Science.gov

Sample records for airplane electronic flight

  1. 76 FR 9265 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY: Federal... rulemaking by sending written comments, data, or views. The most helpful comments reference a specific... certificate for its new Gulfstream Model GVI passenger airplane. Gulfstream later applied for, and was...

  2. 77 FR 69573 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ...; Electronic Flight Control System: Lateral-Directional and Longitudinal Stability and Low Energy Awareness... airplane will have a novel or unusual design feature(s) associated with an electronic flight control system... features: (1) Lateral-Directional Static Stability: The electronic flight control system on the Model...

  3. 78 FR 11553 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Airplane; Electronic Flight Control System: Control Surface Awareness and Mode Annunciation AGENCY: Federal... control system. The applicable airworthiness regulations do not contain adequate or appropriate safety... a fly-by-wire electronic flight control system and no direct coupling from the flightdeck...

  4. Flight evaluation results for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Walsh, K. R.

    1983-01-01

    A digital electronic engine control (DEEC) system on an F100 engine in an F-15 airplane was evaluated in flight. Thirty flights were flown in a four-phase program from June 1981 to February 1983. Significant improvements in the operability and performance of the F100 engine were developed as a result of the flight evaluation: the augmentor envelope was increased by 15,000 ft, the airstart envelope was improved by 75 knots, and the need to periodically trim the engine was eliminated. The hydromechanical backup control performance was evaluated and was found to be satisfactory. Two system failures were encountered in the test program; both were detected and accommodated successfully. No transfers to the backup control system were required, and no automatic transfers occurred. As a result of the successful DEEC flight evaluation, the DEEC system has entered the full-scale development phase.

  5. 76 FR 31456 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ...; Electronic Flight Control System: Control Surface Position Awareness AGENCY: Federal Aviation Administration... design features include an electronic flight control system. The applicable airworthiness regulations do... an electronic flight control system and no direct coupling from the cockpit controller to the...

  6. 75 FR 77569 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ...; Electronic Flight Control System Mode Annunciation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... design features include an electronic flight control system. The applicable airworthiness regulations do... system. This system provides an electronic interface between the pilot's flight controls and ] the...

  7. 76 FR 14795 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ...; Electronic Flight Control System Mode Annunciation. AGENCY: Federal Aviation Administration (FAA), DOT... electronic flight control system. The applicable airworthiness regulations do not contain adequate or...). Novel or Unusual Design Features The GVI will have a fly-by-wire electronic flight control system....

  8. 78 FR 63845 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Isolation or Airplane Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...; Isolation or Airplane Electronic System Security Protection From Unauthorized Internal Access AGENCY... diverse set of functions, including: Flight-safety related control and navigation systems, Airline...-550 airplanes. Isolation or Airplane Electronic System Security Protection From Unauthorized...

  9. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  10. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....414 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... training for flight instructors (airplane), flight engineer instructors (airplane), and flight navigator... instruction. (4) For flight engineer instructors (airplane) and flight navigator instructors (airplane),...

  11. Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.

    1983-01-01

    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.

  12. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  13. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....414 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... flight training for flight instructors (airplane), flight engineer instructors (airplane), and flight... to develop during instruction. (4) For flight engineer instructors (airplane) and flight...

  14. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....414 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... flight training for flight instructors (airplane), flight engineer instructors (airplane), and flight... to develop during instruction. (4) For flight engineer instructors (airplane) and flight...

  15. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....414 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... flight training for flight instructors (airplane), flight engineer instructors (airplane), and flight... to develop during instruction. (4) For flight engineer instructors (airplane) and flight...

  16. Flight testing the digital electronic engine control in the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  17. Flight flutter testing the B-58 airplane

    NASA Technical Reports Server (NTRS)

    Mahaffey, P. T.

    1975-01-01

    The flight flutter tests on the B-58 airplane are described, and the philosophy of flight flutter testing is discussed. The instrumentation used in the airplane and in the telemetering receiving station on the ground is described along with the methods used for exciting the airplane and the flight test procedure. Also described is the type of data obtained and its reduction. An evaluation of the procedure and instrumentation is given with a discussion of desirable improvements for future testing.

  18. Minimum time and fuel flight profiles for an F-15 airplane with a Highly Integrated Digital Electronic Control (HIDEC) system

    NASA Technical Reports Server (NTRS)

    Haering, E. A., Jr.; Burcham, F. W., Jr.

    1984-01-01

    A simulation study was conducted to optimize minimum time and fuel consumption paths for an F-15 airplane powered by two F100 Engine Model Derivative (EMD) engines. The benefits of using variable stall margin (uptrim) to increase performance were also determined. This study supports the NASA Highly Integrated Digital Electronic Control (HIDEC) program. The basis for this comparison was minimum time and fuel used to reach Mach 2 at 13,716 m (45,000 ft) from the initial conditions of Mach 0.15 at 1524 m (5000 ft). Results were also compared to a pilot's estimated minimum time and fuel trajectory determined from the F-15 flight manual and previous experience. The minimum time trajectory took 15 percent less time than the pilot's estimate for the standard EMD engines, while the minimum fuel trajectory used 1 percent less fuel than the pilot's estimate for the minimum fuel trajectory. The F-15 airplane with EMD engines and uptrim, was 23 percent faster than the pilot's estimate. The minimum fuel used was 5 percent less than the estimate.

  19. 78 FR 11560 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ...; Electronic Flight Control System: Lateral-Directional and Longitudinal Stability and Low Energy Awareness... or unusual design feature(s) associated with an electronic flight control system with respect to... features: (1) Lateral-Directional Static Stability: The electronic flight control system on the Model...

  20. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft that was not type certificated with an Airplane or Rotorcraft Flight...

  1. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual...

  2. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual...

  3. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual...

  4. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual...

  5. Flight Instructor: Airplane. Written Test Guide.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The Flight Standards Service of the Federal Aviation Administration developed the guide to assist applicants who are preparing for the Flight Instructor Certificate with Airplane Rating. The guide contains comprehensive study outlines and a list of recommended study materials and tells how to obtain those publications. It also includes sample test…

  6. Mars Airplane Valles Marineris Terrain Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is a computer simulation showing a proposed configuration of the Langley Mars Airplane on a flyover of the Valles Marineris system on the planet Mars. The actual flight is scheduled for Dec. 17, 2003, timed to mark the 100th anniversary of the Wright brothers' historic powered flight at Kitty Hawk, N.C.

  7. Trend of airplane flight characteristics

    NASA Technical Reports Server (NTRS)

    Von Koppen, Joachim

    1933-01-01

    This report describes the development of airplane characteristics since the war and indicates the direction development should take in the immediate future. Some of the major topics include: the behavior of an airplane about its lateral, vertical, and longitudinal axes. Behavior at large angles of attack and landing characteristics are also included.

  8. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... furnished in an Airplane or Rotorcraft Flight Manual or in manual material, markings, and placards, by the... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. Link to...

  9. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type...

  10. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type...

  11. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 125.75 Section 125...,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Manual Requirements § 125.75 Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual...

  12. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... checking requirements: flight instructors (airplane), flight instructors (simulator). 121.414 Section 121... training and checking requirements: flight instructors (airplane), flight instructors (simulator). (a) No.... The observation check may be accomplished in part or in full in an airplane, in a flight simulator,...

  13. 77 FR 57039 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Embraer S.A., Model EMB-550 Airplane... conditions for the Embraer S.A. Model EMB-550 airplane. This airplane will have a novel or unusual design..., data, or views. The most helpful comments reference a specific portion of the special...

  14. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any...

  15. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any...

  16. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is...

  17. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is...

  18. Bird flight and airplane flight. [instruments to measure air currents and flight characteristics

    NASA Technical Reports Server (NTRS)

    Magnan, A.

    1980-01-01

    Research was based on a series of mechanical, electrical, and cinematographic instruments developed to measure various features of air current behavior as well as bird and airplane flight. Investigation of rising obstruction and thermal currents led to a theory of bird flight, especially of the gliding and soaring types. It was shown how a knowledge of bird flight can be applied to glider and ultimately motorized aircraft construction. The instruments and methods used in studying stress in airplanes and in comparing the lift to drag ratios of airplanes and birds are described.

  19. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  20. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  1. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  2. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  3. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  4. Comparison of flight results with digital simulation for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1983-01-01

    Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.

  5. 78 FR 11562 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: High Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ...These special conditions are issued for the Embraer S.A. Model EMB-550 airplane. This airplane will have a novel or unusual design feature, specifically an electronic flight control system which contains fly-by-wire control laws, including envelope protections, for the overspeed protection and roll limiting function. The applicable airworthiness regulations do not contain adequate or......

  6. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Pilots: airplanes. 121.503 Section 121.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... consists of at least two pilots and a flight engineer; and (3) The certificate holder uses, in...

  7. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Pilots: airplanes. 121.503 Section 121.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... consists of at least two pilots and a flight engineer; and (3) The certificate holder uses, in...

  8. Flight testing and simulation of an F-15 airplane using throttles for flight control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas

    1992-01-01

    Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.

  9. Development of a Mars Airplane Entry, Descent, and Flight Trajectory

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Tartabini, Paul V.

    2001-01-01

    An entry, descent, and flight (EDF) trajectory profile for a Mars airplane mission is defined as consisting of the following elements: ballistic entry of an aeroshell; supersonic deployment of a decelerator parachute; subsonic release of a heat shield; release, unfolding, and orientation of an airplane to flight attitude; and execution of a pull up maneuver to achieve trimmed, horizontal flight. Using the Program to Optimize Simulated Trajectories (POST) a trajectory optimization problem was formulated. Model data representative of a specific Mars airplane configuration, current models of the Mars surface topography and atmosphere, and current estimates of the interplanetary trajectory, were incorporated into the analysis. The goal is to develop an EDF trajectory to maximize the surface-relative altitude of the airplane at the end of a pull up maneuver, while subject to the mission design constraints. The trajectory performance was evaluated for three potential mission sites and was found to be site-sensitive. The trajectory performance, examined for sensitivity to a number of design and constraint variables, was found to be most sensitive to airplane mass, aerodynamic performance characteristics, and the pull up Mach constraint. Based on the results of this sensitivity study, an airplane-drag optimized trajectory was developed that showed a significant performance improvement.

  10. Modeling of airplane performance from flight-test results and validation with an F-104G airplane

    NASA Technical Reports Server (NTRS)

    Marshall, R. T.; Schweikhard, W. G.

    1973-01-01

    A technique of defining an accurate performance model of an airplane from limited flight-test data and predicted aerodynamic and propulsion system characteristics is developed. With the modeling technique, flight-test data from level accelerations are used to define a 1g performance model for the entire flight envelope of an F-104G airplane. The performance model is defined in terms of the thrust and drag of the airplane and can be varied with changes in ambient temperature or airplane weight. The model predicts the performance of the airplane within 5 percent of the measured flight-test data. The modeling technique could substantially reduce the time required for performance flight testing and produce a clear definition of the thrust and drag characteristics of an airplane.

  11. Measurements of Rudder Moments on an Airplane During Flight

    NASA Technical Reports Server (NTRS)

    Heidelberg, Ing V

    1921-01-01

    Tests indicated that: 1) C airplanes with two struts are extremely susceptible to aileron maneuvers, slight alterations of the aileron sufficing to compensate great unequalized moments; 2) great unequalized moments can be produced or neutralized by the unequalized alternation of the angle of attack below the outer and inner struts. Adjustment below the outer strut is the more effective of the two. 3) When a load of bombs is suspended beyond the center of the airplane, below the wings, the bombs need not be dropped simultaneously. 4) The propeller wash of a wide open engine has considerable influence on the position and operation of the elevator. The elevator is more susceptible in flight with the engine running than in gliding flight. 5) Adjustable tail planes are not advisable for D airplanes, nor for the C type, but they are, on the other hand, to be recommended for large size and giant airplanes in which the center of gravity changes during flight. 6) The aileron values obtained by wind tunnel measurements are about 10 percent too low, though otherwise applicable. For the elevator, the results of such measurements should be taken as mean values between flight with the engine running and gliding flight.

  12. Real-time in-flight thrust calculation on a digital electronic engine control-equipped F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1984-01-01

    Computer algorithms which calculate in-flight engine and aircraft performance real-time are discussed. The first step was completed with the implementation of a real-time thrust calculation program on a digital electronic engine control (DEEC) equiped F100 engine in an F-15 aircraft. The in-flight thrust modifications that allow calculations to be performed in real-time, to compare results to predictions, are presented.

  13. 77 FR 75071 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Electrical/Electronic Equipment Bay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... features, specifically distributed electrical and electronic equipment bays in pressurized areas of the... straightforward airplane flight manual procedure. In distributed electrical/electronic bay installations it is not...-550 airplane has distributed electrical and electronic equipment bays that were not envisioned at...

  14. Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.

    1990-01-01

    Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.

  15. Kinetographic determination of airplane flight characteristics

    NASA Technical Reports Server (NTRS)

    Raethjen, P; Knott, H

    1927-01-01

    The author's first experiments with a glider on flight characteristics demonstrated that an accurate flight-path measurement would enable determination of the polar diagram from a gliding flight. Since then he has endeavored to obtain accurate flight measurements by means of kinetograph (motion-picture camera). Different methods of accomplishing this are presented.

  16. Light airplane crash tests at three flight-path angles

    NASA Technical Reports Server (NTRS)

    Castle, C. B.; Alfaro-Bou, E.

    1978-01-01

    Three similar twin engine general aviation airplane specimens were crash tested at Langley impact dynamics research facility at 27 m/sec and at flight-path angles of -15 deg, -30 deg, and -45 deg. Other flight parameters were held constant. The test facility, instrumentation, test specimens, and test method are briefly described. Structural damage and accelerometer data for each of the three impact conditions are presented and discussed.

  17. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specification D.... D Appendix D to Part 135—Airplane Flight Recorder Specification Parameters Range Accuracy sensor.... 3 For airplanes that can demonstrate the capability of deriving either the control input on...

  18. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has...

  19. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has...

  20. 14 CFR Appendix D to Part 125 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specification D... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Appendix D to Part 125—Airplane Flight Recorder Specification Parameters Range Accuracy sensor input...

  1. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  2. Initial results from flight testing a large, remotely piloted airplane model. [flight tests of remotely controlled scale model of F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Holleman, E. C. (Compiler)

    1974-01-01

    The first four flights of a remotely piloted airplane model showed that a flight envelope can be expanded rapidly and that hazardous flight tests can be conducted safely with good results. The flights also showed that aerodynamic data can be obtained quickly and effectively over a wide range of flight conditions, clear and useful impressions of handling and controllability of configurations can be obtained, and present computer and electronic technology provide the capability to close flight control loops on the ground, thus providing a new method of design and flight test for advanced aircraft.

  3. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  4. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has...

  5. 14 CFR Appendix B to Part 121 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specification B... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Pt. 121, App. B Appendix B to Part 121—Airplane... airplanes that can demonstrate the capability of deriving either the control input on control movement...

  6. Flight control electronics reliability/maintenance study

    NASA Technical Reports Server (NTRS)

    Dade, W. W.; Edwards, R. H.; Katt, G. T.; Mcclellan, K. L.; Shomber, H. A.

    1977-01-01

    Collection and analysis of data are reported that concern the reliability and maintenance experience of flight control system electronics currently in use on passenger carrying jet aircraft. Two airlines B-747 airplane fleets were analyzed to assess the component reliability, system functional reliability, and achieved availability of the CAT II configuration flight control system. Also assessed were the costs generated by this system in the categories of spare equipment, schedule irregularity, and line and shop maintenance. The results indicate that although there is a marked difference in the geographic location and route pattern between the airlines studied, there is a close similarity in the reliability and the maintenance costs associated with the flight control electronics.

  7. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specification D Appendix D to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... D Appendix D to Part 135—Airplane Flight Recorder Specification Parameters Range Accuracy...

  8. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specification D Appendix D to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... D Appendix D to Part 135—Airplane Flight Recorder Specification Parameters Range Accuracy...

  9. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes....

  10. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate...

  11. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1...

  12. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system...

  13. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes....

  14. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a...

  15. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate...

  16. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a...

  17. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane Flight Recorder Specification F Appendix F to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... F Appendix F to Part 135—Airplane Flight Recorder Specification The recorded values must meet...

  18. 14 CFR Appendix F to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specification F Appendix F to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... F Appendix F to Part 135—Airplane Flight Recorder Specification The recorded values must meet...

  19. Lateral aerodynamic parameters extracted from flight data for the F-8C airplane in maneuvering flight

    NASA Technical Reports Server (NTRS)

    Suit, W. T.

    1977-01-01

    Flight test data are used to extract the lateral aerodynamic parameters of the F-8C airplane at moderate to high angles of attack. The data were obtained during perturbations of the airplane from steady turns with trim normal accelerations from 1.5g to 3.0g. The angle-of-attack variation from trim was negligible. The aerodynamic coefficients extracted from flight data were compared with several other sets of coefficients, and the extracted coefficients resulted in characteristics for the Dutch roll mode (at the highest angles of attack) similar to those of a set of coefficients that have been the basis of several simulations of the F-8C.

  20. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No... commercial flying, if that commercial flying plus his flying in operations under this part will exceed...

  1. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No... commercial flying, if that commercial flying plus his flying in operations under this part will exceed...

  2. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No... commercial flying, if that commercial flying plus his flying in operations under this part will exceed...

  3. Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.

  4. Information obtained from airplane flight tests in the year 1927-1928

    NASA Technical Reports Server (NTRS)

    Hubner, W

    1929-01-01

    The information obtained from flight tests in 1927-1928 covers chiefly the effect of the structural features of an airplane on its stability, controllability, maneuverability and spinning characteristics.

  5. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation:...

  6. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation:...

  7. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation:...

  8. 14 CFR 121.344a - Digital flight data recorders for 10-19 seat airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Digital flight data recorders for 10-19... Equipment Requirements § 121.344a Digital flight data recorders for 10-19 seat airplanes. (a) Except as... with one or more approved flight recorders that use a digital method of recording and storing data...

  9. Instrument Pilot: Airplane. Flight Test Guide, Part 61 Revised 1973, AC 61-56.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide is designed to assist the applicant and his instructor in preparing for the flight test for Instrument Pilot Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the Instrument Rating.…

  10. 14 CFR 121.344a - Digital flight data recorders for 10-19 seat airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Digital flight data recorders for 10-19... Equipment Requirements § 121.344a Digital flight data recorders for 10-19 seat airplanes. (a) Except as... with one or more approved flight recorders that use a digital method of recording and storing data...

  11. 14 CFR 121.344a - Digital flight data recorders for 10-19 seat airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Digital flight data recorders for 10-19... Equipment Requirements § 121.344a Digital flight data recorders for 10-19 seat airplanes. (a) Except as... with one or more approved flight recorders that use a digital method of recording and storing data...

  12. 14 CFR 121.344a - Digital flight data recorders for 10-19 seat airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Digital flight data recorders for 10-19... Equipment Requirements § 121.344a Digital flight data recorders for 10-19 seat airplanes. (a) Except as... with one or more approved flight recorders that use a digital method of recording and storing data...

  13. 14 CFR 121.344a - Digital flight data recorders for 10-19 seat airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Digital flight data recorders for 10-19... Equipment Requirements § 121.344a Digital flight data recorders for 10-19 seat airplanes. (a) Except as... with one or more approved flight recorders that use a digital method of recording and storing data...

  14. Correlation and assessment of structural airplane crash data with flight parameters at impact

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1982-01-01

    Crash deceleration pulse data from a crash dynamics program on general aviation airplanes and from transport crash data were analyzed. Structural airplane crash data and flight parameters at impact were correlated. Uncoupled equations for the normal and longitudinal floor impulses in the cabin area of the airplane were derived, and analytical expressions for structural crushing during impact and horizontal slide out were also determined. Agreement was found between experimental and analytical data for general aviation and transport airplanes over a relatively wide range of impact parameter. Two possible applications of the impulse data are presented: a postcrash evaluation of crash test parameters and an assumed crash scenario.

  15. Effects of Ice Formations on Airplane Performance in Level Cruising Flight

    NASA Technical Reports Server (NTRS)

    Preston, G. Merritt; Blackman, Calvin C.

    1948-01-01

    A flight investigation in natural icing conditions was conducted by the NACA to determine the effect of ice accretion on airplane performance. The maximum loss in propeller efficiency encountered due to ice formation on the propeller blades was 19 percent. During 87 percent of the propeller icing encounters, losses of 10 percent or less were observed. Ice formations on all of the components of the airplane except the propellers during one icing encounter resulted in an increase in parasite drag of the airplane of 81 percent. The control response of the airplane in this condition was marginal.

  16. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  17. Flight Data Reduction of Wake Velocity Measurements Using an Instrumented OV-10 Airplane

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Stuever, Robert A.; Stewart, Eric C.; Rivers, Robert A.

    1999-01-01

    A series of flight tests to measure the wake of a Lockheed C- 130 airplane and the accompanying atmospheric state have been conducted. A specially instrumented North American Rockwell OV-10 airplane was used to measure the wake and atmospheric conditions. An integrated database has been compiled for wake characterization and validation of wake vortex computational models. This paper describes the wake- measurement flight-data reduction process.

  18. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  19. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  20. Determination of Flight Paths of an SBD-1 Airplane in Simulated Diving Attacks, Special Report

    NASA Technical Reports Server (NTRS)

    Johnson, Harold I.

    1943-01-01

    An investigation has been made to determine the motions of and the flight paths describe by a Navy dive-bombing airplane in simulated diving attacks. The data necessary to evaluate these items, with the exception of the atmospheric wind data, were obtained from automatic recording instruments installed entirely within the airplane. The atmospheric wind data were obtained from the ground by the balloon-theodolite method. The results of typical dives at various dive angles are presented in the form of time histories of the motion of the airplane as well as flight paths calculated with respect to still air and with respect to the ground.

  1. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.

  2. Flutter clearance flight tests of an OV-10A airplane modified for wake vortex flight experiments

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.; Rivera, Jose A., Jr.; Stewart, Eric C.

    1995-01-01

    The envelope expansion, flight flutter tests of a modified OV-10A aircraft are described. For the wake vortex research program, the airplane was modified to incorporate three forward-extending instrumentation booms, one extending forward from each wing tip and one from the right side of the fuselage. The booms were instrumented with sensors to measure the velocity and direction of local air flow. The flutter test results show that the modified OV-10A aircraft is free from flutter at speeds up to 330 KEAS at 5000 feet altitude.

  3. 14 CFR 91.883 - Special flight authorizations for jet airplanes weighing 75,000 pounds or less.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Special flight authorizations for jet... OPERATING AND FLIGHT RULES Operating Noise Limits § 91.883 Special flight authorizations for jet airplanes weighing 75,000 pounds or less. (a) After December 31, 2015, an operator of a jet airplane weighing...

  4. Requirements and feasibility study of flight demonstration of Active Controls Technology (ACT) on the NASA 515 airplane

    NASA Technical Reports Server (NTRS)

    Gordon, C. K.

    1975-01-01

    A preliminary design study was conducted to evaluate the suitability of the NASA 515 airplane as a flight demonstration vehicle, and to develop plans, schedules, and budget costs for fly-by-wire/active controls technology flight validation in the NASA 515 airplane. The preliminary design and planning were accomplished for two phases of flight validation.

  5. Status of a digital integrated propulsion/flight control system for the YF-12 airplane

    NASA Technical Reports Server (NTRS)

    Reukauf, P. J.; Burcham, F. W., Jr.; Holzman, J. K.

    1975-01-01

    The NASA Flight Research Center is engaged in a program with the YF-12 airplane to study the control of interactions between the airplane and the propulsion system. The existing analog air data computer, autothrottle, autopilot, and inlet control system are to be converted to digital systems by using a general purpose airborne computer and interface unit. First, the existing control laws will be programmed in the digital computer and flight tested. Then new control laws are to be derived from a dynamic propulsion model and a total force and moment aerodynamic model to integrate the systems. These control laws are to be verified in a real time simulation and flight tested.

  6. Commercial Pilot; Airplane. Flight Test Guide, Part 61 Revised, AC 61-55.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide assists the applicant and his instructor in preparing for the Commercial Pilot Certificate with Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the certificate. Preflight duties,…

  7. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation:...

  8. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation:...

  9. Transport airplane flight deck development survey and analysis: Report and recommendations

    NASA Technical Reports Server (NTRS)

    Graham, D. K.

    1977-01-01

    Results of a survey and analysis of research and development work related to improving transport airplane flight deck equipment and aircrew performance is reported. Research and development related to flight deck advancement in general, as well as that concerned directly with terminal area operations, is described and discussed.

  10. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Three pilot crews... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder... crew of three pilots for more than eight hours in any 24 consecutive hours; or (2) To be aloft in...

  11. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Two pilot crews... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... crew of two pilots may be on duty for more than 16 hours during any 24 consecutive hours....

  12. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Four pilot crews... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder... crew of four pilots for more than eight hours in any 24 consecutive hours; or (2) To be aloft in...

  13. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2010-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  14. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  15. 78 FR 70849 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... with Class 3 Electronic Flight Bags (EFB) and wireless local area data networks (LAN) associated with the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture...

  16. 78 FR 70848 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... with Class 3 Electronic Flight Bags (EFB) and wireless local area data networks (LAN) associated with the EFB architecture and existing airplane network systems. The applicable airworthiness regulations..., software-configurable avionics, and fiber-optic avionics networks. The proposed Class 3 EFB architecture...

  17. New Method of Determining the Polar Curve of an Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Yegorov, B. N.

    1945-01-01

    A fundamental defect of existing methods for the determination of the polar of an airplane in flight is the impossibility of obtaining the thrust or the resistance of the propeller for any type airplane with any type engine. The new method is based on the premise that for zero propeller thrust the mean angle of attack of the blade is approximately the same for all propellers if this angle is reckoned from the aerodynamic chord of the profile section. This angle was determined from flight tests. Knowing the mean angle of the blade setting the angle of attack of the propeller blade at zero thrust can be found and the propeller speed in gliding obtained. The experimental check of the new method carried out on several airplanes gave positive results. The basic assumptions for the construction of the polars and the method of analyzing the flight data are given.

  18. Pressure Distribution over the Wings of an MB-3 Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1925-01-01

    This investigation was carried out to determine the distribution of load over the wings of a high speed airplane under all conditions of flight. In particular it was desired to find the pressure distribution during level flight, over the portions of the wings in the slipstream and, during violent maneuvers, over the entire wing surface. The method used consisted in connecting a number of holes in the surface of the wings to recording multiple manometers mounted in the fuselage of the airplane. In this way simultaneous records could be taken on all of the holes for any desired length of time. (author)

  19. Flight comparison of the transonic agility of the F-111A airplane and the F-111 supercritical wing airplane

    NASA Technical Reports Server (NTRS)

    Friend, E. L.; Sakamoto, G. M.

    1978-01-01

    A flight research program was conducted to investigate the improvements in maneuverability of an F-111A airplane equipped with a supercritical wing. In this configuration the aircraft is known as the F-111 TACT (transonic aircraft technology) airplane. The variable-wing-sweep feature permitted an evaluation of the supercritical wing in many configurations. The primary emphasis was placed on the transonic Mach number region, which is considered to be the principal air combat arena for fighter aircraft. An agility study was undertaken to assess the maneuverability of the F-111A aircraft with a supercritical wing at both design and off-design conditions. The evaluation included an assessment of aerodynamic and maneuver performance in conjunction with an evaluation of precision controllability during tailchase gunsight tracking tasks.

  20. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs.

  1. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  2. Flight test experience and controlled impact of a large, four-engine remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  3. 76 FR 10528 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Systems Security Isolation or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... airplane models. This may allow the exploitation of network security vulnerabilities and increase ] risks... potential security vulnerabilities which could be exploited by unauthorized access to airplane networks and...; Electronic Systems Security Isolation or Protection From Unauthorized Passenger Systems Access...

  4. 78 FR 75453 - Special Conditions: Cessna Model 750 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... data network and design integration may result in security vulnerabilities from intentional or... than previous airplane models. This may allow the exploitation of network security vulnerabilities and... Airplanes; Aircraft Electronic System Security Isolation or Protection From Internal Access AGENCY:...

  5. 76 FR 36861 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Systems Security Isolation or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... airplane models. This may allow the exploitation of network security vulnerabilities and increase risks... potential security vulnerabilities which could be exploited by unauthorized access to airplane networks and...; Electronic Systems Security Isolation or Protection From Unauthorized Passenger Systems Access...

  6. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  7. Lateral control required for satisfactory flying qualities based on flight tests of numerous airplanes

    NASA Technical Reports Server (NTRS)

    Gilruth, R R; Turner, W N

    1941-01-01

    Report presents the results of an analysis made of the aileron control characteristics of numerous airplanes tested in flight by the National Advisory Committee for Aeronautics. By the use of previously developed theory, the observed values of pb/2v for the various wing-aileron arrangements were examined to determine the effective section characteristics of the various aileron types.

  8. 14 CFR Appendix D to Part 125 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specification D Appendix D to Part 125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Pt. 125, App....

  9. 14 CFR Appendix D to Part 125 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specification D Appendix D to Part 125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Pt. 125, App....

  10. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... range. 4 This column applies to aircraft manufactured after October 11, 1991. 5 For Pitch Control... Appendix E to Part 91—Airplane Flight Recorder Specifications Parameters Range Installed system 1 minimum... where peaks, ref. to 1g are recorded) 0.03g. Longitudinal Acceleration ±1.0g ±1.5% max. range...

  11. 14 CFR Appendix B to Part 121 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specification B Appendix B to Part 121 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Hrs ±0.125% Per Hour 0.25 (1 per 4 seconds) 1 sec. Altitude −1,000 ft to max certificated altitude...

  12. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...% or ±10 kts., whichever is greater. Resolution 2 kts. below 175 KIAS 1 1% 3 Altitude −1,000 ft. to...

  13. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... (KIAS) ±5% or ±10 kts., whichever is greater. Resolution 2 kts. below 175 KIAS 1 1% 3. Altitude...

  14. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...% or ±10 kts., whichever is greater. Resolution 2 kts. below 175 KIAS 1 1% 3 Altitude −1,000 ft. to...

  15. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... (KIAS) ±5% or ±10 kts., whichever is greater. Resolution 2 kts. below 175 KIAS 1 1% 3. Altitude...

  16. Flight-test data on the static fore-and-aft stability of various German airplanes

    NASA Technical Reports Server (NTRS)

    Hubner, Walter

    1933-01-01

    The static longitudinal stability of an airplane with locked elevator is usually determined by analysis and model tests. The present report proposes to supply the results of such measurements. The method consisted of recording the dynamic pressure versus elevator displacement at different center-of-gravity positions in unaccelerated flight.

  17. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any 24 consecutive hours without a rest period during those eight hours. (b) Each pilot who has flown more than eight... consecutive days. (d) No pilot may fly as a crewmember in air transportation more than 100 hours during any...

  18. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  19. Flight-measured lift and drag characteristics of a large, flexible, high supersonic cruise airplane

    NASA Technical Reports Server (NTRS)

    Arnaiz, H. H.

    1977-01-01

    Flight measurements of lift, drag, and angle of attack were obtained for the XB-70 airplane, a large, flexible, high supersonic cruise airplane. This airplane had a length of over 57 meters, a takeoff gross mass of over 226,800 kilograms, and a design cruise speed of Mach 3 at an altitude of 21,340 meters. The performance measurements were made at Mach numbers from 0.72 to 3.07 and altitudes from approximately 7620 meters to 21,340 meters. The measurements were made to provide data for evaluating the techniques presently being used to design and predict the performance of aircraft in this category. Such performance characteristics as drag polars, lift-curve slopes, and maximum lift-to-drag ratios were derived from the flight data. The base drag of the airplane, changes in airplane drag with changes in engine power setting at transonic speeds, and the magnitude of the drag components of the propulsion system are also discussed.

  20. Flight duration, airspeed practices and altitude management of airplanes involved in the NASA VGH General Aviation Program

    NASA Technical Reports Server (NTRS)

    Jewel, Joseph W., Jr.

    1987-01-01

    Flight duration, airspeed, and altitude information obtained from NASA velocity gravity height (VGH) recorders is presented for each of 95 general aviation airplanes flown in twin- and single-engine executive, personal, instructional, commercial survey, aerial application, aerobatic, commuter, and float operations. These data complement normal acceleration data obtained from the same airplanes and reported in NASA-TM-84660, and together they provide a data base for the design and analysis of general aviation airplane operations.

  1. Preliminary flight-test results of an advanced technology light twin-engine airplane /ATLIT/

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Kohlman, D. L.; Crane, H. L.

    1976-01-01

    The present status and flight-test results are presented for the ATLIT airplane. The ATLIT is a Piper PA-34 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll-control spoilers, and full-span Fowler flaps. Flight-test results on stall and spoiler roll characteristics show good agreement with wind-tunnel data. Maximum power-off lift coefficients are greater than 3.0 with flaps deflected 37 deg. With flaps down, spoiler deflections can produce roll helix angles in excess of 0.11 rad. Flight testing is planned to document climb and cruise performance, and supercritical propeller performance and noise characteristics. The airplane is scheduled for testing in the NASA-Langley Research Center Full-Scale Tunnel.

  2. Parametric study of microwave-powered high-altitude airplane platforms designed for linear flight

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.

    1981-01-01

    The performance of a class of remotely piloted, microwave powered, high altitude airplane platforms is studied. The first part of each cycle of the flight profile consists of climb while the vehicle is tracked and powered by a microwave beam; this is followed by gliding flight back to a minimum altitude above a microwave station and initiation of another cycle. Parametric variations were used to define the effects of changes in the characteristics of the airplane aerodynamics, the energy transmission systems, the propulsion system, and winds. Results show that wind effects limit the reduction of wing loading and the increase of lift coefficient, two effective ways to obtain longer range and endurance for each flight cycle. Calculated climb performance showed strong sensitivity to some power and propulsion parameters. A simplified method of computing gliding endurance was developed.

  3. Flight Research Using F100 Engine P680063 in the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Conners, Timothy R.; Maxwell, Michael D.

    1994-01-01

    The value of flight research in developing and evaluating gas turbine engines is high. NASA Dryden Flight Research Center has been conducting flight research on propulsion systems for many years. The F100 engine has been tested in the NASA F-15 research airplane in the last three decades. One engine in particular, S/N P680063, has been used for the entire program and has been flown in many pioneering propulsion flight research activities. Included are detailed flight-to-ground facility tests; tests of the first production digital engine control system, the first active stall margin control system, the first performance-seeking control system; and the first use of computer-controlled engine thrust for emergency flight control. The flight research has been supplemented with altitude facility tests at key times. This paper presents a review of the tests of engine P680063, the F-15 airplanes in which it flew, and the role of the flight test in maturing propulsion technology.

  4. 77 FR 69572 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: High Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    .... The Model EMB-550 airplane is the first of a new family of jet airplanes designed for corporate flight... equipped with two Honeywell HTF7500-E medium bypass ratio turbofan engines mounted on aft fuselage pylons. Each engine produces approximately 6,540 pounds of thrust for normal takeoff. The primary...

  5. Flight evaluation of the transonic stability and control characteristics of an airplane incorporating a supercritical wing

    NASA Technical Reports Server (NTRS)

    Matheny, N. W.; Gatlin, D. H.

    1978-01-01

    A TF-8A airplane was equipped with a transport type supercritical wing and fuselage fairings to evaluate predicted performance improvements for cruise at transonic speeds. A comparison of aerodynamic derivatives extracted from flight and wind tunnel data showed that static longitudinal stability, effective dihedral, and aileron effectiveness, were higher than predicted. The static directional stability derivative was slower than predicted. The airplane's handling qualities were acceptable with the stability augmentation system on. The unaugmented airplane exhibited some adverse lateral directional characteristics that involved low Dutch roll damping and low roll control power at high angles of attack and roll control power that was greater than satisfactory for transport aircraft at cruise conditions. Longitudinally, the aircraft exhibited a mild pitchup tendency. Leading edge vortex generators delayed the onset of flow separation, moving the pitchup point to a higher lift coefficient and reducing its severity.

  6. 76 FR 36870 - Special Conditions: Gulfstream Model GVI Airplane; Design Roll Maneuver Requirement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ...; Design Roll Maneuver Requirement for Electronic Flight Controls AGENCY: Federal Aviation Administration... electronic flight control system that provides roll control of the airplane through pilot inputs to the flight computers. These special conditions contain the additional safety standards that the...

  7. 78 FR 76249 - Special Conditions: Airbus, Model A350-900 Series Airplane; Flight Envelope Protection: Normal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... feature(s) associated with a flight control system that prevents the pilot from inadvertently or... unique in that traditional airplanes with conventional flight control systems (mechanical linkages) are... using the Airbus flight control system. Under Title 14, Code of Federal Regulations (14 CFR)...

  8. Role of Meteorology in Flights of a Solar-Powered Airplane

    NASA Technical Reports Server (NTRS)

    Donohue, Casey

    2004-01-01

    In the summer of 2001, the Helios prototype solar-powered uninhabited aerial vehicle (UAV) [a lightweight, remotely piloted airplane] was deployed to the Pacific Missile Range Facility (PMRF), at Kauai, Hawaii, in an attempt to fly to altitudes above 100,000 ft (30.48 km). The goal of flying a UAV to such high altitudes has been designated a level-I milestone of the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. In support of this goal, meteorologists from NASA Dryden Flight Research Center were sent to PMRF, as part of the flight crew, to provide current and forecast weather information to the pilots, mission directors, and planners. Information of this kind is needed to optimize flight conditions for peak aircraft performance and to enable avoidance of weather conditions that could adversely affect safety. In general, the primary weather data of concern for ground and flight operations are wind speeds (see Figure 1). Because of its long wing span [247 ft (.75 m)] and low weight [1,500 to 1,600 lb (about 680 to 726 kg)], the Helios airplane is sensitive to wind speeds exceeding 7 kn (3.6 m/s) at the surface. Also, clouds are of concern because they can block sunlight needed to energize an array of solar photovoltaic cells that provide power to the airplane. Vertical wind shear is very closely monitored in order to prevent damage or loss of control due to turbulence.

  9. Airplane tracking documents the fastest flight speeds recorded for bats

    PubMed Central

    Kunz, Thomas H.; Dechmann, Dina K. N.; Swartz, Sharon M.; Wikelski, Martin

    2016-01-01

    The performance capabilities of flying animals reflect the interplay of biomechanical and physiological constraints and evolutionary innovation. Of the two extant groups of vertebrates that are capable of powered flight, birds are thought to fly more efficiently and faster than bats. However, fast-flying bat species that are adapted for flight in open airspace are similar in wing shape and appear to be similar in flight dynamics to fast-flying birds that exploit the same aerial niche. Here, we investigate flight behaviour in seven free-flying Brazilian free-tailed bats (Tadarida brasiliensis) and report that the maximum ground speeds achieved exceed speeds previously documented for any bat. Regional wind modelling indicates that bats adjusted flight speeds in response to winds by flying more slowly as wind support increased and flying faster when confronted with crosswinds, as demonstrated for insects, birds and other bats. Increased frequency of pauses in wing beats at faster speeds suggests that flap-gliding assists the bats' rapid flight. Our results suggest that flight performance in bats has been underappreciated and that functional differences in the flight abilities of birds and bats require re-evaluation. PMID:28018618

  10. Airplane tracking documents the fastest flight speeds recorded for bats.

    PubMed

    McCracken, Gary F; Safi, Kamran; Kunz, Thomas H; Dechmann, Dina K N; Swartz, Sharon M; Wikelski, Martin

    2016-11-01

    The performance capabilities of flying animals reflect the interplay of biomechanical and physiological constraints and evolutionary innovation. Of the two extant groups of vertebrates that are capable of powered flight, birds are thought to fly more efficiently and faster than bats. However, fast-flying bat species that are adapted for flight in open airspace are similar in wing shape and appear to be similar in flight dynamics to fast-flying birds that exploit the same aerial niche. Here, we investigate flight behaviour in seven free-flying Brazilian free-tailed bats (Tadarida brasiliensis) and report that the maximum ground speeds achieved exceed speeds previously documented for any bat. Regional wind modelling indicates that bats adjusted flight speeds in response to winds by flying more slowly as wind support increased and flying faster when confronted with crosswinds, as demonstrated for insects, birds and other bats. Increased frequency of pauses in wing beats at faster speeds suggests that flap-gliding assists the bats' rapid flight. Our results suggest that flight performance in bats has been underappreciated and that functional differences in the flight abilities of birds and bats require re-evaluation.

  11. A Comparison of Two Flight-Test Procedures for the Determination of Aileron Control Capabilities of an Airplane

    DTIC Science & Technology

    1945-07-01

    roceduraa conelet of perform~ng ru&der- fixed aileron rolls from ~traight unbanked flight and from steady turning fllght; For the airplaneE considered in...aileron rolls . .initiated from straight unbanked flight, Tho resultg of these tebts are usually presented In a curve. of .maxlmum pb/2V as a function...between flight determinationsof maximum pb/2V in rudder-fixedaileron roll~ from straight, unbanked flight and from steady~ turning flight. Clean

  12. Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1977-01-01

    Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.

  13. Simulator study of flight characteristics of several large, dissimilar, cargo transport airplanes during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.; Deal, P. L.; Neely, W. R., Jr.

    1984-01-01

    A six-degree-of-freedom, ground based simulator study is conducted to evaluate the low-speed flight characteristics of four dissimilar cargo transport airplanes. These characteristics are compared with those of a large, present-day (reference) transport configuration similar to the Lockheed C-5A airplane. The four very large transport concepts evaluated consist of single-fuselage, twin-fuselage, triple-fuselage, and span-loader configurations. The primary piloting task is the approach and landing operation. The results of his study indicate that all four concepts evaluated have unsatisfactory longitudinal and lateral directional low speed flight characteristics and that considerable stability and control augmentation would be required to improve these characteristics (handling qualities) to a satisfactory level. Through the use of rate command/attitude hold augmentation in the pitch and roll axes, and the use of several turn-coordination features, the handling qualities of all four large transports simulated are improved appreciably.

  14. Flight investigation of the effect of control centering springs on the apparent spiral stability of a personal-owner airplane

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Hunter, Paul A; Hewes, Donald E; Whitten, James B

    1952-01-01

    Report presents the results of a flight investigation conducted on a typical high-wing personal-owner airplane to determine the effect of control centering springs on apparent spiral stability. Apparent spiral stability is the term used to describe the spiraling tendencies of an airplane in uncontrolled flight as affected both by the true spiral stability of the perfectly trimmed airplane and by out-of-trim control settings. Centering springs were used in both the aileron and rudder control systems to provide both a positive centering action and a means of trimming the airplane. The springs were preloaded so that when they were moved through neutral they produced a nonlinear force gradient sufficient to overcome the friction in the control surface at the proper setting for trim. The ailerons and rudder control surfaces did not have trim tabs that could be adjusted in flight.

  15. Flight Studies of the Horizontal-Tail Loads Experienced by a Fighter Airplane in Abrupt Maneuvers

    NASA Technical Reports Server (NTRS)

    1944-01-01

    Field measurements were made on a fighter airplane to determine the approximate magnitude of the horizontal tail loads in accelerated flight. In these flight measurements, pressures at a few points were used as an index of the tail loads by correlating these pressures with complete pressure-distribution data obtained in the NACA full-scale tunnel. In addition, strain gages and motion pictures of tail deflections were used to explore the general nature and order of magnitude of fluctuating tail loads in accelerated stalls.

  16. Flight evaluation of an extended engine life mode on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Conners, Timothy R.

    1992-01-01

    An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.

  17. Pressure Distribution Over the Fuselage of a PW-9 Pursuit Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Rhode, Richard V; Lundquist, Eugene E

    1932-01-01

    This report presents the results obtained from pressure distribution tests on the fuselage of a PW-9 pursuit airplane in a number of conditions of flight. The investigation was made to determine the contribution of the fuselage to the total lift in conditions considered critical for the wing structure, and also to determine whether the fuselage loads acting simultaneously with the maximum tail loads were of such a character as to be of concern with respect to the structural design of other parts of the airplane. The results show that the contribution of the fuselage toward the total lift is small on this airplane. Aerodynamic loads on the fuselage are, in general, unimportant from the structural viewpoint, and in most cases they are of such character that, if neglected, a conservative design results. In spins, aerodynamic forces on the fuselage produce diving moments of appreciable magnitude and yawing moments of small magnitude, but opposing the rotation of the airplane. A table of cowling pressures for various maneuvers is included in the report.

  18. 78 FR 68985 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... maintenance of the airplane. The existing regulations and guidance material did not anticipate these types of... Series Airplanes; Aircraft Electronic System Security Protection From Unauthorized Internal Access AGENCY... conditions are issued for the Boeing Model 777- 200, -300, and -300ER series airplanes. These airplanes,...

  19. Determination of the Profile Drag of an Airplane Wing in Flight at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Bicknell, Joseph

    1939-01-01

    Flight tests were made to determine the profile-drag coefficients of a portion of the original wing surface of an all-metal airplane and of a portion of the wing made aerodynamically smooth and more nearly fair than the original section. The wing section was approximately the NACA 2414.5. The tests were carried out over a range of airplane speeds giving a maximum Reynolds number of 15,000,000. Tests were also carried out to locate the point of transition from laminar to turbulent boundary layer and to determine the velocity distribution along the upper surface of the wing. The profile-drag coefficients of the original and of the smooth wing portions at a Reynolds number of 15,000,000 were 0.0102 and 0.0068, respectively; i.e., the surface irregularities on the original wing increased the profile-drag coefficient 50 percent above that of the smooth wing.

  20. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... pilot in command, a flight engineer, or a flight navigator, as applicable, in operations under this part... recurrent training, that are required to serve as a pilot in command, flight engineer, or flight...

  1. Pitch Controllability Based on Airplane Model without Short-Period Approximation—Flight Simulator Experiment—

    NASA Astrophysics Data System (ADS)

    Sato, Osamu; Kobayashi, Osamu

    Pitch controllability of an airplane is very important for longitudinal flying qualities, therefore, much research has been conducted. However, it has not been clarified why pitch handling qualities degrades in the low speed, e.g. take-off and landing flight phases. On this topic, this paper investigates the effect of several parameters of the short-period mode and phugoid mode using a flight simulator. The results show the following conclusions: The difference between the initial phase angles in two modal components in the pitch attitude response to elevator step input plays the most important role in the pitch handling qualities among modal parameters; and the difference of the two modal natural frequencies has small effect on the pitch controllability even when flight speed decreases.

  2. Simulator evaluation of a flight-path-angle control system for a transport airplane with direct lift control

    NASA Technical Reports Server (NTRS)

    Kelley, W. W.

    1978-01-01

    A piloted simulator was used to evaluate the flight path angle control capabilities of a system that employs spoiler direct lift control. The system was designated the velocity vector control system and was compared with a baseline flight path angle control system which used elevator for control. The simulated airplane was a medium jet transport. Research pilots flew a manual instrument landing system glide slope tracking task and a variable flight path angle task in the landing configuration to obtain comparative performance data.

  3. Flight Investigation of the Effectiveness of an Automatic Aileron Trim Control Device for Personal Airplanes

    NASA Technical Reports Server (NTRS)

    Phillips, William H; Kuehnel, Helmut A; Whitten, James B

    1957-01-01

    A flight investigation to determine the effectiveness of an automatic aileron trim control device installed in a personal airplane to augment the apparent spiral stability has been conducted. The device utilizes a rate-gyro sensing element in order to switch an on-off type of control that operates the ailerons at a fixed rate through control centering springs. An analytical study using phase-plane and analog-computer methods has been carried out to determine a desirable method of operation for the automatic trim control.

  4. Pressure distribution on the tail surfaces of a PW-9 pursuit airplane in flight

    NASA Technical Reports Server (NTRS)

    Rhode, Richard V

    1930-01-01

    Presented here are pressure distribution data obtained from the tail surfaces of a PW-9 in a number of flight maneuvers. The results given are part of those obtained in an extensive investigation of the pressure distribution over all of the lifting and control surfaces of this airplane. The results are given in tabular and curve form and are discussed briefly with respect to their comparison with existing tail surface design specifications. It is recommended that tail load design loadings should be revised upwards. This is particularly true of leading edge loads, which should be at least doubled for thick sections.

  5. Assessment of JVX Proprotor Performance Data in Hover and Airplane-Mode Flight Conditions

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2016-01-01

    A 0.656-scale V-22 proprotor, the Joint Vertical Experimental (JVX) rotor, was tested at the NASA Ames Research Center in both hover and airplane-mode (high-speed axial flow) flight conditions, up to an advance ratio of 0.562 (231 knots). This paper examines the two principal data sets generated by those tests, and includes investigations of hub spinner tares, torque/thrust measurement interactions, tunnel blockage effects, and other phenomena suspected of causing erroneous measurements or predictions. Uncertainties in hover and high-speed data are characterized. The results are reported here to provide guidance for future wind tunnel tests, data processing, and data analysis.

  6. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This paper proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  7. Analysis of in-flight acoustic data for a twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Wilby, E. G.

    1988-01-01

    Acoustic measurements were made on the exterior and interior of a general aviation turboprop airplane during four flight tests. The test conditions were carefully controlled and repeated for each flight in order to determine data variability. For the first three flights the cabin was untreated and for the fourth flight the fuselage was treated with glass fiber batts. On the exterior, measured propeller harmonic sound pressure levels showed typical standard deviations of +1.4 dB, -2.3 dB, and turbulent boundary layer pressure levels, +1.2 dB, -1.6. Propeller harmonic levels in the cabin showed greater variability, with typical standard deviations of +2.0 dB, -4.2 dB. When interior sound pressure levels from different flights with different cabin treatments were used to evaluate insertion loss, the standard deviations were typically plus or minus 6.5 dB. This is due in part to the variability of the sound pressure level measurements, but probably is also influenced by changes in the model characteristics of the cabin. Recommendations are made for the planning and performance of future flight tests to measure interior noise of propeller-driven aircraft, either high-speed advanced turboprop or general aviation propellers.

  8. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This presentation proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  9. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... rating required to serve as a pilot in command, a flight engineer, or a flight navigator, as applicable... engineer, or flight navigator, as applicable, in operations under this part; (3) Has...

  10. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... rating required to serve as a pilot in command, a flight engineer, or a flight navigator, as applicable... engineer, or flight navigator, as applicable, in operations under this part; (3) Has...

  11. 78 FR 31838 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... new control architecture and a full digital flight control system which provides flight envelope... flight envelope protection features integral to the electronic flight control system design. These flight...) occurs in the control laws of the electronic flight control system as the limit is approached or...

  12. Airstart performance of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Licata, S. J.; Burcham, F. W., Jr.

    1983-01-01

    The airstart performance of the F100 engine equipped with a digital electronic engine control (DEEC) system was evaluated in an F-15 airplane. The DEEC system incorporates closed-loop airstart logic for improved capability. Spooldown and jet fuel starter-assisted airstarts were made over a range of airspeeds and altitudes. All jet fuel starter-assisted airstarts were successful, with airstart time varying from 35 to 60 sec. All spooldown airstarts at airspeeds of 200 knots and higher were successful; airstart times ranged from 45 sec at 250 knots to 135 sec at 200 knots. The effects of altitude on airstart success and time were small. The flight results agreed closely with previous altitude facility test results. The DEEC system provided successful airstarts at airspeeds at least 50 knots lower than the standard F100 engine control system.

  13. The Direct Measurement of Engine Power on an Airplane in Flight with a Hub Type Dynamometer

    NASA Technical Reports Server (NTRS)

    Gove, W D; Green, M W

    1927-01-01

    This report describes tests made to obtain direct measurements of engine power in flight. Tests were made with a Bendemann hub dynamometer installed on a modified DH-4 Airplane, Liberty 12 Engine, to determine the suitability of this apparatus. This dynamometer unit, which was designed specially for use with a liberty 12 engine, is a special propeller hub in which is incorporated a system of pistons and cylinders interposed between the propeller and the engine crankshaft. The torque and thrust forces are balanced by fluid pressures, which are recorded by instruments in the cockpit. These tests have shown the suitability of this type of hub dynamometer for measurement of power in flight and for the determination of the torque and power coefficients of the propeller. (author)

  14. Flight and analytical investigations of a structural mode excitation system on the YF-12A airplane

    NASA Technical Reports Server (NTRS)

    Goforth, E. A.; Murphy, R. C.; Beranek, J. A.; Davis, R. A.

    1987-01-01

    A structural excitation system, using an oscillating canard vane to generate force, was mounted on the forebody of the YF-12A airplane. The canard vane was used to excite the airframe structural modes during flight in the subsonic, transonic, and supersonic regimes. Structural modal responses generated by the canard vane forces were measured at the flight test conditions by airframe-mounted accelerometers. Correlations of analytical and experimental aeroelastic results were made. Doublet lattice, steady state double lattice with uniform lag, Mach box, and piston theory all produced acceptable analytical aerodynamic results within the restrictions that apply to each. In general, the aerodynamic theory methods, carefully applied, were found to predict the dynamic behavior of the YF-12A aircraft adequately.

  15. Subjective response to combined noise and vibration during flight of a large twin-jet airplane

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.

    1976-01-01

    A NASA twin-jet airplane was used to obtain controlled noise and vibration environments during flight while obtaining subjective responses from 13 passenger-subjects (6 females and 7 males). Subjective ratings of overall comfort, comfort when considering only vibration, and comfort when considering only noise were obtained during times of different vibration and noise environments. Passenger-subjects were able to distinguish and rate noise better than vibration. In addition, there was a statistically significant difference in ratings of ride comfort due to both sex type and flight experience. Males rated flying discomfort much more severely than females when rating the overall ride and the ride when considering only the noise environment. Experienced passengers also rated the overall ride to be more uncomfortable than inexperienced passengers.

  16. Flight test of a propulsion controlled aircraft system on the NASA F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.

    1995-01-01

    Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual throttles-only control was much more difficult than the simulation, and a flight investigation was flown to acquire data to resolve this discrepancy. The PCA system designed and developed by MDA evolved as these discrepancies were found and resolved, requiring redesign of the PCA software and modification of the flight test plan. Small throttle step inputs were flown to provide data for analysis, simulation update, and control logic modification. The PCA flight tests quickly revealed less than desired performance, but the extensive flexibility built into the flight PCA software allowed rapid evaluation of alternate gains, filters, and control logic, and within 2 weeks, the PCA system was functioning well. The initial objective of achieving adequate control for up-and-away flying and approaches was satisfied, and the option to continue to actual landings was achieved. After the PCA landings were accomplished, other PCA features were added, and additional maneuvers beyond those originally planned were flown. The PCA system was used to recover from extreme upset conditions, descend, and make approaches to landing. A heading mode was added, and a single engine plus rudder PCA mode was also added and flown. The PCA flight envelope was expanded far beyond that originally designed for. Guest pilots from the USAF, USN, NASA, and the contractor also flew the PCA system and were favorably impressed.

  17. Engine Installation Effects of Four Civil Transport Airplanes: Wallops Flight Facility Study

    NASA Technical Reports Server (NTRS)

    Fleming, Gregg G.; Senzig, David A.; McCurdy, David A.; Roof, Christopher J.; Rapoza, Amanda S.

    2003-01-01

    The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), the Environmental Measurement and Modeling Division of the United States Department of Transportation s John A. Volpe National Transportation Systems Center (Volpe), and several other organizations (see Appendix A for a complete list of participating organizations and individuals) conducted a noise measurement study at NASA s Wallops Flight Facility (Wallops) near Chincoteague, Virginia during September 2000. This test was intended to determine engine installation effects on four civil transport airplanes: a Boeing 767-400, a McDonnell-Douglas DC9, a Dassault Falcon 2000, and a Beechcraft King Air. Wallops was chosen for this study because of the relatively low ambient noise of the site and the degree of control over airplane operating procedures enabled by operating over a runway closed to other uses during the test period. Measurements were conducted using a twenty microphone U-shaped array oriented perpendicular to the flight path; microphones were mounted such that ground effects were minimized and low elevation angles were observed.

  18. Performance of light sources and radiation sensors under low gravity realized by parabolic airplane flights

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro

    A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.

  19. Flight test evaluation of drag effects on surface coatings on the NASA Boeing 737 TCV airplane

    NASA Technical Reports Server (NTRS)

    George-Falvy, D.; Sikavi, D. A.

    1981-01-01

    A flight test program was conducted in which the effects of various surface coatings on aerodynamic drag were investigated; results of this program are described in this report. The tests were conducted at NASA-Langley Research Center on the terminal configured vehicle (TCV) Boeing 737 research airplane. The Boeing Company, as contractor with NASA under the Energy Efficient Transport (EET) program, planned and evaluated the experiment. The NASA-TCV Program Office coordinated the experiment and performed the flight tests. The principal objective of the test was to evaluate the drag reduction potential of an elastomeric polyurethane surface coating, CAAPCO B-274, which also has been considered for application on transport airplanes to protect leading edges from erosion. The smooth surface achievable with this type of coating held some promise of reducing the skin friction drag as compared to conventional production type aircraft surfaces, which are usually anodized bare metal or coated with corrosion protective paint. Requirements for high precision measurements were the principal considerations in the experiment.

  20. A flight evaluation of a vectored thrust jet V/STOL airplane during simulated instrument approaches using the Kestrel (XV-6A) airplane

    NASA Technical Reports Server (NTRS)

    Morello, S. A.; Person, L. H., Jr.; Shanks, R. E.; Culpepper, R. G.

    1972-01-01

    An in-flight investigation was made to determine the terminal-area operating problems of a vectored-thrust-jet vertical and short take-off landing (V/STOL) airplane under simulated instrument conditions. Handling-qualities data pertinent to the terminal-area approach and landing task are presented in the text, and additional documentation is included in the appendixes. Problems dealing with the cruise letdown to localizer capture, conversion to powered-lift flight, precise control of the glide slope, approach velocity or deceleration schedule, hover, and landing are discussed.

  1. 78 FR 5148 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: General...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ...(s), specifically new control architecture and a full digital flight control system which provides... flight envelope protection features integral to the electronic flight control system design. These flight...) occurs in the control laws of the electronic flight control system as the limit is approached or...

  2. Performance improvements of an F-15 airplane with an integrated engine-flight control system

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Walsh, Kevin R.

    1988-01-01

    An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 degrees, respectively.

  3. 76 FR 36863 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Systems Security Protection From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... configuration may allow the exploitation of network security vulnerabilities resulting in intentional or...; Electronic Systems Security Protection From Unauthorized External Access AGENCY: Federal Aviation... architecture and connectivity capabilities of the airplane's computer systems and networks, which may...

  4. 76 FR 10529 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Systems Security Protection From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... systems and networks may result in security vulnerabilities to the airplane's systems. The applicable... may allow the exploitation of network security vulnerabilities resulting in intentional or...; Electronic Systems Security Protection From Unauthorized External Access AGENCY: Federal...

  5. Revolution in airplane construction? Grob G110: The first modern fiber glass composition airplane shortly before its maiden flight

    NASA Technical Reports Server (NTRS)

    Dorpinghaus, R.

    1982-01-01

    A single engine two passenger airplane, constructed completely from fiber reinforced plastic materials is introduced. The cockpit, controls, wing profile, and landing gear are discussed. Development of the airframe is also presented.

  6. Launch, Low-Speed, and Landing Characteristics Determined from the First Flight of the North American X-15 Research Airplane

    NASA Technical Reports Server (NTRS)

    Finch, Thomas W.; Matranga, Gene J.

    1959-01-01

    The first flight of the North American X-15 research airplane was made on June 8, 1959. This was accomplished after completion of a series of captive flights with the X-15 attached to the B-52 carrier airplane to demonstrate the aerodynamic and systems compatibility of the X-15//B-52 combination and the X-15 subsystem operation. This flight was planned as a glide flight so that the pilot need not be concerned with the propulsion system. Discussions of the launch, low-speed maneuvering, and landing characteristics are presented, and the results are compared with predictions from preflight studies. The launch characteristics were generally satisfactory, and the X-15 vertical tail adequately cleared the B-52 wing cutout. The actual landing pattern and landing characteristics compared favorably with predictions, and the recommended landing technique of lowering the flaps and landing gear at a low altitude appears to be a satisfactory method of landing the X-15 airplane. There was a quantitative correlation between flight-measured and predicted lift-drag-ratio characteristics in the clean configuration and a qualitative correlation in the landing configuration. A longitudinal-controllability problem, which became severe in the landing configuration, was evident throughout the flight and, apparently, was aggravated by the sensitivity of the side-located control stick. In the low-to-moderate angle-of-attack range covered, the longitudinal and directional stability were indicated to be adequate.

  7. 78 FR 68986 - Special Conditions: Boeing Model 777-200, -300, and -300ER Series Airplanes; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... maintenance of the airplane. The existing regulations and guidance material did not anticipate this type of... the safety and maintenance of the airplane. The existing regulations and guidance material did not... Series Airplanes; Aircraft Electronic System Security Protection From Unauthorized External Access...

  8. Flight determined lift and drag characteristics of an F-8 airplane modified with a supercritical wing with comparison to wind-tunnel results

    NASA Technical Reports Server (NTRS)

    Pyle, J. S.; Steers, L. L.

    1975-01-01

    Flight measurements obtained with a TF-8A airplane modified with a supercritical wing are presented for altitudes from 7.6 kilometers (25,000 feet) to 13.7 kilometers (45,000 feet), Mach numbers from 0.6 to 1.2, and Reynolds numbers from 0.8 x 10 to the 7th power to 2.3 x 10 to the 7th power. Flight results for the airplane with and without area-rule fuselage fairings are compared. The techniques used to determine the lift and drag characteristics of the airplane are discussed. Flight data are compared with wind-tunnel model results, where applicable.

  9. Flight-determined stability and control coefficients of the F-111A airplane

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.; Steers, S. T.

    1978-01-01

    A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing sweep angles of 26 deg, 35 deg, and 58 deg. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2 deg to 15 deg. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted.

  10. Review of Flight Tests of NACA C and D Cowlings on the XP-42 Airplane

    NASA Technical Reports Server (NTRS)

    Johnston, J Ford

    1943-01-01

    Results of flight tests of the performance and cooling characteristics of three NACA D cowlings and of a conventional NACA D cowling on the XP-42 airplane are summarized and compared. The D cowling is, in general, characterized by the use of an annular inlet and diffuser section for the engine-cooling air. The D cowlings tested were a long-nose high-inlet-velocity cowling, a short-nose high-inlet-velocity cowling, and a short-nose low inlet-velocity cowling. The use of wide-chord propeller cuffs or an axial-flow fan with the D cowlings increased the cooling pressure recoveries in the climb condition at the expense of some of the improvement in speed.

  11. Flight Tests of an Airplane Showing Dependence of the Maximum Lift Coefficient on the Test Conditions

    NASA Technical Reports Server (NTRS)

    Soule, H A; Hootman, James A

    1937-01-01

    Data are presented to show the extent to which the maximum lift coefficient and consequently the minimum speed of an airplane, determined by flight tests, may vary with test conditions. The data show that cl-max may vary as much as 14 percent, depending on the altitude and wing loading at which the tests were made, the position or motion of the propeller, and the rate at which the angle of attack is changing when the maximum lift coefficient is obtained. The variation of the maximum lift coefficient with these factors, which are under the control of the test engineer, shows the need of standardizing the test procedure. A further variation is shown with wing conditions as affected by weathering and vibration, factors that cannot be completely controlled.

  12. In-flight acoustic measurements on a light twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Mcdaniel, C. D.; Wilby, E. G.

    1985-01-01

    Four series of flight tests were conducted to measure sound pressure levels inside and outside the cabin of a twin-engined turboprop airplane. Particular emphasis was placed on harmonics of the propeller blade passage frequency. The cabin was unfurnished for the first three flights, when the main objective was to investigate the repeatability of the data. For the fourth flight, the cabin was treated with fiberglass batts. Typically, the exterior sound pressure levels were found to vary 3 to 5 dB for a given harmonic, but variations as high as 8 dB were observed. The variability of harmonic levels within the cabin was slightly higher but depended on control of the relative phase between the propellers; when phase was not controlled the average variability was about 10 dB. Noise reductions provided by the fuselage structure were in the range of 20 to 40 dB, when an exterior microphone in the plane of rotation of the propeller was used as reference.

  13. Flight and wind-tunnel comparisons of the inlet-airframe interaction of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Webb, L. D.; Andriyich-Varda, D.; Whitmore, S. A.

    1984-01-01

    The design of inlets and nozzles and their interactions with the airplane which may account for a large percentage of the total drag of modern high performance aircraft is discussed. The inlet/airframe interactions program and the flight tests conducted is described. Inlet drag and lift data from a 7.5% wind-tunnel model are compared with data from an F-15 airplane with instrumentation to match the model. Pressure coefficient variations with variable cowl angles, capture ratios, examples of flow interactions and angles of attack are for Mach numbers of 0.6, 0.9, 1.2, and 1.5 are presented.

  14. Ground-based and in-flight simulator studies of flight characteristics of a twin-fuselage passenger transport airplane during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.; Neely, W. R., Jr.; Deal, P. L.; Yenni, K. R.

    1985-01-01

    Six-degree-of-freedom ground-based and in-flight simulator studies were conducted to evaluate the low-speed flight characteristics of a twin-fuselage passenger transport airplane and to compare these characteristics with those of a large, single-fuselage (reference) transport configuration similar to the Lockheed C-5A airplane. The primary piloting task was the approach and landing task. The results of this study indicated that the twin-fuselage transport concept had acceptable but unsatisfactory longitudinal and lateral-directional low-speed flight characteristics, and that stability and control augmentation would be required in order to improve the handling qualities. Through the use of rate-command/attitude-hold augmentation in the pitch and roll axes, and the use of several turn coordination features, the handling qualities of the simulated transport were improved appreciably. The in-flight test results showed excellent agreement with those of the six-degree-of-freedom ground-based simulator handling qualities tests. As a result of the in-flight simulation study, a roll-control-induced normal-acceleration criterion was developed. The handling qualities of the augmented twin-fuselage passenger transport airplane exhibited an improvement over the handling characteristics of the reference (single-fuselage) transport.

  15. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. This presentation provides highlights of a technical paper that outlines this ultimate goal, including plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  16. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  17. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this paper provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  18. Flight evaluation of the effect of winglets on performance and handling qualities of a single-engine general aviation airplane

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Vandam, C. P.; Brown, P. W.; Deal, P. L.

    1980-01-01

    A flight evaluation was conducted to determine the effects of winglets on the performance and handling qualities of a light, single-engine general aviation airplane. The performance measurements were made with a pace airplane to provide calibrated airspeeds; uncalibrated panel instruments in the test airplane were used to provide additional quantitative performance data. These tests were conducted with winglets on and off during the same day to measure relative performance effects. Handling qualities were evaluated by means of pilot comments. Winglets increased cruise speed 8 knots (5.6 percent) at 3962 m (13,000 ft) density altitude and 51 percent maximum continuous power setting. Maximum speed at 3962 m was virtually unchanged. Rate of climb increased approximately 6 percent, or 0.25 m/sec (50 ft/min), at 1524 m (5000 ft). Stall speed was virtually unchanged. Handling qualities were favorably affected.

  19. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  20. Comparison of Wind-Tunnel and Flight Measurements of Stability and Control Characteristics of a Douglas A-26 Airplane

    NASA Technical Reports Server (NTRS)

    Kayten, Gerald G; Koven, William

    1945-01-01

    Stability and control characteristics determined from tests in the Langley 19-foot pressure tunnel of a 0.2375-scale model of the Douglas XA-26 airplane are compared with those measured in flight tests of a Douglas A-26 airplane. Agreement regarding static longitudinal stability as indicated by the elevator-fixed neutral points and by the variation of elevator deflection in both straight and turning flight was found to be good except at speeds approaching the stall. At these low speeds the airplane possessed noticeably improved stability, which was attributed to pronounced stalling at the root of the production wing. The pronounced root stalling did not occur on the smooth, well-faired model wing. Elevator tab effectiveness determined from model tests agreed well with flight-test tab effectiveness, but control-force variations with speed and acceleration were not in good agreement. The use of model hinge-moment data obtained at zero sideslip appeared to be satisfactory for the determination of aileron forces in sideslip. Fairly good correlation in aileron effectiveness and control forces was obtained; fabric distortion may have been responsible to some extent for higher flight values of aileron force at high speeds. Estimation of sideslip developed in an abrupt aileron roll was fair, but determination of the rudder deflection required to maintain zero sideslip in a rapid aileron roll was not entirely satisfactory.

  1. Wind-tunnel investigation of the flight characteristics of a canard general-aviation airplane configuration

    NASA Technical Reports Server (NTRS)

    Satran, D. R.

    1986-01-01

    A 0.36-scale model of a canard general-aviation airplane with a single pusher propeller and winglets was tested in the Langley 30- by 60-Foot Wind Tunnel to determine the static and dynamic stability and control and free-flight behavior of the configuration. Model variables made testing of the model possible with the canard in high and low positions, with increased winglet area, with outboard wing leading-edge droop, with fuselage-mounted vertical fin and rudder, with enlarged rudders, with dual deflecting rudders, and with ailerons mounted closer to the wing tips. The basic model exhibited generally good longitudinal and lateral stability and control characteristics. The removal of an outboard leading-edge droop degraded roll damping and produced lightly damped roll (wing rock) oscillations. In general, the model exhibited very stable dihedral effect but weak directional stability. Rudder and aileron control power were sufficiently adequate for control of most flight conditions, but appeared to be relatively weak for maneuvering compared with those of more conventionally configured models.

  2. Wind-tunnel free-flight investigation of a 0.15-scale model of the F-106B airplane with vortex flaps

    NASA Technical Reports Server (NTRS)

    Yip, Long P.

    1987-01-01

    An investigation to determine the effects of vortex flaps on the flight dynamic characteristics of the F-106B in the area of low-speed, high-angle-of-attack flight was undertaken on a 0.15-scale model of the airplane in the Langley 30- by 60-Foot Tunnel. Static force tests, dynamic forced-oscillation tests, as well as free-flight tests were conducted to obtain a data base on the flight characteristics of the F-106B airplane with vortex flaps. Vortex flap configurations tested included a full-span gothic flap, a full-span constant-chord flap, and a part-span gothic flap.

  3. Presentation of flight control design and handling quality commonality by separate surface stability augmentation for the family of commuter airplanes

    NASA Technical Reports Server (NTRS)

    Hensley, Douglas; Creighton, Thomas; Haddad, Raphael; Hendrich, Louis; Morgan, Louise; Russell, Mark; Swift, Gerald

    1987-01-01

    The methodology and results for a flight control design and implementation for common handling qualities by Separate Surface Stability Augmentation (SSSA) for the family of commuter airplanes are contained. The open and closed loop dynamics and the design results of augmenting for common handling qualities are presented. The physical and technology requirements are presented for implementing the SSSA system. The conclusion of this report and recommendations for changes or improvement are discussed.

  4. 78 FR 14007 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Electrical/Electronic Equipment Bay...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ..., specifically distributed electrical and electronic equipment bays in pressurized areas of the airplane. Older... manual procedure. In distributed electrical/electronic bay installations it is not as straightforward... incorporate the following novel or unusual design features: Distributed electrical and electronic...

  5. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS...), flight engineer check airmen (airplane), and flight navigator check airmen (airplane) must include the... flight engineer check airmen (airplane) and flight navigator check airmen (airplane), training to...

  6. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS...), flight engineer check airmen (airplane), and flight navigator check airmen (airplane) must include the... flight engineer check airmen (airplane) and flight navigator check airmen (airplane), training to...

  7. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS...), flight engineer check airmen (airplane), and flight navigator check airmen (airplane) must include the... flight engineer check airmen (airplane) and flight navigator check airmen (airplane), training to...

  8. Longitudinal Aerodynamic Modeling of the Adaptive Compliant Trailing Edge Flaps on a GIII Airplane and Comparisons to Flight Data

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.; Bui, Trong T.; Garcia, Christian A.; Cumming, Stephen B.

    2016-01-01

    A pair of compliant trailing edge flaps was flown on a modified GIII airplane. Prior to flight test, multiple analysis tools of various levels of complexity were used to predict the aerodynamic effects of the flaps. Vortex lattice, full potential flow, and full Navier-Stokes aerodynamic analysis software programs were used for prediction, in addition to another program that used empirical data. After the flight-test series, lift and pitching moment coefficient increments due to the flaps were estimated from flight data and compared to the results of the predictive tools. The predicted lift increments matched flight data well for all predictive tools for small flap deflections. All tools over-predicted lift increments for large flap deflections. The potential flow and Navier-Stokes programs predicted pitching moment coefficient increments better than the other tools.

  9. The Effect of Slots and Flaps on the Lift and Drag of the Mcdonnell Airplanes Determined in Flight

    NASA Technical Reports Server (NTRS)

    Soule, Hartley A

    1931-01-01

    This note contains the results of flight test conducted by the National Advisory Committee for Aeronautics on a low-wing monoplane equipped with leading-edge slots extending over the entire wing and flaps extending only to the ailerons, to find their effect on the lift and drag characteristics of the airplane. Curves are given showing the lift and drag characteristics of the airplane for the following conditions of the slots and flaps neutral; slots closed and flaps down; and slots open and flaps down. In addition, the high and low speed in level flight and the climbing characteristics are given. The results show that the slots used alone increase the maximum lift coefficient 54 per cent; the flaps alone increase it 38 per cent; and the slots and flaps in combination decrease the landing speed from 60 to 43 m.p.h.; increase the speed range of the airplane 40 per cent; and increase the glide angle at landing speed 4.2 degrees.

  10. Full-scale Wind-tunnel and Flight Tests of a Fairchild 22 Airplane Equipped with a Fowler Flap

    NASA Technical Reports Server (NTRS)

    Dearborn, C H; Soule, H A

    1936-01-01

    Full-scale wind-tunnel and flight tests were made of a Fairchild 22 airplane equipped with a Fowler flap to determine the effect of the flap on the performance and control characteristics of the airplane. In the wind-tunnel tests of the airplane with the horizontal tail surfaces removed, the flap was found to increase the maximum lift coefficient from 1.27 to 2.41. In the flight test, the flap was found to decrease the minimum speed from 58.8 to 44.4 miles per hour. The required take-off run to attain an altitude of 50 feet was reduced from 935 feet to 700 feet by the use of the flap, the minimum distance being obtained with five-sixths full deflection. The landing run from a height of 50 feet was reduced one-third. The longitudinal and directional control was adversely affected by the flap, indicating that the design of the tail surfaces is more critical with a flapped than a plain wing.

  11. The Effect of Mass Distribution on the Lateral Stability and Control Characteristics of an Airplane as Determined by Tests of a Model in the Free-flight Tunnel

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Seacord, Charles L , Jr

    1943-01-01

    The effects of mass distribution on lateral stability and control characteristics of an airplane have been determined by flight tests of a model in the NACA free-flight tunnel. In the investigation, the rolling and yawing moments of inertia were increased from normal values to values up to five times normal. For each moment-of-inertia condition, combinations of dihedral and vertical-tail area representing a variety of airplane configurations were tested. The results of the flight tests of the model were correlated with calculated stability and control characteristics and, in general, good agreement was obtained.

  12. Pressure Distribution over a Wing and Tail Rib of a VE-7 and of a TS Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr

    1928-01-01

    This investigation was made to determine the pressure distribution over a rib of the wing and over a rib of the horizontal tail surface of an airplane in flight and to obtain information as to the time correlation of the loads occurring on these ribs. Two airplanes, VE-7 and TS, were selected in order to obtain the information for a thin and a thick wing section. In each case the pressure distribution was recorded for the full range of angle of attack in level flight and throughout violent maneuvers. The results show: (a) that the present rib load specifications in use by the Army Air Corps and the Bureau of Aeronautics, Navy Department, are in fair agreement with the loads actually occurring in flight, but could be slightly improved; (b) that there appears to be no definite sequence in which wing and tail surface ribs reach their respective maximum loads in different maneuvers; (c) that in accelerated flight, at air speeds less than or equal to 60 per cent of the maximum speed, the accelerations measured agree very closely with the theoretically possible maximum accelerations. In maneuvers at higher air speeds the observed accelerations were smaller than those theoretically possible. (author)

  13. Correlation of the Drag Characteristics of a Typical Pursuit Airplane Obtained from High-Speed Wind-Tunnel and Flight Tests

    NASA Technical Reports Server (NTRS)

    Nissen, James M; Gadebero, Burnett L; Hamilton, William T

    1948-01-01

    In order to obtain a correlation of drag data from wind-tunnel and flight tests at high Mach numbers, a typical pursuit airplane, with the propeller removed, was tested in flight at Mach numbers up to 0.755, and the results were compared with wind-tunnel tests of a 1/3-scale model of the airplane. The tests results show that the drag characteristics of the test airplane can be predicted with satisfactory accuracy from tests in the Ames 16-foot high-speed wind tunnel of the Ames Aeronautical Laboratory at both high and low Mach numbers. It is considered that this result is not unique with the airplane.

  14. Flight Characteristics of a 1/4-Scale Model of the XFV-1 Airplane (TED No. NACA DE-378)

    NASA Technical Reports Server (NTRS)

    Kelly, Mark W.; Smaus, Louis H.

    1952-01-01

    A l/4-scale dynamically similar model of the XFV-1 airplane has been flown in the Ames 40- by 80-foot wind tunnel, using the trailing flight-cable technique. This investigation was devoted to establishing the flight characteristics of the model in forward flight from hovering to wing stall, and in yawed flight (wing span alined with the relative wind) from hovering to the maximum speed at which controlled flight could be maintained. Landings, take-offs, and hovering characteristics in flights close to the ground were also investigated.. Since the remote control system for the model was rather complicated and provided artificial damping about the pitch, roll, and yaw axes, sufficient data from the control-system calibration tests are included in this report to specify the performance of the control system in relation to both the model flight tests and the design of an automatic control system for the full-scale airplane. The model in hovering flight appeared to be neutrally stable. The response of the model to the controls was very rapid, and it was always necessary to provide some amount of artificial damping to maintain control. The model could be landed with little difficulty by hovering approximately a foot above the floor and then cutting the power. Take-offs were more difficult to perform, primarily because the rate of change in power to the model motors was limited by the characteristics of the available power source. The model was,capable of controlled yawed flight at translational velocities up to and including 20 feet per second. The effectiveness of the controls decreased with increasing speed, however, and at 25 fps control in pitch, and probably roll, was lost completely. The model was flown in controlled forward flight from hovering up to 70 fps. During these flights the model appeared to be more difficult to control in yaw than it was in pitch or roll. The flights of the model were recorded by motion picture cameras. These motion pictures are

  15. 77 FR 74579 - Airworthiness Directives; Gulfstream Aerospace Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... flight of civil aircraft in air commerce by prescribing regulations for practices, methods, and... Document GAC-AC-G450-OPS-0001. (h) Revision of Aircraft Flight Manual (AFM) Before further flight after the... test (SPOST) of the flap/stabilizer electronic control unit (FSECU), and revising the airplane...

  16. 76 FR 8319 - Special Conditions: Gulfstream Model GVI Airplane; Design Roll Maneuver Requirement for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... airplanes. These design features include an electronic flight control system that provides roll control of... Design Features The GVI is equipped with an electronic flight control system that provides roll control... of an electronic flight control system. Discussion of Proposed Special Conditions The GVI is...

  17. Full-scale Wind-tunnel and Flight Tests of a Fairchild 22 Airplane Equipped with External-airfoil Flaps

    NASA Technical Reports Server (NTRS)

    Reed, Warren D; Clay, William C

    1937-01-01

    Wind-tunnel and flight tests have been made of a Fairchild 22 airplane equipped with a wing having external-airfoil flaps that also perform the function of ailerons. Lift, drag, and pitching-moment coefficients of the airplane with several flap settings, and the rolling- and yawing-moment coefficients with the flaps deflected as ailerons were measured in the full-scale tunnel with the horizontal tail surfaces and propeller removed. The effect of the flaps on the low speed and on the take-off and landing characteristics, the effectiveness of flaps when used as ailerons, and the forces required to operate them as ailerons were determined in flight. The wind-tunnel tests showed that the flaps increased the maximum lift coefficient of the airplane from 1.51 with the flap in the minimum drag position to 2.12 with the flap in the minimum drag position to 2.12 with the flap deflected 30 degrees. In the flight tests the minimum speed decreased from 46.8 miles per hour with the flaps up to 41.3 miles per hour with the flaps deflected. The required take-off run to attain a height of 50 feet was reduced from 820 to 750 feet and the landing run from a height of 50 feet was reduced from 930 to 480 feet. The flaps for this installation gave lateral control that was not entirely satisfactory. Their rolling action was good but the adverse yaw resulting from their use was greater than is considerable, and the stick forces required to operate them increased too rapidly with speed.

  18. Preliminary flight evaluation of F100 engine model derivative airstart capability in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Cho, T. K.; Burcham, F. W., Jr.

    1984-01-01

    A series of airstarts was conducted in an F-15 airplane with two prototype F100 engine model derivative (EMD) engines equipped with digital electronic engine control (DEEC) systems. The airstart envelope and time required for airstarts were defined. The success of an airstart is most heavily dependent on airspeed. Spooldown airstarts at 200 knots and higher were all successful. Spooldown airstart times ranged from 53 sec at 250 knots to 170 sec at 175 knots. Jet fuel starter (JFS) assisted airstarts were conducted at 175 knots at two altitudes, and airstart times were 50 and 60 sec, significantly faster than unassisted airstart. The effect of altitude on airstarts was small. In addition, the airstart characteristics of the two test engines were found to closely resemble each other. The F100 EMD airstart characteristics were very similar to the DEEC equipped F100 engine tested previously. Finally, the time required to spool down from intermediate power compressor rotor speed to a given compressor rotor speed was found to be a strong function of altitude and a weaker function of airspeed.

  19. In-flight total forces, moments and static aeroelastic characteristics of an oblique-wing research airplane

    NASA Technical Reports Server (NTRS)

    Curry, R. E.; Sim, A. G.

    1984-01-01

    A low-speed flight investigation has provided total force and moment coefficients and aeroelastic effects for the AD-1 oblique-wing research airplane. The results were interpreted and compared with predictions that were based on wind tunnel data. An assessment has been made of the aeroelastic wing bending design criteria. Lateral-directional trim requirements caused by asymmetry were determined. At angles of attack near stall, flow visualization indicated viscous flow separation and spanwise vortex flow. These effects were also apparent in the force and moment data.

  20. Subsonic stability and control derivatives for an unpowered, remotely piloted 3/8-scale F-15 airplane model obtained from flight test

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.; Shafer, M. F.

    1976-01-01

    In response to the interest in airplane configuration characteristics at high angles of attack, an unpowered remotely piloted 3/8-scale F-15 airplane model was flight tested. The subsonic stability and control characteristics of this airplane model over an angle of attack range of -20 to 53 deg are documented. The remotely piloted technique for obtaining flight test data was found to provide adequate stability and control derivatives. The remotely piloted technique provided an opportunity to test the aircraft mathematical model in an angle of attack regime not previously examined in flight test. The variation of most of the derivative estimates with angle of attack was found to be consistent, particularly when the data were supplemented by uncertainty levels.

  1. Wind-tunnel Tests of a 2-engine Airplane Model as a Preliminary Study of Flight Conditions Arising on the Failure of the Engine

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1938-01-01

    Wind tunnel tests of a 15-foot-span model of a two-engine low wing transport airplane were made as a preliminary study of the emergency arising from the failure of one engine in flight. Two methods of reducing the initial yawing moment resulting from the failure of one engine were investigated and the equilibrium conditions were explored for two basic modes on one engine, one with zero angle of sideslip and the other with several degrees of sideslip. The added drag resulting from the unsymmetrical attitudes required for flight on one engine was determined for the model airplane. The effects of the application of power upon the stability, controllability, lift, and drag of the model airplane were measured. A dynamic pressure survey of the propeller slipstream was made in the neighborhood of the tail surfaces at three angles of attack. The added parasite drag of the model airplane resulting from the unfavorable conditions of flight on one engine was estimated. From 35 to 50 percent of this added drag was due to the drag of the dead engine propeller and the other 50 to 65 percent was due to the unsymmetrical attitude of the airplane. The mode of flight on one engine in which the angle of sideslip was zero was found to require less power than the mode in which the angle of sideslip was several degrees.

  2. Flight Measurements to Determine Effect of a Spring-Loaded Tab on Longitudinal Stability of an Airplane

    NASA Technical Reports Server (NTRS)

    Hunter, Paul A.; Reeder, John P.

    1946-01-01

    In conjunction with a program of research on the general problem of stability of airplanes in the climbing condition, tests have been made of a spring-loaded tb which. is referred to as a ?springy tab,? installed on the elevator of a low-wing scout bomber. The tab was arranged to deflect upward with decrease in speed which caused an increase in the pull force required to trim at low speeds and thereby increased the stick-free static longitudinal stability of the airplane. It was found that the springy tab would increase the stick-free stability in all flight conditions, would reduce the danger of inadvertent stalling because of the definite pull force required to stall the airplane with power on, would reduce the effect of center-of-gravity position on stick-free static stability, and would have little effect on the elevator stick forces in accelerated f11ght. Another advantage of the springy tab is that it might be used to provide almost any desired variation of elevator stick force with speed by adjusting the tab hinge-moment characteristics and the variation of spring moment with tab deflection. Unlike the bungee and the bobweight, the springy tab would provide stick-free static stability without requiring a pull force to hold the stick back while taxying. A device similar to the springy tab may be used on the rudder or ailerons to eliminate undesirable trim-force variations with speed.

  3. Simulator study of flight characteristics of a large twin-fuselage cargo transport airplane during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Deal, P. L.; Keyser, G. L., Jr.; Smith, P. M.

    1983-01-01

    A six degree-of-freedom, ground-based simulator study was conducted to evaluate the low speed flight characteristics of a twin fuselage cargo transport airplane and to compare these characteristics with those of a large, single fuselage (reference) transport configuration which was similar to the Lockheed C-5C airplane. The primary piloting task was the approach and landing. The results indicated that in order to achieve "acceptable' low speed handling qualities on the twin fuselage concept, considerable stability and control augmentation was required, and although the augmented airplane could be landed safely under adverse conditions, the roll performance of the aircraft had to be improved appreciably before the handling qualities were rated as being "satisfactory.' These ground-based simulation results indicated that a value of t sub phi = 30 (time required to bank 30 deg) less than 6 sec should result in "acceptable' roll response characteristics, and when t sub phi = 30 is less than 3.8 sec, "satisfactory' roll response should be attainable on such large and unusually configured aircraft as the subject twin fuselage cargo transport concept.

  4. 75 FR 39472 - Airworthiness Directives; Eclipse Aerospace, Inc. Model EA500 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... FAA with promoting safe flight of civil aircraft in air commerce by prescribing regulations for... 06 122205, Revision 03. (ii) Avionics upgrade to AVIO NG + 1.5 Configuration and Aircraft Flight... require incorporating changes to the electronic flight information system and the airplane flight...

  5. Stability and Controls Analysis and Flight Test Results of a 24-Foot Telescoping Nose Boom on an F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Moua, Cheng M.; Cox, Timothy H.; McWherter, Shaun C.

    2008-01-01

    The Quiet Spike(TradeMark) F-15B flight research program investigated supersonic shock reduction using a 24-ft telescoping nose boom on an F-15B airplane. The program goal was to collect flight data for model validation up to 1.8 Mach. In the area of stability and controls, the primary concerns were to assess the potential destabilizing effect of the oversized nose boom on the stability, controllability, and handling qualities of the airplane and to ensure adequate stability margins across the entire research flight envelope. This paper reports on the stability and control analytical methods, flight envelope clearance approach, and flight test results of the F-15B telescoping nose boom configuration. Also discussed are brief pilot commentary on typical piloting tasks and refueling tasks.

  6. Investigation of the Forces Acting on Gliders in Automobile-pulley-winch and Airplane Towed Flight

    NASA Technical Reports Server (NTRS)

    Klemperer, W B

    1942-01-01

    The magnitude, the direction, and the fluctuation of towing forces exerted upon gliders by towing them aloft behind an automobile, by means of a winch, and by airplane were measured under a variety of conditions covering a range from gentle to severe types of operation. For these tests the towing forces did not exceed 92 percent of the gross weight of the glider. The results indicate that in pulley and winch towing the towing forces are of about the same magnitude as in automobile towing. Speed increases in the accelerated phases of the towing jerks encountered in airplane towing can readily become critical as speeds in excess of placard speeds can be attained. Passage through the slipstream of the towing airplane can be equivalent to a severe gust that, at high speed, may impose high wing loads and require large control moments.

  7. Wind-tunnel static and free-flight investigation of high-angle-of-attack stability and control characteristics of a model of the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Jordan, Frank L., Jr.; Hahne, David E.

    1992-01-01

    An investigation was conducted in the Langley 30- by 60-Foot Tunnel and the Langley 12-Foot Low-Speed Tunnel to identify factors contributing to a directional divergence at high angles of attack for the EA-6B airplane. The study consisted of static wind-tunnel tests, smoke and tuft flow-visualization tests, and free-flight tests of a 1/8.5-scale model of the airplane. The results of the investigation indicate that the directional divergence of the airplane is brought about by a loss of directional stability and effective dihedral at high angles of attack. Several modifications were tested that significantly alleviate the stability problem. The results of the free-flight study show that the modified configuration exhibits good dynamic stability characteristics and could be flown at angles of attack significantly higher than those of the unmodified configuration.

  8. Piloted simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Brown, P. W.; Yenni, K. R.

    1986-01-01

    A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.

  9. Flight and Static Exhaust Flow Properties of an F110-GE-129 Engine in an F-16XL Airplane During Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Holzman, Jon K.; Webb, Lannie D.; Burcham, Frank W., Jr.

    1996-01-01

    The exhaust flow properties (mass flow, pressure, temperature, velocity, and Mach number) of the F110-GE-129 engine in an F-16XL airplane were determined from a series of flight tests flown at NASA Dryden Flight Research Center, Edwards, California. These tests were performed in conjunction with NASA Langley Research Center, Hampton, Virginia (LARC) as part of a study to investigate the acoustic characteristics of jet engines operating at high nozzle pressure conditions. The range of interest for both objectives was from Mach 0.3 to Mach 0.9. NASA Dryden flew the airplane and acquired and analyzed the engine data to determine the exhaust characteristics. NASA Langley collected the flyover acoustic measurements and correlated these results with their current predictive codes. This paper describes the airplane, tests, and methods used to determine the exhaust flow properties and presents the exhaust flow properties. No acoustics results are presented.

  10. An Apparatus for Varying Effective Dihedral in Flight with Application to a Study of Tolerable Dihedral on a Conventional Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Kauffman, William M; Liddell, Charles J , Jr; Smith, Allan; Van Dyke, Rudolph D , Jr

    1949-01-01

    An apparatus for varying effective dihedral in flight by means of servo actuation of the ailerons in response to sideslip angle is described. The results of brief flight tests of the apparatus on a conventional fighter airplane are presented and discussed. The apparatus is shown to have satisfactory simulated a wide range of effective dihedral under static and dynamic conditions. The effects of a small amount of servo lag are shown to be measurable when the apparatus is simulating small negative values of dihedral. However, these effects were not considered by the pilots to give the airplane an artificial feel. The results of an investigation employing the apparatus to determine the tolerable (safe for normal fighter operation) range of effective dihedral on the test airplane are presented.

  11. Summary of flight tests to determine the spin and controllability characteristics of a remotely piloted, large-scale (3/8) fighter airplane model

    NASA Technical Reports Server (NTRS)

    Holleman, E. C.

    1976-01-01

    An unpowered, large, dynamically scaled airplane model was test flown by remote pilot to investigate the stability and controllability of the configuration at high angles of attack. The configuration proved to be departure/spin resistant; however, spins were obtained by using techniques developed on a flight support simulator. Spin modes at high and medium high angles of attack were identified, and recovery techniques were investigated. A flight support simulation of the airplane model mechanized with low speed wind tunnel data over an angle of attack range of + or - 90 deg. and an angle of sideslip range of + or - 40 deg. provided insight into the effects of altitude, stability, aerodynamic damping, and the operation of the augmented flight control system on spins. Aerodynamic derivatives determined from flight maneuvers were used to correlate model controllability with two proposed departure/spin design criteria.

  12. Flight Determination of the Static Longitudinal Stability Boundaries of the Bell X-5 Research Airplane with 59 Deg Sweepback

    NASA Technical Reports Server (NTRS)

    Finch, Thomas W; Walker, Joseph A

    1953-01-01

    During the flight program on the Bell X-5 airplane with 59 deg sweepback to determine the practical Mach number and normal-force coefficient limits of this configuration, a reduction in static longitudinal stability was encountered in maneuvering flight. A determination of the boundary for reduction of longitudinal stability extending to a Mach number of 0.98 is presented in this paper. A reduction of static longitudinal stability existed for all elevator and all stabilizer-executed maneuvers. The reduction of stability existed for maneuvers executed with elevator near a normal-force coefficient of 0.6 for a Mach number range of about 0.31 to 0.76. Above a Mach number of 0.76 the normal-force coefficient for reduction of stability gradually decreased to a value of 0.2 at a Mach number of 0.98. For stabilizer-executed maneuvers the stability boundary was the same as for elevator maneuvers up to a Mach number of 0.88. Above this Mach number the reduction of stability occurred at slightly higher normal-force coefficients decreasing from about 0.51 at a Mach number of 0.92 to a value of 0.311 at a Mach number of 0.97. The airplane has been flown to a Mach number of 1.04 at a normal-force coefficient of about 0.15 without encountering any reduction of stability. The pilot did not consider the reduction of stability to be dangerous at altitudes above 30,000 feet; however, precise flight was impossible. At angles of attack above that at which the reduction of longitudinal stability occurred, directional instability and aileron control overbalance were encountered.

  13. 14 CFR 121.344 - Digital flight data recorders for transport category airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... as provided in paragraph (l) of this section, no person may operate under this part a turbine-engine... (when an information source is installed); (38) Wind speed and direction (when an information source is... rudder valve status. (b) For all turbine-engine powered transport category airplanes manufactured on...

  14. 14 CFR 121.344 - Digital flight data recorders for transport category airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... as provided in paragraph (l) of this section, no person may operate under this part a turbine-engine... (when an information source is installed); (38) Wind speed and direction (when an information source is... rudder valve status. (b) For all turbine-engine powered transport category airplanes manufactured on...

  15. 14 CFR 121.344 - Digital flight data recorders for transport category airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... as provided in paragraph (l) of this section, no person may operate under this part a turbine-engine... (when an information source is installed); (38) Wind speed and direction (when an information source is... rudder valve status. (b) For all turbine-engine powered transport category airplanes manufactured on...

  16. 14 CFR 121.344 - Digital flight data recorders for transport category airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... as provided in paragraph (l) of this section, no person may operate under this part a turbine-engine... (when an information source is installed); (38) Wind speed and direction (when an information source is... rudder valve status. (b) For all turbine-engine powered transport category airplanes manufactured on...

  17. 14 CFR 121.344 - Digital flight data recorders for transport category airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... as provided in paragraph (l) of this section, no person may operate under this part a turbine-engine... (when an information source is installed); (38) Wind speed and direction (when an information source is... rudder valve status. (b) For all turbine-engine powered transport category airplanes manufactured on...

  18. Flight-test of the glide-slope track and flare-control laws for an automatic landing system for a powered-lift STOL airplane

    NASA Technical Reports Server (NTRS)

    Watson, D. M.; Hardy, G. H.; Warner, D. N., Jr.

    1983-01-01

    An automatic landing system was developed for the Augmentor Wing Jet STOL Research Airplane to establish the feasibility and examine the operating characteristics of a powered-lift STOL transport flying a steep, microwave landing system (MLS) glide slope to automatically land on a STOL port. The flight test results address the longitudinal aspects of automatic powered lift STOL airplane operation including glide slope tracking on the backside of the power curve, flare, and touchdown. Three different autoland control laws were evaluated to demonstrate the tradeoff between control complexity and the resulting performance. The flight test and simulation methodology used in developing conventional jet transport systems was applied to the powered-lift STOL airplane. The results obtained suggest that an automatic landing system for a powered-lift STOL airplane operating into an MLS-equipped STOL port is feasible. However, the airplane must be provided with a means of rapidly regulation lift to satisfactorily provide the glide slope tracking and control of touchdown sink rate needed for automatic landings.

  19. Free-Flight-Tunnel Investigation of the Dynamic Stability and Control Characteristics of a Chance Vought F7U-3 Airplane in Towed Flight

    NASA Technical Reports Server (NTRS)

    Grana, David C.; Shanks, Robert E.

    1952-01-01

    As part of a program to determine the feasibility of using a fighter airplane as a parasite in combination with a Consolidated Vultee RB-36 for long-range reconnaissance missions (project FICON), an experimental investigation has been made in the Langley free-flight tunnel to determine the dynamic stability and control characteristics of a 1/17.5-scale model of a Chance Vought F7U-3 airplane in several tow configurations. The investigation consisted of flight tests in which the model was towed from a strut in the tunnel by a towline and by a direct coupling which provided complete angular freedom. The tests with the direct coupling also included a study of the effect of spring restraint in roll in order to simulate approximately the proposed full-scale arrangement in which the only freedom is that permitted by the flexibility of the launching and retrieving trapeze carried by the-bomber. For the tow configurations in which a towline was used (15 and 38 feet full scale), the model had a very unstable lateral oscillation which could not be controlled. The stability was also unsatisfactory for the tow configuration in Which the model was coupled directly to the strut with complete angular freedom. When spring restraint in roll was added, however, the stability was satisfactory. The use of the yaw damper which increased the damping in yaw to about six times the normal value of the model appeared to have no appreciable effect on the lateral oscillations in the towline configurations, but produced a slight improvement in the case of the direct coupling configurations. The longitudinal stability was satisfactory for those cases in which the lateral stability was good enough to permit study of longitudinal motions.

  20. Maximum likelihood method for estimating airplane stability and control parameters from flight data in frequency domain

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1980-01-01

    A frequency domain maximum likelihood method is developed for the estimation of airplane stability and control parameters from measured data. The model of an airplane is represented by a discrete-type steady state Kalman filter with time variables replaced by their Fourier series expansions. The likelihood function of innovations is formulated, and by its maximization with respect to unknown parameters the estimation algorithm is obtained. This algorithm is then simplified to the output error estimation method with the data in the form of transformed time histories, frequency response curves, or spectral and cross-spectral densities. The development is followed by a discussion on the equivalence of the cost function in the time and frequency domains, and on advantages and disadvantages of the frequency domain approach. The algorithm developed is applied in four examples to the estimation of longitudinal parameters of a general aviation airplane using computer generated and measured data in turbulent and still air. The cost functions in the time and frequency domains are shown to be equivalent; therefore, both approaches are complementary and not contradictory. Despite some computational advantages of parameter estimation in the frequency domain, this approach is limited to linear equations of motion with constant coefficients.

  1. 78 FR 73993 - Special Conditions: Cessna Model 680 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... external to the airplane. Discussion The architecture and network configuration in the Cessna Model 680... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Cessna Model 680 Series Airplanes... conditions are issued for the Cessna Model 680 Series airplanes. These airplanes will have a novel or...

  2. Flight Tests of a 1/6-Scale Model of the Hawker P 1127 Jet VTOL Airplane

    NASA Technical Reports Server (NTRS)

    Smith, Charles C., Jr.

    1961-01-01

    An experimental investigation has been made to determine the dynamic stability and control characteristics of a 1/6-scale flying model of the Hawker P lIP7 jet vertical-take-off-and-landing (VTOL) airplane in hovering and transition flight. The model was powered by a counter-rotating ducted fan driven by compressed-air jets at the tips of the fan blades. In hovering flight the model was controlled by jet-reaction controls which consisted of yaw and pitch jets at the extremities of the fuselage and a roll jet on each wing tip. In forward flight the model was controlled by conventional ailerons and rudder and an all-movable horizontal tail. In hovering flight the model could be flown smoothly and easily, but the roll control was considered too weak for rapid maneuvering or hovering in gusty air. Transitions from hovering to normal forward flight and back to hovering could be made smoothly and consistently and with only moderate changes in longitudinal trim. The model had a static longitudinal instability or pitch-up tendency throughout the transition range, but the rate of divergence in the pitch-up was moderate and the model could be controlled easily provided the angle of attack was not allowed to become too high. In both the transition and normal forward flight conditions the lateral motions of the model were difficult to control at high angles of attack, apparently because of low directional stability at small angles of sideslip. The longitudinal stability of the model in normal forward flight was generally satisfactory, but there was a decided pitch-up tendency for the flap-down condition at high angles of attack. In the VTOL landing approach condition, with the jets directed straight down or slightly forward, the nose-down pitch trim required was greater than in the transitions from hovering to forward flight, but the longitudinal instability was about the same. Take-offs and landings in still air could be made smoothly although there was a slight unfavorable

  3. A study of the use of experimental stability derivatives in the calculation of the lateral disturbed motions of a swept-wing airplane and comparison with flight results

    NASA Technical Reports Server (NTRS)

    Bird, John D; Jaquet, Byron M

    1951-01-01

    An investigation was made to determine the accuracy with which the lateral flight motions of a swept-wing airplane could be predicted from experimental stability derivatives, determined in the 6-foot-diameter rolling-flow test section and 6 by 6-foot curved-flow test section of the Langley stability tunnel. In addition, determination of the significance of including the nonlinear aerodynamic effects of sideslip in the calculations of the motions was desired. All experimental aerodynamic data necessary for prediction of the lateral flight motions are presented along with a number of comparisons between flight and calculated motions caused by rudder and aileron disturbances.

  4. Measurements in Flight of the Longitudinal-Stability Characteristics of a Republic YF-84A Airplane (Army Serial No. 45-59488) at High Subsonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Turner, Howard L.; Cooper, George E.

    1948-01-01

    A brief investigation was made of the longitudinal-stability characteristics of a YF-84A airplane (Army Serial No. 45-79488). The airplane developed a pitching-up tendency at approximately 0.80 Mach number which necessitated large push forces and down-elevator deflections for further increases in speed. In steady turns at 35,000 feet with the center of gravity at 28.3 percent mean aerodynamic chord for normal accelerations up to the maximum test value, the control-force gradients were excessive at Mach numbers over 0.78. Airplane buffeting did not present a serious problem in accelerated or unaccelerated flight at 15,000 and 35,000 feet up to the maximum test Mach number of 0.84. It is believed that excessive control force would be the limiting factor in attaining speeds in excess of 0.84 Mach number, especially at altitudes below 35,000 feet.

  5. Force Tests of a 1/5-Scale Model of the McDonnell XP-85 Airplane with Conventional Tail Assembly in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Paulson, John W.; Johnson, Joseph L.

    1947-01-01

    At the request of the Air Materiel Command, Army Air Forces an investigation of the low-speed, power-off stability and control characteristics of the McDonnell XP-85 airplane is being conducted in the Langley free-flight tunnel. The XP-85 airplane is a parasite fighter carried in a bomb bay of the B-36 airplane. As a part of the investigation a few force tests were made of a 1/5 scale model of the XP-85 with a conventional tail assembly installed in place of the original design five-unit tail assembly. The total area of the conventional assembly was approximately 80 percent of the area of the five-unit assembly. The results of this investigation showed that the conventional tail assembly gave about the same longitudinal stability characteristics as the original configuration and improved the directional and lateral stability.

  6. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms September 10, 1947 to September 15, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from September 10, 1947 to September 15, 1947, are presented.

  7. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms August 16, 1947 to August 20, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from August 16, 1947 to August 20, 1947 are presented.

  8. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms August 13, 1947 to August 15, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from August 13, 1947 to August 15, 1947 are presented.

  9. A revolutionary approach to composite construction and flight management systems for small, general aviation airplanes

    NASA Technical Reports Server (NTRS)

    Roskam, Jan; Wenninger, ED

    1992-01-01

    The design studies for two composite general aviation airplanes are presented. The main consideration for both of the designs was to avoid the typical 'metal replacement' philosophy that has hindered the widespread use of composites in general aviation aircraft. The first design is for a low wing aircraft based on the Smith Aircraft Corporation GT-3 Global Trainer. The second aircraft is a composite version of the Cessna 152. The project was conducted as a graduate level design class under the auspices of the KU/NASA/USRA Advanced Design Program in aeronautics. The results obtained from the Fall semester of 1991 and the Spring semester of 1992 are presented.

  10. 78 FR 67291 - Special Conditions: Bombardier Inc., Models BD-500-1A10 and BD-500-1A11 Series Airplanes; Design...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... design feature associated with an electronic flight control system that provides roll control of the... requirement, Sec. 25.349, to take into account the effects of an electronic flight control system. ] Type... design features: The airplanes are equipped with an electronic flight control system that...

  11. 78 FR 63902 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Normal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Embraer S.A., Model EMB-550 Airplanes... for the Embraer S.A. Model EMB-550 airplane. This airplane will have a novel or unusual design feature... this rulemaking by sending written comments, data, or views. The most helpful comments reference...

  12. 77 FR 69569 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Pitch and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... Model EMB-550 airplane. The Model EMB-550 airplane is the first of a new family of jet airplanes... 12 passengers. It is equipped with two Honeywell HTF7500-E medium bypass ratio turbofan engines mounted on aft fuselage pylons. Each engine produces approximately 6,540 pounds of thrust for...

  13. 78 FR 63847 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Airplane Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... architecture for the Embraer Model EMB-550 series of airplanes is composed of several connected networks. This... (aircraft control functions); 2. Airline business and administrative support (airline information services... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Embraer S.A., Model EMB-550...

  14. Measurements in Flight of the Flying Qualities of a Chance Vought F4U-4 Airplane: TED No. NACA 2388

    NASA Technical Reports Server (NTRS)

    Liddell, Charles J., Jr.; Reynolds, Robert M.; Christofferson, Frank E.

    1947-01-01

    The results of flight tests to determine flying qualities of a Chance Vought F4U-4 airplane are presented and discussed herein. In addition to comprehensive measurements at low altitude (about 8000 ft), tests of limited scope were made at high altitude (about 25,000 ft). The more important characteristics, based on a comparison of the test results and opinions of the pilots with the Navy requirements, can be summarized as follows: 1. The short-period control-free oscillations of the elevator angle and the normal acceleration were satisfactorily damped. 2. The most rearward center-of-gravity locations for satisfactory static longitudinal stability with power on, as determined by the control-force variations, were approximately 30 and 27 percent M.A.C. with flaps and gear up and down, respectively. 3. In maneuvering flight the conditions for which control-force gradients of satisfactory magnitude were obtained were seriously limited by sizable changes in the gradient with center-of-gravity location, airspeed, altitude, acceleration factor, and direction of turn. 4. The elevator and rudder controls were satisfactory for landings and take-offs. 5. The trim tabs were sufficiently effective for all controls. 6. The directional and lateral dynamic stability was positive, but the rudder oscillation did not damp within one cycle. The airplane oscillation damped sufficiently at low altitude but not at high altitude. 7. Both rudder-fixed and rudder-free static directional stability were positive over a sideslip range of +/-15 deg. However, the rudder force tended to reverse at high angles of right sideslip with flaps and gear up, power on, at low speeds. 8. The stick-fixed static lateral stability (dihedral effect) was positive in all conditions, but the stick-free dihedral effect was neutral at low speeds with flap and gear down, power on. 9. The yaw due to abrupt full aileron deflection at low speed was mot excessive, and the rudder control was adequate to hold trim

  15. Digital electronic engine control fault detection and accommodation flight evaluation

    NASA Technical Reports Server (NTRS)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  16. The Formation of Ice upon Exposed Parts of an Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Carroll, Thomas; Mcavoy, Wm H

    1928-01-01

    In order to experimentally study the conditions leading to ice formation on aircraft surfaces, an aircraft was equipped with small auxiliary surfaces and aerodynamic shapes similar to struts, wires, Pitot heads, etc. This airplane was flown at an altitude where a temperature of 32 F was encountered, at such times as cloud formations could be found at the coincident altitude. Here it was discovered that ice formed rapidly in regard to quantity,character, shape, and rapidity of formation. An examination of this data, which confirms observations of pilots, indicates that the weight of ice collected can very possibly be sufficient to force the airplane to rapidly lose altitude on account of the increased loads. However, it is more evident that the malformation of the aerodynamic shapes may so increase the drag and reduce the lift so as to produce a loss of altitude even greater in consequence, the combination of the two working in the same direction having a double effect. Other adverse consequences are noted. The recommendation for the guidance of those who must encounter these conditions appears to lie entirely along the lines of avoidance.

  17. Flight Calibration of four airspeed systems on a swept-wing airplane at Mach numbers up to 1.04 by the NACA radar-phototheodolite method

    NASA Technical Reports Server (NTRS)

    Thompson, Jim Rogers; Bray, Richard S; COOPER GEORGE E

    1950-01-01

    The calibrations of four airspeed systems installed in a North American F-86A airplane have been determined in flight at Mach numbers up to 1.04 by the NACA radar-phototheodolite method. The variation of the static-pressure error per unit indicated impact pressure is presented for three systems typical of those currently in use in flight research, a nose boom and two different wing-tip booms, and for the standard service system installed in the airplane. A limited amount of information on the effect of airplane normal-force coefficient on the static-pressure error is included. The results are compared with available theory and with results from wind-tunnel tests of the airspeed heads alone. Of the systems investigated, a nose-boom installation was found to be most suitable for research use at transonic and low supersonic speeds because it provided the greatest sensitivity of the indicated Mach number to a unit change in true Mach number at very high subsonic speeds, and because it was least sensitive to changes in airplane normal-force coefficient. The static-pressure error of the nose-boom system was small and constant above a Mach number of 1.03 after passage of the fuselage bow shock wave over the airspeed head.

  18. Flight investigation of the effects of an outboard wing-leading-edge modification on stall/spin characteristics of a low-wing, single-engine, T-tail light airplane

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Dicarlo, Daniel J.; Patton, James M., Jr.

    1987-01-01

    Flight tests were performed to investigate the change in stall/spin characteristics due to the addition of an outboard wing-leading-edge modification to a four-place, low-wing, single-engine, T-tail, general aviation research airplane. Stalls and attempted spins were performed for various weights, center of gravity positions, power settings, flap deflections, and landing-gear positions. Both stall behavior and wind resistance were improved compared with the baseline airplane. The latter would readily spin for all combinations of power settings, flap deflections, and aileron inputs, but the modified airplane did not spin at idle power or with flaps extended. With maximum power and flaps retracted, the modified airplane did enter spins with abused loadings or for certain combinations of maneuver and control input. The modified airplane tended to spin at a higher angle of attack than the baseline airplane.

  19. Development and evaluation of an airplane electronic display format aligned with the inertial velocity vector

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.

    1986-01-01

    The development of an electronic primary flight display format aligned with the aircraft velocity vector, a simulation evaluation comparing this format with an electronic attitude-aligned primary flight display format, and a flight evaluation of the velocity-vector-aligned display format are described. Earlier tests in turbulent conditions with the electronic attitude-aligned display format had exhibited unsteadiness. A primary objective of aligning the display format with the velocity vector was to take advantage of a velocity-vector control-wheel steering system to provide steadiness of display during turbulent conditions. Better situational awareness under crosswind conditions was also achieved. The evaluation task was a curved, descending approach with turbulent and crosswind conditions. Primary flight display formats contained computer-drawn perspective runway images and flight-path angle information. The flight tests were conducted aboard the NASA Transport Systems Research Vehicle (TSRV). Comparative results of the simulation and flight tests were principally obtained from subjective commentary. Overall, the pilots preferred the display format aligned with the velocity vector.

  20. In-flight investigation of the effects of pilot location and control system design on airplane flying qualities for approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.; Chalk, C. R.

    1982-01-01

    The handling qualities of large airplanes in the approach and landing flight phase were studied. The primary variables were relative pilot position with respect to center of rotation, command path time delays and phase shifts, augmentation schemes and levels of augmentation. It is indicated that the approach and landing task with large airplanes is a low bandwidth task. Low equivalent short period frequencies and relatively long time delays are tolerated only when the pilot is located at considerable distance forward of the center of rotation. The control problem experienced by the pilots, when seated behind the center of rotation, tended to occur at low altitude when they were using visual cues of rate of sink and altitude. A direct lift controller improved final flight path control of the shuttle like configurations.

  1. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... conducting supplemental operations schedules a pilot to fly more than eight hours during any 24 consecutive... flight duty. This rest period must be at least twice the number of hours flown since the preceding...

  2. DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  3. A Flight Study of the Effects on Tracking Performance of Changes in the Lateral-oscillatory Characteristics of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Van Dyke, Rudolph D , Jr; Mcneill, Walter E; Drinkwater, Fred J , III

    1953-01-01

    A study of the effects of variations in lateral-oscillatory characteristics on air-to-air tracking performance has been made, using a conventional, propeller-driven fighter airplane equipped with servo devices for varying these characteristics in flight. Tracking runs were made both in smooth air and in simulated rough air. The lateral-oscillation period, damping, and roll coupling were varied over wide ranges during the investigation.

  4. A comparison of flight and simulation data for three automatic landing system control laws for the Augmentor wing jet STOL research airplane

    NASA Technical Reports Server (NTRS)

    Feinreich, B.; Gevaert, G.

    1980-01-01

    Automatic flare and decrab control laws for conventional takeoff and landing aircraft were adapted to the unique requirements of the powered lift short takeoff and landing airplane. Three longitudinal autoland control laws were developed. Direct lift and direct drag control were used in the longitudinal axis. A fast time simulation was used for the control law synthesis, with emphasis on stochastic performance prediction and evaluation. Good correlation with flight test results was obtained.

  5. 78 FR 65153 - Special Conditions: Learjet Model 45 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...); 2. Operator business and administrative support (operator information services); 3. Passenger... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Learjet Model 45 Series Airplanes... conditions are issued for the Learjet Model 45 series airplanes. These airplanes will have a novel or...

  6. Flight-determined engine exhaust characteristics of an F404 engine in an F-18 airplane

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.; Burcham, Frank W., Jr.; Webb, Lannie D.

    1993-01-01

    Personnel at the NASA Langley Research Center (NASA-Langley) and the NASA Dryden Flight Research Facility (NASA-Dryden) recently completed a joint acoustic flight test program. Several types of aircraft with high nozzle pressure ratio engines were flown to satisfy a twofold objective. First, assessments were made of subsonic climb-to-cruise noise from flights conducted at varying altitudes in a Mach 0.30 to 0.90 range. Second, using data from flights conducted at constant altitude in a Mach 0.30 to 0.95 range, engineers obtained a high quality noise database. This database was desired to validate the Aircraft Noise Prediction Program and other system noise prediction codes. NASA-Dryden personnel analyzed the engine data from several aircraft that were flown in the test program to determine the exhaust characteristics. The analysis of the exhaust characteristics from the F-18 aircraft are reported. An overview of the flight test planning, instrumentation, test procedures, data analysis, engine modeling codes, and results are presented.

  7. Determination of stability and control parameters of a light airplane from flight data using two estimation methods. [equation error and maximum likelihood methods

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1979-01-01

    Two identification methods, the equation error method and the output error method, are used to estimate stability and control parameter values from flight data for a low-wing, single-engine, general aviation airplane. The estimated parameters from both methods are in very good agreement primarily because of sufficient accuracy of measured data. The estimated static parameters also agree with the results from steady flights. The effect of power different input forms are demonstrated. Examination of all results available gives the best values of estimated parameters and specifies their accuracies.

  8. Flight test report of the NASA icing research airplane: Performance, stability, and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Jordan, J. L.; Platz, S. J.; Schinstock, W. C.

    1986-01-01

    Flight test results are presented documenting the effect of airframe icing on performance and stability and control of a NASA DHC-6 icing research aircraft. Kohlman System Research, Inc., provided the data acquisition system and data analysis under contract to NASA. Performance modeling methods and MMLE techniques were used to determine the effects of natural ice on the aircraft. Results showed that ice had a significant effect on the drag coefficient of the aircraft and a modest effect on the MMLE derived longitudinal stability coefficients (code version MMLE). Data is also presented on asymmetric power sign slip maneuvers showing rudder floating characteristics with and without ice on the vertical stabilizer.

  9. Logic Design Pathology and Space Flight Electronics

    NASA Technical Reports Server (NTRS)

    Katz, Richard B.; Barto, Rod L.; Erickson, Ken

    1999-01-01

    This paper presents a look at logic design from early in the US Space Program and examines faults in recent logic designs. Most examples are based on flight hardware failures and analysis of new tools and techniques. The paper is presented in viewgraph form.

  10. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-70-1). 3: A comparison between characteristics predicted from wind-tunnel measurements and those measured in flight

    NASA Technical Reports Server (NTRS)

    Arnaiz, H. H.; Peterson, J. B., Jr.; Daugherty, J. C.

    1980-01-01

    A program was undertaken by NASA to evaluate the accuracy of a method for predicting the aerodynamic characteristics of large supersonic cruise airplanes. This program compared predicted and flight-measured lift, drag, angle of attack, and control surface deflection for the XB-70-1 airplane for 14 flight conditions with a Mach number range from 0.76 to 2.56. The predictions were derived from the wind-tunnel test data of a 0.03-scale model of the XB-70-1 airplane fabricated to represent the aeroelastically deformed shape at a 2.5 Mach number cruise condition. Corrections for shape variations at the other Mach numbers were included in the prediction. For most cases, differences between predicted and measured values were within the accuracy of the comparison. However, there were significant differences at transonic Mach numbers. At a Mach number of 1.06 differences were as large as 27 percent in the drag coefficients and 20 deg in the elevator deflections. A brief analysis indicated that a significant part of the difference between drag coefficients was due to the incorrect prediction of the control surface deflection required to trim the airplane.

  11. Flight Investigation of Wing-gun Fairings on a Fighter Type Airplane

    NASA Technical Reports Server (NTRS)

    White, M D

    1941-01-01

    Description is given of flight tests conducted on gun fairings, designed to correct the detrimental effects of the projecting and submerged wing guns on an F4F-3 fighter. It was found that the installation of unfaired guns on a clean wing resulted in a premature stall that increased the stalling speed in the carrier-approach and landing conditions of flight by suitably fairing the guns, it was possible to reduce the stalling speeds to values approaching very nearly the clean-wing values.

  12. Features of airplane vortex wake decay in cruise flight and in land proximity

    NASA Astrophysics Data System (ADS)

    Bosnyakov, I. S.; Sudakov, G. G.

    2016-10-01

    The cases of the vortex wake decay after the large aircraft are considered for the case of cruise flight and near the ground. It is shown that the scenarios of destruction process are principally different from each other. The physical features of the phenomenon are described and the two models for description of such phenomenon are compared.

  13. 75 FR 70854 - Harmonization of Various Airworthiness Standards for Transport Category Airplanes-Flight Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... Federal Aviation Administration 14 CFR Part 25 RIN 2120-AJ72 Harmonization of Various Airworthiness... Flight Test Harmonization Working Group to review existing regulations and recommend changes that would... harmonizing to the higher standards. This proposed rule is a result of this harmonization effort....

  14. X-43A: The First Flight of a Scramjet Powered Airplane

    NASA Technical Reports Server (NTRS)

    Corpening, Griff

    2004-01-01

    A viewgraph presentation describing the X-43A Scramjet engine is shown. The topics include: 1) Scramjets; 2) Overview of X-43A; 3) What Happened the 1st Time; 4) Return to Flight; and 5) What Happened the 2nd Time.

  15. An Experimental Evaluation of Generalized Predictive Control for Tiltrotor Aeroelastic Stability Augmentation in Airplane Mode of Flight

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.; Piatak, David J.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of Generalized Predictive Control (GPC) for actively controlling the swashplate of tiltrotor aircraft to enhance aeroelastic stability in the airplane mode of flight are presented. GPC is an adaptive time-domain predictive control method that uses a linear difference equation to describe the input-output relationship of the system and to design the controller. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 that was modified to incorporate a GPC-based multi-input multi-output control algorithm to individually control each of the three swashplate actuators. Wing responses were used for feedback. The GPC-based control system was highly effective in increasing the stability of the critical wing mode for all of the conditions tested, without measurable degradation of the damping in the other modes. The algorithm was also robust with respect to its performance in adjusting to rapid changes in both the rotor speed and the tunnel airspeed.

  16. Flight investigation of the roll requirements for transport airplanes in the landing approach

    NASA Technical Reports Server (NTRS)

    Holleman, E. C.; Powers, B. G.

    1972-01-01

    An in-flight evaluation of transport roll characteristics in the landing approach was made with a general purpose airborne simulator. The evaluation task consisted of an instrument approach with a visual correction for a (200-foot) lateral offset. Pilot evaluations and ratings were obtained for approaches made at 140 knots and 180 knots indicated airspeed with variations of wheel characteristics, maximum roll rate, and roll time constant.

  17. Exploring Venus by Solar Airplane

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    A solar-powered airplane is proposed to explore the atmospheric environment of Venus. Venus has several advantages for a solar airplane. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The Earthlike atmospheric pressure means that the power required for flight is lower for Venus than that of Mars, and the slow rotation of Venus allows an airplane to be designed for continuous sunlight, with no energy storage needed for night-time flight. These factors mean that Venus is perhaps the easiest planet in the solar system for flight of a long-duration solar airplane.

  18. Flight Behavior of the X-2 Research Airplane to a Mach Number of 3.20 and a Geometric Altitude of 126,200 Feet

    NASA Technical Reports Server (NTRS)

    Day, Richard E.; Reisert, Donald

    1959-01-01

    The maximum Mach number and altitude capabilities of the Bell X-2 research airplane were achieved during a program conducted by the U.S. Air Force with Bell Aircraft Corp. providing operational support and the National Aeronautics and Space Administration providing instrumentation and advisory engineering assistance. A maximum geometric altitude of 126,200 feet was attained at a static pressure of 9.4 pounds per square foot and a dynamic pressure of 19.1 pounds per square foot. During the last flight of the airplane, a maximum Mach number of 3.20 was reached. The directionally divergent maneuver which terminated the final high Mach number flight was precipitated by the loss in directional stability that resulted from increasing the angle of attack. The yawing moment from the lateral control was sufficient to initiate the divergence and also to cause,, indirectly, rolling moments that were greater than the aileron capabilities of the airplane. The ensuing violent motions-resulting from inertial roll coupling caused the loss of the aircraft.

  19. The reduction of airplane flight test data to standard atmosphere conditions

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S; Lesley, E P

    1926-01-01

    This report was prepared for the National Advisory Committee for Aeronautics in order to supply the need of practical methods of reducing observed performance to standard conditions with a minimum of labor. The first part gives a very simple approximate method of reducing performance in climb, and is particularly adapted to work not requiring extreme accuracy. The second part gives a somewhat more elaborate and more accurate method which is well suited to general flight test reduction. The third part gives the conventional method of calibrating air-speed indicators and reducing the indicated speeds to true air speeds. An appendix gives working tables and charts for the standard atmosphere. (author)

  20. Matrix methods for determining the longitudinal-stability derivatives of an airplane from transient flight data

    NASA Technical Reports Server (NTRS)

    Donegan, James J

    1954-01-01

    Three matrice methods are developed and presented for determining the longitudinal-stability derivatives from transient flight data. In these methods the expressions for some of the stability derivatives are in the form generally used in stability calculations. The first method requires the combination of four measurements in time-history form, two of which must be incremental elevator deflection and incremental tail load and the other two measurements can be chosen from a possible three, namely incremental load factor, pitching velocity, and angle of attack. The method demonstrates the use of the tail load to separate the pitching-moment derivatives and to determine the downwash derivative. (author)

  1. Logic Design Pathology and Space Flight Electronics

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Barto, Rod L.; Erickson, K.

    1997-01-01

    Logic design errors have been observed in space flight missions and the final stages of ground test. The technologies used by designers and their design/analysis methodologies will be analyzed. This will give insight to the root causes of the failures. These technologies include discrete integrated circuit based systems, systems based on field and mask programmable logic, and the use computer aided engineering (CAE) systems. State-of-the-art (SOTA) design tools and methodologies will be analyzed with respect to high-reliability spacecraft design and potential pitfalls are discussed. Case studies of faults from large expensive programs to "smaller, faster, cheaper" missions will be used to explore the fundamental reasons for logic design problems.

  2. Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1996-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  3. In-flight measurement of propeller noise on the fuselage of an airplane

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G.; Ranaudo, Richard; Woodward, Richard P.

    1989-01-01

    In-flight measurements of propeller noise on the fuselage of an OV-10A aircraft were obtained using a horizontal and a vertical microphone array. A wide range of flight conditions were tested including changes in angle of attack, sideslip angle, power coefficient, helical tip Mach number and advance ratio, and propeller direction of rotation. Results show a dependence of the level and directivity of the tones on the angle of attack and on the sideslip angle with the propeller direction of rotation, which is similar to results obtained in wind tunnel tests with advanced propeller designs. The level of the tones at each microphone increases with increasing angle of attack for inboard-down propeller rotation and decreases for inboard-up rotation. The level also increases with increasing slideslip angle for both propeller directions of rotation. Increasing the power coefficient results in a slight increase in the level of the tones. A strong shock wave is generated by the propeller blades even at relatively low helical tip Mach numbers resulting in high harmonic levels. As the helical tip Mach number and the advance ratio are increased, the level of the higher harmonics increases much faster than the level of the blade passage frequency.

  4. In-flight measurement of propeller noise on the fuselage of an airplane

    NASA Astrophysics Data System (ADS)

    Pla, Frederic G.; Ranaudo, Richard; Woodward, Richard P.

    1989-07-01

    In-flight measurements of propeller noise on the fuselage of an OV-10A aircraft were obtained using a horizontal and a vertical microphone array. A wide range of flight conditions were tested including changes in angle of attack, sideslip angle, power coefficient, helical tip Mach number and advance ratio, and propeller direction of rotation. Results show a dependence of the level and directivity of the tones on the angle of attack and on the sideslip angle with the propeller direction of rotation, which is similar to results obtained in wind tunnel tests with advanced propeller designs. The level of the tones at each microphone increases with increasing angle of attack for inboard-down propeller rotation and decreases for inboard-up rotation. The level also increases with increasing slideslip angle for both propeller directions of rotation. Increasing the power coefficient results in a slight increase in the level of the tones. A strong shock wave is generated by the propeller blades even at relatively low helical tip Mach numbers resulting in high harmonic levels. As the helical tip Mach number and the advance ratio are increased, the level of the higher harmonics increases much faster than the level of the blade passage frequency.

  5. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  6. Investigation of the Stability and Control Characteristics of a 1/20-Scale Model of the Consolidated Vultee XB-53 Airplane in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Bennett, Charles V.

    1947-01-01

    An investigation of the low-speed, power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane has been conducted in the Langley free-flight tunnel. In the investigation it was found that with flaps neutral satisfactory flight behavior at low speeds was obtainable with an increase in height of the vertical tail and with the inboard slats opened. In the flap-down slat-open condition the longitudinal stability was satisfactory, but it was impossible to obtain satisfactory lateral-flight characteristics even with the increase in height of the vertical tail because of the negative effective dihedral, low directional stability, and large-adverse yawing moments of the ailerons.

  7. Flight-measured afterbody pressure coefficients from an airplane having twin side-by-side jet engines for Mach numbers from 0.6 to 1.6

    NASA Technical Reports Server (NTRS)

    Steers, L. L.

    1979-01-01

    Afterbody pressure distribution data were obtained in flight from an airplane having twin side-by-side jet exhausts. The data were obtained in level flight at Mach numbers from 0.60 to 1.60 and at elevated load factors for Mach numbers of 0.60, 0.90, and 1.20. The test altitude varied from 2300 meters (7500 feet) to 15,200 meters (50,000 feet) over a speed range that provided a matrix of constant Mach number and constant unit Reynolds number test conditions. The results of the full-scale flight afterbody pressure distribution program are presented in the form of plotted pressure distributions and tabulated pressure coefficients with Mach number, angle of attack, engine nozzle pressure ratio, and unit Reynolds number as controlled parameters.

  8. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  9. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  10. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  11. 75 FR 16646 - Airworthiness Directives; Bombardier, Inc. Model BD-100-1A10 (Challenger 300) Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... during a production flight test where the proximity-sensor electronic unit (PSEU) failed. This resulted... incident during a production flight test where the proximity-sensor electronic unit (PSEU) failed. This... recent type certificate data sheet for the affected airplane models. Conclusion We reviewed the...

  12. Performance improvements of a highly integrated digital electronic control system for an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.

    1985-01-01

    The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.

  13. Low speed wind tunnel investigation of flight spoilers as trailing-vortex-alleviation devices on an extended-range wide body tri-jet airplane model

    NASA Technical Reports Server (NTRS)

    Croom, D. R.; Vogler, R. D.; Thelander, J. A.

    1976-01-01

    An investigation was made in the Langley V/STOL tunnel to determine, by the trailing wing sensor technique, the effectiveness of various segments of the existing flight spoilers on an extended-range wide-body tri-jet transport airplane model when they were deflected as trailing-vortex-alleviation devices. On the transport model with the approach flap configuration, the four combinations of flight-spoiler segments investigated were effective in reducing the induced rolling moment on the trailing wing model by as much as 25 to 45 percent at downstream distances behind the transport model of 9.2 and 18.4 transport wing spans. On the transport airplane model with the landing flap configuration, the four combinations of flight-spoiler segments investigated were effective in reducing the induced rolling moment on the trailing wing model by as much as 35 to 60 percent at distances behind the transport model of from 3.7 to 18.4 transport wing spans, 18.4 spans being the downstream limit of distances used.

  14. Dynamic and Flight Tests on Rubber-Cord and Oleo-Rubber-Disk Landing Gears for an F6C-4 Airplane

    NASA Technical Reports Server (NTRS)

    Peck, William C

    1932-01-01

    The investigation described in this report was conducted for the purpose of comparing an oleo-rubber-disk and a rubber-cord landing gear, built for use on an F6C-4 airplane. The investigation consisted of drop tests under various loading conditions and flight tests on an F6C-4 airplane. In the drop tests the total work done on each gear and the work done on each of the shock-absorbing units were determined. For both drop tests and flight tests the maximum loads and accelerations were determined. The comparative results showed that the oleo gear was slightly superior in reducing the ordinary landing shocks, that it had a greater capacity for work, and that it was very superior in the reduction of the rebound. The results further showed that for drops comparable to very severe landings, the rubber-cord gear was potentially more effective as a shock-reducing mechanism. However, due to the construction of this chassis, which limited the maximum elongation of the cords, this gear was incapable of withstanding as severe tests as the oleo gear. The action of the oleo gear was greatly inferior to the action of an ideal gear. The maximum accelerations encountered during the flight tests for severe landings were 3.64g for the rubber-cord gear and 2.27g for the oleo gear. These were less than those experienced in free drops of 7 inches on either gear.

  15. Flight Measurements of Horizontal-Tail Loads on the Bell X-5 Research Airplane at a Sweep Angle of 58.7 Deg

    NASA Technical Reports Server (NTRS)

    Reed, Robert D

    1955-01-01

    A flight investigation was made at altitudes of 40,000, 25,000 and 15,000 feet to determine the horizontal-tail loads of the Bell X-5 research airplane at a sweep angle of 58.7 deg over the lift range of the airplane for Mach numbers from 0.61 to 1.00. The horizontal-tail loads were found to be nonlinear with lift throughout the lift ranges tested at all Mach numbers except at a Mach number of 1.00. The balancing tail loads reflected the changes which occur in the wing characteristics with increasing angle of attack. The nonlinearities were, in general, more pronounced at the higher angles of attack near the pitch-up where the balancing tail loads indicate that the wing-fuselage combination becomes unstable. No apparent effects of altitude on the balancing tail loads were evident over the comparable lift ranges of these tests at altitudes from 40,000 feet to 15,000 feet. Comparisons of balancing tail loads obtained from flight and windtunnel tests indicated discrepancies in absolute magnitudes, but the general trends of the data agree. Some differences in absolute magnitude may be accounted for by the tail load carried inboard of the strain-gage station and the load induced on the fuselage by the presence of the tail. These loads were not measured in flight.

  16. Flight Investigation on a Fighter-type Airplane of Factors which Affect the Loads and Load Distributions on the Vertical Tail Surfaces During Rudder Kicks and Fishtails

    NASA Technical Reports Server (NTRS)

    Boshar, John

    1947-01-01

    Results are presented of a flight investigation conducted on a fighter-type airplane to determine the factors which affect the loads and load distributions on the vertical tail surfaces in maneuvers. An analysis is made of the data obtained in steady flight, rudder kicks, and fishtail maneuvers. For the rudder kicks, the significant loads were the "deflection load" resulting from an abrupt control deflection and the "dynamic load" consisting of a load corresponding to the new static equilibrium condition for the rudder deflected plus a load due to a transient overshoot. The minimum time to reach the maximum control deflection attainable by the pilot in any flight condition was found to be a constant. In the fishtail maneuvers, it was found that the pilot tends to deflect the rudder in phase with the natural frequency of the airplane. The maximum loads measured in fishtails were of the same order of magnitude as those from a rudder kick in which the rudder is returned to zero at the time of maximum sideslip.

  17. Comparison of flying qualities derived from in-flight and ground-based simulators for a jet-transport airplane for the approach and landing pilot tasks

    NASA Technical Reports Server (NTRS)

    Grantham, William D.

    1989-01-01

    The primary objective was to provide information to the flight controls/flying qualities engineer that will assist him in determining the incremental flying qualities and/or pilot-performance differences that may be expected between results obtained via ground-based simulation (and, in particular, the six-degree-of-freedom Langley Visual/Motion Simulator (VMS)) and flight tests. Pilot opinion and performance parameters derived from a ground-based simulator and an in-flight simulator are compared for a jet-transport airplane having 32 different longitudinal dynamic response characteristics. The primary pilot tasks were the approach and landing tasks with emphasis on the landing-flare task. The results indicate that, in general, flying qualities results obtained from the ground-based simulator may be considered conservative-especially when the pilot task requires tight pilot control as during the landing flare. The one exception to this, according to the present study, was that the pilots were more tolerant of large time delays in the airplane response on the ground-based simulator. The results also indicated that the ground-based simulator (particularly the Langley VMS) is not adequate for assessing pilot/vehicle performance capabilities (i.e., the sink rate performance for the landing-flare task when the pilot has little depth/height perception from the outside scene presentation).

  18. 78 FR 73995 - Special Conditions: Cessna Model 680 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... data busses and networks. A separate Cessna Model 680 project special condition addresses aircraft.... Discussion The integrated network configurations in the Cessna Model 680 series airplanes may allow increased... passenger entertainment and information services than previous airplane models. This may allow...

  19. Evaluation of electronic jamming effect based on seeker captive flight test and missile flight simulation

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Tie, Weitao

    2017-01-01

    In order to test and evaluate the jamming effect of electronic warfare weapons on missiles, a method based on seeker captive flight jamming test and missile flight simulation test is put forward, in which real data for the jamming effect of the electronic warfare weapon on seekers is obtained by seeker captive flight jamming test, and immitted into a missile digital simulation system to perform large numbers of missile flight simulation tests under jamming, then one could evaluate the jamming effect of the electronic warfare weapon on missiles according to the simulation test results. The method is demonstrated and validated by test and evaluation of the jamming effect of a smokescreen jamming device on TV guidance missiles. The results show that, the method proposed here not only overcomes the shortcomings of both pure digital simulation test and field test, but also combines their advantages, thus could be taken as an easy, economical and reliable method for testing and evaluating electronic jamming effect on missiles.

  20. NASA flight electronics environmental stress screening survey

    NASA Technical Reports Server (NTRS)

    Marian, E. J. (Compiler)

    1983-01-01

    Data compiled by the Institute of Environmental Sciences were used to establish guidelines for identifying defective, abnormal, or marginal parts as well as manufacturing defects. These data are augmented with other available sources of similar information in conjunction with NASA centers' data and presented in a form that may be useful to all NASA centers in planning and developing effective environmental stress screens. Information relative to thermal and vibration screens as the most effective methods for surfacing latent failures in electronic equipment at the component level is considered.

  1. Ellisoidal mirror for time-of-flight electron energy analysis

    SciTech Connect

    Waligorski, G.; Cooke, W.E.

    1993-05-01

    We have constructed an ellipsoidal electron mirror from a pair of molded stainless steel grids in a fashion similar to the parabolic mirror constructed by Trevor et al.. The ellipsoidal geometry provides superior collection efficiency while maintaining good temporal resolution for our small flight path of 19 cm. We will present data showing the use of this analyzer to separate electrons produced in various channels following the decay of doubly-excited autoionizing states of barium.

  2. Flight Test of a Propulsion-Based Emergency Control System on the MD-11 Airplane with Emphasis on the Lateral Axis

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Burcham, Frank W., Jr.; Maine, Trindel A.; Feather, John; Goldthorpe, Steven; Kahler, Jeffrey A.

    1996-01-01

    A large, civilian, multi-engine transport MD-11 airplane control system was recently modified to perform as an emergency backup controller using engine thrust only. The emergency backup system, referred to as the propulsion-controlled aircraft (PCA) system, would be used if a major primary flight control system fails. To allow for longitudinal and lateral-directional control, the PCA system requires at least two engines and is implemented through software modifications. A flight-test program was conducted to evaluate the PCA system high-altitude flying characteristics and to demonstrate its capacity to perform safe landings. The cruise flight conditions, several low approaches and one landing without any aerodynamic flight control surface movement, were demonstrated. This paper presents results that show satisfactory performance of the PCA system in the longitudinal axis. Test results indicate that the lateral-directional axis of the system performed well at high attitude but was sluggish and prone to thermal upsets during landing approaches. Flight-test experiences and test techniques are also discussed with emphasis on the lateral-directional axis because of the difficulties encountered in flight test.

  3. 78 FR 53237 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... AD 2013-05-08 incorrectly specify flight control secondary computers (FCSCs), rather than flight control primary computers (FCPCs). This document corrects those errors. In all other respects, the... airplane configuration, modifying three flight control primary computers (FCPCs); modifying two...

  4. Emergency Flight Control Using Computer-Controlled Thrust

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Fullerton, C. Gordon; Stewart, James F.; Gilyard, Glenn B.; Conley, Joseph A.

    1995-01-01

    Propulsion Controlled Aircraft (PCA) systems are digital electronic control systems undergoing development to provide limited maneuvering ability through variations of individual engine thrusts in multiple-engine airplanes. Provide landing capability when control surfaces inoperable. Incorporated on existing and future airplanes that include digital engine controls, digital flight controls, and digital data buses, adding no weight for additional hardware to airplane. Possible to handle total failure of hydraulic system, depending on how surfaces respond to loss of hydraulic pressure, and broken control cables or linkages. Future airplanes incorporate data from Global Positioning System for guidance to any suitable emergency runway in world.

  5. Hovering and Transition Flight Tests of a 1/5-Scale Model of a Jet-Powered Vertical-Attitude VTOL Research Airplane

    NASA Technical Reports Server (NTRS)

    Smith, Charles C., Jr.

    1961-01-01

    An experimental investigation has been made to determine the dynamic stability and control characteristics of a 1/5-scale flying model of a jet-powered vertical-attitude VTOL research airplane in hovering and transition flight. The model was powered with either a hydrogen peroxide rocket motor or a compressed-air jet exhausting through an ejector tube to simulate the turbojet engine of the airplane. The gyroscopic effects of the engine were simulated by a flywheel driven by compressed-air jets. In hovering flight the model was controlled by jet-reaction controls which consisted of a swiveling nozzle on the main jet and a movable nozzle on each wing tip; and in forward flight the model was controlled by elevons and a rudder. If the gyroscopic effects of the jet engine were not represented, the model could be flown satisfactorily in hovering flight without any automatic stabilization devices. When the gyroscopic effects of the jet engine were represented, however, the model could not be controlled without the aid of artificial stabilizing devices because of the gyroscopic coupling of the yawing and pitching motions. The use of pitch and yaw dampers made these motions completely stable and the model could then be controlled very easily. In the transition flight tests, which were performed only with the automatic pitch and yaw dampers operating, it was found that the transition was very easy to perform either with or without the engine gyroscopic effects simulated, although the model had a tendency to fly in a rolled and sideslipped attitude at angles of attack between approximately 25 deg and 45 deg because of static directional instability in this range.

  6. Hovering and Transition Flight Tests of a 1/5-Scale Model of a Jet-Powered Vertical-Attitude VTOL Research Airplane

    NASA Technical Reports Server (NTRS)

    Smith, Charles C., Jr.

    1958-01-01

    An experimental investigation has been made to determine the dynamic stability and control characteristics of a 1/5-scale flying model of a jet-powered vertical-attitude VTOL research airplane in hovering and transition flight. The model was powered with either a hydrogen peroxide rocket motor or a compressed-air jet exhausting through an ejector tube to simulate the turbojet engine of the airplane. The gyroscopic effects of the engine were simulated by a flywheel driven by compressed-air jets. In hovering flight the model was controlled by jet-reaction controls which consisted of a swiveling nozzle on the main jet and a movable nozzle on each wing tip; and in forward flight the model was controlled by elevons and a rudder. If the gyroscopic effects of the jet engine were not represented, the model could be flown satisfactorily in hovering flight without any automatic stabilization devices. When the gyroscopic effects of the jet engine were represented, however, the model could not be controlled without the aid of artificial stabilizing devices because of the gyroscopic coupling of the yawing and pitching motions. The use of pitch and yaw dampers made these motions completely stable and the model could then be controlled very easily. In the transition flight tests, which were performed only with the automatic pitch and yaw dampers operating, it was found that the transition was very easy to perform either with or without the engine gyroscopic effects simulated, although the model had a tendency to fly in a rolled and sideslipped attitude at angles of attack between approximately 25 and 45 deg because of static directional instability in this range.

  7. Military applications of a cockpit integrated electronic flight bag

    NASA Astrophysics Data System (ADS)

    Herman, Robert P.; Seinfeld, Robert D.

    2004-09-01

    Converting the pilot's flight bag information from paper to electronic media is being performed routinely by commercial airlines for use with an on-board PC. This concept is now being further advanced with a new class of electronic flight bags (EFB) recently put into commercial operation which interface directly with major on-board avionics systems and has its own dedicated panel mounted display. This display combines flight bag information with real time aircraft performance and maintenance data. This concept of an integrated EFB which is now being used by the commercial airlines as a level 1 certified system, needs to be explored for military applications. This paper describes a system which contains all the attributes of an Electronic Flight Bag with the addition of interfaces which are linked to military aircraft missions such as those for tankers, cargo haulers, search and rescue and maritime aircraft as well as GATM requirements. The adaptation of the integrated EFB to meet these military requirements is then discussed.

  8. Preliminary Design and Evaluation of Portable Electronic Flight Progress Strips

    NASA Technical Reports Server (NTRS)

    Doble, Nathan A.; Hansman, R. John

    2002-01-01

    There has been growing interest in using electronic alternatives to the paper Flight Progress Strip (FPS) for air traffic control. However, most research has been centered on radar-based control environments, and has not considered the unique operational needs of the airport air traffic control tower. Based on an analysis of the human factors issues for control tower Decision Support Tool (DST) interfaces, a requirement has been identified for an interaction mechanism which replicates the advantages of the paper FPS (e.g., head-up operation, portability) but also enables input and output with DSTs. An approach has been developed which uses a Portable Electronic FPS that has attributes of both a paper strip and an electronic strip. The prototype flight strip system uses Personal Digital Assistants (PDAs) to replace individual paper strips in addition to a central management interface which is displayed on a desktop computer. Each PDA is connected to the management interface via a wireless local area network. The Portable Electronic FPSs replicate the core functionality of paper flight strips and have additional features which provide a heads-up interface to a DST. A departure DST is used as a motivating example. The central management interface is used for aircraft scheduling and sequencing and provides an overview of airport departure operations. This paper will present the design of the Portable Electronic FPS system as well as preliminary evaluation results.

  9. Flight-determined lag of angle-of-attack and angle-of-sideslip sensors in the YF-12A airplane from analysis of dynamic maneuvers

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.; Belte, D.

    1974-01-01

    Magnitudes of lags in the pneumatic angle-of-attack and angle-of-sideslip sensor systems of the YF-12A airplane were determined for a variety of flight conditions by analyzing stability and control data. The three analysis techniques used are described. An apparent trend with Mach number for measurements from both of the differential-pressure sensors showed that the lag ranged from approximately 0.15 second at subsonic speed to 0.4 second at Mach 3. Because Mach number was closely related to altitude for the available flight data, the individual effects of Mach number and altitude on the lag could not be separated clearly. However, the results indicated the influence of factors other than simple pneumatic lag.

  10. Low-speed wind-tunnel investigation of flight spoilers as trailing-vortex-alleviation devices on a medium range wide-body tri-jet airplane model

    NASA Technical Reports Server (NTRS)

    Croom, D. R.; Vogler, R. D.; Williams, G. M.

    1976-01-01

    An investigation was made in the V/STOL tunnel to determine, by the trailing wing sensor technique, the effectiveness of various segments of the existing flight spoilers on a medium range wide body tri-jet transport airplane model when they were deflected as trailing vortex alleviation devices. The four combinations of flight spoiler segments investigated were effective in reducing the induced rolling moment on the trailing wing model by as much as 15 to 60 percent at distances behind the transport model of from 3.9 to 19.6 transport wing spans, 19.6 spans being the downstream limit of distances used. Essentially all of the reduction in induced rolling moment on the trailing wing model was realized at a spoiler deflection of about 45 deg.

  11. 78 FR 68347 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... solution, EASA issued Emergency AD 2009-0012-E to require implementation of an aircraft Flight Manual (AFM..., Congress charges the FAA with promoting safe flight of civil aircraft in air commerce by prescribing... airplanes. AD 2009-04-07 required revising the airplane flight manual (AFM) to include...

  12. A flight investigation of the stability, control, and handling qualities of an augmented jet flap STOL airplane

    NASA Technical Reports Server (NTRS)

    Vomaske, R. F.; Innis, R. C.; Swan, B. E.; Grossmith, S. W.

    1978-01-01

    The stability, control, and handling qualities of an augmented jet flap STOL airplane are presented. The airplane is an extensively modified de Havilland Buffalo military transport. The modified airplane has two fan-jet engines which provide vectorable thrust and compressed air for the augmentor jet flap and Boundary-Layer Control (BLC). The augmentor and BLC air is cross ducted to minimize asymmetric moments produced when one engine is inoperative. The modifications incorporated in the airplane include a Stability Augmentation System (SAS), a powered elevator, and a powered lateral control system. The test gross weight of the airplane was between 165,000 and 209,000 N (37,000 and 47,000 lb). Stability, control, and handling qualities are presented for the airspeed range of 40 to 180 knots. The lateral-directional handling qualities are considered satisfactory for the normal operating range of 65 to 160 knots airspeed when the SAS is functioning. With the SAS inoperative, poor turn coordination and spiral instability are primary deficiencies contributing to marginal handling qualities in the landing approach. The powered elevator control system enhanced the controllability in pitch, particularly in the landing flare and stall recovery.

  13. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are...-inoperative, en route, net flight path data in the Airplane Flight Manual, allows the airplane to fly from the... airport, and thereafter to fly for 15 minutes at cruise power or thrust, or both, and that the...

  14. MLS: Airplane system modeling

    NASA Technical Reports Server (NTRS)

    Thompson, A. D.; Stapleton, B. P.; Walen, D. B.; Rieder, P. F.; Moss, D. G.

    1981-01-01

    Analysis, modeling, and simulations were conducted as part of a multiyear investigation of the more important airplane-system-related items of the microwave landing system (MLS). Particular emphasis was placed upon the airplane RF system, including the antenna radiation distribution, the cabling options from the antenna to the receiver, and the overall impact of the airborne system gains and losses upon the direct-path signal structure. In addition, effort was expended toward determining the impact of the MLS upon the airplane flight management system and developing the initial stages of a fast-time MLS automatic control system simulation model. Results ot these studies are presented.

  15. 78 FR 19981 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: High Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...; Flight Envelope Protection: High Speed Limiting AGENCY: Federal Aviation Administration (FAA), DOT... 11562). The document issued special conditions pertaining flight envelope protection: high...

  16. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1997-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  17. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... fundamentals of instructing including: (i) The learning process; (ii) Elements of effective teaching; (iii... the course applies. (b) For the use of flight simulators or flight training devices: (1) The course may include training in a flight simulator or flight training device, provided it is representative...

  18. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  19. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  20. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  1. Linearized aerodynamic and control law models of the X-29A airplane and comparison with flight data

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    1992-01-01

    Flight control system design and analysis for aircraft rely on mathematical models of the vehicle dynamics. In addition to a six degree of freedom nonlinear simulation, the X-29A flight controls group developed a set of programs that calculate linear perturbation models throughout the X-29A flight envelope. The models include the aerodynamics as well as flight control system dynamics and were used for stability, controllability, and handling qualities analysis. These linear models were compared to flight test results to help provide a safe flight envelope expansion. A description is given of the linear models at three flight conditions and two flight control system modes. The models are presented with a level of detail that would allow the reader to reproduce the linear results if desired. Comparison between the response of the linear model and flight measured responses are presented to demonstrate the strengths and weaknesses of the linear models' ability to predict flight dynamics.

  2. 76 FR 64229 - Function and Reliability Flight Testing for Turbine-Powered Airplanes Weighing 6,000 Pounds or Less

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Certificated Weight.'' (See 69 FR 5239, February 3, 2004.) In that notice, we announced our intention to.... (See 75 FR 50853, August 18, 2010.) This final rule will eliminate the need for issuing special...-Powered Airplanes Weighing 6,000 Pounds or Less.'' (See 75 FR 18134, April 9, 2010.) In that NPRM,...

  3. The Fluid Processing Apparatus: from Flight Hardware to Electron Micrographs

    NASA Technical Reports Server (NTRS)

    Hilaire, Emmanuel; Brown, Christopher S.; Guikema, James A.

    1995-01-01

    Since the early years of space biology, a major drawback in spaceflight plant experiments has been the inability to fix specimens in microgravity, relying instead on fixation after return to Earth. As there, it is of a growing interest to look at the effect of microgravity on the structure and the developmental polarity of root graviperceptive cells, or columella cells, and so, it is important to use flight hardware which allows specimen fixation in space therefore avoiding the confounding effects of rapid readaptation to gravity after landing. As part of the Bioserve Space Technologies, a Center for the Commercial Development of Space (CCDS), we now have experiment flight opportunities through the Commercial Generic Bioprocessing Apparatus (CGBA) payload. In this study the Fluid Processing Apparatus (FPA) was used to grow seedlings for a limited period of time prior to fixation of the tissue in a microgravity environment. Upon return to Earth, the samples were processed for electron microscopy. This report describes the microscopic data obtained from the two space flights (STS-54 and STS-60). In both cases, the electron micrographs of the columella cells revealed well preserved cell structure, well defined microtubules, and the presence of calcium precipitates formed by a antimonate precipitation method.

  4. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes with negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  5. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes with negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  6. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes with negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  7. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes with negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  8. 78 FR 68775 - Special Conditions: Airbus, Model A350-900 Series Airplane; Composite Fuselage In-Flight Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ...; Composite Fuselage In-Flight Fire/Flammability Resistance AGENCY: Federal Aviation Administration (FAA), DOT... associated with the in-flight fire and flammability resistance of the composite fuselage. Experience has... fire test criteria for insulation films directly relating to the resistance of in-flight...

  9. Structural response to discrete and continuous gusts of an airplane having wing bending flexibility and a correlation of calculated and flight results

    NASA Technical Reports Server (NTRS)

    Houbolt, John C; Kordes, Eldon E

    1954-01-01

    An analysis is made of the structural response to gusts of an airplane having the degrees of freedom of vertical motion and wing bending flexibility and basic parameters are established. A convenient and accurate numerical solution of the response equations is developed for the case of discrete-gust encounter, an exact solution is made for the simpler case of continuous-sinusoidal-gust encounter, and the procedure is outlined for treating the more realistic condition of continuous random atmospheric turbulence, based on the methods of generalized harmonic analysis. Correlation studies between flight and calculated results are then given to evaluate the influence of wing bending flexibility on the structural response to gusts of two twin-engine transports and one four-engine bomber. It is shown that calculated results obtained by means of a discrete-gust approach reveal the general nature of the flexibility effects and lead to qualitative correlation with flight results. In contrast, calculations by means of the continuous-turbulence approach show good quantitative correlation with flight results and indicate a much greater degree of resolution of the flexibility effects.

  10. An electronic flight bag for NextGen avionics

    NASA Astrophysics Data System (ADS)

    Zelazo, D. Eyton

    2012-06-01

    The introduction of the Next Generation Air Transportation System (NextGen) initiative by the Federal Aviation Administration (FAA) will impose new requirements for cockpit avionics. A similar program is also taking place in Europe by the European Organisation for the Safety of Air Navigation (Eurocontrol) called the Single European Sky Air Traffic Management Research (SESAR) initiative. NextGen will require aircraft to utilize Automatic Dependent Surveillance-Broadcast (ADS-B) in/out technology, requiring substantial changes to existing cockpit display systems. There are two ways that aircraft operators can upgrade their aircraft in order to utilize ADS-B technology. The first is to replace existing primary flight displays with new displays that are ADS-B compatible. The second, less costly approach is to install an advanced Class 3 Electronic Flight Bag (EFB) system. The installation of Class 3 EFBs in the cockpit will allow aircraft operators to utilize ADS-B technology in a lesser amount of time with a decreased cost of implementation and will provide additional benefits to the operator. This paper describes a Class 3 EFB, the NexisTM Flight-Intelligence System, which has been designed to allow users a direct interface with NextGen avionics sensors while additionally providing the pilot with all the necessary information to meet NextGen requirements.

  11. 76 FR 65103 - Special Conditions: Gulfstream Aerospace Corporation, Model GIV-X Airplane; Aircraft Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Gulfstream Aerospace Corporation, Model... comments. SUMMARY: These special conditions are issued for the Gulfstream Aerospace Corporation Model GIV-X... connectivity capabilities of the airplane's computer systems and networks, which may allow access by...

  12. Linear electronic field time-of-flight ion mass spectrometers

    DOEpatents

    Funsten, Herbert O.

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  13. Time-of-flight observation of electron swarm in methane

    SciTech Connect

    Hasegawa, H.; Date, H.; Yoshida, K.; Shimozuma, M.

    2009-06-01

    This paper reports on the evolution of an isolated electron swarm, which is experimentally observed as spatial distributions at every moment. This observation is assumed to directly correspond to the conventional time-of-flight theory. We have measured the spatial distribution of electrons using a double-shutter technique in the drift tube, where a shutter electrode to collect electrons can be slid along the field (E/N) direction in order to capture a relative electron number at a certain range of location. As a typical parameter defined by this spatial distribution, the center-of-mass drift velocity (W{sub r}) is determined for methane gas. The result is compared with the mean-arrival-time drift velocity (W{sub m}) defined from the arriving electron number at fixed positions. We have also performed a theoretical analysis in which a Fourier transformed Boltzmann equation is solved to deduce both of the drift velocities from a dispersion relationship. The difference between W{sub r} and W{sub m} at high E/Ns (above 200 Td) is clearly ascertained in the experimental and theoretical investigations, which is attributable to the occurrence of ionization events.

  14. A flight test investigation of the rolling moments induced on a T-37B airplane in the wake of a B-747 airplane

    NASA Technical Reports Server (NTRS)

    Smith, H. J.

    1975-01-01

    A flight test investigation of the B-747 vortex wake characteristics was conducted using a T-37B as a probe aircraft. The primary purpose of the program was the validation of the results of B-747 model tests which predicted significant alleviation of the vortex strength when only the inboard flaps were deflected. Measurements of the vortex-induced rolling moments of the probe aircraft showed that the predicted alleviation did occur. The effects of landing gear extension, increased lift coefficient, idle thrust, and sideslip were investigated, and all had an adverse effect on the alleviated condition as evidenced by increased induced rolling moments of the T-37B probe aircraft. Idle thrust also increased the strength of the B-747 wake vortexes with both inboard and outboard flaps extended.

  15. Lateral stability and control derivatives of a jet fighter airplane extracted from flight test data by utilizing maximum likelihood estimation

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Steinmetz, G. G.

    1972-01-01

    A method of parameter extraction for stability and control derivatives of aircraft from flight test data, implementing maximum likelihood estimation, has been developed and successfully applied to actual lateral flight test data from a modern sophisticated jet fighter. This application demonstrates the important role played by the analyst in combining engineering judgment and estimator statistics to yield meaningful results. During the analysis, the problems of uniqueness of the extracted set of parameters and of longitudinal coupling effects were encountered and resolved. The results for all flight runs are presented in tabular form and as time history comparisons between the estimated states and the actual flight test data.

  16. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... practical test for a type rating for a turbojet airplane (except for preflight inspection), an applicant... must— (1) Hold a type rating in a turbojet airplane of the same class of airplane for which the type...) Have 1,000 hours of flight time in two different turbojet airplanes of the same class of airplane...

  17. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... practical test for a type rating for a turbojet airplane (except for preflight inspection), an applicant...— (1) Hold a type rating in a turbojet airplane of the same class of airplane for which the type rating...) Have 1,000 hours of flight time in two different turbojet airplanes of the same class of airplane...

  18. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... practical test for a type rating for a turbojet airplane (except for preflight inspection), an applicant... must— (1) Hold a type rating in a turbojet airplane of the same class of airplane for which the type...) Have 1,000 hours of flight time in two different turbojet airplanes of the same class of airplane...

  19. Longitudinal balancing of airplanes

    NASA Technical Reports Server (NTRS)

    Eteve, Albert

    1923-01-01

    The object of the present communication is to determine the best method for locating the center of lift of an airplane and to provide a method for making corrections. The method employed is very simple, being based on the positions given the elevator during flights at different speeds.

  20. 78 FR 76251 - Special Conditions: Airbus, Model A350-900 Series Airplane; Electronic System Security Protection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... Federal Aviation Administration 14 CFR Part 25 Special Conditions: Airbus, Model A350-900 Series Airplane... conditions for Airbus Model A350- 900 series airplanes. These airplanes will have a novel or unusual design... the comment (or signing the comment for an association, business, labor union, etc.). DOT's...

  1. Airplane Upset Training Evaluation Report

    NASA Technical Reports Server (NTRS)

    Gawron, Valerie J.; Jones, Patricia M. (Technical Monitor)

    2002-01-01

    Airplane upset accidents are a leading factor in hull losses and fatalities. This study compared five types of airplane-upset training. Each group was composed of eight, non-military pilots flying in their probationary year for airlines operating in the United States. The first group, 'No aero / no upset,' was made up of pilots without any airplane upset training or aerobatic flight experience; the second group, 'Aero/no upset,' of pilots without any airplane-upset training but with aerobatic experience; the third group, 'No aero/upset,' of pilots who had received airplane-upset training in both ground school and in the simulator; the fourth group, 'Aero/upset,' received the same training as Group Three but in addition had aerobatic flight experience; and the fifth group, 'In-flight' received in-flight airplane upset training using an instrumented in-flight simulator. Recovery performance indicated that clearly training works - specifically, all 40 pilots recovered from the windshear upset. However few pilots were trained or understood the use of bank to change the direction of the lift vector to recover from nose high upsets. Further, very few thought of, or used differential thrust to recover from rudder or aileron induced roll upsets. In addition, recovery from icing-induced stalls was inadequate.

  2. A Flight Investigation to Determine the Lateral Oscillatory Damping Acceptable for an Airplane in the Landing Approach

    NASA Technical Reports Server (NTRS)

    McNeill, Walter E.; Vomaske, Richard F.

    1959-01-01

    An F-86E airplane, in which servo actuation of the ailerons and rudder provides artificial variation of the important lateral and directional aerodynamic stability parameters, has been flown by test pilots of the NASA, U.S. Air Force, and one aircraft manufacturer to determine satisfactory and acceptable levels of lateral oscillatory damping in the landing approach. In addition to normal operational use, particular consideration was given to the emergency condition of failure of stability-augmentation equipment. In this study, the pilots' opinions of the airplane dynamic stability and control characteristics in smooth and simulated rough air have been recorded according to a numerical rating scale. The results are presented in the form of boundaries in terms of cycles to damp to half amplitude, 1/C(sub 1/2), or time to damp to half amplitude, 1/T(1/2) and bank-to-sideslip ratio, and are discussed in relation to existing flying-qualities criteria. Though the present results, which were obtained at 170 knots indicated airspeed and 10,000-feet altitude, indicated that increased damping is required with increased bank-to-sideslip ratio (as found in previous work), consideration of the dampers-failed condition indicated a great reduction in the minimum acceptable damping. At moderate values of bank-to-sideslip ratio, effects of lateral-oscillation period on pilot-opinion variation with damping appeared to be taken into account by use of the parameter 1/T(sub 1/2).

  3. Subsonic Flight Tests of a 1/7-Scale Radio-Controlled Model of the North American X-15 Airplane with Particular Reference to High Angel-of-Attack Conditions

    NASA Technical Reports Server (NTRS)

    Hewes, Donald E.; Hassell, James L., Jr.

    1960-01-01

    An investigation of the subsonic stability and control characteristics of an unpowered 1/7-scale model based on the North American X-15 airplane was conducted by using a radio-controlled model launched from a helicopter and flown in free-gliding flight. At angles of attack below about 20 deg. where the model motions represent those of the X-15 airplane, the model was found to be both longitudinally and laterally stable, and the all-movable tail surfaces were found to be very effective. The model could also be flown at much higher angles of attack where the model motions did not necessarily represent those of the airplane because of slight geometrical differences and Reynolds number effects, but these test results are useful in evaluating the effectiveness at these angles of the type of lateral control system used in the X-15 airplane. In some cases, the model was flown to angles of attack as high as 60 or 70 deg. without encountering divergent or uncontrollable conditions. For some flights in which the model was subjected to rapid maneuvers, spinning motions were generated by application of corrective controls to oppose the direction of rotation. Rapid recoveries from this type of motion were achieved by applying roll control in the direction of rotation.

  4. 75 FR 50853 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Function and Reliability Testing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... Administration, Small Airplane Directorate, Aircraft Certification Service, 901 Locust, Room 301, Kansas City, MO... aircraft. It incorporates an Electronic Flight Information System (EFIS), pressurized cabin, retractable gear, and a V-tail. The turbofan engine is mounted on the upper fuselage/tail cone along the...

  5. Flight Investigation of a Mechanical Feel Device in an Irreversible Elevator Control System of a Large Airplane

    NASA Technical Reports Server (NTRS)

    Brown, B Porter; Chilton, Robert G; Whitten, James B

    1952-01-01

    Report presents the results of measurements of the longitudinal stability and control characteristics of a large airplane using a mechanical feel device in combination with a booster incorporated in the elevator-control system. Tests were made to investigate the feasibility of eliminating the aerodynamic control forces through use of a booster and of providing control-feel forces mechanically. The feel device consisted of a centering spring which restrained the control stick through a linkage which was changed as a function of the dynamic pressure. Provisions were made for trimming and for manual adjustment of the force gradient. The system was designed to approximate the control-force characteristics that would result with a conventional elevator control with linear hinge-moment characteristics.

  6. Wind-tunnel and Flight Investigations of the Use of Leading-Edge Area Suction for the Purpose of Increasing the Maximum Lift Coefficient of a 35 Degree Swept-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Holzhauser, Curt A; Bray, Richard S

    1956-01-01

    An investigation was undertaken to determine the increase in maximum lift coefficient that could be obtained by applying area suction near the leading edge of a wing. This investigation was performed first with a 35 degree swept-wing model in the wind tunnel, and then with an operational 35 degree swept-wing airplane which was modified in accord with the wind-tunnel results. The wind-tunnel and flight tests indicated that the maximum lift coefficient was increased more than 50 percent by the use of area suction. Good agreement was obtained in the comparison of the wind-tunnel results with those measured in flight.

  7. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  8. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damaged aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  9. Flight evaluation of a simplified gross thrust calculation technique using an F100 turbofan engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Kurtenbach, F. J.; Burcham, F. W., Jr.

    1981-01-01

    A simplified gross thrust calculation technique was evaluated in flight tests on an F-15 aircraft using prototype F100-PW-100 engines. The technique relies on afterburner duct pressure measurements and empirical corrections to an ideal one-dimensional analysis to determine thrust. In-flight gross thrust calculated by the simplified method is compared to gross thrust calculated by the engine manufacturer's gas generator model. The evaluation was conducted at Mach numbers from 0.6 to 1.5 and at altitudes from 6000 meters to 13,700 meters. The flight evaluation shows that the simplified gross thrust method and the gas generator method agreed within plus or minus 3 percent. The discrepancies between the data generally fell within an uncertainty band derived from instrumentation errors and recording system resolution.

  10. Electronics for a Picosecond Time-of-flight Measurement

    SciTech Connect

    Brandt, Andrew Gerhart; Rijssenbeek, Michael

    2014-11-03

    TITLE: Electronics for a Picosecond Time-of-flight Measurement ABSTRACT: Time-of-flight (TOF) detectors have historically been used as part of the particle identification capability of multi-purpose particle physics detectors. An accurate time measurement, combined with a momentum measurement based on the curvature of the track in a magnetic field, is often sufficient to determine the particle's mass, and thus its identity. Such detectors typically have measured the particle flight time extremely precisely, with an uncertainty of one hundred trillionths of a second (also referred to as 100 picoseconds). To put this in perspective it would be like counting all the people on the Earth and getting it right within 1 person! Another use of TOFs is to measure the vertex of the event, which is the location along the beam line where the incoming particles (typically protons) collide. This vertex positon is a well measured quantity for events where the protons collide “head on” as the outgoing particles produced when you blast the proton apart can be used to trace back to a vertex point from which they originated. More frequently the protons just strike a glancing blow and remain intact—in this case they are nearly parallel to the beam and you cannot tell their vertex without this ability to precisely measure the time of flight of the protons. Occasionally both happen in the same event, that is, a central system and two protons are produced. But are they from the same collision, or just a boring background where more than one collision in the same bunch crossing conspire to fake the signal of interest? That’s where the timing of the protons comes into play. The main idea is to measure the time it takes for the two protons to reach TOF detectors positioned equidistant from the center of the main detector. If the vertex is displaced to one side than that detector will measure a shorter time while the other side detector will measure a correspondingly longer time

  11. In-flight and wind tunnel leading-edge vortex study on the F-106B airplane

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1986-01-01

    The vapor screen technique was successfully applied to an F-106B fighter aircraft during subsonic and transonic maneuvers. This system has allowed the viewing of multiple vortex systems on the wing upper surface at angles of attack less than 19 deg. In addition, similarities as well as differences were determined to exist between the vortex systems for a full scale semispan model and the flight vehicle at 20 deg incidence. Furthermore, variations in Reynolds number and Mach number were identified as to how they affect vortex system details at flight conditions.

  12. 78 FR 75284 - Special Conditions: Bombardier Inc., Models BD-500-1A10 and BD-500-1A11 Series Airplanes; Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... electronic flight control system that contains fly-by-wire control laws, including envelope protections, for... Building Ground Floor, Washington, DC 20590-0001. Hand Delivery or Courier: Take comments to Docket Operations in Room W12-140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington,...

  13. 78 FR 67320 - Special Conditions: Airbus, Model A350-900 series Airplane; Pitch and Roll Limiting by Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... feature(s) associated with the Electronic Flight Control System that limits pitch and roll attitude... order to substantiate the pitch and roll attitude limiting functions and the appropriateness of the... attitudes greater than +30 degrees and less than -15 degrees, and roll angles greater than plus or minus...

  14. 78 FR 11555 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Design Roll Maneuver for Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... conditions previously issued on this topic. These special conditions are limited to the roll axis only... for the yaw axis because 14 CFR 25.351 was revised at Amendment 25-91 to take into account effects of an electronic flight control system. No special conditions are needed for the pitch axis because...

  15. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... training for pilot check airmen (airplane), flight engineer check airmen (airplane), and flight navigator... likely to develop during a check. (4) For flight engineer check airmen (airplane) and flight...

  16. 78 FR 14005 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Pitch and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-04

    ...) part 25 do not specifically relate to flight characteristics associated with fixed attitude limits. Embraer S.A. will implement pitch and roll attitude protection functions through the normal modes of the... Law 92-574, the ``Noise Control Act of 1972.'' The FAA issues special conditions, as defined in 14...

  17. Flight Investigation at High Speeds of Flow Conditions Over an Airplane Wing as Indicated by Surface Tufts

    DTIC Science & Technology

    1945-06-01

    WHB AS INDICATED BY SURFACE TOFTS By Clotalre Wood, and John A. Zalovcik Langley Memorial Aeronautical Laboratory Langley Field, Va. • r^CHH, T R<a...motion-picture filii t*’.ren c!urin3 flight ’s shown as figure l+. The quality of the ohotographs was, in general, too poor to oermit

  18. Flight Investigation using Variable-Stability Airplanes of Minimum Stability Requirements for High-Speed, High-Altitude Vehicles

    NASA Technical Reports Server (NTRS)

    McFadden, Norman M.; Vomaske, Richard F.; Heinle, Donovan R.

    1961-01-01

    The pilot opinion of the flying qualities of vehicles covering a wide range of longitudinal dynamic characteristics has been determined by the use of a variable-stability airplane. Particular emphasis has been placed on determining the minimum level of stability and control characteristics that the pilot can cope with. There was considerable pilot learning associated with operation in the regions of poor stability characteristics. In the statically stable region the maximum acceptable value of time to damp to half amplitude of the longitudinal mode for normal operation was about 1 second. For emergency conditions the damping could be reduced to zero over most of the frequency range. The extreme lim it of controllability corresponded to a time to double amplitude of the oscillation of about 1 - 1/2 seconds. In the statically unstable region somewhat shorter times to double amplitude were acceptable to the pilots. The boundary for emergency operation corresponded roughly to time to double amplitude of about 2/3 second and the limit of controllability of about l/3 second.

  19. Studies of Electronic Stopping Powers Using Time of Flight Spectrometry

    SciTech Connect

    Zhang, Yanwen; Weber, William J.

    2004-06-01

    Determination of electronic stopping powers using Time of Flight (ToF) spectrometry have been demonstrated by measuring energy loss of He, O, and Al particles based on a ToF Elastic Recoil Detection Analysis (ERDA) set-up. In transmission geometry, the energy loss of the particles in self-supported stopping foils of C, Si and SiC is measured over a continuous range of energies using the ToF spectrometer. This study emphasizes the difference of the stopping power determination with and without dependence on the Si detector calibration over a wide energy range. By calibrating the Si detector for each channel over the measured energy region, the improved approach eliminates much of the error associated with pulsed height defects and measurement uncertainties of less than 4% are achieved. Stopping powers from this study are compared with limited experimental data from the literature and SRIM (The Stopping and Range of Ions in Matter) 2000 and 2003 predictions. In general, the predicted values are in reasonable agreement with the experimental data, and an improved accuracy of SRIM 2003 over SRIM 2000 can be observed in some cases. Furthermore, Braggs rule is valid in SiC for O and Al over the energy region studied.

  20. Research in lightning swept-stroke attachment patterns and flight conditions with the NASA F-106B airplane

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Brown, P. W.; Plumer, J. A.

    1985-01-01

    Data on 637 direct lightning strikes and 117 close flashes observed by the NASA instrumented F-106B aircraft as part of the Storm Hazards Program at NASA Langley during 1980-1984 are compiled and analyzed, updating the report of Fisher and Plumer (1983). The airborne and ground-based measurement and recording apparatus and the flight and data-reduction procedures are described, and the results are discussed in terms of lightning-strike-conducive flight conditions and lightning attachment patterns. A peak strike rate of 2.1/min is found at altitude 38,000-40,000 ft and temperature below -40 C, with very few strikes below 20,000 ft. Four categories of swept-flash attachment pattern are identified, but it is pointed out that all exterior surfaces of the F-106B are potential attachment sites.

  1. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The Highly Integrated Digital Electronic Control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine/airframe control systems. This system is being used on the F-15 airplane. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed.

  2. 77 FR 21420 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Company Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain Cessna Aircraft Company Model 680 airplanes. This...-feed wiring, and revising the airplane flight manual to include procedures to use when the left...

  3. 78 FR 73744 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Supplemental notice of proposed... series airplanes. The SNPRM proposed to require inspecting for a serial number that starts with the... action revises the SNPRM by revising the applicable thresholds from flight cycles on the airplane...

  4. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent...

  5. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off,...

  6. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off,...

  7. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent...

  8. 78 FR 78292 - Airworthiness Directives; Dassault Aviation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Dassault Aviation Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM... Aviation Model FALCON 7X airplanes. AD 2011-13-07 requires revising the airplane flight manual (AFM)...

  9. Flight Test Analysis of the Forces and Moments Imparted on a B737-100 Airplane During Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Roberts, Chistopher L.

    2001-01-01

    Aircraft travel has become a major form of transportation. Several of our major airports are operating near their capacity limit, increasing congestion and delays for travelers. As a result, the National Aeronautics and Space Administration (NASA) has been working in conjunction with the Federal Aviation Administration (FAA), airline operators, and the airline industry to increase airport capacity without sacrificing public safety. One solution to the problem is to increase the number of airports and build new. runways; yet, this solution is becoming increasingly difficult due to limited space. A better solution is to increase the production per runway. This solution increases the possibility that one aircraft will encounter the trailing wake of another aircraft. Hazardous wake vortex encounters occur when an aircraft encounters the wake produced by a heavier aircraft. This heavy-load aircraft produces high-intensity wake turbulence that redistributes the aerodynamic loads of trailing smaller aircraft. This situation is particularly hazardous for smaller aircraft during takeoffs and landings. In order to gain a better understanding of the wake-vortex/aircraft encounter phenomena, NASA Langley Research Center conducted a series of flight tests from 1995 through 1997. These tests were designed to gather data for the development a wake encounter and wake-measurement data set with the accompanying atmospheric state information. This data set is being compiled into a database that can be used by wake vortex researchers to compare with experimental and computational results. The purpose of this research is to derive and implement a procedure for calculating the wake-vortex/aircraft interaction portion of that database by using the data recorded during those flight tests. There were three objectives to this research. Initially, the wake-induced forces and moments from each flight were analyzed based on varying flap deflection angles. The flap setting alternated between 15

  10. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-701) 2: Extrapolation of wind-tunnel data to full-scale conditions

    NASA Technical Reports Server (NTRS)

    Peterson, J. B., Jr.; Mann, M. J.; Sorrells, R. B., III; Sawyer, W. C.; Fuller, D. E.

    1980-01-01

    The results of calculations necessary to extrapolate performance data on an XB-70-1 wind tunnel model to full scale at Mach numbers from 0.76 to 2.53 are presented. The extrapolation was part of a joint program to evaluate performance prediction techniques for large flexible supersonic airplanes similar to a supersonic transport. The extrapolation procedure included: interpolation of the wind tunnel data at the specific conditions of the flight test points; determination of the drag increments to be applied to the wind tunnel data, such as spillage drag, boundary layer trip drag, and skin friction increments; and estimates of the drag items not represented on the wind tunnel model, such as bypass doors, roughness, protuberances, and leakage drag. In addition, estimates of the effects of flexibility of the airplane were determined.

  11. Results of Flight Tests of the Ercoupe Airplane with Auxiliary Jet Propulsion Supplied by Solid Propellant Jet Units

    DTIC Science & Technology

    1941-09-02

    REPORT NO.. s/.p, S&*£c<£, GUGGENHEIM AERONAUTICS LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY • • - AIR CORPS JET PROPPLSICS RESEARCH 0AL3IT...detailed study of the performance and flight characteristics of the Prooune and a preliminary design layout of t’.c assembly for installing the jet...ti: represented a sealed donn study of the off«ot of auxiliary Jot propulsion on aircraft of the type of the n-2S. S. The blast fron the jet units

  12. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355...

  13. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355...

  14. 78 FR 78705 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... the first option would give operators a chance to fly a ferry flight to a more equipped resourced base... airplanes to a base where repairs, alterations, or maintenance can be performed. These airplanes may not....S.C. 552(a) and 1 CFR part 51. (2) You must use this service information as applicable to do...

  15. Airplane Airworthiness; Transport Categories

    DTIC Science & Technology

    1962-09-01

    4b.16 (b). The operatLg conditions expected in service and following procedure which permits considerable obtainable within the time and geograp -ic...116 (c). It is also assumed that the cowl flaps on the inoperative engine will be closed when the airplane enters the third takeoff climb segment with...as for the third takeoff LAnding gear-retracted. flight path climb segment except that maximum Operating engine(s)-takeoff r. p. m. continuous power is

  16. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  17. 78 FR 22432 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... provide appropriate operational procedures to prevent the airplane flight directors (FDs), autopilot (AP... computers (FCPCs) are necessary to inhibit autopilot re-engagement under unreliable airspeed conditions... this AD to prevent autopilot engagement under unreliable airspeed conditions, which could result...

  18. Control of airplanes at low speeds

    NASA Technical Reports Server (NTRS)

    Wood, R Mckinnon

    1923-01-01

    Loss of control over the orientation of an airplane as the incidence approaches and enters the region of stalled flight is a prolific cause of serious accidents. This report discusses methods of landing at slow speeds approaching stall.

  19. 78 FR 9341 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... flight of civil aircraft in air commerce by prescribing regulations for practices, methods, and... Aircraft Flight Manual (AFM) to include the following information. This may be done by inserting a copy of... certain Airbus airplane flight manual (AFM) temporary revisions into the AFM. We have not included...

  20. Comparison of the Drag of a Fin-Stabilized Body of Revolution and of a Complete Airplane Configuration as Obtained at Transonic Speeds in a Slotted Wind Tunnel and in Free Flight

    NASA Technical Reports Server (NTRS)

    Howell, Robert R.; Braslow, Albert L.

    1955-01-01

    A comparison of the zero-lift drag coefficients at Mach numbers from 0.81 to 1.41 of a fin-stabilized parabolic body of revolution as measured in the Langley transonic blowdown tunnel has been made with measurements obtained in free-flight on a larger but geometrically similar model. The absolute values of drag coefficient obtained in the slotted wind tunnel were equivalent to the free-flight drag-coefficient values up to a Mach number of 1.4 when adjustments were made for the effect on viscous drag of differences in Reynolds number between the two test conditions. Excellent agreement was obtained between the two tests for the pressure-drag variation with Mach number, regardless of whether the scale effect on skin friction was considered. Favorable agreement was also obtained between the pressure-drag increments due t o the presence of the stabilizing fins as determined in the wine tunnel from fins-on and fins-off tests and as obtained by a different method in free flight. Tests of a specific airplane configuration to obtain an indication of the problems involved in the construction and tests of small-scale (approximately 7-inch span) complete airplane configuration with internal air flow indicated that reliable zero-lift drag-coefficient measurements at Mach numbers up to 1.4 can be attained with such models, provided the model is constructed with a high but not an unreasonable degree of accuracy.

  1. Takeoff certification considerations for large subsonic and supersonic transport airplanes using the Ames flight simulator for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Drinkwater, F. J., III; Fry, E. B.; Forrest, R. D.

    1973-01-01

    Data for use in development of takeoff airworthiness standards for new aircraft designs such as the supersonic transport (SST) and the large wide-body subsonic jet transport are provided. An advanced motion simulator was used to compare the performance and handling characteristics of three representative large jet transports during specific flight certification tasks. Existing regulatory constraints and methods for determining rotation speed were reviewed, and the effects on takeoff performance of variations in rotation speed, pitch attitude, and pitch attitude rate during the rotation maneuver were analyzed. A limited quantity of refused takeoff information was obtained. The aerodynamics, wing loading, and thrust-to-weight ratio of the subject SST resulted in takeoff speeds limited by climb (rather than lift-off) considerations. Take-off speeds based on U.S. subsonic transport requirements were found unacceptable because of the criticality of rotation-abuse effects on one-engine-inoperative climb performance. Adequate safety margin was provided by takeoff speeds based on proposed Anglo-French supersonic transport (TSS) criteria, with the limiting criterion being that takeoff safety speed be at least 1.15 times the one-engine-inoperative zero-rate-of-climb speed. Various observations related to SST certification are presented.

  2. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... that person complies with the takeoff weight limitations in the approved Airplane Flight Manual or equivalent for operations under this part, and, if the airplane is certificated under § 135.169(b) (4) or (5) with the landing weight limitations in the Approved Airplane Flight Manual or equivalent for...

  3. Preliminary Evaluation of the Low-Speed Stability and Control Characteristics of the McDonnell XP-85 Airplane from Tests of an Unballasted 1/5-Scale Model in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Paulson, John W.; Johnson, Joseph L.

    1947-01-01

    At the request of the Air Material Command, Army Air Forces an investigation of the low-speed, power-off stability and control characteristics of the McDonnell XP-85 airplane is being conducted in the Langley free-flight tunnel. The XP-85 airplane is a jet propelled, parasite fighter with a 34 deg sweepback at the wing quarter chord. It was designed to be carried in a bomb bay of the B-36 air plane. The first portion of the investigation consists of a preliminary evaluation of the stability and control characteristics of the airplane from force and fight tests of an unballasted 1/5-scale model. The second portion of the investigation consists of test of a properly balasted 1/10-scale model which will include a study of the stability of the Xp-85 when attached to the trapeze for retraction into the B-36 bomb bay. The results of the preliminary test with the 1/5-scale model are presented herein. This portion fo the investigation included tests of the model with various center fin arrangements. Both the design nose flap and a stall control vane were investigated.

  4. 78 FR 75451 - Special Conditions: Cessna Model 750 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... systems and networks. Connectivity to, or access by, external systems and networks may result in security... configuration may allow the exploitation of network security vulnerabilities resulting in intentional or...; Aircraft Electronic System Security Protection From Unauthorized External Access AGENCY: Federal...

  5. Giant airplanes

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    It is hardly possible for the most imaginative aeronautical enthusiast to look forward to a time when the airplane will have reached the dimensions commensurate with those already attained by the airship.

  6. Vibration Response of Airplane Structures

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Gelalles, A G

    1935-01-01

    This report presents test results of experiments on the vibration-response characteristics of airplane structures on the ground and in flight. It also gives details regarding the construction and operation of vibration instruments developed by the National Advisory Committee for Aeronautics.

  7. Investigation of the Stability and Control Characteristics of a 1/10-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley Free-Flight Tunnel, TED No. NACA DE306

    NASA Technical Reports Server (NTRS)

    Draper, John W.; Hewes, Donald E.

    1948-01-01

    At the request of the Bureau of Aeronautics, Navy Department, a stability and control investigation of a 1/10-scale model of the Chance Vought XF7U-1 airplane has been conducted in the Langley free-flight tunnel. Results of force end flight tests to determine the power-off stability and control characteristics of the model with slats retracted and extended are presented herein. The longitudinal and lateral stability characteristics were satisfactory for both the slats retracted and extended conditions over the lift range up to the stall. With the slats retracted, the stall was fairly gentle but the model rolled off out of control. With the slats extended, control could be maintained at the stall so that the wings could be kept level even as the model dropped.

  8. Time-of-Flight Experiments in Molecular Motion and Electron-Atom Collision Kinematics

    ERIC Educational Resources Information Center

    Donnelly, Denis P.; And Others

    1971-01-01

    Describes a set of experiments for an undergraduate laboratory which demonstrates the relationship between velocity, mass, and temperature in a gas. The experimental method involves time-of-flight measurements on atoms excited to metastable states by electron impact. Effects resulting from recoil in the electron-atom collision can also be…

  9. Flight-Determination of the Low-Lift Drag and Longitudinal Stability of a 1/10-Scale Rocket-Powered Model of the Douglas XF4D-1 Airplane at Mach Numbers from 0.7

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L.; Blanchard, Willard S., Jr.; Hastings, Earl C., Jr.

    1951-01-01

    A flight investigation has been made to determine the drag and longitudinal stability of a 1/10- scale model of the Douglas XF4D-1 airplane from Mach numbers 0.7 to 1.4 at lift coefficients near zero. The drag rise occurred near M = 0.95. The external drag coefficient was a constant value of about 0.012 at subsonic speeds up to the point of drag rise where it increased abruptly to a value of 0.030 at M = 1.0 followed by a more gradual increase to a value of 0.038 at M = 1.25. The model indicated that, at 35,000 feet and a level-flight free-stream Mach number of 1.0, the drag of the full-scale airplane would exceed the thrust available from an XJ40-WE-8 engine with after-burning. The transonic trim change was small. The aerodynamic center moved gradually from the most forward location of 21.0-percent mean aerodynamic chord at M = 0.9 to the most rearward location of 40-percent mean aerodynamic chord at M = 1.25. The damping in pitch was low.

  10. Quantifying and scaling airplane performance in turbulence

    NASA Astrophysics Data System (ADS)

    Richardson, Johnhenri R.

    This dissertation studies the effects of turbulent wind on airplane airspeed and normal load factor, determining how these effects scale with airplane size and developing envelopes to account for them. The results have applications in design and control of aircraft, especially small scale aircraft, for robustness with respect to turbulence. Using linearized airplane dynamics and the Dryden gust model, this dissertation presents analytical and numerical scaling laws for airplane performance in gusts, safety margins that guarantee, with specified probability, that steady flight can be maintained when stochastic wind gusts act upon an airplane, and envelopes to visualize these safety margins. Presented here for the first time are scaling laws for the phugoid natural frequency, phugoid damping ratio, airspeed variance in turbulence, and flight path angle variance in turbulence. The results show that small aircraft are more susceptible to high frequency gusts, that the phugoid damping ratio does not depend directly on airplane size, that the airspeed and flight path angle variances can be parameterized by the ratio of the phugoid natural frequency to a characteristic turbulence frequency, and that the coefficient of variation of the airspeed decreases with increasing airplane size. Accompanying numerical examples validate the results using eleven different airplanes models, focusing on NASA's hypothetical Boeing 757 analog the Generic Transport Model and its operational 5.5% scale model, the NASA T2. Also presented here for the first time are stationary flight, where the flight state is a stationary random process, and the stationary flight envelope, an adjusted steady flight envelope to visualize safety margins for stationary flight. The dissertation shows that driving the linearized airplane equations of motion with stationary, stochastic gusts results in stationary flight. It also shows how feedback control can enlarge the stationary flight envelope by alleviating

  11. Electronic Nose Functionality for Breath Gas Analysis during Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Dolch, Michael E.; Hummel, Thomas; Fetter, Viktor; Helwig, Andreas; Lenic, Joachim; Moukhamedieva, Lana; Tsarkow, Dimitrij; Chouker, Alexander; Schelling, Gustav

    2017-02-01

    The presence of humans in space represents a constant threat for their health and safety. Environmental factors such as living in a closed confinement, as well as exposure to microgravity and radiation, are associated with significant changes in bone metabolism, muscular atrophy, and altered immune response, which has impacts on human performance and possibly results in severe illness. Thus, maintaining and monitoring of crew health status has the highest priority to ensure whole mission success. With manned deep space missions to moon or mars appearing at the horizon where short-term repatriation back to earth is impossible the availability of appropriate diagnostic platforms for crew health status is urgently needed. In response to this need, the present experiment evaluated the functionality and practicability of a metal oxide based sensor system (eNose) together with a newly developed breath gas collecting device under the condition of altering acceleration. Parabolic flights were performed with an Airbus A300 ZeroG at Bordeaux, France. Ambient air and exhaled breath of five healthy volunteers was analyzed during steady state flight and parabolic flight maneuvres. All volunteers completed the study, the breath gas collecting device valves worked appropriately, and breathing through the collecting device was easy and did not induce discomfort. During breath gas measurements, significant changes in metal oxide sensors, mainly sensitive to aromatic and sulphur containing compounds, were observed with alternating conditions of acceleration. Similarly, metal oxide sensors showed significant changes in all sensors during ambient air measurements. The eNose as well as the newly developed breath gas collecting device, showed appropriate functionality and practicability during alternating conditions of acceleration which is a prerequisite for the intended use of the eNose aboard the International Space Station (ISS) for breath gas analysis and crew health status

  12. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    NASA Technical Reports Server (NTRS)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  13. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    SciTech Connect

    Hugenschmidt, Christoph; Legl, Stefan

    2006-10-15

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1 eV at high electron energies up to E{approx_equal}1000 eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.

  14. Novel time-of-flight spectrometer for the analysis of positron annihilation induced Auger electrons

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph; Legl, Stefan

    2006-10-01

    Positron annihilation induced Auger-electron spectroscopy (PAES) has several advantages over conventional Auger-electron spectroscopy such as extremely high surface sensitivity and outstanding signal-to-noise ratio at the Auger-transition energy. In order to benefit from these prominent features a low-energy positron beam of high intensity is required for surface sensitive PAES studies. In addition, an electron energy analyzer is required, which efficiently detects the Auger electrons with acceptable energy resolution. For this reason a novel time-of-flight (TOF) spectrometer has been developed at the intense positron source NEPOMUC that allows PAES studies within short measurement time. This TOF-PAES setup combines a trochoidal filter and a flight tube in a Faraday cage in order to achieve an improved energy resolution of about 1eV at high electron energies up to E ≈1000eV. The electron flight time is the time between the annihilation radiation at the sample and when the electron hits a microchannel plate detector at the end of the flight tube.

  15. Flight Investigation of Effect of Various Vertical-Tail Modifications on the Directional Stability and Control Characteristics of the P-63A-1 Airplane (AAF No. 42-68889)

    NASA Technical Reports Server (NTRS)

    Johnson, Harold I.

    1946-01-01

    Because the results of preliminary flight tests had indicated. the P-63A-1 airplane possessed insufficient directional stability, the NACA and the manufacturer (Bell Aircraft Corporation) suggested three vertical-tail modifications to remedy the deficiencies in the directional characteristics. These modifications included an enlarged vertical tail formed by adding a tip extension to the original vertical tail, a large sharp-edge ventral fin, and a small dorsal fin. The enlarged vertical tail involved only a slight increase in total vertical-tail area from 23.73 to 26.58 square feet but a relatively much larger increase in geometric aspect ratio from 1.24 to 1.73 based on height and area above the horizontal tail. At the request of the Air Material Command, Army Air Forces, flight tests were made to determine the effect of these modifications and of some combinations of these modifications on the directional stability and control characteristics of the airplane, In all, six different vertical-tail. configurations were investigated to determine the lateral and directional oscillation characteristics of the airplane, the sideslip characteristics, the yaw due to ailerons in rudder-fixed rolls from turns and pull-outs, the trim changes due to speed changes; and the trim changes due to power changes. Results of the tests showed that the enlarged vertical tail approximately doubled the directional stability of the airplane and that the pilots considered the directional stability provided by the enlarged vertical tail to be satisfactory. Calculations based on sideslip data obtained at an indicated airspeed of 300 miles per hour showed that the directional stability of the airplane with the original vertical tail corresponded to a value of 0(sub n beta) of -0.00056 whereas for the enlarged vertical tail the estimated va1ue of C(sub n beta) was -0.00130, The ventral fin was found to increase by a moderate amount the directional stability of the airplane with the original

  16. 78 FR 75511 - Special Conditions: Bombardier Inc., Models BD-500-1A10 and BD-500-1A11 Series Airplanes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... Inc., Models BD-500-1A10 and BD- 500-1A11 Series Airplanes; Electronic Flight Control System: Control... control system. The applicable airworthiness regulations do not contain adequate or appropriate safety... control system (EFCS) and no direct coupling from the flightdeck controller to the control surface. As...

  17. Gas dynamic theory of flight of fast electron flux in plasma

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.

    The one-dimensional flight of a fast electron flux in plasma is investigated taking into account generation and absorption of plasma waves. The transition from the kinetic description to the gas dynamics is made. The closed set of gas dynamic equations for electrons and plasmons is derived and an automodel solution is obtained in the case of instantaneous injection. This solution represents the beam-plasma formation on natural oscillations in the system electrons+plasmons is considered.

  18. 14 CFR 36.105 - Flight Manual Statement of Chapter 4 equivalency.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.105 Flight Manual Statement of Chapter 4 equivalency. For each airplane that meets the requirements for Stage 4 certification, the Airplane Flight Manual or operations...

  19. 14 CFR 36.105 - Flight Manual Statement of Chapter 4 equivalency.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.105 Flight Manual Statement of Chapter 4 equivalency. For each airplane that meets the requirements for Stage 4 certification, the Airplane Flight Manual or operations...

  20. 14 CFR 36.105 - Flight Manual Statement of Chapter 4 equivalency.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Transport Category Large Airplanes and Jet Airplanes § 36.105 Flight Manual Statement of Chapter 4 equivalency. For each airplane that meets the requirements for Stage 4 certification, the Airplane Flight Manual or operations...

  1. Effect of electron beam pulse width on time-of-flight spectra

    NASA Technical Reports Server (NTRS)

    Misakian, M.; Mumma, M. J.

    1974-01-01

    A simple but useful formula describing the effect of electron gun pulse width on the time of flight (TOF) spectra measured in translational spectroscopy experiments is developed. An approximately monoenergetic pulsed electrostatically focused electron beam traverses a scattering cell filled with a Maxwellian gas. Inelastic electron collisions with the gas produce metastable particles, ions, scattered electrons, and photons which then pass through a collimating slit system at right angles to the electron beam. TOF techniques are used to separate the photon signal from the metastable particle signal and to measure the TOF distribution of the metastable species.

  2. Flight-test evaluation of two electronic display formats for approach to landing under instrument conditions

    NASA Technical Reports Server (NTRS)

    Morello, S. A.; Knox, C. E.; Steinmetz, G. G.

    1977-01-01

    The results of a flight evaluation of two electronic display formats for the approach to landing under instrument conditions are presented. The evaluation was conducted for a base-line electronic display format and for the same format with runway symbology and track information added. The evaluation was conducted during 3 deg, manual straight-in approaches with and without initial localizer offsets. Flight path tracking performance data and pilot subjective comments were examined with regard to the pilot's ability to capture and maintain localizer and glide slope by using both display formats.

  3. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-command flight time or flight-engineer flight time toward the 1,500 hours of total time as a pilot... crewmember. (2) Flight-engineer time, provided the time— (i) Is acquired in an airplane required to have...

  4. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-command flight time or flight-engineer flight time toward the 1,500 hours of total time as a pilot... crewmember. (2) Flight-engineer time, provided the time— (i) Is acquired in an airplane required to have...

  5. Flight testing the Digital Electronic Engine Control (DEEC) A unique management experience

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Kock, B. M.

    1983-01-01

    The concept for the DEEC had its origin in the early 1970s. At that time it was recognized that the F100 engine performance, operability, reliability, and cost could be substantially improved by replacing the original mechanical/supervisory electronic control system with a full-authority digital control system. By 1978, the engine manufacturer had designed and initiated the procurement of flight-qualified control system hardware. As a precursor to an integrated controls program, a flight evaluation of the DEEC system on the F-15 aircraft was proposed. Questions regarding the management of the DEEC flight evaluation program are discussed along with the program elements, the technical results of the F-15 evaluation, and the impact of the flight evaluation on after-burning turbofan controls technology and its use in and application to military aircraft. The lessons learned through the conduct of the program are discussed.

  6. Drag and Longitudinal Trim at Low Lift of the North American YF-100A Airplane at Mach Numbers from 0.76 to 1.77 as Determined from the Flight Test of a 0.11-Scale Rocket Model

    NASA Technical Reports Server (NTRS)

    Blanchard, Willard S.

    1953-01-01

    Drag and longitudinal trim at low lift of the North American YF-100A airplane at Mach numbers from 0.76 to 1.77 as determined from the flight test of a 0.11-scale rocket model are presented herein. Also included are some longitudinal stability and some qualitative pitch-damping data. The subsonic external-drag-coefficient level was about 0.012, and the supersonic level was about 0.043. The drag rise occurred at a Mach number of 0.95. The longitudinal trim change at low lift consisted basically of a mild nose-up tendency at a Mach number of 0.90. An indication of wing flutter was present at Mach numbers from 0.95 to 1.11. However, the full-scale airplane wing has approximately twice the scaled first-bending frequency as the model tested and, hence, will probably be free of this type of flutter. The aerodynamic-center location was 71 percent behind the leading edge of the mean aerodynamic chord at a Mach number of 1.03 and 62 percent at a Mach number of 1.74. Qualitative measurement of damping in pitch indicates that at low lift coefficients damping will be low at a Mach number of 1.03.

  7. Investigation of the Low-Speed Stability and Control Characteristics of a 1/10-Scale Model of the Convair YF-102 Airplane in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr.; Boisseau, Peter C.

    1953-01-01

    An investigation of the low-speed, power-off stability and control characteristics of a 1/10-scale model of the Convair YF-102 airplane has been made in the Langley free-flight tunnel. The model was flown over a lift-coefficient range from 0.5 to the stall in its basic configuration and with several modifications involving leading-edge slats and increases in vertical-tail size. Only relatively low-altitude conditions were simulated and no attempt was made to determine the effect of freeing the controls. The longitudinal stability characteristics of the model were considered satisfactory for all conditions investigated. The lateral stability characteristics were considered satisfactory for the basic configuration over the speed range investigated except near the stall, where large values of static directional instability caused the model to be directionally divergent. The addition of leading-edge slats or an 8-percent increase in vertical-tail area increased the angle of attack at which the model became directionally divergent. The use of leading-edge slats in combination with a 40-percent increase in vertical-tail size eliminated the directional divergence and produced satisfactory stability characteristics through the stall. The longitudinal and lateral control characteristics were generally satisfactory. Although the adverse sideslip characteristics for the model were considered satisfactory over the angle-of-attack range, analysis indicates that the adverse sideslip characteristics of the airplane may be objectionable at high angles of attack.

  8. 14 CFR 23.1567 - Flight maneuver placard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) required by this section need not be lighted. Airplane Flight Manual and Approved Manual Material ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Operating Limitations and Information Markings and Placards § 23.1567 Flight maneuver placard. (a) For normal category airplanes,...

  9. 14 CFR 23.1567 - Flight maneuver placard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) required by this section need not be lighted. Airplane Flight Manual and Approved Manual Material ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Operating Limitations and Information Markings and Placards § 23.1567 Flight maneuver placard. (a) For normal category airplanes,...

  10. Measurements in Flight of the Pressure Distribution on the Right Wing of a Pursuit-Type Airplane at Several Values of Mach Number

    NASA Technical Reports Server (NTRS)

    Clousing, Lawrence A; Turner, William N; Rolls, L Stewart

    1946-01-01

    Pressure-distribution measurements were made on the right wing of a pursuit-type airplane at values of Mach number up to 0.80. The results showed that a considerable portion of the lift was carried by components of the airplane other than the wings, and that the proportion of lift carried by the wings may vary considerably with Mach number, thus changing the bending moment at the wing root whether or not there is a shift in the lateral position of the center of pressure. It was also shown that the center of pressure does not necessarily move outward at high Mach numbers, even though the wing-thickness ratio decreases toward the wing tip. The wing pitching-moment coefficient increased sharply in a negative direction at a Mach lift-curve slope increased with Mach number up to values of above the critical value. Pressures inside the wing were small and negative.

  11. Investigation of the Stability and Control Characteristics of a 1/20-Scale Model of the Consolidated Vultee XB-53 Airplane with a Full-Span Leading-Edge Slat in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Bennett, Charles V.

    1947-01-01

    An investigation of the low-speed; power-off stability and control characteristics of a 1/20-scale model of the Consolidated Vultee XB-53 airplane equipped with full-span leading-edge slats has been conducted in the Langley free-flight tunnel. In this investigation it was found that the-full-span leading-edge slat gave about the same maximum lift coefficient as was obtained with the outboard single slotted flap and inboard slat. The stability and control characteristics were greatly improved except near the stall where the characteristics with the full-span slat were considered unsatisfactory because of a loss of directional stability and a slight nosing-up tendency.

  12. 14 CFR 121.385 - Composition of flight crew.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that...

  13. Headache during airplane travel ("airplane headache"): first case in Greece.

    PubMed

    Kararizou, Evangelia; Anagnostou, Evangelos; Paraskevas, George P; Vassilopoulou, Sofia D; Naoumis, Dimitrios; Kararizos, Grigoris; Spengos, Konstantinos

    2011-08-01

    Headache related to airplane flights is rare. We describe a 37-year-old female patient with multiple intense, jabbing headache episodes over the last 3 years that occur exclusively during airplane flights. The pain manifests during take-off and landing, and is located always in the left retro-orbital and frontotemporal area. It is occasionally accompanied by dizziness, but no additional symptoms occur. Pain intensity diminishes and disappears after 15-20 min. Apart from occasional dizziness, no other symptoms occur. The patient has a history of tension-type headache and polycystic ovaries. Blood tests and imaging revealed no abnormalities. Here, we present the first case in Greece. We review the current literature on this rare syndrome and discuss on possible pathophysiology and the investigation of possible co-factors such as anxiety and depression.

  14. Precision electronics for a system of custom MCPs in the TORCH Time of Flight detector

    NASA Astrophysics Data System (ADS)

    Gao, R.; Brook, N.; Castillo García, L.; Conneely, T.; Cussans, D.; Föhl, K.; Forty, R.; Frei, C.; Gys, T.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; Ros García, A.; Van Dijk, M.

    2017-03-01

    The TORCH detector will provide charged particle pi/K/p identification up to 10 GeV/c, combining Time-of-Flight and Cherenkov techniques to achieve a timing resolution of 70 ps for single photons. Based on a scalable design, a Time-of-Flight electronics readout system has been developed to instrument a novel customized 512-channel Micro Channel Plate (MCP) device. A Gigabit Ethernet-based readout scheme that operates the TORCH demonstration unit consisting of ten such MCPs will be reported. The trigger and clock distribution will also be discussed.

  15. Three axis electronic flight motion simulator real time control system design and implementation.

    PubMed

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  16. Three axis electronic flight motion simulator real time control system design and implementation

    SciTech Connect

    Gao, Zhiyuan; Miao, Zhonghua Wang, Xiaohua; Wang, Xuyong

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  17. Determining the Detection Efficiency and Background Level of ATIC Electron Observation from Flight Data

    NASA Technical Reports Server (NTRS)

    Chang, J.; Wu, J.; Guzik, T. G.; Wefel, J. P.; Isbert, J.; Adams, J. H., Jr.; Christl, M.; Watts, J.; Ahn, H. S.; Kim, K. C.; Seo, E. S.; Wu, J.; Bashindzhagyan, G. L.; Kouznetsov, E. N.; Panasyuk, M. I.; Sokolskaya, N. V.; Panov, A. D.; Zatsepin, V. I.

    2009-01-01

    Observations of Cosmic-ray electrons are difficult due to the large flux of cosmic ray hadrons. The event selection efficiency and background levels can be estimated from flight data for the ATIC instrument. This reduces the dependence upon Monte Carlo simulations, which show differences between different codes, thereby reducing the systematic errors resulting from analyses that only use simulations. This paper discusses some of the methods used in the ATIC analysis to determine the detection efficiency and background level for the flight data.

  18. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  19. 14 CFR Appendix K to Part 121 - Performance Requirements for Certain Turbopropeller Powered Airplanes

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight manual and approved manual material. 6. Operation. After compliance with the final airplane... Turbopropeller Powered Airplanes K Appendix K to Part 121 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Appendix K to Part 121—Performance Requirements for Certain Turbopropeller Powered Airplanes...

  20. 76 FR 8607 - Airworthiness Directives; The Cessna Aircraft Company Model 750 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Company Model 750 Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule... requires revising the airplane flight manual. This AD was prompted by a report of a DC generator..., Transport Airplane Directorate, 1601 Lind Avenue, SW., Renton, Washington. For information on...

  1. 14 CFR Appendix K to Part 121 - Performance Requirements for Certain Turbopropeller Powered Airplanes

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flight manual and approved manual material. 6. Operation. After compliance with the final airplane... Turbopropeller Powered Airplanes K Appendix K to Part 121 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Appendix K to Part 121—Performance Requirements for Certain Turbopropeller Powered Airplanes...

  2. 14 CFR Appendix K to Part 121 - Performance Requirements for Certain Turbopropeller Powered Airplanes

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flight manual and approved manual material. 6. Operation. After compliance with the final airplane... Turbopropeller Powered Airplanes K Appendix K to Part 121 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Appendix K to Part 121—Performance Requirements for Certain Turbopropeller Powered Airplanes...

  3. 14 CFR Appendix K to Part 121 - Performance Requirements for Certain Turbopropeller Powered Airplanes

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flight manual and approved manual material. 6. Operation. After compliance with the final airplane... Turbopropeller Powered Airplanes K Appendix K to Part 121 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Appendix K to Part 121—Performance Requirements for Certain Turbopropeller Powered Airplanes...

  4. 14 CFR Appendix K to Part 121 - Performance Requirements for Certain Turbopropeller Powered Airplanes

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight manual and approved manual material. 6. Operation. After compliance with the final airplane... Turbopropeller Powered Airplanes K Appendix K to Part 121 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Appendix K to Part 121—Performance Requirements for Certain Turbopropeller Powered Airplanes...

  5. 75 FR 71353 - Airworthiness Directives; Mitsubishi Heavy Industries, Ltd. Various Models MU-2B Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... Industries, Ltd. Various Models MU-2B Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... September 24, 1986, of the MU-2B-60 airplane flight manual (AFM) in table 3 of the Compliance section (e)(1... certain MHI various Models MU-2B airplanes. As published, table 3 specific to the MHI MU-2B-60...

  6. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  7. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  8. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  9. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  10. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  11. Pilot Transition Courses for Complex Single-Engine and Light Twin-Engine Airplanes.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This publication is intended for use by certificated airplane pilots and provides transitional knowledge and skills for more complex single-engine or light twin-engine airplanes. The training should be conducted by a competent flight instructor certified in the class of airplane and familiar with the make and model. A syllabus outline of ground…

  12. Electron pair emission detected by time-of-flight spectrometers: Recent progress

    SciTech Connect

    Huth, Michael; Schumann, Frank O.; Chiang, Cheng-Tien; Trützschler, Andreas; Kirschner, Jürgen; Widdra, Wolf

    2014-02-10

    We present results for electron coincidence spectroscopy using two time-of-flight (ToF) spectrometers. Excited by electron impact, the energy and momentum distribution of electron pairs emitted from the Cu(111) surface are resolved and a spectral feature related to the Shockley surface state is identified. By combining the two ToF spectrometers with a high-order harmonic generation light source, we demonstrate double photoemission spectroscopy in the laboratory that required synchrotron radiation in the past. Utilizing this setup, we report results for (γ,2e) on NiO(001) on Ag(001) excited with light at 30 eV photon energy.

  13. 77 FR 3587 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... new airworthiness directive (AD) for certain Model 767-200 and 767-300 series airplanes. This AD was... potential loss of several functions essential for safe flight. DATES: This AD is effective February 29, 2012...) Applicability This AD applies to The Boeing Company Model 767-200 and 767-300 series airplanes, certificated...

  14. Measurement of the handling characteristics of two light airplanes

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A flight investigation of the handling characteristics of two single engine general aviation airplanes, one a high wing and the other a low wing, included a variety of measurements of different characteristics of the airplanes. The characteristics included those of the control systems, performance, longitudinal and lateral responses, and stall motions.

  15. An investigation of the loads on the vertical tail of a jet-bomber airplane resulting from flight through rough air

    NASA Technical Reports Server (NTRS)

    Funk, Jack; Rhyne, Richard H

    1956-01-01

    Vertical-tail loads were measured in turbulent air on a four-engine jet bomber. Results showed large load oscillations which were lightly damped. Comparison of experimental results with discrete-load calculations indicated that discrete-gust calculations underestimated the loads by 30 to 40 percent and gave no indication of the low damping. Power spectral analysis, on the other hand, indicated the general frequency characteristics and gave a somewhat better estimate of the peak-load distributions. The present results strongly suggest that discrete-gust calculation for gust loads on vertical tails may seriously underestimate the gust loads for airplanes having lightly damped lateral oscillations.

  16. Clear Skies and Grey Areas: Flight Attendants' Secondhand Smoke Exposure and Attitudes toward Smoke-Free Policy 25 Years since Smoking was Banned on Airplanes.

    PubMed

    Stillman, Frances A; Soong, Andrea; Zheng, Laura Y; Navas-Acien, Ana

    2015-06-04

    Our objective was to provide descriptive data on flight attendant secondhand smoke (SHS) exposure in the work environment, and to examine attitudes toward SHS exposure, personal health, and smoke-free policy in the workplace and public places. Flight attendants completed a web-based survey of self-reported SHS exposure and air quality in the work environment. We assessed the frequency and duration of SHS exposure in distinct areas of the workplace, attitudes toward SHS exposure and its health effects, and attitudes toward smoke-free policy in the workplace as well as general public places. A total of 723 flight attendants participated in the survey, and 591 responded to all survey questions. The mean level of exposure per flight attendant over the past month was 249 min. The majority of participants reported being exposed to SHS always/often in outdoor areas of an airport (57.7%). Participants who worked before the in-flight smoking ban (n=240) were more likely to support further smoking policies in airports compared to participants who were employed after the ban (n=346) (76.7% versus 60.4%, p-value<0.01). Flight attendants are still being exposed to SHS in the workplace, sometimes at concerning levels during the non-flight portions of their travel. Flight attendants favor smoke-free policies and want to see further restrictions in airports and public places.

  17. 78 FR 14640 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... airplane flight manual (AFM) to include procedures for resetting the pitot switch in the event of pitot... for resetting the pitot switch in the event of pitot heater failure and for total loss of...

  18. A study of airplane ranges and useful loads

    NASA Technical Reports Server (NTRS)

    Coffin, J G

    1920-01-01

    This report is an analysis of the maximum flight radii of typical large airplanes and a discussion of the way in which the possible length of flight is affected by the change of weight by consumption of fuel during the flight.

  19. 77 FR 54787 - Airworthiness Directives; M7 Aerospace LLC Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... promoting safe flight of civil aircraft in air commerce by prescribing regulations for practices, methods... damage. (2) Airplane model, serial number, aircraft total flight cycles, and total hours time-in-service.../operators who do not track total aircraft flight cycles (TAC), for the purposes of this AD, use...

  20. X-15: Extending the Frontiers of Flight

    NASA Technical Reports Server (NTRS)

    Jenkins, Dennis R.

    2007-01-01

    A history of the design and achievements of the high-speed, 1950s-era X-15 airplane is presented. The following chapters are included: A New Science; A Hypersonic Research Airplane; Conflict and Innovation; The Million-Horsepower Engine; High Range and Dry Lakes; Preparations; The Flight Program; and the Research Program. Selected biographies, flight logs and physical characteristics of the X-15 Airplane are included in the appendices.

  1. Electron beam injection experiments - Replication of flight observations in a laboratory beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.; Mcgarity, J. O.; Konradi, A.

    1983-01-01

    Recent electron beam injection experiments in the lower ionosphere have produced two perplexing results: (1) At altitudes from 140 km to 220 km, the beam associated 391.4 nm intensity is relatively independent of altitude despite the decreasing N2 abundance. (2) The radial extent of the perturbed region populated by beam associated energetic electrons significantly exceeds the nominal gyrodiameter for 90 deg injection. A series of laboratory measurements is described in which both of these flight results appear to have been closely reproduced. The laboratory results are reasonably consistent with the transition from a collision dominated to collisionless beam-plasma discharge configuration.

  2. Electron Induced Scintillation Testing of Commercially Available Optical Fibers for Space Flight

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.

    1999-01-01

    A test to verify the performance of several commercial and military optical fibers available on the market today was conducted, via usage of an electron accelerator, to monitor radiation induced scintillation or luminescence. The test results showed that no significant effects could be detected with the PMT system used, above a noise floor of 50 photons/sec that were due to optical fiber scintillation. Although some data appeared to show events taking place, noise scan results have correlated these events to arcing inside the electron accelerator facility. This test was to simply characterize for space flight, which optical fiber candidates were the largest scintillators among the eighteen optical fiber candidates tested.

  3. Delayed extraction time-of-flight mass spectrometer with electron impact for PAH studies

    NASA Astrophysics Data System (ADS)

    Najeeb, P. K.; Kadhane, U.

    2017-03-01

    A time-of-flight (ToF) mass spectrometer with a pulsed electron beam as well as pulsed extraction of the recoil ions, with variable delay is reported. The effectiveness of this technique is highlighted by studying the statistical decay of mono-cations over microsecond time scales. Various details of the design and operation are discussed in the context of electron impact ionization and fragmentation of naphthalene (C10H8). The temporal behavior of acetylene (C2H2) and diacetylene (C4H2) loss is observed and compared with the associated Arrhenius decay constant, internal energy and plasmon excitation energy.

  4. Amphibious Airplane

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The airplane pictured is the new Air Shark I, a four-place amphibian that makes extensive use of composite materials and cruises at close to 200 miles per hour under power from a 200-horsepower engine. Air Shark I is a "homebuilt" airplane, assembled from a kit of parts and components furnished by Freedom Master Corporation, Satellite Beach, Florida. The airplane incorporates considerable NASA technology and its construction benefited from research assistance provided by Kennedy Space Center (KSC) In designing the Shark, company president Arthur M. Lueck was able to draw on NASA's aeronautical technology bank through KSC's computerized "recon" library. As a result of his work at KSC, the wing of the Air Shark I is a new airfoil developed by Langley Research Center for light aircraft. In addition, Lueck opted for NASA-developed "winglets," vertical extensions of the wing that reduce drag by smoothing air turbulence at the wingtips. The NASA technology bank also contributed to the hull design. Lueck is considering application of NASA laminar flow technology-means of smoothing the airflow over wing and fuselage-to later models for further improvement of the Shark's aerodynamic efficiency. A materials engineer, Lueck employed his own expertise in designing and selecting the materials for the composite segments, which include all structural members, exposed surfaces and many control components. The materials are fiber reinforced plastics, or FRP They offer a high strength-to-weight ratio, with a nominal strength rating about one and a half times that of structural steel. They provide other advantages: the materials can be easily molded into finished shapes without expensive tooling or machining, and they are highly corrosion resistant. The first homebuilt to be offered by Freedom Master, Air Shark I completed air and water testing in mid-1985 and the company launched production of kits.

  5. Airplane headache: a further case report of a young man.

    PubMed

    Domitrz, Izabela

    2010-12-01

    Headache with normal examinations and imaging, occurring during an airplane flight has been rarely reported. We present a young patient with a new type of headache that appeared during flights: take-off and landing of a plane and was not associated with other conditions. This airplane headache is rather rare in population and the pathophysiology of this type is not clear. Secondary causes must be ruled out before the diagnosis of a primary headache is made.

  6. Flight Test Results of a GPS-Based Pitot-Static Calibration Method Using Output-Error Optimization for a Light Twin-Engine Airplane

    NASA Technical Reports Server (NTRS)

    Martos, Borja; Kiszely, Paul; Foster, John V.

    2011-01-01

    As part of the NASA Aviation Safety Program (AvSP), a novel pitot-static calibration method was developed to allow rapid in-flight calibration for subscale aircraft while flying within confined test areas. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. This method has been demonstrated in subscale flight tests and has shown small 2- error bounds with significant reduction in test time compared to other methods. The current research was motivated by the desire to further evaluate and develop this method for full-scale aircraft. A goal of this research was to develop an accurate calibration method that enables reductions in test equipment and flight time, thus reducing costs. The approach involved analysis of data acquisition requirements, development of efficient flight patterns, and analysis of pressure error models based on system identification methods. Flight tests were conducted at The University of Tennessee Space Institute (UTSI) utilizing an instrumented Piper Navajo research aircraft. In addition, the UTSI engineering flight simulator was used to investigate test maneuver requirements and handling qualities issues associated with this technique. This paper provides a summary of piloted simulation and flight test results that illustrates the performance and capabilities of the NASA calibration method. Discussion of maneuver requirements and data analysis methods is included as well as recommendations for piloting technique.

  7. Precision controllability of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Matheny, N. W.

    1979-01-01

    A flying qualities evaluation conducted on a preproduction F-15 airplane permitted an assessment to be made of its precision controllability in the high subsonic and low transonic flight regime over the allowable angle of attack range. Precision controllability, or gunsight tracking, studies were conducted in windup turn maneuvers with the gunsight in the caged pipper mode and depressed 70 mils. This evaluation showed the F-15 airplane to experience severe buffet and mild-to-moderate wing rock at the higher angles of attack. It showed the F-15 airplane radial tracking precision to vary from approximately 6 to 20 mils over the load factor range tested. Tracking in the presence of wing rock essentially doubled the radial tracking error generated at the lower angles of attack. The stability augmentation system affected the tracking precision of the F-15 airplane more than it did that of previous aircraft studied.

  8. Laser Altimeter for Flight Simulator

    NASA Technical Reports Server (NTRS)

    Webster, L. D.

    1986-01-01

    Height of flight-simulator probe above model of terrain measured by automatic laser triangulation system. Airplane simulated by probe that moves over model of terrain. Altitude of airplane scaled from height of probe above model. Height measured by triangulation of laser beam aimed at intersection of model surface with plumb line of probe.

  9. Time of flight spectrometer for background-free positron annihilation induced Auger electron spectroscopy.

    PubMed

    Mukherjee, S; Shastry, K; Anto, C V; Joglekar, P V; Nadesalingam, M P; Xie, S; Jiang, N; Weiss, A H

    2016-03-01

    We describe a novel spectrometer designed for positron annihilation induced Auger electron spectroscopy employing a time-of-flight spectrometer. The spectrometer's new configuration enables us to implant monoenergetic positrons with kinetic energies as low as 1.5 eV on the sample while simultaneously allowing for the detection of electrons emitted from the sample surface at kinetic energies ranging from ∼500 eV to 0 eV. The spectrometer's unique characteristics made it possible to perform (a) first experiments demonstrating the direct transition of a positron from an unbound scattering state to a bound surface state and (b) the first experiments demonstrating that Auger electron spectra can be obtained down to 0 eV without the beam induced secondary electron background obscuring the low energy part of the spectra. Data are presented which show alternative means of estimating positron surface state binding energy and background-free Auger spectra.

  10. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  11. High Energy Electrons and Gamma Rays from the ATIC-2 Balloon Flight

    NASA Astrophysics Data System (ADS)

    Isbert, J. B.; ATIC Collaboration

    2004-08-01

    The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment is primarily designed to measure the spectra of nuclear cosmic rays (protons to nickel). It is composed of a segmented BGO calorimeter (18 radiation lengths deep) following a carbon target (0.75 nuclear interaction lengths) interleaved with scintillator tracking layers. A Silicon matrix detector at the entrance identifies the incident particle charge. Utilizing simulations such as Fluka and Geant we have investigated the ability of this design to differentiate electron (gamma) initiated showers from hadronic showers. The differences in shower development between the two populations are sufficient to differentiate them for measurements of electron spectra into the TeV region, as confirmed by accelerator tests at CERN and by the ATIC-1 test flight in 2000-01. ATIC had a successful science flight in 2002-03 from McMurdo, Antarctica returning about 19 days of flight data. This exposure is sufficient to record electrons into the TeV region and measure gamma rays at 100's of GeV. The majority of gamma rays are of atmospheric origin and provide a test for this technique. The preliminary electron spectrum from the ATIC-2 flight is presented and compared to previous high energy measurements, principally from emulsion chambers. Possible astrophysical interpretations of the results are discussed. The ATIC Collaboration: J.H. Adams,2 H.S. Ahn,3 G.L. Bashindzhagyan,4 K.E. Batkov,4 J. Chang,6,7 M. Christl,2 A.R. Fazely,5, O. Ganel,3 R.M. Gunasingha,5 T.G. Guzik,1 J. Isbert,1 K.C. Kim,3 E.N. Kouznetsov,4 M.I. Panasyuk,4 A.D. Panov,4 W.K.H. Schmidt,6 E.S. Seo,3 N.V. Sokolskaya,4 J.Z. Wang,3 J.P. Wefel,1 J. Wu,3 V.I. Zatsepin,4 (1) Louisiana State University, Baton Rouge, LA, USA (2) Marshall Space Flight Center, Huntsville, AL, USA (3) University of Maryland, College Park, MD, USA (4) Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia (5) Southern University, Baton Rouge, LA, USA (6

  12. 76 FR 17022 - Special Conditions: Gulfstream Model GVI Airplane; High Incidence Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... at which the airplane can develop a lift force normal to the flight path and equal to its weight when... minimum calibrated airspeed at which the airplane can develop a lift force normal to the flight path and... likely to be mistaken for natural stall identification. (3) No uncommanded lateral or directional...

  13. Flight electronics for vibration cancellation in cryogenic refrigerators: performance and environmental testing results

    NASA Astrophysics Data System (ADS)

    Burriesci, Lawrence G.; Cook, Eric I.; Hackett, John P.; Drummond, James R.; Mand, Gurpreet S.

    1996-10-01

    Space flight optical instruments and their support hardware must reliably operate in stressing environments for the duration of their mission. They must also survive the mechanical and thermal stresses of transportation, storage and launch. It is necessary to qualify the hardware design through environmental testing and to verify the hardware's ability to perform properly during and/or after some selected environmental tests on the ground. As a rule, flight electronics are subjected to thermal, mechanical and electromagnetic environmental testing. Thermal testing takes the form of temperature cycling over a temperature difference range (Delta) T of up to 100 degrees C for a minimum of six cycles, with additional performance verification testing at the hot and cold extremes. Mechanical testing takes the form of exposure to random vibration, sine sweep vibration, shock spectra and static loading on a centrifuge or by sine burst on a vibration table. A standard series of electromagnetic interference and electromagnetic compatibility testing is also performed.

  14. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  15. 78 FR 65155 - Special Conditions: Learjet Model 45 Series Airplanes; Isolation or Security Protection of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... navigation systems (aircraft control domain); 2. Operator business and administrative support (operator... electronic system security protection against, access by unauthorized sources internal to the airplane. The... Airplanes; Isolation or Security Protection of the Aircraft Control Domain and the Airline...

  16. Flight test of a full authority Digital Electronic Engine Control system in an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, W. J.; Rembold, J. P.; Burcham, F. W.; Myers, L.

    1981-01-01

    The Digital Electronic Engine Control (DEEC) system considered is a relatively low cost digital full authority control system containing selectively redundant components and fault detection logic with capability for accommodating faults to various levels of operational capability. The DEEC digital control system is built around a 16-bit, 1.2 microsecond cycle time, CMOS microprocessor, microcomputer system with approximately 14 K of available memory. Attention is given to the control mode, component bench testing, closed loop bench testing, a failure mode and effects analysis, sea-level engine testing, simulated altitude engine testing, flight testing, the data system, cockpit, and real time display.

  17. High-performance electronics for time-of-flight PET systems.

    PubMed

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.

  18. High-performance electronics for time-of-flight PET systems

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.

  19. A Preliminary Analysis of the Flying Qualities of the Consolidated Vultee MX-813 Delta-Wing Airplane Configuration at Transonic and Low Supersonic Speeds as Determined from Flights of Rocket-Powered Models

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L.

    1949-01-01

    A preliminary analysis of the flying qualities of the Consolidated Vultee MX-813 delta-wing airplane configuration has been made based on the results obtained from the first two 1/8 scale models flown at the NACA Pilotless Aircraft Research Station, Wallop's Island, VA. The Mach number range covered in the tests was from 0.9 to 1.2. The analysis indicates adequate elevator control for trim in level flight over the speed range investigated. Through the transonic range there is a mild trim change with a slight tucking-under tendency. The elevator control effectiveness in the supersonic range is reduced to about one-half the subsonic value although sufficient control for maneuvering is available as indicated by the fact that 10 deg elevator deflection produced 5g acceleration at Mach number of 1.2 at 40,000 feet.The elevator control forces are high and indicate the power required of the boost system. The damping. of the short-period oscillation is adequate at sea-level but is reduced at 40,000 feet. The directional stability appears adequate for the speed range and angles of attack covered.

  20. A flight investigation of oscillating air forces: Equipment and technique

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1975-01-01

    The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.

  1. 14 CFR 23.1567 - Flight maneuver placard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Operating Limitations and Information Markings and Placards § 23.1567 Flight maneuver placard. (a) For normal category airplanes, there..., including spins, approved.” (b) For utility category airplanes, there must be— (1) A placard in clear...

  2. 14 CFR 23.1567 - Flight maneuver placard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Operating Limitations and Information Markings and Placards § 23.1567 Flight maneuver placard. (a) For normal category airplanes, there..., including spins, approved.” (b) For utility category airplanes, there must be— (1) A placard in clear...

  3. 14 CFR 23.1567 - Flight maneuver placard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) required by this section need not be lighted. Airplane Flight Manual and Approved Manual Material ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Operating Limitations and... 75763, December 2, 2011. (a) For normal category airplanes, there must be a placard in front of and...

  4. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities.

    PubMed

    Verhoeven, W; van Rens, J F M; van Ninhuijs, M A W; Toonen, W F; Kieft, E R; Mutsaers, P H A; Luiten, O J

    2016-09-01

    We demonstrate the use of two TM110 resonant cavities to generate ultrashort electron pulses and subsequently measure electron energy losses in a time-of-flight type of setup. The method utilizes two synchronized microwave cavities separated by a drift space of 1.45 m. The setup has an energy resolution of 12 ± 2 eV FWHM at 30 keV, with an upper limit for the temporal resolution of 2.7 ± 0.4 ps. Both the time and energy resolution are currently limited by the brightness of the tungsten filament electron gun used. Through simulations, it is shown that an energy resolution of 0.95 eV and a temporal resolution of 110 fs can be achieved using an electron gun with a higher brightness. With this, a new method is provided for time-resolved electron spectroscopy without the need for elaborate laser setups or expensive magnetic spectrometers.

  5. Time-of-flight electron energy loss spectroscopy using TM110 deflection cavities

    PubMed Central

    Verhoeven, W.; van Rens, J. F. M.; van Ninhuijs, M. A. W.; Toonen, W. F.; Kieft, E. R.; Mutsaers, P. H. A.; Luiten, O. J.

    2016-01-01

    We demonstrate the use of two TM110 resonant cavities to generate ultrashort electron pulses and subsequently measure electron energy losses in a time-of-flight type of setup. The method utilizes two synchronized microwave cavities separated by a drift space of 1.45 m. The setup has an energy resolution of 12 ± 2 eV FWHM at 30 keV, with an upper limit for the temporal resolution of 2.7 ± 0.4 ps. Both the time and energy resolution are currently limited by the brightness of the tungsten filament electron gun used. Through simulations, it is shown that an energy resolution of 0.95 eV and a temporal resolution of 110 fs can be achieved using an electron gun with a higher brightness. With this, a new method is provided for time-resolved electron spectroscopy without the need for elaborate laser setups or expensive magnetic spectrometers. PMID:27704035

  6. Determination of the Stability and Control Characteristics of a Tailless All-Wing Airplane Model with Sweepback in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Seacord, Charles L.; Campbell, John P.

    1945-01-01

    Force and flight tests were performance on an all-wing model with windmilling propellers. Tests were conducted with deflected and retracted flaps, with and without auxiliary vertical tail surfaces, and with different centers of gravity and trim coefficients. Results indicate serious reduction of stick-fixed longitudinal stability because of wing-tip stalling at high lift coefficient. Directional stability without vertical tail is undesirably low. Low effective dihedral should be maintained. Elevator and rudder control system is satisfactory.

  7. Effects of an in-flight thrust reverser on the stability and control characteristics of a single-engine fighter airplane model

    NASA Technical Reports Server (NTRS)

    Mercer, C. E.; Maiden, D. L.

    1972-01-01

    The changes in thrust minus drag performance as well as longitudinal and directional stability and control characteristics of a single-engine jet aircraft attributable to an in-flight thrust reverser of the blocker-deflector door type were investigated in a 16-foot transonic wind tunnel. The longitudinal and directional stability data are presented. Test conditions simulated landing approach conditions as well as high speed maneuvering such as may be required for combat or steep descent from high altitude.

  8. Drag measurements on a Junkers wing section : application of the Betz Method to the results of comparative tests made on a model and on an airplane in flight

    NASA Technical Reports Server (NTRS)

    Weidinger, Hanns

    1927-01-01

    The comparison of model tests in flight can be based on the result of such measurements. They are very important from the aerodynamical point of view, as they lead to useful conclusions regarding the behavior of the wing, its best shape and the conformity of theoretical and actual flow. Although there still remains a certain prejudice against such measurements, I have still attempted to make these comparative tests in order to inspire confidence in their reliability.

  9. Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.

    1985-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.

  10. Predicted performance benefits of an adaptive digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.

    1985-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and an integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.

  11. Stresses Produced in Airplane Wings by Gusts

    NASA Technical Reports Server (NTRS)

    Kussner, Hans Georg

    1932-01-01

    Accurate prediction of gust stress being out of the question because of the multiplicity of the free air movements, the exploration of gust stress is restricted to static method which must be based upon: 1) stress measurements in free flight; 2) check of design specifications of approved type airplanes. With these empirical data the stress must be compared which can be computed for a gust of known intensity and structure. This "maximum gust" then must be so defined as to cover the whole ambit of empiricism and thus serve as prediction for new airplane designs.

  12. Landing and Braking of Airplanes

    NASA Technical Reports Server (NTRS)

    Breguet, Louis

    1929-01-01

    In the numerical examples, we have considered an airplane landing in calm air in a fixed direction after crossing the border (with its obstacles) at a height of 30 m. Its stopping point is at a distance D from the obstacle, comprising: a distance D(sub 1) in regular gliding flight; a distance D(sub 2) in levelling off; a distance D(sub 3) in taxying on the ground. The calculations enable us to make out the following table, which gives an idea of the improvements to be expected in the use of various possible methods of braking in the air and on the ground.

  13. Summary of the effects of engine throttle response on airplane formation-flying qualities

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.

    1993-01-01

    A flight evaluation was conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. This airplane was chosen because of its known, very favorable thrust response characteristics. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. The Cooper and Harper Pilot Rating Scale was used to assign levels of handling quality. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented. These results may provide engine manufacturers with guidelines to assure satisfactory handling qualities in future engine designs.

  14. State of the art of piloted electric airplanes, NASA's centennial challenge data and fundamental design implications

    NASA Astrophysics Data System (ADS)

    Costello, Lori Anne

    The purpose of this study was to determine the current state of the electric airplane as primarily defined by results from NASA's Green Flight Challenge Competition. New equations must be derived in order to determine the endurance and range for electric airplanes since the standard equations depend upon weight change over a flight and the weight of an electric airplane does not change. These new equations could then be solved for the optimal velocity and altitude which were the two driving factors that could change range and endurance for a given airplane configuration. The best velocity for range and endurance is not a function of energy storage or weight change thus the results turn out to be very similar to internal combustion engine airplanes, however, the optimal altitude for the best range and endurance equates to flying as high as reasonably possible. From examining the Green Flight Challenge data of the two fully electric airplanes, the analysis suggests that the electric propulsion system is not the only measure, given today's battery technology, that helps create a viable electric airplane solution. Aerodynamic efficiency becomes very important in order to reduce the required amount of energy. Airplanes that are aerodynamically inefficient make bad electric airplanes because the energy density of batteries is still low and the energy available to carry on board is limited. The more energy wasted on drag, the less the range and endurance of the airplane can be since the addition of more batteries may not be an option.

  15. Flight test results of an automatic support system on board a YF-12A airplane. [for jet engine inlet air control

    NASA Technical Reports Server (NTRS)

    Love, J. E.

    1974-01-01

    An automatic support system concept that isolated faults in an existing nonavionics subsystem was flight tested up to a Mach number of 3. The adaptation of the automated support concept to an existing system (the jet engine automatic inlet control system) caused most of the problems one would expect to encounter in other applications. These problems and their solutions are discussed. Criteria for integrating automatic support into the initial design of new subsystems are included in the paper. Cost effectiveness resulted from both the low maintenance of the automated system and the man-hour saving resulting from the real time diagnosis of the monitored subsystem.

  16. Fear of Flying in Airplanes: Effects of Minimal Therapist Guided Stress Inoculation Training.

    ERIC Educational Resources Information Center

    Beckham, Jean C.; And Others

    Flight phobia is an area which has received little controlled investigation, even though between 10 and 20 percent of flight passengers report a fear of flying in airplanes. A study was conducted to examine the efectiveness of a minimal therapist guided form of stress inoculation training (SIT) for flight phobia. Flight phobic volunteers (N=28)…

  17. 78 FR 58970 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... flight deck display units resulting in blanking, blurring, or loss of color on the display. This proposed... airplanes reported flight deck display unit malfunctions including blanking, blurring, or loss of color... units resulting in blanking, blurring, or loss of color on the display. We are issuing this AD...

  18. 77 FR 42455 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... switch shut off in flight. This proposed AD would require moving all magneto switches that are now or are... airplanes with magneto switches located on the left cabin panel, adjacent to the front seat, were caused by pilots unknowingly turning off the magneto switches and causing in-flight engine shutdowns. In each...

  19. Summary of Free-Flight Zero-Lift Drag Results from Tests of 1/5-Scale Models of the Convair YF-102 and F-102A Airplanes and Several Related Small Equivalent Bodies at Mach Numbers from 0.70 to 1.46

    NASA Technical Reports Server (NTRS)

    Wallskog, Harvey A.

    1954-01-01

    One-fifth-scale rocket-propelled models of the Convair YF-102 and F-102A airplanes were tested to determine free-flight zero-lift drag coefficients through the transonic speed range at Reynolds numbers near those to be encountered by the full-scale airplane. Trim and duct characteristics were obtained along with measurements of total-, internal-, and base-drag coefficients. Additional zero-lift drag tests involved a series of small equivalent-body-of-revolution models which were launched to low supersonic speeds by means of a helium gun. The several small models tested corresponded to the following full-scale airplanes: basic, YF-102, 2-foot (full-scale) fuselage extension, F-102A, F-102A (relocated inlets), F-102A (faired nose), and F-102A (parabolic nose) . Equivalent-body models corresponding to the normal area distribution (derived for Mach number 1.0) of each of these airplane shapes were flown and, in addition, equivalent-body models designed to represent the YF-102 and F-102A airplanes at Mach number 1.2 were tested. External-drag coefficients obtained from the 115-scale tests ranged from 0.0094 to 0.0273 for the YF-102 model and from 0.0100 to 0.0255 for the F-102A model. Forebody external-pressure-drag coefficients (drag rise) at Mach number 1.05 of 0.0183 and 0.0134 were obtained from the 115-scale models of the YF-102 and F-102A, respectively, a 16-percent reduction for the F-102A model. Values of drag rise at Mach number 1.05 from the small equivalent-body tests were nearly the same for the basic, YF-102, and 2-foot-fuselage-extension airplane shapes. Equivalent-body tests of the YF-102 and F-102A shapes showed the latter to have about 25 percent less drag rise as compared with a 16-percent reduction illustrated by the 1/5-scale tests. Additional equivalent-body tests illustrating effects of modifications to the F-102A airplane shape shared that relocating the inlets on the fuselage or altering the nose shape to provide a smoother cross-sectional area

  20. Development of fire test methods for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1978-01-01

    Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.

  1. Buffet characteristics of the F-8 supercritical wing airplane

    NASA Technical Reports Server (NTRS)

    Deangelis, V. M.; Monaghan, R. C.

    1977-01-01

    The buffet characteristics of the F-8 supercritical wing airplane were investigated. Wing structural response was used to determine the buffet characteristics of the wing and these characteristics are compared with wind tunnel model data and the wing flow characteristics at transonic speeds. The wingtip accelerometer was used to determine the buffet onset boundary and to measure the buffet intensity characteristics of the airplane. The effects of moderate trailing edge flap deflections on the buffet onset boundary are presented. The supercritical wing flow characteristics were determined from wind tunnel and flight static pressure measurements and from a dynamic pressure sensor mounted on the flight test airplane in the vicinity of the shock wave that formed on the upper surface of the wing at transonic speeds. The comparison of the airplane's structural response data to the supercritical flow characteristics includes the effects of a leading edge vortex generator.

  2. Practical stability and controllability of airplanes

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1923-01-01

    The effect of the characteristics of an airplane on balance, stability, and controllability, based on free flight tests, is discussed particularly in respect to the longitudinal motion. It is shown that the amount of longitudinal stability can be varied by changing the position of the center of gravity or by varying the aspect ratio of the tail plane, and that the stability for any particular air speed can be varied by changing the camber of the tail plane. It is found that complete longitudinal stability may be obtained even when the tail plane is at all times a lifting surface. Empirical values are given for the characteristics of a new airplane for producing any desired amount of stability and control, or to correct the faults of an airplane already constructed. (author)

  3. 77 FR 38467 - Special Conditions: Gulfstream Aerospace LP (GALP), Model Gulfstream G280 Airplane; Isolation or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... information services, than previous GALP airplane models. This may allow the exploitation of network security... Gulfstream G280 Airplane; Isolation or Aircraft Electronic System Security Protection From Unauthorized... connectivity of the passenger service computer systems to the airplane critical systems and data networks....

  4. A comparison of flow velocities measured using an impact-pressure probe and electron time of flight in a supersonic flow. Implications for electron thermalization

    NASA Astrophysics Data System (ADS)

    Mostefaoui, T.; Rebrion-Rowe, C.; Travers, D.; Rowe, B. R.

    2000-04-01

    The bulk velocity of electrons in a burst of plasma created in a uniform supersonic flow by a pulsed electron beam has been measured by a time-of-flight technique using a Langmuir probe. This velocity is compared with the neutral-species bulk velocity deduced from impact-pressure measurements. This comparison allows a determination of an upper limit of the electron drift velocity to be made, which in turn shows that electrons are well thermalized in the flow. Therefore this kind of flowing supersonic afterglow can be used for electron-attachment studies at very low temperatures.

  5. The application of parameter estimation to flight measurements to obtain lateral-directional stability derivatives of an augmented jet-flap STOL airplane

    NASA Technical Reports Server (NTRS)

    Stephenson, J. D.

    1983-01-01

    Flight experiments with an augmented jet flap STOL aircraft provided data from which the lateral directional stability and control derivatives were calculated by applying a linear regression parameter estimation procedure. The tests, which were conducted with the jet flaps set at a 65 deg deflection, covered a large range of angles of attack and engine power settings. The effect of changing the angle of the jet thrust vector was also investigated. Test results are compared with stability derivatives that had been predicted. The roll damping derived from the tests was significantly larger than had been predicted, whereas the other derivatives were generally in agreement with the predictions. Results obtained using a maximum likelihood estimation procedure are compared with those from the linear regression solutions.

  6. 75 FR 2434 - Special Conditions: Boeing Model 747-8/-8F Series Airplanes; Design Roll Maneuver Requirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    .... This airplane will have novel or unusual design features when compared to the state of technology... flight computers. These special conditions contain the additional safety standards that the Administrator... airplane through pilot inputs to the flight computers. ] Discussion The 747-8/-8F is equipped with...

  7. Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane

    NASA Technical Reports Server (NTRS)

    Gera, Joseph; Bosworth, John T.

    1987-01-01

    Initial envelope clearance and subsequent flight testing of a new, fully augmented airplane with an extremely high degree of static instability can place unusual demands on the flight test approach. Previous flight test experience with these kinds of airplanes is very limited or nonexistent. The safe and efficient flight testing may be further complicated by a multiplicity of control effectors that may be present on this class of airplanes. This paper describes some novel flight test and analysis techniques in the flight dynamics and handling qualities area. These techniques were utilized during the initial flight envelope clearance of the X-29A aircraft and were largely responsible for the completion of the flight controls clearance program without any incidents or significant delays.

  8. Supplemental data and calculations of the lateral stability of airplanes

    NASA Technical Reports Server (NTRS)

    Mathias, Gotthold

    1934-01-01

    In connection with the DVL Report 272 on the theory of the lateral stability of airplanes, the formal results are here amplified in some respects and their technical significance again briefly explained. Three numerical examples show how model tests for checking the lateral stability are to be evaluated and supplemented, if necessary, and how the stability limits depend on the design of the airplane and on the conditions of flight.

  9. Statistical analysis of mission profile parameters of civil transport airplanes

    NASA Technical Reports Server (NTRS)

    Buxbaum, O.

    1972-01-01

    The statistical analysis of flight times as well as airplane gross weights and fuel weights of jet-powered civil transport airplanes has shown that the distributions of their frequency of occurrence per flight can be presented approximately in general form. Before, however, these results may be used during the project stage of an airplane for defining a typical mission profile (the parameters of which are assumed to occur, for example, with a probability of 50 percent), the following points have to be taken into account. Because the individual airplanes were rotated during service, the scatter between the distributions of mission profile parameters for airplanes of the same type, which were flown with similar payload, has proven to be very small. Significant deviations from the generalized distributions may occur if an operator uses one airplane preferably on one or two specific routes. Another reason for larger deviations could be that the maintenance services of the operators of the observed airplanes are not representative of other airlines. Although there are indications that this is unlikely, similar information should be obtained from other operators. Such information would improve the reliability of the data.

  10. 14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... regulations of this chapter that apply to flight engineers Theory of Flight and Aerodynamics 10 Airplane...) 235 The above subjects, except Theory of Flight and Aerodynamics, and Regulations must apply to...

  11. Precision controllability of the YF-17 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Mataeny, N. W.

    1980-01-01

    A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.

  12. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9...

  13. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9...

  14. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9...

  15. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9...

  16. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.115 Takeoff flight path. (a) The takeoff... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9...

  17. Measured Engine Installation Effects of Four Civil Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Senzig, David A.; Fleming, Gregg G.; Shepherd, Kevin P.

    2001-01-01

    The Federal Aviation Administration's Integrated Noise Model (INM) is one of the primary tools for land use planning around airports. The INM currently calculates airplane noise lateral attenuation using the methods contained in the Society of Automotive Engineer's Aerospace Information Report No. 1751 (SAE AIR 1751). Researchers have noted that improved lateral attenuation algorithms may improve airplane noise prediction. The authors of SAE AIR 1751 based existing methods on empirical data collected from flight tests using 1960s-technology airplanes with tail-mounted engines. To determine whether the SAE AIR 1751 methods are applicable for predicting the engine installation component of lateral attenuation for airplanes with wing-mounted engines, the National Aeronautics and Space Administration (NASA) sponsored a series of flight tests during September 2000 at their Wallops Flight Facility. Four airplanes, a Boeing 767-400, a Douglas DC-9, a Dassault Falcon 2000, and a Beech KingAir, were flown through a 20 microphone array. The airplanes were flown through the array at various power settings, flap settings, and altitudes to simulate take-off and arrival configurations. This paper presents the preliminary findings of this study.

  18. Advances in Thrust-Based Emergency Control of an Airplane

    NASA Technical Reports Server (NTRS)

    Creech, Gray; Burken, John J.; Burcham, Bill

    2003-01-01

    Engineers at NASA's Dryden Flight Research Center have received a patent on an emergency flight-control method implemented by a propulsion-controlled aircraft (PCA) system. Utilizing the preexisting auto-throttle and engine-pressure-ratio trim controls of the airplane, the PCA system provides pitch and roll control for landing an airplane safely without using aerodynamic control surfaces that have ceased to function because of a primary-flight-control-system failure. The installation of the PCA does not entail any changes in pre-existing engine hardware or software. [Aspects of the method and system at previous stages of development were reported in Thrust-Control System for Emergency Control of an Airplane (DRC-96-07), NASA Tech Briefs, Vol. 25, No. 3 (March 2001), page 68 and Emergency Landing Using Thrust Control and Shift of Weight (DRC-96-55), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 58.]. Aircraft flight-control systems are designed with extensive redundancy to ensure low probabilities of failure. During recent years, however, several airplanes have exhibited major flight-control-system failures, leaving engine thrust as the last mode of flight control. In some of these emergency situations, engine thrusts were successfully modulated by the pilots to maintain flight paths or pitch angles, but in other situations, lateral control was also needed. In the majority of such control-system failures, crashes resulted and over 1,200 people died. The challenge lay in creating a means of sufficient degree of thrust-modulation control to safely fly and land a stricken airplane. A thrust-modulation control system designed for this purpose was flight-tested in a PCA an MD-11 airplane. The results of the flight test showed that without any operational control surfaces, a pilot can land a crippled airplane (U.S. Patent 5,330,131). The installation of the original PCA system entailed modifications not only of the flight-control computer (FCC) of the airplane but

  19. Description of the primary flight display and flight guidance system logic in the NASA B-737 transport systems research vehicle

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.

    1990-01-01

    A primary flight display format was integrated with the flight guidance and control system logic in support of various flight tests conducted with the NASA Transport Systems Research Vehicle B-737-100 airplane. The functional operation of the flight guidance mode control panel and the corresponding primary flight display formats are presented.

  20. Electrical, Electronic, and Electromechanical (EEE) parts management and control requirements for NASA space flight programs

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This document establishes electrical, electronic, and electromechanical (EEE) parts management and control requirements for contractors providing and maintaining space flight and mission-essential or critical ground support equipment for NASA space flight programs. Although the text is worded 'the contractor shall,' the requirements are also to be used by NASA Headquarters and field installations for developing program/project parts management and control requirements for in-house and contracted efforts. This document places increased emphasis on parts programs to ensure that reliability and quality are considered through adequate consideration of the selection, control, and application of parts. It is the intent of this document to identify disciplines that can be implemented to obtain reliable parts which meet mission needs. The parts management and control requirements described in this document are to be selectively applied, based on equipment class and mission needs. Individual equipment needs should be evaluated to determine the extent to which each requirement should be implemented on a procurement. Utilization of this document does not preclude the usage of other documents. The entire process of developing and implementing requirements is referred to as 'tailoring' the program for a specific project. Some factors that should be considered in this tailoring process include program phase, equipment category and criticality, equipment complexity, and mission requirements. Parts management and control requirements advocated by this document directly support the concept of 'reliability by design' and are an integral part of system reliability and maintainability. Achieving the required availability and mission success objectives during operation depends on the attention given reliability and maintainability in the design phase. Consequently, it is intended that the requirements described in this document are consistent with those of NASA publications