). (2) For airplanes that have..., Amendment 39-16698 (76 FR 27875, May 13, 2011). (1) For airplanes identified in paragraph (c)(1) of this AD... FR 27875, May 13, 2011). For airplanes identified in paragraph (c)(3) of this AD: Within 3...

  14. 78 FR 70003 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... 12866; 2. Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034... Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... series airplanes; Airbus Model A300 B4-600, B4-600R, and F4-600R series airplanes, and Model A300...

  15. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93...

  16. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  17. 36 CFR 13.130 - New cabins and other structures otherwise authorized.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false New cabins and other structures otherwise authorized. 13.130 Section 13.130 Parks, Forests, and Public Property NATIONAL PARK... the construction, temporary use, occupancy, and maintenance of a cabin or other structure which...

  18. 36 CFR 13.130 - New cabins and other structures otherwise authorized.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false New cabins and other structures otherwise authorized. 13.130 Section 13.130 Parks, Forests, and Public Property NATIONAL PARK... the construction, temporary use, occupancy, and maintenance of a cabin or other structure which...

  19. 36 CFR 13.130 - New cabins and other structures otherwise authorized.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false New cabins and other structures otherwise authorized. 13.130 Section 13.130 Parks, Forests, and Public Property NATIONAL PARK... the construction, temporary use, occupancy, and maintenance of a cabin or other structure which...

  20. 36 CFR 13.130 - New cabins and other structures otherwise authorized.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false New cabins and other structures otherwise authorized. 13.130 Section 13.130 Parks, Forests, and Public Property NATIONAL PARK... the construction, temporary use, occupancy, and maintenance of a cabin or other structure which...

  1. 36 CFR 13.130 - New cabins and other structures otherwise authorized.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false New cabins and other structures otherwise authorized. 13.130 Section 13.130 Parks, Forests, and Public Property NATIONAL PARK... the construction, temporary use, occupancy, and maintenance of a cabin or other structure which...

  2. 78 FR 52848 - Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... conditions of aircraft cabin crew while they are onboard aircraft in operation. DATES: This action becomes... the working conditions of aircraft cabin crewmembers while they are onboard aircraft in operation... enforcement onboard the aircraft. The FAA agrees with the proposed recommendation. Specific procedures...

  3. Cabin Air Quality On Board Mir and the International Space Station: A Comparison

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel; Perry, Jay L.

    2007-01-01

    The maintenance of the cabin atmosphere aboard spacecraft is critical not only to its habitability but also to its function. Ideally, air quality can be maintained by striking a proper balance between the generation and removal of contaminants. Both very dynamic processes, the balance between generation and removal can be difficult to maintain and control because the state of the cabin atmosphere is in constant evolution responding to different perturbations. Typically, maintaining a clean cabin environment on board crewed spacecraft and space habitats is the central function of the environmental control and life support (ECLS) system. While active air quality control equipment is deployed on board every vehicle to remove carbon dioxide, water vapor, and trace chemical components from the cabin atmosphere, perturbations associated with logistics, vehicle construction and maintenance, and ECLS system configuration influence the resulting cabin atmospheric quality. The air-quality data obtained from the International Space Station (ISS) and NASA-Mir programs provides a wealth of information regarding the maintenance of the cabin atmosphere aboard long-lived space habitats. A comparison of the composition of the trace chemical contaminant load is presented. Correlations between ground-based and in-flight operations that influence cabin atmospheric quality are identified and discussed, and observations on cabin atmospheric quality during the NASA-Mir expeditions and the International Space Station are explored.

  4. The effects of ear protectors and hearing losses on sentence intelligibility in aircraft noise

    NASA Astrophysics Data System (ADS)

    Froehlich, G. R.

    1981-06-01

    Flight line personnel with hearing defects often complain that face-to-face speech communication in noise is considerably reduced when ear protectors are worn. Whether this could be confirmed or not was determined. An effective noise protecting flight helmet changes the flat aircraft cabin noise spectrum into a spectrum with predominance of lower frequencies. Whether the additional wearing of earplugs under the ear cups might improve speech perception was investigated.

  5. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  6. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-01-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  7. 43 CFR 21.4 - Occupancy under permit of privately owned cabins on recreation areas and conservation areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cabins on recreation areas and conservation areas. 21.4 Section 21.4 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.4 Occupancy under permit of privately owned cabins on recreation areas and conservation areas. (a) In...

  8. 43 CFR 21.4 - Occupancy under permit of privately owned cabins on recreation areas and conservation areas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cabins on recreation areas and conservation areas. 21.4 Section 21.4 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.4 Occupancy under permit of privately owned cabins on recreation areas and conservation areas. (a) In...

  9. 43 CFR 21.4 - Occupancy under permit of privately owned cabins on recreation areas and conservation areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cabins on recreation areas and conservation areas. 21.4 Section 21.4 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.4 Occupancy under permit of privately owned cabins on recreation areas and conservation areas. (a) In...

  10. 43 CFR 21.4 - Occupancy under permit of privately owned cabins on recreation areas and conservation areas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cabins on recreation areas and conservation areas. 21.4 Section 21.4 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.4 Occupancy under permit of privately owned cabins on recreation areas and conservation areas. (a) In...

  11. 43 CFR 21.4 - Occupancy under permit of privately owned cabins on recreation areas and conservation areas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cabins on recreation areas and conservation areas. 21.4 Section 21.4 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.4 Occupancy under permit of privately owned cabins on recreation areas and conservation areas. (a) In...

  12. 49 CFR 39.39 - How do PVOs ensure that passengers with disabilities are able to use accessible cabins?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... whom the cabin is being reserved) has a mobility disability or a disability that requires the use of... individual that accessible cabin is for a person who has a mobility disability or a disability that requires... accessible cabin, after having attested that he or she has a mobility disability, you may deny...

  13. 43 CFR 21.5 - Occupancy under permit of Government-owned cabins on public recreation and conservation areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cabins on public recreation and conservation areas. 21.5 Section 21.5 Public Lands: Interior Office of the Secretary of the Interior OCCUPANCY OF CABIN SITES ON PUBLIC CONSERVATION AND RECREATION AREAS § 21.5 Occupancy under permit of Government-owned cabins on public recreation and conservation...

  14. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by United Technologies Corp. Aerospace Systems (UTAS, formerly Hamilton Sundstrand) and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle (MPCV). In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure testing with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight project computer model predictions with specific operating conditions.

  15. Airliner cabin ozone: An updated review. Final report

    SciTech Connect

    Melton, C.E.

    1989-12-01

    The recent literature pertaining to ozone contamination of airliner cabins is reviewed. Measurements in airliner cabins without filters showed that ozone levels were about 50 percent of atmospheric ozone. Filters were about 90 percent effective in destroying ozone. Ozone (0.12 to 0.14 ppmv) caused mild subjective respiratory irritation in exercising men, but 0.20 to 0.30 ppmv did not have adverse effects on patients with chronic heart or lung disease. Ozone (1.0 to 2.0 ppmv) decreased survival time of influenza-infected rats and mice and suppressed the capacity of lung macrophages to destroy Listeria. Airway responses to ozone are divided into an early parasympathetically mediated bronchoconstrictive phase and a later histamine-mediated congestive phase. Evidence indicates that intracellular free radicals are responsible for ozone damage and that the damage may be spread to other cells by toxic intermediate products: Antioxidants provide some protection to cells in vitro from ozone but dietary intake of antioxidant vitamins by humans has only a weak effect, if any. This review indicates that earlier findings regarding ozone toxicity do not need to be corrected. Compliance with existing FAA ozone standards appears to provide adequate protection to aircrews and passengers.

  16. Controlled impact demonstration seat/cabin restraint systems: FAA

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1986-01-01

    The FAA restraint system experiments consisted of 24 standard and modified seats, 2 standard galleys and 2 standard overhead compartments. Under the controlled impact demonstration (CID) program, the experimental objective was to demonstrate the effectiveness of individual restraint system designs when exposed to a survivable air-to-ground impact condition. What researchers were looking for was the performance exhibited by standard and modified designs, performance differences resulting from their installed cabin location, and interrelating performance demonstrated by test article and attaching floor and/or fuselage structure. The other restraint system experiment consisted of 2 standard overhead stowage compartments and 2 galley modules. Again, researchers were concerned with the retention of stowed equipment and carry-on articles. The overhead compartments were loaded with test weights up to their maximum capacity, and each of the galleys was filled with test articles: aft with normal galley equipment, forward with hazardous material test packages. A breakdown of instrumentation and distribution is given beginning with 11 instrumented type anthropomorphic dummies and 185 sensors which provided for acceleration and load measurements at the various experiment and associated structure locations. The onboard cameras provided additional coverage of these experiments, including the areas of cabin which were not instrumented. Test results showing the window-side leg forces versus pulse duration are given.

  17. Ozone and ozone byproducts in the cabins of commercial aircraft.

    PubMed

    Weisel, Clifford; Weschler, Charles J; Mohan, Kris; Vallarino, Jose; Spengler, John D

    2013-05-01

    The aircraft cabin represents a unique indoor environment due to its high surface-to-volume ratio, high occupant density, and the potential for high ozone concentrations at cruising altitudes. Ozone was continuously measured and air was sampled on sorbent traps, targeting carbonyl compounds, on 52 transcontinental U.S. or international flights between 2008 and 2010. The sampling was predominantly on planes that did not have ozone scrubbers (catalytic converters). Peak ozone levels on aircraft without catalytic convertors exceeded 100 ppb, with some flights having periods of more than an hour when the ozone levels were >75 ppb. Ozone was greatly reduced on relatively new aircraft with catalytic convertors, but ozone levels on two flights whose aircraft had older convertors were similar to those on planes without catalytic convertors. Hexanal, heptanal, octanal, nonanal, decanal, and 6-methyl-5-hepten-2-one (6-MHO) were detected in the aircraft cabin at sub- to low ppb levels. Linear regression models that included the log transformed mean ozone concentration, percent occupancy, and plane type were statistically significant and explained between 18 and 25% of the variance in the mixing ratio of these carbonyls. Occupancy was also a significant factor for 6-MHO, but not the linear aldehydes, consistent with 6-MHO's formation from the reaction between ozone and squalene, which is present in human skin oils. PMID:23517299

  18. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlisch, Jeffery J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  19. Trajectory control of cable suspended FAST telescope focus cabin

    NASA Astrophysics Data System (ADS)

    Strah, Bruno; Kern, Simon; Fomi, Francis; Lazanowski, Markus; Li, Hui; Sun, Jinghai; Nan, Rendong; Kärcher, Hans; Nordmann, Rainer

    2008-07-01

    Operation of the Five-Hundred-Meter Aperture Spherical Telescope (FAST) requires accurate positioning and movement of the receiver platform on a spherical workspace with a radius of 160 m. Supported above the 500 m diameter main reflector it has to be positioned with an accuracy of several millimeters. To achieve this, the receiver is located in the receiver cabin that is suspended on six cables. The cables are attached to six towers located on the circumference of the main reflector and can be actuated via six capstans. In this paper a control concept for the cable-system is presented. Using a detailed mathematical model of the system the performance of the control and the sensitivity to wind and other disturbances is evaluated via simulation. The mechanics are modeled via FEM, the capstan-drives as lumped-mass elements including nonlinear effects like friction and backlash. The control scheme presented consists of position control loops for the capstans and numerically optimized PID-controllers for the positioning of the cabin platform.

  20. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    PubMed Central

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2015-01-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin’s lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides. PMID:25642134

  1. Computational fluid dynamics modeling of transport and deposition of pesticides in an aircraft cabin

    NASA Astrophysics Data System (ADS)

    Isukapalli, Sastry S.; Mazumdar, Sagnik; George, Pradeep; Wei, Binnian; Jones, Byron; Weisel, Clifford P.

    2013-04-01

    Spraying of pesticides in aircraft cabins is required by some countries as part of a disinsection process to kill insects that pose a public health threat. However, public health concerns remain regarding exposures of cabin crew and passengers to pesticides in aircraft cabins. While large scale field measurements of pesticide residues and air concentrations in aircraft cabins scenarios are expensive and time consuming, Computational Fluid Dynamics (CFD) models provide an effective alternative for characterizing concentration distributions and exposures. This study involved CFD modeling of a twin-aisle 11 row cabin mockup with heated manikins, mimicking a part of a fully occupied Boeing 767 cabin. The model was applied to study the flow and deposition of pesticides under representative scenarios with different spraying patterns (sideways and overhead) and cabin air exchange rates (low and high). Corresponding spraying experiments were conducted in the cabin mockup, and pesticide deposition samples were collected at the manikin's lap and seat top for a limited set of five seats. The CFD model performed well for scenarios corresponding to high air exchange rates, captured the concentration profiles for middle seats under low air exchange rates, and underestimated the concentrations at window seats under low air exchange rates. Additionally, both the CFD and experimental measurements showed no major variation in deposition characteristics between sideways and overhead spraying. The CFD model can estimate concentration fields and deposition profiles at very high resolutions, which can be used for characterizing the overall variability in air concentrations and surface loadings. Additionally, these model results can also provide a realistic range of surface and air concentrations of pesticides in the cabin that can be used to estimate potential exposures of cabin crew and passengers to these pesticides.

  2. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  3. NASA's Subsonic Jet Transport Noise Reduction Research

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Preisser, John S.

    2000-01-01

    Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.

  4. Jet noise of an augmentor wing-advanced supersonic transport

    NASA Technical Reports Server (NTRS)

    Franciscus, L.

    1972-01-01

    A preliminary mission study was made of the range and jet noise of an advanced supersonic transport (AST) employing an augmentor wing and four duct burning turbofan engines. The airplane weight and aerodynamic characteristics of the Boeing 2707-300 airplane with a gross weight of 750,000 pounds and 234 passengers was used for the study. Engine thrust was fixed at 58,000 pounds per engine and engine size was increased to obtain the required thrust at reduced power settings for jet noise reduction. Turbofan engine core noise was reduced to FAR 36 noise levels and lower by proper selection of turbine inlet temperature, bypass ratio and fan pressure ratio. The study showed that an augmentor wing can reduce the bypass jet noise sufficiently so that total noise levels below FAR 36 can be attained without significant range penalties if the augmentor wing can be designed without severe weight and performance penalties.

  5. Fast response sequential measurements and modelling of nanoparticles inside and outside a car cabin

    NASA Astrophysics Data System (ADS)

    Joodatnia, Pouyan; Kumar, Prashant; Robins, Alan

    2013-06-01

    Commuters are regularly exposed to short-term peak concentration of traffic produced nanoparticles (i.e. particles <300 nm in size). Studies indicate that these exposures pose adverse health effects (i.e. cardiovascular). This study aims to obtain particle number concentrations (PNCs) and distributions (PNDs) inside and outside a car cabin whilst driving on a road in Guildford, a typical UK town. Other objectives are to: (i) investigate the influences of particle transformation processes on particle number and size distributions in the cabin, (ii) correlate PNCs inside the cabin to those measured outside, and (iii) predict PNCs in the cabin based on those outside the cabin using a semi-empirical model. A fast response differential mobility spectrometer (DMS50) was employed in conjunction with an automatic switching system to measure PNCs and PNDs in the 5-560 nm range at multiple locations inside and outside the cabin at 10 Hz sampling rate over 10 s sequential intervals. Two separate sets of measurements were made at: (i) four seats in the car cabin during ˜700 min of driving, and (ii) two points, one the driver seat and the other near the ventilation air intake outside the cabin, during ˜500 min of driving. Results of the four-point measurements indicated that average PNCs at all for locations were nearly identical (i.e. 3.96, 3.85, 3.82 and 4.00 × 104 cm-3). The modest difference (˜0.1%) revealed a well-mixed distribution of nanoparticles in the car cabin. Similar magnitude and shapes of PNDs at all four sampling locations suggested that transformation processes (e.g. nucleation, coagulation, condensation) have minimal effect on particles in the cabin. Two-point measurements indicated that on average, PNCs inside the cabin were about 72% of those measured outside. Time scale analysis indicated that dilution was the fastest and dominant process in the cabin, governing the variations of PNCs in time. A semi-empirical model was proposed to predict PNCs inside

  6. An Analytical Performance Assessment of a Fuel Cell-powered, Small Electric Airplane

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.; Freeh, Joshua E.; Wickenheiser, Timothy J.

    2003-01-01

    Rapidly emerging fuel cell power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and with exception of water vapor zero emissions. This paper describes an analytical feasibility and performance assessment conducted by NASA's Glenn Research Center of a fuel cell-powered, propeller-driven, small electric airplane based on a model of the MCR 01 two-place kitplane.

  7. Economic impact of applying advanced technologies to transport airplanes.

    NASA Technical Reports Server (NTRS)

    Carline, A. J. K.

    1972-01-01

    Various technologies have been studied which could have application to the design of future transport airplanes. These technologies include the use of supercritical aerodynamics, composite materials, and active control systems, together with advanced engine designs that provide lower noise and pollutant levels. The economic impact of each technology is shown for a typical fleet of 195-passenger, transcontinental commercial transports cruising at both 0.9M and 0.98M. Comparisons are made with conventional transports cruising at 0.82M. Effects of combining the technologies are discussed. An R & D program aimed at bringing the technologies to fruition is outlined.

  8. Travel Air commercial airplane -- Type 5000

    NASA Technical Reports Server (NTRS)

    1927-01-01

    The 5000 is a semicantilever monoplane, closed cabin type, with pilot about in line with the leading edge of the wing and room for 4 passengers behind him. It is equipped with a Wright Whirlwind engine.

  9. Fuselage panel noise attenuation by piezoelectric switching control

    NASA Astrophysics Data System (ADS)

    Makihara, Kanjuro; Miyakawa, Takeya; Onoda, Junjiro; Minesugi, Kenji

    2010-08-01

    This paper describes a problem that we encountered in our noise attenuation project and our solution for it. We intend to attenuate low-frequency noise that transmits through aircraft fuselage panels. Our method of noise attenuation is implemented with a piezoelectric semi-active system having a selective switch instead of an active energy-supply system. The semi-active controller is based on the predicted sound pressure distribution obtained from acoustic emission analysis. Experiments and numerical simulations demonstrate that the semi-active method attenuates acoustic levels of not only the simple monochromatic noise but also of broadband noise. We reveal that tuning the electrical parameters in the circuit is the key to effective noise attenuation, to overcome the acoustic excitation problem due to sharp switching actions, as well as to control chattering problems. The results obtained from this investigation provide meaningful insights into designing noise attenuation systems for comfortable aircraft cabin environments.

  10. 50 CFR 36.33 - What do I need to know about using cabins and related structures on Alaska National Wildlife...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... have a copy of the letter in his/her possession. In commercial cabins, the permittee or another person... revocation. The owner of a cabin may sell his/her interest in the cabin to another person; however, the new... a noncommercial cabin is limited to the permittee and his/her family, bona fide partners, and...

  11. 50 CFR 36.33 - What do I need to know about using cabins and related structures on Alaska National Wildlife...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... have a copy of the letter in his/her possession. In commercial cabins, the permittee or another person... revocation. The owner of a cabin may sell his/her interest in the cabin to another person; however, the new... a noncommercial cabin is limited to the permittee and his/her family, bona fide partners, and...

  12. A parametric study of influence of material properties on car cabin environment

    NASA Astrophysics Data System (ADS)

    Pokorny, Jan; Fiser, Jan; Jicha, Miroslav

    2014-03-01

    Recently the author presented the paper describing a car cabin heat load model for the prediction of the car cabin environment. The model allowed to simulate a transient behavior of the car cabin, i.e. radiant temperature of surfaces, air temperature and relative humidity. The model was developed in Dymola and was built on the basic principles of thermodynamics and heat balance equations. The model was validated by experiments performed on the Škoda Felicia during various operational conditions. In this paper the authors present a parametric study investigating influence of material properties on a car cabin environment. The Matlab version of the car cabin heat load model has been developed and used. The model was extended by simple graphical user interface and it was deployed into the stand alone executable application. The aim of this parametric study is to identify most important material properties and its effect on the cabin environment during specific operational conditions of car. By means of a sensitive analysis it can identified which material parameters have to be defined precisely and which parameters are not so important for the prediction of the air temperature inside cabin.

  13. System for monitoring UV radiation level in phototherapy cabins in Poland

    PubMed Central

    Narbutt, Joanna; Pawlaczyk, Mariola; Sysa-Jędrzejowska, Anna; Sobolewski, Piotr; Rajewska-Więch, Bonawentura; Lesiak, Aleksandra

    2014-01-01

    Introduction Ultraviolet phototherapy (UVP) is widely used in dermatological practice for the treatment of various skin diseases. Numerous studies support its beneficial curing effectiveness; however, overexposure to ultraviolet radiation can cause adverse health effects, such as sunburn reaction, erythema response, cataract, skin aging, etc. For these reasons, it is of special importance to monitor performance of UVP cabins using a calibration system to evaluate the UV doses incident upon the patient. Material and methods A mechanized cabin control system (CCS) is proposed. It consists of radiometers with a wide and narrow field of view to estimate the body irradiation and to identify malfunctioning cabin tubes. Quality control and quality assurance procedures are developed to keep high accuracy of the calibration procedure. The CCS has been used in the examination of two different types of UVP cabins routinely working in Poland. Results It allows precise calculation of UV doses and spatial variability of UV radiance inside the cabin, thus providing uncertainties of the doses assigned by medical staff. The CCS could potentially serve as a primary standard for monitoring various UVP cabins working in Poland. Conclusions The methodology developed to quantify UV doses in UVP cabins may be easily extended to any UV radiation source. PMID:25624865

  14. The Testing of Airplane Fabrics

    NASA Technical Reports Server (NTRS)

    Schraivogel, Karl

    1932-01-01

    This report considers the determining factors in the choice of airplane fabrics, describes the customary methods of testing and reports some of the experimental results. To sum up briefly the results obtained with the different fabrics, it may be said that increasing the strength of covering fabrics by using coarser yarns ordinarily offers no difficulty, because the weight increment from doping is relatively smaller.

  15. Paper Airplanes: A Classroom Activity

    ERIC Educational Resources Information Center

    Painter, Richard A.

    1976-01-01

    A learning experience is described for upper elementary or junior high students involving the manufacture, transportation, and marketing of a product for consumers. Steps are given and roles are assigned for students to convert raw material (paper) to a finished product (paper airplanes) and to sell it. (AV)

  16. Testing a Windmill Airplane ("autogiro")

    NASA Technical Reports Server (NTRS)

    Seiferth, R

    1927-01-01

    In order to clear up the matter ( In the Spanish report it was stated that the reference surface for the calculation of the coefficients c(sub a) and c(sub w) was the area of all four wings, instead of a single wing), the model of a windwill airplane was tested in the Gottingen wind tunnel.

  17. Glues Used in Airplane Parts

    NASA Technical Reports Server (NTRS)

    Allen, S W; Truax, T R

    1920-01-01

    This report was prepared for the National Advisory Committee for Aeronautics and presents the results of investigations conducted by the Forest Products Laboratory of the United States Forest Service on the manufacture, preparation, application, testing and physical properties of the different types of glues used in wood airplane parts.

  18. Vibration Response of Airplane Structures

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Gelalles, A G

    1935-01-01

    This report presents test results of experiments on the vibration-response characteristics of airplane structures on the ground and in flight. It also gives details regarding the construction and operation of vibration instruments developed by the National Advisory Committee for Aeronautics.

  19. 78 FR 15112 - Rulemaking Advisory Committee; Transport Airplane Performance and Handling Characteristics-New Task

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee; Transport Airplane Performance and... guidance material for airplane performance and handling characteristics in new transport category airplanes...: Joe Jacobsen, Airplane & Flight Crew Interface Branch, ANM-111, Transport Airplane...

  20. Engine Damage to a NASA DC-8-72 Airplane From a High-Altitude Encounter With a Diffuse Volcanic Ash Cloud

    NASA Technical Reports Server (NTRS)

    Grindle, Thomas J.; Burcham, Frank W., Jr.

    2003-01-01

    The National Aeronautics and Space Administration (NASA) DC-8 airborne sciences research airplane inadvertently flew through a diffuse volcanic ash cloud of the Mt. Hekla volcano in February 2000 during a flight from Edwards Air Force Base (Edwards, California) to Kiruna, Sweden. Although the ash plume was not visible to the flight crew, sensitive research experiments and instruments detected it. In-flight performance checks and postflight visual inspections revealed no damage to the airplane or engine first-stage fan blades; subsequent detailed examination of the engines revealed clogged turbine cooling air passages. The engines were removed and overhauled. This paper presents volcanic ash plume analysis, trajectory from satellites, analysis of ash particles collected in cabin air heat exchanger filters and removed from the engines, and data from onboard instruments and engine conditions.

  1. Survival of infectious microorganisms in space cabin environments

    NASA Technical Reports Server (NTRS)

    Vana, S. C.; Ehrlich, R.

    1974-01-01

    Aerosol survival and virulence of S. aureus and P. aeruginosa cultures isolated during exposure to simulated space cabin environment was studied using the microthread captured aerosol technique. The aerosol survival of P. aeruginosa isolates did not differ significantly from that of the original culture from which the isolates were obtained. The mean death rate of the isolates was 1.03%/min and that of the controls 1.10%/min. Similarly exposure to the 5 psi environment did not affect the virulence of P. aeruginosa. Both strains of S. aureus (IITRI and NASA) after exposure to 5 psi environment showed some degree of adaptation to this environmental stress. The aerosol death rates of the isolated organisms were 5 to 10-fold lower than of the original cultures. At the same time the virulence of the isolates was approximately 5-fold higher than that of the original culture.

  2. Desiccant humidity control system. [for space shuttle cabins

    NASA Technical Reports Server (NTRS)

    Lunde, P. J.; Kester, F. L.

    1975-01-01

    A water vapor and carbon dioxide sorbent material (designated HS-C) was developed for potential application to the space shuttle and tested at full scale. Capacities of two percent for carbon dioxide and four percent for water vapor were achieved using space shuttle cabin adsorption conditions and a space vacuum for desorption. Performance testing shows that water vapor can be controlled by varying the air process flow, while maintaining the ability to remove carbon dioxide. A 2000 hour life test was successfully completed, as were tests for sensitivity to cleaning solvent vapors, vibration resistance, and flammability. A system design for the space shuttle shows a 200 pound weight advantage over competitive systems and an even larger advantage for longer missions.

  3. Predictive Techniques for Spacecraft Cabin Air Quality Control

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Cromes, Scott D. (Technical Monitor)

    2001-01-01

    As assembly of the International Space Station (ISS) proceeds, predictive techniques are used to determine the best approach for handling a variety of cabin air quality challenges. These techniques use equipment offgassing data collected from each ISS module before flight to characterize the trace chemical contaminant load. Combined with crew metabolic loads, these data serve as input to a predictive model for assessing the capability of the onboard atmosphere revitalization systems to handle the overall trace contaminant load as station assembly progresses. The techniques for predicting in-flight air quality are summarized along with results from early ISS mission analyses. Results from groundbased analyses of in-flight air quality samples are compared to the predictions to demonstrate the technique's relative conservatism.

  4. Cabin Air Quality Dynamics On Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Peterson, B. V.

    2003-01-01

    Spacecraft cabin air quality is influenced by a variety of factors. Beyond normal equipment offgassing and crew metabolic loads, the vehicle s operational configuration contributes significantly to overall air quality. Leaks from system equipment and payload facilities, operational status of the atmospheric scrubbing systems, and the introduction of new equipment and modules to the vehicle all influence air quality. The dynamics associated with changes in the International Space Station's (ISS) configuration since the launch of the U.S. Segment s laboratory module, Destiny, is summarized. Key classes of trace chemical contaminants that are important to crew health and equipment performance are emphasized. The temporary effects associated with attaching each multi-purpose logistics module (MPLM) to the ISS and influence of in-flight air quality on the post-flight ground processing of the MPLM are explored.

  5. Dehydrohalogenation of atmospheric contaminants in the space cabin

    NASA Technical Reports Server (NTRS)

    Spain, M. A.; Middleditch, B. S.; Bafus, D. A.; Galen, T.

    1985-01-01

    A total of nine chlorinated ethanes and ethenes were circulated over lithium hydroxide in a laboratory scale closed system simulator. System volume and lithium hydroxide temperature were varied from that intended to maximize possible reactions to conditions approximating those of a space cabin environment. Of the nine compounds tested, seven were found to be dehydrohalogenated (viz., loss of hydrogen chloride) in the course of one or more experimental treatments. Of particular significance was the conversion of 1,2-dichloroethane to chloroethene, a known carcinogen, and of trichloroethene to dichloroethyne, a highly toxic substance. It is therefore concluded that a potentially hazardous situation exists for the inhabitants of closed ecological systems such as spacecraft, one for which precautions must continue to be taken.

  6. The Fate of Trace Contaminants in a Crewed Spacecraft Cabin Environment

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Kayatin, Matthew J.

    2016-01-01

    Trace chemical contaminants produced via equipment offgassing, human metabolic sources, and vehicle operations are removed from the cabin atmosphere by active contamination control equipment and incidental removal by other air quality control equipment. The fate of representative trace contaminants commonly observed in spacecraft cabin atmospheres is explored. Removal mechanisms are described and predictive mass balance techniques are reviewed. Results from the predictive techniques are compared to cabin air quality analysis results. Considerations are discussed for an integrated trace contaminant control architecture suitable for long duration crewed space exploration missions.

  7. Cabin-fuselage-wing structural design concept with engine installation

    NASA Technical Reports Server (NTRS)

    Ariotti, Scott; Garner, M.; Cepeda, A.; Vieira, J.; Bolton, D.

    1993-01-01

    The purpose of this project is to provide a fuselage structural assembly and wing structural design that will be able to withstand the given operational parameters and loads provided by Federal Aviation Regulation Part 23 (FAR 23) and the Statement of Work (SOW). The goal is to provide a durable lightweight structure that will transfer the applied loads through the most efficient load path. Areas of producibility and maintainability of the structure will also be addressed. All of the structural members will also meet or exceed the desired loading criteria, along with providing adequate stiffness, reliability, and fatigue life as stated in the SOW. Considerations need to be made for control system routing and cabin heating/ventilation. The goal of the wing structure and carry through structure is also to provide a simple, lightweight structure that will transfer the aerodynamic forces produced by the wing, tailboom, and landing gear. These forces will be channeled through various internal structures sized for the pre-determined loading criteria. Other considerations were to include space for flaps, ailerons, fuel tanks, and electrical and control system routing. The difficulties encountered in the fuselage design include expanding the fuselage cabin to accept a third occupant in a staggered configuration and providing ample volume for their safety. By adding a third person the CG of aircraft will move forward so the engine needs to be moved aft to compensate for the difference in the moment. This required the provisions of a ring frame structure for the new position of the engine mount. The difficulties encountered in the wing structural design include resizing the wing for the increased capacity and weight, and compensating for a large torsion produced by the tail boom by placing a great number of stiffeners inside the boom, which will result in the relocation of the fuel tank. Finally, an adequate carry through structure for the wing and fuselage interface will be

  8. Inter-Noise 86 - Progress in noise control; Proceedings of the International Conference on Noise Control Engineering, Cambridge, MA, July 21-23, 1986. Volumes 1 and 2

    SciTech Connect

    Lotz, R.

    1986-01-01

    The conference presents papers on legislative structure and engineering manpower in noise abatement legislation in Australia, fluid borne noise generation and transmission in hydraulic piping systems, and the application of the Fast Field Program to outdoor sound propagation. Other topics include a prediction model for airport ground noise propagation, diffraction by a barrier with finite acoustic impedance, sound propagation over curved barriers, the damping capacity of graphite epoxy composites in a vacuum, the realization of an airport noise monitoring system for determining the traffic flow in the surroundings of a military airbase, and the prediction of aircraft noise around airports by a simulation procedure. Papers are also presented on the effects of weather conditions on airport noise prediction, a prediction of the light aircraft interior sound pressure level from the measured sound pressure flowing into the cabin, and measurements with reference sources in the ISO 3740 series.

  9. Inter-Noise 86 - Progress in noise control; Proceedings of the International Conference on Noise Control Engineering, Cambridge, MA, July 21-23, 1986. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Lotz, Robert

    The conference presents papers on legislative structure and engineering manpower in noise abatement legislation in Australia, fluid borne noise generation and transmission in hydraulic piping systems, and the application of the Fast Field Program to outdoor sound propagation. Other topics include a prediction model for airport ground noise propagation, diffraction by a barrier with finite acoustic impedance, sound propagation over curved barriers, the damping capacity of graphite epoxy composites in a vacuum, the realization of an airport noise monitoring system for determining the traffic flow in the surroundings of a military airbase, and the prediction of aircraft noise around airports by a simulation procedure. Papers are also presented on the effects of weather conditions on airport noise prediction, a prediction of the light aircraft interior sound pressure level from the measured sound pressure flowing into the cabin, and measurements with reference sources in the ISO 3740 series.

  10. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations....

  11. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations....

  12. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations....

  13. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations....

  14. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations....

  15. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1996-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The rotor blade has a constant chord width; or has a chord width which decreases linearly along the entire blade span; or combines constant and decreasing chord widths, wherein the blade is of constant chord width from the blade root to a certain location on the rotor blade, then decreases linearly to the blade tip thereafter. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration and loading noise.

  16. Empirical Prediction of Aircraft Landing Gear Noise

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Guo, Yue-Ping

    2005-01-01

    This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels.

  17. Analysis of Stresses in German Airplanes

    NASA Technical Reports Server (NTRS)

    Hoff, Wilhelm

    1923-01-01

    This report contains an account of the origin of the views and fundamental principles underlying the construction of German airplanes during the war. The report contains a detailed discussion of the aerodynamic principles and their use in determining the strength of airplanes, the analysis of the strength qualities of materials and in the construction, the calculated strength of air flows and a description of tests made in determining the strength of airplanes.

  18. 78 FR 29666 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ...We propose to adopt a new airworthiness directive (AD) for certain Airbus Model A330-200 and -300 series airplanes; Model A340-200 and -300 series airplanes; and Model A340-541 and -642 airplanes. This proposed AD was prompted by reports of wing tip brakes (WTBs) losing their braking function in service due to heavy wear on the brake discs. WTBs are designed to stop and hold the mechanical......

  19. 77 FR 65812 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ...We are adopting a new airworthiness directive (AD) for all Airbus Model A330-200 freighter series airplanes; Model A330-200 and - 300 series airplanes; and Model A340-200 and -300 series airplanes. This AD was prompted by reports of ram air turbine (RAT) pump failure. This AD requires inspecting the RAT pump anti-stall valve for correct setting, re-identifying the RAT pump, performing a......

  20. 77 FR 40830 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ...We propose to adopt a new airworthiness directive (AD) for all Airbus Model A330-200 freighter series airplanes; Model A330-200 and - 300 series airplanes; and Model A340-200 and -300 series airplanes. This proposed AD was prompted by reports of ram air turbine (RAT) pump failure. This proposed AD would require inspecting the RAT pump anti- stall valve for correct setting, re-identifying the......