Sample records for airplane electronic flight

  1. 76 FR 9265 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... for transport category airplanes. These design features include an electronic flight control system... Design Features The GVI has an electronic flight control system and no direct coupling from the cockpit...: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY...

  2. 77 FR 69573 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... airplane will have a novel or unusual design feature(s) associated with an electronic flight control system... empennage and control surfaces. The Model EMB-550 airplane is designed for 8 passengers, with a maximum of... flight control design feature within the normal operational envelope in which sidestick deflection in the...

  3. 78 FR 11560 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... or unusual design feature(s) associated with an electronic flight control system with respect to... control surfaces. The Model EMB-550 airplane is designed for 8 passengers, with a maximum of 12 passengers... the pilot or copilot sidestick. The Embraer S.A. Model EMB-550 airplane has a flight control design...

  4. 78 FR 11553 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... metal with composite empennage and control surfaces. The Model EMB-550 airplane is designed for 8...; Electronic Flight Control System: Control Surface Awareness and Mode Annunciation AGENCY: Federal Aviation... Embraer S.A. Model EMB-550 airplane. This airplane will have a novel or unusual design feature(s...

  5. 76 FR 14795 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ...). Novel or Unusual Design Features The GVI will have a fly-by-wire electronic flight control system. This... type certification basis for Gulfstream GVI airplanes. If the design of the flight control system has... Control System Mode Annunciation. AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final...

  6. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...

  7. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...

  8. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A certificate...

  9. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or...

  10. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or...

  11. Atmospheric electron flux at airplane altitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enomoto, R.; Chiba, J.; Ogawa, K.

    1991-12-01

    We have developed a new detector to systematically measure the cosmic-ray electron flux at airplane altitudes. We loaded a lead-glass-based electron telescope onto a commercial cargo airplane. The first experiment was carried out using the air route between Narita (Japan) and Sydney (Australia); during this flight we measured the electron flux at various altitudes and latitudes. The thresholds of the electron energies were 1, 2, and 4 GeV. The results agree with a simple estimation using one-dimensional shower theory. A comparison with a Monte Carlo calculation was made.

  12. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  13. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors... section and § 121.414: (1) A flight instructor (airplane) is a person who is qualified to instruct in an...

  14. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  15. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  16. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  17. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  18. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  19. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  20. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  1. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type of...

  2. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  3. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual and...

  4. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual and...

  5. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual and...

  6. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft that was not type certificated with an Airplane or Rotorcraft Flight Manual...

  7. Bird flight and airplane flight. [instruments to measure air currents and flight characteristics

    NASA Technical Reports Server (NTRS)

    Magnan, A.

    1980-01-01

    Research was based on a series of mechanical, electrical, and cinematographic instruments developed to measure various features of air current behavior as well as bird and airplane flight. Investigation of rising obstruction and thermal currents led to a theory of bird flight, especially of the gliding and soaring types. It was shown how a knowledge of bird flight can be applied to glider and ultimately motorized aircraft construction. The instruments and methods used in studying stress in airplanes and in comparing the lift to drag ratios of airplanes and birds are described.

  8. Flight evaluation results for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Walsh, K. R.

    1983-01-01

    A digital electronic engine control (DEEC) system on an F100 engine in an F-15 airplane was evaluated in flight. Thirty flights were flown in a four-phase program from June 1981 to February 1983. Significant improvements in the operability and performance of the F100 engine were developed as a result of the flight evaluation: the augmentor envelope was increased by 15,000 ft, the airstart envelope was improved by 75 knots, and the need to periodically trim the engine was eliminated. The hydromechanical backup control performance was evaluated and was found to be satisfactory. Two system failures were encountered in the test program; both were detected and accommodated successfully. No transfers to the backup control system were required, and no automatic transfers occurred. As a result of the successful DEEC flight evaluation, the DEEC system has entered the full-scale development phase.

  9. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. Link to an..., 2010. (a) With each airplane or rotorcraft that was not type certificated with an Airplane or...

  10. The value of early flight evaluation of propulsion concepts using the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Ray, Ronald J.

    1987-01-01

    The value of early flight evaluation of propulsion and propulsion control concepts was demonstrated on the NASA F-15 airplane in programs such as highly integrated digital electronic control (HIDEC), the F100 engine model derivative (EMD), and digital electronic engine control (DEEC). (In each case, the value of flight demonstration was conclusively demonstrated). This paper described these programs, and discusses the results that were not expected, based on ground test or analytical prediction. The role of flight demonstration in facilitating transfer of technology from the laboratory to operational airplanes is discussed.

  11. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  12. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  13. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  14. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one...

  15. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  16. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  17. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  18. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  19. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24...

  20. Flight testing and simulation of an F-15 airplane using throttles for flight control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas

    1992-01-01

    Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.

  1. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  2. Solar-powered airplane design for long-endurance, high-altitude flight

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Talay, T. A.

    1982-01-01

    This paper describes the performance analysis and design of a solar-powered airplane for long-endurance, unmanned, high-altitude cruise flight utilizing electric propulsion and solar energy collection/storage devices. For a fixed calendar date and geocentric latitude, the daily energy balance, airplane sizing, and airplane aerodynamics relations combine to determine airplane size and geometry to meet mission requirements. Vehicle component weight loadings, aerodynamic parameters, and current and projected values of power train component characteristics form the basis of the solution. For a specified mission, a candidate airplane design is presented to demonstrate the feasibility of solar-powered long endurance flight. Parametric data are presented to illustrate the airplane's mission flexibility.

  3. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a flight...

  4. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a flight...

  5. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a flight...

  6. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a flight...

  7. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a flight...

  8. Flight Instructor Practical Test Standards for Airplane - Single-engine, Multiengine

    DOT National Transportation Integrated Search

    1991-05-01

    The Flight Instructor - Airplane Practical Test Standards book has been : published by the Federal Aviation Administration (FAA) to establish the : standards for the flight instructor certification practical tests for the : airplane category and the ...

  9. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  10. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  11. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  12. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  13. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  14. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  15. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  16. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  17. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  18. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  19. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has a...

  20. Small-scale fixed wing airplane software verification flight test

    NASA Astrophysics Data System (ADS)

    Miller, Natasha R.

    The increased demand for micro Unmanned Air Vehicles (UAV) driven by military requirements, commercial use, and academia is creating a need for the ability to quickly and accurately conduct low Reynolds Number aircraft design. There exist several open source software programs that are free or inexpensive that can be used for large scale aircraft design, but few software programs target the realm of low Reynolds Number flight. XFLR5 is an open source, free to download, software program that attempts to take into consideration viscous effects that occur at low Reynolds Number in airfoil design, 3D wing design, and 3D airplane design. An off the shelf, remote control airplane was used as a test bed to model in XFLR5 and then compared to flight test collected data. Flight test focused on the stability modes of the 3D plane, specifically the phugoid mode. Design and execution of the flight tests were accomplished for the RC airplane using methodology from full scale military airplane test procedures. Results from flight test were not conclusive in determining the accuracy of the XFLR5 software program. There were several sources of uncertainty that did not allow for a full analysis of the flight test results. An off the shelf drone autopilot was used as a data collection device for flight testing. The precision and accuracy of the autopilot is unknown. Potential future work should investigate flight test methods for small scale UAV flight.

  1. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation: airplanes...

  2. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation: airplanes...

  3. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation: airplanes...

  4. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation: airplanes...

  5. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation: airplanes...

  6. 78 FR 11555 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ...; Design Roll Maneuver for Electronic Flight Controls AGENCY: Federal Aviation Administration (FAA), DOT... design roll maneuver for electronic flight controls, specifically an electronic flight control system... control surfaces. The Model EMB-550 airplane is designed for 8 passengers, with a maximum of 12 passengers...

  7. 77 FR 70384 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... design roll maneuver for electronic flight controls, specifically an electronic flight control system... load condition at design maneuvering speed (V A ), in which the cockpit roll control is returned to...-550 airplanes. 1. Design Roll Maneuver for Electronic Flight Controls. In lieu of compliance to 14 CFR...

  8. Flight Instructor: Airplane. Written Test Guide.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The Flight Standards Service of the Federal Aviation Administration developed the guide to assist applicants who are preparing for the Flight Instructor Certificate with Airplane Rating. The guide contains comprehensive study outlines and a list of recommended study materials and tells how to obtain those publications. It also includes sample test…

  9. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications E... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, App. E Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...

  10. In-Flight Ultraviolet Radiation on Commercial Airplanes.

    PubMed

    Cadilhac, Pascal; Bouton, Marie-Christine; Cantegril, Monique; Cardines, Catherine; Gisquet, Alain; Kaufman, Noël; Klerlein, Michel

    2017-10-01

    Epidemiological studies suggest that pilots and cabin crew have higher incidences and mortality rates of cutaneous malignant melanoma than those of the general population. Exposure to UV radiation is one of the main risk factors for this type of cancer. The aim of this study was to evaluate the level of UV radiation in an airliner in flight. Measurements were taken with a three sensor-integrated electronics UV radiometer (A, B, and C) during 14 flights from July to October 2016. They were performed during daylight hours once the airliner had reached cruising altitude. We failed to find UVC radiation. The measurements detected neither UV A nor B in any parts of the cabins of the planes tested, nor in the Airbus cockpits. UVA radiation was however found in the cockpit of Boeing 777s. But UVA levels remained well below the values found at ground level and they were also strongly reduced (more than 10 times) by cockpit sun visors. Few studies have assessed the level of UV radiation in an airplane. They suggested that the cockpit windshields reduced this type of radiation to some degree (according mainly to the wavelength of the radiation and the nature of the windshield). Our study strongly confirms these results and suggests that increased incidence of melanoma and mortality by this type of illness found among pilots and airline cabin crews may not be related to in-flight UV radiation exposure.Cadilhac P, Bouton M-C, Cantegril M, Cardines C, Gisquet A, Kaufman N, Klerlein M. In-flight ultraviolet radiation on commercial airplanes. Aerosp Med Hum Perform 2017; 88(10):947-951.

  11. Flight Tests of a Ministick Controller in an F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick C.; Carter, John

    2003-01-01

    In March of 1999, five pilots performed flight tests to evaluate the handling qualities of an F/A-18 research airplane equipped with a small-displacement center stick (ministick) controller that had been developed for the JAS 39 Gripen airplane (a fighter/attack/ reconnaissance airplane used by the Swedish air force). For these tests, the ministick was installed in the aft cockpit (see figure) and production support flight control computers (PSFCCs) were used as interfaces between the controller hardware and the standard F/A-18 flight-control laws. The primary objective of the flight tests was to assess any changes in handling qualities of the F/A-18 airplane attributable to the mechanical characteristics of the ministick. The secondary objective was to demonstrate the capability of the PSFCCs to support flight-test experiments.

  12. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  13. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  14. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  15. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  16. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  17. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...

  18. Development of a Mars Airplane Entry, Descent, and Flight Trajectory

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Tartabini, Paul V.

    2001-01-01

    An entry, descent, and flight (EDF) trajectory profile for a Mars airplane mission is defined as consisting of the following elements: ballistic entry of an aeroshell; supersonic deployment of a decelerator parachute; subsonic release of a heat shield; release, unfolding, and orientation of an airplane to flight attitude; and execution of a pull up maneuver to achieve trimmed, horizontal flight. Using the Program to Optimize Simulated Trajectories (POST) a trajectory optimization problem was formulated. Model data representative of a specific Mars airplane configuration, current models of the Mars surface topography and atmosphere, and current estimates of the interplanetary trajectory, were incorporated into the analysis. The goal is to develop an EDF trajectory to maximize the surface-relative altitude of the airplane at the end of a pull up maneuver, while subject to the mission design constraints. The trajectory performance was evaluated for three potential mission sites and was found to be site-sensitive. The trajectory performance, examined for sensitivity to a number of design and constraint variables, was found to be most sensitive to airplane mass, aerodynamic performance characteristics, and the pull up Mach constraint. Based on the results of this sensitivity study, an airplane-drag optimized trajectory was developed that showed a significant performance improvement.

  19. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  20. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  1. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...

  2. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...

  3. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  4. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum...

  5. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  6. Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.

    1990-01-01

    Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.

  7. Flight control electronics reliability/maintenance study

    NASA Technical Reports Server (NTRS)

    Dade, W. W.; Edwards, R. H.; Katt, G. T.; Mcclellan, K. L.; Shomber, H. A.

    1977-01-01

    Collection and analysis of data are reported that concern the reliability and maintenance experience of flight control system electronics currently in use on passenger carrying jet aircraft. Two airlines B-747 airplane fleets were analyzed to assess the component reliability, system functional reliability, and achieved availability of the CAT II configuration flight control system. Also assessed were the costs generated by this system in the categories of spare equipment, schedule irregularity, and line and shop maintenance. The results indicate that although there is a marked difference in the geographic location and route pattern between the airlines studied, there is a close similarity in the reliability and the maintenance costs associated with the flight control electronics.

  8. 78 FR 14007 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Electrical/Electronic Equipment Bay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ...; Electrical/Electronic Equipment Bay Fire Detection and Smoke Penetration AGENCY: Federal Aviation... where the flight crew could determine the origin of smoke or fire by a straightforward airplane flight.... The FAA has no requirement for smoke and/or fire detection in the electrical/electronic equipment bays...

  9. Flight Instructor Practical Test Standards for Instrument - Airplane, Helicopter

    DOT National Transportation Integrated Search

    1990-03-01

    The Flight Instructor - Instrument (Airplane and Helicopter) Practical : Test Standards book has been published by the Federal Aviation : Administration (FAA) to establish the standards for the flight instructor : certification and instrument rating ...

  10. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate holder...

  11. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate holder...

  12. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate holder...

  13. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate holder...

  14. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate holder...

  15. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  16. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  17. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  18. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  19. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has a...

  20. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  1. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  2. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  3. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  4. 14 CFR Appendix B to Part 60 - Qualification Performance Standards for Airplane Flight Training Devices

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Qualification Performance Standards for Airplane Flight Training Devices B Appendix B to Part 60 Aeronautics and Space FEDERAL AVIATION... encourages the use of electronic media for all communication, including any record, report, request, test, or...

  5. Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.

  6. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  7. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  8. Flight-test experience of a helicopter encountering an airplane trailing vortex

    NASA Technical Reports Server (NTRS)

    Dunham, R. E., Jr.; Holbrook, G. T.; Campbell, R. L.; Van Gunst, R. W.; Mantay, W. R.

    1976-01-01

    This paper presents results of a flight-test experiment of a UH-1H helicopter encountering the vortex wake of a C-54 airplane. The helicopter was instrumented to record the pilot control inputs, determine the upset experience, and measure critical loads within the rotor system. During the flight-test program 132 penetrations of the vortex wake were made by the helicopter at separation distances from 3/8 to 6-1/2 nautical miles. Test results indicated that the helicopter upsets and the vortex induced blade loads experienced were minimal and well within safe limits. The upsets were very mild when compared to a typical response of a small airplane to the vortex wake of the C-54 airplane.

  9. Boeing electronic flight bag

    NASA Astrophysics Data System (ADS)

    Trujillo, Eddie J.; Ellersick, Steven D.

    2006-05-01

    The Boeing Electronic Flight Bag (EFB) is a key element in the evolutionary process of an "e-enabled" flight deck. The EFB is designed to improve the overall safety, efficiency, and operation of the flight deck and corresponding airline operations by providing the flight crew with better information and enhanced functionality in a user-friendly digital format. The EFB is intended to increase the pilots' situational awareness of the airplane and systems, as well as improve the efficiency of information management. The system will replace documents and forms that are currently stored or carried onto the flight deck and put them, in digital format, at the crew's fingertips. This paper describes what the Boeing EFB is and the significant human factors and interface design issues, trade-offs, and decisions made during development of the display system. In addition, EFB formats, graphics, input control methods, challenges using COTS (commercial-off-the-shelf)-leveraged glass and formatting technology are discussed. The optical design requirements, display technology utilized, brightness control system, reflection challenge, and the resulting optical performance are presented.

  10. Flight Test Guide (Part 61 Revised); Private Pilot Airplane.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This guide provides an outline of the skills required to pass the flight test for a Private Pilot Certificate with Airplane Rating under part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: preflight operations, airport and traffic pattern operations,…

  11. Preliminary flight test results of a fly-by-throttle emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. G.; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies have been followed by flight tests. This paper discusses the principles of throttles-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles-only control to within 10 ft of the ground.

  12. 77 FR 75071 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Electrical/Electronic Equipment Bay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    .../Electronic Equipment Bay Fire Detection and Smoke Penetration AGENCY: Federal Aviation Administration (FAA... where the flightcrew could determine the origin of smoke or fire by a straightforward airplane flight.... The FAA has no requirement for smoke and/or fire detection in the electrical/electronic equipment bays...

  13. Flight test results for several light, canard-configured airplanes

    NASA Technical Reports Server (NTRS)

    Brown, Philip W.

    1987-01-01

    Brief flight evaluations of two different, light, composite constructed, canard and winglet configured airplanes were performed to assess their handling qualities; one airplane was a single engine, pusher design and the other a twin engine, push-pull configuration. An emphasis was placed on the slow speed/high angle of attack region for both airplanes and on the engine-out regime for the twin. Mission suitability assessment included cockpit and control layout, ground and airborne handling qualities, and turbulence response. Very limited performance data was taken. Stall/spin tests and the effects of laminar flow loss on performance and handling qualities were assessed on an extended range, single engine pusher design.

  14. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  15. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  16. Flight Data Reduction of Wake Velocity Measurements Using an Instrumented OV-10 Airplane

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Stuever, Robert A.; Stewart, Eric C.; Rivers, Robert A.

    1999-01-01

    A series of flight tests to measure the wake of a Lockheed C- 130 airplane and the accompanying atmospheric state have been conducted. A specially instrumented North American Rockwell OV-10 airplane was used to measure the wake and atmospheric conditions. An integrated database has been compiled for wake characterization and validation of wake vortex computational models. This paper describes the wake- measurement flight-data reduction process.

  17. Effects of Ice Formations on Airplane Performance in Level Cruising Flight

    NASA Technical Reports Server (NTRS)

    Preston, G. Merritt; Blackman, Calvin C.

    1948-01-01

    A flight investigation in natural icing conditions was conducted by the NACA to determine the effect of ice accretion on airplane performance. The maximum loss in propeller efficiency encountered due to ice formation on the propeller blades was 19 percent. During 87 percent of the propeller icing encounters, losses of 10 percent or less were observed. Ice formations on all of the components of the airplane except the propellers during one icing encounter resulted in an increase in parasite drag of the airplane of 81 percent. The control response of the airplane in this condition was marginal.

  18. New Method of Determining the Polar Curve of an Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Yegorov, B. N.

    1945-01-01

    A fundamental defect of existing methods for the determination of the polar of an airplane in flight is the impossibility of obtaining the thrust or the resistance of the propeller for any type airplane with any type engine. The new method is based on the premise that for zero propeller thrust the mean angle of attack of the blade is approximately the same for all propellers if this angle is reckoned from the aerodynamic chord of the profile section. This angle was determined from flight tests. Knowing the mean angle of the blade setting the angle of attack of the propeller blade at zero thrust can be found and the propeller speed in gliding obtained. The experimental check of the new method carried out on several airplanes gave positive results. The basic assumptions for the construction of the polars and the method of analyzing the flight data are given.

  19. 14 CFR 91.883 - Special flight authorizations for jet airplanes weighing 75,000 pounds or less.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Special flight authorizations for jet... OPERATING AND FLIGHT RULES Operating Noise Limits § 91.883 Special flight authorizations for jet airplanes weighing 75,000 pounds or less. (a) After December 31, 2015, an operator of a jet airplane weighing 75,000...

  20. Minimum time and fuel flight profiles for an F-15 airplane with a Highly Integrated Digital Electronic Control (HIDEC) system

    NASA Technical Reports Server (NTRS)

    Haering, E. A., Jr.; Burcham, F. W., Jr.

    1984-01-01

    A simulation study was conducted to optimize minimum time and fuel consumption paths for an F-15 airplane powered by two F100 Engine Model Derivative (EMD) engines. The benefits of using variable stall margin (uptrim) to increase performance were also determined. This study supports the NASA Highly Integrated Digital Electronic Control (HIDEC) program. The basis for this comparison was minimum time and fuel used to reach Mach 2 at 13,716 m (45,000 ft) from the initial conditions of Mach 0.15 at 1524 m (5000 ft). Results were also compared to a pilot's estimated minimum time and fuel trajectory determined from the F-15 flight manual and previous experience. The minimum time trajectory took 15 percent less time than the pilot's estimate for the standard EMD engines, while the minimum fuel trajectory used 1 percent less fuel than the pilot's estimate for the minimum fuel trajectory. The F-15 airplane with EMD engines and uptrim, was 23 percent faster than the pilot's estimate. The minimum fuel used was 5 percent less than the estimate.

  1. Lateral aerodynamic parameters extracted from flight data for the F-8C airplane in maneuvering flight

    NASA Technical Reports Server (NTRS)

    Suit, W. T.

    1977-01-01

    Flight test data are used to extract the lateral aerodynamic parameters of the F-8C airplane at moderate to high angles of attack. The data were obtained during perturbations of the airplane from steady turns with trim normal accelerations from 1.5g to 3.0g. The angle-of-attack variation from trim was negligible. The aerodynamic coefficients extracted from flight data were compared with several other sets of coefficients, and the extracted coefficients resulted in characteristics for the Dutch roll mode (at the highest angles of attack) similar to those of a set of coefficients that have been the basis of several simulations of the F-8C.

  2. Role of Meteorology in Flights of a Solar-Powered Airplane

    NASA Technical Reports Server (NTRS)

    Donohue, Casey

    2004-01-01

    In the summer of 2001, the Helios prototype solar-powered uninhabited aerial vehicle (UAV) [a lightweight, remotely piloted airplane] was deployed to the Pacific Missile Range Facility (PMRF), at Kauai, Hawaii, in an attempt to fly to altitudes above 100,000 ft (30.48 km). The goal of flying a UAV to such high altitudes has been designated a level-I milestone of the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. In support of this goal, meteorologists from NASA Dryden Flight Research Center were sent to PMRF, as part of the flight crew, to provide current and forecast weather information to the pilots, mission directors, and planners. Information of this kind is needed to optimize flight conditions for peak aircraft performance and to enable avoidance of weather conditions that could adversely affect safety. In general, the primary weather data of concern for ground and flight operations are wind speeds (see Figure 1). Because of its long wing span [247 ft (.75 m)] and low weight [1,500 to 1,600 lb (about 680 to 726 kg)], the Helios airplane is sensitive to wind speeds exceeding 7 kn (3.6 m/s) at the surface. Also, clouds are of concern because they can block sunlight needed to energize an array of solar photovoltaic cells that provide power to the airplane. Vertical wind shear is very closely monitored in order to prevent damage or loss of control due to turbulence.

  3. The Small Angular Oscillations of Airplanes in Steady Flight

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1924-01-01

    This investigation was carried out by the National Advisory Committee for Aeronautics at the request of the Army Air Service to provide data concerning the small angular oscillations of several types of airplanes in steady flight under various atmospheric conditions. The data are of use in the design of bomb sights and other aircraft instruments. The method used consisted in flying the airplane steadily in one direction for at least one minute, while recording the angle of the airplane with the sun by means of a kymograph. The results show that the oscillations differ but little for airplanes of various types, but that the condition of the atmosphere is an important factor. The average angular excursion from the mean in smooth air is 0.8 degrees in pitch, 1.4 degrees in roll, and 0.9 degrees in yaw, without special instruments to aid the pilot in holding steady conditions. In bumpy air the values given above are increased about 50 per cent. (author)

  4. Preliminary flight test results of the F100 EMD engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    A flight evaluation of the F100 Engine Model Derivative (EMD) is conducted. The F100 EMD is an advanced version of the F100 engine that powers the F15 and F16 airplanes. The F100 EMD features a bigger fan, higher temperature turbine, a Digital Electronic Engine Control system (DEEC), and a newly designed 16 segment afterburner, all of which results in a 15 to 20 percent increase in sea level thrust. The flight evaluations consist of investigation of performance (thrust, fuel flow, and airflow) and operability (transient response and airstart) in the F-15 airplane. The performance of the F100 EMD is excellent. Aircraft acceleration time to Mach 2.0 is reduced by 23 percent with two F100 EMD engines. Several anomalies are discovered in the operability evaluations. A software change to the DEEC improved the throttle, and subsequent Cooper Harper ratings of 3 to 4 are obtained. In the extreme upper left hand corner of the flight enveloped, compressor stalls occurr when the throttle is retarded to idle power. These stalls are not predicted by altitude facility tests or stability for the compressor.

  5. Requirements and feasibility study of flight demonstration of Active Controls Technology (ACT) on the NASA 515 airplane

    NASA Technical Reports Server (NTRS)

    Gordon, C. K.

    1975-01-01

    A preliminary design study was conducted to evaluate the suitability of the NASA 515 airplane as a flight demonstration vehicle, and to develop plans, schedules, and budget costs for fly-by-wire/active controls technology flight validation in the NASA 515 airplane. The preliminary design and planning were accomplished for two phases of flight validation.

  6. Pilotless Airplanes

    DTIC Science & Technology

    1989-07-05

    FTD/SDAWS/Capt Craven Approved for public release; Distribution unlimited. THIS TRANSLATION IS A RENDITION OF THE ORIGI- NAL FOREIGN TEXT WITHOUT ANY...and electronic computers also spurred advances in the field of pilotless airplanes. During this period the turbine jet engine underwent a very strong...Contains the Doppler radar frequency tracking device; alternator and flight-guidance computer ; the flight control box; the remote control receiver; the

  7. Flight-determined aerodynamic derivatives of the AD-1 oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Sim, A. G.; Curry, R. E.

    1984-01-01

    The AD-1 is a variable-sweep oblique-wing research airplane that exhibits unconventional stability and control characteristics. In this report, flight-determined and predicted stability and control derivatives for the AD-1 airplane are compared. The predictions are based on both wind tunnel and computational results. A final best estimate of derivatives is presented.

  8. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  9. Ground-based and in-flight simulator studies of flight characteristics of a twin-fuselage passenger transport airplane during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.; Neely, W. R., Jr.; Deal, P. L.; Yenni, K. R.

    1985-01-01

    Six-degree-of-freedom ground-based and in-flight simulator studies were conducted to evaluate the low-speed flight characteristics of a twin-fuselage passenger transport airplane and to compare these characteristics with those of a large, single-fuselage (reference) transport configuration similar to the Lockheed C-5A airplane. The primary piloting task was the approach and landing task. The results of this study indicated that the twin-fuselage transport concept had acceptable but unsatisfactory longitudinal and lateral-directional low-speed flight characteristics, and that stability and control augmentation would be required in order to improve the handling qualities. Through the use of rate-command/attitude-hold augmentation in the pitch and roll axes, and the use of several turn coordination features, the handling qualities of the simulated transport were improved appreciably. The in-flight test results showed excellent agreement with those of the six-degree-of-freedom ground-based simulator handling qualities tests. As a result of the in-flight simulation study, a roll-control-induced normal-acceleration criterion was developed. The handling qualities of the augmented twin-fuselage passenger transport airplane exhibited an improvement over the handling characteristics of the reference (single-fuselage) transport.

  10. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Voracek, David

    2007-01-01

    A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned

  11. Flight Research Using F100 Engine P680063 in the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Conners, Timothy R.; Maxwell, Michael D.

    1994-01-01

    The value of flight research in developing and evaluating gas turbine engines is high. NASA Dryden Flight Research Center has been conducting flight research on propulsion systems for many years. The F100 engine has been tested in the NASA F-15 research airplane in the last three decades. One engine in particular, S/N P680063, has been used for the entire program and has been flown in many pioneering propulsion flight research activities. Included are detailed flight-to-ground facility tests; tests of the first production digital engine control system, the first active stall margin control system, the first performance-seeking control system; and the first use of computer-controlled engine thrust for emergency flight control. The flight research has been supplemented with altitude facility tests at key times. This paper presents a review of the tests of engine P680063, the F-15 airplanes in which it flew, and the role of the flight test in maturing propulsion technology.

  12. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.

  13. Instrument Pilot: Airplane. Flight Test Guide, Part 61 Revised 1973, AC 61-56.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide is designed to assist the applicant and his instructor in preparing for the flight test for Instrument Pilot Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the Instrument Rating.…

  14. Preliminary flight-test results of an advanced technology light twin-engine airplane /ATLIT/

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Kohlman, D. L.; Crane, H. L.

    1976-01-01

    The present status and flight-test results are presented for the ATLIT airplane. The ATLIT is a Piper PA-34 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll-control spoilers, and full-span Fowler flaps. Flight-test results on stall and spoiler roll characteristics show good agreement with wind-tunnel data. Maximum power-off lift coefficients are greater than 3.0 with flaps deflected 37 deg. With flaps down, spoiler deflections can produce roll helix angles in excess of 0.11 rad. Flight testing is planned to document climb and cruise performance, and supercritical propeller performance and noise characteristics. The airplane is scheduled for testing in the NASA-Langley Research Center Full-Scale Tunnel.

  15. 75 FR 70854 - Harmonization of Various Airworthiness Standards for Transport Category Airplanes-Flight Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ..., deploy speed brakes) to stop the airplane within the accelerate stop distance. It also means the minimum... flight diving speed. List of Subjects in 14 CFR Part 25 Aircraft, Aviation safety, Reporting and... transport category airplanes. This action would harmonize the requirements for takeoff speeds, static...

  16. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2010-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  17. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  18. Parametric study of microwave-powered high-altitude airplane platforms designed for linear flight

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.

    1981-01-01

    The performance of a class of remotely piloted, microwave powered, high altitude airplane platforms is studied. The first part of each cycle of the flight profile consists of climb while the vehicle is tracked and powered by a microwave beam; this is followed by gliding flight back to a minimum altitude above a microwave station and initiation of another cycle. Parametric variations were used to define the effects of changes in the characteristics of the airplane aerodynamics, the energy transmission systems, the propulsion system, and winds. Results show that wind effects limit the reduction of wing loading and the increase of lift coefficient, two effective ways to obtain longer range and endurance for each flight cycle. Calculated climb performance showed strong sensitivity to some power and propulsion parameters. A simplified method of computing gliding endurance was developed.

  19. Determination of the lift and drag characteristics of an airplane in flight

    NASA Technical Reports Server (NTRS)

    Green, Maurice W

    1925-01-01

    Flight tests to determine lift and drag characteristics are discussed. A review is given of the fundamental principles on which the tests are based and on the forces acting on an airplane in the various conditions of steady flight. Glide with and without propeller thrust and the relation between angle of attack and the indicated airspeed for different conditions of steady flight are discussed. The glide test procedure and the problem of the propeller are discussed.

  20. Flight investigation of the effect of control centering springs on the apparent spiral stability of a personal-owner airplane

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Hunter, Paul A; Hewes, Donald E; Whitten, James B

    1952-01-01

    Report presents the results of a flight investigation conducted on a typical high-wing personal-owner airplane to determine the effect of control centering springs on apparent spiral stability. Apparent spiral stability is the term used to describe the spiraling tendencies of an airplane in uncontrolled flight as affected both by the true spiral stability of the perfectly trimmed airplane and by out-of-trim control settings. Centering springs were used in both the aileron and rudder control systems to provide both a positive centering action and a means of trimming the airplane. The springs were preloaded so that when they were moved through neutral they produced a nonlinear force gradient sufficient to overcome the friction in the control surface at the proper setting for trim. The ailerons and rudder control surfaces did not have trim tabs that could be adjusted in flight.

  1. Correlation of the Drag Characteristics of a Typical Pursuit Airplane Obtained from High-Speed Wind-Tunnel and Flight Tests

    NASA Technical Reports Server (NTRS)

    Nissen, James M; Gadebero, Burnett L; Hamilton, William T

    1948-01-01

    In order to obtain a correlation of drag data from wind-tunnel and flight tests at high Mach numbers, a typical pursuit airplane, with the propeller removed, was tested in flight at Mach numbers up to 0.755, and the results were compared with wind-tunnel tests of a 1/3-scale model of the airplane. The tests results show that the drag characteristics of the test airplane can be predicted with satisfactory accuracy from tests in the Ames 16-foot high-speed wind tunnel of the Ames Aeronautical Laboratory at both high and low Mach numbers. It is considered that this result is not unique with the airplane.

  2. Flight test experience with high-alpha control system techniques on the F-14 airplane

    NASA Technical Reports Server (NTRS)

    Gera, J.; Wilson, R. J.; Enevoldson, E. K.; Nguyen, L. T.

    1981-01-01

    Improved handling qualities of fighter aircraft at high angles of attack can be provided by various stability and control augmentation techniques. NASA and the U.S. Navy are conducting a joint flight demonstration of these techniques on an F-14 airplane. This paper reports on the flight test experience with a newly designed lateral-directional control system which suppresses such high angle of attack handling qualities problems as roll reversal, wing rock, and directional divergence while simultaneously improving departure/spin resistance. The technique of integrating a piloted simulation into the flight program was used extensively in this program. This technique had not been applied previously to high angle of attack testing and required the development of a valid model to simulate the test airplane at extremely high angles of attack.

  3. The Airplane Cabin Microbiome.

    PubMed

    Weiss, Howard; Hertzberg, Vicki Stover; Dupont, Chris; Espinoza, Josh L; Levy, Shawn; Nelson, Karen; Norris, Sharon

    2018-06-06

    Serving over three billion passengers annually, air travel serves as a conduit for infectious disease spread, including emerging infections and pandemics. Over two dozen cases of in-flight transmissions have been documented. To understand these risks, a characterization of the airplane cabin microbiome is necessary. Our study team collected 229 environmental samples on ten transcontinental US flights with subsequent 16S rRNA sequencing. We found that bacterial communities were largely derived from human skin and oral commensals, as well as environmental generalist bacteria. We identified clear signatures for air versus touch surface microbiome, but not for individual types of touch surfaces. We also found large flight-to-flight beta diversity variations with no distinguishing signatures of individual flights, rather a high between-flight diversity for all touch surfaces and particularly for air samples. There was no systematic pattern of microbial community change from pre- to post-flight. Our findings are similar to those of other recent studies of the microbiome of built environments. In summary, the airplane cabin microbiome has immense airplane to airplane variability. The vast majority of airplane-associated microbes are human commensals or non-pathogenic, and the results provide a baseline for non-crisis-level airplane microbiome conditions.

  4. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  5. Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1977-01-01

    Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.

  6. 76 FR 44246 - Special Conditions: Boeing Model 747-8 Series Airplanes; Overhead Flight Attendant Rest Compartment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ...; Special Conditions No. 25-442-SC] Special Conditions: Boeing Model 747-8 Series Airplanes; Overhead Flight... conditions. SUMMARY: These special conditions are issued for Boeing Model 747-8 series airplanes. These... applied for, and was granted, an extension of time for the amended type certificate, which changed the...

  7. 78 FR 39968 - Flight Data Recorder Airplane Parameter Specification Omissions and Corrections

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... comprise the adoption of a different standard that will affect airplanes operating under these regulations...), DOT. ACTION: Final rule; request for comments. SUMMARY: This action amends the operating regulations... technical questions concerning this action contact Chris Parfitt, Flight Standards Service, Aircraft...

  8. The Pressure Distribution over the Wings and Tail Surfaces of a PW-9 Pursuit Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Rhode, Richard

    1931-01-01

    This report presents the results of an investigation to determine (1) the magnitude and distribution of aerodynamic loads over the wings and tail surfaces of a pursuit-type airplane in the maneuvers likely to impose critical loads on the various subassemblies of the airplane structure. (2) To study the phenomenon of center of pressure movement and normal force coefficient variation in accelerated flight, and (3) to measure the normal accelerations at the center of gravity, wing-tip, and tail, in order to determine the nature of the inertia forces acting simultaneously with the critical aerodynamic loads. The results obtained throw light on a number of important questions involving structural design. Some of the more interesting results are discussed in some detail, but in general the report is for the purpose of making this collection of airplane-load data obtained in flight available to those interested in airplane structures.

  9. Recurring norovirus transmission on an airplane.

    PubMed

    Thornley, Craig N; Emslie, Nicola A; Sprott, Tim W; Greening, Gail E; Rapana, Jackie P

    2011-09-01

    Previously reported outbreaks of norovirus gastroenteritis associated with aircraft have been limited to transmission during a single flight sector. During October 2009, an outbreak of diarrhea and vomiting occurred among different groups of flight attendants who had worked on separate flight sectors on the same airplane. We investigated the cause of the outbreak and whether the illnesses were attributable to work on the airplane. Information was obtained from flight attendants on demographic characteristics, symptoms, and possible transmission risk factors. Case patients were defined as flight attendants with diarrhea or vomiting <51 hours after the end of their first flight sector on the airplane during 13-18 October 2009. Stool samples were tested for norovirus RNA. A passenger had vomited on the Boeing 777-200 airplane on the 13 October flight sector. Sixty-three (82%) of 77 flight attendants who worked on the airplane during 13-18 October provided information, and 27 (43%) met the case definition. The attack rate among flight attendants decreased significantly over successive flight sectors from 13 October onward (P < .001). Working as a supervisor was independently associated with development of illness (adjusted odds ratio, 5.8; 95% confidence interval, 1.3-25.6). Norovirus genotype GI.6 was detected in stool samples from 2 case patients who worked on different flight sectors. Sustained transmission of norovirus is likely to have occurred because of exposures on this airplane during successive flight sectors. Airlines should make provision for adequate disinfection of airplanes with use of products effective against norovirus and other common infectious agents after vomiting has occurred.

  10. Flight determined lift and drag characteristics of an F-8 airplane modified with a supercritical wing with comparison to wind-tunnel results

    NASA Technical Reports Server (NTRS)

    Pyle, J. S.; Steers, L. L.

    1975-01-01

    Flight measurements obtained with a TF-8A airplane modified with a supercritical wing are presented for altitudes from 7.6 kilometers (25,000 feet) to 13.7 kilometers (45,000 feet), Mach numbers from 0.6 to 1.2, and Reynolds numbers from 0.8 x 10 to the 7th power to 2.3 x 10 to the 7th power. Flight results for the airplane with and without area-rule fuselage fairings are compared. The techniques used to determine the lift and drag characteristics of the airplane are discussed. Flight data are compared with wind-tunnel model results, where applicable.

  11. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots made simulated instrument flight evaluations in light-to-moderate turbulence. They were favorably impressed with the system, particularly with the elimination of control force transients that accompanied configuration changes. For ride quality, quantitative data showed that the attitude command control system resulted in all cases of airplane motion being removed from the uncomfortable ride region.

  12. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications E... air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso, to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when...

  13. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications E... air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso, to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when...

  14. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications E... air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso, to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when...

  15. 14 CFR Appendix M to Part 121 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications M.... 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso to 1.2 V. D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when practicable. 4. Heading (Primary...

  16. 14 CFR Appendix M to Part 121 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications M.... 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso to 1.2 V. D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when practicable. 4. Heading (Primary...

  17. 14 CFR Appendix M to Part 121 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications M.... 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso to 1.2 V. D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when practicable. 4. Heading (Primary...

  18. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications E... air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso, to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when...

  19. 14 CFR Appendix M to Part 121 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications M.... 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso to 1.2 V. D ±5% and ±3% 1 1 kt Data should be obtained from the air data computer when practicable. 4. Heading (Primary...

  20. 75 FR 77569 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ... Unusual Design Features The GVI will have a fly-by-wire electronic flight control system. This system... the design of the flight control system has multiple modes of operation, a means must be provided to... Control System Mode Annunciation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...

  1. 78 FR 31838 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... new control architecture and a full digital flight control system which provides flight envelope... Administrator considers necessary to establish a level of safety equivalent to that established by the existing... metal with composite empennage and control surfaces. The Model EMB-550 airplane is designed for 8...

  2. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specification F... from the air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso≢ and Vso to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data...

  3. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specification F... from the air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso≢ and Vso to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data...

  4. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specification F... from the air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso≢ and Vso to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data...

  5. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specification F... from the air data computer when practicable. 3. Indicated airspeed or Calibrated airspeed 50 KIAS or minimum value to Max Vso≢ and Vso to 1.2 V.D ±5% and ±3% 1 1 kt Data should be obtained from the air data...

  6. Subsonic stability and control derivatives for an unpowered, remotely piloted 3/8-scale F-15 airplane model obtained from flight test

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.; Shafer, M. F.

    1976-01-01

    In response to the interest in airplane configuration characteristics at high angles of attack, an unpowered remotely piloted 3/8-scale F-15 airplane model was flight tested. The subsonic stability and control characteristics of this airplane model over an angle of attack range of -20 to 53 deg are documented. The remotely piloted technique for obtaining flight test data was found to provide adequate stability and control derivatives. The remotely piloted technique provided an opportunity to test the aircraft mathematical model in an angle of attack regime not previously examined in flight test. The variation of most of the derivative estimates with angle of attack was found to be consistent, particularly when the data were supplemented by uncertainty levels.

  7. Wind-tunnel free-flight investigation of a 0.15-scale model of the F-106B airplane with vortex flaps

    NASA Technical Reports Server (NTRS)

    Yip, Long P.

    1987-01-01

    An investigation to determine the effects of vortex flaps on the flight dynamic characteristics of the F-106B in the area of low-speed, high-angle-of-attack flight was undertaken on a 0.15-scale model of the airplane in the Langley 30- by 60-Foot Tunnel. Static force tests, dynamic forced-oscillation tests, as well as free-flight tests were conducted to obtain a data base on the flight characteristics of the F-106B airplane with vortex flaps. Vortex flap configurations tested included a full-span gothic flap, a full-span constant-chord flap, and a part-span gothic flap.

  8. 78 FR 75287 - Special Conditions: Bombardier Inc., Models BD-500-1A10 and BD-500-1A11 Series Airplanes; Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... appropriate safety standards for the C-series airplanes because of a novel or unusual design feature, special... Features The C-series airplanes will incorporate the following novel or unusual design features: new... Series Airplanes; Flight Envelope Protection: General Limiting Requirements AGENCY: Federal Aviation...

  9. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  10. Exploring Venus by Solar Airplane

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    A solar-powered airplane is proposed to explore the atmospheric environment of Venus. Venus has several advantages for a solar airplane. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The Earthlike atmospheric pressure means that the power required for flight is lower for Venus than that of Mars, and the slow rotation of Venus allows an airplane to be designed for continuous sunlight, with no energy storage needed for night-time flight. These factors mean that Venus is perhaps the easiest planet in the solar system for flight of a long-duration solar airplane.

  11. A flight investigation with a STOL airplane flying curved, descending instrument approach paths

    NASA Technical Reports Server (NTRS)

    Benner, M. S.; Mclaughlin, M. D.; Sawyer, R. H.; Vangunst, R.; Ryan, J. L.

    1974-01-01

    A flight investigation using a De Havilland Twin Otter airplane was conducted to determine the configurations of curved, 6 deg descending approach paths which would provide minimum airspace usage within the requirements for acceptable commercial STOL airplane operations. Path configurations with turns of 90 deg, 135 deg, and 180 deg were studied; the approach airspeed was 75 knots. The length of the segment prior to turn, the turn radius, and the length of the final approach segment were varied. The relationship of the acceptable path configurations to the proposed microwave landing system azimuth coverage requirements was examined.

  12. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. This system is being used on the F-15 airplane at the Dryden Flight Research Facility of NASA Ames Research Center. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are being implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed in this paper.

  13. Airplane Upset Training Evaluation Report

    NASA Technical Reports Server (NTRS)

    Gawron, Valerie J.; Jones, Patricia M. (Technical Monitor)

    2002-01-01

    Airplane upset accidents are a leading factor in hull losses and fatalities. This study compared five types of airplane-upset training. Each group was composed of eight, non-military pilots flying in their probationary year for airlines operating in the United States. The first group, 'No aero / no upset,' was made up of pilots without any airplane upset training or aerobatic flight experience; the second group, 'Aero/no upset,' of pilots without any airplane-upset training but with aerobatic experience; the third group, 'No aero/upset,' of pilots who had received airplane-upset training in both ground school and in the simulator; the fourth group, 'Aero/upset,' received the same training as Group Three but in addition had aerobatic flight experience; and the fifth group, 'In-flight' received in-flight airplane upset training using an instrumented in-flight simulator. Recovery performance indicated that clearly training works - specifically, all 40 pilots recovered from the windshear upset. However few pilots were trained or understood the use of bank to change the direction of the lift vector to recover from nose high upsets. Further, very few thought of, or used differential thrust to recover from rudder or aileron induced roll upsets. In addition, recovery from icing-induced stalls was inadequate.

  14. 76 FR 8319 - Special Conditions: Gulfstream Model GVI Airplane; Design Roll Maneuver Requirement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... design features include an electronic flight control system that provides roll control of the airplane... Design Features The GVI is equipped with an electronic flight control system that provides roll control... condition at design maneuvering speed (V A ), in which the cockpit roll control is returned to neutral...

  15. Pressure Distribution Over the Fuselage of a PW-9 Pursuit Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Rhode, Richard V; Lundquist, Eugene E

    1932-01-01

    This report presents the results obtained from pressure distribution tests on the fuselage of a PW-9 pursuit airplane in a number of conditions of flight. The investigation was made to determine the contribution of the fuselage to the total lift in conditions considered critical for the wing structure, and also to determine whether the fuselage loads acting simultaneously with the maximum tail loads were of such a character as to be of concern with respect to the structural design of other parts of the airplane. The results show that the contribution of the fuselage toward the total lift is small on this airplane. Aerodynamic loads on the fuselage are, in general, unimportant from the structural viewpoint, and in most cases they are of such character that, if neglected, a conservative design results. In spins, aerodynamic forces on the fuselage produce diving moments of appreciable magnitude and yawing moments of small magnitude, but opposing the rotation of the airplane. A table of cowling pressures for various maneuvers is included in the report.

  16. Engine Installation Effects of Four Civil Transport Airplanes: Wallops Flight Facility Study

    NASA Technical Reports Server (NTRS)

    Fleming, Gregg G.; Senzig, David A.; McCurdy, David A.; Roof, Christopher J.; Rapoza, Amanda S.

    2003-01-01

    The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), the Environmental Measurement and Modeling Division of the United States Department of Transportation s John A. Volpe National Transportation Systems Center (Volpe), and several other organizations (see Appendix A for a complete list of participating organizations and individuals) conducted a noise measurement study at NASA s Wallops Flight Facility (Wallops) near Chincoteague, Virginia during September 2000. This test was intended to determine engine installation effects on four civil transport airplanes: a Boeing 767-400, a McDonnell-Douglas DC9, a Dassault Falcon 2000, and a Beechcraft King Air. Wallops was chosen for this study because of the relatively low ambient noise of the site and the degree of control over airplane operating procedures enabled by operating over a runway closed to other uses during the test period. Measurements were conducted using a twenty microphone U-shaped array oriented perpendicular to the flight path; microphones were mounted such that ground effects were minimized and low elevation angles were observed.

  17. Flight testing the digital electronic engine control in the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  18. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  19. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  20. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  1. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  2. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight Instructor Instrument (For an...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... curriculum for a flight instructor instrument certification course required under this part, for the...

  3. Trend of airplane flight characteristics

    NASA Technical Reports Server (NTRS)

    Von Koppen, Joachim

    1933-01-01

    This report describes the development of airplane characteristics since the war and indicates the direction development should take in the immediate future. Some of the major topics include: the behavior of an airplane about its lateral, vertical, and longitudinal axes. Behavior at large angles of attack and landing characteristics are also included.

  4. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The Highly Integrated Digital Electronic Control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine/airframe control systems. This system is being used on the F-15 airplane. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed.

  5. Directional Stability of Towed Airplanes

    NASA Technical Reports Server (NTRS)

    Soehne, W.

    1956-01-01

    So far, very careful investigations have been made regarding the flight properties, in particular the static and dynamic stability, of engine-propelled aircraft and of untowed gliders. In contrast, almost no investigations exist regarding the stability of airplanes towed by a towline. Thus, the following report will aim at investigating the directional stability of the towed airplane and, particularly, at determining what parameters of the flight attitude and what configuration properties affect the stability. The most important parameters of the flight attitude are the dynamic pressure, the aerodynamic coefficients of the flight attitude, and the climbing angle. Among the configuration properties, the following exert the greatest influence on the stability: the tow-cable length, the tow-cable attachment point, the ratio of the wing loadings of the towing and the towed airplanes, the moments of inertia, and the wing dihedral of the towed airplane. In addition, the size and shape of the towed airplane vertical tail, the vertical tail length, and the fuselage configuration are decisive factors in determining the yawing moment and side force due to sideslip, respectively.

  6. Full-scale Wind-tunnel and Flight Tests of a Fairchild 22 Airplane Equipped with a Fowler Flap

    NASA Technical Reports Server (NTRS)

    Dearborn, C H; Soule, H A

    1936-01-01

    Full-scale wind-tunnel and flight tests were made of a Fairchild 22 airplane equipped with a Fowler flap to determine the effect of the flap on the performance and control characteristics of the airplane. In the wind-tunnel tests of the airplane with the horizontal tail surfaces removed, the flap was found to increase the maximum lift coefficient from 1.27 to 2.41. In the flight test, the flap was found to decrease the minimum speed from 58.8 to 44.4 miles per hour. The required take-off run to attain an altitude of 50 feet was reduced from 935 feet to 700 feet by the use of the flap, the minimum distance being obtained with five-sixths full deflection. The landing run from a height of 50 feet was reduced one-third. The longitudinal and directional control was adversely affected by the flap, indicating that the design of the tail surfaces is more critical with a flapped than a plain wing.

  7. An Investigation of the Drag Characteristics of a Tailless Delta-Wing Airplane in Flight, Including Comparison with Wind-Tunnel Data

    NASA Technical Reports Server (NTRS)

    Rolls, L. Stewart; Wingrove, Rodney C.

    1958-01-01

    A series of flight tests were conducted to determine the lift and drag characteristics of an F4D-1 airplane over a Mach number range of 0.80 to 1.10 at an altitude of 40,000 feet. Apparently satisfactory agreement was obtained between the flight data and results from wind-tunnel tests of an 0.055-scale model of the airplane. Further tests show the apparent agreement was a consequence of the altitude at which the first tests were made.

  8. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  9. The dynamic-response characteristics of a 35 degree swept-wing airplane as determined from flight measurements

    NASA Technical Reports Server (NTRS)

    Triplett, William C; Brown, Stuart C; Smith, G Allan

    1955-01-01

    The longitudinal and lateral-directional dynamic-response characteristics of a 35 degree swept-wing fighter-type airplane determined from flight measurements are presented and compared with predictions based on theoretical studies and wind-tunnel data. Flights were made at an altitude of 35,000 feet covering the Mach number range of 0.50 to 1.04. A limited amount of lateral-directional data were also obtained at 10,000 feet. The flight consisted essentially of recording transient responses to pilot-applied pulsed motions of each of the three primary control surfaces. These transient data were converted into frequency-response form by means of the Fourier transformation and compared with predicted responses calculated from the basic equations. Experimentally determined transfer functions were used for the evaluation of the stability derivatives that have the greatest effect on the dynamic response of the airplane. The values of these derivatives, in most cases, agreed favorably with predictions over the Mach number range of the test.

  10. Launch, Low-Speed, and Landing Characteristics Determined from the First Flight of the North American X-15 Research Airplane

    NASA Technical Reports Server (NTRS)

    Finch, Thomas W.; Matranga, Gene J.

    1959-01-01

    The first flight of the North American X-15 research airplane was made on June 8, 1959. This was accomplished after completion of a series of captive flights with the X-15 attached to the B-52 carrier airplane to demonstrate the aerodynamic and systems compatibility of the X-15//B-52 combination and the X-15 subsystem operation. This flight was planned as a glide flight so that the pilot need not be concerned with the propulsion system. Discussions of the launch, low-speed maneuvering, and landing characteristics are presented, and the results are compared with predictions from preflight studies. The launch characteristics were generally satisfactory, and the X-15 vertical tail adequately cleared the B-52 wing cutout. The actual landing pattern and landing characteristics compared favorably with predictions, and the recommended landing technique of lowering the flaps and landing gear at a low altitude appears to be a satisfactory method of landing the X-15 airplane. There was a quantitative correlation between flight-measured and predicted lift-drag-ratio characteristics in the clean configuration and a qualitative correlation in the landing configuration. A longitudinal-controllability problem, which became severe in the landing configuration, was evident throughout the flight and, apparently, was aggravated by the sensitivity of the side-located control stick. In the low-to-moderate angle-of-attack range covered, the longitudinal and directional stability were indicated to be adequate.

  11. Wind-tunnel Tests of a 2-engine Airplane Model as a Preliminary Study of Flight Conditions Arising on the Failure of the Engine

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1938-01-01

    Wind tunnel tests of a 15-foot-span model of a two-engine low wing transport airplane were made as a preliminary study of the emergency arising from the failure of one engine in flight. Two methods of reducing the initial yawing moment resulting from the failure of one engine were investigated and the equilibrium conditions were explored for two basic modes on one engine, one with zero angle of sideslip and the other with several degrees of sideslip. The added drag resulting from the unsymmetrical attitudes required for flight on one engine was determined for the model airplane. The effects of the application of power upon the stability, controllability, lift, and drag of the model airplane were measured. A dynamic pressure survey of the propeller slipstream was made in the neighborhood of the tail surfaces at three angles of attack. The added parasite drag of the model airplane resulting from the unfavorable conditions of flight on one engine was estimated. From 35 to 50 percent of this added drag was due to the drag of the dead engine propeller and the other 50 to 65 percent was due to the unsymmetrical attitude of the airplane. The mode of flight on one engine in which the angle of sideslip was zero was found to require less power than the mode in which the angle of sideslip was several degrees.

  12. Flight-test of the glide-slope track and flare-control laws for an automatic landing system for a powered-lift STOL airplane

    NASA Technical Reports Server (NTRS)

    Watson, D. M.; Hardy, G. H.; Warner, D. N., Jr.

    1983-01-01

    An automatic landing system was developed for the Augmentor Wing Jet STOL Research Airplane to establish the feasibility and examine the operating characteristics of a powered-lift STOL transport flying a steep, microwave landing system (MLS) glide slope to automatically land on a STOL port. The flight test results address the longitudinal aspects of automatic powered lift STOL airplane operation including glide slope tracking on the backside of the power curve, flare, and touchdown. Three different autoland control laws were evaluated to demonstrate the tradeoff between control complexity and the resulting performance. The flight test and simulation methodology used in developing conventional jet transport systems was applied to the powered-lift STOL airplane. The results obtained suggest that an automatic landing system for a powered-lift STOL airplane operating into an MLS-equipped STOL port is feasible. However, the airplane must be provided with a means of rapidly regulation lift to satisfactorily provide the glide slope tracking and control of touchdown sink rate needed for automatic landings.

  13. 77 FR 40832 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... ability of the flight crew to read primary displays for airplane attitude, altitude, or airspeed, and... displays for airplane attitude, altitude, or airspeed, and consequently reduce the ability of the flight...) malfunctions, which could affect the ability of the flight crew to read primary displays for airplane attitude...

  14. Stability of airplanes

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    The author attempts to correct the misconception that piloting an airplane requires extraordinary skill and balance. He also tries to show that airplanes are extremely stable in flight. Some of the major points covered in this article include: automatic pilots, airplanes designed to be stable, and the reliance on mathematics to help in designing stable aircraft.

  15. Analysis of sonic boom measurements near shock wave extremities for flight near Mach 1.0 and for airplane accelerations

    NASA Technical Reports Server (NTRS)

    Haglund, G. T.; Kane, E. J.

    1974-01-01

    The analysis of the 14 low-altitude transonic flights showed that the prevailing meteorological consideration of the acoustic disturbances below the cutoff altitude during threshold Mach number flight has shown that a theoretical safe altitude appears to be valid over a wide range of meteorological conditions and provides a reasonable estimate of the airplane ground speed reduction to avoid sonic boom noise during threshold Mach number flight. Recent theoretical results for the acoustic pressure waves below the threshold Mach number caustic showed excellent agreement with observations near the caustic, but the predicted overpressure levels were significantly lower than those observed far from the caustic. The analysis of caustics produced by inadvertent low-magnitude accelerations during flight at Mach numbers slightly greater than the threshold Mach number showed that folds and associated caustics were produced by slight changes in the airplane ground speed. These caustic intensities ranged from 1 to 3 time the nominal steady, level flight intensity.

  16. Stability and Controls Analysis and Flight Test Results of a 24-Foot Telescoping Nose Boom on an F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Moua, Cheng M.; Cox, Timothy H.; McWherter, Shaun C.

    2008-01-01

    The Quiet Spike(TradeMark) F-15B flight research program investigated supersonic shock reduction using a 24-ft telescoping nose boom on an F-15B airplane. The program goal was to collect flight data for model validation up to 1.8 Mach. In the area of stability and controls, the primary concerns were to assess the potential destabilizing effect of the oversized nose boom on the stability, controllability, and handling qualities of the airplane and to ensure adequate stability margins across the entire research flight envelope. This paper reports on the stability and control analytical methods, flight envelope clearance approach, and flight test results of the F-15B telescoping nose boom configuration. Also discussed are brief pilot commentary on typical piloting tasks and refueling tasks.

  17. Comparison of Wind-Tunnel and Flight Measurements of Stability and Control Characteristics of a Douglas A-26 Airplane

    NASA Technical Reports Server (NTRS)

    Kayten, Gerald G; Koven, William

    1945-01-01

    Stability and control characteristics determined from tests in the Langley 19-foot pressure tunnel of a 0.2375-scale model of the Douglas XA-26 airplane are compared with those measured in flight tests of a Douglas A-26 airplane. Agreement regarding static longitudinal stability as indicated by the elevator-fixed neutral points and by the variation of elevator deflection in both straight and turning flight was found to be good except at speeds approaching the stall. At these low speeds the airplane possessed noticeably improved stability, which was attributed to pronounced stalling at the root of the production wing. The pronounced root stalling did not occur on the smooth, well-faired model wing. Elevator tab effectiveness determined from model tests agreed well with flight-test tab effectiveness, but control-force variations with speed and acceleration were not in good agreement. The use of model hinge-moment data obtained at zero sideslip appeared to be satisfactory for the determination of aileron forces in sideslip. Fairly good correlation in aileron effectiveness and control forces was obtained; fabric distortion may have been responsible to some extent for higher flight values of aileron force at high speeds. Estimation of sideslip developed in an abrupt aileron roll was fair, but determination of the rudder deflection required to maintain zero sideslip in a rapid aileron roll was not entirely satisfactory.

  18. Flight-test data on the static fore-and-aft stability of various German airplanes

    NASA Technical Reports Server (NTRS)

    Hubner, Walter

    1933-01-01

    The static longitudinal stability of an airplane with locked elevator is usually determined by analysis and model tests. The present report proposes to supply the results of such measurements. The method consisted of recording the dynamic pressure versus elevator displacement at different center-of-gravity positions in unaccelerated flight.

  19. Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.

    1983-01-01

    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.

  20. Agricultural Airplane Mission Time Structure Characteristics

    NASA Technical Reports Server (NTRS)

    Jewel, J. W., Jr.

    1982-01-01

    The time structure characteristics of agricultural airplane missions were studied by using records from NASA VGH flight recorders. Flight times varied from less than 3 minutes to more than 103 minutes. There was a significant reduction in turning time between spreading runs as pilot experience in the airplane type increased. Spreading runs accounted for only 25 to 29 percent of the flight time of an agricultural airplane. Lowering the longitudinal stick force appeared to reduce both the turning time between spreading runs and pilot fatigue at the end of a working day.

  1. An Apparatus for Varying Effective Dihedral in Flight with Application to a Study of Tolerable Dihedral on a Conventional Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Kauffman, William M; Liddell, Charles J , Jr; Smith, Allan; Van Dyke, Rudolph D , Jr

    1949-01-01

    An apparatus for varying effective dihedral in flight by means of servo actuation of the ailerons in response to sideslip angle is described. The results of brief flight tests of the apparatus on a conventional fighter airplane are presented and discussed. The apparatus is shown to have satisfactory simulated a wide range of effective dihedral under static and dynamic conditions. The effects of a small amount of servo lag are shown to be measurable when the apparatus is simulating small negative values of dihedral. However, these effects were not considered by the pilots to give the airplane an artificial feel. The results of an investigation employing the apparatus to determine the tolerable (safe for normal fighter operation) range of effective dihedral on the test airplane are presented.

  2. Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1996-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  3. In-Flight Simulator for IFR Training

    NASA Technical Reports Server (NTRS)

    Parker, L. C.

    1986-01-01

    Computer-controlled unit feeds navigation signals to airplane instruments. Electronic training system allows students to learn to fly according to instrument flight rules (IFR) in uncrowded airspace. New system self-contained IFR simulator carried aboard training plane. Generates signals and commands for standard instruments on airplane, including navigational receiver, distance-measuring equipment, automatic direction finder, a marker-beacon receiver, altimeter, airspeed indicator, and heading indicator.

  4. Flight and wind-tunnel comparisons of the inlet-airframe interaction of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Webb, L. D.; Andriyich-Varda, D.; Whitmore, S. A.

    1984-01-01

    The design of inlets and nozzles and their interactions with the airplane which may account for a large percentage of the total drag of modern high performance aircraft is discussed. The inlet/airframe interactions program and the flight tests conducted is described. Inlet drag and lift data from a 7.5% wind-tunnel model are compared with data from an F-15 airplane with instrumentation to match the model. Pressure coefficient variations with variable cowl angles, capture ratios, examples of flow interactions and angles of attack are for Mach numbers of 0.6, 0.9, 1.2, and 1.5 are presented.

  5. Comparative Flight and Full-Scale Wind-Tunnel Measurements of the Maximum Lift of an Airplane

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Katzoff, S; Hootman, James A

    1938-01-01

    Determinations of the power-off maximum lift of a Fairchild 22 airplane were made in the NACA full-scale wind tunnel and in flight. The results from the two types of test were in satisfactory agreement. It was found that, when the airplane was rotated positively in pitch through the angle of stall at rates of the order of 0.1 degree per second, the maximum lift coefficient was considerably higher than that obtained in the standard tests, in which the forces are measured with the angles of attack fixed. Scale effect on the maximum lift coefficient was also investigated.

  6. 76 FR 27168 - Airmen Transition to Experimental or Unfamiliar Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... airplanes. The current edition of AC 90-89, Amateur-Built and Ultralight Flight Testing Handbook, provides information on such testing. However, if a pilot is planning on participating in a flight-test program in an... airplanes and to flight instructors who teach in these airplanes. This information and guidance contains...

  7. 78 FR 75511 - Special Conditions: Bombardier Inc., Models BD-500-1A10 and BD-500-1A11 Series Airplanes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... Design Features The C-series airplanes will incorporate the following novel or unusual design features: A.... Conclusion This action affects only certain novel or unusual design features on two model series of airplanes... Inc., Models BD-500-1A10 and BD- 500-1A11 Series Airplanes; Electronic Flight Control System: Control...

  8. In-flight acoustic measurements on a light twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Mcdaniel, C. D.; Wilby, E. G.

    1985-01-01

    Four series of flight tests were conducted to measure sound pressure levels inside and outside the cabin of a twin-engined turboprop airplane. Particular emphasis was placed on harmonics of the propeller blade passage frequency. The cabin was unfurnished for the first three flights, when the main objective was to investigate the repeatability of the data. For the fourth flight, the cabin was treated with fiberglass batts. Typically, the exterior sound pressure levels were found to vary 3 to 5 dB for a given harmonic, but variations as high as 8 dB were observed. The variability of harmonic levels within the cabin was slightly higher but depended on control of the relative phase between the propellers; when phase was not controlled the average variability was about 10 dB. Noise reductions provided by the fuselage structure were in the range of 20 to 40 dB, when an exterior microphone in the plane of rotation of the propeller was used as reference.

  9. Emergency Flight Control Using Computer-Controlled Thrust

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Fullerton, C. Gordon; Stewart, James F.; Gilyard, Glenn B.; Conley, Joseph A.

    1995-01-01

    Propulsion Controlled Aircraft (PCA) systems are digital electronic control systems undergoing development to provide limited maneuvering ability through variations of individual engine thrusts in multiple-engine airplanes. Provide landing capability when control surfaces inoperable. Incorporated on existing and future airplanes that include digital engine controls, digital flight controls, and digital data buses, adding no weight for additional hardware to airplane. Possible to handle total failure of hydraulic system, depending on how surfaces respond to loss of hydraulic pressure, and broken control cables or linkages. Future airplanes incorporate data from Global Positioning System for guidance to any suitable emergency runway in world.

  10. Lateral control required for satisfactory flying qualities based on flight tests of numerous airplanes

    NASA Technical Reports Server (NTRS)

    Gilruth, R R; Turner, W N

    1941-01-01

    Report presents the results of an analysis made of the aileron control characteristics of numerous airplanes tested in flight by the National Advisory Committee for Aeronautics. By the use of previously developed theory, the observed values of pb/2v for the various wing-aileron arrangements were examined to determine the effective section characteristics of the various aileron types.

  11. Simulator study of flight characteristics of several large, dissimilar, cargo transport airplanes during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.; Deal, P. L.; Neely, W. R., Jr.

    1984-01-01

    A six-degree-of-freedom, ground based simulator study is conducted to evaluate the low-speed flight characteristics of four dissimilar cargo transport airplanes. These characteristics are compared with those of a large, present-day (reference) transport configuration similar to the Lockheed C-5A airplane. The four very large transport concepts evaluated consist of single-fuselage, twin-fuselage, triple-fuselage, and span-loader configurations. The primary piloting task is the approach and landing operation. The results of his study indicate that all four concepts evaluated have unsatisfactory longitudinal and lateral directional low speed flight characteristics and that considerable stability and control augmentation would be required to improve these characteristics (handling qualities) to a satisfactory level. Through the use of rate command/attitude hold augmentation in the pitch and roll axes, and the use of several turn-coordination features, the handling qualities of all four large transports simulated are improved appreciably.

  12. 76 FR 31456 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Control System: Control Surface Position Awareness AGENCY: Federal Aviation Administration (FAA), DOT... electronic flight control system. The applicable airworthiness regulations do not contain adequate or... regulatory adequacy pursuant to section 611 of Public Law 92-574, the ``Noise Control Act of 1972.'' The FAA...

  13. Flight evaluation of an extended engine life mode on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Conners, Timothy R.

    1992-01-01

    An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.

  14. 77 FR 12158 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... limited to not more than 0.78 Mach. (6) The climb ceiling obtained from the Flight Planning and Cruise... damage to airplane structure, which could adversely affect the airplane's continued safe flight and... requirements.'' Under that section, Congress charges the FAA with promoting safe flight of civil aircraft in...

  15. 76 FR 79560 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ...-1323; Directorate Identifier 2010-NM-212-AD] RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... airplanes; Model A330-223F and -243F airplanes; and Model A340-200, -300, -500, and -600 series airplanes... airplane flight manual. We are proposing this AD to prevent movement of the elevators to zero position...

  16. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  17. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    NASA Technical Reports Server (NTRS)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  18. An Overview of Flight Test Results for a Formation Flight Autopilot

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.

    2002-01-01

    The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.

  19. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. This presentation provides highlights of a technical paper that outlines this ultimate goal, including plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  20. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  1. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this paper provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  2. 78 FR 27015 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A330-200 and A330-300 series airplanes, and Model A340-200 and A340-300 series airplanes... seal on a solenoid. This AD requires, depending on airplane configuration, modifying three flight...

  3. Flight test evaluation of drag effects on surface coatings on the NASA Boeing 737 TCV airplane

    NASA Technical Reports Server (NTRS)

    George-Falvy, D.; Sikavi, D. A.

    1981-01-01

    A flight test program was conducted in which the effects of various surface coatings on aerodynamic drag were investigated; results of this program are described in this report. The tests were conducted at NASA-Langley Research Center on the terminal configured vehicle (TCV) Boeing 737 research airplane. The Boeing Company, as contractor with NASA under the Energy Efficient Transport (EET) program, planned and evaluated the experiment. The NASA-TCV Program Office coordinated the experiment and performed the flight tests. The principal objective of the test was to evaluate the drag reduction potential of an elastomeric polyurethane surface coating, CAAPCO B-274, which also has been considered for application on transport airplanes to protect leading edges from erosion. The smooth surface achievable with this type of coating held some promise of reducing the skin friction drag as compared to conventional production type aircraft surfaces, which are usually anodized bare metal or coated with corrosion protective paint. Requirements for high precision measurements were the principal considerations in the experiment.

  4. Analysis of in-flight acoustic data for a twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Wilby, E. G.

    1988-01-01

    Acoustic measurements were made on the exterior and interior of a general aviation turboprop airplane during four flight tests. The test conditions were carefully controlled and repeated for each flight in order to determine data variability. For the first three flights the cabin was untreated and for the fourth flight the fuselage was treated with glass fiber batts. On the exterior, measured propeller harmonic sound pressure levels showed typical standard deviations of +1.4 dB, -2.3 dB, and turbulent boundary layer pressure levels, +1.2 dB, -1.6. Propeller harmonic levels in the cabin showed greater variability, with typical standard deviations of +2.0 dB, -4.2 dB. When interior sound pressure levels from different flights with different cabin treatments were used to evaluate insertion loss, the standard deviations were typically plus or minus 6.5 dB. This is due in part to the variability of the sound pressure level measurements, but probably is also influenced by changes in the model characteristics of the cabin. Recommendations are made for the planning and performance of future flight tests to measure interior noise of propeller-driven aircraft, either high-speed advanced turboprop or general aviation propellers.

  5. Flight Tests of N.A.C.A. Nose-slot Cowlings on the BFC-1 Airplane

    NASA Technical Reports Server (NTRS)

    Stickle, George W

    1939-01-01

    The results of flight tests of four nose-slot cowling designs with several variations in each design are presented. The tests were made in the process of developing the nose-slot cowling. The results demonstrate that a nose-slot cowling may be successfully applied to an airplane and that it utilizes the increased slipstream velocity of low-speed operation to produce increased cooling pressure across the engine. A sample design calculation using results from wind-tunnel, flight, and ground tests is given in an appendix to illustrate the design procedure.

  6. 77 FR 48469 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ...-0808; Directorate Identifier 2010-NM-170-AD] RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... airplanes, and Model A340-200 and A340-300 series airplanes. This proposed AD was prompted by reports of an... require, depending on airplane configuration, modifying three flight control primary computers (FCPCs...

  7. Flight Measurements of the Flying Qualities of a Lockheed P-80A Airplane (Army No. 44-85099) - Stalling Characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B.; Cooper, George E.

    1947-01-01

    This report contains the flight-test results of the stalling characteristics measured during the flying-qualities investigation of the Lockheed P-8OA airplane (Army No. 44-85099). The tests were conducted in straight and turning flight with and without wing-tip tanks. These tests showed satisfactory stalling characteristics and adequate stall warning for all configurations and conditions tested.

  8. Motion of the two-control airplane in rectilinear flight after initial disturbances with introduction of controls following an exponential law

    NASA Technical Reports Server (NTRS)

    Klemin, Alexander

    1937-01-01

    An airplane in steady rectilinear flight was assumed to experience an initial disturbance in rolling or yawing velocity. The equations of motion were solved to see if it was possible to hasten recovery of a stable airplane or to secure recovery of an unstable airplane by the application of a single lateral control following an exponential law. The sample computations indicate that, for initial disturbances complex in character, it would be difficult to secure correlation with any type of exponential control. The possibility is visualized that the two-control operation may seriously impair the ability to hasten recovery or counteract instability.

  9. Summary of flight tests to determine the spin and controllability characteristics of a remotely piloted, large-scale (3/8) fighter airplane model

    NASA Technical Reports Server (NTRS)

    Holleman, E. C.

    1976-01-01

    An unpowered, large, dynamically scaled airplane model was test flown by remote pilot to investigate the stability and controllability of the configuration at high angles of attack. The configuration proved to be departure/spin resistant; however, spins were obtained by using techniques developed on a flight support simulator. Spin modes at high and medium high angles of attack were identified, and recovery techniques were investigated. A flight support simulation of the airplane model mechanized with low speed wind tunnel data over an angle of attack range of + or - 90 deg. and an angle of sideslip range of + or - 40 deg. provided insight into the effects of altitude, stability, aerodynamic damping, and the operation of the augmented flight control system on spins. Aerodynamic derivatives determined from flight maneuvers were used to correlate model controllability with two proposed departure/spin design criteria.

  10. 78 FR 5148 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ..., except federal holidays. FOR FURTHER INFORMATION CONTACT: Joe Jacobsen, FAA, Airplane and Flight Crew... protection features include limitations on angle-of- attack, normal load factor, bank angle, pitch angle, and... characteristics, and High angle-of-attack. Section Sec. 25.143, however, does not adequately ensure that the novel...

  11. Flight Tests of A 1/8-Scale Model of the Bell D-188A Jet VTOL Airplane

    NASA Technical Reports Server (NTRS)

    Smith, Charles C., Jr.

    1959-01-01

    The Bell D-188A VTOL airplane is a horizontal-attitude VTOL fighter with tilting engine nacelles at the tips of a low-aspect-ratio unswept wing and additional engines in the fuselage. The model could be flown smoothly in hovering and transition flight. In forward flight the model could be flown smoothly at the lower angles of attack but experienced an uncontrollable directional divergence at angles of attack above about 16 deg.

  12. Advances in Thrust-Based Emergency Control of an Airplane

    NASA Technical Reports Server (NTRS)

    Creech, Gray; Burken, John J.; Burcham, Bill

    2003-01-01

    Engineers at NASA's Dryden Flight Research Center have received a patent on an emergency flight-control method implemented by a propulsion-controlled aircraft (PCA) system. Utilizing the preexisting auto-throttle and engine-pressure-ratio trim controls of the airplane, the PCA system provides pitch and roll control for landing an airplane safely without using aerodynamic control surfaces that have ceased to function because of a primary-flight-control-system failure. The installation of the PCA does not entail any changes in pre-existing engine hardware or software. [Aspects of the method and system at previous stages of development were reported in Thrust-Control System for Emergency Control of an Airplane (DRC-96-07), NASA Tech Briefs, Vol. 25, No. 3 (March 2001), page 68 and Emergency Landing Using Thrust Control and Shift of Weight (DRC-96-55), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 58.]. Aircraft flight-control systems are designed with extensive redundancy to ensure low probabilities of failure. During recent years, however, several airplanes have exhibited major flight-control-system failures, leaving engine thrust as the last mode of flight control. In some of these emergency situations, engine thrusts were successfully modulated by the pilots to maintain flight paths or pitch angles, but in other situations, lateral control was also needed. In the majority of such control-system failures, crashes resulted and over 1,200 people died. The challenge lay in creating a means of sufficient degree of thrust-modulation control to safely fly and land a stricken airplane. A thrust-modulation control system designed for this purpose was flight-tested in a PCA an MD-11 airplane. The results of the flight test showed that without any operational control surfaces, a pilot can land a crippled airplane (U.S. Patent 5,330,131). The installation of the original PCA system entailed modifications not only of the flight-control computer (FCC) of the airplane but

  13. Full-scale Wind-tunnel and Flight Tests of a Fairchild 22 Airplane Equipped with External-airfoil Flaps

    NASA Technical Reports Server (NTRS)

    Reed, Warren D; Clay, William C

    1937-01-01

    Wind-tunnel and flight tests have been made of a Fairchild 22 airplane equipped with a wing having external-airfoil flaps that also perform the function of ailerons. Lift, drag, and pitching-moment coefficients of the airplane with several flap settings, and the rolling- and yawing-moment coefficients with the flaps deflected as ailerons were measured in the full-scale tunnel with the horizontal tail surfaces and propeller removed. The effect of the flaps on the low speed and on the take-off and landing characteristics, the effectiveness of flaps when used as ailerons, and the forces required to operate them as ailerons were determined in flight. The wind-tunnel tests showed that the flaps increased the maximum lift coefficient of the airplane from 1.51 with the flap in the minimum drag position to 2.12 with the flap in the minimum drag position to 2.12 with the flap deflected 30 degrees. In the flight tests the minimum speed decreased from 46.8 miles per hour with the flaps up to 41.3 miles per hour with the flaps deflected. The required take-off run to attain a height of 50 feet was reduced from 820 to 750 feet and the landing run from a height of 50 feet was reduced from 930 to 480 feet. The flaps for this installation gave lateral control that was not entirely satisfactory. Their rolling action was good but the adverse yaw resulting from their use was greater than is considerable, and the stick forces required to operate them increased too rapidly with speed.

  14. Flight evaluation of the transonic stability and control characteristics of an airplane incorporating a supercritical wing

    NASA Technical Reports Server (NTRS)

    Matheny, N. W.; Gatlin, D. H.

    1978-01-01

    A TF-8A airplane was equipped with a transport type supercritical wing and fuselage fairings to evaluate predicted performance improvements for cruise at transonic speeds. A comparison of aerodynamic derivatives extracted from flight and wind tunnel data showed that static longitudinal stability, effective dihedral, and aileron effectiveness, were higher than predicted. The static directional stability derivative was slower than predicted. The airplane's handling qualities were acceptable with the stability augmentation system on. The unaugmented airplane exhibited some adverse lateral directional characteristics that involved low Dutch roll damping and low roll control power at high angles of attack and roll control power that was greater than satisfactory for transport aircraft at cruise conditions. Longitudinally, the aircraft exhibited a mild pitchup tendency. Leading edge vortex generators delayed the onset of flow separation, moving the pitchup point to a higher lift coefficient and reducing its severity.

  15. A flight investigation of the effect of mass distribution and control setting on the spinning of the XN2Y-1 airplane

    NASA Technical Reports Server (NTRS)

    Scudder, N F

    1935-01-01

    The investigation of the effect of mass distribution on the spinning of airplanes initiated with tests on the NY-1 airplane has been continued by tests on another airplane in order to increase the scope of the information and to observe particularly the behavior of an airplane that shows considerable change in sideslip angle for its various conditions of spinning. The XN2Y-1 naval training biplane was used for the present tests in which changes of ballast along the longitudinal and lateral axes and changes of aileron, stabilizer, and elevator settings were made. The effects of these changes on the steady spin were measured in flight.

  16. Flight performance of the TCV B-737 airplane at Kennedy Airport using TRSB/MLS guidance

    NASA Technical Reports Server (NTRS)

    White, W. F.; Clark, L. V.

    1979-01-01

    The terminal configured vehicle (TCV) B 737 was flown in demonstration of the time reference scanning beam/microwave landing system (TRSB/MLS). The flight performance of the TCV airplane during the demonstration automatic approaches and landings while utilizing TRSB/MLS guidance is reported. The TRSB/MLS is shown to provide the terminal area guidance necessary for flying curved automatic approaches with short finals.

  17. Flight and Static Exhaust Flow Properties of an F110-GE-129 Engine in an F-16XL Airplane During Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Holzman, Jon K.; Webb, Lannie D.; Burcham, Frank W., Jr.

    1996-01-01

    The exhaust flow properties (mass flow, pressure, temperature, velocity, and Mach number) of the F110-GE-129 engine in an F-16XL airplane were determined from a series of flight tests flown at NASA Dryden Flight Research Center, Edwards, California. These tests were performed in conjunction with NASA Langley Research Center, Hampton, Virginia (LARC) as part of a study to investigate the acoustic characteristics of jet engines operating at high nozzle pressure conditions. The range of interest for both objectives was from Mach 0.3 to Mach 0.9. NASA Dryden flew the airplane and acquired and analyzed the engine data to determine the exhaust characteristics. NASA Langley collected the flyover acoustic measurements and correlated these results with their current predictive codes. This paper describes the airplane, tests, and methods used to determine the exhaust flow properties and presents the exhaust flow properties. No acoustics results are presented.

  18. Airplane Balance

    NASA Technical Reports Server (NTRS)

    Huguet, L

    1921-01-01

    The authors argue that the center of gravity has a preponderating influence on the longitudinal stability of an airplane in flight, but that manufacturers, although aware of this influence, are still content to apply empirical rules to the balancing of their airplanes instead of conducting wind tunnel tests. The author examines the following points: 1) longitudinal stability, in flight, of a glider with coinciding centers; 2) the influence exercised on the stability of flight by the position of the axis of thrust with respect to the center of gravity and the whole of the glider; 3) the stability on the ground before taking off, and the influence of the position of the landing gear. 4) the influence of the elements of the glider on the balance, the possibility of sometimes correcting defective balance, and the valuable information given on this point by wind tunnel tests; 5) and a brief examination of the equilibrium of power in horizontal flight, where the conditions of stability peculiar to this kind of flight are added to previously existing conditions of the stability of the glider, and interfere in fixing the safety limits of certain evolutions.

  19. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  20. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  1. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  2. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  3. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in § 121...

  4. An analysis of life expectancy of airplane wings in normal cruising flight

    NASA Technical Reports Server (NTRS)

    Putnam, Abbott A

    1945-01-01

    In order to provide a basis for judging the relative importance of wing failure by fatigue and by single intense gusts, an analysis of wing life for normal cruising flight was made based on data on the frequency of atmospheric gusts. The independent variables considered in the analysis included stress-concentration factor, stress-load relation, wing loading, design and cruising speeds, design gust velocity, and airplane size. Several methods for estimating fatigue life from gust frequencies are discussed. The procedure selected for the analysis is believed to be simple and reasonably accurate, though slightly conservative.

  5. Performance improvements of an F-15 airplane with an integrated engine-flight control system

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Walsh, Kevin R.

    1988-01-01

    An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 deg, respectively.

  6. Performance improvements of an F-15 airplane with an integrated engine-flight control system

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Walsh, Kevin R.

    1988-01-01

    An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 degrees, respectively.

  7. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355 Airplane...

  8. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355 Airplane...

  9. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355 Airplane...

  10. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355 Airplane...

  11. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355 Airplane...

  12. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  13. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  14. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  15. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  16. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off, or...

  17. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-70-1). 3: A comparison between characteristics predicted from wind-tunnel measurements and those measured in flight

    NASA Technical Reports Server (NTRS)

    Arnaiz, H. H.; Peterson, J. B., Jr.; Daugherty, J. C.

    1980-01-01

    A program was undertaken by NASA to evaluate the accuracy of a method for predicting the aerodynamic characteristics of large supersonic cruise airplanes. This program compared predicted and flight-measured lift, drag, angle of attack, and control surface deflection for the XB-70-1 airplane for 14 flight conditions with a Mach number range from 0.76 to 2.56. The predictions were derived from the wind-tunnel test data of a 0.03-scale model of the XB-70-1 airplane fabricated to represent the aeroelastically deformed shape at a 2.5 Mach number cruise condition. Corrections for shape variations at the other Mach numbers were included in the prediction. For most cases, differences between predicted and measured values were within the accuracy of the comparison. However, there were significant differences at transonic Mach numbers. At a Mach number of 1.06 differences were as large as 27 percent in the drag coefficients and 20 deg in the elevator deflections. A brief analysis indicated that a significant part of the difference between drag coefficients was due to the incorrect prediction of the control surface deflection required to trim the airplane.

  18. Comparison of predicted and measured drag for a single-engine airplane

    NASA Technical Reports Server (NTRS)

    Ward, D. T.; Taylor, F. C.; Doo, J. T. P.

    1985-01-01

    Renewed interest in natural laminar flow (NLF) has rekindled designers' concerns that manufacturing deviations, (loss of surface contours or other surface imperfections) may destroy the effectiveness of NLF for an operational airplane. This paper reports on experimental research that compares predicted and measured boundary layer transition, total drag, and two-dimensional drag coefficients for three different wing surface conditions on an airplane typical of general aviation manufacturing technology. The three flight test phases included: (1) assessment of an unpainted airframe, (2) flight tests of the same airplane after painstakingly filling and sanding the wings to design contours, and (3) similar measurements after this airplane was painted. In each flight phase, transition locations were monitored using either sublimating chemicals or pigmented oil. As expected, total drag changes were difficult to measure. Two-dimensional drag coefficients were estimated using the Eppler-Somers code and measured with a wake rake in a method very similar to Jones' pitot traverse method. The net change in two-dimensional drag was approximately 20 counts between the unpainted airplane and the 'hand-smoothed' airplane for typical cruise flight conditions.

  19. Some elementary aspects of non-linear airplane speed stability in constrained flight

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Fonseca, A. A.; Azinheira, J. R. C.

    We review the longitudinal motion of an airplane, starting a dive at an arbitrary speed, and flown on a constant glide slope; this non-linear longitudinal speed stability problem is solved analytically (Section 2), to provide groundspeed as a function of time. Three restrictions were made: (i) neglect of the short period mode; (ii) low Mach number flight, i.e. omission of drag due to compressibility; (iii) small altitude change, so that the air density could be taken as constant. The predicted stability curves were compared with flight test data (Section 6), obtained using a CASA 212 Aviocar twin-turboprop transport. The flight data records showed that lateral motion was negligible; the effects of wind were compensated for, and the possible errors were estimated. An extension was made of the stability theory from still air (Section 2), to account for the presence of winds (Section 3); the latter were assumed not to exceed 30% of the groundspeed. The comparison of the theoretical stability curves with flight test data can be automated, as can the identification of the relevant data record. The disturbance intensity can be used as a parameter (Section 5) which indicates the start and end of flight manouever. This parameter is defined (Section 4) as the relative lift change, and for longitudinal flight it can be obtained from the wind velocity, vorticity components and changes of airspeed, angle-of-attack and vertical acceleration. It similarly has applications to perturbations of a horizontal turn.

  20. The X-15 airplane - Lessons learned

    NASA Technical Reports Server (NTRS)

    Dana, William H.

    1993-01-01

    The X-15 rocket research airplane flew to an altitude of 354,000 ft and reached Mach 6.70. In almost 200 flights, this airplane was used to gather aerodynamic-heating, structural loads, stability and control, and atmospheric-reentry data. This paper describes the origins, design, and operation of the X-15 airplane. In addition, lessons learned from the X-15 airplane that are applicable to designing and testing the National Aero-Space Plane are discussed.

  1. 76 FR 64229 - Function and Reliability Flight Testing for Turbine-Powered Airplanes Weighing 6,000 Pounds or Less

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... contains regulatory documents #0;having general applicability and legal effect, most of which are keyed #0... structures, propulsion methods, and systems technologies, the 6,000-pound demarcation is no longer justified... F & R flight testing regardless of the airplane's systems complexity or level of automation. After...

  2. Propulsion system-flight control integration and optimization: Flight evaluation and technology transition

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.

    1990-01-01

    Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical.

  3. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs.

  4. Spinning Characteristics of the XN2Y-1 Airplane Obtained from the Spinning Balance and Compared with Results from the Spinning Tunnel and from Flight Tests

    NASA Technical Reports Server (NTRS)

    Bamber, M J; House, R O

    1937-01-01

    Report presents the results of tests of a 1/10-scale model of the XN2Y-1 airplane tested in the NACA 5-foot vertical wind tunnel in which the six components of forces and moments were measured. The model was tested in 17 attitudes in which the full-scale airplane had been observed to spin, in order to determine the effects of scale, tunnel, and interference. In addition, a series of tests was made to cover the range of angles of attack, angles of sideslip, rates of rotation, and control setting likely to be encountered by a spinning airplane. The data were used to estimate the probable attitudes in steady spins of an airplane in flight and of a model in the free-spinning tunnel. The estimated attitudes of steady spin were compared with attitudes measured in flight and in the spinning tunnel. The results indicate that corrections for certain scale and tunnel effects are necessary to estimate full-scale spinning attitudes from model results.

  5. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  6. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  7. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  8. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  9. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent placards...

  10. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...

  11. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...

  12. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles...

  13. Piloted simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Brown, P. W.; Yenni, K. R.

    1986-01-01

    A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.

  14. Measured Engine Installation Effects of Four Civil Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Senzig, David A.; Fleming, Gregg G.; Shepherd, Kevin P.

    2001-01-01

    The Federal Aviation Administration's Integrated Noise Model (INM) is one of the primary tools for land use planning around airports. The INM currently calculates airplane noise lateral attenuation using the methods contained in the Society of Automotive Engineer's Aerospace Information Report No. 1751 (SAE AIR 1751). Researchers have noted that improved lateral attenuation algorithms may improve airplane noise prediction. The authors of SAE AIR 1751 based existing methods on empirical data collected from flight tests using 1960s-technology airplanes with tail-mounted engines. To determine whether the SAE AIR 1751 methods are applicable for predicting the engine installation component of lateral attenuation for airplanes with wing-mounted engines, the National Aeronautics and Space Administration (NASA) sponsored a series of flight tests during September 2000 at their Wallops Flight Facility. Four airplanes, a Boeing 767-400, a Douglas DC-9, a Dassault Falcon 2000, and a Beech KingAir, were flown through a 20 microphone array. The airplanes were flown through the array at various power settings, flap settings, and altitudes to simulate take-off and arrival configurations. This paper presents the preliminary findings of this study.

  15. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1997-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  16. Wind-tunnel static and free-flight investigation of high-angle-of-attack stability and control characteristics of a model of the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Jordan, Frank L., Jr.; Hahne, David E.

    1992-01-01

    An investigation was conducted in the Langley 30- by 60-Foot Tunnel and the Langley 12-Foot Low-Speed Tunnel to identify factors contributing to a directional divergence at high angles of attack for the EA-6B airplane. The study consisted of static wind-tunnel tests, smoke and tuft flow-visualization tests, and free-flight tests of a 1/8.5-scale model of the airplane. The results of the investigation indicate that the directional divergence of the airplane is brought about by a loss of directional stability and effective dihedral at high angles of attack. Several modifications were tested that significantly alleviate the stability problem. The results of the free-flight study show that the modified configuration exhibits good dynamic stability characteristics and could be flown at angles of attack significantly higher than those of the unmodified configuration.

  17. Flight Measurements of the Effect of a Controllable Thrust Reverser on the Flight Characteristics of a Single-Engine Jet Airplane

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B.; Cooper, George E.; Faye, Alan E., Jr.

    1959-01-01

    A flight investigation was undertaken to determine the effect of a fully controllable thrust reverser on the flight characteristics of a single-engine jet airplane. Tests were made using a cylindrical target-type reverser actuated by a hydraulic cylinder through a "beep-type" cockpit control mounted at the base of the throttle. The thrust reverser was evaluated as an in-flight decelerating device, as a flight path control and airspeed control in landing approach, and as a braking device during the ground roll. Full deflection of the reverser for one reverser configuration resulted in a reverse thrust ratio of as much as 85 percent, which at maximum engine power corresponded to a reversed thrust of 5100 pounds. Use of the reverser in landing approach made possible a wide selection of approach angles, a large reduction in approach speed at steep approach angles, improved control of flight path angle, and more accuracy in hitting a given touchdown point. The use of the reverser as a speed brake at lower airspeeds was compromised by a longitudinal trim change. At the lower airspeeds and higher engine powers there was insufficient elevator power to overcome the nose-down trim change at full reverser deflection.

  18. In-flight investigation of the effects of pilot location and control system design on airplane flying qualities for approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.; Chalk, C. R.

    1982-01-01

    The handling qualities of large airplanes in the approach and landing flight phase were studied. The primary variables were relative pilot position with respect to center of rotation, command path time delays and phase shifts, augmentation schemes and levels of augmentation. It is indicated that the approach and landing task with large airplanes is a low bandwidth task. Low equivalent short period frequencies and relatively long time delays are tolerated only when the pilot is located at considerable distance forward of the center of rotation. The control problem experienced by the pilots, when seated behind the center of rotation, tended to occur at low altitude when they were using visual cues of rate of sink and altitude. A direct lift controller improved final flight path control of the shuttle like configurations.

  19. Airstart performance of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Licata, S. J.; Burcham, F. W., Jr.

    1983-01-01

    The airstart performance of the F100 engine equipped with a digital electronic engine control (DEEC) system was evaluated in an F-15 airplane. The DEEC system incorporates closed-loop airstart logic for improved capability. Spooldown and jet fuel starter-assisted airstarts were made over a range of airspeeds and altitudes. All jet fuel starter-assisted airstarts were successful, with airstart time varying from 35 to 60 sec. All spooldown airstarts at airspeeds of 200 knots and higher were successful; airstart times ranged from 45 sec at 250 knots to 135 sec at 200 knots. The effects of altitude on airstart success and time were small. The flight results agreed closely with previous altitude facility test results. The DEEC system provided successful airstarts at airspeeds at least 50 knots lower than the standard F100 engine control system.

  20. 76 FR 36870 - Special Conditions: Gulfstream Model GVI Airplane; Design Roll Maneuver Requirement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... airplane will have a novel or unusual design feature associated with an electronic flight control system... load condition at design maneuvering speed (V A ), in which the cockpit roll control is returned to... positive maneuvering factor used in design. In determining the resulting control surface deflections, the...

  1. Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane

    NASA Technical Reports Server (NTRS)

    Gera, Joseph; Bosworth, John T.

    1987-01-01

    Initial envelope clearance and subsequent flight testing of a new, fully augmented airplane with an extremely high degree of static instability can place unusual demands on the flight test approach. Previous flight test experience with these kinds of airplanes is very limited or nonexistent. The safe and efficient flight testing may be further complicated by a multiplicity of control effectors that may be present on this class of airplanes. This paper describes some novel flight test and analysis techniques in the flight dynamics and handling qualities area. These techniques were utilized during the initial flight envelope clearance of the X-29A aircraft and were largely responsible for the completion of the flight controls clearance program without any incidents or significant delays.

  2. 14 CFR 121.643 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Supplemental operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-powered airplanes: Supplemental operations. 121.643 Section 121.643 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.643 Fuel supply: Nonturbine and turbo-propeller-powered airplanes... flight or takeoff a nonturbine or turbo-propeller-powered airplane unless, considering the wind and other...

  3. 14 CFR 121.643 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Supplemental operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-powered airplanes: Supplemental operations. 121.643 Section 121.643 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.643 Fuel supply: Nonturbine and turbo-propeller-powered airplanes... flight or takeoff a nonturbine or turbo-propeller-powered airplane unless, considering the wind and other...

  4. 14 CFR 121.643 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Supplemental operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-powered airplanes: Supplemental operations. 121.643 Section 121.643 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.643 Fuel supply: Nonturbine and turbo-propeller-powered airplanes... flight or takeoff a nonturbine or turbo-propeller-powered airplane unless, considering the wind and other...

  5. Headache during airplane travel ("airplane headache"): first case in Greece.

    PubMed

    Kararizou, Evangelia; Anagnostou, Evangelos; Paraskevas, George P; Vassilopoulou, Sofia D; Naoumis, Dimitrios; Kararizos, Grigoris; Spengos, Konstantinos

    2011-08-01

    Headache related to airplane flights is rare. We describe a 37-year-old female patient with multiple intense, jabbing headache episodes over the last 3 years that occur exclusively during airplane flights. The pain manifests during take-off and landing, and is located always in the left retro-orbital and frontotemporal area. It is occasionally accompanied by dizziness, but no additional symptoms occur. Pain intensity diminishes and disappears after 15-20 min. Apart from occasional dizziness, no other symptoms occur. The patient has a history of tension-type headache and polycystic ovaries. Blood tests and imaging revealed no abnormalities. Here, we present the first case in Greece. We review the current literature on this rare syndrome and discuss on possible pathophysiology and the investigation of possible co-factors such as anxiety and depression.

  6. Flight Characteristics of a 1/4-Scale Model of the XFV-1 Airplane (TED No. NACA DE-378)

    NASA Technical Reports Server (NTRS)

    Kelly, Mark W.; Smaus, Louis H.

    1952-01-01

    A l/4-scale dynamically similar model of the XFV-1 airplane has been flown in the Ames 40- by 80-foot wind tunnel, using the trailing flight-cable technique. This investigation was devoted to establishing the flight characteristics of the model in forward flight from hovering to wing stall, and in yawed flight (wing span alined with the relative wind) from hovering to the maximum speed at which controlled flight could be maintained. Landings, take-offs, and hovering characteristics in flights close to the ground were also investigated.. Since the remote control system for the model was rather complicated and provided artificial damping about the pitch, roll, and yaw axes, sufficient data from the control-system calibration tests are included in this report to specify the performance of the control system in relation to both the model flight tests and the design of an automatic control system for the full-scale airplane. The model in hovering flight appeared to be neutrally stable. The response of the model to the controls was very rapid, and it was always necessary to provide some amount of artificial damping to maintain control. The model could be landed with little difficulty by hovering approximately a foot above the floor and then cutting the power. Take-offs were more difficult to perform, primarily because the rate of change in power to the model motors was limited by the characteristics of the available power source. The model was,capable of controlled yawed flight at translational velocities up to and including 20 feet per second. The effectiveness of the controls decreased with increasing speed, however, and at 25 fps control in pitch, and probably roll, was lost completely. The model was flown in controlled forward flight from hovering up to 70 fps. During these flights the model appeared to be more difficult to control in yaw than it was in pitch or roll. The flights of the model were recorded by motion picture cameras. These motion pictures are

  7. 14 CFR 121.391 - Flight attendants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight attendants. 121.391 Section 121.391..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.391 Flight attendants. Link... least the following flight attendants on each passenger-carrying airplane used: (1) For airplanes having...

  8. 14 CFR 23.61 - Takeoff flight path.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Takeoff flight path. 23.61 Section 23.61... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.61 Takeoff flight path. For each commuter category airplane, the takeoff flight path must be determined as follows...

  9. 14 CFR 23.61 - Takeoff flight path.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff flight path. 23.61 Section 23.61... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.61 Takeoff flight path. For each commuter category airplane, the takeoff flight path must be determined as follows...

  10. Flight Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in a Setup Simulating that Proposed for Captive-Flight Tests in a Hangar, TED No. NACA DE 368

    NASA Technical Reports Server (NTRS)

    Lovell, Powell M., Jr.

    1953-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a 0.13-scale free-flight model of the Convair XFY-1 airplane in test setups representing the setup proposed for use in the first flight tests of the full-scale airplane in the Moffett Field airship hangar. The investigation was conducted in two parts: first, tests with the model flying freely in an enclosure simulating the hangar, and second, tests with the model partially restrained by an overhead line attached to the propeller spinner and ground lines attached to the wing and tail tips. The results of the tests indicated that the airplane can be flown without difficulty in the Moffett Field airship hangar if it does not approach too close to the hangar walls. If it does approach too close to the walls, the recirculation of the propeller slipstream might cause sudden trim changes which would make smooth flight difficult for the pilot to accomplish. It appeared that the tethering system proposed by Convair could provide generally satisfactory restraint of large-amplitude motions caused by control failure or pilot error without interfering with normal flying or causing any serious instability or violent jerking motions as the tethering lines restrained the model.

  11. Summary of the effects of engine throttle response on airplane formation-flying qualities

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.

    1993-01-01

    A flight evaluation was conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. This airplane was chosen because of its known, very favorable thrust response characteristics. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. The Cooper and Harper Pilot Rating Scale was used to assign levels of handling quality. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented. These results may provide engine manufacturers with guidelines to assure satisfactory handling qualities in future engine designs.

  12. Exposure to flame retardant chemicals on commercial airplanes.

    PubMed

    Allen, Joseph G; Stapleton, Heather M; Vallarino, Jose; McNeely, Eileen; McClean, Michael D; Harrad, Stuart J; Rauert, Cassandra B; Spengler, John D

    2013-02-16

    Flame retardant chemicals are used in materials on airplanes to slow the propagation of fire. These chemicals migrate from their source products and can be found in the dust of airplanes, creating the potential for exposure. To characterize exposure to flame retardant chemicals in airplane dust, we collected dust samples from locations inside 19 commercial airplanes parked overnight at airport gates. In addition, hand-wipe samples were also collected from 9 flight attendants and 1 passenger who had just taken a cross-country (USA) flight. The samples were analyzed for a suite of flame retardant chemicals. To identify the possible sources for the brominated flame retardants, we used a portable XRF analyzer to quantify bromine concentrations in materials inside the airplanes. A wide range of flame retardant compounds were detected in 100% of the dust samples collected from airplanes, including BDEs 47, 99, 153, 183 and 209, tris(1,3-dichloro-isopropyl)phosphate (TDCPP), hexabromocyclododecane (HBCD) and bis-(2-ethylhexyl)-tetrabromo-phthalate (TBPH). Airplane dust contained elevated concentrations of BDE 209 (GM: 500 ug/g; range: 2,600 ug/g) relative to other indoor environments, such as residential and commercial buildings, and the hands of participants after a cross-country flight contained elevated BDE 209 concentrations relative to the general population. TDCPP, a known carcinogen that was removed from use in children's pajamas in the 1970's although still used today in other consumer products, was detected on 100% of airplanes in concentrations similar to those found in residential and commercial locations. This study adds to the limited body of knowledge regarding exposure to flame retardants on commercial aircraft, an environment long hypothesized to be at risk for maximum exposures due to strict flame retardant standards for aircraft materials. Our findings indicate that flame retardants are widely used in many airplane components and all airplane types, as

  13. Simulator study of flight characteristics of a large twin-fuselage cargo transport airplane during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Deal, P. L.; Keyser, G. L., Jr.; Smith, P. M.

    1983-01-01

    A six degree-of-freedom, ground-based simulator study was conducted to evaluate the low speed flight characteristics of a twin fuselage cargo transport airplane and to compare these characteristics with those of a large, single fuselage (reference) transport configuration which was similar to the Lockheed C-5C airplane. The primary piloting task was the approach and landing. The results indicated that in order to achieve "acceptable' low speed handling qualities on the twin fuselage concept, considerable stability and control augmentation was required, and although the augmented airplane could be landed safely under adverse conditions, the roll performance of the aircraft had to be improved appreciably before the handling qualities were rated as being "satisfactory.' These ground-based simulation results indicated that a value of t sub phi = 30 (time required to bank 30 deg) less than 6 sec should result in "acceptable' roll response characteristics, and when t sub phi = 30 is less than 3.8 sec, "satisfactory' roll response should be attainable on such large and unusually configured aircraft as the subject twin fuselage cargo transport concept.

  14. Flight investigation of the effects of an outboard wing-leading-edge modification on stall/spin characteristics of a low-wing, single-engine, T-tail light airplane

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Dicarlo, Daniel J.; Patton, James M., Jr.

    1987-01-01

    Flight tests were performed to investigate the change in stall/spin characteristics due to the addition of an outboard wing-leading-edge modification to a four-place, low-wing, single-engine, T-tail, general aviation research airplane. Stalls and attempted spins were performed for various weights, center of gravity positions, power settings, flap deflections, and landing-gear positions. Both stall behavior and wind resistance were improved compared with the baseline airplane. The latter would readily spin for all combinations of power settings, flap deflections, and aileron inputs, but the modified airplane did not spin at idle power or with flaps extended. With maximum power and flaps retracted, the modified airplane did enter spins with abused loadings or for certain combinations of maneuver and control input. The modified airplane tended to spin at a higher angle of attack than the baseline airplane.

  15. Subjective response to combined noise and vibration during flight of a large twin-jet airplane

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.

    1976-01-01

    A NASA twin-jet airplane was used to obtain controlled noise and vibration environments during flight while obtaining subjective responses from 13 passenger-subjects (6 females and 7 males). Subjective ratings of overall comfort, comfort when considering only vibration, and comfort when considering only noise were obtained during times of different vibration and noise environments. Passenger-subjects were able to distinguish and rate noise better than vibration. In addition, there was a statistically significant difference in ratings of ride comfort due to both sex type and flight experience. Males rated flying discomfort much more severely than females when rating the overall ride and the ride when considering only the noise environment. Experienced passengers also rated the overall ride to be more uncomfortable than inexperienced passengers.

  16. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight engineer requirements. 91.529...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer... flight engineer certificate: (1) An airplane for which a type certificate was issued before January 2...

  17. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight engineer requirements. 91.529...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer... flight engineer certificate: (1) An airplane for which a type certificate was issued before January 2...

  18. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight engineer requirements. 91.529...-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer... flight engineer certificate: (1) An airplane for which a type certificate was issued before January 2...

  19. Initial Flight Tests of the NASA F-15B Propulsion Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nathan; Moes, Timothy R.; Vachon, M. Jake

    2002-01-01

    Flights of the F-15B/Propulsion Flight Test Fixture (PFTF) with a Cone Drag Experiment (CDE) attached have been accomplished at NASA Dryden Flight Research Center. Mounted underneath the fuselage of an F-15B airplane, the PFTF provides volume for experiment systems and attachment points for propulsion experiments. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. The force balance mounts between the PFTF and experiment and measures three forces and moments. The CDE has been attached to the force balance for envelope expansion flights. This experiment spatially and inertially simulates a large propulsion test article. This report briefly describes the F-15B airplane, the PFTF, and the force balance. A detailed description of the CDE is provided. Force-balance ground testing and stiffness modifications are described. Flight profiles and selected flight data from the envelope expansion flights are provided and discussed, including force-balance data, the internal PFTF thermal and vibration environment, a handling qualities assessment, and performance capabilities of the F-15B airplane with the PFTF installed.

  20. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This presentation proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  1. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This paper proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  2. Flight Calibration of four airspeed systems on a swept-wing airplane at Mach numbers up to 1.04 by the NACA radar-phototheodolite method

    NASA Technical Reports Server (NTRS)

    Thompson, Jim Rogers; Bray, Richard S; COOPER GEORGE E

    1950-01-01

    The calibrations of four airspeed systems installed in a North American F-86A airplane have been determined in flight at Mach numbers up to 1.04 by the NACA radar-phototheodolite method. The variation of the static-pressure error per unit indicated impact pressure is presented for three systems typical of those currently in use in flight research, a nose boom and two different wing-tip booms, and for the standard service system installed in the airplane. A limited amount of information on the effect of airplane normal-force coefficient on the static-pressure error is included. The results are compared with available theory and with results from wind-tunnel tests of the airspeed heads alone. Of the systems investigated, a nose-boom installation was found to be most suitable for research use at transonic and low supersonic speeds because it provided the greatest sensitivity of the indicated Mach number to a unit change in true Mach number at very high subsonic speeds, and because it was least sensitive to changes in airplane normal-force coefficient. The static-pressure error of the nose-boom system was small and constant above a Mach number of 1.03 after passage of the fuselage bow shock wave over the airspeed head.

  3. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  4. Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.

  5. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...

  6. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...

  7. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...

  8. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...

  9. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that type...

  10. Flight test of a propulsion controlled aircraft system on the NASA F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.

    1995-01-01

    Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual throttles-only control was much more difficult than the simulation, and a flight investigation was flown to acquire data to resolve this discrepancy. The PCA system designed and developed by MDA evolved as these discrepancies were found and resolved, requiring redesign of the PCA software and modification of the flight test plan. Small throttle step inputs were flown to provide data for analysis, simulation update, and control logic modification. The PCA flight tests quickly revealed less than desired performance, but the extensive flexibility built into the flight PCA software allowed rapid evaluation of alternate gains, filters, and control logic, and within 2 weeks, the PCA system was functioning well. The initial objective of achieving adequate control for up-and-away flying and approaches was satisfied, and the option to continue to actual landings was achieved. After the PCA landings were accomplished, other PCA features were added, and additional maneuvers beyond those originally planned were flown. The PCA system was used to recover from extreme upset conditions, descend, and make approaches to landing. A heading mode was added, and a single engine plus rudder PCA mode was also added and flown. The PCA flight envelope was expanded far beyond that originally designed for. Guest pilots from the USAF, USN, NASA, and the contractor also flew the PCA system and were favorably impressed.

  11. Determination of Longitudinal Stability and Control Characteristics from Free-Flight Model Tests with Results at Transonic Speeds for Three Airplane Configurations

    NASA Technical Reports Server (NTRS)

    Gillis, Clarence L; Mitchell, Jesse L

    1957-01-01

    A test technique and data analysis method has been developed for determining the longitudinal aerodynamic characteristics from free-flight tests of rocket-propelled models. The technique makes use of accelerometers and an angle-of-attack indicator to permit instantaneous measurements of lift, drag, and pitching moments. The data, obtained during transient oscillations resulting from control-surface disturbances, are analyzed by essentially nonlinear direct methods (such as cross plots of the variation of lift coefficient with angle of attack) and by linear indirect methods by using the equations of motion for a transient oscillation. The analysis procedure has been set forth in some detail and the feasibility of the method has been demonstrated by data measured through the transonic speed range on several airplane configurations. It was shown that the flight conditions and dynamic similitude factors for the tests described were reasonably close to typical full-scale airplane conditions.

  12. Solar Flight on Mars and Venus

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; LaMarre, Christopher; Colozza, Anthony

    2002-01-01

    Solar powered aircraft are of interest for exploring both Mars and Venus. The thin atmosphere of Mars presents a difficult environment for flying. It is clear that a new approach is needed. By making a totally solar airplane, we can eliminate many of the heavy components, and make an airplane that can fly without fuel. Using high efficiency solar cells, we can succeed with an airplane design that can fly for up to 6 hours in near-equatorial regions of Mars (4 hours of level flight, plus two hours of slow descent), and potentially fly for many days in the polar regions. By designing an airplane for a single day flight. In particular, this change means that we no longer have to cope with the weight of the energy storage system that made previous solar powered airplanes for Mars impractical). The new airplane concept is designed to fly only under the optimal conditions: near equatorial flight, at the subsolar point, near noon. We baseline an 8 kg airplane, with 2 kg margin. Science instruments will be selected with the primary criterion of low mass. Solar-powered aircraft are also quite interesting for the exploration of Venus. Venus provides several advantages for flying a solar-powered aircraft. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The atmospheric pressure makes flight much easier than on planets such as Mars. The atmospheric pressure on Venus is presented. From an altitude of approximately 45 km (pressure = 2 bar), to approximately 60 km (pressure = 0.2 bar), terrestrial airplane experience can be easily applied to a Venus airplane design. At these flight altitudes, the temperature varies from 80 C at 45 km, decreasing to -35 C at 60 km. Also, the slow rotation of Venus allows an airplane to be designed for flight within continuous sunlight, eliminating the need for energy storage for nighttime flight. These factors make Venus a prime choice for a long-duration solar-powered aircraft

  13. Flight performance of the TCV B-737 airplane at Jorge Newberry Airport, Buenos Aires, Argentina using TRSB/MLS guidance

    NASA Technical Reports Server (NTRS)

    White, W. F.; Clark, L.

    1980-01-01

    The flight performance of the Terminal Configured Vehicle airplane is summarized. Demonstration automatic approaches and landings utilizing time reference scanning beam microwave landing system (TRSB/MLS) guidance are presented. The TRSB/MLS was shown to provide the terminal area guidance necessary for flying curved automatic approaches with final legs as short as 2 km.

  14. In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Sim, A. G.

    1984-01-01

    A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data.

  15. Assessment of JVX Proprotor Performance Data in Hover and Airplane-Mode Flight Conditions

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2016-01-01

    A 0.656-scale V-22 proprotor, the Joint Vertical Experimental (JVX) rotor, was tested at the NASA Ames Research Center in both hover and airplane-mode (high-speed axial flow) flight conditions, up to an advance ratio of 0.562 (231 knots). This paper examines the two principal data sets generated by those tests, and includes investigations of hub spinner tares, torque/thrust measurement interactions, tunnel blockage effects, and other phenomena suspected of causing erroneous measurements or predictions. Uncertainties in hover and high-speed data are characterized. The results are reported here to provide guidance for future wind tunnel tests, data processing, and data analysis.

  16. Flight Test Techniques Used to Evaluate Performance Benefits During Formation Flight

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Cobleigh, Brent R.; Vachon, M. Jake; SaintJohn, Clinton

    2002-01-01

    The Autonomous Formation Flight research project has been implemented at the NASA Dryden Flight Research Center to demonstrate the benefits of formation flight and develop advanced technologies to facilitate exploiting these benefits. Two F/A-18 aircraft have been modified to precisely control and monitor relative position, and to determine performance of the trailing airplane. Flight test maneuvers and analysis techniques have been developed to determine the performance advantages, including drag and fuel flow reductions and improvements in range factor. By flying the trailing airplane through a matrix of lateral, longitudinal, and vertical offset positions, a detailed map of the performance benefits has been obtained at two flight conditions. Significant performance benefits have been obtained during this flight test phase. Drag reductions of more than 20 percent and fuel flow reductions of more than 18 percent have been measured at flight conditions of Mach 0.56 and an altitude of 25,000 ft. The results show favorable agreement with published theory and generic predictions. An F/A-18 long-range cruise mission at Mach 0.8 and an altitude of 40,000 ft has been simulated in the optimum formation position and has demonstrated a 14-percent fuel reduction when compared with a controlled chase airplane of similar configuration.

  17. 75 FR 39863 - Airworthiness Directives; Airbus Model A310 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ..., -322, -324, and -325 airplanes, certificated in any category. Subject (d) Air Transport Association... first. (ii) For A310-304, -322, -324, and -325 short range airplanes: Within 700 flight cycles or 1,900 flight hours after the effective date of this AD, whichever occurs first. (iii) For A310-304, -322, -324...

  18. Exposure to flame retardant chemicals on commercial airplanes

    PubMed Central

    2013-01-01

    Background Flame retardant chemicals are used in materials on airplanes to slow the propagation of fire. These chemicals migrate from their source products and can be found in the dust of airplanes, creating the potential for exposure. Methods To characterize exposure to flame retardant chemicals in airplane dust, we collected dust samples from locations inside 19 commercial airplanes parked overnight at airport gates. In addition, hand-wipe samples were also collected from 9 flight attendants and 1 passenger who had just taken a cross-country (USA) flight. The samples were analyzed for a suite of flame retardant chemicals. To identify the possible sources for the brominated flame retardants, we used a portable XRF analyzer to quantify bromine concentrations in materials inside the airplanes. Results A wide range of flame retardant compounds were detected in 100% of the dust samples collected from airplanes, including BDEs 47, 99, 153, 183 and 209, tris(1,3-dichloro-isopropyl)phosphate (TDCPP), hexabromocyclododecane (HBCD) and bis-(2-ethylhexyl)-tetrabromo-phthalate (TBPH). Airplane dust contained elevated concentrations of BDE 209 (GM: 500 ug/g; range: 2,600 ug/g) relative to other indoor environments, such as residential and commercial buildings, and the hands of participants after a cross-country flight contained elevated BDE 209 concentrations relative to the general population. TDCPP, a known carcinogen that was removed from use in children’s pajamas in the 1970’s although still used today in other consumer products, was detected on 100% of airplanes in concentrations similar to those found in residential and commercial locations. Conclusion This study adds to the limited body of knowledge regarding exposure to flame retardants on commercial aircraft, an environment long hypothesized to be at risk for maximum exposures due to strict flame retardant standards for aircraft materials. Our findings indicate that flame retardants are widely used in many

  19. Longitudinal Aerodynamic Modeling of the Adaptive Compliant Trailing Edge Flaps on a GIII Airplane and Comparisons to Flight Data

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.; Bui, Trong T.; Garcia, Christian A.; Cumming, Stephen B.

    2016-01-01

    A pair of compliant trailing edge flaps was flown on a modified GIII airplane. Prior to flight test, multiple analysis tools of various levels of complexity were used to predict the aerodynamic effects of the flaps. Vortex lattice, full potential flow, and full Navier-Stokes aerodynamic analysis software programs were used for prediction, in addition to another program that used empirical data. After the flight-test series, lift and pitching moment coefficient increments due to the flaps were estimated from flight data and compared to the results of the predictive tools. The predicted lift increments matched flight data well for all predictive tools for small flap deflections. All tools over-predicted lift increments for large flap deflections. The potential flow and Navier-Stokes programs predicted pitching moment coefficient increments better than the other tools.

  20. Performance of light sources and radiation sensors under low gravity realized by parabolic airplane flights

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro

    A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.

  1. 14 CFR 125.375 - Fuel supply: Nonturbine and turbopropeller-powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-powered airplanes. 125.375 Section 125.375 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.375 Fuel supply: Nonturbine and turbopropeller-powered airplanes. (a...

  2. 14 CFR 125.375 - Fuel supply: Nonturbine and turbopropeller-powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-powered airplanes. 125.375 Section 125.375 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.375 Fuel supply: Nonturbine and turbopropeller-powered airplanes. (a...

  3. 14 CFR 125.375 - Fuel supply: Nonturbine and turbopropeller-powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-powered airplanes. 125.375 Section 125.375 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.375 Fuel supply: Nonturbine and turbopropeller-powered airplanes. (a...

  4. 14 CFR 125.375 - Fuel supply: Nonturbine and turbopropeller-powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-powered airplanes. 125.375 Section 125.375 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.375 Fuel supply: Nonturbine and turbopropeller-powered airplanes. (a...

  5. 14 CFR 125.375 - Fuel supply: Nonturbine and turbopropeller-powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-powered airplanes. 125.375 Section 125.375 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.375 Fuel supply: Nonturbine and turbopropeller-powered airplanes. (a...

  6. The Direct Measurement of Engine Power on an Airplane in Flight with a Hub Type Dynamometer

    NASA Technical Reports Server (NTRS)

    Gove, W D; Green, M W

    1927-01-01

    This report describes tests made to obtain direct measurements of engine power in flight. Tests were made with a Bendemann hub dynamometer installed on a modified DH-4 Airplane, Liberty 12 Engine, to determine the suitability of this apparatus. This dynamometer unit, which was designed specially for use with a liberty 12 engine, is a special propeller hub in which is incorporated a system of pistons and cylinders interposed between the propeller and the engine crankshaft. The torque and thrust forces are balanced by fluid pressures, which are recorded by instruments in the cockpit. These tests have shown the suitability of this type of hub dynamometer for measurement of power in flight and for the determination of the torque and power coefficients of the propeller. (author)

  7. Flight and analytical investigations of a structural mode excitation system on the YF-12A airplane

    NASA Technical Reports Server (NTRS)

    Goforth, E. A.; Murphy, R. C.; Beranek, J. A.; Davis, R. A.

    1987-01-01

    A structural excitation system, using an oscillating canard vane to generate force, was mounted on the forebody of the YF-12A airplane. The canard vane was used to excite the airframe structural modes during flight in the subsonic, transonic, and supersonic regimes. Structural modal responses generated by the canard vane forces were measured at the flight test conditions by airframe-mounted accelerometers. Correlations of analytical and experimental aeroelastic results were made. Doublet lattice, steady state double lattice with uniform lag, Mach box, and piston theory all produced acceptable analytical aerodynamic results within the restrictions that apply to each. In general, the aerodynamic theory methods, carefully applied, were found to predict the dynamic behavior of the YF-12A aircraft adequately.

  8. 78 FR 19085 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... Airworthiness Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... Airbus Model A318, A319, A320, and A321 series airplanes. This AD was prompted by reports of oil residue... (MCAI) states: During Airbus Final Assembly Line flight tests, AoA [angle of attack] data from two...

  9. Flight Measurements of the Longitudinal Stability and Control Characteristics of the Grumman F8F-1 Airplane, TED No. NACA 2379

    NASA Technical Reports Server (NTRS)

    Assadourian, Arthur; Reeder, John P.

    1948-01-01

    A series of flight tests have been made at the Langley Flight Research Division at the request of the Bureau of Aeronautics, Department of the Navy, to determine the flying qualities of the Grumman F8F-1 air- plane. This paper presents the test results necessary to determine the longitudinal stability and control characteristics end the stalling characteristics. These tests were made between February and June of 1947- The range of Mach numbers covered in this investigation was approximately 0.10 to 0.62, and no attempt was made to investigate compressibility effects at higher Mach numbers. The lateral and directional stability and control characteristics of the subject airplane have already been reported (reference 1). Also presented in this paper is a discussion of the normal accelerations induced by yawing velocity and sideslip which were considered ob,jectionable by the pilot for this airplane. A discussion of the undesirable accelerations has been included with a view towards formulating some flying-qualities requirements limiting them.

  10. A Mars airplane. [for Mars environment surveys

    NASA Technical Reports Server (NTRS)

    Clarke, V. C.; Kerem, A.; Lewis, R.

    1979-01-01

    An airplane specifically designed for Mars flight is described, emphasizing its conceivable role as an aerial surveyor for visual imaging, gamma-ray and IR reflectance spectroscopy, studies of atmospheric composition and dynamics, and gravity-field, magnetic-field, and electromagnetic sounding. Possible imaging systems and surveying tasks are considered, along with a plausible mission scenario for a fleet of 12 airplanes, which would be taken to Mars in squadrons of four by three Shuttle/IUS Twin Stage/spacecraft carriers. A basic configuration closely resembling that of a competition glider is examined, and four types of airplane are discussed: hydrazine-powered cruisers and landers and electrically powered cruisers and landers. Attention is given to navigation, guidance, and control avionics, vehicle weight, the use of composite materials for the wing, and flight testing on earth.

  11. Operation Of The X-29A Digital Flight-Control System

    NASA Technical Reports Server (NTRS)

    Chacon, Vince; Mcbride, David

    1990-01-01

    Report reviews program of testing and evaluation of digital flight-control system for X-29A airplane, with emphasis on operation during tests. Topics include design of system, special electronic testing equipment designed to aid in daily operations, and aspects of testing, including detection of faults.

  12. X-15: Extending the Frontiers of Flight

    NASA Technical Reports Server (NTRS)

    Jenkins, Dennis R.

    2007-01-01

    A history of the design and achievements of the high-speed, 1950s-era X-15 airplane is presented. The following chapters are included: A New Science; A Hypersonic Research Airplane; Conflict and Innovation; The Million-Horsepower Engine; High Range and Dry Lakes; Preparations; The Flight Program; and the Research Program. Selected biographies, flight logs and physical characteristics of the X-15 Airplane are included in the appendices.

  13. Airplane wing deformation and flight flutter detection method by using three-dimensional speckle image correlation technology.

    PubMed

    Wu, Jun; Yu, Zhijing; Wang, Tao; Zhuge, Jingchang; Ji, Yue; Xue, Bin

    2017-06-01

    Airplane wing deformation is an important element of aerodynamic characteristics, structure design, and fatigue analysis for aircraft manufacturing, as well as a main test content of certification regarding flutter for airplanes. This paper presents a novel real-time detection method for wing deformation and flight flutter detection by using three-dimensional speckle image correlation technology. Speckle patterns whose positions are determined through the vibration characteristic of the aircraft are coated on the wing; then the speckle patterns are imaged by CCD cameras which are mounted inside the aircraft cabin. In order to reduce the computation, a matching technique based on Geodetic Systems Incorporated coded points combined with the classical epipolar constraint is proposed, and a displacement vector map for the aircraft wing can be obtained through comparing the coordinates of speckle points before and after deformation. Finally, verification experiments containing static and dynamic tests by using an aircraft wing model demonstrate the accuracy and effectiveness of the proposed method.

  14. Engine installation effects of four civil transport airplanes : Wallops Flight Facility study

    DOT National Transportation Integrated Search

    2003-10-31

    This report examines the effects of airplane geometrical configuration on the acoustic directivity characteristics and on the propagation of airplane noise. This effect of airplane geometry is referred to in this report as engine installation effe...

  15. Flight flutter testing of multi-jet aircraft

    NASA Technical Reports Server (NTRS)

    Bartley, J.

    1975-01-01

    Extensive flight flutter tests were conducted by BAC on B-52 and KC-135 prototype airplanes. The need for and importance of these flight flutter programs to Boeing airplane design are discussed. Basic concepts of flight flutter testing of multi-jet aircraft and analysis of the test data will be presented. Exciter equipment and instrumentation employed in these tests will be discussed.

  16. Measurements of the Basic SR-71 Airplane Near-Field Signature

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Whitmore, Stephen A.; Ehernberger, L. J.

    1999-01-01

    Airplane design studies have developed configuration concepts that may produce lower sonic boom annoyance levels. Since lower noise designs differ significantly from other HSCT designs, it is necessary to accurately assess their potential before HSCT final configuration decisions are made. Flight tests to demonstrate lower noise design capability by modifying an existing airframe have been proposed for the Mach 3 SR-71 reconnaissance airplane. To support the modified SR-71 proposal, baseline in-flight measurements were made of the unmodified aircraft. These measurements of SR-71 near-field sonic boom signatures were obtained by an F-16XL probe airplane at flightpath separation distances ranging from approximately 740 to 40 ft. This paper discusses the methods used to gather and analyze the flight data, and makes comparisons of these flight data with CFD results from Douglas Aircraft Corporation and NASA Langley Research Center. The CFD solutions were obtained for the near-field flow about the SR-71, and then propagated to the flight test measurement location using the program MDBOOM.

  17. Flight Determination of the Longitudinal Stability in Accelerated Maneuvers at Transonic Speeds for the Douglas D-558-II Research Airplane Including the Effects of an Outboard Wing Fence

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Nugent, Jack

    1953-01-01

    The results of transonic flight measurements of the longitudinal stability characteristics of the Douglas D-558-II research airplane in the original configuration and with outboard fences mounted on the wings are presented. The levels of normal-force coefficient at which the stability decreases and pitch-up starts have been determined for both airplane configurations at Mach numbers up to about 0.94.

  18. Crash tests of four identical high-wing single-engine airplanes

    NASA Technical Reports Server (NTRS)

    Vaughan, V. L., Jr.; Hayduk, R. J.

    1980-01-01

    Four identical four place, high wing, single engine airplane specimens with nominal masses of 1043 kg were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. These tests were conducted with nominal velocities of 25 m/sec along the flight path angles, ground contact pitch angles, and roll angles. Three of the airplane specimens were crashed on a concrete surface; one was crashed on soil. Crash tests revealed that on a hard landing, the main landing gear absorbed about twice the energy for which the gear was designed but sprang back, tending to tip the airplane up to its nose. On concrete surfaces, the airplane impacted and remained in the impact attitude. On soil, the airplane flipped over on its back. The crash impact on the nose of the airplane, whether on soil or concrete, caused massive structural crushing of the forward fuselage. The liveable volume was maintained in both the hard landing and the nose down specimens but was not maintained in the roll impact and nose down on soil specimens.

  19. 77 FR 67263 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... flight cycles. US Airways stated that the engine inlet cowl inspection should follow Airbus Mandatory... months after the engine air intake cowl has accumulated 5,000 total flight cycles. (2) For any engine air... the same airplane has accumulated 5,000 flight cycles or less since the engine air intake cowl was...

  20. Wind Tunnel Test of Mach 5 Class Hypersonic Airplane

    NASA Astrophysics Data System (ADS)

    Nakatani, Hiroki; Taguchi, Hideyuki; Fujita, Kazuhisa; Shindo, Shigemi; Honami, Shinji

    JAXA is currently performing studies on a Hypersonic Turbojet Experimental Vehicle, which involve a hypersonic flight test of a Small Pre-cooled Turbojet Engine. The aerodynamic performance of this airplane was examined at the JAXA hypersonic, supersonic, and transonic wind tunnel facilities. The 6-degrees-of-freedom forces and pressure distribution around the model were measured and evaluated. This airplane satisfies the lift-to-drag ratio requirement for a flight test at Mach 5. In addition, the results indicate that this airplane has longitudinal and directional static stability if the moment reference point is x/l smaller than 0.35. A separation occurs at the external expanding nozzle. Therefore, a redesign is necessary to solve these problems.

  1. Aerodynamic Effects of a 24-Foot, Multisegmented Telescoping Nose Boom on an F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Smith, Mark S.; Frederick, Michael A.

    2007-01-01

    An experimental multisegmented telescoping nose boom has been installed on an F-15B airplane to be tested in a flight environment. The experimental nose boom is representative of one that could be used to tailor the sonic boom signature of an airplane such as a supersonic business jet. The nose boom consists of multiple sections and could be extended during flight to a length of 24 ft. The preliminary analyses indicated that the addition of the experimental nose boom could adversely affect vehicle flight characteristics and air data systems. Before the boom was added, a series of flights was flown to update the aerodynamic model and characterize the air data systems of the baseline airplane. The baseline results have been used in conjunction with estimates of the nose boom s influence to prepare for a series of research flights conducted with the nose boom installed. Data from these flights indicate that the presence of the experimental boom reduced the static pitch and yaw stability of the airplane. The boom also adversely affected the static-position error of the airplane but did not significantly affect angle-of-attack or angle-of-sideslip measurements. The research flight series has been successfully completed.

  2. Aerodynamic Effects of a 24-foot Multisegmented Telescoping Nose Boom on an F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Smith, Mark S.; Frederick, Michael A.

    2008-01-01

    An experimental multisegmented telescoping nose boom has been installed on an F-15B airplane to be tested in a flight environment. The experimental nose boom is representative of one that could be used to tailor the sonic boom signature of an airplane such as a supersonic business jet. The nose boom consists of multiple sections and could be extended during flight to a length of 24 ft. The preliminary analyses indicate that the addition of the experimental nose boom could adversely affect vehicle flight characteristics and air data systems. Before the boom was added, a series of flights was conducted to update the aerodynamic model and characterize the air data systems of the baseline airplane. The baseline results have been used in conjunction with estimates of the nose boom's influence to prepare for a series of research flights conducted with the nose boom installed. Data from these flights indicate that the presence of the experimental boom reduced the static pitch and yaw stability of the airplane. The boom also adversely affected the static-position error of the airplane but did not significantly affect angle-of-attack or angle-of-sideslip measurements. The research flight series has been successfully completed.

  3. Flight Investigation of the Stability and Control Characteristics of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane During Constant-Altitude Transitions, TED No. NACA DE 368

    NASA Technical Reports Server (NTRS)

    Lovell, Powell M., Jr.; Kibry, Robert H.; Smith, Charles C., Jr.

    1953-01-01

    An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane. This paper presents the results of flight tests to determine the stability and control characteristics of the model during constant-altitude slow transitions from hovering to normal unstalled forward flight. The tests indicated that the airplane can be flown through the transition range fairly easily although some difficulty will probably encountered in controlling the yawing motions at angles of attack between about 60 and 40. An increase in the size of the vertical tail will not materially improve the controllability of the yawing motions in this range of angle of attack but the use of a yaw damper will make the yawing motions easy to control throughout the entire transitional flight range. The tests also indicated that the airplane can probably be flown sideways satisfactorily at speeds up to approximately 33 knots (full scale) with the normal control system and up to approximately 37 knots (full scale) with both elevons and rudders rigged to move differentially for roll control. At sideways speeds above these values, the airplane will have a strong tendency to diverge uncontrollably in roll.

  4. 77 FR 58785 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ...-620, B4-605R, and B4-622R airplanes. This proposed AD was prompted by a report that the door frame... operate safely. This proposed AD would require reinforcing of the door frame shells of passenger doors 2... door frame shells, which could result in in-flight decompression of the airplane and consequent injury...

  5. Aerodynamic Characteristics and Flying Qualities of a Tailless Triangular-wing Airplane Configuration as Obtained from Flights of Rocket-propelled Models at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L; Stevens, Joseph E; Norris, Harry P

    1956-01-01

    A flight investigation of rocket-powered models of a tailless triangular-wing airplane configuration was made through the transonic and low supersonic speed range at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. An analysis of the aerodynamic coefficients, stability derivatives, and flying qualities based on the results obtained from the successful flight tests of three models is presented.

  6. Buffet characteristics of the F-8 supercritical wing airplane

    NASA Technical Reports Server (NTRS)

    Deangelis, V. M.; Monaghan, R. C.

    1977-01-01

    The buffet characteristics of the F-8 supercritical wing airplane were investigated. Wing structural response was used to determine the buffet characteristics of the wing and these characteristics are compared with wind tunnel model data and the wing flow characteristics at transonic speeds. The wingtip accelerometer was used to determine the buffet onset boundary and to measure the buffet intensity characteristics of the airplane. The effects of moderate trailing edge flap deflections on the buffet onset boundary are presented. The supercritical wing flow characteristics were determined from wind tunnel and flight static pressure measurements and from a dynamic pressure sensor mounted on the flight test airplane in the vicinity of the shock wave that formed on the upper surface of the wing at transonic speeds. The comparison of the airplane's structural response data to the supercritical flow characteristics includes the effects of a leading edge vortex generator.

  7. A preliminary investigation of the use of throttles for emergency flight control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Fullerton, C. Gordon; Gilyard, Glenn B.; Wolf, Thomas D.; Stewart, James F.

    1991-01-01

    A preliminary investigation was conducted regarding the use of throttles for emergency flight control of a multiengine aircraft. Several airplanes including a light twin-engine piston-powered airplane, jet transports, and a high performance fighter were studied during flight and piloted simulations. Simulation studies used the B-720, B-727, MD-11, and F-15 aircraft. Flight studies used the Lear 24, Piper PA-30, and F-15 airplanes. Based on simulator and flight results, all the airplanes exhibited some control capability with throttles. With piloted simulators, landings using manual throttles-only control were extremely difficult. An augmented control system was developed that converts conventional pilot stick inputs into appropriate throttle commands. With the augmented system, the B-720 and F-15 simulations were evaluated and could be landed successfully. Flight and simulation data were compared for the F-15 airplane.

  8. Flight Test Results for the F-16XL With a Digital Flight Control System

    NASA Technical Reports Server (NTRS)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  9. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  10. Flight investigation of the effect of tail configuration on stall, spin, and recovery characteristics of a low-wing general aviation research airplane

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Patton, James M., Jr.; Sliwa, Steven M.

    1987-01-01

    Flight tests were performed to investigate the stall, spin, and recovery characteristics of a low-wing, single-engine, light airplane with four interchangeable tail configurations. The four tail configurations were evaluated for effects of varying mass distribution, center-of-gravity position, and control inputs. The airplane tended to roll-off at the stall. Variations in tail configuration produced spins ranging from 40 deg to 60 deg angle of attack and turn rates of about 145 to 208 deg/sec. Some unrecoverable flat spins were encountered which required use of the airplane spin chute for recovery. For recoverable spins, antispin rudder followed by forward wheel with ailerons centered provided the quickest spin recovery. The moderate spin modes agreed very well with those predicted from spin-tunnel model tests, however, the flat spin was at a lower angle of attack and a slower rotation rate than indicated by the model tests.

  11. 78 FR 40060 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... identified in this AD, Boeing Commercial Airplanes, Attention: Data & Services Management, P.O. Box 3707, MC... Attention Service Bulletin 777-78-0064, Revision 1, dated November 30, 2006. That AD requires repetitive... flight operation, on airplanes on which the optional terminating action (Boeing Special Attention Service...

  12. 14 CFR 121.411 - Qualifications: Check airmen (airplane) and check airmen (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Qualifications: Check airmen (airplane) and... § 121.411 Qualifications: Check airmen (airplane) and check airmen (simulator). Link to an amendment... airman (airplane) is a person who is qualified, and permitted, to conduct flight checks or instruction in...

  13. Development of fire test methods for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1978-01-01

    Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.

  14. Flight performance of the TCV B-737 airplane at Montreal/Dorval International Airport, Montreal, Canada, using TRSB/MLS guidance

    NASA Technical Reports Server (NTRS)

    White, W. F.; Clark, L. V.

    1980-01-01

    The NASA terminal configured vehicle B-737 was flown in support of the world wide FAA demonstration of the time reference scanning beam microwave landing system. A summary of the flight performance of the TCV airplane during demonstration automatic approaches and landings while utilizing TRSB/MLS guidance is presented. The TRSB/MLS provided the terminal area guidance necessary for automatically flying curved, noise abatement type approaches and landings with short finals.

  15. Airplane headache: a further case report of a young man.

    PubMed

    Domitrz, Izabela

    2010-12-01

    Headache with normal examinations and imaging, occurring during an airplane flight has been rarely reported. We present a young patient with a new type of headache that appeared during flights: take-off and landing of a plane and was not associated with other conditions. This airplane headache is rather rare in population and the pathophysiology of this type is not clear. Secondary causes must be ruled out before the diagnosis of a primary headache is made.

  16. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes other than turbopropeller. 125.377 Section 125.377 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than...

  17. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes other than turbopropeller. 125.377 Section 125.377 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than...

  18. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes other than turbopropeller. 125.377 Section 125.377 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than...

  19. 78 FR 37448 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... significant structural damage to the airplane. This AD requires insertions into the pilot's operating handbook... December 21, 2012 (77 FR 75590). That NPRM proposed to require insertions into the pilot's operating... himself. Maximum braking had occurred. Afterward, the airplane was flown for a short flight with the pilot...

  20. Calculated Drag of an Aerial Refueling Assembly Through Airplane Performance Analysis

    NASA Technical Reports Server (NTRS)

    Vachon, Michael Jacob; Ray, Ronald J.

    2004-01-01

    The aerodynamic drag of an aerial refueling assembly was calculated during the Automated Aerial Refueling project at the NASA Dryden Flight Research Center. An F/A-18A airplane was specially instrumented to obtain accurate fuel flow measurements and to determine engine thrust. A standard Navy air refueling store with a retractable refueling hose and paradrogue was mounted to the centerline pylon of the F/A-18A airplane. As the paradrogue assembly was deployed and stowed, changes in the calculated thrust of the airplane occurred and were equated to changes in vehicle drag. These drag changes were attributable to the drag of the paradrogue assembly. The drag of the paradrogue assembly was determined to range from 200 to 450 lbf at airspeeds from 170 to 250 KIAS. Analysis of the drag data resulted in a single drag coefficient of 0.0056 for the paradrogue assembly that adequately matched the calculated drag for all flight conditions. The drag relief provided to the tanker airplane when a receiver airplane engaged the paradrogue is also documented from 35 to 270 lbf at the various flight conditions tested. The results support the development of accurate aerodynamic models to be used in refueling simulations and control laws for fully autonomous refueling.

  1. Flight Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane with the Lower Vertical Tail Removed, TED No.DE 368

    NASA Technical Reports Server (NTRS)

    Lovell, Powell M., Jr.

    1954-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics in hovering and transition flight of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane with the lower vertical tail removed. The purpose of the tests was to obtain a general indication of the behavior of a vertically rising airplane of the same general type as the XFY-1 but without a lower vertical tail in order to simplify power-off belly landings in an emergency. The model was flown satisfactorily in hovering flight and in the transition from hovering to normal unstalled forward flight (angle of attack approximately 30deg). From an angle of attack of about 30 down to the lowest angle of attack covered in the flight tests (approximately 15deg) the model became progressively more difficult to control. These control difficulties were attributed partly to a lightly damped Dutch roll oscillation and partly to the fact that the control deflections required for hovering and transition flight were too great for smooth flight at high speeds. In the low-angle-of-attack range not covered in the flight tests, force tests have indicated very low static directional stability which would probably result in poor flight characteristics. It appears, therefore, that the attainment of satisfactory directional stability, at angles of attack less than 10deg, rather than in the hovering and transition ranges of flight is the critical factor in the design of the vertical tail for such a configuration.

  2. Real-time in-flight thrust calculation on a digital electronic engine control-equipped F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1984-01-01

    Computer algorithms which calculate in-flight engine and aircraft performance real-time are discussed. The first step was completed with the implementation of a real-time thrust calculation program on a digital electronic engine control (DEEC) equiped F100 engine in an F-15 aircraft. The in-flight thrust modifications that allow calculations to be performed in real-time, to compare results to predictions, are presented.

  3. A flight management algorithm and guidance for fuel-conservative descents in a time-based metered air traffic environment: Development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1984-01-01

    A simple airborne flight management descent algorithm designed to define a flight profile subject to the constraints of using idle thrust, a clean airplane configuration (landing gear up, flaps zero, and speed brakes retracted), and fixed-time end conditions was developed and flight tested in the NASA TSRV B-737 research airplane. The research test flights, conducted in the Denver ARTCC automated time-based metering LFM/PD ATC environment, demonstrated that time guidance and control in the cockpit was acceptable to the pilots and ATC controllers and resulted in arrival of the airplane over the metering fix with standard deviations in airspeed error of 6.5 knots, in altitude error of 23.7 m (77.8 ft), and in arrival time accuracy of 12 sec. These accuracies indicated a good representation of airplane performance and wind modeling. Fuel savings will be obtained on a fleet-wide basis through a reduction of the time error dispersions at the metering fix and on a single-airplane basis by presenting the pilot with guidance for a fuel-efficient descent.

  4. Flight Measurements to Determine Effect of a Spring-Loaded Tab on Longitudinal Stability of an Airplane

    NASA Technical Reports Server (NTRS)

    Hunter, Paul A.; Reeder, John P.

    1946-01-01

    In conjunction with a program of research on the general problem of stability of airplanes in the climbing condition, tests have been made of a spring-loaded tb which. is referred to as a ?springy tab,? installed on the elevator of a low-wing scout bomber. The tab was arranged to deflect upward with decrease in speed which caused an increase in the pull force required to trim at low speeds and thereby increased the stick-free static longitudinal stability of the airplane. It was found that the springy tab would increase the stick-free stability in all flight conditions, would reduce the danger of inadvertent stalling because of the definite pull force required to stall the airplane with power on, would reduce the effect of center-of-gravity position on stick-free static stability, and would have little effect on the elevator stick forces in accelerated f11ght. Another advantage of the springy tab is that it might be used to provide almost any desired variation of elevator stick force with speed by adjusting the tab hinge-moment characteristics and the variation of spring moment with tab deflection. Unlike the bungee and the bobweight, the springy tab would provide stick-free static stability without requiring a pull force to hold the stick back while taxying. A device similar to the springy tab may be used on the rudder or ailerons to eliminate undesirable trim-force variations with speed.

  5. Simulation studies of STOL airplane operations in metropolitan downtown and airport air traffic control environments

    NASA Technical Reports Server (NTRS)

    Sawyer, R. H.; Mclaughlin, M. D.

    1974-01-01

    The operating problems and equipment requirements for STOL airplanes in terminal area operations in simulated air traffic control (ATC) environments were studied. These studies consisted of Instrument Flight Rules (IFR) arrivals and departures in the New York area to and from a downtown STOL port, STOL runways at John F. Kennedy International Airport, or STOL runways at a hypothetical international airport. The studies were accomplished in real time by using a STOL airplane flight simulator. An experimental powered lift STOL airplane and two in-service airplanes having high aerodynamic lift (i.e., STOL) capability were used in the simulations.

  6. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel supply: Turbine-engine-powered... or take off a turbine-engine powered airplane (other than a turbopropeller-powered airplane) unless...

  7. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Turbine-engine-powered... or take off a turbine-engine powered airplane (other than a turbopropeller-powered airplane) unless...

  8. Aerodynamic characteristics of airplanes at high angles of attack

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Grafton, S. B.

    1977-01-01

    An introduction to, and a broad overiew of, the aerodynamic characteristics of airplanes at high angles of attack are provided. Items include: (1) some important fundamental phenomena which determine the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area. Although stalling and spinning are flight dynamic problems of importance to all aircraft, including general aviation aircraft, commercial transports, and military airplanes, emphasis is placed on military configurations and the principle aerodynamic factors which influence the stability and control of such vehicles at high angles of attack.

  9. Wind-tunnel investigation of the flight characteristics of a canard general-aviation airplane configuration

    NASA Technical Reports Server (NTRS)

    Satran, D. R.

    1986-01-01

    A 0.36-scale model of a canard general-aviation airplane with a single pusher propeller and winglets was tested in the Langley 30- by 60-Foot Wind Tunnel to determine the static and dynamic stability and control and free-flight behavior of the configuration. Model variables made testing of the model possible with the canard in high and low positions, with increased winglet area, with outboard wing leading-edge droop, with fuselage-mounted vertical fin and rudder, with enlarged rudders, with dual deflecting rudders, and with ailerons mounted closer to the wing tips. The basic model exhibited generally good longitudinal and lateral stability and control characteristics. The removal of an outboard leading-edge droop degraded roll damping and produced lightly damped roll (wing rock) oscillations. In general, the model exhibited very stable dihedral effect but weak directional stability. Rudder and aileron control power were sufficiently adequate for control of most flight conditions, but appeared to be relatively weak for maneuvering compared with those of more conventionally configured models.

  10. Flight Test of a Propulsion-Based Emergency Control System on the MD-11 Airplane with Emphasis on the Lateral Axis

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Burcham, Frank W., Jr.; Maine, Trindel A.; Feather, John; Goldthorpe, Steven; Kahler, Jeffrey A.

    1996-01-01

    A large, civilian, multi-engine transport MD-11 airplane control system was recently modified to perform as an emergency backup controller using engine thrust only. The emergency backup system, referred to as the propulsion-controlled aircraft (PCA) system, would be used if a major primary flight control system fails. To allow for longitudinal and lateral-directional control, the PCA system requires at least two engines and is implemented through software modifications. A flight-test program was conducted to evaluate the PCA system high-altitude flying characteristics and to demonstrate its capacity to perform safe landings. The cruise flight conditions, several low approaches and one landing without any aerodynamic flight control surface movement, were demonstrated. This paper presents results that show satisfactory performance of the PCA system in the longitudinal axis. Test results indicate that the lateral-directional axis of the system performed well at high attitude but was sluggish and prone to thermal upsets during landing approaches. Flight-test experiences and test techniques are also discussed with emphasis on the lateral-directional axis because of the difficulties encountered in flight test.

  11. Summary of the effects of engine throttle response on airplane formation-flying qualities

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.

    1992-01-01

    A flight evaluation as conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented.

  12. Lightning attachment patterns and flight conditions for storm hazards, 1980

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Keyser, G. L., Jr.; Deal, P. L.

    1982-01-01

    As part of the NASA Langley Research Center Storm Hazards Program, 69 thunderstorm pentrations were made in 1980 with an F-106B airplane in order to record direct strike lightning data and the associated flight conditions. Ground based weather radar measurements in conjunction with these penetrations were made by NOAA National Severe Storms Laboratory in Oklahoma and by NASA Wallops Flight Center in Virginia. In 1980, the airplane received 10 direct lightning strikes; in addition, lightning transient data were recorded from 6 nearby flashes. Following each flight, the airplane was thoroughly inspected for evidence of lightning attachment, and the individual lightning attachment points were plotted on isometric projections of the airplane to identify swept flash patterns. This report presents pilot descriptions of the direct strikes to the airplane, shows the strike attachment patterns that were found, and discusses the implications of the patterns with respect to aircraft protection design. The flight conditions are also included. Finally, the lightning strike scenarios for three U.S. Air Force F-106A airplanes which were struck during routine operations are given in the appendix to this paper.

  13. Pilot Transition Courses for Complex Single-Engine and Light Twin-Engine Airplanes.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This publication is intended for use by certificated airplane pilots and provides transitional knowledge and skills for more complex single-engine or light twin-engine airplanes. The training should be conducted by a competent flight instructor certified in the class of airplane and familiar with the make and model. A syllabus outline of ground…

  14. Electromagnetic Interference to Flight Navigation and Communication Systems: New Strategies in the Age of Wireless

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.

    2005-01-01

    Electromagnetic interference (EMI) promises to be an ever-evolving concern for flight electronic systems. This paper introduces EMI and identifies its impact upon civil aviation radio systems. New wireless services, like mobile phones, text messaging, email, web browsing, radio frequency identification (RFID), and mobile audio/video services are now being introduced into passenger airplanes. FCC and FAA rules governing the use of mobile phones and other portable electronic devices (PEDs) on board airplanes are presented along with a perspective of how these rules are now being rewritten to better facilitate in-flight wireless services. This paper provides a comprehensive overview of NASA cooperative research with the FAA, RTCA, airlines and universities to obtain laboratory radiated emission data for numerous PED types, aircraft radio frequency (RF) coupling measurements, estimated aircraft radio interference thresholds, and direct-effects EMI testing. These elements are combined together to provide high-confidence answers regarding the EMI potential of new wireless products being used on passenger airplanes. This paper presents a vision for harmonizing new wireless services with aeronautical radio services by detecting, assessing, controlling and mitigating the effects of EMI.

  15. Two Meter Flight Path - Time of Flight Positron Annihilation Induced Auger Electron Spectrometer

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Shastry, K.; Maddox, W.; Weiss, A. H.

    2008-03-01

    Details of the design and construction of a new time of flight positron annihilation induced Auger electron (TOF-PAES) spectrometer are presented. The new spectrometer will be equipped with a 2 meter long ``TOF'' tube that can be biased at a potential different from that of the sample in order to increase or decrease the kinetic energy of the electrons traveling through the tube. The time of flight will be determined from timing signals obtained from the detection of the annihilation gamma (signaling the start of the flight) and detection of the annihilation induced Auger electron at the end of the 2 meter flight path (signaling the end of the flight). The 2 meter long flight path is a factor of two longer than used in previous TOF-PAES systems. The longer flight path can be expected to result in a fractional energy width: delta E/ E that is .5ex1 -.1em/ -.15em.25ex2 as large as the current UTA lab based TOF-PAES spectrometer.

  16. The Effect of Mass Distribution on the Lateral Stability and Control Characteristics of an Airplane as Determined by Tests of a Model in the Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Seacord, Charles L; Campbell, John P.

    1943-01-01

    The effects of mass distribution on lateral stability and control characteristics of an airplane have been determined by flight tests of a model in the NACA free-flight tunnel. In the investigation, the rolling and yawing movements of inertia were increased from normal values to values up to five times normal. For each moment-of-inertia condition, combinations of dihedral and vertical-tail area representing a variety of airplane configurations were tested. The results of the flight tests of the model were correlated with calculated stability and control characteristics and, in general, good agreement was obtained. The tests showed the following effects of increased rolling and yawing moments of inertia: no appreciable change in spiral stability; reductions in oscillatory stability that were serious at high values of dihedral; a reduction in the sensitivity of the model to gust disturbances; and a reduction in rolling acceleration provided by the ailerons, which caused a marked increase in time to reach a given angle of bank. The general flight behavior of the model became worse with increasing moments of inertia but, with combinations of small effective dihedral and large vertical-tail area, satisfactory flight characteristics were obtained at all moment-of-inertia conditions.

  17. Flight Investigation on a Fighter-type Airplane of Factors which Affect the Loads and Load Distributions on the Vertical Tail Surfaces During Rudder Kicks and Fishtails

    NASA Technical Reports Server (NTRS)

    Boshar, John

    1947-01-01

    Results are presented of a flight investigation conducted on a fighter-type airplane to determine the factors which affect the loads and load distributions on the vertical tail surfaces in maneuvers. An analysis is made of the data obtained in steady flight, rudder kicks, and fishtail maneuvers. For the rudder kicks, the significant loads were the "deflection load" resulting from an abrupt control deflection and the "dynamic load" consisting of a load corresponding to the new static equilibrium condition for the rudder deflected plus a load due to a transient overshoot. The minimum time to reach the maximum control deflection attainable by the pilot in any flight condition was found to be a constant. In the fishtail maneuvers, it was found that the pilot tends to deflect the rudder in phase with the natural frequency of the airplane. The maximum loads measured in fishtails were of the same order of magnitude as those from a rudder kick in which the rudder is returned to zero at the time of maximum sideslip.

  18. Follow-On Studies for Design Definition of a Lift/Cruise Fan Technology V/STOL Airplane, Volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A three engine, three fan V/STOL airplane was designed for use as a Research Technology Airplane in proof-of-concept of a candidate configuration for use as a Navy multimission airplane. Use of mechanically interconnected variable pitch fans is made to accommodate power transfer for flight control in hover and to provide flight capability in the event of a single engine failure. The airplane is a modification of a T-39A transport. Design definition is provided for high risk propulsion components and a development test program is defined.

  19. Propulsion Flight-Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nate; Vachon, M. Jake; Richwine, Dave; Moes, Tim; Creech, Gray

    2003-01-01

    NASA Dryden Flight Research Center s new Propulsion Flight Test Fixture (PFTF), designed in house, is an airborne engine-testing facility that enables engineers to gather flight data on small experimental engines. Without the PFTF, it would be necessary to obtain such data from traditional wind tunnels, ground test stands, or laboratory test rigs. Traditionally, flight testing is reserved for the last phase of engine development. Generally, engines that embody new propulsion concepts are not put into flight environments until their designs are mature: in such cases, either vehicles are designed around the engines or else the engines are mounted in or on missiles. However, a captive carry capability of the PFTF makes it possible to test engines that feature air-breathing designs (for example, designs based on the rocket-based combined cycle) economically in subscale experiments. The discovery of unknowns made evident through flight tests provides valuable information to engine designers early in development, before key design decisions are made, thereby potentially affording large benefits in the long term. This is especially true in the transonic region of flight (from mach 0.9 to around 1.2), where it can be difficult to obtain data from wind tunnels and computational fluid dynamics. In January 2002, flight-envelope expansion to verify the design and capabilities of the PFTF was completed. The PFTF was flown on a specially equipped supersonic F-15B research testbed airplane, mounted on the airplane at a center-line attachment fixture, as shown in Figure 1. NASA s F-15B testbed has been used for several years as a flight-research platform. Equipped with extensive research air-data, video, and other instrumentation systems, the airplane carries externally mounted test articles. Traditionally, the majority of test articles flown have been mounted at the centerline tank-attachment fixture, which is a hard-point (essentially, a standardized weapon-mounting fixture

  20. Flight Investigation to Improve the Dynamic Longitudinal Stability and Control-Feel Characteristics of the P-63A-1 Airplane (AAF No. 42-68889) with Closely Balanced Experimental Elevators

    NASA Technical Reports Server (NTRS)

    Johnson, Harold I.

    1946-01-01

    Results of flight tests of a control-feel aid presented. This device consisted of a spring and dashpot connected in series between the control stick and airplane structure. The device was tested in combination with an experimental elevator and bobweight which had given unsatisfactory dynamic stability and control-feel characteristics in previous tests. The control-feel aid effected marked improvement in both the control-feel characteristics and the control-feel dynamic longitudinal stability of the airplane.

  1. 14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. (a) No person may dispatch or take off a nonturbine or turbo-propeller-powered airplane unless...

  2. 14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. (a) No person may dispatch or take off a nonturbine or turbo-propeller-powered airplane unless...

  3. 14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. (a) No person may dispatch or take off a nonturbine or turbo-propeller-powered airplane unless...

  4. Natural laminar flow experiments on modern airplane surfaces

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Obara, C. J.; Yip, L. P.

    1984-01-01

    Flight and wind-tunnel natural laminar flow experiments have been conducted on various lifting and nonlifting surfaces of several airplanes at unit Reynolds numbers between 0.63 x 10 to the 6th power/ft and 3.08 x 10 to the 6th power/ft, at Mach numbers from 0.1 to 0.7, and at lifting surface leading-edge sweep angles from 0 deg to 63 deg. The airplanes tested were selected to provide relatively stiff skin conditions, free from significant roughness and waviness, on smooth modern production-type airframes. The observed transition locations typically occurred downstream of the measured or calculated pressure peak locations for the test conditions involved. No discernible effects on transition due to surface waviness were observed on any of the surfaces tested. None of the measured heights of surface waviness exceeded the empirically predicted allowable surface waviness. Experimental results consistent with spanwise contamination criteria were observed. Large changes in flight-measured performance and stability and control resulted from loss of laminar flow by forced transition. Rain effects on the laminar boundary layer caused stick-fixed nose-down pitch-trim changes in two of the airplanes tested. No effect on transition was observed for flight through low-altitude liquid-phase clouds. These observations indicate the importance of fixed-transition tests as a standard flight testing procedure for modern smooth airframes.

  5. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  6. Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.

    1985-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.

  7. Longitudinal aerodynamic characteristics of light, twin-engine, propeller-driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Representative state-of-the-art analytical procedures and design data for predicting the longitudinal static and dynamic stability and control characteristics of light, propeller-driven airplanes are presented. Procedures for predicting drag characteristics are also included. The procedures are applied to a twin-engine, propeller-driven airplane in the clean configuration from zero lift to stall conditions. The calculated characteristics are compared with wind-tunnel and flight data. Included in the comparisons are level-flight trim characteristics, period and damping of the short-period oscillatory mode, and windup-turn characteristics. All calculations are documented.

  8. Preliminary test results of a flight management algorithm for fuel conservative descents in a time based metered traffic environment. [flight tests of an algorithm to minimize fuel consumption of aircraft based on flight time

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Cannon, D. G.

    1979-01-01

    A flight management algorithm designed to improve the accuracy of delivering the airplane fuel efficiently to a metering fix at a time designated by air traffic control is discussed. The algorithm provides a 3-D path with time control (4-D) for a test B 737 airplane to make an idle thrust, clean configured descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms and the results of the flight tests are discussed.

  9. A flight investigation of oscillating air forces: Equipment and technique

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1975-01-01

    The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.

  10. Detection of a poorly resolved airplane using SWIR polarization imaging

    NASA Astrophysics Data System (ADS)

    Dahl, Laura M.; Shaw, Joseph A.; Chenault, David B.

    2016-05-01

    Polarization can be used to detect manmade objects on the ground and in the air, as it provides additional information beyond intensity and color. Skylight can be strongly polarized, so the detection of airplanes in flight requires careful consideration of the skylight degree and angle of polarization (DoLP, AoP). In this study, we detect poorly resolved airplanes (>= 4 pixels on target) in flight during daytime partly cloudy and smoky conditions in Bozeman, Montana. We used a Polaris Sensor Technologies SWIR-MWIR rotating imaging polarimeter to measure the polarization signatures of airplanes and the surrounding skylight from 1.5 to 1.8 μm in the short-wave infrared (SWIR). An airplane flying in a clear region of partly cloudy sky was found to be 69% polarized at an elevation angle of 13° with respect to the horizon and the surrounding skylight was 4-8% polarized (maximum skylight DoLP was found to be 7-14% at an elevation angle of 50°). As the airplane increased in altitude, the DoLP for both airplane and surrounding sky pixels increased as the airplane neared the band of maximum sky polarization. We also observed that an airplane can be less polarized than its surrounding skylight when there is heavy smoke present. In such a case, the airplane was 30-38% polarized at an elevation angle of 17°, while the surrounding skylight was approximately 40% polarized (maximum skylight DoLP was 40-55% at an elevation angle of 34°). In both situations the airplane was most consistently observed in DoLP images rather than S0 or AoP images. In this paper, we describe the results in detail and discuss how this phenomenology could detect barely resolved aircrafts.

  11. Lightning swept-stroke attachment patterns and flight conditions for storm hazards 1981

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.

    1984-01-01

    As part of the NASA Langley Research Center Storm Hazards Program, 111 thunderstorm penetrations were made in 1981 with an F-106B airplane in order to record direct-strike lightning data and the associated flight conditions. Ground-based weather radar measurements in conjunction with these penetrations were made by NOAA National Severe Storms Laboratory in Oklahoma and by NASA Wallops Flight Facility in Virginia. In 1981, the airplane received 10 direct lightning strikes; in addition, lightning transient data were recorded from 22 nearby flashes. Following each flight, the airplane was thoroughly inspected for evidence of lightning attachment, and the individual lightning attachment points were plotted on isometric projections of the airplane to identify swept-flash patterns. This report shows the strike attachment patterns that were found, and tabulates the flight conditions at the time of each lightning event. Finally, this paper contains a table in which the data in this report are cross-referenced with the previously published electromagnetic waveform data recorded onboard the airplane.

  12. Determination of stability and control parameters of a light airplane from flight data using two estimation methods. [equation error and maximum likelihood methods

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1979-01-01

    Two identification methods, the equation error method and the output error method, are used to estimate stability and control parameter values from flight data for a low-wing, single-engine, general aviation airplane. The estimated parameters from both methods are in very good agreement primarily because of sufficient accuracy of measured data. The estimated static parameters also agree with the results from steady flights. The effect of power different input forms are demonstrated. Examination of all results available gives the best values of estimated parameters and specifies their accuracies.

  13. Review of Flight Tests of NACA C and D Cowlings on the XP-42 Airplane

    NASA Technical Reports Server (NTRS)

    Johnston, J Ford

    1943-01-01

    Results of flight tests of the performance and cooling characteristics of three NACA D cowlings and of a conventional NACA D cowling on the XP-42 airplane are summarized and compared. The D cowling is, in general, characterized by the use of an annular inlet and diffuser section for the engine-cooling air. The D cowlings tested were a long-nose high-inlet-velocity cowling, a short-nose high-inlet-velocity cowling, and a short-nose low inlet-velocity cowling. The use of wide-chord propeller cuffs or an axial-flow fan with the D cowlings increased the cooling pressure recoveries in the climb condition at the expense of some of the improvement in speed.

  14. Force Tests of a 1/5-Scale Model of the McDonnell XP-85 Airplane with Conventional Tail Assembly in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Paulson, John W.; Johnson, Joseph L.

    1947-01-01

    At the request of the Air Materiel Command, Army Air Forces an investigation of the low-speed, power-off stability and control characteristics of the McDonnell XP-85 airplane is being conducted in the Langley free-flight tunnel. The XP-85 airplane is a parasite fighter carried in a bomb bay of the B-36 airplane. As a part of the investigation a few force tests were made of a 1/5 scale model of the XP-85 with a conventional tail assembly installed in place of the original design five-unit tail assembly. The total area of the conventional assembly was approximately 80 percent of the area of the five-unit assembly. The results of this investigation showed that the conventional tail assembly gave about the same longitudinal stability characteristics as the original configuration and improved the directional and lateral stability.

  15. Simulation of Dynamics of a Flexible Miniature Airplane

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    2005-01-01

    A short report discusses selected aspects of the development of the University of Florida micro-aerial vehicle (UFMAV) basically, a miniature airplane that has a flexible wing and is representative of a new class of airplanes that would operate autonomously or under remote control and be used for surveillance and/or scientific observation. The flexibility of the wing is to be optimized such that passive deformation of the wing in the presence of aerodynamic disturbances would reduce the overall response of the airplane to disturbances, thereby rendering the airplane more stable as an observation platform. The aspect of the development emphasized in the report is that of computational simulation of dynamics of the UFMAV in flight, for the purpose of generating mathematical models for use in designing control systems for the airplane. The simulations are performed by use of data from a wind-tunnel test of the airplane in combination with commercial software, in which are codified a standard set of equations of motion of an airplane, and a set of mathematical routines to compute trim conditions and extract linear state space models.

  16. Reconstruction of the 1994 Pittsburgh Airplane Accident Using a Computer Simulation

    NASA Technical Reports Server (NTRS)

    Parks, Edwin K.; Bach, Ralph E., Jr.; Shin, Jae Ho

    1998-01-01

    On September 8, 1994, a Boeing 737-300 passenger airplane was on a downwind approach to the Pittsburgh International Airport at an altitude of 5000 feet above ground level (6000 feet MSL). While in a shallow left turn onto a downwind approach heading, the airplane crossed into the vortex trail of a Boeing 727 flying in the same approach pattern about 4 miles ahead. The B-737 airplane rolled and turned sharply to the left, exited the vortex wake and plunged into the ground. Weather was not a factor in the accident. The airplane was equipped with a 11+ channel digital Flight Data Recorder (FDR) and a multiple channel Cockpit Voice Recorder (CVR). Both recorders were recovered from the crash site and provided excellent data for the development of an accident scenario. Radar tracking of the two airplanes as well as the indicated air speed (IAS) perturbations clearly visible on the B-737 FDR recordings indicate that the upset was apparently initiated by the airplane's crossing into the wake of the B-727 flying ahead in the same traffic pattern. A 6 degree-of-freedom simulation program for the B-737 airplane using MATLAB and SIMULINK was constructed. The simulation was initialized at the stabilized flight conditions of the airplane about 13 seconds prior to its entry into the vortex trail of the B-727 airplane. By assuming a certain combination of control inputs, it was possible to produce a simulated motion that closely matched that recorded on the FDR.

  17. Experimental test of airplane boarding methods

    DOE PAGES

    Steffen, Jason H.; Hotchkiss, Jon

    2011-10-26

    We report the results of an experimental comparison of different airplane boarding methods. This test was conducted in a mock 757 fuselage, located on a Southern California soundstage, with 12 rows of six seats and a single aisle. Five methods were tested using 72 passengers of various ages. We found a significant reduction in the boarding times of optimized methods over traditional methods. These improved methods, if properly implemented, could result in a significant savings to airline companies. The process of boarding an airplane is of interest to a variety of groups. The public is interested both as a curiosity,more » as it is something that they may regularly experience, and as a consumer, as their experiences good or bad can affect their loyalties. Airline companies and their employees also have a stake in an efficient boarding procedure as time saved in the boarding process may result is monetary savings, in the quality of interactions with passengers, and in the application of human resources to the general process of preparing an airplane for departure. A recent study (Nyquist and McFadden, 2008) indicates that the average cost to an airline company for each minute of time spent at the terminal is roughly $30. Thus, each minute saved in the turn-around time of a flight has the potential to generate over $16,000,000 in annual savings (assuming an average of 1500 flights per day). While the boarding process may not be the primary source of delay in returning an airplane to the skies, reducing the boarding time may effectively eliminate passenger boarding as a contributor in any meaningful measure. Consequently, subsequent efforts to streamline the other necessary tasks, such as refueling and maintenance, would be rewarded with a material reduction in time at the gate for each flight.« less

  18. Presentation of flight control design and handling quality commonality by separate surface stability augmentation for the family of commuter airplanes

    NASA Technical Reports Server (NTRS)

    Hensley, Douglas; Creighton, Thomas; Haddad, Raphael; Hendrich, Louis; Morgan, Louise; Russell, Mark; Swift, Gerald

    1987-01-01

    The methodology and results for a flight control design and implementation for common handling qualities by Separate Surface Stability Augmentation (SSSA) for the family of commuter airplanes are contained. The open and closed loop dynamics and the design results of augmenting for common handling qualities are presented. The physical and technology requirements are presented for implementing the SSSA system. The conclusion of this report and recommendations for changes or improvement are discussed.

  19. 14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... initial flight training that are capable of being performed in an airplane simulator without a visual system; and (ii) A flight check in the simulator or the airplane to the level of proficiency of a pilot... training required by § 121.423 must be performed in a Level C or higher full flight simulator unless the...

  20. Flight test operations using an F-106B research airplane modified with a wing leading-edge vortex flap

    NASA Technical Reports Server (NTRS)

    Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.

    1992-01-01

    Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.

  1. Blended Buffet-Load-Alleviation System for Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.

    2005-01-01

    The capability of modern fighter airplanes to sustain flight at high angles of attack and/or moderate angles of sideslip often results in immersion of part of such an airplane in unsteady, separated, vortical flow emanating from its forebody or wings. The flows from these surfaces become turbulent and separated during flight under these conditions. These flows contain significant levels of energy over a frequency band coincident with that of low-order structural vibration modes of wings, fins, and control surfaces. The unsteady pressures applied to these lifting surfaces as a result of the turbulent flows are commonly denoted buffet loads, and the resulting vibrations of the affected structures are known as buffeting. Prolonged exposure to buffet loads has resulted in fatigue of structures on several airplanes. Damage to airplanes caused by buffeting has led to redesigns of airplane structures and increased support costs for the United States Air Force and Navy as well as the armed forces of other countries. Time spent inspecting, repairing, and replacing structures adversely affects availability of aircraft for missions. A blend of rudder-control and piezoelectric- actuator engineering concepts was selected as a basis for the design of a vertical-tail buffet-load-alleviation system for the F/A-18 airplane. In this system, the rudder actuator is used to control the response of the first tail vibrational mode (bending at a frequency near 15 Hz), while directional patch piezoelectric actuators are used to control the second tail vibrational mode (tip torsion at a frequency near 45 Hz). This blend of two types of actuator utilizes the most effective features of each. An analytical model of the aeroservoelastic behavior of the airplane equipped with this system was validated by good agreement with measured results from a full-scale ground test, flight-test measurement of buffet response, and an in-flight commanded rudder frequency sweep. The overall performance of the

  2. Comparison of flying qualities derived from in-flight and ground-based simulators for a jet-transport airplane for the approach and landing pilot tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.

    1989-01-01

    The primary objective was to provide information to the flight controls/flying qualities engineer that will assist him in determining the incremental flying qualities and/or pilot-performance differences that may be expected between results obtained via ground-based simulation (and, in particular, the six-degree-of-freedom Langley Visual/Motion Simulator (VMS)) and flight tests. Pilot opinion and performance parameters derived from a ground-based simulator and an in-flight simulator are compared for a jet-transport airplane having 32 different longitudinal dynamic response characteristics. The primary pilot tasks were the approach and landing tasks with emphasis on the landing-flare task. The results indicate that, in general, flying qualities results obtained from the ground-based simulator may be considered conservative-especially when the pilot task requires tight pilot control as during the landing flare. The one exception to this, according to the present study, was that the pilots were more tolerant of large time delays in the airplane response on the ground-based simulator. The results also indicated that the ground-based simulator (particularly the Langley VMS) is not adequate for assessing pilot/vehicle performance capabilities (i.e., the sink rate performance for the landing-flare task when the pilot has little depth/height perception from the outside scene presentation).

  3. Propulsion Flight Research at NASA Dryden From 1967 to 1997

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Ray, Ronald J.; Conners, Timothy R.; Walsh, Kevin R.

    1997-01-01

    From 1967 to 1997, pioneering propulsion flight research activities have been conceived and conducted at the NASA Dryden Flight Research Center. Many of these programs have been flown jointly with the United States Department of Defense, industry, or the Federal Aviation Administration. Propulsion research has been conducted on the XB-70, F-111 A, F-111E, YF-12, JetStar, B-720, MD-11, F-15, F- 104, Highly Maneuverable Aircraft Technology, F-14, F/A-18, SR-71, and the hypersonic X-15 airplanes. Research studies have included inlet dynamics and control, in-flight thrust computation, integrated propulsion controls, inlet and boattail drag, wind tunnel-to-flight comparisons, digital engine controls, advanced engine control optimization algorithms, acoustics, antimisting kerosene, in-flight lift and drag, throttle response criteria, and thrust-vectoring vanes. A computer-controlled thrust system has been developed to land the F-15 and MD-11 airplanes without using any of the normal flight controls. An F-15 airplane has flown tests of axisymmetric thrust-vectoring nozzles. A linear aerospike rocket experiment has been developed and tested on the SR-71 airplane. This paper discusses some of the more unique flight programs, the results, lessons learned, and their impact on current technology.

  4. High altitude gust acceleration environment as experienced by a supersonic airplane

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.; Love, B. J.

    1975-01-01

    High altitude turbulence experienced at supersonic speeds is described in terms of gust accelerations measured on the YF-12A airplane. The data were obtained during 90 flights at altitudes above 12.2 kilometers (40,000 feet). Subjective turbulence intensity ratings were obtained from air crew members. The air crew often rated given gust accelerations as being more intense during high altitude supersonic flight than during low altitude subsonic flight. The portion of flight distance in turbulence ranged from 6 percent to 8 percent at altitudes between 12.2 kilometers and 16.8 kilometers (40,000 feet and 55,000 feet) to less than 1 percent at altitudes above 18.3 kilometers (60,000 feet). The amount of turbulence varied with season, increasing by a factor of 3 or more from summer to winter. Given values of gust acceleration were less frequent, on the basis of distance traveled, for supersonic flight of the YF-12A airplane at altitudes above 12.2 kilometers (40,000 feet) than for subsonic flight of a jet passenger airplane at altitudes below 12.2 kilometers (40,000 feet). The median thickness of high altitude turbulence patches was less than 400 meters (1300 feet); the median length was less than 16 kilometers (10 miles). The distribution of the patch dimensions tended to be log normal.

  5. The Behavior of Conventional Airplanes in Situations Thought to Lead to Most Crashes

    NASA Technical Reports Server (NTRS)

    Weick, Fred E

    1931-01-01

    Simple flight tests were made on ten conventional airplanes for the purpose of determining their action in the following two situations, which are generally thought to precede and lead to a large proportion of airplane crashes.

  6. Two reports of flight-related headache.

    PubMed

    Nagatani, Kazuhiko

    2013-07-01

    Airplane headache is flight-related and appears during airplane landing and/or takeoff without accompanying symptoms. Intracranial and paranasal imaging studies reveal no abnormalities. The etiology is still uncertain, although sinus barotrauma has been proposed as a possible mechanism. 1) A 26-yr-old woman presented with recurring headache during each air travel since she was 22 yr old. Severe bursting pain suddenly manifested in the bilateral orbits and temples during airplane descent, with no accompanying additional symptoms. She had no unusual medical history. X-ray computed tomography (CT) scans showed no abnormalities except thickening of the nasal mucosa. Effective pain relief was obtained with over-the-counter nasal decongestant spray. 2) A 49-yr-old man presented with a 3-yr history of flight-related headache that appeared at airplane touchdown, when he had mental stress, or when he was suffering from a lack of sleep. Pain was of a severe jabbing quality, localized over the forehead with no additional accompanying symptoms. He had a past history of episodic tension-type headache. Intracranial and paranasal CT scan revealed no abnormalities. Headache ceased spontaneously within 40 min of the end of the flight and nonsteroidal anti-inflammatory drug premedication did not prevent the headache. Sinus barotrauma was thought to be a plausible explanation for the headache in Case 1. In Case 2, an anxiety disorder could be considered as an underlying etiology. The etiology of so-called airplane headache is probably protean and this should be taken into account when assessing cases of in-flight cephalalgia.

  7. 78 FR 31836 - Special Conditions: Embraer S.A., Model EMB-550 Airplane, Dive Speed Definition With Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... attitudes; or that the airplane is protected by the flight control laws from getting into non-symmetric...-symmetric attitudes, unless the airplane is protected by the flight control laws from getting into non... equivalent to that established by the existing airworthiness standards. DATES: Effective Date: June 27, 2013...

  8. Free-Flight-Tunnel Investigation of the Dynamic Stability and Control Characteristics of a Chance Vought F7U-3 Airplane in Towed Flight

    NASA Technical Reports Server (NTRS)

    Grana, David C.; Shanks, Robert E.

    1952-01-01

    As part of a program to determine the feasibility of using a fighter airplane as a parasite in combination with a Consolidated Vultee RB-36 for long-range reconnaissance missions (project FICON), an experimental investigation has been made in the Langley free-flight tunnel to determine the dynamic stability and control characteristics of a 1/17.5-scale model of a Chance Vought F7U-3 airplane in several tow configurations. The investigation consisted of flight tests in which the model was towed from a strut in the tunnel by a towline and by a direct coupling which provided complete angular freedom. The tests with the direct coupling also included a study of the effect of spring restraint in roll in order to simulate approximately the proposed full-scale arrangement in which the only freedom is that permitted by the flexibility of the launching and retrieving trapeze carried by the-bomber. For the tow configurations in which a towline was used (15 and 38 feet full scale), the model had a very unstable lateral oscillation which could not be controlled. The stability was also unsatisfactory for the tow configuration in Which the model was coupled directly to the strut with complete angular freedom. When spring restraint in roll was added, however, the stability was satisfactory. The use of the yaw damper which increased the damping in yaw to about six times the normal value of the model appeared to have no appreciable effect on the lateral oscillations in the towline configurations, but produced a slight improvement in the case of the direct coupling configurations. The longitudinal stability was satisfactory for those cases in which the lateral stability was good enough to permit study of longitudinal motions.

  9. Control of airplanes at low speeds

    NASA Technical Reports Server (NTRS)

    Wood, R Mckinnon

    1923-01-01

    Loss of control over the orientation of an airplane as the incidence approaches and enters the region of stalled flight is a prolific cause of serious accidents. This report discusses methods of landing at slow speeds approaching stall.

  10. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2007-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  11. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2010-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  12. Kinetographic determination of airplane flight characteristics

    NASA Technical Reports Server (NTRS)

    Raethjen, P; Knott, H

    1927-01-01

    The author's first experiments with a glider on flight characteristics demonstrated that an accurate flight-path measurement would enable determination of the polar diagram from a gliding flight. Since then he has endeavored to obtain accurate flight measurements by means of kinetograph (motion-picture camera). Different methods of accomplishing this are presented.

  13. The span as a fundamental factor in airplane design

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1928-01-01

    Previous theoretical investigations of steady curvilinear flight did not afford a suitable criterion of "maneuverability," which is very important for judging combat, sport and stunt-flying airplanes. The idea of rolling ability, i.e., of the speed of rotation of the airplane about its X axis in rectilinear flight at constant speed and for a constant, suddenly produced deflection of the ailerons, is introduced and tested under simplified assumptions for the air-force distribution over the span. This leads to the following conclusions: the effect of the moment of inertia about the X axis is negligibly small, since the speed of rotation very quickly reaches a uniform value.

  14. Measurements in Flight of the Longitudinal-Stability Characteristics of a Republic YF-84A Airplane (Army Serial No. 45-59488) at High Subsonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Turner, Howard L.; Cooper, George E.

    1948-01-01

    A brief investigation was made of the longitudinal-stability characteristics of a YF-84A airplane (Army Serial No. 45-79488). The airplane developed a pitching-up tendency at approximately 0.80 Mach number which necessitated large push forces and down-elevator deflections for further increases in speed. In steady turns at 35,000 feet with the center of gravity at 28.3 percent mean aerodynamic chord for normal accelerations up to the maximum test value, the control-force gradients were excessive at Mach numbers over 0.78. Airplane buffeting did not present a serious problem in accelerated or unaccelerated flight at 15,000 and 35,000 feet up to the maximum test Mach number of 0.84. It is believed that excessive control force would be the limiting factor in attaining speeds in excess of 0.84 Mach number, especially at altitudes below 35,000 feet.

  15. Flight Test of an Intelligent Flight-Control System

    NASA Technical Reports Server (NTRS)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  16. Flight Measurements of the Flying Qualities of a Lockheed P-80A Airplane (Army No. 44-85099): Lateral- and Directional-Stability and Control Characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, Seth B.; Cooper, George E.

    1947-01-01

    This report contains the flight-test results of the lateral and directional-stability and control phase (including tests with wing-tip tanks) of a general flying-qualities investigation of the Lockheed P-80A airplane (Army No. 44-85099). These tests were conducted at indicated airspeeds up to 494 miles per hour (0.691 Mach number) at low altitude and up to 378 miles per hour (0.816 Mach number) at high altitude. These tests showed that the flying qualities of the airplane were for the most part in accordance with the requirements of the Army Air Forces Stability and Control Specifications. The only major deficiency noted was the negative lateral stability with the wing-tip tanks installed.

  17. 78 FR 63847 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Airplane Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... design feature associated with the architecture and connectivity capabilities of the airplanes' computer... the comment for an association, business, labor union, etc.). DOT's complete Privacy Act Statement can... architecture for the Embraer Model EMB-550 series of airplanes is composed of several connected networks. This...

  18. Vertical flight path steering system for aircraft

    NASA Technical Reports Server (NTRS)

    Lambregts, Antonius A. (Inventor)

    1983-01-01

    Disclosed is a vertical flight path angle steering system for aircraft, utilizing a digital flight control computer which processes pilot control inputs and aircraft response parameters into suitable elevator commands and control information for display to the pilot on a cathode ray tube. The system yields desirable airplane control handling qualities and responses as well as improvements in pilot workload and safety during airplane operation in the terminal area and under windshear conditions.

  19. Lateral-directional aerodynamic characteristics of light, twin-engine, propeller driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Analytical procedures and design data for predicting the lateral-directional static and dynamic stability and control characteristics of light, twin engine, propeller driven airplanes for propeller-off and power-on conditions are reported. Although the consideration of power effects is limited to twin engine airplanes, the propeller-off considerations are applicable to single engine airplanes as well. The procedures are applied to a twin engine, propeller driven, semi-low-wing airplane in the clean configuration through the linear lift range. The calculated derivative characteristics are compared with wind tunnel and flight data. Included in the calculated characteristics are the spiral mode, roll mode, and Dutch roll mode over the speed range of the airplane.

  20. Simulator study of vortex encounters by a twin-engine, commercial, jet transport airplane

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Keyser, G. L., Jr.

    1982-01-01

    A simulator study of vortex encounters was conducted for a twin-engine, commercial, jet transport airplane encountering the vortex flow field of a heavy, four-engine, commercial, jet transport airplane in the final-approach configuration. The encounters were conducted with fixed controls and with a pilot using a state-of-the-art, manual-control system. Piloted encounters with the base-line vortex flow field out of ground effect (unattenuated) resulted in initial bank-angle excursions greater than 40 deg, coupled with initial sideslip-angle excursions greater than 10 deg. The severity of these initial upsets was significantly reduced when the vortex center was moved laterally or vertically away from the flight path of the encountering airplane. Smaller reductions occurred when the flow field was attenuated by the flight spoilers on the generating airplane. The largest reduction in the severity of the initial upsets, however, was from aging in ground effect. The severity of the initial upsets of the following airplane was relatively unaffected by the approach speed. Increasing the lift coefficient of the generating airplane resulted in an increase in the severity of the initial upsets.

  1. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms August 21, 1946 to August 22, 1946 at Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Tolefson, H. B.

    1946-01-01

    Tables I and II of this report summarize the gust and draft velocity data for thunderstorm flights 25 and 26 of August 21, 1946 and August 22, 1946, respectively. These dta were evaluated from records of NACA instruments installed in P-61C airplanes and are of the type presented in reference 1 for previous flights. Table III summarizes the readings of a milliammeter which was used in conjunction with other equipment to indicate ambient air temperature during thunderstorm surveys. These data were read from motion-picture records of the instrument and include all cases in which variations in the instrument indications were noted during the present flights.

  2. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes Within Thunderstorms August 14, 1946 to August 15, 1946 at Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Tolefson, H. B.

    1947-01-01

    Tables I and II of the present paper summarize the gust and draft velocity data for thunderstorm-flights 21 and 22 of August 14, 1946 and August 15, 1946, respectively. These data were evaluated from records of NACA airspeed-altitude and acceleration recorders installed in P-61C airplanes and are of the type presented for previous flights. Table III summarizes the readings of a milliammeter which was used in conjunction with other equipment to indicate ambient-air temperature during thunderstorm surveys. These data were read from photo-observer records and include all cases in which variations of the instrument indications were noted for the present flights.

  3. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms: September 5, 1946 to September 10, 1946 at Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Tolefson, H. B.

    1947-01-01

    Tables I and II of this report summarize the gust and draft velocity data for thunderstorm flights 31, 32, and 33 of September 5, 1946, September 6, 1946, and September 10, 1946, respectively. These data were evaluated from records of NACA instruments installed in P-61C airplanes and are of the type presented for previous flights. Table III summarizes the readings of a milliammeter which was used in conjunction with other equipment to indicate ambient air temperature during thunderstorm surveys. These data were read from motion-picture records of the instrument and include all cases in which variations in the instrument indications were noted for the present flights.

  4. 77 FR 27142 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... 18,235 total flight hours and 14,542 total flight cycles. Due to similarity in frame design, the... airplanes. This proposed AD was prompted by multiple reports of cracks of overwing frames. This proposed AD would require repetitive inspections for cracking of the overwing frames, and related investigative and...

  5. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms July 12, 1947 to July 18, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1947-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61c airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from July 12, to July 18, 1947 are presented.

  6. Flight Engineer Knowledge Test Guide

    DOT National Transportation Integrated Search

    1995-01-01

    At one time, the flight engineer functioned as an inflight maintenance person. Today, the flight engineer is a technical expert, who must be thoroughly familiar with the operation and function of various airplane : components. The principal function ...

  7. 14 CFR 125.269 - Flight attendants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight attendants. 125.269 Section 125.269....269 Flight attendants. (a) Each certificate holder shall provide at least the following flight... passengers—one flight attendant. (2) For airplanes having more than 50 but less than 101 passengers—two...

  8. 14 CFR 125.269 - Flight attendants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight attendants. 125.269 Section 125.269....269 Flight attendants. (a) Each certificate holder shall provide at least the following flight... passengers—one flight attendant. (2) For airplanes having more than 50 but less than 101 passengers—two...

  9. 14 CFR 125.269 - Flight attendants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight attendants. 125.269 Section 125.269....269 Flight attendants. (a) Each certificate holder shall provide at least the following flight... passengers—one flight attendant. (2) For airplanes having more than 50 but less than 101 passengers—two...

  10. 14 CFR 125.269 - Flight attendants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight attendants. 125.269 Section 125.269....269 Flight attendants. (a) Each certificate holder shall provide at least the following flight... passengers—one flight attendant. (2) For airplanes having more than 50 but less than 101 passengers—two...

  11. 14 CFR 125.269 - Flight attendants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight attendants. 125.269 Section 125.269....269 Flight attendants. (a) Each certificate holder shall provide at least the following flight... passengers—one flight attendant. (2) For airplanes having more than 50 but less than 101 passengers—two...

  12. Practical stability and controllability of airplanes

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1923-01-01

    The effect of the characteristics of an airplane on balance, stability, and controllability, based on free flight tests, is discussed particularly in respect to the longitudinal motion. It is shown that the amount of longitudinal stability can be varied by changing the position of the center of gravity or by varying the aspect ratio of the tail plane, and that the stability for any particular air speed can be varied by changing the camber of the tail plane. It is found that complete longitudinal stability may be obtained even when the tail plane is at all times a lifting surface. Empirical values are given for the characteristics of a new airplane for producing any desired amount of stability and control, or to correct the faults of an airplane already constructed. (author)

  13. Laser Altimeter for Flight Simulator

    NASA Technical Reports Server (NTRS)

    Webster, L. D.

    1986-01-01

    Height of flight-simulator probe above model of terrain measured by automatic laser triangulation system. Airplane simulated by probe that moves over model of terrain. Altitude of airplane scaled from height of probe above model. Height measured by triangulation of laser beam aimed at intersection of model surface with plumb line of probe.

  14. Analysis of Nonplanar Wing-tip-mounted Lifting Surfaces on Low-speed Airplanes

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.; Roskam, J.

    1983-01-01

    Nonplanar wing tip mounted lifting surfaces reduce lift induced drag substantially. Winglets, which are small, nearly vertical, winglike surfaces, are an example of these devices. To achieve reduction in lift induced drag, winglets produce significant side forces. Consequently, these surfaces can seriously affect airplane lateral directional aerodynamic characteristics. Therefore, the effects of nonplanar wing tip mounted surfaces on the lateral directional stability and control of low speed general aviation airplanes were studied. The study consists of a theoretical and an experimental, in flight investigation. The experimental investigation involves flight tests of winglets on an agricultural airplane. Results of these tests demonstrate the significant influence of winglets on airplane lateral directional aerodynamic characteristics. It is shown that good correlations exist between experimental data and theoretically predicted results. In addition, a lifting surface method was used to perform a parametric study of the effects of various winglet parameters on lateral directional stability derivatives of general aviation type wings.

  15. Precision controllability of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Matheny, N. W.

    1979-01-01

    A flying qualities evaluation conducted on a preproduction F-15 airplane permitted an assessment to be made of its precision controllability in the high subsonic and low transonic flight regime over the allowable angle of attack range. Precision controllability, or gunsight tracking, studies were conducted in windup turn maneuvers with the gunsight in the caged pipper mode and depressed 70 mils. This evaluation showed the F-15 airplane to experience severe buffet and mild-to-moderate wing rock at the higher angles of attack. It showed the F-15 airplane radial tracking precision to vary from approximately 6 to 20 mils over the load factor range tested. Tracking in the presence of wing rock essentially doubled the radial tracking error generated at the lower angles of attack. The stability augmentation system affected the tracking precision of the F-15 airplane more than it did that of previous aircraft studied.

  16. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms September 10, 1947 to September 15, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from September 10, 1947 to September 15, 1947, are presented.

  17. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms August 13, 1947 to August 15, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from August 13, 1947 to August 15, 1947 are presented.

  18. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms August 16, 1947 to August 20, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from August 16, 1947 to August 20, 1947 are presented.

  19. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms September 4, 1947 to September 5, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from September 4, 1947 to September 5, 1947 are presented.

  20. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms June 11, 1947 to July 11, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from June 11, 1947 to July 11, 1947 are presented.

  1. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms June 2, 1947 to June 7, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from June 2, 1947 to June 7, 1947, are presented.

  2. Evaluation of Gust and Draft Velocities from Flights of F-61C Airplanes within Thunderstorms August 7, 1947 to August 13, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air FIeld, Ohio, from August 7, 1947 to August 13, 1947 are presented.

  3. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms May 13, 1947 to May 29, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Tolefson, Harold B.

    1948-01-01

    The gust and draft velocities evaluated from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from May 13 to May 29, 1947 are presented.

  4. Iced Aircraft Flight Data for Flight Simulator Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  5. Childhood headache attributed to airplane travel: a case report.

    PubMed

    Rogers, Kirsty; Rafiq, Nadia; Prabhakar, Prab; Ahmed, Mas

    2015-05-01

    Headache attributed to airplane flights is a rare form of headache disorder. This case study describes an 11-year-old girl with recurrent, severe, frontal headaches occurring during airplane travel. The episodes were associated with dizziness and facial pallor but no additional symptoms and showed spontaneous resolution on landing. Blood tests and imaging revealed no abnormalities. The present case fulfils the criteria for airplane headache recently included in the revised edition of the International Classification of Headache Disorders (ICHD-III Beta). Only a few cases of airplane headache have been reported in children. To our knowledge, this is the fourth case. We review the current literature on this rare syndrome and discuss various proposed pathophysiological mechanisms. © The Author(s) 2014.

  6. Induced Moment Effects of Formation Flight Using Two F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Cobleigh, Brent R.

    2002-01-01

    Previous investigations into formation flight have shown the possibility for significant fuel savings through drag reduction. Using two F/A-18 aircraft, NASA Dryden Flight Research Center has investigated flying aircraft in autonomous formation. Positioning the trailing airplane for best drag reduction requires investigation of the wingtip vortex effects induced by the leading airplane. A full accounting of the vortex effect on the trailing airplane is desired to validate vortex-effect prediction methods and provide a database for the design of a formation flight autopilot. A recent flight phase has mapped the complete wingtip vortex effects at two flight conditions with the trailing airplane at varying distances behind the leading one. Force and moment data at Mach 0.56 and an altitude of 25,000 ft and Mach 0.86 and an altitude of 36,000 ft have been obtained with 20, 55, 110, and 190 ft of longitudinal distance between the aircraft. The moments induced by the vortex on the trailing airplane were well within the pilot's ability to control. This report discusses the data analysis methods and vortex-induced effects on moments and side force. An assessment of the impact of the nonlinear vortex effects on the design of a formation autopilot is offered.

  7. UAVSAR Flight-Planning System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.

  8. Oblique-wing research airplane motion simulation with decoupling control laws

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Mc Neill, Walter E.; Maine, Trindel A.

    1988-01-01

    A large piloted vertical motion simulator was used to assess the performance of a preliminary decoupling control law for an early version of the F-8 oblique wing research demonstrator airplane. Evaluations were performed for five discrete flight conditions, ranging from low-altitude subsonic Mach numbers to moderate-altitude supersonic Mach numbers. Asymmetric sideforce as a function of angle of attack was found to be the primary cause of both the lateral acceleration noted in pitch and the tendency to roll into left turns and out of right turns. The flight control system was shown to be effective in generally decoupling the airplane and reducing the lateral acceleration in pitch maneuvers.

  9. 77 FR 24643 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... airplanes. This proposed AD was prompted by a report of in-flight fracture of the right windshield (window 1..., followed by the fracture of the inner pane of the first officer's windshield (right window 1). This... (J5 terminal) at the left and right flight deck window 1 windshield, and corrective actions if...

  10. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  11. Generic Airplane Model Concept and Four Specific Models Developed for Use in Piloted Simulation Studies

    NASA Technical Reports Server (NTRS)

    Hoffler, Keith D.; Fears, Scott P.; Carzoo, Susan W.

    1997-01-01

    A generic airplane model concept was developed to allow configurations with various agility, performance, handling qualities, and pilot vehicle interface to be generated rapidly for piloted simulation studies. The simple concept allows stick shaping and various stick command types or modes to drive an airplane with both linear and nonlinear components. Output from the stick shaping goes to linear models or a series of linear models that can represent an entire flight envelope. The generic model also has provisions for control power limitations, a nonlinear feature. Therefore, departures from controlled flight are possible. Note that only loss of control is modeled, the generic airplane does not accurately model post departure phenomenon. The model concept is presented herein, along with four example airplanes. Agility was varied across the four example airplanes without altering specific excess energy or significantly altering handling qualities. A new feedback scheme to provide angle-of-attack cueing to the pilot, while using a pitch rate command system, was implemented and tested.

  12. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  13. Steady properly-banked turns of turbojet-propelled airplanes

    NASA Technical Reports Server (NTRS)

    Miele, Angelo

    1955-01-01

    The problem of a jet-propelled airplane held in a steady turn is treated both in the very general case and also in the particular case when the polar curve can be approximated by a parabola. Once the general solution has been obtained, some typical maneuvers are next studied such as, the turn of maximum bank, of maximum angular velocity, and of minimum radius of curvature. After a brief comparison is made between the turning characteristics of conventional airplanes and jet airplanes, and after the effect of compressibility upon the turn is examined, the effects of the salient aerodynamic and structural parameters upon the behavior of the plane in curvilinear flight are summarized in the conclusions.

  14. Stresses Produced in Airplane Wings by Gusts

    NASA Technical Reports Server (NTRS)

    Kussner, Hans Georg

    1932-01-01

    Accurate prediction of gust stress being out of the question because of the multiplicity of the free air movements, the exploration of gust stress is restricted to static method which must be based upon: 1) stress measurements in free flight; 2) check of design specifications of approved type airplanes. With these empirical data the stress must be compared which can be computed for a gust of known intensity and structure. This "maximum gust" then must be so defined as to cover the whole ambit of empiricism and thus serve as prediction for new airplane designs.

  15. A comparison of flight and simulation data for three automatic landing system control laws for the Augmentor wing jet STOL research airplane

    NASA Technical Reports Server (NTRS)

    Feinreich, B.; Gevaert, G.

    1980-01-01

    Automatic flare and decrab control laws for conventional takeoff and landing aircraft were adapted to the unique requirements of the powered lift short takeoff and landing airplane. Three longitudinal autoland control laws were developed. Direct lift and direct drag control were used in the longitudinal axis. A fast time simulation was used for the control law synthesis, with emphasis on stochastic performance prediction and evaluation. Good correlation with flight test results was obtained.

  16. 14 CFR 23.333 - Flight envelope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight envelope. 23.333 Section 23.333... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.333 Flight envelope. (a) General. Compliance with the strength requirements of this subpart must be shown at...

  17. 14 CFR 23.333 - Flight envelope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flight envelope. 23.333 Section 23.333... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.333 Flight envelope. (a) General. Compliance with the strength requirements of this subpart must be shown at...

  18. 14 CFR 121.391 - Flight attendants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight attendants. 121.391 Section 121.391..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.391 Flight attendants. (a... following flight attendants on board each passenger-carrying airplane when passengers are on board: (1) For...

  19. 14 CFR 23.333 - Flight envelope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flight envelope. 23.333 Section 23.333... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.333 Flight envelope. (a) General. Compliance with the strength requirements of this subpart must be shown at...

  20. 14 CFR 121.391 - Flight attendants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight attendants. 121.391 Section 121.391..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.391 Flight attendants. (a... following flight attendants on board each passenger-carrying airplane when passengers are on board: (1) For...

  1. 14 CFR 121.391 - Flight attendants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight attendants. 121.391 Section 121.391..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.391 Flight attendants. (a... following flight attendants on board each passenger-carrying airplane when passengers are on board: (1) For...

  2. 14 CFR 23.333 - Flight envelope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight envelope. 23.333 Section 23.333... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.333 Flight envelope. (a) General. Compliance with the strength requirements of this subpart must be shown at...

  3. 14 CFR 23.333 - Flight envelope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight envelope. 23.333 Section 23.333... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Flight Loads § 23.333 Flight envelope. (a) General. Compliance with the strength requirements of this subpart must be shown at...

  4. Dynamic Ground Effect for a Cranked Arrow Wing Airplane

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.

    1997-01-01

    Flight-determined ground effect characteristics for an F-16XL airplane are presented and correlated with wind tunnel predictions and similar flight results from other aircraft. Maneuvers were conducted at a variety of flightpath angles. Conventional ground effect flight test methods were used, with the exception that space positioning data were obtained using the differential global positioning system (DGPS). Accuracy of the DGPS was similar to that of optical tracking methods, but it was operationally more attractive. The dynamic flight determined lift and drag coefficient increments were measurably lower than steady-state wind-tunnel predictions. This relationship is consistent with the results of other aircraft for which similar data are available. Trends in the flight measured lift increments caused by ground effect as a function of flightpath angle were evident but weakly correlated. An engineering model of dynamic ground effect was developed based on linear aerodynamic theory and super-positioning of flows. This model was applied to the F-16XL data set and to previously published data for an F-15 airplane. In both cases, the model provided an engineering estimate of the ratio between the steady-state and dynamic data sets.

  5. 14 CFR 36.105 - Flight Manual Statement of Chapter 4 equivalency.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... equivalency. 36.105 Section 36.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.105 Flight Manual Statement of Chapter 4 equivalency. For each airplane...

  6. 14 CFR 36.105 - Flight Manual Statement of Chapter 4 equivalency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equivalency. 36.105 Section 36.105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.105 Flight Manual Statement of Chapter 4 equivalency. For each airplane...

  7. Preliminary design-lift/cruise fan research and technology airplane flight control system

    NASA Technical Reports Server (NTRS)

    Gotlieb, P.; Lewis, G. E.; Little, L. J.

    1976-01-01

    This report presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling qualities levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft interconnecting the three variable pitch fans and three power plants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy.

  8. The preliminary design of a lift-cruise fan airplane flight control system

    NASA Technical Reports Server (NTRS)

    Gotlieb, P.

    1977-01-01

    This paper presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling-quality levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a modified T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft that interconnects three variable-pitch fans and three powerplants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy.

  9. The X-31A quasi-tailless flight test results

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Stoliker, P. C.

    1996-01-01

    A quasi-tailless flight investigation was launched using the X-31A enhanced fighter maneuverability airplane. In-flight simulations were used to assess the effect of partial to total vertical tail removal. The rudder control surface was used to cancel the stabilizing effects of the vertical tail, and yaw thrust vector commands were used to restabilize and control the airplane. The quasi-tailless mode was flown supersonically with gentle maneuvering and subsonically in precision approaches and ground attack profiles. Pilot ratings and a full set of flight test measurements were recorded. This report describes the results obtained and emphasizes the lessons learned from the X-31A flight test experiment. Sensor-related issues and their importance to a quasi-tailless simulation and to ultimately controlling a directionally unstable vehicle are assessed. The X-31A quasi-tailless flight test experiment showed that tailless and reduced tail fighter aircraft are definitely feasible. When the capability is designed into the airplane from the beginning, the benefits have the potential to outweigh the added complexity required.

  10. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  11. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  12. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1) Flight...

  13. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1) Flight...

  14. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  15. 14 CFR 23.1523 - Minimum flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Minimum flight crew. 23.1523 Section 23... Information § 23.1523 Minimum flight crew. The minimum flight crew must be established so that it is... commuter category airplanes, each crewmember workload determination must consider the following: (1) Flight...

  16. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  17. 14 CFR 125.265 - Flight engineer requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight engineer requirements. 125.265... Requirements § 125.265 Flight engineer requirements. (a) No person may operate an airplane for which a flight engineer is required by the type certification requirements without a flight crewmember holding a current...

  18. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  19. Summary of results of NASA F-15 flight research program

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Trippensee, G. A.; Fisher, D. F.; Putnam, T. W.

    1986-01-01

    NASA conducted a multidisciplinary flight research program on the F-15 airplane. The program began in 1976 when two preproduction airplanes were obtained from the U.S. Air Force. Major projects involved stability and control, handling qualities, propulsion, aerodynamics, propulsion controls, and integrated propulsion-flight controls. Several government agencies and aerospace contractors were involved. In excess of 330 flights were flown, and over 85 papers and reports were published. This document describes the overall program, the projects, and the key results. The F-15 was demonstrated to be an excellent flight research vehicle, producing high-quality results.

  20. F/A-18 Performance Benefits Measured During the Autonomous Formation Flight Project

    NASA Technical Reports Server (NTRS)

    Vachon, M. Jake; Ray, Ronald J.; Walsh, Kevin R.; Ennix, Kimberly

    2003-01-01

    The Autonomous Formation Flight (AFF) project at the NASA Dryden Flight Research Center (Edwards, California) investigated performance benefits resulting from formation flight, such as reduced aerodynamic drag and fuel consumption. To obtain data on performance benefits, a trailing F/A-18 airplane flew within the wing tip-shed vortex of a leading F/A-18 airplane. The pilot of the trail airplane used advanced station-keeping technology to aid in positioning the trail airplane at precise locations behind the lead airplane. The specially instrumented trail airplane was able to obtain accurate fuel flow measurements and to calculate engine thrust and vehicle drag. A maneuver technique developed for this test provided a direct comparison of performance values while flying in and out of the vortex. Based on performance within the vortex as a function of changes in vertical, lateral, and longitudinal positioning, these tests explored design-drivers for autonomous stationkeeping control systems. Observations showed significant performance improvements over a large range of trail positions tested. Calculations revealed maximum drag reductions of over 20 percent, and demonstrated maximum reductions in fuel flow of just over 18 percent.

  1. 14 CFR 91.533 - Flight attendant requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight attendant requirements. 91.533... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.533 Flight attendant...

  2. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...

  3. 14 CFR 91.533 - Flight attendant requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight attendant requirements. 91.533... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.533 Flight attendant...

  4. 14 CFR 91.529 - Flight engineer requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight engineer requirements. 91.529... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.529 Flight engineer...

  5. Preliminary Investigation of the Flying Qualities of Airplanes

    NASA Technical Reports Server (NTRS)

    Soule, H A

    1940-01-01

    The National Advisory Committee for Aeronautics is undertaking an investigation of the flying qualities of airplanes. The work consists in the determination of the significant qualities susceptible of measurement, the development of the instruments required to make the measurements, and the accumulation of data on the flying qualities of existing airplanes, which data are to serve as a basis for quantitative specifications for the flying qualities of future designs. A tentative schedule of measurable flying qualities has been prepared and the instruments needed for their measurements have been assembled. A trial of the schedule and the instruments has been made using the Stinson SR-8e airplane. The results showed that, although the original schedule and instruments are basically satisfactory some further development is required to eliminate nonessential items and to expedite flight testing. The report describes and discusses the work done with this airplane.

  6. Precision controllability of the YF-17 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Mataeny, N. W.

    1980-01-01

    A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.

  7. Flight Investigation of the Low-Speed Characteristics of a 45 deg Swept-Wing Fighter-Type Airplane with Blowing Boundary-Layer Control Applied to the Leading- and Trailing-Edge Flaps

    NASA Technical Reports Server (NTRS)

    Quigley, Hervey C.; Anderson, Seth B.; Innis, Robert C.

    1960-01-01

    A flight investigation has been conducted to study how pilots use the high lift available with blowing-type boundary-layer control applied to the leading- and trailing-edge flaps of a 45 deg. swept-wing airplane. The study includes documentation of the low-speed handling qualities as well as the pilots' evaluations of the landing-approach characteristics. All the pilots who flew the airplane considered it more comfortable to fly at low speeds than any other F-100 configuration they had flown. The major improvements noted were the reduced stall speed, the improved longitudinal stability at high lift, and the reduction in low-speed buffet. The study has shown the minimum comfortable landing-approach speeds are between 120.5 and 126.5 knots compared to 134 for the airplane with a slatted leading edge and the same trailing-edge flap. The limiting factors in the pilots' choices of landing-approach speeds were the limits of ability to control flight-path angle, lack of visibility, trim change with thrust, low static directional stability, and sluggish longitudinal control. Several of these factors were found to be associated with the high angles of attack, between 13 deg. and 15 deg., required for the low approach speeds. The angle of attack for maximum lift coefficient was 28 deg.

  8. Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John

    1998-01-01

    With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.

  9. Aerodynamic and Acoustic Flight Test Results for the Stratospheric Observatory for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Cumming, Stephen B.; Cliatt, Larry James; Frederick, Michael A.; Smith, Mark S.

    2013-01-01

    As part of the Stratospheric Observatory for Infrared Astronomy (SOFIA) program, a 747SP airplane was modified to carry a 2.5 meter telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the airplanes operating envelope for astronomical observations, planned to be performed between the altitudes of 39,000 feet and 45,000 feet. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight test results in the areas of cavity acoustics, stability and control, and air data.

  10. Fear of Flying in Airplanes: Effects of Minimal Therapist Guided Stress Inoculation Training.

    ERIC Educational Resources Information Center

    Beckham, Jean C.; And Others

    Flight phobia is an area which has received little controlled investigation, even though between 10 and 20 percent of flight passengers report a fear of flying in airplanes. A study was conducted to examine the efectiveness of a minimal therapist guided form of stress inoculation training (SIT) for flight phobia. Flight phobic volunteers (N=28)…

  11. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 4: Airplane evaluation and analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The retrofit of JT8D-109 (refan) engines are evaluated on a 727-200 airplane in terms of airworthiness, performance, and noise. Design of certifiable hardware, manufacture, and ground testing of the essential nacelle components is included along with analysis of the certifiable airplane design to ensure airworthiness compliance and to predict the in-flight performance and noise characteristics of the modified airplane. The analyses confirm that the 727 refan airplane is certifiable. The refan airplane range would be 15% less that of the baseline airplane and block fuel would be increased by 1.5% to 3%. However, with this particular 727-200 model, with a brake release gross weight of 172,500 lb (78,245 kg), it is possible to operate the airplane (with minor structural modifications) at higher gross weights and increase the range up to 15% over the 727-200 (baseline) airplane. The refan airplane FAR Part 36 noise levels would be 6 to 8 EPNdB (effective perceived noise in decibels) below the baseline. Noise footprint studies showed that approach noise contour areas are small compared to takeoff areas. The 727 refan realizes a 68% to 83% reduction in annoyance-weighted area when compared to the 727-200 over a range of gross weights and operational procedures.

  12. Manual Manipulation of Engine Throttles for Emergency Flight Control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Fullerton, C. Gordon; Maine, Trindel A.

    2004-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only engines thrust. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. Flight test and simulation results on many airplanes have shown that pilot manipulation of throttles is usually adequate to maintain up-and-away flight, but is most often not capable of providing safe landings. There are techniques that will improve control and increase the chances of a survivable landing. This paper reviews the principles of throttles-only control (TOC), a history of accidents or incidents in which some or all flight controls were lost, manual TOC results for a wide range of airplanes from simulation and flight, and suggested techniques for flying with throttles only and making a survivable landing.

  13. Development of Laser Propulsion and Tracking System for Laser-Driven Micro-Airplane

    NASA Astrophysics Data System (ADS)

    Ishikawa, Hiroyasu; Kajiwara, Itsuro; Hoshino, Kentaro; Yabe, Takashi; Uchida, Shigeaki; Shimane, Yoshichika

    2004-03-01

    The purposes of this paper are to improve the control performance of the developed laser tracking system and to develop an integrated laser propulsion/tracking system for realizing a continuous flight and control of the micro-airplane. The laser propulsion is significantly effective to achieve the miniaturization and lightening of the micro-airplane. The laser-driven micro-airplane has been studied with a paper-craft airplane and YAG laser, resulting in a successful glide of the airplane. In the next stage of the laser-driven micro-airplane development, the laser tracking is expected as key technologies to achieve continuous propulsion. Furthermore, the laser propulsion system should be combined with the laser tracking system to supply continuous propulsion. Experiments are carried out to evaluate the performance of the developed laser tracking system and integrated laser propulsion/tracking system.

  14. Investigation of the Stability and Control Characteristics of a 1/20-Scale Model of the Consolidated Vultee XB-53 Airplane in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Bennett, Charles V.

    1947-01-01

    An investigation of the low-speed, power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane has been conducted in the Langley free-flight tunnel. In the investigation it was found that with flaps neutral satisfactory flight behavior at low speeds was obtainable with an increase in height of the vertical tail and with the inboard slats opened. In the flap-down slat-open condition the longitudinal stability was satisfactory, but it was impossible to obtain satisfactory lateral-flight characteristics even with the increase in height of the vertical tail because of the negative effective dihedral, low directional stability, and large-adverse yawing moments of the ailerons.

  15. 14 CFR 25.333 - Flight maneuvering envelope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flight maneuvering envelope. 25.333 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Flight Maneuver and Gust Conditions § 25.333 Flight maneuvering envelope. (a) General. The strength requirements must be met at each combination of...

  16. 14 CFR 25.333 - Flight maneuvering envelope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flight maneuvering envelope. 25.333 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Flight Maneuver and Gust Conditions § 25.333 Flight maneuvering envelope. (a) General. The strength requirements must be met at each combination of...

  17. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Takeoff flight path. 25.115 Section 25.115... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff flight path shall be considered to begin 35 feet above the takeoff surface at the end of the takeoff...

  18. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Takeoff flight path. 25.115 Section 25.115... STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff flight path shall be considered to begin 35 feet above the takeoff surface at the end of the takeoff...

  19. 76 FR 22298 - Airworthiness Directives; Cessna Aircraft Company (Cessna) Model 172 Airplanes Modified by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... AD requires installing a full authority digital engine control (FADEC) backup battery, replacing the... battery every 12 calendar months. This AD was prompted by an incident where an airplane experienced an in... battery, replacing the supplement pilot's operating handbook and FAA approved airplane flight manual, and...

  20. 14 CFR 121.641 - Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag operations. 121.641 Section 121.641 Aeronautics and Space FEDERAL AVIATION... Flight Release Rules § 121.641 Fuel supply: Nonturbine and turbo-propeller-powered airplanes: Flag...