Science.gov

Sample records for airplane flight deck

  1. Transport airplane flight deck development survey and analysis: Report and recommendations

    NASA Technical Reports Server (NTRS)

    Graham, D. K.

    1977-01-01

    Results of a survey and analysis of research and development work related to improving transport airplane flight deck equipment and aircrew performance is reported. Research and development related to flight deck advancement in general, as well as that concerned directly with terminal area operations, is described and discussed.

  2. 14 CFR 125.315 - Admission to flight deck.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Admission to flight deck. 125.315 Section...,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Operations § 125.315 Admission to flight deck. (a) No person may admit any person to the flight deck of an airplane unless...

  3. Future Flight Decks

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Abbott, Kathy H.; Abbott, Terence S.; Schutte, Paul C.

    1998-01-01

    The evolution of commercial transport flight deck configurations over the past 20-30 years and expected future developments are described. Key factors in the aviation environment are identified that the authors expect will significantly affect flight deck designers. One of these is the requirement for commercial aviation accident rate reduction, which is probably required if global commercial aviation is to grow as projected. Other factors include the growing incrementalism in flight deck implementation, definition of future airspace operations, and expectations of a future pilot corps that will have grown up with computers. Future flight deck developments are extrapolated from observable factors in the aviation environment, recent research results in the area of pilot-centered flight deck systems, and by considering expected advances in technology that are being driven by other than aviation requirements. The authors hypothesize that revolutionary flight deck configuration changes will be possible with development of human-centered flight deck design methodologies that take full advantage of commercial and/or entertainment-driven technologies.

  4. Definition of the 2005 flight deck environment

    NASA Technical Reports Server (NTRS)

    Alter, K. W.; Regal, D. M.

    1992-01-01

    A detailed description of the functional requirements necessary to complete any normal commercial flight or to handle any plausible abnormal situation is provided. This analysis is enhanced with an examination of possible future developments and constraints in the areas of air traffic organization and flight deck technologies (including new devices and procedures) which may influence the design of 2005 flight decks. This study includes a discussion on the importance of a systematic approach to identifying and solving flight deck information management issues, and a description of how the present work can be utilized as part of this approach. While the intent of this study was to investigate issues surrounding information management in 2005-era supersonic commercial transports, this document may be applicable to any research endeavor related to future flight deck system design in either supersonic or subsonic airplane development.

  5. Boeing flight deck design philosophy

    NASA Technical Reports Server (NTRS)

    Stoll, Harty

    1990-01-01

    Information relative to Boeing flight deck design philosophy is given in viewgraph form. Flight deck design rules, design considerations, functions allocated to the crew, redundancy and automation concerns, and examples of accident data that were reviewed are listed.

  6. Designing Flight Deck Procedures

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl

    2005-01-01

    Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.

  7. Flight deck engine advisor

    NASA Technical Reports Server (NTRS)

    Shontz, W. D.; Records, R. M.; Antonelli, D. R.

    1992-01-01

    The focus of this project is on alerting pilots to impending events in such a way as to provide the additional time required for the crew to make critical decisions concerning non-normal operations. The project addresses pilots' need for support in diagnosis and trend monitoring of faults as they affect decisions that must be made within the context of the current flight. Monitoring and diagnostic modules developed under the NASA Faultfinder program were restructured and enhanced using input data from an engine model and real engine fault data. Fault scenarios were prepared to support knowledge base development activities on the MONITAUR and DRAPhyS modules of Faultfinder. An analysis of the information requirements for fault management was included in each scenario. A conceptual framework was developed for systematic evaluation of the impact of context variables on pilot action alternatives as a function of event/fault combinations.

  8. Commander Brand sleeps on aft flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Brand, with hands folded in front of his chest, sleeps on aft flight deck. Brand's head is just above aft flight deck floor with his back to onorbit station panels. The back and feet of a second crewmember appear next to Brand.

  9. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has...

  10. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate holder conducting supplemental operations may schedule a pilot— (1) For flight deck duty in an airplane that has...

  11. 76 FR 31451 - Special Conditions: Boeing Model 747-8 Airplanes; Stairway Between the Main Deck and Upper Deck

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ...These special conditions are issued for Boeing Model 747-8 airplanes. This airplane will have novel or unusual design features when compared to the state of technology envisioned in the airworthiness standards for transport category airplanes. These design features include a stairway between the main deck and upper deck. These special conditions contain the additional safety standards that the......

  12. Functional categories for future flight deck designs

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1993-01-01

    With the addition of each new system on the flight deck, the danger of increasing overall operator workload while reducing crew understanding of critical mission information exists. The introduction of more powerful onboard computers, larger databases, and the increased use of electronic display media may lead to a situation of flight deck 'sophistication' at the expense of losses in flight crew capabilities and situational awareness. To counter this potentially negative impact of new technology, research activities are underway to reassess the flight deck design process. The fundamental premise of these activities is that a human-centered, systems-oriented approach to the development of advanced civil aircraft flight decks will be required for future designs to remain ergonomically sound and economically competitive. One of the initial steps in an integrated flight deck process is to define the primary flight deck functions needed to support the mission goals of the vehicle. This would allow the design team to evaluate candidate concepts in relation to their effectiveness in meeting the functional requirements. In addition, this would provide a framework to aid in categorizing and bookkeeping all of the activities that are required to be performed on the flight deck, not just activities of the crew or of a specific system. This could then allow for a better understanding and allocation of activities in the design, an understanding of the impact of a specific system on overall system performance, and an awareness of the total crew performance requirements for the design. One candidate set of functional categories that could be used to guide an advanced flight deck design are described.

  13. Resource management on the flight deck. [conferences

    NASA Technical Reports Server (NTRS)

    Cooper, G. E. (Editor); White, M. D. (Editor); Lauber, J. K. (Editor)

    1980-01-01

    Several approaches to the training and selection of aircrew are presented including both industry and nonindustry perspectives. Human factor aspects of the problem are also examined with specific emphasis on the psychology of the flight deck situation.

  14. Flight-deck automation: Promises and problems

    NASA Technical Reports Server (NTRS)

    Wiener, E. L.; Curry, R. E.

    1980-01-01

    The state of the art in human factors in flight-deck automation is presented. A number of critical problem areas are identified and broad design guidelines are offered. Automation-related aircraft accidents and incidents are discussed as examples of human factors problems in automated flight.

  15. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Admission to flight deck. 121.547 Section... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.547 Admission to flight deck. (a) No person may admit any person to the flight deck of an aircraft unless the person being...

  16. Flight deck automation: Promises and realities

    NASA Technical Reports Server (NTRS)

    Norman, Susan D. (Editor); Orlady, Harry W. (Editor)

    1989-01-01

    Issues of flight deck automation are multifaceted and complex. The rapid introduction of advanced computer-based technology onto the flight deck of transport category aircraft has had considerable impact both on aircraft operations and on the flight crew. As part of NASA's responsibility to facilitate an active exchange of ideas and information among members of the aviation community, a NASA/FAA/Industry workshop devoted to flight deck automation, organized by the Aerospace Human Factors Research Division of NASA Ames Research Center. Participants were invited from industry and from government organizations responsible for design, certification, operation, and accident investigation of transport category, automated aircraft. The goal of the workshop was to clarify the implications of automation, both positive and negative. Workshop panels and working groups identified issues regarding the design, training, and procedural aspects of flight deck automation, as well as the crew's ability to interact and perform effectively with the new technology. The proceedings include the invited papers and the panel and working group reports, as well as the summary and conclusions of the conference.

  17. Social psychology on the flight deck

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1980-01-01

    Social psychological and personality factors that can influence resource management on the flight deck are discussed. It is argued that personality and situational factors intersect to determine crew responses and that assessment of performance under full crew and mission conditions can provide the most valuable information about relevant factors. The possibility of training procedures to improve performance on these dimensions is discussed.

  18. Technical Seminar: "Flight Deck Technologies"""

    NASA Video Gallery

    Reduced visibility affects the safety and efficiency of nearly all flight operations. As a result, researchers are improving ways to give pilots a vision capability that is independent of actual vi...

  19. Communication on the Flight Deck

    NASA Technical Reports Server (NTRS)

    Siesfeld, A.; Curley, R.; Calfee, R.

    1984-01-01

    The importance of good verbal communication by airplane crews is discussed. The common understanding of what it takes to fly a plane serves the communication and coordination. It is shown that accidents and incidents often are a result of failure to communicate. People's conceptions of what they are doing effect performance of a task and communication about performance of that task. It is known that if what they are doing is complex, they must find a simple framework to represent it to avoid being overwhelmed by complexity. A model that reduces the complexity of flying a jet to a representation composed of a few relatively independent dimensions which capture the major features of this task was developed. The model allows assessment of what crew members know, to look at actual performance, and to develop training recommendations.

  20. Cognitive representations of flight-deck information attributes

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.; Jonsson, Jon E.; Rogers, William H.

    1994-01-01

    A large number of aviation issues are generically being called fligh-deck information management issues, underscoring the need for an organization or classification structure. One objective of this study was to empirically determine how pilots organize flight-deck information attributes and -- based upon that data -- develop a useful taxonomy (in terms of better understanding the problems and directing solutions) for classifying flight-deck information management issues. This study also empirically determined how pilots model the importance of flight-deck information attributes for managing information. The results of this analysis suggest areas in which flight-deck researchers and designers may wish to consider focusing their efforts.

  1. STS-79 Flight deck camera during TCDT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A camera inside the flight deck of the Space Shuttle Atlantis previews crew seating assignments come launch day. Seated in front are STS-79 Commander William F. Readdy (left) and Pilot Terrence W. Wilcutt. Seated elsewhere are Mission Specialists Carl E. Walz, Tom Akers, John E. Blaha and Jay Apt. This photo was taken during the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. Atlantis is scheduled for liftoff on STS-79 no earlier than Sept. 12.

  2. Douglas flight deck design philosophy

    NASA Technical Reports Server (NTRS)

    Oldale, Paul

    1990-01-01

    The systems experience gained from 17 years of DC-10 operation was used during the design of the MD-11 to automate system operation and reduce crew workload. All functions, from preflight to shutdown at the termination of flight, require little input from the crew. The MD-11 aircraft systems are monitored for proper operation by the Aircraft Systems Controllers (ASC). In most cases, system reconfiguration as a result of a malfunction is automated. Manual input is required for irreversible actions such as engine shutdown, fuel dump, fire agent discharge, or Integrated Drive Generator (IDG) disconnect. During normal operations, when the cockpit is configured for flight, all annunciators on the overhead panel will be extinguished. This Dark Cockpit immediately confirms to the crew that the panels are correctly configured and that no abnormalities are present. Primary systems annunciations are shown in text on the Alert Area of the Engine and Alert Display (EAD). This eliminates the need to scan the overhead. The MD-11 aircraft systems can be manually controlled from the overhead area of the cockpit. The center portion of the overhead panel is composed of the primary aircraft systems panels, which include FUEL, AIR, Electrical (ELEC) and Hydraulic (HYD) systems, which are easily accessible from both flight crew positions. Each Aircraft Systems Controller (ASC) has two automatic channels and a manual mode. All rectangular lights are annunciators. All square lights are combined switches and annunciators called switch/lights. Red switch/lights on the overhead (Level 3 alerts) are for conditions requiring immediate crew action. Amber (Level 2 or Level 1 alerts) indicates a fault or switch out of position requiring awareness or crew interaction. Overhead switches used in normal operating conditions will illuminate blue when in use (Level 0 alerts) such as WING ANTI-ICE - ON. An overhead switch/light with BLACK LETTERING on an amber or red background indicates a system

  3. Flight deck benefits of integrated data link communication

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C.

    1992-01-01

    A fixed-base, piloted simulation study was conducted to determine the operational benefits that result when air traffic control (ATC) instructions are transmitted to the deck of a transport aircraft over a digital data link. The ATC instructions include altitude, airspeed, heading, radio frequency, and route assignment data. The interface between the flight deck and the data link was integrated with other subsystems of the airplane to facilitate data management. Data from the ATC instructions were distributed to the flight guidance and control system, the navigation system, and an automatically tuned communication radio. The co-pilot initiated the automation-assisted data distribution process. Digital communications and automated data distribution were compared with conventional voice radio communication and manual input of data into other subsystems of the simulated aircraft. Less time was required in the combined communication and data management process when data link ATC communication was integrated with the other subsystems. The test subjects, commercial airline pilots, provided favorable evaluations of both the digital communication and data management processes.

  4. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., under 14 CFR parts 121, 125, or 135. This section does not restrict access for a Federal Air Marshal... 49 Transportation 9 2010-10-01 2010-10-01 false Flight deck privileges. 1544.237 Section 1544.237... COMMERCIAL OPERATORS Operations § 1544.237 Flight deck privileges. (a) For each aircraft that has a door...

  5. Orbiter Flight Deck Redesign (A Physical Layout for a Futuristic Flight Deck)

    NASA Technical Reports Server (NTRS)

    Khorsandi, Mehrzad

    1996-01-01

    The purpose of this summer project was to develop a set of schematic drawings for redesign of the Space Shuttle flight deck from which three dimensional computer drawings can be built and viewed in a virtual environment. In order to achieve this goal, first recommendations for overall redesign of Space Shuttle previously made by experts in the field were reviewed and relevant information was extracted and delineated. Original drawings of the Space Shuttle made by Rockwell were obtained and carefully examined. In order to implement and assess any modifications in terms of space saving parameters, it was determined that the drawings alone could not achieve this objective. As a complement, physical measurements of the mockup of Space Shuttle flight deck were made and the information was categorized and properly labeled on the original drawings. Then, spacesaving redesign ideas, as motivated by expert recommendations on such things as information display panel upgrade by technologically advanced flat display units, were implemented. Next, the redesign ideas were executed on the Forward flight deck, Overhead Console, Right and Left Console, and Center Console. A new 3-D computer drawing of this was developed by modifying the existing drawing on the in-house developed software (PLAID). Finally, the drawing was transported to a Virtual Environment and observed.

  6. 76 FR 14819 - Special Conditions: Boeing Model 747-8 Series Airplanes; Stairway Between the Main Deck and Upper...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... provided so, when measured along the center lines of each tread and landing, the illumination is not less... conditions for the Boeing Model 747-8 airplane. This airplane will have novel or unusual design features when... airplanes. These design features include a stairway between the main deck and upper deck. These...

  7. Interior view of the Flight Deck looking forward, the Commander's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of the Flight Deck looking forward, the Commander's seat and controls are on the left and the pilot's seat and controls are on the right of the view. Note that the flight deck windows have protective covers over them in this view. This images can be digitally stitched with image HAER No. TX-116-A-20 to expand the view to include the overhead control panels of the flight deck. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Astronaut Richard Richards looks out of Discovery's flight deck window

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Richard N. Richards, mission commander, looks through one of the Space Shuttle Discovery's overhead flight deck windows to view the space walk activities of astronauts Carl J. Meade, who took this picture, and Mark C. Lee.

  9. Astronaut John Fabian show off signs on aft flight deck

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut John Fabian, payload specialist, show off a series of signs on the aft flight deck of Discovery, from whose payload bay three communications satellites were deployed. The sign reads 'We deliver and deliver and deliver...'

  10. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual...

  11. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual...

  12. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual...

  13. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual...

  14. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual...

  15. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft that was not type certificated with an Airplane or Rotorcraft Flight...

  16. Human engineering analysis for the high speed civil transport flight deck

    NASA Technical Reports Server (NTRS)

    Regal, David M.; Alter, Keith W.

    1993-01-01

    The Boeing Company is investigating the feasibility of building a second generation supersonic transport. If current studies support its viability, this airplane, known as the High Speed Civil Transport (HSCT), could be launched early in the next century. The HSCT will cruise at Mach 2.4, be over 300 feet long, have an initial range of between 5000 and 6000 NM, and carry approximately 300 passengers. We are presently involved in developing an advanced flight deck for the HSCT. As part of this effort we are undertaking a human engineering analysis that involves a top-down, mission driven approach that will allow a systematic determination of flight deck functional and information requirements. The present paper describes this work.

  17. Endeavour, OV-105, forward flight deck controls during Rockwell manufacture

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Endeavour, Orbiter Vehicle (OV) 105, forward flight deck controls are documented during manufacture, assembly, and checkout at North American Rockwell facilities Building 150, Palmdale, California. Overall view looks from aft flight deck forward showing displays and controls with panel F7 CRT screens lit and window shades in place on W2, W3, W4, W5. OV-105 is undergoing final touches prior to rollout and a scheduled flight for STS-49. View was included as part of Rockwell International (RI) Submittal No. 40 (STS 87-0342-40) with alternate number A901207 R-16/NAS9-17800.

  18. Trend of airplane flight characteristics

    NASA Technical Reports Server (NTRS)

    Von Koppen, Joachim

    1933-01-01

    This report describes the development of airplane characteristics since the war and indicates the direction development should take in the immediate future. Some of the major topics include: the behavior of an airplane about its lateral, vertical, and longitudinal axes. Behavior at large angles of attack and landing characteristics are also included.

  19. Flight Instructor: Airplane. Written Test Guide.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The Flight Standards Service of the Federal Aviation Administration developed the guide to assist applicants who are preparing for the Flight Instructor Certificate with Airplane Rating. The guide contains comprehensive study outlines and a list of recommended study materials and tells how to obtain those publications. It also includes sample test…

  20. On the typography of flight-deck documentation

    NASA Technical Reports Server (NTRS)

    Degani, Asaf

    1992-01-01

    Many types of paper documentation are employed on the flight-deck. They range from a simple checklist card to a bulky Aircraft Flight Manual (AFM). Some of these documentations have typographical and graphical deficiencies; yet, many cockpit tasks such as conducting checklists, way-point entry, limitations and performance calculations, and many more, require the use of these documents. Moreover, during emergency and abnormal situations, the flight crews' effectiveness in combating the situation is highly dependent on such documentation; accessing and reading procedures has a significant impact on flight safety. Although flight-deck documentation are an important (and sometimes critical) form of display in the modern cockpit, there is a dearth of information on how to effectively design these displays. The object of this report is to provide a summary of the available literature regarding the design and typographical aspects of printed matter. The report attempts 'to bridge' the gap between basic research about typography, and the kind of information needed by designers of flight-deck documentation. The report focuses on typographical factors such as type-faces, character height, use of lower- and upper-case characters, line length, and spacing. Some graphical aspects such as layout, color coding, fonts, and character contrast are also discussed. In addition, several aspects of cockpit reading conditions such as glare, angular alignment, and paper quality are addressed. Finally, a list of recommendations for the graphical design of flight-deck documentation is provided.

  1. Detail view of the interior of the flight deck looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the interior of the flight deck looking forward showing the overhead control panels. Note that the flight deck windows have protective covers over them in this view. This images can be digitally stitched with image HAER No. TX-116-A-19 to expand the view to include the Commander and Pilot positions during ascent and reentry and landing. This view was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. Cognitive representations of flight-deck information attributes

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.; Jonsson, Jon E.; Rogers, William H.

    1993-01-01

    The experiment described in this paper had two ojectives. The first objective was to empirically identify how pilots organize flight-deck information attributes. Such an organization should provide a useful nomenclature for classifying Information Management (IM) issues and problems. The second objective of this study was to empirically assess pilots' estimate of the relative importance of each attribute on managing information. Results from addressing this latter objective were intended to suggest areas on which flight-deck researchers and designers will want to focus their attention.

  3. Pilot Fullerton reviews checklist on Aft Flight Deck Onorbit Station

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Pilot Fullerton, wearing communication kit assembly (assy) mini headset, reviews checklist and looks at remote manipulator system (RMS) closed circuit television (CCTV) views displayed on CCTV monitors at Aft Flight Deck Onorbit Station. Taken from the aft flight deck starboard side, Fullerton is seen in front of Panels A7 and A8 with remote manipulator syste (RMS) translation hand control (THC) and RMS rotation hand control (RHC) in the foreground and surrounded by University of Michigan (U of M) GO BLUE and United States Air Force - A Great Way of Life Decals.

  4. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows Overmyer pointing to data on Panel 7 (F7) CRT 1 screen.

  5. Commander Brand and Pilot Overmyer operate controls on forward flight deck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    On forward flight deck, Commander Brand and Pilot Overmyer operate controls from commanders and pilots seats. Overall view taken from the aft flight deck looking forward shows both astronauts reviewing procedures and checking CRT screen data.

  6. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type...

  7. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type...

  8. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type...

  9. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type...

  10. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 125.75 Section 125...,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Manual Requirements § 125.75 Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual...

  11. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type...

  12. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... (a) No person may admit any person to the flight deck of an aircraft unless the person being admitted... certificate and who is authorized by the part 119 certificate holder operating the aircraft to make specific trips over a route; (5) An employee of the part 119 certificate holder operating the aircraft whose...

  13. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... (a) No person may admit any person to the flight deck of an aircraft unless the person being admitted... certificate and who is authorized by the part 119 certificate holder operating the aircraft to make specific trips over a route; (5) An employee of the part 119 certificate holder operating the aircraft whose...

  14. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Admission to flight deck. 121.547 Section 121.547 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND...

  15. 14 CFR 121.547 - Admission to flight deck.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... (a) No person may admit any person to the flight deck of an aircraft unless the person being admitted... certificate and who is authorized by the part 119 certificate holder operating the aircraft to make specific trips over a route; (5) An employee of the part 119 certificate holder operating the aircraft whose...

  16. 49 CFR 1544.237 - Flight deck privileges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Flight deck privileges. 1544.237 Section 1544.237 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR SECURITY: AIR CARRIERS AND COMMERCIAL OPERATORS Operations...

  17. STS 51-G crew photo on the flight deck

    NASA Technical Reports Server (NTRS)

    1985-01-01

    STS 51-G crew photo on the flight deck. Left to right in the front are John O. Creighton, Shannon W. Lucid, Daniel C. Brandenstein; and in the back row are Sultan Salman Abdelazize Al-Saud, Steven R. Nagel, John N. Fabian and Patrick Baudry.

  18. General view of the aft Flight Deck looking at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the aft Flight Deck looking at the mission specialist seats directly behind and to the side of the commander and pilot's seats. These seats are removed, packed and stowed during on-orbit activities. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. Closeup view of the aft flight deck of the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the aft flight deck of the Orbiter Discovery looking at the aft center control panels A6, A7, A8, A12, A13, A14, A16 and A17. This View was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. General view of the flight deck of the orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the orbiter Discovery looking forward and overhead at the overhead instrumentation and control panels. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Rotorcraft Flight Manual and that has had no flight time prior to March 1, 1979, the holder of a Type... Airplane or Rotorcraft Flight Manual and having no flight time before March 1, 1979, the holder of a type... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Airplane or Rotorcraft Flight Manual....

  2. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... checking requirements: flight instructors (airplane), flight instructors (simulator). 121.414 Section 121... training and checking requirements: flight instructors (airplane), flight instructors (simulator). (a) No.... The observation check may be accomplished in part or in full in an airplane, in a flight simulator,...

  3. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Pilots: airplanes... Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder conducting supplemental operations may schedule a pilot to fly in an airplane for eight hours or less during any...

  4. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is...

  5. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors... section and § 121.414: (1) A flight instructor (airplane) is a person who is qualified to instruct in...

  6. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is...

  7. Astronauts Hoffman and Musgrave pose in aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Two of Endeavour's busy team of astronauts share a rare moment of leisure in the aft flight deck captured by an Electronic Still Camera (ESC). Astronauts Jeffrey A. Hoffman, left, and F. Story Musgrave also are sharing three of the mission's five planned sessions of extravehicular activity (EVA). Electronic still photography is a technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality.

  8. General view of the flight deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the Orbiter Discovery looking forward from behind the commander's seat looking towards the pilot's station. Note the numerous Velcro pads located throughout the crew compartment, used to secure frequently used items when in zero gravity. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. General view of the flight deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the Orbiter Discovery looking from a low angle up and aft from approximately behind the commander's station. In the view you can see the overhead aft observation windows, the payload operations work area and in this view the payload bay observation windows have protective covers on them. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. A Flight Deck Decision Support Tool for Autonomous Airborne Operations

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin

    2002-01-01

    NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.

  11. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  12. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Pilots: airplanes... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder...

  13. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Pilots: airplanes... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.503 Flight time limitations: Pilots: airplanes. (a) A certificate holder...

  14. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... having no flight time before March 1, 1979, the holder of a type certificate (including amended or... time of delivery of the aircraft a current approved Airplane or Rotorcraft Flight Manual. (b) The... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Airplane or Rotorcraft Flight Manual....

  15. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... having no flight time before March 1, 1979, the holder of a type certificate (including amended or... time of delivery of the aircraft a current approved Airplane or Rotorcraft Flight Manual. (b) The... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Airplane or Rotorcraft Flight Manual....

  16. A Flight Deck Perspective of Self-Separation

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Rosekind, Mark (Technical Monitor)

    1997-01-01

    I will be participating on a Free Flight Human Factors Panel at the Ninth International Symposium on Aviation Psychology in Columbus, Ohio. My representation is related to the work that our group has conducted on flight deck issues associate with free flight. Our group completed a full-mission simulation study investigating procedural issues associated with airborne self-separation. Ten crews flew eight scenarios each in the B747-400 simulator at Ames. Each scenario had a representation of different conflict geometries with intruder aircraft. New alerting logic was created and integrated into the simulator to enable self-separation. In addition, new display features were created to help provide for enhanced information to the flight crew about relevant aircraft, The participants were asked to coordinate maneuvers for self-separation with the intruder aircraft. Data analyses for the many of the crew procedures have been completed.

  17. Integration of energy management concepts into the flight deck

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1981-01-01

    The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.

  18. Conceptual Design of a Tiltrotor Transport Flight Deck

    NASA Technical Reports Server (NTRS)

    Decker, William A.; Dugan, Daniel C.; Simmons, Rickey C.; Tucker, George E.; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    A tiltrotor transport has considerable potential as a regional transport, increasing the air transportation system capacity by off-loading conventional runways. Such an aircraft will have a flight deck suited to its air transportation task and adapted to unique urban vertiport operating requirements. Such operations are likely to involve steep, slow instrument approaches for vertical and extremely short rolling take-offs and landings. While much of a tiltrotor transport's operations will be in common with commercial fixed-wing operations, terminal area operations will impose alternative flight deck design solutions. Control systems, displays and guidance, and control inceptors must be tailored to both routine and emergency vertical flight operations. This paper will survey recent experience with flight deck design elements suitable to a tiltrotor transport and will propose a conceptual cockpit design for such an aircraft. A series of piloted simulations using the NASA Ames Vertical Motion Simulator have investigated cockpit design elements and operating requirements for tiltrotor transports operating into urban vertiports. These experiments have identified the need for a flight director or equivalent display guidance for steep final approaches. A flight path vector display format has proven successful for guiding tiltrotor transport terminal area operations. Experience with a Head-Up Display points to the need for a bottom-mounted display device to maximize its utility on steep final approach paths. Configuration control (flap setting and nacelle angle) requires appropriate augmentation and tailoring for civil transport operations, flown to an airline transport pilot instrument flight rules (ATP-IFR) standard. The simulation experiments also identified one thrust control lever geometry as inappropriate to the task and found at least acceptable results with the vertical thrust control lever of the XV-15. In addition to the thrust controller, the attitude control of

  19. STS-27 Atlantis, OV-104, Commander Gibson on SMS forward flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-27 Atlantis, Orbiter Vehicle (OV) 104, Commander Robert L. Gibson, wearing flight coveralls and communications kit assembly, sits at commanders station controls on JSC shuttle mission simulator (SMS) forward flight deck during training session. Gibson looks at crewmember on aft flight deck. SMS is located in the Mission Simulation and Training Facility Bldg 5.

  20. STS-27 Atlantis, OV-104, Pilot Gardner on SMS forward flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-27 Atlantis, Orbiter Vehicle (OV) 104, Pilot Guy S. Gardner, wearing flight coveralls and communications kit assembly, sits at pilots station controls on JSC shuttle mission simulator (SMS) forward flight deck during training session. Gardner turns from forward controls to observe activity on aft flight deck. SMS is located in the Mission Simulation and Training Facility Bldg 5.

  1. Bird flight and airplane flight. [instruments to measure air currents and flight characteristics

    NASA Technical Reports Server (NTRS)

    Magnan, A.

    1980-01-01

    Research was based on a series of mechanical, electrical, and cinematographic instruments developed to measure various features of air current behavior as well as bird and airplane flight. Investigation of rising obstruction and thermal currents led to a theory of bird flight, especially of the gliding and soaring types. It was shown how a knowledge of bird flight can be applied to glider and ultimately motorized aircraft construction. The instruments and methods used in studying stress in airplanes and in comparing the lift to drag ratios of airplanes and birds are described.

  2. Advanced flight deck/crew station simulator functional requirements

    NASA Technical Reports Server (NTRS)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  3. STS-79 Crew on flight deck for TCDT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A camera inside the flight deck of the Space Shuttle Atlantis previews crew seating assignments come launch day. Seated in front are STS-79 Commander William F. Readdy (left) and Pilot Terrence W. Wilcutt; behind them are Mission Specialists Carl E. Walz (second from right) and Tom Akers. Seated elsewhere are Mission Specialists John E. Blaha and Jay Apt. This photo was taken during the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. Atlantis is scheduled for liftoff on STS-79 no earlier than Sept. 12.

  4. Voice measures of workload in the advanced flight deck

    NASA Technical Reports Server (NTRS)

    Schneider, Sid J.; Alpert, Murray; Odonnell, Richard

    1989-01-01

    Voice samples were obtained from 14 male subjects under high and low workload conditions. Acoustical analysis of the voice suggested that high workload conditions can be revealed by their effects on the voice over time. Aircrews in the advanced flight deck will be voicing short, imperative sentences repeatedly. A drop in the energy of the voice, as reflected by reductions in amplitude and frequency over time, and the failure to achieve old amplitude and frequency levels after rest periods, can signal that the workload demands of the situation are straining the speaker. This kind of measurement would be relatively unaffected by individual differences in acoustical measures.

  5. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Qualifications: Flight instructors (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight...

  6. High-speed civil transport - Advanced flight deck challenges

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    This paper presents the results of a nine month study of the HSCT flight deck challenges and assessment of its benefits. Operational requirements are discussed and the most significant findings for specified advanced concepts are highlighted. These concepts are a no nose-droop configuration, a far forward cockpit location and advanced crew monitoring and control of complex systems. Results indicate that the no nose-droop configuration is critically dependent on the design and development of a safe, reliable and certifiable synthetic vision system (SVS). This configuration would cause significant weight, performance and cost penalties. A far forward cockpit configuration with a tandem seating arrangement allows either an increase in additional payload or potential downsizing of the vehicle leading to increased performance efficiency and reductions in emissions. The technologies enabling such capabilities, which provide for Category III all-weather opreations on every flight represent a benefit multiplier in a 20005 ATM network in terms of enhanced economic viability and environmental acceptability.

  7. Eye Tracking Metrics for Workload Estimation in Flight Deck Operation

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle; Schnell, Thomas

    2010-01-01

    Flight decks of the future are being enhanced through improved avionics that adapt to both aircraft and operator state. Eye tracking allows for non-invasive analysis of pilot eye movements, from which a set of metrics can be derived to effectively and reliably characterize workload. This research identifies eye tracking metrics that correlate to aircraft automation conditions, and identifies the correlation of pilot workload to the same automation conditions. Saccade length was used as an indirect index of pilot workload: Pilots in the fully automated condition were observed to have on average, larger saccadic movements in contrast to the guidance and manual flight conditions. The data set itself also provides a general model of human eye movement behavior and so ostensibly visual attention distribution in the cockpit for approach to land tasks with various levels of automation, by means of the same metrics used for workload algorithm development.

  8. STS-56 Commander Cameron and Pilot Oswald on OV-103's forward flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During an STS-56 orbiter maneuver, Commander Kenneth Cameron (left), holding checklist, and Pilot Stephen S. Oswald man their respective stations on the forward flight deck of Discovery, Orbiter Vehicle (OV) 103. They are surrounded by forward flight deck windows and forward, center, and overhead control panels. A portable laptop computer is positioned on the forward window sill.

  9. STS-56 Commander Cameron and Pilot Oswald on OV-103's forward flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During an STS-56 orbiter maneuver, Commander Kenneth Cameron (left), holding checklist, and Pilot Stephen S. Oswald man their respective stations on the forward flight deck of Discovery, Orbiter Vehicle (OV) 103. They are surrounded by forward flight deck windows and forward, center, and overhead control panels. Positioned on the forward sill is a portable laptop computer.

  10. STS-56 Commander Cameron with camera stowage bag on OV-103's flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Commander Kenneth Cameron, with a penlight flashlight velcroed to his headband, prepares to open a camera stowage bag on the forward flight deck of Discovery, Orbiter Vehicle (OV) 103. Behind him are the forward flight deck windows, forward control panels, and the commanders and pilots seatbacks.

  11. STS-43 Pilot Baker eats a sandwich on OV-104's forward flight deck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-43 Pilot Michael A. Baker, seated at the forward flight deck pilots station controls, eats a freefloating peanut butter and jelly sandwich while holding a carrot. Surrounding Baker on Atlantis', Orbiter Vehicle (OV) 104's, flight deck are procedural checklists, control panels, and windows. A lemonade drink bag is velcroed to overhead panel O9.

  12. STS-32 Commander Brandenstein displays birthday card on OV-102's flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 Commander Daniel C. Brandenstein, sitting at the commanders station, displays his birthday card on Columbia's, Orbiter Vehicle (OV) 102's, flight deck. Appearing around Brandenstein are the forward flight deck control panels, forward windows, commanders seatback, and a 'GO NAVY' decal attached to panel O1.

  13. General view of the flight deck of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the flight deck of the Orbiter Discovery looking forward along the approximate center line of the orbiter at the center console. The Multifunction Electronic Display System (MEDS) is evident in the mid-ground center of this image, this system was a major upgrade from the previous analog display system. The commander's station is on the port side or left in this view and the pilot's station is on the starboard side or right tin this view. Not the grab bar in the upper center of the image which was primarily used for commander and pilot ingress with the orbiter in a vertical position on the launch pad. Also note that the forward observation windows have protective covers over them. This image was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Closeup view of the Pilot's Seat on the Flight Deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the Pilot's Seat on the Flight Deck of the Orbiter Discovery. It appears the Orbiter is in the roll out / launch pad configuration. A protective cover is over the Rotational Hand Controller to protect it during the pilot's ingress. Control panels R1 and R2 are prominent in this view. Panel R1 has switches for control and maintenance of on-board cryogenics for the fuel cells among other functions and panel R2 has switches and controls for the Auxiliary Power Units, ET umbilical doors as well as other operational controls. Note the portable fire extinguisher in the lower right corner of the image. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Flight Deck Interval Management Avionics: Eye-Tracking Analysis

    NASA Technical Reports Server (NTRS)

    Latorella, Kara; Harden, John W.

    2015-01-01

    Interval Management (IM) is one NexGen method for achieving airspace efficiencies. In order to initiate IM procedures, Air Traffic Control provides an IM clearance to the IM aircraft's pilots that indicates an intended spacing from another aircraft (the target to follow - or TTF) and the point at which this should be achieved. Pilots enter the clearance in the flight deck IM (FIM) system; and once the TTF's Automatic Dependent Surveillance-Broadcast signal is available, the FIM algorithm generates target speeds to meet that IM goal. This study examined four Avionics Conditions (defined by the instrumentation and location presenting FIM information) and three Notification Methods (defined by the visual and aural alerts that notified pilots to IM-related events). Current commercial pilots flew descents into Dallas/Fort-Worth in a high-fidelity commercial flight deck simulation environment with realistic traffic and communications. All 12 crews experienced each Avionics Condition, where order was counterbalanced over crews. Each crew used only one of the three Notification Methods. This paper presents results from eye tracking data collected from both pilots, including: normalized number of samples falling within FIM displays, normalized heads-up time, noticing time, dwell time on first FIM display look after a new speed, a workload-related metric, and a measure comparing the scan paths of pilot flying and pilot monitoring; and discusses these in the context of other objective (vertical and speed profile deviations, response time to dial in commanded speeds, out-of-speed-conformance and reminder indications) and subjective measures (workload, situation awareness, usability, and operational acceptability).

  16. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which one flight engineer is serving the flight time limitations in §§ 121.503 and 121.505 apply to that...

  17. STS-27 Atlantis, OV-104, Pilot Gardner on SMS forward flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-27 Atlantis, Orbiter Vehicle (OV) 104, Pilot Guy S. Gardner, wearing flight coveralls and communications kit assembly, sits at pilots station controls on JSC shuttle mission simulator (SMS) forward flight deck during training session. Gardner turns from forward controls to observe activity on aft flight deck. Portable laptop computer is set up on center console. SMS is located in the Mission Simulation and Training Facility Bldg 5.

  18. Rotor systems research aircraft airplane configuration flight-test results

    NASA Technical Reports Server (NTRS)

    Painter, W. D.; Erickson, R. E.

    1984-01-01

    The rotor systems research aircraft (RSRA) has undergone ground and flight tests, primarily as a compound aircraft. The purpose was to train pilots and to check out and develop the design flight envelope. The preparation and flight test of the RSRA in the airplane, or fixed-wind, configuration are reviewed and the test results are discussed.

  19. Flight-deck display of neighboring aircraft wake vortices

    NASA Astrophysics Data System (ADS)

    Holforty, Wendy L.

    Over the coming decades, aviation operations are predicted to rise steadily, increasing the burden on already congested and constrained airspace. A major factor governing the safe minimum separation distance between aircraft is the hazard generated by the wake of neighboring aircraft. Unaware of their proximity to other traffic, aircraft have encountered the wake turbulence of neighboring aircraft tens of miles ahead of them with serious or fatal consequences. The wake display described herein is a perspective view, synthetic vision, flight deck display that enables flight crews to "see" neighboring aircraft, as well as their wakes via a predictive algorithm. Capable of enhancing the situational awareness with respect to the wake-vortex encounter hazard by enabling the flight crew to see the relative position of their aircraft with respect to the wake hazard, the display may allow for a decrease in the standard aircraft spacing to those now used in VFR conditions and an increase in airport and airspace capacity. At present, there is no mechanism in place in the National Airspace System that warns pilots of potential wake vortex encounters. The concept of a wake vortex display addresses the need for a real-time wake vortex avoidance scheme available directly to the pilot. The wake display has been evaluated under both simulated and actual flight conditions. Thirteen pilots with flight experience ranging from a student pilot to commercial airline and military pilots served as pilot test subjects evaluating the display under simulated conditions. The pilot test subjects completed a survey concerning their knowledge and understanding of wake vortices prior to the simulation data trials and, after the trials, they completed a pilot evaluation and postflight survey rating their experience and providing feedback for the display design. One test pilot and four guest pilots flew the display during the in-flight evaluations incorporating three wake encounter scenarios. They

  20. STS-56 Commander Cameron and Pilot Oswald on CCT flight deck in JSC's MAIL

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Discovery, Orbiter Vehicle (OV) 103, Commander Kenneth Cameron, (left) and Pilot Stephen S. Oswald, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), are seated on the forward flight deck of the crew compartment trainer (CCT), a shuttle mockup. Cameron mans the commander station controls and Oswald the pilots station controls during an emergency egress (bailout) simulation. The view was taken from the aft flight deck looking forward and includes Cameron's and Oswald's profiles and the forward flight deck controls and checklists. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  1. High speed research system study. Advanced flight deck configuration effects

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability.

  2. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  3. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  4. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  5. Shared Situation Awareness in the Flight Deck-ATC System

    NASA Technical Reports Server (NTRS)

    Endsley, Mica R.; Hansman, R. John; Farley, Todd C.

    1998-01-01

    New technologies and operational concept changes have been proposed for implementation in the National Airspace System (NAS). These changes include improved datalink (CPDLC) technologies for providing improved weather, traffic, Flight Object (FO) and navigation information to the pilot and controller, and new forms of automation for both the flight deck and air traffic management system. In addition, the way business is conducted in the NAS is under consideration. Increases in the discretion provided to pilots (and dispatchers in commercial airlines) are being contemplated in an effort to increase system capacity and flexibility. New concepts of operation (e.g., Collaborative Decision Making and Free Flight) allow for more control to be given to the cockpit or airline with correspondingly greater monitoring responsibilities on the ground. In addition, new technologies and displays make possible much greater information flow between the ground and the cockpit and also dramatic changes in the type of information provided. Designing to support these changes suggests two integrally linked questions: (1) What display technologies and information are needed to support desired changes responsibilities? (2) How will the changes in information availability influence the negotiation process between the cockpit and the ground? Each of these proposed changes (both in technology and operational concept) will have a marked impact on the performance, workload, and Situation Awareness (SA) of both pilots and controllers. Typically such changes are evaluated independently in terms of the effects of the proposed change on either pilot performance or ATC performance. It is proposed here, however, that in order to fully understand the effects of such changes, the joint pilot/controller system must be considered.

  6. View of a stone age adze cutting tool floating freely in the flight deck.

    NASA Technical Reports Server (NTRS)

    1992-01-01

    View of a stone age adze cutting tool floating freely in the forward flight deck and framed by the forward and side windows. On the Earth below, the big island of Hawaii can be seen through the window.

  7. STS-33 MS Carter operates translation hand control (THC) on aft flight deck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Mission Specialist (MS) Manley L. Carter, Jr operates translation hand control (THC) at the aft flight deck onorbit station while peering out overhead window W7. Carter's communications kit assembly headset microphone extends across his face.

  8. STS-36 crewmembers in LESs pose for portrait on JSC's CCT flight deck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-36 Atlantis, Orbiter Vehicle (OV) 104, crewmembers, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), are stationed in their assigned positions on the flight deck of the crew compartment trainer (CCT) during a simulation at JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. On the forward flight deck are Commander John O. Creighton at the commanders station (far right) and Pilot John H. Casper at the pilots station (far left). Seated behind them in the mission specialists seats on the aft flight deck are Mission Specialist (MS) Pierre J. Thout (left) and MS David C. Hilmers (center). MS Richard M. Mullane stands since his seat is on the middeck. He joined the crew on the flight deck for this portrait taken with a fisheye lens.

  9. STS-43 Pilot Baker reviews checklist on OV-104's aft flight deck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-43 Pilot Michael A. Baker, wearing sunglasses, reviews a checklist on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. He is monitoring data associated with the Space Station Heat Pipe Advanced Radiator Element II (SHARE-II) located in OV-104's payload bay (PLB) from his position in front of the aft flight deck viewing windows. Behind Baker are the closed circuit television (CCTV) monitors and above his head is overhead window W8.

  10. STS-41 MS Melnick experiments with VCS on OV-103's aft flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 Mission Specialist (MS) Bruce E. Melnick, wearing a lightweight headset, experiments with the Voice Command System (VCS) at the onorbit station on the aft flight deck of Discovery, Orbiter Vehicle (OV) 103. Melnick reads commands from a checklist which he holds in his hand to control OV-103's closed circuit television (CCTV) using his voice. Note the VCS display unit mounted in front of aft flight deck viewing window W10 and the CCTV display screens at Melnick's right.

  11. STS-31 MS McCandless with LINHOF camera on OV-103's forward flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-31 Mission Specialist (MS) Bruce McCandless II looks away from the bracket-mounted LINHOF Aero Technika camera on the forward flight deck of Discovery, Orbiter Vehicle (OV) 103, to pose for this picture. McCandless is positioned in the commanders station and is recording Earth observations outside forward flight deck window W2. His hair freefloats away from his head in the microgravity environment and he sports a five o'clock shadow.

  12. STS-28 Columbia, OV-102, Pilot Richards at forward flight deck pilots station

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Pilot Richard N. Richards, sitting at forward flight deck pilots station controls, looks back to aft flight deck during STS-28, a Department of Defense (DOD) dedicated mission. Control panels F7 and F8 and portable laptop computer propped on panel F4 appear in front of Richards. Behind him are the pilots seat seat back and head rest. A stuffed toy animal is positioned on C1 panel.

  13. STS-46 MS-PLC Hoffman monitors EURECA deploy from OV-104's aft flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Mission Specialist (MS) and Payload Commander (PLC) Jeffrey A. Hoffman, wearing polarized goggles (sunglasses), monitors the European Retrievable Carrier 1L (EURECA-1L) satellite deploy from the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. The remote manipulator system arm's 'Canada' insignia is visible in aft flight deck viewing window W10. Hoffman's left hand is positioned at overhead window W8.

  14. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the...

  15. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the...

  16. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the...

  17. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the...

  18. 14 CFR 121.550 - Secret Service Agents: Admission to flight deck.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Secret Service Agents: Admission to flight... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.550 Secret Service Agents: Admission to flight deck. Whenever an Agent of the Secret Service who is assigned the...

  19. Acceptability of Flight Deck-Based Interval Management Crew Procedures

    NASA Technical Reports Server (NTRS)

    Murdock, Jennifer L.; Wilson, Sara R.; Hubbs, Clay E.; Smail, James W.

    2013-01-01

    The Interval Management for Near-term Operations Validation of Acceptability (IM-NOVA) experiment was conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in support of the NASA Next Generation Air Transportation System (NextGen) Airspace Systems Program's Air Traffic Management Technology Demonstration - 1 (ATD-1). ATD-1 is intended to showcase an integrated set of technologies that provide an efficient arrival solution for managing aircraft using NextGen surveillance, navigation, procedures, and automation for both airborne and ground-based systems. The goal of the IM-NOVA experiment was to assess if procedures outlined by the ATD-1 Concept of Operations, when used with a minimum set of Flight deck-based Interval Management (FIM) equipment and a prototype crew interface, were acceptable to and feasible for use by flight crews in a voice communications environment. To investigate an integrated arrival solution using ground-based air traffic control tools and aircraft automatic dependent surveillance broadcast (ADS-B) tools, the LaRC FIM system and the Traffic Management Advisor with Terminal Metering and Controller Managed Spacing tools developed at the NASA Ames Research Center (ARC) were integrated in LaRC's Air Traffic Operations Laboratory. Data were collected from 10 crews of current, qualified 757/767 pilots asked to fly a high-fidelity, fixed based simulator during scenarios conducted within an airspace environment modeled on the Dallas-Fort Worth (DFW) Terminal Radar Approach Control area. The aircraft simulator was equipped with the Airborne Spacing for Terminal Area Routes algorithm and a FIM crew interface consisting of electronic flight bags and ADS-B guidance displays. Researchers used "pseudo-pilot" stations to control 24 simulated aircraft that provided multiple air traffic flows into DFW, and recently retired DFW air traffic controllers served as confederate Center, Feeder, Final, and Tower

  20. Flight Test Guide (Part 61 Revised); Private Pilot Airplane.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This guide provides an outline of the skills required to pass the flight test for a Private Pilot Certificate with Airplane Rating under part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: preflight operations, airport and traffic pattern operations,…

  1. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Pilots: airplanes. 121.503 Section 121.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations:...

  2. 14 CFR 121.503 - Flight time limitations: Pilots: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Pilots: airplanes. 121.503 Section 121.503 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations:...

  3. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  4. Flight testing and simulation of an F-15 airplane using throttles for flight control

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel; Wolf, Thomas

    1992-01-01

    Flight tests and simulation studies using the throttles of an F-15 airplane for emergency flight control have been conducted at the NASA Dryden Flight Research Facility. The airplane and the simulation are capable of extended up-and-away flight, using only throttles for flight path control. Initial simulation results showed that runway landings using manual throttles-only control were difficult, but possible with practice. Manual approaches flown in the airplane were much more difficult, indicating a significant discrepancy between flight and simulation. Analysis of flight data and development of improved simulation models that resolve the discrepancy are discussed. An augmented throttle-only control system that controls bank angle and flight path with appropriate feedback parameters has also been developed, evaluated in simulations, and is planned for flight in the F-15.

  5. Cognitive models of pilot categorization and prioritization of flight-deck information

    NASA Technical Reports Server (NTRS)

    Jonsson, Jon E.; Ricks, Wendell R.

    1995-01-01

    In the past decade, automated systems on modern commercial flight decks have increased dramatically. Pilots now regularly interact and share tasks with these systems. This interaction has led human factors research to direct more attention to the pilot's cognitive processing and mental model of the information flow occurring on the flight deck. The experiment reported herein investigated how pilots mentally represent and process information typically available during flight. Fifty-two commercial pilots participated in tasks that required them to provide similarity ratings for pairs of flight-deck information and to prioritize this information under two contextual conditions. Pilots processed the information along three cognitive dimensions. These dimensions included the flight function and the flight action that the information supported and how frequently pilots refer to the information. Pilots classified the information as aviation, navigation, communications, or systems administration information. Prioritization results indicated a high degree of consensus among pilots, while scaling results revealed two dimensions along which information is prioritized. Pilot cognitive workload for flight-deck tasks and the potential for using these findings to operationalize cognitive metrics are evaluated. Such measures may be useful additions for flight-deck human performance evaluation.

  6. System for synthetic vision and augmented reality in future flight decks

    NASA Astrophysics Data System (ADS)

    Behringer, Reinhold; Tam, Clement K.; McGee, Joshua H.; Sundareswaran, Venkataraman; Vassiliou, Marius S.

    2000-06-01

    Rockwell Science Center is investigating novel human-computer interface techniques for enhancing the situational awareness in future flight decks. One aspect is to provide intuitive displays which provide the vital information and the spatial awareness by augmenting the real world with an overlay of relevant information registered to the real world. Such Augmented Reality (AR) techniques can be employed during bad weather scenarios to permit flying in Visual Flight Rules (VFR) in conditions which would normally require Instrumental Flight Rules (IFR). These systems could easily be implemented on heads-up displays (HUD). The advantage of AR systems vs. purely synthetic vision (SV) systems is that the pilot can relate the information overlay to real objects in the world, whereas SV systems provide a constant virtual view, where inconsistencies can hardly be detected. The development of components for such a system led to a demonstrator implemented on a PC. A camera grabs video images which are overlaid with registered information, Orientation of the camera is obtained from an inclinometer and a magnetometer, position is acquired from GPS. In a possible implementation in an airplane, the on-board attitude information can be used for obtaining correct registration. If visibility is sufficient, computer vision modules can be used to fine-tune the registration by matching visual clues with database features. Such technology would be especially useful for landing approaches. The current demonstrator provides a frame-rate of 15 fps, using a live video feed as background and an overlay of avionics symbology in the foreground. In addition, terrain rendering from a 1 arc sec. digital elevation model database can be overlaid to provide synthetic vision in case of limited visibility. For true outdoor testing (on ground level), the system has been implemented on a wearable computer.

  7. Development of a Mars Airplane Entry, Descent, and Flight Trajectory

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Tartabini, Paul V.

    2001-01-01

    An entry, descent, and flight (EDF) trajectory profile for a Mars airplane mission is defined as consisting of the following elements: ballistic entry of an aeroshell; supersonic deployment of a decelerator parachute; subsonic release of a heat shield; release, unfolding, and orientation of an airplane to flight attitude; and execution of a pull up maneuver to achieve trimmed, horizontal flight. Using the Program to Optimize Simulated Trajectories (POST) a trajectory optimization problem was formulated. Model data representative of a specific Mars airplane configuration, current models of the Mars surface topography and atmosphere, and current estimates of the interplanetary trajectory, were incorporated into the analysis. The goal is to develop an EDF trajectory to maximize the surface-relative altitude of the airplane at the end of a pull up maneuver, while subject to the mission design constraints. The trajectory performance was evaluated for three potential mission sites and was found to be site-sensitive. The trajectory performance, examined for sensitivity to a number of design and constraint variables, was found to be most sensitive to airplane mass, aerodynamic performance characteristics, and the pull up Mach constraint. Based on the results of this sensitivity study, an airplane-drag optimized trajectory was developed that showed a significant performance improvement.

  8. Concept of Operations for Integrated Intelligent Flight Deck Displays and Decision Support Technologies

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Prinzel, Lawrence J.; Kramer, Lynda J.; Young, Steve D.

    2011-01-01

    The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging developments

  9. Synergistic Allocation of Flight Expertise on the Flight Deck (SAFEdeck): A Design Concept to Combat Mode Confusion, Complacency, and Skill Loss in the Flight Deck

    NASA Technical Reports Server (NTRS)

    Schutte, Paul; Goodrich, Kenneth; Williams, Ralph

    2016-01-01

    This paper presents a new design and function allocation philosophy between pilots and automation that seeks to support the human in mitigating innate weaknesses (e.g., memory, vigilance) while enhancing their strengths (e.g., adaptability, resourcefulness). In this new allocation strategy, called Synergistic Allocation of Flight Expertise in the Flight Deck (SAFEdeck), the automation and the human provide complementary support and backup for each other. Automation is designed to be compliant with the practices of Crew Resource Management. The human takes a more active role in the normal operation of the aircraft without adversely increasing workload over the current automation paradigm. This designed involvement encourages the pilot to be engaged and ready to respond to unexpected situations. As such, the human may be less prone to error than the current automation paradigm.

  10. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations:...

  11. Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.

    1990-01-01

    Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.

  12. Light airplane crash tests at three flight-path angles

    NASA Technical Reports Server (NTRS)

    Castle, C. B.; Alfaro-Bou, E.

    1978-01-01

    Three similar twin engine general aviation airplane specimens were crash tested at Langley impact dynamics research facility at 27 m/sec and at flight-path angles of -15 deg, -30 deg, and -45 deg. Other flight parameters were held constant. The test facility, instrumentation, test specimens, and test method are briefly described. Structural damage and accelerometer data for each of the three impact conditions are presented and discussed.

  13. STS-27 crew poses for inflight portrait on forward flight deck with football

    NASA Technical Reports Server (NTRS)

    1988-01-01

    With WILSON NFL football freefloating in front of them, STS-27 astronauts pose on Atlantis', Orbiter Vehicle (OV) 104's, forward flight deck for inflight crew portrait. Crewmembers, wearing blue mission t-shirts, are (left to right) Commander Robert L. Gibson, Mission Specialist (MS) Richard M. Mullane, MS Jerry L. Ross, MS William M. Shepherd, and Pilot Guy S. Gardner. Forward flight deck overhead control panels are visible above crewmembers, commanders and pilots seats in front of them, and forward windows behind them. An auto-set 35mm camera mounted on the aft flight deck was used to take this photo. The football was later presented to the National Football League (NFL) at halftime of the Super Bowl in Miami.

  14. Towards a characterization of information automation systems on the flight deck

    NASA Astrophysics Data System (ADS)

    Dudley, Rachel Feddersen

    This thesis summarizes research to investigate the characteristics that define information automation systems used on aircraft flight decks and the significant impacts that these characteristics have on pilot performance. Major accomplishments of the work include the development of a set of characteristics that describe information automation systems on the flight deck and an experiment designed to study a subset of these characteristics. Information automation systems on the flight deck are responsible for the collection, processing, analysis, and presentation of data to the flightcrew. These systems pose human factors issues and challenges that must be considered by designers of these systems. Based on a previously developed formal definition of information automation for aircraft flight deck systems, an analysis process was developed and conducted to reach a refined set of information automation characteristics. In this work, characteristics are defined as a set of properties or attributes that describe an information automation system's operation or behavior, which can be used to identify and assess potential human factors issues. Hypotheses were formed for a subset of the characteristics: Automation Visibility, Information Quality, and Display Complexity. An experimental investigation was developed to measure performance impacts related to these characteristics, which showed mixed results of expected and surprising findings, with many interactions. A set of recommendations were then developed based on the experimental observations. Ensuring that the right information is presented to pilots at the right time and in the appropriate manner is the job of flight deck system designers. This work provides a foundation for developing recommendations and guidelines specific to information automation on the flight deck with the goal of improving the design and evaluation of information automation systems before they are implemented.

  15. STS-35 MS Hoffman operates ASTRO-1 MPC on OV-102's aft flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Mission Specialist (MS) Jeffrey A. Hoffman, wearing headset and monitoring closed circuit television (CCTV) display screen, operates the Astronomy Laboratory 1 (ASTRO-1) manual pointing controller (MPC) on the aft flight deck of Columbia, Orbiter Vehicle (OV) 102. MPC is used to position the instrument pointing system (IPS) and its three ultraviolet telescopes in OV-102's payload bay (PLB). Hoffman and other crewmembers were able to command the IPS to record astronomical data using the MPC. At Hoffman's left are the onorbit station control panels and the two aft flight deck viewing windows W9 and W10.

  16. Evaluating Nextgen Closely Spaced Parallel Operations Concepts with Validated Human Performance Models: Flight Deck Guidelines

    NASA Technical Reports Server (NTRS)

    Hooey, Becky Lee; Gore, Brian Francis; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.

  17. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  18. STS-30 crewmembers train on JSC shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wearing headsets, Mission Specialist (MS) Mark C. Lee (left), MS Mary L. Cleave (center), and MS Norman E. Thagard pose on aft flight deck in JSC's fixed base (FB) shuttle mission simulator (SMS). In background, Commander David M. Walker and Pilot Ronald J. Grabe check data on forward flight deck CRT monitors. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5. Crewmembers are scheduled to fly aboard Atlantis, Orbiter Vehicle (OV) 104, in April 1989 for NASA mission STS-30.

  19. STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS

    NASA Technical Reports Server (NTRS)

    1988-01-01

    On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.

  20. STS-36 Commander Creighton listens to music on OV-104's forward flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-36 Commander John O. Creighton, smiling and wearing a headset, listens to music as the tape recorder freefloats in front of him. During this lighter moment of the mission, Creighton is positioned at the commanders station on the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. Forward flight deck windows W1 and W2 appear on his left. Creighton and four other astronauts spent four days, 10 hours and 19 minutes aboard the spacecraft for the Department of Defense (DOD) devoted mission.

  1. STS-46 crew, wearing LESs, prepares for deorbit on OV-104's flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 crewmembers, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), are seated on the flight deck of Atlantis, Orbiter Vehicle (OV) 104. They review checklist procedures as they prepare for deorbit sequence and landing. At the far left, at the pilots station is Pilot Andrew M. Allen. Behind Allen is European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier in a mission specialists seat on the aft flight deck. Next to Nicollier is MS Marsha S. Ivins. Just out of the frame at left is Commander Loren J. Shriver who guided OV-104 in for its Florida landing.

  2. Certification for civil flight decks and the human-computer interface

    NASA Technical Reports Server (NTRS)

    Mcclumpha, Andrew J.; Rudisill, Marianne

    1994-01-01

    This paper will address the issue of human factor aspects of civil flight deck certification, with emphasis on the pilot's interface with automation. In particular, three questions will be asked that relate to this certification process: (1) are the methods, data, and guidelines available from human factors to adequately address the problems of certifying as safe and error tolerant the complex automated systems of modern civil transport aircraft; (2) do aircraft manufacturers effectively apply human factors information during the aircraft flight deck design process; and (3) do regulatory authorities effectively apply human factors information during the aircraft certification process?

  3. STS-46 ESA MS Nicollier and PLC Hoffman pose on OV-104's aft flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier (left) and MS and Payload Commander (PLC) Jeffrey A. Hoffman pose in front of the onorbit station controls on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. The overhead windows W7 and W8 appear above their heads and the aft flight deck viewing windows W9 and W10 behind them. Hoffman and Nicollier have been training together for a dozen years at JSC. Hoffman was an astronaut candidate in 1978 and Nicollier accompanied a group of trainees in 1980. Note the partially devoured chocolate Space Shuttle floating near the two.

  4. Robotics and Automation for Flight Deck Aircraft Servicing

    SciTech Connect

    Chesser, J.B.; Draper, J.V.; Pin, F.G.

    1999-03-01

    One of the missions of the Future Aircraft Carriers Program is to investigate methods that would improve aircraft turnaround servicing activities on carrier decks. The major objectives and criteria for evaluating alternative aircraft servicing methods are to reduce workload requirements, turnaround times (TAT), and life-cycle costs (LCC). Technologies in the field of Robotics and Automation (R and A) have the potential to significantly contribute to these objectives. The objective of this study was to investigate aircraft servicing functions on carrier decks which would offer the potentially most significant payoff if improved by various R and A technologies. Improvement in this case means reducing workload, time and LCC. This objective was accomplished using a ''bottom-up'' formalized approach as described in the following.

  5. Flight test results for several light, canard-configured airplanes

    NASA Technical Reports Server (NTRS)

    Brown, Philip W.

    1987-01-01

    Brief flight evaluations of two different, light, composite constructed, canard and winglet configured airplanes were performed to assess their handling qualities; one airplane was a single engine, pusher design and the other a twin engine, push-pull configuration. An emphasis was placed on the slow speed/high angle of attack region for both airplanes and on the engine-out regime for the twin. Mission suitability assessment included cockpit and control layout, ground and airborne handling qualities, and turbulence response. Very limited performance data was taken. Stall/spin tests and the effects of laminar flow loss on performance and handling qualities were assessed on an extended range, single engine pusher design.

  6. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Qualifications: Flight instructors (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS...

  7. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Initial and transition training and checking requirements: flight instructors (airplane), flight instructors (simulator). 121.414 Section 121.414 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR...

  8. Free Flight and Self-Separation from the Flight Deck Perspective

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; McGann, Alison; Mackintosh, Margaret-Anne; Cashion, Patricia; Shafto, Michael G. (Technical Monitor)

    1997-01-01

    The concept of "free flight", while still being developed, is intended to emphasize more, flexibility for operators in the National Airspace System (NAS) by providing more separation responsibility to pilots, New technologies, procedures, and concepts have been suggested by the aviation community to enable this task; however, much work needs to be accomplished to help define and evaluate the concept feasibility. The purpose of this simulation was to begin examining some of the communication and procedural issues associated with self-separation in the enroute environment. A simulation demonstration was conducted in the Boeing 747-400 simulator at NASA Ames Research Center. Commercial pilots (from a U.S. domestic carrier) current on the B747-400 aircraft were the participants. Ten flight crews (10 captains, 10 first officers) flew in the Denver enroute airspace environment. A new alerting logic designed to allow for airborne self-separation was created for this demonstration. This logic assumes automatic dependent surveillance broadcast (ADS-B) capability and represented aircraft up to 120 nautical miles on the display. The new flight deck display features were designed and incorporated on the existing navigational display in the simulator to allow for increased traffic and maneuvering information to the flight crew. New tools were also provided to allow the crews to assess conflicts and potential maneuvers before implementing them. Each of the flight crews flew eight different scenarios in the Denver enroute airspace. The scenarios included eight to ten other aircraft, and each scenario was created with the intent of having one of the other aircraft become an operational conflict for our simulator aircraft. Different types of conflict geometries were represented across the eight scenarios. Also, some scenarios allowed for more time to detect a potential clearance, while others allowed for less time for'detection. Additionally, the crews were asked to a ply the

  9. STS-32 photographic equipment (cameras,lenses,film magazines) on flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 photographic equipment is displayed on the aft flight deck of Columbia, Orbiter Vehicle (OV) 102. On the payload station are a dual camera mount with two handheld HASSELBLAD cameras, camera lenses, and film magazines. This array of equipment will be used to record onboard activities and observations of the Earth's surface.

  10. STS-38 MS Springer on OV-104's flight deck with Navy banner and Marine decal

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Mission Specialist (MS) Robert C. Springer stretches out in front of the forward flight deck control panels onboard Atlantis, Orbiter Vehicle (OV) 104. Springer poses with a 'Semper Fi United States Marines' decal and a U.S. Naval Academy banner. A HASSELBLAD camera freefloats in front of his chest.

  11. STS-35 Mission Specialist Parker operates ASTRO-1 MPC on OV-102's flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Mission Specialist (MS) Robert A.R. Parker operates Astronomy Laboratory 1 (ASTRO-1) manual pointing controller (MPC) on the aft flight deck of Columbia, Orbiter Vehicle (OV) 102. Parker monitors a closed circuit television (CCTV) screen at the payload station as he uses the MPC to send data collection instructions to the ASTRO-1 instrument pointing system (IPS).

  12. STS-56 MS1 Foale uses laser range finder on OV-103's aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Mission Specialist 1 (MS1) Michael Foale, positioned at overhead window W8, uses a laser range finder on the aft flight deck of Discovery, Orbiter Vehicle (OV) 103, during Shuttle Pointed Autonomous Research Tool for Astronomy 201 (SPARTAN-201) rendezvous operations. Partially visible outside W8 is the deployed remote manipulator system (RMS) and its closed circuit television (CCTV) camera.

  13. STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  14. Human Factors of Flight-deck Automation: NASA/Industry Workshop

    NASA Technical Reports Server (NTRS)

    Boehm-Davis, D. A.; Curry, R. E.; Wiener, E. L.; Harrison, R. L.

    1981-01-01

    The scope of automation, the benefits of automation, and automation-induced problems were discussed at a workshop held to determine whether those functions previously performed manually on the flight deck of commercial aircraft should always be automated in view of various human factors. Issues which require research for resolution were identified. The research questions developed are presented.

  15. STS-32 Mission Specialist Ivins juggles camera equipment on aft flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 Mission Specialist (MS) Marsha S. Ivins juggles camera equipment on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck. Ivins holds a 35mm NIKON camera with telephoto lens in her right hand and a 70mm HASSELBLAD with telephoto lens in her left hand. Behind her, velcroed to the payload station, is additional camera equipment and film.

  16. ISAL 35mm NIKON camera mounted on aft flight deck onorbit station panel

    NASA Technical Reports Server (NTRS)

    1983-01-01

    On aft flight deck, Investigation of Space Transportation System (STS) Atmospheric Luminosities (ISAL) bracket-mounted 35mm NIKON camera is attached to onorbit station control panel A8U. Camera lens is pointed out aft viewing window W10 and surrounded by window shade.

  17. STS-39 MS Veach monitors AFP-675 panel on OV-103's aft flight deck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-39 Mission Specialist (MS) Charles L. Veach analyzes data displayed on Air Force Program 675 (APF-675) command and monitor panel on the aft flight deck payload station aboard Discovery, Orbiter Vehicle (OV) 103. Just above Veach's head, Panel A3 closed circuit television (CCTV) screen A2 glows. At Veach's right is a portable laptop computer attached to panel L10.

  18. STS-37 Pilot Cameron and MS Godwin work on OV-104's aft flight deck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-37 Pilot Kenneth D. Cameron and Mission Specialist (MS) Linda M. Godwin pause from their work on aft flight deck of Atlantis, Orbiter Vehicle (OV) 104, to pose for a picture. Cameron holds onto an onorbit station control panel while Godwin steadies herself by using the overhead window (W8) sill.

  19. Naval flight deck injuries: a review of Naval Safety Center data, 1977-91.

    PubMed

    Shappell, S A

    1995-06-01

    A comprehensive review of injuries sustained by personnel working on naval flight decks between January 1977 and December 1991 was conducted using database records maintained at the U.S. Naval Safety Center, Norfolk, VA. Data included all fatalities, permanent total disabilities, permanent partial disabilities, and major injuries resulting in 5 or more lost work days. Injuries were coded using ICD-9-CM codes for analysis. A total of 918 flight deck personnel were reported injured during this 15-yr period, including 43 fatalities, 5 permanent total disabilities, 42 permanent partial disabilities, and 828 major injuries. Of the non-fatalities, a plethora of fractures, traumatic amputations, major lacerations, dislocations, contusions, concussions, burns, crushing injuries, sprains, and strains were reported. Nearly all naval platforms with a flight deck reported an injury. While an average of 51 injuries per 100,000 aircraft recoveries were reported annually on aircraft carriers from 1977-86, a marked reduction to a rate of roughly 30 injuries was observed annually from 1987-90. What makes injuries sustained on the flight deck particularly disconcerting is that over 90% can be attributed to human causal factors. PMID:7646412

  20. STS-32 Commander Brandenstein celebrates birthday on OV-102's aft flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 Commander Daniel C. Brandenstein, wearing eye glasses, holds inflated plastic birthday cake during a celebration on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck. Two of the candles on the cake have collapsed as Brandenstein smiles and wonders whether to blow down the rest.

  1. Astronauts Walz and Newman in STS-51 Discovery's aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Astronauts Carl E. Walz (left) and James H. Newman are pictured on Discovery's aft flight deck near two experiments. Positioned in the window above Walz's head is the Auroral Photography Experiment (APE-B), while the High Resolution Shuttle Glow Spectroscopy (HRSGS-A) experiment is deployed in the other window.

  2. STS-46 MS Ivins and PLC Hoffman with TOP experiment on OV-104's flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Mission Specialist (MS) Marsha S. Ivins (left) and MS and Payload Commander (PLC) Jeffrey A. Hoffman mount a camera, image intensifiers, and window shade covering in overhead window W7 on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. The crewmembers, in front of the onorbit station, are conducting the Tether Optical Phenomena (TOP) experiment.

  3. STS-46 Payload Specialist Malerba at aft flight deck controls in JSC mockup

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Italian Payload Specialist Franco Malerba, wearing flight suit, operates controls on the aft flight deck of the Full Fuselage Trainer (FFT) located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9. During the training session, Malerba adjusts a control on the A3 panel closed circuit television (CCTV). Onorbit station panels appear in front of Malerba and payload station controls behind him.

  4. STS-35 Pilot Gardner with descent checklist on OV-102's forward flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Pilot Guy S. Gardner, wearing his launch and entry suit (LES), reviews descent checklist while at the pilots station on the forward flight deck of Columbia, Orbiter Vehicle (OV) 102. Crewmembers are conducting procedures related to the final stages of the mission and the landing sequence. Silhouetted in forward windows W4 and W5 are the head up display (HUD), flight mirror assembly, and a drinking water bag with straw.

  5. STS-38 Atlantis, OV-104, crewmembers on Bldg 9A CCT flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-38 Atlantis, Orbiter Vehicle (OV) 104, crewmembers participate in training activities in the One Gravity Mockup and Training Facilities Bldg 9A crew compartment trainer (CCT). Commander Richard O. Covey, Pilot Frank L. Culbertson, Mission Specialist (MS) Robert C. Springer, MS Carl J. Meade, and MS Charles D. 'Sam' Gemar are suited in launch and entry suits (LESs) and seated on flight deck. In flight seating arrangement are (from left to right) Culbertson, Covey, Meade, Springer, and Gemar (standing).

  6. 75 FR 77569 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ...; Electronic Flight Control System Mode Annunciation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... design features include an electronic flight control system. The applicable airworthiness regulations do... INFORMATION CONTACT: Joe Jacobsen, FAA, Airplane and Flight Crew Interface Branch, ANM-111,...

  7. Flight Deck Technologies to Enable NextGen Low Visibility Surface Operations

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis (Trey) J.; Kramer, Lynda J.; Norman, Robert M.; Bailey, Randall E.; Jones, Denise R.; Karwac, Jerry R., Jr.; Shelton, Kevin J.; Ellis, Kyle K. E.

    2013-01-01

    Many key capabilities are being identified to enable Next Generation Air Transportation System (NextGen), including the concept of Equivalent Visual Operations (EVO) . replicating the capacity and safety of today.s visual flight rules (VFR) in all-weather conditions. NASA is striving to develop the technologies and knowledge to enable EVO and to extend EVO towards a Better-Than-Visual operational concept. This operational concept envisions an .equivalent visual. paradigm where an electronic means provides sufficient visual references of the external world and other required flight references on flight deck displays that enable Visual Flight Rules (VFR)-like operational tempos while maintaining and improving safety of VFR while using VFR-like procedures in all-weather conditions. The Langley Research Center (LaRC) has recently completed preliminary research on flight deck technologies for low visibility surface operations. The work assessed the potential of enhanced vision and airport moving map displays to achieve equivalent levels of safety and performance to existing low visibility operational requirements. The work has the potential to better enable NextGen by perhaps providing an operational credit for conducting safe low visibility surface operations by use of the flight deck technologies.

  8. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  9. A new experimental flight research technique: The remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Layton, G. P.

    1976-01-01

    The results obtained so far with a remotely piloted research vehicle (RPRV) using a 3/8 scale model of an F-15 airplane, to determine the usefulness of the RPRV testing technique in high risk flight testing, including spin testing, were presented. The program showed that the RPRV technique, including the use of a digital control system, is a practical method for obtaining flight research data. The spin, stability, and control data obtained with the 3/8-scale model also showed that predictions based on wind-tunnel tests were generally reasonable.

  10. 14 CFR Appendix B to Part 121 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane Flight Recorder Specification B... Flight Recorder Specification Parameters Range Accuracy sensor input to DFDR readout Sampling interval... from the other) for all modes of operation and flight regimes, the “or” applies. For airplanes with...

  11. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane Flight Recorder Specification D.... D Appendix D to Part 135—Airplane Flight Recorder Specification Parameters Range Accuracy sensor... movement (one from the other) for all modes of operation and flight regimes, the “or” applies....

  12. 14 CFR Appendix D to Part 125 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane Flight Recorder Specification D... Appendix D to Part 125—Airplane Flight Recorder Specification Parameters Range Accuracy sensor input to... movement (one from the other) for all modes of operation and flight regimes, the “or” applies....

  13. A crew-centered flight deck design philosophy for High-Speed Civil Transport (HSCT) aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. The High Speed Civil Transport (HSCT) mission will likely add new information requirements, such as those for sonic boom management and supersonic/subsonic speed management. Consequently, whether one is concerned with the design of the HSCT, or a next generation subsonic aircraft that will include technological leaps in automated systems, basic issues in human usability of complex systems will be magnified. These concerns must be addressed, in part, with an explicit, written design philosophy focusing on human performance and systems operability in the context of the overall flight crew/flight deck system (i.e., a crew-centered philosophy). This document provides such a philosophy, expressed as a set of guiding design principles, and accompanied by information that will help focus attention on flight crew issues earlier and iteratively within the design process. This document is part 1 of a two-part set.

  14. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate holder... relieve that pilot of all duty with it during that rest period. (b) No pilot of an airplane that has...

  15. Controlled breaks as a fatigue countermeasure on the flight deck

    NASA Technical Reports Server (NTRS)

    Neri, David F.; Oyung, Raymond L.; Colletti, Laura M.; Mallis, Melissa M.; Tam, Patricia Y.; Dinges, David F.

    2002-01-01

    BACKGROUND: A major challenge for flight crews is the need to maintain vigilance during long, highly automated nighttime flights. No system currently exists to assist in managing alertness, and countermeasure options are limited. Surveys reveal many pilots use breaks as an in-flight countermeasure, but there have been no controlled studies of their effectiveness. HYPOTHESIS: We hypothesized that brief, regular breaks could improve alertness and performance during an overnight flight. METHOD: A 6-h, uneventful, nighttime flight in a Boeing 747-400 flight simulator was flown by fourteen two-man crews. The 14 subjects in the treatment group received 5 short breaks spaced hourly during cruise; the 14 subjects in the control group received 1 break in the middle of cruise. Continuous EEG/EOG, subjective sleepiness, and psychomotor vigilance performance data were collected. RESULTS: During the latter part of the night, the treatment group showed significant reductions for 15 min post-break in slow eye movements, theta-band activity, and unintended sleep episodes compared with the control group. The treatment group reported significantly greater subjective alertness for up to 25 min post-break, with strongest effects near the time of the circadian trough. There was no evidence of objective vigilance performance improvement at 15-25 min post-break, with expected performance deterioration occurring due to elevated sleep drive and circadian time. CONCLUSIONS: The physiological and subjective data indicate the breaks reduced nighttime sleepiness for at least 15 min post-break and may have masked sleepiness for up to 25 min, suggesting the potential usefulness of short-duration breaks as an in-flight fatigue countermeasure.

  16. Astronaut Curtis Brown on flight deck mockup during training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronaut Curtis L. Brown, STS-66 pilot, mans the pilot's station during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  17. Diurnal rhythms of visual accommodation and blink responses - Implication for flight-deck visual standards

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Williams, B. A.

    1977-01-01

    Possible 24-h variations in accommodation responses were investigated. A recently developed servo-controlled optometer and focus stimulator were used to obtain monocular accommodation response data on four college-age subjects. No 24-h rhythm in accommodation was shown. Heart rate and blink rate also were measured and periodicity analysis showed a mean 24-h rhythm for both; however, blink rate periodograms were significant for only two of the four subjects. Thus, with the qualifications that college students were tested instead of pilots and that they performed monocular laboratory tasks instead of binocular flight-deck tasks, it is concluded that 24-h rhythms in accommodation responses need not be considered in setting visual standards for flight-deck tasks.

  18. Modeling Pilot Behavior for Assessing Integrated Alert and Notification Systems on Flight Decks

    NASA Technical Reports Server (NTRS)

    Cover, Mathew; Schnell, Thomas

    2010-01-01

    Numerous new flight deck configurations for caution, warning, and alerts can be conceived; yet testing them with human-in-the-Ioop experiments to evaluate each one would not be practical. New sensors, instruments, and displays are being put into cockpits every day and this is particularly true as we enter the dawn of the Next Generation Air Transportation System (NextGen). By modeling pilot behavior in a computer simulation, an unlimited number of unique caution, warning, and alert configurations can be evaluated 24/7 by a computer. These computer simulations can then identify the most promising candidate formats to further evaluate in higher fidelity, but more costly, Human-in-the-Ioop (HITL) simulations. Evaluations using batch simulations with human performance models saves time, money, and enables a broader consideration of possible caution, warning, and alerting configurations for future flight decks.

  19. STS-33 Commander Gregory uses a NIKON 35mm camera on OV-103's aft flight deck

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Commander Frederick D. Gregory aims NIKON 35mm camera out aft flight deck viewing window W10 while onboard Discovery, Orbiter Vehicle (OV) 103. Gregory's profile is highlighted by sunlight shining through overhead window W8.

  20. STS-46 Commander Shriver eats candy (M and Ms) on OV-104's aft flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Commander Loren J. Shriver, wearing a communications kit assembly headset and with his mouth open, pursues several floating chocolate-covered peanut candies (M and Ms) on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Shriver is positioned in front of overhead window W7. Outside the window the cloud-covered surface of the Earth and the Earth's limb are visible.

  1. STS-65 Pilot Halsell points camera out window on OV-102's aft flight deck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Pilot James D. Halsell, Jr uses a handheld HASSELBLAD camera at aft flight deck overhead window W8 to take Earth photographs while aboard the orbiting Space Shuttle Columbia, Orbiter Vehicle (OV) 102. Part of Baja, California can be seen in the upper left quadrant of the photo. This photo was one of the first released by NASA following the International Microgravity Laboratory 2 (IML-2) mission.

  2. STS-42 Pilot Oswald at OV-103's forward flight deck pilots station controls

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Pilot Stephen S. Oswald, wearing launch and entry suit (LES) and launch and entry helmet (LEH), offers a crewmember (out of frame) a piece of candy before beginning deorbit and descent procedures for Discovery's, Orbiter Vehicle (OV) 103's, return to Earth. Oswald is strapped into the pilots seat on OV-103's forward flight deck and will man the pilots station during descent.

  3. STS-27 MS Mullane on aft flight deck with camera equipment

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-27 Mission Specialist (MS) Richard M. Mullane is surrounded by cameras and Earth observation equipment on the aft flight deck. In the frame are the ARRIFLEX 16mm motion picture camera, a 70mm still camera, a 35mm still camera, a pair of glasses, and a pair of binoculars. Clouds over an ocean can be seen out overhead window W8 above Mullane. Panel A3 closed circuit television (CCTV) screens are visible behind Mullane.

  4. Astronauts White and McDivitt arrive on flight deck of U.S.S. Wasp

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The red carpet treatment is give Astronauts Edward H. White II (left) and James A. McDivitt (center) as they arrive on the flight deck of the aircraft carrier U.S.S. Wasp at the end of their Gemini 4 mission. They are accompanied by Capt. J.W. Conger (left) commander of the ship and Rear Adm. W. M. McCormick, Commander, Carrier Division 14, Atlantic Fleet.

  5. STS-43 Mission Specialist (MS) Adamson uses camera on aft flight deck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-43 Mission Specialist (MS) James C. Adamson points a 70mm HASSELBLAD camera out aft flight deck overhead window W8. Holding his position in the microgravity of space proves tricky. Notice that Adamson's feet are hooked around the commanders seat headrest. The onorbit station control panels appear above Adamson's head and the payload station with Development Test Ojective (DTO) 1208, Space Station Cursor Control Device Evaluation II and Advanced Applications, laptop computer at his back.

  6. STS-41 Pilot Cabana checks flight deck controls during training in JSC's SMS

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 Pilot Robert D. Cabana checks forward flight deck overhead control panel switches during a simulation in JSC's Shuttle Mission Simulator (SMS). Cabana, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), is seated at the pilots station and is surrounded by checklists, control panels, and various onboard equipment. The SMS is located in the Mission Simulation and Training Facility Bldg 5.

  7. Human factors of flight-deck automation - Report on a NASA-industry workshop

    NASA Technical Reports Server (NTRS)

    Boehm-Davis, D. A.; Curry, R. E.; Harrison, R. L.; Wiener, E. L.

    1983-01-01

    The scope of automation, the benefits of automation, and automation-induced problems were discussed at a workshop held to determine whether those functions previously performed manually on the flight deck of commercial aircraft should always be automated in view of various human factors. Issues which require research for resolution were identified. The research questions developed are presented. Previously announced in STAR as N81-16022

  8. STS-35 MS Parker and MS Lounge on OV-102's flight deck review deorbit checklist

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Mission Specialist (MS) Robert A.R. Parker (left) and MS John M. Lounge, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), are in their entry seating positions on the aft flight deck of Columbia, Orbiter Vehicle (OV) 102. The two crewmembers are reviewing deorbit checklists as they prepare for the final stages of their mission and the landing sequence.

  9. STS-30 aft flight deck onboard view of overhead window, Earth limb, cow photo

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Since the beginning of manned space travel, astronauts have taken onboard with them items of person sentiment. During STS-30 onboard Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist Mark C. Lee brought along a photograph of a cow. The photo testifies to his background as one reared on a Wisconsin farm and is displayed on aft flight deck alongside an overhead window. Outside the window, some 160 nautical miles away, is the cloud-covered Earth surface.

  10. STS-33 crewmembers on OV-103's aft flight deck photograph Earth observations

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 crewmembers are positioned on the aft flight deck of Discovery, Orbiter Vehicle (OV) 103, to record Earth observations. Mission Specialist (MS) Kathryn C. Thornton views Earth through an overhead window before taking a picture. A second crewmember behind Thornton, holding viewfinder to his eye, records the scenery. The view was taken by a crewmember on the middeck looking up through the interdeck access hatch.

  11. Data Comm Flight Deck Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Martin, Lynne Hazel; Sharma, Shivanjli; Kaneshige, John T.; Dulchinos, Victoria

    2012-01-01

    This presentation discusses an upcoming simulation for data comm in the terminal area. The purpose of the presentation is to provide the REDAC committee with a summary of some of the work in Data Comm that is being sponsored by the FAA. The focus of the simulation is upon flight crew human performance variables, such as crew procedures, timing and errors. The simulation is scheduled to be conducted in Sept 2012.

  12. 76 FR 9265 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Model GVI Airplane; Electronic Flight Control System: Control Surface Position Awareness AGENCY: Federal... transport category airplanes. These design features include an electronic flight control system. The..., include with your comments a self-addressed, stamped postcard on which you have written the docket...

  13. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specification D.... D Appendix D to Part 135—Airplane Flight Recorder Specification Parameters Range Accuracy sensor input to DFDR readout Sampling interval (per second) resolution 4 read out Time (GMT or Frame...

  14. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specification D.... D Appendix D to Part 135—Airplane Flight Recorder Specification Parameters Range Accuracy sensor input to DFDR readout Sampling interval (per second) resolution 4 read out Time (GMT or Frame...

  15. 14 CFR Appendix D to Part 125 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specification D... Appendix D to Part 125—Airplane Flight Recorder Specification Parameters Range Accuracy sensor input to DFDR readout Sampling interval (per second) Resolution 4 read out Time (GMT or Frame Counter) (range...

  16. 14 CFR Appendix D to Part 125 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specification D... Appendix D to Part 125—Airplane Flight Recorder Specification Parameters Range Accuracy sensor input to DFDR readout Sampling interval (per second) Resolution 4 read out Time (GMT or Frame Counter) (range...

  17. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... B Appendix B to Part 135—Airplane Flight Recorder Specifications Parameters Range Installed system...

  18. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, App. E Appendix E to Part 91—Airplane...

  19. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specification D Appendix D to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... D Appendix D to Part 135—Airplane Flight Recorder Specification Parameters Range Accuracy...

  20. 14 CFR Appendix D to Part 135 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specification D Appendix D to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.... D Appendix D to Part 135—Airplane Flight Recorder Specification Parameters Range Accuracy...

  1. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a...

  2. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: airplanes. In place of the flight time limitations in §§ 121.503 through 121.511, a certificate...

  3. 14 CFR 121.344a - Digital flight data recorders for 10-19 seat airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Digital flight data recorders for 10-19... Equipment Requirements § 121.344a Digital flight data recorders for 10-19 seat airplanes. (a) Except as... airplane having a passenger seating configuration, excluding any required crewmember seat, of 10 to...

  4. 14 CFR 121.344a - Digital flight data recorders for 10-19 seat airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Digital flight data recorders for 10-19... Equipment Requirements § 121.344a Digital flight data recorders for 10-19 seat airplanes. (a) Except as... airplane having a passenger seating configuration, excluding any required crewmember seat, of 10 to...

  5. 14 CFR 121.344a - Digital flight data recorders for 10-19 seat airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Digital flight data recorders for 10-19... Equipment Requirements § 121.344a Digital flight data recorders for 10-19 seat airplanes. (a) Except as... airplane having a passenger seating configuration, excluding any required crewmember seat, of 10 to...

  6. Ohio Senator John Glenn sits in the orbiter Columbia's flight deck

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn sits in the flight deck looking at equipment in the orbiter Columbia at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  7. Ohio Senator John Glenn sits in the orbiter Columbia's flight deck

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn enjoys a tour of the flight deck in the orbiter Columbia at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  8. On the design of flight-deck procedures

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl L.

    1994-01-01

    In complex human-machine systems, operations, training, and standardization depend on a elaborate set of procedures which are specified and mandated by the operational management of the organization. The intent is to provide guidance to the pilots, to ensure a logical, efficient, safe, and predictable means of carrying out the mission objectives. In this report the authors examine the issue of procedure use and design from a broad viewpoint. The authors recommend a process which we call 'The Four P's:' philosophy, policies, procedures, and practices. We believe that if an organization commits to this process, it can create a set of procedures that are more internally consistent, less confusing, better respected by the flight crews, and that will lead to greater conformity. The 'Four-P' model, and the guidelines for procedural development in appendix 1, resulted from cockpit observations, extensive interviews with airline management and pilots, interviews and discussion at one major airframe manufacturer, and an examination of accident and incident reports. Although this report is based on airline operations, we believe that the principles may be applicable to other complex, high-risk systems, such as nuclear power production, manufacturing process control, space flight, and military operations.

  9. 14 CFR Appendix G to Part 141 - Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating, as Appropriate) Certification Course G...—Flight Instructor Instrument (For an Airplane, Helicopter, or Powered-Lift Instrument Instructor Rating... following ratings: (a) Flight Instructor Instrument—Airplane. (b) Flight Instructor...

  10. An Investigation of Flight Deck Data Link in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Martin, Lynne; Lozito, Sandra; Kaneshige, John; Dulchinos, Vicki; Sharma, Shivanjli

    2013-01-01

    The Next Generation Air Transportation System (NextGen) and Europe's Single European Sky ATM Research (SESAR) concepts require an increased use of trajectory-based operations, including extensive strategic air traffic control clearances. The clearances are lengthy and complex, which necessitate data link communications to allow for message permanence and integration into the autoflight systems (i.e., autoload capability). This paper examines the use of flight deck data link communications for strategic and tactical clearance usage in the terminal area. A human-in-the-loop simulation was conducted using a high-fidelity flight deck simulator, with ten commercial flight crews as participants. Data were collected from six flight scenarios in the San Francisco terminal airspace. The variables of interest were ATC message modality (voice v. data link), temporal quality of the message (tactical v. strategic) and message length. Dependent variables were message response times, communication clarifications, communication-related errors, and pilot workload. Response time results were longer in data link compared to voice, a finding that has been consistently revealed in a number of other simulations [1]. In addition, strategic clearances and longer messages resulted in a greater number of clarifications and errors, suggesting an increase in uncertainty of message interpretation for the flight crews when compared to tactical clearances. The implications for strategic and compound clearance usage in NextGen and SESAR are discussed

  11. Development of a Human Motor Model for the Evaluation of an Integrated Alerting and Notification Flight Deck System

    NASA Technical Reports Server (NTRS)

    Daiker, Ron; Schnell, Thomas

    2010-01-01

    A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.

  12. Human factors of flight-deck checklists: The normal checklist

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl L.

    1991-01-01

    Although the aircraft checklist has long been regarded as the foundation of pilot standardization and cockpit safety, it has escaped the scrutiny of the human factors profession. The improper use, or the non-use, of the normal checklist by flight crews is often cited as the probable cause or at least a contributing factor to aircraft accidents. An attempt is made to analyze the normal checklist, its functions, format, design, length, usage, and the limitations of the humans who must interact with it. The development of the checklist from the certification of a new model to its delivery and use by the customer are discussed. The influence of the government, particularly the FAA Principle Operations Inspector, the manufacturer's philosophy, the airline's culture, and the end user, the pilot, influence the ultimate design and usage of this device. The effects of airline mergers and acquisitions on checklist usage and design are noted. In addition, the interaction between production pressures and checklist usage and checklist management are addressed. Finally, a list of design guidelines for normal checklists is provided.

  13. Effects of Modality on Interrupted Flight Deck Performance: Implications for Data Link

    NASA Technical Reports Server (NTRS)

    Latorella, Kara A.

    1997-01-01

    Externally-imposed tasks frequently interrupt ongoing task performance in the commercial flight deck. While normally managed without consequence, basic research as well as aviation accident and incident investigations show that interruptions can negatively affect performance and safety. This research investigates the influence of interruption and interrupted task modality on pilot performance in a simulated commercial flight deck. Fourteen current commercial airline pilots performed approach scenarios in a fixed-base flight simulator. Air traffic control instructions, conveyed either aurally or visually (via a data link system) interrupted a visual task (obtaining information from the Flight Management System) and an auditory task (listening to the automated terminal information service recording). Some results confirm the hypothesized performance advantage of cross-modality conditions, more compelling nature of auditory interruptions, and interruption-resistance of auditory ongoing tasks. However, taken together, results suggest the four interaction conditions had different effects on pilot performance. These results have implications for the design of data link systems, and for facilitating interruption management through interface design, aiding, and training programs.

  14. Lateral aerodynamic parameters extracted from flight data for the F-8C airplane in maneuvering flight

    NASA Technical Reports Server (NTRS)

    Suit, W. T.

    1977-01-01

    Flight test data are used to extract the lateral aerodynamic parameters of the F-8C airplane at moderate to high angles of attack. The data were obtained during perturbations of the airplane from steady turns with trim normal accelerations from 1.5g to 3.0g. The angle-of-attack variation from trim was negligible. The aerodynamic coefficients extracted from flight data were compared with several other sets of coefficients, and the extracted coefficients resulted in characteristics for the Dutch roll mode (at the highest angles of attack) similar to those of a set of coefficients that have been the basis of several simulations of the F-8C.

  15. A preliminary analysis of flight data from the AFTI/F-16 airplane

    NASA Technical Reports Server (NTRS)

    Batterson, J. G.; Klein, V.

    1984-01-01

    Flight test data from the AFTI/F-16 airplane are analyzed. Two flight control system modes (Independent Backup Unit and Standard Normal Mode) are considered. Estimated stability and control derivatives are compared with values from the wind tunnel and F-16A flight tests. Modeling difficulties are shown to arise due to the near-neutral static stability of the airplane and the number of coordinated control surface movements commanded in the Standard Normal Mode.

  16. Ohio Senator John Glenn sits in the orbiter Columbia's flight deck

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, sits in the flight deck of the orbiter Columbia as astronaut Stephen Oswald explains some of the flight equipment to the senator at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  17. Solar-powered airplane design for long-endurance, high-altitude flight

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Talay, T. A.

    1982-01-01

    This paper describes the performance analysis and design of a solar-powered airplane for long-endurance, unmanned, high-altitude cruise flight utilizing electric propulsion and solar energy collection/storage devices. For a fixed calendar date and geocentric latitude, the daily energy balance, airplane sizing, and airplane aerodynamics relations combine to determine airplane size and geometry to meet mission requirements. Vehicle component weight loadings, aerodynamic parameters, and current and projected values of power train component characteristics form the basis of the solution. For a specified mission, a candidate airplane design is presented to demonstrate the feasibility of solar-powered long endurance flight. Parametric data are presented to illustrate the airplane's mission flexibility.

  18. Flight deck crew coordination indices of workload and situation awareness in terminal operations

    NASA Astrophysics Data System (ADS)

    Ellis, Kyle Kent Edward

    Crew coordination in the context of aviation is a specifically choreographed set of tasks performed by each pilot, defined for each phase of flight. Based on the constructs of effective Crew Resource Management and SOPs for each phase of flight, a shared understanding of crew workload and task responsibility is considered representative of well-coordinated crews. Nominal behavior is therefore defined by SOPs and CRM theory, detectable through pilot eye-scan. This research investigates the relationship between the eye-scan exhibited by each pilot and the level of coordination between crewmembers. Crew coordination was evaluated based on each pilot's understanding of the other crewmember's workload. By contrasting each pilot's workload-understanding, crew coordination was measured as the summed absolute difference of each pilot's understanding of the other crewmember's reported workload, resulting in a crew coordination index. The crew coordination index rates crew coordination on a scale ranging across Excellent, Good, Fair and Poor. Eye-scan behavior metrics were found to reliably identify a reduction in crew coordination. Additionally, crew coordination was successfully characterized by eye-scan behavior data using machine learning classification methods. Identifying eye-scan behaviors on the flight deck indicative of reduced crew coordination can be used to inform training programs and design enhanced avionics that improve the overall coordination between the crewmembers and the flight deck interface. Additionally, characterization of crew coordination can be used to develop methods to increase shared situation awareness and crew coordination to reduce operational and flight technical errors. Ultimately, the ability to reduce operational and flight technical errors made by pilot crews improves the safety of aviation.

  19. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.

    2012-01-01

    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.

  20. STS-65 Commander Cabana with SAREX-II on Columbia's, OV-102's, flight deck

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Commander Robert D. Cabana is seen on the Space Shuttle Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck with the Shuttle Amateur Radio Experiment II (SAREX-II) (configuration C). Cabana is equipped with the SAREX-II headset and holds a cable leading to the 2-h window antenna mounted in forward flight deck window W1 (partially blocked by the seat headrest). SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the Johnson Space Center (JSC) Amateur Radio Club to encourage public participation in the space program through a project to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity for students around the world to learn about space firsthand by speaking directly to astronauts aboard the shuttle.

  1. STS-48 Commander Creighton on OV-103's aft flight deck poses for ESC photo

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Commander John O. Creighton, positioned under overhead window W8, interrupts an out-the-window observation to display a pleasant countenance for an electronic still camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.

  2. STS-48 Pilot Reightler on OV-103's aft flight deck poses for ESC photo

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Pilot Kenneth S. Reightler, Jr, positioned under overhead window W8, poses for an electronic still camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.

  3. STS-48 MS Brown on OV-103's aft flight deck poses for ESC photo

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Mission Specialist (MS) Mark N. Brown looks away from the portable laptop computer screen to pose for an Electronic Still Camera (ESC) photo on the aft flight deck of the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. Brown was working at the payload station before the interruption. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shuttle mission.

  4. STS-31 crew monitors Hubble Space Telescope (HST) from OV-103's flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A 'fish eye' lens captured this overall view of the aft flight deck of Discovery, Orbiter Vehicle (OV) 103, while the STS-31 crewmembers were monitoring the Hubble Space Telescope (HST) deployment checkout procedures. From front to back are Commander Loren J. Shriver, Mission Specialist (MS) Steven A. Hawley, and MS Bruce McCandless II looking up at overhead windows W7 and W8 and the HST on the remote manipulator system (RMS) outside them. The onorbit station control panels appear in front of the crewmembers and the ongoing scene outside the crew cabin is mirrored in the closed circuit television (CCTV) screens on McCandless' right.

  5. STS-46 Onboard Photo:Scientist Supports the TOP Activities on Flight Deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This Space Shuttle Orbiter Atlantis (STS-46) onboard photo shows Swiss scientist Claude Nicollier of the European Space Agency (ESA) supporting the Tether Opitical Phenomena (TOP) activities on the flight deck. The Tethered Satellite System (TSS) was a cooperative development effort by the Italian Space Agency (ASI) and NASA made capable of deploying and retrieving a satellite which is attached by a wire tether from distances up to 100 km from the Orbiter. These free-flying satellites are used as observation platforms outside of the Orbiter.

  6. STS-65 Pilot Halsell cleans window on the aft flight deck of Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    On the aft flight deck of Columbia, Orbiter Vehicle (OV) 102, STS-65 Pilot James D. Halsell, Jr cleans off overhead window W8. Mission Specialist (MS) Carl E. Walz looks on (photo's edge). A plastic toy dinosaur, velcroed in front of W9, also appears to be watching the housekeeping activity. A variety of onboard equipment including procedural checklists, a spotmeter, a handheld microphone, and charts are seen in the view. The two shared over fourteen days in Earth orbit with four other NASA astronauts and a Japanese payload specialist in support of the second International Microgravity Laboratory (IML-2) mission.

  7. STS-45 Pilot Duffy uses SAREX equipment on OV-104's forward flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-45 Pilot Brian Duffy, wearing headset assembly, talks to amateur radio operators on Earth from the forward flight deck of Atlantis, Orbiter Vehicle (OV) 104. The space to Earth radio communications was part of the Shuttle Amateur Radio Experiment (SAREX) which has been part of a number of Space Shuttle missions. Duffy, a licensed amateur radio operator using call letters N5WQW, at one point talked to his children, also licensed 'hams,' during a call to a Texas elementary school. Other equipment surrounding Duffy includes an empty food container, a crew cabin light fixture, the LINHOF camera, and a camera mounted on a bracket. A penlight flashlight rests on Duffy's shoulder.

  8. STS-34 crew poses on flight deck of JSC's crew compartment trainer (CCT)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-34 Atlantis, Orbiter Vehicle (OV) 104, crewmembers pose on flight deck of JSC's crew compartment trainer (CCT) for group portrait. Taking a break from training and wearing launch and entry suits (LESs) are (left to right) Pilot Michael J. McCulley, Mission Specialist (MS) Shannon W. Lucid, MS Franklin R. Chang-Diaz, MS Ellen S. Baker, and Commander Donald E. Williams. All crewmembers are in their designated stations for launch and entry except Baker who will occupy a seat on OV-104's middeck. The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. The photograph was taken by Bill Bowers, a crew trainer at JSC.

  9. STS-57 traditional onboard crew portrait on flight deck of Endeavour, OV-105

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 crewmembers, wearing mission polo shirts, pose for their traditional onboard (inflight) crew portrait on the aft flight deck of Endeavour, Orbiter Vehicle (OV) 105. Left to right in the front row are Mission Specialist 3 (MS3) Peter J.K. Wisoff, Pilot Brian J. Duffy, MS4 Janice E. Voss with Commander Ronald J. Grabe, MS2 Nancy J. Sherlock, and Payload Commander (PLC) and Mission Specialist (MS) G. David Low in the back (left to right). The window shades are in place on overhead windows W7 and W8.

  10. STS-57 traditional onboard crew portrait on flight deck of Endeavour, OV-105

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 crewmembers, wearing mission polo shirts, pose for their traditional onboard (inflight) crew portrait on the aft flight deck of Endeavour, Orbiter Vehicle (OV) 105. Left to right in the front are Payload Commander (PLC) and Mission Specialist (MS) G. David Low (left) and Mission Specialist 3 (MS3) Peter J.K. Wisoff. Behind them (left to right) are Commander Ronald J. Grabe, Pilot Brian J. Duffy, MS4 Janice E. Voss, and MS2 Nancy J. Sherlock. Sunlight shines through overhead windows W7 and W8.

  11. STS-45 MS and PLC Sullivan explains camera usage on OV-104's aft flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-45 Mission Specialist (MS) and Payload Commander (PLC) Kathryn D. Sullivan, holding communications kit assembly unit and 70mm HASSELBLAD camera, explains camera usage and Earth observation procedures during a television downlink to the ground. Sullivan is on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Behind Sullivan are the onorbit station control panels with the payload station control panels at her left. The STS-45 crew put together a brief video 'tour' program to explain some of their inflight operations.

  12. STS-39 Commander Coats on OV-103's flight deck watches SPAS-II/IBSS deploy

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-39 Commander Michael L. Coats smiles as he watches the Shuttle Pallet Satellite II (SPAS-II) / Infrared Background Signature Survey (IBSS) spacecraft deployment through the aft flight deck windows while aboard Discovery, Orbiter Vehicle (OV) 103. The SPAS-II/IBSS spacecraft is visible through the overhead window W7 after its release from the remote manipulator system (RMS) end effector. The crewman optical alignment sight (COAS) is fastened to the sill of window W7. SPAS-II is a Strategic Defense Initiative Organization (SDIO).

  13. Flight Tests of a Ministick Controller in an F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Stoliker, Patrick C.; Carter, John

    2003-01-01

    In March of 1999, five pilots performed flight tests to evaluate the handling qualities of an F/A-18 research airplane equipped with a small-displacement center stick (ministick) controller that had been developed for the JAS 39 Gripen airplane (a fighter/attack/ reconnaissance airplane used by the Swedish air force). For these tests, the ministick was installed in the aft cockpit (see figure) and production support flight control computers (PSFCCs) were used as interfaces between the controller hardware and the standard F/A-18 flight-control laws. The primary objective of the flight tests was to assess any changes in handling qualities of the F/A-18 airplane attributable to the mechanical characteristics of the ministick. The secondary objective was to demonstrate the capability of the PSFCCs to support flight-test experiments.

  14. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No... commercial flying, if that commercial flying plus his flying in operations under this part will exceed...

  15. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No... commercial flying, if that commercial flying plus his flying in operations under this part will exceed...

  16. Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.

  17. Preliminary flight test results of a fly-by-throttle emergency flight control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. G.; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies have been followed by flight tests. This paper discusses the principles of throttles-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles-only control to within 10 ft of the ground.

  18. Ohio Senator John Glenn sits in the orbiter Columbia's flight deck

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, enjoys a tour of the flight deck in the orbiter Columbia with Astronaut Stephen Oswald at the Orbiter Processing Facility 3 at Kennedy Space Center. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  19. Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.

    2013-05-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  20. Energy management displays: a new concept for the civil flight deck.

    PubMed

    Noyes, Jan

    2007-07-01

    There exists a strong rationale for an energy management system onboard civil aircraft; this is based on a global move towards greater energy consciousness and more specific reasons relating to safety and efficiency in the airline industry. This paper considers the design of an interface for an energy management system. It reports the development of a number of display designs within the requirements and constraints of the flight deck context. Three designs are evaluated both with student participants and senior airline pilots. It was found that those displays with predictive information elements produced the most accurate decisions concerning aircraft energy states. Further investigation into the function of these predictive elements (within real-time flight scenarios) is required in order to evaluate their efficacy with the end-user group of airline pilots. PMID:17451634

  1. STS-56 Commander Cameron uses SAREX on OV-103's aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Commander Kenneth Cameron, wearing headset and headband equipped with penlight flashlight, uses the Shuttle Amateur Radio Experiment II (SAREX-II) on the aft flight deck of Discovery, Orbiter Vehicle (OV) 103. Cameron, positioned just behind the pilots seat, talks to amateur radio operators on Earth via the SAREX equipment. SAREX cables and the interface module freefloat in front of the pilots seat. The SAREX scan converter (a white box) is seen just above Cameron's head attached to overhead panel O9. SAREX was established by NASA, the American Radio League/Amateur Radio Satellite Corporation and the JSC Amateur Radio Club to encourage public participation in the space program through a program to demonstrate the effectiveness of conducting short-wave radio transmissions between the Shuttle and ground-based radio operators at low-cost ground stations with amateur and digital techniques. As on several previous missions, SAREX was used on this flight as an educational opportunity

  2. The Naturalistic Flight Deck System: An Integrated System Concept for Improved Single-Pilot Operations

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Goodrich, Kenneth H.; Cox, David E.; Jackson, Bruce; Palmer, Michael T.; Pope, Alan T.; Schlecht, Robin W.; Tedjojuwono, Ken K.; Trujillo, Anna C.; Williams, Ralph A.; Kinney, J. Bryan; Barry, John S., Jr.

    2007-01-01

    This paper reviews current and emerging operational experiences, technologies, and human-machine interaction theories to develop an integrated flight system concept designed to increase the safety, reliability, and performance of single-pilot operations in an increasingly accommodating but stringent national airspace system. This concept, know as the Naturalistic Flight Deck (NFD), uses a form of human-centered automation known as complementary-automation (or complemation) to structure the relationship between the human operator and the aircraft as independent, collaborative agents having complimentary capabilities. The human provides commonsense knowledge, general intelligence, and creative thinking, while the machine contributes specialized intelligence and control, extreme vigilance, resistance to fatigue, and encyclopedic memory. To support the development of the NFD, an initial Concept of Operations has been created and selected normal and non-normal scenarios are presented in this document.

  3. Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray

    2013-01-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  4. A Usability and Learnability Case Study of Glass Flight Deck Interfaces and Pilot Interactions through Scenario-based Training

    NASA Astrophysics Data System (ADS)

    De Cino, Thomas J., II

    In the aviation industry, digitally produced and presented flight, navigation, and aircraft information is commonly referred to as glass flight decks. Glass flight decks are driven by computer-based subsystems and have long been a part of military and commercial aviation sectors. Over the past 15 years, the General Aviation (GA) sector of the aviation industry has become a recent beneficiary of the rapid advancement of computer-based glass flight deck (GFD) systems. While providing the GA pilot considerable enhancements in the quality of information about the status and operations of the aircraft, training pilots on the use of glass flight decks is often delivered with traditional methods (e.g. textbooks, PowerPoint presentations, user manuals, and limited computer-based training modules). These training methods have been reported as less than desirable in learning to use the glass flight deck interface. Difficulties in achieving a complete understanding of functional and operational characteristics of the GFD systems, acquiring a full understanding of the interrelationships of the varied subsystems, and handling the wealth of flight information provided have been reported. Documented pilot concerns of poor user experience and satisfaction, and problems with the learning the complex and sophisticated interface of the GFD are additional issues with current pilot training approaches. A case study was executed to explore ways to improve training using GFD systems at a Midwestern aviation university. The researcher investigated if variations in instructional systems design and training methods for learning glass flight deck technology would affect the perceptions and attitudes of pilots of the learnability (an attribute of usability) of the glass flight deck interface. Specifically, this study investigated the effectiveness of scenario-based training (SBT) methods to potentially improve pilot knowledge and understanding of a GFD system, and overall pilot user

  5. Information obtained from airplane flight tests in the year 1927-1928

    NASA Technical Reports Server (NTRS)

    Hubner, W

    1929-01-01

    The information obtained from flight tests in 1927-1928 covers chiefly the effect of the structural features of an airplane on its stability, controllability, maneuverability and spinning characteristics.

  6. Correlation and assessment of structural airplane crash data with flight parameters at impact

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1982-01-01

    Crash deceleration pulse data from a crash dynamics program on general aviation airplanes and from transport crash data were analyzed. Structural airplane crash data and flight parameters at impact were correlated. Uncoupled equations for the normal and longitudinal floor impulses in the cabin area of the airplane were derived, and analytical expressions for structural crushing during impact and horizontal slide out were also determined. Agreement was found between experimental and analytical data for general aviation and transport airplanes over a relatively wide range of impact parameter. Two possible applications of the impulse data are presented: a postcrash evaluation of crash test parameters and an assumed crash scenario.

  7. Effects of Ice Formations on Airplane Performance in Level Cruising Flight

    NASA Technical Reports Server (NTRS)

    Preston, G. Merritt; Blackman, Calvin C.

    1948-01-01

    A flight investigation in natural icing conditions was conducted by the NACA to determine the effect of ice accretion on airplane performance. The maximum loss in propeller efficiency encountered due to ice formation on the propeller blades was 19 percent. During 87 percent of the propeller icing encounters, losses of 10 percent or less were observed. Ice formations on all of the components of the airplane except the propellers during one icing encounter resulted in an increase in parasite drag of the airplane of 81 percent. The control response of the airplane in this condition was marginal.

  8. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Three pilot crews... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate...

  9. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Other commercial... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes....

  10. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Two pilot crews... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate...

  11. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: All airmen... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a...

  12. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Four pilot crews... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate...

  13. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Other commercial... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes....

  14. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Two pilot crews... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.505 Flight time limitations: Two pilot crews: airplanes. (a) If a certificate...

  15. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Three pilot crews... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.507 Flight time limitations: Three pilot crews: airplanes. (a) No certificate...

  16. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: All airmen... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.515 Flight time limitations: All airmen: airplanes. No airman may be aloft as a...

  17. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Four pilot crews... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.509 Flight time limitations: Four pilot crews: airplanes. (a) No certificate...

  18. Instrument Pilot: Airplane. Flight Test Guide, Part 61 Revised 1973, AC 61-56.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide is designed to assist the applicant and his instructor in preparing for the flight test for Instrument Pilot Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the Instrument Rating.…

  19. Multiengine Airplane Class and Type Ratings: Flight Test Guide (Part 61 Revised).

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The flight test guide has been prepared to assist the applicant and his instructor in preparing for a Multiengine Airplane Class or Type Rating. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight tests: preflight operations, airport operations, takeoffs and landings, flight at…

  20. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  1. Flight Data Reduction of Wake Velocity Measurements Using an Instrumented OV-10 Airplane

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Stuever, Robert A.; Stewart, Eric C.; Rivers, Robert A.

    1999-01-01

    A series of flight tests to measure the wake of a Lockheed C- 130 airplane and the accompanying atmospheric state have been conducted. A specially instrumented North American Rockwell OV-10 airplane was used to measure the wake and atmospheric conditions. An integrated database has been compiled for wake characterization and validation of wake vortex computational models. This paper describes the wake- measurement flight-data reduction process.

  2. Development and Flight Test of an Augmented Thrust-Only Flight Control System on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Pappas, Drew

    1996-01-01

    An emergency flight control system using only engine thrust, called Propulsion-Controlled Aircraft (PCA), has been developed and flight tested on an MD-11 airplane. In this thrust-only control system, pilot flight path and track commands and aircraft feedback parameters are used to control the throttles. The PCA system was installed on the MD-11 airplane using software modifications to existing computers. Flight test results show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds and altitudes. The PCA approaches, go-arounds, and three landings without the use of any non-nal flight controls have been demonstrated, including instrument landing system-coupled hands-off landings. The PCA operation was used to recover from an upset condition. In addition, PCA was tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control; describes the MD-11 airplane and systems; and discusses PCA system development, operation, flight testing, and pilot comments.

  3. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  4. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots who made simulated instrument flight evaluations experienced improvements in airplane handling qualities in the presence of turbulence and a reduction in pilot workload. For ride quality, quantitative data show that the attitude command control system results in all cases of airplane motion being removed from the uncomfortable ride region.

  5. Flutter clearance flight tests of an OV-10A airplane modified for wake vortex flight experiments

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.; Rivera, Jose A., Jr.; Stewart, Eric C.

    1995-01-01

    The envelope expansion, flight flutter tests of a modified OV-10A aircraft are described. For the wake vortex research program, the airplane was modified to incorporate three forward-extending instrumentation booms, one extending forward from each wing tip and one from the right side of the fuselage. The booms were instrumented with sensors to measure the velocity and direction of local air flow. The flutter test results show that the modified OV-10A aircraft is free from flutter at speeds up to 330 KEAS at 5000 feet altitude.

  6. Flight Deck Interval Management Display. [Elements, Information and Annunciations Database User Guide

    NASA Technical Reports Server (NTRS)

    Lancaster, Jeff; Dillard, Michael; Alves, Erin; Olofinboba, Olu

    2014-01-01

    The User Guide details the Access Database provided with the Flight Deck Interval Management (FIM) Display Elements, Information, & Annunciations program. The goal of this User Guide is to support ease of use and the ability to quickly retrieve and select items of interest from the Database. The Database includes FIM Concepts identified in a literature review preceding the publication of this document. Only items that are directly related to FIM (e.g., spacing indicators), which change or enable FIM (e.g., menu with control buttons), or which are affected by FIM (e.g., altitude reading) are included in the database. The guide has been expanded from previous versions to cover database structure, content, and search features with voiced explanations.

  7. Proceedings of the NASA Workshop on Flight Deck Centered Parallel Runway Approaches in Instrument Meteorological Conditions

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C. (Editor); Scanlon, Charles H. (Editor)

    1996-01-01

    A Government and Industry workshop on Flight-Deck-Centered Parallel Runway Approaches in Instrument Meteorological Conditions (IMC) was conducted October 29, 1996 at the NASA Langley Research Center. This document contains the slides and records of the proceedings of the workshop. The purpose of the workshop was to disclose to the National airspace community the status of ongoing NASA R&D to address the closely spaced parallel runway problem in IMC and to seek advice and input on direction of future work to assure an optimized research approach. The workshop also included a description of a Paired Approach Concept which is being studied at United Airlines for application at the San Francisco International Airport.

  8. Crew Alertness Management on the Flight Deck: Cognitive and Vigilance Performance

    NASA Technical Reports Server (NTRS)

    Dinges, David F.

    1998-01-01

    This project had three broad goals: (1) to identify environmental and organismic risks to performance of long-haul cockpit crews; (2) to assess how cognitive and psychomotor vigilance performance, and subjective measures of alertness, were affected by work-rest schedules typical of long-haul cockpit crews; and (3) to determine the alertness-promoting effectiveness of behavioral and technological countermeasures to fatigue on the flight deck. During the course of the research, a number of studies were completed in cooperation with the NASA Ames Fatigue Countermeasures Program. The publications emerging from this project are listed in a bibliography in the appendix. Progress toward these goals will be summarized below according to the period in which it was accomplished.

  9. STS-57 MS2 Sherlock operates RMS THC on OV-105's aft flight deck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Mission Specialist 2 (MS2) Nancy J. Sherlock operates the remote manipulator system (RMS) translation hand control (THC) while observing extravehicular activity (EVA) outside viewing window W10 on the aft flight deck of Endeavour, Orbiter Vehicle (OV) 105. Positioned at the onorbit station, Sherlock moved EVA astronauts in the payload bay (PLB). Payload Commander (PLC) G. David Low with his feet anchored to a special restraint device on the end of the RMS arm held MS3 Peter J.K. Wisoff during the RMS maneuvers. The activity represented an evaluation of techniques which might be used on planned future missions -- a 1993 servicing visit to the Hubble Space Telescope (HST) and later space station work -- which will require astronauts to frequently lift objects of similar sized bulk. Note: Just below Sherlock's left hand a 'GUMBY' toy watches the actvity.

  10. Summary of a Crew-Centered Flight Deck Design Philosophy for High-Speed Civil Transport (HSCT) Aircraft

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Rogers, William H.; Press, Hayes N.; Latorella, Kara A.; Abbott, Terence S.

    1995-01-01

    Past flight deck design practices used within the U.S. commercial transport aircraft industry have been highly successful in producing safe and efficient aircraft. However, recent advances in automation have changed the way pilots operate aircraft, and these changes make it necessary to reconsider overall flight deck design. Automated systems have become more complex and numerous, and often their inner functioning is partially or fully opaque to the flight crew. Recent accidents and incidents involving autoflight system mode awareness Dornheim, 1995) are an example. This increase in complexity raises pilot concerns about the trustworthiness of automation, and makes it difficult for the crew to be aware of all the intricacies of operation that may impact safe flight. While pilots remain ultimately responsible for mission success, performance of flight deck tasks has been more widely distributed across human and automated resources. Advances in sensor and data integration technologies now make far more information available than may be prudent to present to the flight crew.

  11. The value of early flight evaluation of propulsion concepts using the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Ray, Ronald J.

    1987-01-01

    The value of early flight evaluation of propulsion and propulsion control concepts was demonstrated on the NASA F-15 airplane in programs such as highly integrated digital electronic control (HIDEC), the F100 engine model derivative (EMD), and digital electronic engine control (DEEC). (In each case, the value of flight demonstration was conclusively demonstrated.) This paper describes these programs, and discusses the results that were not expected, based on ground test or analytical prediction. The role of flight demonstration in facilitating transfer of technology from the laboratory to operational airplanes is discussed.

  12. The value of early flight evaluation of propulsion concepts using the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Ray, Ronald J.

    1987-01-01

    The value of early flight evaluation of propulsion and propulsion control concepts was demonstrated on the NASA F-15 airplane in programs such as highly integrated digital electronic control (HIDEC), the F100 engine model derivative (EMD), and digital electronic engine control (DEEC). (In each case, the value of flight demonstration was conclusively demonstrated). This paper described these programs, and discusses the results that were not expected, based on ground test or analytical prediction. The role of flight demonstration in facilitating transfer of technology from the laboratory to operational airplanes is discussed.

  13. Commercial Pilot; Airplane. Flight Test Guide, Part 61 Revised, AC 61-55.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide assists the applicant and his instructor in preparing for the Commercial Pilot Certificate with Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the certificate. Preflight duties,…

  14. Determination of stability and control parameters of a general aviation airplane from flight data

    NASA Technical Reports Server (NTRS)

    Abbasy, I.

    1983-01-01

    Values for the stability and control parameters for a general aviation airplane were determined from flight data. Lateral and longitudinal transient maneuvers were analyzed by the equation error and output error methods. There was a good agreement between the parameters extracted from flight data and those predicted by wind tunnel.

  15. 14 CFR Appendix B to Part 121 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specification B... Flight Recorder Specification Parameters Range Accuracy sensor input to DFDR readout Sampling interval (per second) Resolution 4 readout Time (GMT or Frame Counter) (range 0 to 4095, sampled 1 per frame)...

  16. 14 CFR Appendix B to Part 121 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specification B... Flight Recorder Specification Parameters Range Accuracy sensor input to DFDR readout Sampling interval (per second) Resolution 4 readout Time (GMT or Frame Counter) (range 0 to 4095, sampled 1 per frame)...

  17. 14 CFR Appendix B to Part 121 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specification B... Flight Recorder Specification Parameters Range Accuracy sensor input to DFDR readout Sampling interval (per second) Resolution 4 readout Time (GMT or Frame Counter) (range 0 to 4095, sampled 1 per frame)...

  18. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, App....

  19. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Three pilot crews: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations:...

  20. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  1. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Four pilot crews: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations:...

  2. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations:...

  3. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Two pilot crews: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations:...

  4. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation:...

  5. 14 CFR 121.507 - Flight time limitations: Three pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Three pilot crews: airplanes. 121.507 Section 121.507 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations:...

  6. 14 CFR 121.509 - Flight time limitations: Four pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Four pilot crews: airplanes. 121.509 Section 121.509 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations:...

  7. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Overseas and international operations: airplanes. 121.513 Section 121.513 Aeronautics and Space FEDERAL AVIATION...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  8. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Deadhead transportation: airplanes. 121.519 Section 121.519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  9. 14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  10. 14 CFR 121.515 - Flight time limitations: All airmen: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: All airmen: airplanes. 121.515 Section 121.515 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations:...

  11. 14 CFR 121.505 - Flight time limitations: Two pilot crews: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Two pilot crews: airplanes. 121.505 Section 121.505 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations:...

  12. Determination of aerodynamic parameters of a fighter airplane from flight data at high angles of attack

    NASA Technical Reports Server (NTRS)

    Klein, V.; Batterson, J. G.; Abbasy, I.

    1983-01-01

    A procedure for the estimation of airplane model structure and parameters is applied to data from a modern fighter airplane operating within an angle of attack range of 5 to 60 deg. The paper briefly describes the airplane, flight and wind tunnel data available, and the estimation method. The results presented contain basic longitudinal characteristics of the airplane and the estimates of aerodynamic parameters in the yawing-moment equations. These estimates are obtained from small and large amplitude maneuvers. Because the latter set of data was not suitable for airplane identification, some of the large amplitude maneuvers were joined together and then partitioned into subsets according to the values of angle of attack. Each subset was then analyzed as a separate data set. Most of the estimated parameters and functions are in good agreement with the wind tunnel measurements. The estimated lateral parameters in the model equations also demonstrate good prediction capabilities.

  13. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2011-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, an< it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flow-field properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of -2 deg were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  14. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Frederick, Michael A.; Ratnayake, Nalin A.

    2010-01-01

    The Rake Airflow Gage Experiment involves a flow-field survey rake that was flown on the Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center using the Dryden F-15B research test bed airplane. The objective of this flight test was to ascertain the flow-field angularity, local Mach number profile, total pressure distortion, and dynamic pressure at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment. This new mixed-compression, supersonic inlet is planned for flight test in the near term. Knowledge of the flow-field characteristics at this location underneath the airplane is essential to flight test planning and computational modeling of the new inlet, and it is also applicable for future propulsion systems research that may use the Propulsion Flight Test Fixture. This report describes the flight test preparation and execution, and the local flowfield properties calculated from pressure measurements of the rake. Data from the two Rake Airflow Gage Experiment research flights demonstrate that the F-15B airplane, flying at a free-stream Mach number of 1.65 and a pressure altitude of 40,000 ft, would achieve the desired local Mach number for the future inlet flight test. Interface plane distortion levels of 2 percent and a local angle of attack of 2 were observed at this condition. Alternative flight conditions for future testing and an exploration of certain anomalous data also are provided.

  15. Pilot opinions on high level flight deck automation issues: Toward the development of a design philosophy

    NASA Technical Reports Server (NTRS)

    Tenney, Yvette J.; Rogers, William H.; Pew, Richard W.

    1995-01-01

    There has been much concern in recent years about the rapid increase in automation on commercial flight decks. The survey was composed of three major sections. The first section asked pilots to rate different automation components that exist on the latest commercial aircraft regarding their obtrusiveness and the attention and effort required in using them. The second section addressed general 'automation philosophy' issues. The third section focused on issues related to levels and amount of automation. The results indicate that pilots of advanced aircraft like their automation, use it, and would welcome more automation. However, they also believe that automation has many disadvantages, especially fully autonomous automation. They want their automation to be simple and reliable and to produce predictable results. The biggest needs for higher levels of automation were in pre-flight, communication, systems management, and task management functions, planning as well as response tasks, and high workload situations. There is an irony and a challenge in the implications of these findings. On the one hand pilots would like new automation to be simple and reliable, but they need it to support the most complex part of the job--managing and planning tasks in high workload situations.

  16. Methodology to Support Dynamic Function Allocation Policies Between Humans and Flight Deck Automation

    NASA Technical Reports Server (NTRS)

    Johnson, Eric N.

    2012-01-01

    Function allocation assigns work functions to all agents in a team, both human and automation. Efforts to guide function allocation systematically have been studied in many fields such as engineering, human factors, team and organization design, management science, cognitive systems engineering. Each field focuses on certain aspects of function allocation, but not all; thus, an independent discussion of each does not address all necessary aspects of function allocation. Four distinctive perspectives have emerged from this comprehensive review of literature on those fields: the technology-centered, human-centered, team-oriented, and work-oriented perspectives. Each perspective focuses on different aspects of function allocation: capabilities and characteristics of agents (automation or human), structure and strategy of a team, and work structure and environment. This report offers eight issues with function allocation that can be used to assess the extent to which each of issues exist on a given function allocation. A modeling framework using formal models and simulation was developed to model work as described by the environment, agents, their inherent dynamics, and relationships among them. Finally, to validate the framework and metrics, a case study modeled four different function allocations between a pilot and flight deck automation during the arrival and approach phases of flight.

  17. Airplane stability calculations and their verification by flight tests

    NASA Technical Reports Server (NTRS)

    Rota, Augusto

    1922-01-01

    For some time, the designers of airplanes have begun to occupy themselves with the question of longitudinal stability. In their quest to simplify calculation and data collection, the designers have attached the greatest importance to the coefficient of initial longitudinal stability. In this study a diagram was constructed from the data of the tunnel tests, which depends neither on the position of the center of gravity nor of the angle of deflection of the elevators. This diagram is constructed by means of straight lines drawn through the metacenters of the complete airplane, in a direction parallel to the tangents to the polar of the airplane relative to a system of axes fixed with reference to the airplane.

  18. New Method of Determining the Polar Curve of an Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Yegorov, B. N.

    1945-01-01

    A fundamental defect of existing methods for the determination of the polar of an airplane in flight is the impossibility of obtaining the thrust or the resistance of the propeller for any type airplane with any type engine. The new method is based on the premise that for zero propeller thrust the mean angle of attack of the blade is approximately the same for all propellers if this angle is reckoned from the aerodynamic chord of the profile section. This angle was determined from flight tests. Knowing the mean angle of the blade setting the angle of attack of the propeller blade at zero thrust can be found and the propeller speed in gliding obtained. The experimental check of the new method carried out on several airplanes gave positive results. The basic assumptions for the construction of the polars and the method of analyzing the flight data are given.

  19. Evaluation of Flight Deck-Based Interval Management Crew Procedure Feasibility

    NASA Technical Reports Server (NTRS)

    Wilson, Sara R.; Murdoch, Jennifer L.; Hubbs, Clay E.; Swieringa, Kurt A.

    2013-01-01

    Air traffic demand is predicted to increase over the next 20 years, creating a need for new technologies and procedures to support this growth in a safe and efficient manner. The National Aeronautics and Space Administration's (NASA) Air Traffic Management Technology Demonstration - 1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The integration of these technologies will increase throughput, reduce delay, conserve fuel, and minimize environmental impacts. The ground-based tools include Traffic Management Advisor with Terminal Metering for precise time-based scheduling and Controller Managed Spacing decision support tools for better managing aircraft delay with speed control. The core airborne technology in ATD-1 is Flight deck-based Interval Management (FIM). FIM tools provide pilots with speed commands calculated using information from Automatic Dependent Surveillance - Broadcast. The precise merging and spacing enabled by FIM avionics and flight crew procedures will reduce excess spacing buffers and result in higher terminal throughput. This paper describes a human-in-the-loop experiment designed to assess the acceptability and feasibility of the ATD-1 procedures used in a voice communications environment. This experiment utilized the ATD-1 integrated system of ground-based and airborne technologies. Pilot participants flew a high-fidelity fixed base simulator equipped with an airborne spacing algorithm and a FIM crew interface. Experiment scenarios involved multiple air traffic flows into the Dallas-Fort Worth Terminal Radar Control airspace. Results indicate that the proposed procedures were feasible for use by flight crews in a voice communications environment. The delivery accuracy at the achieve-by point was within +/- five seconds and the delivery precision was less than five seconds. Furthermore, FIM speed commands occurred at a rate of less than one per minute

  20. Preliminary Flight Deck Observations During Flight in High Ice Water Content Conditions

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas; Duchanoy, Dominque; Bourdinot, Jean-Francois; Harrah, Steven; Strapp, Walter; Schwarzenboeck, Alfons; Dezitter, Fabien; Grandin, Alice

    2015-01-01

    In 2006, Mason et al. identified common observations that occurred in engine power-loss events attributed to flight in high concentrations of ice crystals. Observations included light to moderate turbulence, precipitation on the windscreen (often reported as rain), aircraft total temperature anomalies, lack of significant airframe icing, and no flight radar echoes at the location and altitude of the engine event. Since 2006, Mason et al. and others have collected information from pilots who experienced engine power-loss events via interviews and questionnaires to substantiate earlier observations and support event analyses. In 2011, Mason and Grzych reported that vertical acceleration data showed increases in turbulence prior to engine events, although the turbulence was usually light to moderate and not unique to high ice water content (HIWC) clouds. Mason concluded that the observation of rain on the windscreen was due to melting of ice high concentrations of ice crystals on the windscreen, coalescing into drops. Mason also reported that these pilot observations of rain on the windscreen were varied. Many pilots indicated no rain was observed, while others observed moderate rain with unique impact sounds. Mason concluded that the variation in the reports may be due to variation in the ice concentration, particle size, and temperature.

  1. Flight test evaluation of a separate surface attitude command control system on a Beech 99 airplane

    NASA Technical Reports Server (NTRS)

    Gee, S. W.; Jenks, G. E.; Roskam, J.; Stone, R. L.

    1976-01-01

    A joint NASA/university/industry program was conducted to flight evaluate a potentially low cost separate surface implementation of attitude command in a Beech 99 airplane. Saturation of the separate surfaces was the primary cause of many problems during development. Six experienced professional pilots made simulated instrument flight evaluations in light-to-moderate turbulence. They were favorably impressed with the system, particularly with the elimination of control force transients that accompanied configuration changes. For ride quality, quantitative data showed that the attitude command control system resulted in all cases of airplane motion being removed from the uncomfortable ride region.

  2. Line Pilots' Attitudes about and Experience with Flight Deck Automation: Results of an International Survey and Proposed Guidelines

    NASA Technical Reports Server (NTRS)

    Rudisill, Marianne

    1995-01-01

    A survey of line pilots' attitudes about flight deck automation was conducted by the Royal Air Force Institute of Aviation Medicine (RAF IAM, Farnborough, UK) under the sponsorship of the United Kingdom s Civil Aviation Authority and in cooperation with IATA (the International Air Transport Association). Survey freehand comments given by pilots operating 13 types of commercial transports across five manufacturers (Airbus, Boeing, British Aerospace, Lockheed, and McDonnell-Douglas) and 57 air carriers/organizations were analyzed by NASA. These data provide a "lessons learned" knowledge base which may be used for the definition of guidelines for flight deck automation and its associated crew interface within the High Speed Research Program. The aircraft chosen for analysis represented a progression of levels of automation sophistication and complexity, from "Basic" types (e.g., B727, DC9), through "Transition" types (e.g., A300, Concorde), to two levels of glass cockpits (e.g., Glass 1: e.g., A310; Glass 2: e.g., B747-400). This paper reports the results of analyses of comments from pilots flying commercial transport types having the highest level of automation sophistication (B757/B767, B747-400, and A320). Comments were decomposed into five categories relating to: (1) general observations with regard to flight deck automation; comments concerning the (2) design and (3) crew understanding of automation and the crew interface; (4) crew operations with automation; and (5) personal factors affecting crew/automation interaction. The goal of these analyses is to contribute to the definition of guidelines which may be used during design of future aircraft flight decks.

  3. Flight comparison of the transonic agility of the F-111A airplane and the F-111 supercritical wing airplane

    NASA Technical Reports Server (NTRS)

    Friend, E. L.; Sakamoto, G. M.

    1978-01-01

    A flight research program was conducted to investigate the improvements in maneuverability of an F-111A airplane equipped with a supercritical wing. In this configuration the aircraft is known as the F-111 TACT (transonic aircraft technology) airplane. The variable-wing-sweep feature permitted an evaluation of the supercritical wing in many configurations. The primary emphasis was placed on the transonic Mach number region, which is considered to be the principal air combat arena for fighter aircraft. An agility study was undertaken to assess the maneuverability of the F-111A aircraft with a supercritical wing at both design and off-design conditions. The evaluation included an assessment of aerodynamic and maneuver performance in conjunction with an evaluation of precision controllability during tailchase gunsight tracking tasks.

  4. Flight evaluation of advanced control systems and displays on a general aviation airplane

    NASA Technical Reports Server (NTRS)

    Loschke, P. C.; Barber, M. R.; Enevoldson, E. K.; Mcmurtry, T. C.

    1974-01-01

    A flight-test program was conducted to determine the effect of advanced flight control systems and displays on the handling qualities of a light twin-engined airplane. A flight-director display and an attitude-command control system, used separately and in combination, transformed a vehicle with poor handling qualities during ILS approaches in turbulent air into a vehicle with good handling qualities. The attitude-command control system also improved the ride qualities of the airplane. A rate-command control system made only small improvements to the airplane's ILS handling qualities in turbulence. Both the rate- and the attitude-command control systems reduced stall warning in the test airplane, increasing the likelihood of inadvertent stalls. The final approach to the point of flare was improved by both the rate- and the attitude-command control systems. However, the small control wheel deflections necessary to flare were unnatural and tended to cause overcontrolling during flare. Airplane handling qualities are summarized for each control-system and display configuration.

  5. Situational Awareness Issues in the Implementation of Datalink: Shared Situational Awareness in the Joint Flight Deck-ATC Aviation System

    NASA Technical Reports Server (NTRS)

    Hansman, Robert John, Jr.

    1999-01-01

    MIT has investigated Situational Awareness issues relating to the implementation of Datalink in the Air Traffic Control environment for a number of years under this grant activity. This work has investigated: 1) The Effect of "Party Line" Information. 2) The Effect of Datalink-Enabled Automated Flight Management Systems (FMS) on Flight Crew Situational Awareness. 3) The Effect of Cockpit Display of Traffic Information (CDTI) on Situational Awareness During Close Parallel Approaches. 4) Analysis of Flight Path Management Functions in Current and Future ATM Environments. 5) Human Performance Models in Advanced ATC Automation: Flight Crew and Air Traffic Controllers. 6) CDTI of Datalink-Based Intent Information in Advanced ATC Environments. 7) Shared Situational Awareness between the Flight Deck and ATC in Datalink-Enabled Environments. 8) Analysis of Pilot and Controller Shared SA Requirements & Issues. 9) Development of Robust Scenario Generation and Distributed Simulation Techniques for Flight Deck ATC Simulation. 10) Methods of Testing Situation Awareness Using Testable Response Techniques. The work is detailed in specific technical reports that are listed in the following bibliography, and are attached as an appendix to the master final technical report.

  6. DataComm in Flight Deck Surface Trajectory-Based Operations. Chapter 20

    NASA Technical Reports Server (NTRS)

    Bakowski, Deborah L.; Foyle, David C.; Hooey, Becky L.; Meyer, Glenn R.; Wolter, Cynthia A.

    2012-01-01

    The purpose of this pilot-in-the-loop aircraft taxi simulation was to evaluate a NextGen concept for surface trajectory-based operations (STBO) in which air traffic control (ATC) issued taxi clearances with a required time of arrival (RTA) by Data Communications (DataComm). Flight deck avionics, driven by an error-nulling algorithm, displayed the speed needed to meet the RTA. To ensure robustness of the algorithm, the ability of 10 two-pilot crews to meet the RTA was tested in nine experimental trials representing a range of realistic conditions including a taxi route change, an RTA change, a departure clearance change, and a crossing traffic hold scenario. In some trials, these DataComm taxi clearances or clearance modifications were accompanied by preview information, in which the airport map display showed a preview of the proposed route changes, including the necessary speed to meet the RTA. Overall, the results of this study show that with the aid of the RTA speed algorithm, pilots were able to meet their RTAs with very little time error in all of the robustness-testing scenarios. Results indicated that when taxi clearance changes were issued by DataComm only, pilots required longer notification distances than with voice communication. However, when the DataComm was accompanied by graphical preview, the notification distance required by pilots was equivalent to that for voice.

  7. DataComm in Flight Deck Surface Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Bakowski, Deborah L.; Foyle, David C.; Hooey, Becky L.; Meyer, Glenn R.; Wolter, Cynthia A.

    2012-01-01

    The purpose of this pilot-in-the-loop aircraft taxi simulation was to evaluate a NextGen concept for surface trajectory-based operations (STBO) in which air traffic control (ATC) issued taxi clearances with a required time of arrival (RTA) by Data Communications (DataComm). Flight deck avionics, driven by an error-nulling algorithm, displayed the speed needed to meet the RTA. To ensure robustness of the algorithm, the ability of 10 two-pilot crews to meet the RTA was tested in nine experimental trials representing a range of realistic conditions including a taxi route change, an RTA change, a departure clearance change, and a crossing traffic hold scenario. In some trials, these DataComm taxi clearances or clearance modifications were accompanied by 'preview' information, in which the airport map display showed a preview of the proposed route changes, including the necessary speed to meet the RTA. Overall, the results of this study show that with the aid of the RTA speed algorithm, pilots were able to meet their RTAs with very little time error in all of the robustness-testing scenarios. Results indicated that when taxi clearance changes were issued by DataComm only, pilots required longer notification distances than with voice communication. However, when the DataComm was accompanied by graphical preview, the notification distance required by pilots was equivalent to that for voice.

  8. Flight-Deck Strategies and Outcomes When Flying Schedule-Matching Descents

    NASA Technical Reports Server (NTRS)

    Kaneshige, John T.; Sharma, Shivanjli; Martin Lynne; Lozito, Sandra; Dulchinos, Victoria

    2013-01-01

    Recent studies at NASA Ames Research Center have investigated the development and use of ground-based (air traffic controller) tools to manage and schedule air traffic in future terminal airspace. An exploratory study was undertaken to investigate the impacts that such tools (and concepts) could have on the flight-deck. Ten Boeing 747-400 crews flew eight optimized profile descents in the Los Angeles terminal airspace, while receiving scripted current day and futuristic speed clearances, to ascertain their ability to fly schedulematching descents without prior training. Although the study was exploratory in nature, four variables were manipulated: route constraints, winds, speed changes, and clearance phraseology. Despite flying the same scenarios with the same events and timing, there were significant differences in the time it took crews to fly the approaches. This variation is the product of a number of factors but highlights potential difficulties for scheduling tools that would have to accommodate this amount of natural variation in descent times. The focus of this paper is the examination of the crews' aircraft management strategies and outcomes. This includes potentially problematic human-automation interaction issues that may negatively impact arrival times, speed and altitude constraint compliance, and energy management efficiency.

  9. Test results of the SHARE II Mid-deck Flight Experiment

    NASA Astrophysics Data System (ADS)

    Brown, Richard F.; Dominguez, Peter; Cornwell, John

    1992-07-01

    The SHARE II (Space Station Advanced Radiator Experiment II) Mid-deck Experiment was flown on board the Space Shuttle (STS-37) from April 5 to 12, 1991. The purpose of the experiment was to demonstrate the operation of several design changes proposed for the NASA/Grumman SHARE II heat pipe as a result of the lessons learned during the first SHARE flight (STS-29) in March 1989. Two test articles flew during the mission. The first, the Bubble Management Test Article, was a Plexiglas model of the monogroove heat pipe. This test article was primarily used to evaluate the performance of two 0-g bubble management devices; the redesigned evaporator screen artery and the condenser bubble trap. The second, the Blended Manifold Priming Test Article, also constructed of Plexiglas, was used to demonstrate passive self-priming of a heat pipe blended manifold connecting three evaporator legs to a single condenser leg. Both test articles used a 50/50 mixture of ethanol and water as the working fluid. Overall, the experiment was highly successful, with all the major test objectives fulfilled, including blended manifold priming, condenser bubble trap operation, screen artery bubble ingestion, and elimination of hydraulic diameter mismatch.

  10. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs. PMID:22739680

  11. Fatigue on the flight deck: the consequences of sleep loss and the benefits of napping.

    PubMed

    Hartzler, Beth M

    2014-01-01

    The detrimental effects of fatigue in aviation are well established, as evidenced by both the number of fatigue-related mishaps and numerous studies which have found that most pilots experience a deterioration in cognitive performance as well as increased stress during the course of a flight. Further, due to the nature of the average pilot's work schedule, with frequent changes in duty schedule, early morning starts, and extended duty periods, fatigue may be impossible to avoid. Thus, it is critical that fatigue countermeasures be available which can help to combat the often overwhelming effects of sleep loss or sleep disruption. While stimulants such as caffeine are typically effective at maintaining alertness and performance, such countermeasures do nothing to address the actual source of fatigue - insufficient sleep. Consequently, strategic naps are considered an efficacious means of maintaining performance while also reducing the individual's sleep debt. These types of naps have been advocated for pilots in particular, as opportunities to sleep either in the designated rest facilities or on the flight deck may be beneficial in reducing both the performance and alertness impairments associated with fatigue, as well as the subjective feelings of sleepiness. Evidence suggests that strategic naps can reduce subjective feelings of fatigue and improve performance and alertness. Despite some contraindications to implementing strategic naps while on duty, such as sleep inertia experienced upon awakening, both researchers and pilots agree that the benefits associated with these naps far outweigh the potential risks. This article is a literature review detailing both the health and safety concerns of fatigue among commercial pilots as well as benefits and risks associated with strategic napping to alleviate this fatigue. PMID:24215936

  12. Calculation of Flight Deck Interval Management Assigned Spacing Goals Subject to Multiple Scheduling Constraints

    NASA Technical Reports Server (NTRS)

    Robinson, John E.

    2014-01-01

    The Federal Aviation Administration's Next Generation Air Transportation System will combine advanced air traffic management technologies, performance-based procedures, and state-of-the-art avionics to maintain efficient operations throughout the entire arrival phase of flight. Flight deck Interval Management (FIM) operations are expected to use sophisticated airborne spacing capabilities to meet precise in-trail spacing from top-of-descent to touchdown. Recent human-in-the-loop simulations by the National Aeronautics and Space Administration have found that selection of the assigned spacing goal using the runway schedule can lead to premature interruptions of the FIM operation during periods of high traffic demand. This study compares three methods for calculating the assigned spacing goal for a FIM operation that is also subject to time-based metering constraints. The particular paradigms investigated include: one based upon the desired runway spacing interval, one based upon the desired meter fix spacing interval, and a composite method that combines both intervals. These three paradigms are evaluated for the primary arrival procedures to Phoenix Sky Harbor International Airport using the entire set of Rapid Update Cycle wind forecasts from 2011. For typical meter fix and runway spacing intervals, the runway- and meter fix-based paradigms exhibit moderate FIM interruption rates due to their inability to consider multiple metering constraints. The addition of larger separation buffers decreases the FIM interruption rate but also significantly reduces the achievable runway throughput. The composite paradigm causes no FIM interruptions, and maintains higher runway throughput more often than the other paradigms. A key implication of the results with respect to time-based metering is that FIM operations using a single assigned spacing goal will not allow reduction of the arrival schedule's excess spacing buffer. Alternative solutions for conducting the FIM operation

  13. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  14. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John

    2005-01-01

    Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.

  15. Flight-test data on the static fore-and-aft stability of various German airplanes

    NASA Technical Reports Server (NTRS)

    Hubner, Walter

    1933-01-01

    The static longitudinal stability of an airplane with locked elevator is usually determined by analysis and model tests. The present report proposes to supply the results of such measurements. The method consisted of recording the dynamic pressure versus elevator displacement at different center-of-gravity positions in unaccelerated flight.

  16. 14 CFR 121.344 - Digital flight data recorders for transport category airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Digital flight data recorders for transport category airplanes. 121.344 Section 121.344 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING...

  17. 76 FR 74649 - Harmonization of Various Airworthiness Standards for Transport Category Airplanes-Flight Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... November 19, 2010 (75 FR 70854). The proposal discussed changes to part 25 in four areas: 1. Selection of... (55 FR 29756), July 20, 1990. The FAA considered them unnecessary since directional and lateral... Standards for Transport Category Airplanes--Flight Rules AGENCY: Federal Aviation Administration (FAA),...

  18. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.../Off 1 TE Flaps (Discrete or Analog) Each discrete position (U, D, T/O, AAP) OR 1 LE Flaps (Discrete...

  19. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... 1 TE flaps (discrete or analog) Each discrete position (U, D, T/O, AAP) 1 Or Analog 0-100% range...

  20. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.../Off 1 TE Flaps (Discrete or Analog) Each discrete position (U, D, T/O, AAP) OR 1 LE Flaps (Discrete...

  1. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: COMMUTER AND ON...

  2. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... 1 TE flaps (discrete or analog) Each discrete position (U, D, T/O, AAP) 1 Or Analog 0-100% range...

  3. 14 CFR Appendix E to Part 91 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Airplane Flight Recorder Specifications E Appendix E to Part 91 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION.../Off 1 TE Flaps (Discrete or Analog) Each discrete position (U, D, T/O, AAP) OR 1 LE Flaps (Discrete...

  4. 14 CFR Appendix B to Part 135 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane Flight Recorder Specifications B Appendix B to Part 135 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... 1 TE flaps (discrete or analog) Each discrete position (U, D, T/O, AAP) 1 Or Analog 0-100% range...

  5. 14 CFR Appendix D to Part 125 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane Flight Recorder Specification D Appendix D to Part 125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Pt. 125, App....

  6. 14 CFR Appendix D to Part 125 - Airplane Flight Recorder Specification

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane Flight Recorder Specification D Appendix D to Part 125 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Pt. 125, App....

  7. The variation in pressure in the cabin of an airplane in flight

    NASA Technical Reports Server (NTRS)

    Gough, Melvin N

    1931-01-01

    The pressure in the cabin of a Fairchild cabin monoplane wa surveyed in flight, and was found to decrease with increased air speed over the fuselage and to vary with the number and location of openings in the cabin. The maximum depression of 2.2 inches of water (equivalent pressure altitude at sea level of 152 feet) occurred at the high speed of the airplane in level flight with the cabin closed.

  8. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  9. Flight duration, airspeed practices and altitude management of airplanes involved in the NASA VGH General Aviation Program

    NASA Technical Reports Server (NTRS)

    Jewel, Joseph W., Jr.

    1987-01-01

    Flight duration, airspeed, and altitude information obtained from NASA velocity gravity height (VGH) recorders is presented for each of 95 general aviation airplanes flown in twin- and single-engine executive, personal, instructional, commercial survey, aerial application, aerobatic, commuter, and float operations. These data complement normal acceleration data obtained from the same airplanes and reported in NASA-TM-84660, and together they provide a data base for the design and analysis of general aviation airplane operations.

  10. Aircraft Configuration and Flight Crew Compliance with Procedures While Conducting Flight Deck Based Interval Management (FIM) Operations

    NASA Technical Reports Server (NTRS)

    Shay, Rick; Swieringa, Kurt A.; Baxley, Brian T.

    2012-01-01

    Flight deck based Interval Management (FIM) applications using ADS-B are being developed to improve both the safety and capacity of the National Airspace System (NAS). FIM is expected to improve the safety and efficiency of the NAS by giving pilots the technology and procedures to precisely achieve an interval behind the preceding aircraft by a specific point. Concurrently but independently, Optimized Profile Descents (OPD) are being developed to help reduce fuel consumption and noise, however, the range of speeds available when flying an OPD results in a decrease in the delivery precision of aircraft to the runway. This requires the addition of a spacing buffer between aircraft, reducing system throughput. FIM addresses this problem by providing pilots with speed guidance to achieve a precise interval behind another aircraft, even while flying optimized descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) human-in-the-loop experiment employed 24 commercial pilots to explore the use of FIM equipment to conduct spacing operations behind two aircraft arriving to parallel runways, while flying an OPD during high-density operations. This paper describes the impact of variations in pilot operations; in particular configuring the aircraft, their compliance with FIM operating procedures, and their response to changes of the FIM speed. An example of the displayed FIM speeds used incorrectly by a pilot is also discussed. Finally, this paper examines the relationship between achieving airline operational goals for individual aircraft and the need for ATC to deliver aircraft to the runway with greater precision. The results show that aircraft can fly an OPD and conduct FIM operations to dependent parallel runways, enabling operational goals to be achieved efficiently while maintaining system throughput.

  11. Comparing taxi clearance input layouts for advancements in flight deck automation for surface operations

    NASA Astrophysics Data System (ADS)

    Cheng, Lara W. S.

    Airport moving maps (AMMs) have been shown to decrease navigation errors, increase taxiing speed, and reduce workload when they depict airport layout, current aircraft position, and the cleared taxi route. However, current technologies are limited in their ability to depict the cleared taxi route due to the unavailability of datacomm or other means of electronically transmitting clearances from ATC to the flight deck. This study examined methods by which pilots can input ATC-issued taxi clearances to support taxi route depictions on the AMM. Sixteen general aviation (GA) pilots used a touchscreen monitor to input taxi clearances using two input layouts, softkeys and QWERTY, each with and without feedforward (graying out invalid inputs). QWERTY yielded more taxi route input errors than the softkeys layout. The presence of feedforward did not produce fewer taxi route input errors than in the non-feedforward condition. The QWERTY layout did reduce taxi clearance input times relative to the softkeys layout, but when feedforward was present this effect was observed only for the longer, 6-segment taxi clearances. It was observed that with the softkeys layout, feedforward reduced input times compared to non-feedforward but only for the 4-segment clearances. Feedforward did not support faster taxi clearance input times for the QWERTY layout. Based on the results and analyses of the present study, it is concluded that for taxi clearance inputs, (1) QWERTY remain the standard for alphanumeric inputs, and (2) feedforward be investigated further, with a focus on participant preference and performance of black-gray contrast of keys.

  12. NextGen Flight Deck Surface Trajectory-Based Operations (STBO): Contingency Holds

    NASA Technical Reports Server (NTRS)

    Bakowski, Deborah Lee; Hooey, Becky Lee; Foyle, David C.; Wolter, Cynthia A.; Cheng, Lara W. S.

    2013-01-01

    The purpose of this pilot-in-the-loop taxi simulation was to investigate a NextGen Surface Trajectory-Based Operations (STBO) concept called "contingency holds." The contingency-hold concept parses a taxi route into segments, allowing an air traffic control (ATC) surface traffic management (STM) system to hold an aircraft when necessary for safety. Under nominal conditions, if the intersection or active runway crossing is clear, the hold is removed, allowing the aircraft to continue taxiing without slowing, thus improving taxi efficiency, while minimizing the excessive brake use, fuel burn, and emissions associated with stop-and-go taxi. However, when a potential traffic conflict exists, the hold remains in place as a fail-safe mechanism. In this departure operations simulation, the taxi clearance included a required time of arrival (RTA) to a specified intersection. The flight deck was equipped with speed-guidance avionics to aid the pilot in safely meeting the RTA. On two trials, the contingency hold was not released, and pilots were required to stop. On two trials the contingency hold was released 15 sec prior to the RTA, and on two trials the contingency hold was released 30 sec prior to the RTA. When the hold remained in place, all pilots complied with the hold. Results also showed that when the hold was released at 15-sec or 30-sec prior to the RTA, the 30-sec release allowed pilots to maintain nominal taxi speed, thus supporting continuous traffic flow; whereas, the 15-sec release did not. The contingency-hold concept, with at least a 30-sec release, allows pilots to improve taxiing efficiency by reducing braking, slowing, and stopping, but still maintains safety in that no pilots "busted" the clearance holds. Overall, the evidence suggests that the contingency-hold concept is a viable concept for optimizing efficiency while maintaining safety.

  13. An Evaluation of a Flight Deck Interval Management Algorithm Including Delayed Target Trajectories

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Underwood, Matthew C.; Barmore, Bryan; Leonard, Robert D.

    2014-01-01

    NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature air traffic management technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise timebased scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise in-trail spacing. During high demand operations, TMA-TM may produce a schedule and corresponding aircraft trajectories that include delay to ensure that a particular aircraft will be properly spaced from other aircraft at each schedule waypoint. These delayed trajectories are not communicated to the automation onboard the aircraft, forcing the IM aircraft to use the published speeds to estimate the target aircraft's estimated time of arrival. As a result, the aircraft performing IM operations may follow an aircraft whose TMA-TM generated trajectories have substantial speed deviations from the speeds expected by the spacing algorithm. Previous spacing algorithms were not designed to handle this magnitude of uncertainty. A simulation was conducted to examine a modified spacing algorithm with the ability to follow aircraft flying delayed trajectories. The simulation investigated the use of the new spacing algorithm with various delayed speed profiles and wind conditions, as well as several other variables designed to simulate real-life variability. The results and conclusions of this study indicate that the new spacing algorithm generally exhibits good performance; however, some types of target aircraft speed profiles can cause the spacing algorithm to command less than optimal speed control behavior.

  14. A flight investigation with a STOL airplane flying curved, descending instrument approach paths

    NASA Technical Reports Server (NTRS)

    Benner, M. S.; Mclaughlin, M. D.; Sawyer, R. H.; Vangunst, R.; Ryan, J. L.

    1974-01-01

    A flight investigation using a De Havilland Twin Otter airplane was conducted to determine the configurations of curved, 6 deg descending approach paths which would provide minimum airspace usage within the requirements for acceptable commercial STOL airplane operations. Path configurations with turns of 90 deg, 135 deg, and 180 deg were studied; the approach airspeed was 75 knots. The length of the segment prior to turn, the turn radius, and the length of the final approach segment were varied. The relationship of the acceptable path configurations to the proposed microwave landing system azimuth coverage requirements was examined.

  15. A Summary of Flight-Determined Transonic Lift and Drag Characteristics of Several Research Airplane Configurations

    NASA Technical Reports Server (NTRS)

    Bellman, Donald R.

    1959-01-01

    Flight-determined lift and drag data from transonic flights of seven research airplane configurations of widely varying characteristics are presented and compared with wind-tunnel and rocket-model data. The airplanes are the X-5 (590 wing sweep), XF-92A, YF-102 with cambered wing, YF-102 with symmetrical wing, D-558-ii, X-3, and X-LE. The effects of some of the basic configuration differences on the lift and drag characteristics are demonstrated. As indicated by transonic similarity laws, most of the configurations demonstrate a relationship between the transonic increase in zero-lift drag and the maximum cross-sectional area. No such relationship was found between the drag-rise Mach number and its normally related parameters. A comparison of flight and wind-tunnel data shows a generally reasonable agreement, but Reynolds number differences can cause considerable variations in the drag levels of the flight and wind-tunnel tests. Maximum lift-drag ratios vary widely in the subsonic region as would be expected from differences in aspect ratio and wing thickness ratio; however, the variations diminish as the Mach number is increased through the transonic region. The attainment of maximum lift-drag ratio in level flight by several of the airplanes was limited by engine performance, stability characteristics, and buffet boundaries.

  16. Parametric study of microwave-powered high-altitude airplane platforms designed for linear flight

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.

    1981-01-01

    The performance of a class of remotely piloted, microwave powered, high altitude airplane platforms is studied. The first part of each cycle of the flight profile consists of climb while the vehicle is tracked and powered by a microwave beam; this is followed by gliding flight back to a minimum altitude above a microwave station and initiation of another cycle. Parametric variations were used to define the effects of changes in the characteristics of the airplane aerodynamics, the energy transmission systems, the propulsion system, and winds. Results show that wind effects limit the reduction of wing loading and the increase of lift coefficient, two effective ways to obtain longer range and endurance for each flight cycle. Calculated climb performance showed strong sensitivity to some power and propulsion parameters. A simplified method of computing gliding endurance was developed.

  17. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  18. Flight Deck-Based Delegated Separation: Evaluation of an On-Board Interval Management System with Synthetic and Enhanced Vision Technology

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.

    2011-01-01

    An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.

  19. Flight Research Using F100 Engine P680063 in the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Conners, Timothy R.; Maxwell, Michael D.

    1994-01-01

    The value of flight research in developing and evaluating gas turbine engines is high. NASA Dryden Flight Research Center has been conducting flight research on propulsion systems for many years. The F100 engine has been tested in the NASA F-15 research airplane in the last three decades. One engine in particular, S/N P680063, has been used for the entire program and has been flown in many pioneering propulsion flight research activities. Included are detailed flight-to-ground facility tests; tests of the first production digital engine control system, the first active stall margin control system, the first performance-seeking control system; and the first use of computer-controlled engine thrust for emergency flight control. The flight research has been supplemented with altitude facility tests at key times. This paper presents a review of the tests of engine P680063, the F-15 airplanes in which it flew, and the role of the flight test in maturing propulsion technology.

  20. 78 FR 11553 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ...These special conditions are issued for the Embraer S.A. Model EMB-550 airplane. This airplane will have a novel or unusual design feature(s) associated with the control surface awareness and mode annunciation of the electronic flight control system. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These special......

  1. 14 CFR 91.883 - Special flight authorizations for jet airplanes weighing 75,000 pounds or less.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Special flight authorizations for jet airplanes weighing 75,000 pounds or less. 91.883 Section 91.883 Aeronautics and Space FEDERAL AVIATION... airplane to an alternative airport in the 48 contiguous States on account of weather, mechanical, fuel,...

  2. Some effects of rainfall on flight of airplanes and on instrument indications

    NASA Technical Reports Server (NTRS)

    Rhode, Richard V

    1941-01-01

    Several possible effects of heavy rain on the aerodynamic performance of an airplane and of heavy rain and associated atmospheric phenomena on the indications of flight instruments are briefly considered. It is concluded that the effects of heavy rain on the performance of an airplane are not so great as to force the airplane down from moderate altitudes. Serious malfunctioning of the air-speed indicator may occur, however, as a result of flooding of the pitot-static head and subsequent accumulation of water in the air-speed pressure line. In strong convective situations, like thunderstorms, the rate-of-climb indicator may also be seriously in error owing to rapid variations of atmospheric pressure when entering and emerging from the convection currents.

  3. Role of Meteorology in Flights of a Solar-Powered Airplane

    NASA Technical Reports Server (NTRS)

    Donohue, Casey

    2004-01-01

    In the summer of 2001, the Helios prototype solar-powered uninhabited aerial vehicle (UAV) [a lightweight, remotely piloted airplane] was deployed to the Pacific Missile Range Facility (PMRF), at Kauai, Hawaii, in an attempt to fly to altitudes above 100,000 ft (30.48 km). The goal of flying a UAV to such high altitudes has been designated a level-I milestone of the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. In support of this goal, meteorologists from NASA Dryden Flight Research Center were sent to PMRF, as part of the flight crew, to provide current and forecast weather information to the pilots, mission directors, and planners. Information of this kind is needed to optimize flight conditions for peak aircraft performance and to enable avoidance of weather conditions that could adversely affect safety. In general, the primary weather data of concern for ground and flight operations are wind speeds (see Figure 1). Because of its long wing span [247 ft (.75 m)] and low weight [1,500 to 1,600 lb (about 680 to 726 kg)], the Helios airplane is sensitive to wind speeds exceeding 7 kn (3.6 m/s) at the surface. Also, clouds are of concern because they can block sunlight needed to energize an array of solar photovoltaic cells that provide power to the airplane. Vertical wind shear is very closely monitored in order to prevent damage or loss of control due to turbulence.

  4. The telerobot workstation testbed for the shuttle aft flight deck: A project plan for integrating human factors into system design

    NASA Technical Reports Server (NTRS)

    Sauerwein, Timothy

    1989-01-01

    The human factors design process in developing a shuttle orbiter aft flight deck workstation testbed is described. In developing an operator workstation to control various laboratory telerobots, strong elements of human factors engineering and ergonomics are integrated into the design process. The integration of human factors is performed by incorporating user feedback at key stages in the project life-cycle. An operator centered design approach helps insure the system users are working with the system designer in the design and operation of the system. The design methodology is presented along with the results of the design and the solutions regarding human factors design principles.

  5. STS-52 PS MacLean, backup PS Tryggvason, and PI pose on JSC's CCT flight deck

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Canadian Payload Specialist (PS) Steven G. MacLean (left) and backup Payload Specialist Bjarni V. Tryggvason (right) take a break from a camera training session in JSC's Crew Compartment Trainer (CCT). The two Canadian Space Agency (CSA) representatives pose on the CCT's aft flight deck with Canadian scientist David Zimick, the principal investigator (PI) for the materials experiment in low earth orbit (MELEO). MELEO is a component of the CANEX-2 experiment package, manifest to fly on the scheduled October 1992 STS-52 mission. The CCT is part of the shuttle Mockup and Integration Laboratory (MAIL) Bldg 9NE.

  6. Simulator study of flight characteristics of several large, dissimilar, cargo transport airplanes during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.; Deal, P. L.; Neely, W. R., Jr.

    1984-01-01

    A six-degree-of-freedom, ground based simulator study is conducted to evaluate the low-speed flight characteristics of four dissimilar cargo transport airplanes. These characteristics are compared with those of a large, present-day (reference) transport configuration similar to the Lockheed C-5A airplane. The four very large transport concepts evaluated consist of single-fuselage, twin-fuselage, triple-fuselage, and span-loader configurations. The primary piloting task is the approach and landing operation. The results of his study indicate that all four concepts evaluated have unsatisfactory longitudinal and lateral directional low speed flight characteristics and that considerable stability and control augmentation would be required to improve these characteristics (handling qualities) to a satisfactory level. Through the use of rate command/attitude hold augmentation in the pitch and roll axes, and the use of several turn-coordination features, the handling qualities of all four large transports simulated are improved appreciably.

  7. Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1977-01-01

    Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.

  8. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., 0 to 4095 ±0.125% Per Hour 4 1 sec UTC time preferred when available. Count increments each 4... practicable. 4, Heading (Primary flight crew reference) 0-360° and Discrete “true” or “mag” ±2° 1 0.5° When... error of ±5% 0.125 0.004g. 6. Pitch Attitude ±75° ±2° 1 or 0.25 for airplanes operated under §...

  9. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., 0 to 4095 ±0.125% Per Hour 4 1 sec UTC time preferred when available. Count increments each 4... practicable. 4, Heading (Primary flight crew reference) 0-360° and Discrete “true” or “mag” ±2° 1 0.5° When... error of ±5% 0.125 0.004g. 6. Pitch Attitude ±75° ±2° 1 or 0.25 for airplanes operated under §...

  10. 14 CFR Appendix E to Part 125 - Airplane Flight Recorder Specifications

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., 0 to 4095 ±0.125% Per Hour 4 1 sec UTC time preferred when available. Count increments each 4... practicable. 4, Heading (Primary flight crew reference) 0-360° and Discrete “true” or “mag” ±2° 1 0.5° When... error of ±5% 0.125 0.004g. 6. Pitch Attitude ±75° ±2° 1 or 0.25 for airplanes operated under §...

  11. Flight investigation of the effect of control centering springs on the apparent spiral stability of a personal-owner airplane

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Hunter, Paul A; Hewes, Donald E; Whitten, James B

    1952-01-01

    Report presents the results of a flight investigation conducted on a typical high-wing personal-owner airplane to determine the effect of control centering springs on apparent spiral stability. Apparent spiral stability is the term used to describe the spiraling tendencies of an airplane in uncontrolled flight as affected both by the true spiral stability of the perfectly trimmed airplane and by out-of-trim control settings. Centering springs were used in both the aileron and rudder control systems to provide both a positive centering action and a means of trimming the airplane. The springs were preloaded so that when they were moved through neutral they produced a nonlinear force gradient sufficient to overcome the friction in the control surface at the proper setting for trim. The ailerons and rudder control surfaces did not have trim tabs that could be adjusted in flight.

  12. Autonomous Operations Planner: A Flexible Platform for Research in Flight-Deck Support for Airborne Self-Separation

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; DePascale, Stephen M.; Wing, David J.

    2012-01-01

    The Autonomous Operations Planner (AOP), developed by NASA, is a flexible and powerful prototype of a flight-deck automation system to support self-separation of aircraft. The AOP incorporates a variety of algorithms to detect and resolve conflicts between the trajectories of its own aircraft and traffic aircraft while meeting route constraints such as required times of arrival and avoiding airspace hazards such as convective weather and restricted airspace. This integrated suite of algorithms provides flight crew support for strategic and tactical conflict resolutions and conflict-free trajectory planning while en route. The AOP has supported an extensive set of experiments covering various conditions and variations on the self-separation concept, yielding insight into the system s design and resolving various challenges encountered in the exploration of the concept. The design of the AOP will enable it to continue to evolve and support experimentation as the self-separation concept is refined.

  13. Flight Studies of the Horizontal-Tail Loads Experienced by a Fighter Airplane in Abrupt Maneuvers

    NASA Technical Reports Server (NTRS)

    1944-01-01

    Field measurements were made on a fighter airplane to determine the approximate magnitude of the horizontal tail loads in accelerated flight. In these flight measurements, pressures at a few points were used as an index of the tail loads by correlating these pressures with complete pressure-distribution data obtained in the NACA full-scale tunnel. In addition, strain gages and motion pictures of tail deflections were used to explore the general nature and order of magnitude of fluctuating tail loads in accelerated stalls.

  14. Determination of airplane model structure from flight data using splines and stepwise regression

    NASA Technical Reports Server (NTRS)

    Klein, V.; Batterson, J. G.

    1983-01-01

    A procedure for the determination of airplane model structure from flight data is presented. The model is based on a polynomial spline representation of the aerodynamic coefficients, and the procedure is implemented by use of a stepwise regression. First, a form of the aerodynamic force and moment coefficients amenable to the utilization of splines is developed. Next, expressions for the splines in one and two variables are introduced. Then the steps in the determination of an aerodynamic model structure and the estimation of parameters are discussed briefly. The focus is on the application to flight data of the techniques developed.

  15. Flight evaluation of an extended engine life mode on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Conners, Timothy R.

    1992-01-01

    An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.

  16. Flight-determined derivatives and dynamic characteristics of the CV-990 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, G. B.

    1972-01-01

    Flight-determined longitudinal and lateral-directional stability and control derivatives are presented for the CV-990 airplane for various combinations of Mach number, altitude, and flap setting throughout the flight envelope up to a Mach number of 0.87. Also presented are the dynamic characteristics of the aircraft calculated from the flight-obtained derivatives and the measured phugoid characteristics. The derivative characteristics were obtained from flight records of longitudinal and lateral-directional transient oscillation maneuvers by using a modified Newton-Raphson digital derivative determination technique. Generally the derivatives exhibited consistent variation with lift coefficient in the low-speed data and with Mach number and altitude in the high-speed data. Many also varied with flap deflection, notably spoiler effectiveness and directional stability.

  17. An in-flight investigation of ground effect on a forward-swept wing airplane

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Moulton, Bryan J.; Kresse, John

    1989-01-01

    A limited flight experiment was conducted to document the ground-effect characteristics of the X-29A research airplane. This vehicle has an aerodynamic platform which includes a forward-swept wing and close-coupled, variable incidence canard. The flight-test program obtained results for errors in the airdata measurement and for incremental normal force and pitching moment caused by ground effect. Correlations with wind-tunnel and computational analyses were made. The results are discussed with respect to the dynamic nature of the flight measurements, similar data from other configurations, and pilot comments. The ground-effect results are necessary to obtain an accurate interpretation of the vehicle's landing characteristics. The flight data can also be used in the development of many modern aircraft systems such as autoland and piloted simulations.

  18. Initial results from flight testing a large, remotely piloted airplane model. [flight tests of remotely controlled scale model of F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Holleman, E. C. (Compiler)

    1974-01-01

    The first four flights of a remotely piloted airplane model showed that a flight envelope can be expanded rapidly and that hazardous flight tests can be conducted safely with good results. The flights also showed that aerodynamic data can be obtained quickly and effectively over a wide range of flight conditions, clear and useful impressions of handling and controllability of configurations can be obtained, and present computer and electronic technology provide the capability to close flight control loops on the ground, thus providing a new method of design and flight test for advanced aircraft.

  19. Effects of airplane flexibility on wing strains in rough air at 35,000 feet as determined by a flight investigation of a large swept-wing airplane

    NASA Technical Reports Server (NTRS)

    Rhyne, Richard H

    1958-01-01

    A flight investigation was made on a large sweptback-wing bomber airplane and the results are compared with data previously obtained at low altitude (5,000 feet). The effects of wing flexibility on the wing strains were, on the average, about 20 percent larger at the higher altitude.

  20. Flight Test of the F/A-18 Active Aeroelastic Wing Airplane

    NASA Technical Reports Server (NTRS)

    Voracek, David

    2007-01-01

    A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned

  1. Plans: Poop Deck, Boat Deck, Housetop, Bridge Deck, Upper Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Plans: Poop Deck, Boat Deck, Housetop, Bridge Deck, Upper Bridge Deck, Navigating Bridge, Forecastle Deck, Upper Deck, Second Deck and Hold - Saugatuck, James River Reserve Fleet, Newport News, Newport News, VA

  2. Determination of the Profile Drag of an Airplane Wing in Flight at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Bicknell, Joseph

    1939-01-01

    Flight tests were made to determine the profile-drag coefficients of a portion of the original wing surface of an all-metal airplane and of a portion of the wing made aerodynamically smooth and more nearly fair than the original section. The wing section was approximately the NACA 2414.5. The tests were carried out over a range of airplane speeds giving a maximum Reynolds number of 15,000,000. Tests were also carried out to locate the point of transition from laminar to turbulent boundary layer and to determine the velocity distribution along the upper surface of the wing. The profile-drag coefficients of the original and of the smooth wing portions at a Reynolds number of 15,000,000 were 0.0102 and 0.0068, respectively; i.e., the surface irregularities on the original wing increased the profile-drag coefficient 50 percent above that of the smooth wing.

  3. The Pressure Distribution over the Wings and Tail Surfaces of a PW-9 Pursuit Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Rhode, Richard

    1931-01-01

    This report presents the results of an investigation to determine (1) the magnitude and distribution of aerodynamic loads over the wings and tail surfaces of a pursuit-type airplane in the maneuvers likely to impose critical loads on the various subassemblies of the airplane structure. (2) To study the phenomenon of center of pressure movement and normal force coefficient variation in accelerated flight, and (3) to measure the normal accelerations at the center of gravity, wing-tip, and tail, in order to determine the nature of the inertia forces acting simultaneously with the critical aerodynamic loads. The results obtained throw light on a number of important questions involving structural design. Some of the more interesting results are discussed in some detail, but in general the report is for the purpose of making this collection of airplane-load data obtained in flight available to those interested in airplane structures.

  4. 75 FR 38017 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-9-10 Series Airplanes, DC-9-30...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...This document publishes in the Federal Register an amendment adopting airworthiness directive (AD) 2009-15-16 that was sent previously to all known U.S. owners and operators of the McDonnell Douglas Corporation airplanes identified above by individual notices. This AD requires modifying the flight deck door. This AD is prompted by a report indicating that certain equipment of the flight deck......

  5. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-learning process; (ii) Teaching methods and procedures; and (iii) The instructor-student relationship. (d...; (iii) Data and motion limitations of simulation; and (iv) The minimum airplane simulator equipment... environmental and fault panels; (iii) Data and motion limitations of simulation; and (iv) The minimum...

  6. Flight Investigation of the Lift and Drag Characteristics of a Swept-Wing, Multijet, Transport-Type Airplane

    NASA Technical Reports Server (NTRS)

    Tambor, Ronald

    1960-01-01

    The lift and drag characteristics of a Boeing KC-135 airplane were determined during maneuvering flight over the Mach number range from 0.70 to 0.85 for the airplane in the clean configuration at an altitude of 26,000 feet. Data were also obtained over the speed range of 130 knots to 160 knots at 9,000 feet for various flap deflections with gear down.

  7. Pitch Controllability Based on Airplane Model without Short-Period Approximation—Flight Simulator Experiment—

    NASA Astrophysics Data System (ADS)

    Sato, Osamu; Kobayashi, Osamu

    Pitch controllability of an airplane is very important for longitudinal flying qualities, therefore, much research has been conducted. However, it has not been clarified why pitch handling qualities degrades in the low speed, e.g. take-off and landing flight phases. On this topic, this paper investigates the effect of several parameters of the short-period mode and phugoid mode using a flight simulator. The results show the following conclusions: The difference between the initial phase angles in two modal components in the pitch attitude response to elevator step input plays the most important role in the pitch handling qualities among modal parameters; and the difference of the two modal natural frequencies has small effect on the pitch controllability even when flight speed decreases.

  8. STS-56 MS1 Foale and MS2 Cockrell on aft flight deck of Discovery, OV-103

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Mission Specialist 1 (MS1) Michael Foale (left) and MS2 Kenneth D. Cockrell pose on aft flight deck of Discovery, Orbiter Vehicle (OV) 103, for this in-cabin electronic still camera (ESC) photograph. The two crewmembers are positioned in front of the onorbit station with a beam of sunlight shining through overhead window W8. The cable on the bottom right is part of the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES), connecting the HERCULES Attitude Processor (HAP) to the Inertial Measurement Unit (IMU). In-cabin shots with the camera are for test purposes only. HERCULES is a device that makes it simple for Shuttle crewmembers to take pictures of Earth as they merely point and shoot any interesting feature, whose latitude and longitude are automatically determined in real time. Digital file name is ESC01008.TGA.

  9. Preliminary flight test results of the F100 EMD engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    A flight evaluation of the F100 Engine Model Derivative (EMD) is conducted. The F100 EMD is an advanced version of the F100 engine that powers the F15 and F16 airplanes. The F100 EMD features a bigger fan, higher temperature turbine, a Digital Electronic Engine Control system (DEEC), and a newly designed 16 segment afterburner, all of which results in a 15 to 20 percent increase in sea level thrust. The flight evaluations consist of investigation of performance (thrust, fuel flow, and airflow) and operability (transient response and airstart) in the F-15 airplane. The performance of the F100 EMD is excellent. Aircraft acceleration time to Mach 2.0 is reduced by 23 percent with two F100 EMD engines. Several anomalies are discovered in the operability evaluations. A software change to the DEEC improved the throttle, and subsequent Cooper Harper ratings of 3 to 4 are obtained. In the extreme upper left hand corner of the flight enveloped, compressor stalls occurr when the throttle is retarded to idle power. These stalls are not predicted by altitude facility tests or stability for the compressor.

  10. Simulator evaluation of a flight-path-angle control system for a transport airplane with direct lift control

    NASA Technical Reports Server (NTRS)

    Kelley, W. W.

    1978-01-01

    A piloted simulator was used to evaluate the flight path angle control capabilities of a system that employs spoiler direct lift control. The system was designated the velocity vector control system and was compared with a baseline flight path angle control system which used elevator for control. The simulated airplane was a medium jet transport. Research pilots flew a manual instrument landing system glide slope tracking task and a variable flight path angle task in the landing configuration to obtain comparative performance data.

  11. An analysis of life expectancy of airplane wings in normal cruising flight

    NASA Technical Reports Server (NTRS)

    Putnam, Abbott A

    1945-01-01

    In order to provide a basis for judging the relative importance of wing failure by fatigue and by single intense gusts, an analysis of wing life for normal cruising flight was made based on data on the frequency of atmospheric gusts. The independent variables considered in the analysis included stress-concentration factor, stress-load relation, wing loading, design and cruising speeds, design gust velocity, and airplane size. Several methods for estimating fatigue life from gust frequencies are discussed. The procedure selected for the analysis is believed to be simple and reasonably accurate, though slightly conservative.

  12. Flight Investigation of the Effectiveness of an Automatic Aileron Trim Control Device for Personal Airplanes

    NASA Technical Reports Server (NTRS)

    Phillips, William H; Kuehnel, Helmut A; Whitten, James B

    1957-01-01

    A flight investigation to determine the effectiveness of an automatic aileron trim control device installed in a personal airplane to augment the apparent spiral stability has been conducted. The device utilizes a rate-gyro sensing element in order to switch an on-off type of control that operates the ailerons at a fixed rate through control centering springs. An analytical study using phase-plane and analog-computer methods has been carried out to determine a desirable method of operation for the automatic trim control.

  13. Determination of airplane model structure from flight data by using modified stepwise regression

    NASA Technical Reports Server (NTRS)

    Klein, V.; Batterson, J. G.; Murphy, P. C.

    1981-01-01

    The linear and stepwise regressions are briefly introduced, then the problem of determining airplane model structure is addressed. The MSR was constructed to force a linear model for the aerodynamic coefficient first, then add significant nonlinear terms and delete nonsignificant terms from the model. In addition to the statistical criteria in the stepwise regression, the prediction sum of squares (PRESS) criterion and the analysis of residuals were examined for the selection of an adequate model. The procedure is used in examples with simulated and real flight data. It is shown that the MSR performs better than the ordinary stepwise regression and that the technique can also be applied to the large amplitude maneuvers.

  14. Assessment of JVX Proprotor Performance Data in Hover and Airplane-Mode Flight Conditions

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2016-01-01

    A 0.656-scale V-22 proprotor, the Joint Vertical Experimental (JVX) rotor, was tested at the NASA Ames Research Center in both hover and airplane-mode (high-speed axial flow) flight conditions, up to an advance ratio of 0.562 (231 knots). This paper examines the two principal data sets generated by those tests, and includes investigations of hub spinner tares, torque/thrust measurement interactions, tunnel blockage effects, and other phenomena suspected of causing erroneous measurements or predictions. Uncertainties in hover and high-speed data are characterized. The results are reported here to provide guidance for future wind tunnel tests, data processing, and data analysis.

  15. A Cockpit Display Designed to Enable Limited Flight Deck Separation Responsibility

    NASA Technical Reports Server (NTRS)

    Johnson, Walter W.; Battiste, Vernol; Bochow, Sheila Holland

    2003-01-01

    Cockpit displays need to be substantially improved to serve the goals of situational awareness, conflict detection, and path replanning, in Free Flight. This paper describes the design of such an advanced cockpit display, along with an initial simulation based usability evaluation. Flight crews were particularly enthusiastic about color coding for relative altitude, dynamically pulsing predictors, and the use of 3-D flight plans for alerting and situational awareness.

  16. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This paper proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  17. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This presentation proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  18. Analysis of in-flight acoustic data for a twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Wilby, E. G.

    1988-01-01

    Acoustic measurements were made on the exterior and interior of a general aviation turboprop airplane during four flight tests. The test conditions were carefully controlled and repeated for each flight in order to determine data variability. For the first three flights the cabin was untreated and for the fourth flight the fuselage was treated with glass fiber batts. On the exterior, measured propeller harmonic sound pressure levels showed typical standard deviations of +1.4 dB, -2.3 dB, and turbulent boundary layer pressure levels, +1.2 dB, -1.6. Propeller harmonic levels in the cabin showed greater variability, with typical standard deviations of +2.0 dB, -4.2 dB. When interior sound pressure levels from different flights with different cabin treatments were used to evaluate insertion loss, the standard deviations were typically plus or minus 6.5 dB. This is due in part to the variability of the sound pressure level measurements, but probably is also influenced by changes in the model characteristics of the cabin. Recommendations are made for the planning and performance of future flight tests to measure interior noise of propeller-driven aircraft, either high-speed advanced turboprop or general aviation propellers.

  19. Flight Deck Surface Trajectory-based Operations (STBO): Results of Piloted Simulations and Implications for Concepts of Operation (ConOps)

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.

    2013-01-01

    The results offour piloted medium-fidelity simulations investigating flight deck surface trajectory-based operations (STBO) will be reviewed. In these flight deck STBO simulations, commercial transport pilots were given taxi clearances with time and/or speed components and required to taxi to the departing runway or an intermediate traffic intersection. Under a variety of concept of operations (ConOps) and flight deck information conditions, pilots' ability to taxi in compliance with the required time of arrival (RTA) at the designated airport location was measured. ConOps and flight deck information conditions explored included: Availability of taxi clearance speed and elapsed time information; Intermediate RTAs at intermediate time constraint points (e.g., intersection traffic flow points); STBO taxi clearances via ATC voice speed commands or datal ink; and, Availability of flight deck display algorithms to reduce STBO RTA error. Flight Deck Implications. Pilot RTA conformance for STBO clearances, in the form of ATC taxi clearances with associated speed requirements, was found to be relatively poor, unless the pilot is required to follow a precise speed and acceleration/deceleration profile. However, following such a precise speed profile results in inordinate head-down tracking of current ground speed, leading to potentially unsafe operations. Mitigating these results, and providing good taxi RTA performance without the associated safety issues, is a flight deck avionics or electronic flight bag (EFB) solution. Such a solution enables pilots to meet the taxi route RTA without moment-by-moment tracking of ground speed. An avionics or EFB "error-nulling" algorithm allows the pilot to view the STBO information when the pilot determines it is necessary and when workload alloys, thus enabling the pilot to spread his/her attention appropriately and strategically on aircraft separation airport navigation, and the many other flight deck tasks concurrently required

  20. Analysis of sonic boom measurements near shock wave extremities for flight near Mach 1.0 and for airplane accelerations

    NASA Technical Reports Server (NTRS)

    Haglund, G. T.; Kane, E. J.

    1974-01-01

    The analysis of the 14 low-altitude transonic flights showed that the prevailing meteorological consideration of the acoustic disturbances below the cutoff altitude during threshold Mach number flight has shown that a theoretical safe altitude appears to be valid over a wide range of meteorological conditions and provides a reasonable estimate of the airplane ground speed reduction to avoid sonic boom noise during threshold Mach number flight. Recent theoretical results for the acoustic pressure waves below the threshold Mach number caustic showed excellent agreement with observations near the caustic, but the predicted overpressure levels were significantly lower than those observed far from the caustic. The analysis of caustics produced by inadvertent low-magnitude accelerations during flight at Mach numbers slightly greater than the threshold Mach number showed that folds and associated caustics were produced by slight changes in the airplane ground speed. These caustic intensities ranged from 1 to 3 time the nominal steady, level flight intensity.

  1. Subjective response to combined noise and vibration during flight of a large twin-jet airplane

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.

    1976-01-01

    A NASA twin-jet airplane was used to obtain controlled noise and vibration environments during flight while obtaining subjective responses from 13 passenger-subjects (6 females and 7 males). Subjective ratings of overall comfort, comfort when considering only vibration, and comfort when considering only noise were obtained during times of different vibration and noise environments. Passenger-subjects were able to distinguish and rate noise better than vibration. In addition, there was a statistically significant difference in ratings of ride comfort due to both sex type and flight experience. Males rated flying discomfort much more severely than females when rating the overall ride and the ride when considering only the noise environment. Experienced passengers also rated the overall ride to be more uncomfortable than inexperienced passengers.

  2. Flight and analytical investigations of a structural mode excitation system on the YF-12A airplane

    NASA Technical Reports Server (NTRS)

    Goforth, E. A.; Murphy, R. C.; Beranek, J. A.; Davis, R. A.

    1987-01-01

    A structural excitation system, using an oscillating canard vane to generate force, was mounted on the forebody of the YF-12A airplane. The canard vane was used to excite the airframe structural modes during flight in the subsonic, transonic, and supersonic regimes. Structural modal responses generated by the canard vane forces were measured at the flight test conditions by airframe-mounted accelerometers. Correlations of analytical and experimental aeroelastic results were made. Doublet lattice, steady state double lattice with uniform lag, Mach box, and piston theory all produced acceptable analytical aerodynamic results within the restrictions that apply to each. In general, the aerodynamic theory methods, carefully applied, were found to predict the dynamic behavior of the YF-12A aircraft adequately.

  3. The Direct Measurement of Engine Power on an Airplane in Flight with a Hub Type Dynamometer

    NASA Technical Reports Server (NTRS)

    Gove, W D; Green, M W

    1927-01-01

    This report describes tests made to obtain direct measurements of engine power in flight. Tests were made with a Bendemann hub dynamometer installed on a modified DH-4 Airplane, Liberty 12 Engine, to determine the suitability of this apparatus. This dynamometer unit, which was designed specially for use with a liberty 12 engine, is a special propeller hub in which is incorporated a system of pistons and cylinders interposed between the propeller and the engine crankshaft. The torque and thrust forces are balanced by fluid pressures, which are recorded by instruments in the cockpit. These tests have shown the suitability of this type of hub dynamometer for measurement of power in flight and for the determination of the torque and power coefficients of the propeller. (author)

  4. Boat Deck, Cabin Deck, Bridge Deck, Flat House Top, Stage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Boat Deck, Cabin Deck, Bridge Deck, Flat House Top, Stage Top, Mast House Top, Upper Deck, Flat House Tops, Forecastle Deck, Main Deck - American Racer, Suisun Bay Reserve Fleet, Benicia, Solano County, CA

  5. Have we overlooked the pilot's role in an automated flight deck

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Person, L. H.; Morello, S. A.

    1981-01-01

    Having adopted a philosophy of presenting situation information rather than command type as evidenced in flight directors and of keeping the pilot in a decision-making role, a series of simulation and flight experiments has occurred over a number of years as part of the Langley Terminal Configured Vehicle program. This paper traces the development, refinement, and integration of electronic pictorial displays, and a computer augmented velocity vector control mode. Some benefits and performances derived within the basic philosophy and information usage are brought forth in the discussion as results from the various simulator and flight evaluations are presented.

  6. Performance of light sources and radiation sensors under low gravity realized by parabolic airplane flights

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro

    A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.

  7. Flight test evaluation of drag effects on surface coatings on the NASA Boeing 737 TCV airplane

    NASA Technical Reports Server (NTRS)

    George-Falvy, D.; Sikavi, D. A.

    1981-01-01

    A flight test program was conducted in which the effects of various surface coatings on aerodynamic drag were investigated; results of this program are described in this report. The tests were conducted at NASA-Langley Research Center on the terminal configured vehicle (TCV) Boeing 737 research airplane. The Boeing Company, as contractor with NASA under the Energy Efficient Transport (EET) program, planned and evaluated the experiment. The NASA-TCV Program Office coordinated the experiment and performed the flight tests. The principal objective of the test was to evaluate the drag reduction potential of an elastomeric polyurethane surface coating, CAAPCO B-274, which also has been considered for application on transport airplanes to protect leading edges from erosion. The smooth surface achievable with this type of coating held some promise of reducing the skin friction drag as compared to conventional production type aircraft surfaces, which are usually anodized bare metal or coated with corrosion protective paint. Requirements for high precision measurements were the principal considerations in the experiment.

  8. Engine Installation Effects of Four Civil Transport Airplanes: Wallops Flight Facility Study

    NASA Technical Reports Server (NTRS)

    Fleming, Gregg G.; Senzig, David A.; McCurdy, David A.; Roof, Christopher J.; Rapoza, Amanda S.

    2003-01-01

    The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), the Environmental Measurement and Modeling Division of the United States Department of Transportation s John A. Volpe National Transportation Systems Center (Volpe), and several other organizations (see Appendix A for a complete list of participating organizations and individuals) conducted a noise measurement study at NASA s Wallops Flight Facility (Wallops) near Chincoteague, Virginia during September 2000. This test was intended to determine engine installation effects on four civil transport airplanes: a Boeing 767-400, a McDonnell-Douglas DC9, a Dassault Falcon 2000, and a Beechcraft King Air. Wallops was chosen for this study because of the relatively low ambient noise of the site and the degree of control over airplane operating procedures enabled by operating over a runway closed to other uses during the test period. Measurements were conducted using a twenty microphone U-shaped array oriented perpendicular to the flight path; microphones were mounted such that ground effects were minimized and low elevation angles were observed.

  9. Flight test of a propulsion controlled aircraft system on the NASA F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.

    1995-01-01

    Flight tests of the propulsion controlled aircraft (PCA) system on the NASA F-15 airplane evolved as a result of a long series of simulation and flight tests. Initially, the simulation results were very optimistic. Early flight tests showed that manual throttles-only control was much more difficult than the simulation, and a flight investigation was flown to acquire data to resolve this discrepancy. The PCA system designed and developed by MDA evolved as these discrepancies were found and resolved, requiring redesign of the PCA software and modification of the flight test plan. Small throttle step inputs were flown to provide data for analysis, simulation update, and control logic modification. The PCA flight tests quickly revealed less than desired performance, but the extensive flexibility built into the flight PCA software allowed rapid evaluation of alternate gains, filters, and control logic, and within 2 weeks, the PCA system was functioning well. The initial objective of achieving adequate control for up-and-away flying and approaches was satisfied, and the option to continue to actual landings was achieved. After the PCA landings were accomplished, other PCA features were added, and additional maneuvers beyond those originally planned were flown. The PCA system was used to recover from extreme upset conditions, descend, and make approaches to landing. A heading mode was added, and a single engine plus rudder PCA mode was also added and flown. The PCA flight envelope was expanded far beyond that originally designed for. Guest pilots from the USAF, USN, NASA, and the contractor also flew the PCA system and were favorably impressed.

  10. A flight evaluation of a vectored thrust jet V/STOL airplane during simulated instrument approaches using the Kestrel (XV-6A) airplane

    NASA Technical Reports Server (NTRS)

    Morello, S. A.; Person, L. H., Jr.; Shanks, R. E.; Culpepper, R. G.

    1972-01-01

    An in-flight investigation was made to determine the terminal-area operating problems of a vectored-thrust-jet vertical and short take-off landing (V/STOL) airplane under simulated instrument conditions. Handling-qualities data pertinent to the terminal-area approach and landing task are presented in the text, and additional documentation is included in the appendixes. Problems dealing with the cruise letdown to localizer capture, conversion to powered-lift flight, precise control of the glide slope, approach velocity or deceleration schedule, hover, and landing are discussed.

  11. Usability Evaluation Survey for Identifying Design Issues in Civil Flight Deck

    NASA Astrophysics Data System (ADS)

    Ozve Aminian, Negin; Izzuddin Romli, Fairuz; Wiriadidjaja, Surjatin

    2016-02-01

    Ergonomics assessment for cockpit in civil aircraft is important as the pilots spend most of their time during flight on the seating posture imposed by its design. The improper seat design can cause discomfort and pain, which will disturb the pilot's concentration in flight. From a conducted survey, it is found that there are some issues regarding the current cockpit design. This study aims to highlight potential mismatches between the current cockpit design and the ergonomic design recommendations for anthropometric dimensions and seat design, which could be the roots of the problems faced by the pilots in the cockpit.

  12. 78 FR 63902 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Normal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as at http... of a new family of jet airplanes designed for corporate flight, fractional, charter, and private... medium bypass ratio turbofan engines mounted on aft fuselage pylons. Each engine produces approximately...

  13. 78 FR 11562 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: High Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Embraer S.A. Model EMB-550 airplanes was published in the Federal Register on November 20, 2012 (77 FR... electronic flight control system which contains fly-by-wire control laws, including envelope protections, for... controls consist of hydraulically powered fly-by-wire elevators, aileron and rudder, controlled by...

  14. Flight performance of the TCV B-737 airplane at Jorge Newberry Airport, Buenos Aires, Argentina using TRSB/MLS guidance

    NASA Technical Reports Server (NTRS)

    White, W. F.; Clark, L.

    1980-01-01

    The flight performance of the Terminal Configured Vehicle airplane is summarized. Demonstration automatic approaches and landings utilizing time reference scanning beam microwave landing system (TRSB/MLS) guidance are presented. The TRSB/MLS was shown to provide the terminal area guidance necessary for flying curved automatic approaches with final legs as short as 2 km.

  15. 78 FR 2912 - Prohibition on Personal Use of Electronic Devices on the Flight Deck

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478..., extends the sterile cockpit provisions to other crewmembers, such as flight attendants. \\1\\ 46 FR 5500... contribute to a loss of situational awareness.\\4\\ \\4\\ See 76 FR 6088 (Feb. 3, 2011). C....

  16. Revolution in airplane construction? Grob G110: The first modern fiber glass composition airplane shortly before its maiden flight

    NASA Technical Reports Server (NTRS)

    Dorpinghaus, R.

    1982-01-01

    A single engine two passenger airplane, constructed completely from fiber reinforced plastic materials is introduced. The cockpit, controls, wing profile, and landing gear are discussed. Development of the airframe is also presented.

  17. Launch, Low-Speed, and Landing Characteristics Determined from the First Flight of the North American X-15 Research Airplane

    NASA Technical Reports Server (NTRS)

    Finch, Thomas W.; Matranga, Gene J.

    1959-01-01

    The first flight of the North American X-15 research airplane was made on June 8, 1959. This was accomplished after completion of a series of captive flights with the X-15 attached to the B-52 carrier airplane to demonstrate the aerodynamic and systems compatibility of the X-15//B-52 combination and the X-15 subsystem operation. This flight was planned as a glide flight so that the pilot need not be concerned with the propulsion system. Discussions of the launch, low-speed maneuvering, and landing characteristics are presented, and the results are compared with predictions from preflight studies. The launch characteristics were generally satisfactory, and the X-15 vertical tail adequately cleared the B-52 wing cutout. The actual landing pattern and landing characteristics compared favorably with predictions, and the recommended landing technique of lowering the flaps and landing gear at a low altitude appears to be a satisfactory method of landing the X-15 airplane. There was a quantitative correlation between flight-measured and predicted lift-drag-ratio characteristics in the clean configuration and a qualitative correlation in the landing configuration. A longitudinal-controllability problem, which became severe in the landing configuration, was evident throughout the flight and, apparently, was aggravated by the sensitivity of the side-located control stick. In the low-to-moderate angle-of-attack range covered, the longitudinal and directional stability were indicated to be adequate.

  18. Flight measurements of buffet characteristics of the F-104 airplane for selected wing-flap deflections

    NASA Technical Reports Server (NTRS)

    Friend, E. L.; Sefic, W. J.

    1972-01-01

    A flight program was conducted on the F-104 airplane to investigate the effects of moderate deflections of wing leading- and trailing-edge flaps on the buffet characteristics at subsonic and transonic Mach numbers. Selected deflections of the wing leading and trailing-edge flaps, individually and in combination, were used to assess buffet onset, intensity, and frequency; lift curves; and wing-rock characteristics for each configuration. Increased deflection of the trailing-edge flap delayed the buffet onset and buffet intensity rise to a significantly higher airplane normal-force coefficient. Deflection of the leading-edge flap produced some delay in buffet onset and the resulting intensity rise at low subsonic speeds. Increased deflection of the trailing-edge flap provided appreciable lift increments in the angle-of-attack range covered, whereas the leading-edge flap provided lift increments only at high angles-of-attack. The pilots appreciated the increased maneuvering envelope provided by the flaps because of the improved turn capability.

  19. Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Krishnamurthy, Karthik

    2004-01-01

    NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.

  20. Astronauts McMonagle and Brown on flight deck mockup during training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Astronauts Donald R. McMonagle, STS-66 mission commander, left, and Curtis L. Brown, STS-66 pilot, man the commander's and pilot's stations, respectively, during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  1. Simulations of Continuous Descent Operations with Arrival-management Automation and Mixed Flight-deck Interval Management Equipage

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Kupfer, Michael; Martin, Lynne Hazel; Prevot, Thomas

    2013-01-01

    Air traffic management simulations conducted in the Airspace Operations Laboratory at NASA Ames Research Center have addressed the integration of trajectory-based arrival-management automation, controller tools, and Flight-Deck Interval Management avionics to enable Continuous Descent Operations (CDOs) during periods of sustained high traffic demand. The simulations are devoted to maturing the integrated system for field demonstration, and refining the controller tools, clearance phraseology, and procedures specified in the associated concept of operations. The results indicate a variety of factors impact the concept's safety and viability from a controller's perspective, including en-route preconditioning of arrival flows, useable clearance phraseology, and the characteristics of airspace, routes, and traffic-management methods in use at a particular site. Clear understanding of automation behavior and required shifts in roles and responsibilities is important for controller acceptance and realizing potential benefits. This paper discusses the simulations, drawing parallels with results from related European efforts. The most recent study found en-route controllers can effectively precondition arrival flows, which significantly improved route conformance during CDOs. Controllers found the tools acceptable, in line with previous studies.

  2. Flight determined lift and drag characteristics of an F-8 airplane modified with a supercritical wing with comparison to wind-tunnel results

    NASA Technical Reports Server (NTRS)

    Pyle, J. S.; Steers, L. L.

    1975-01-01

    Flight measurements obtained with a TF-8A airplane modified with a supercritical wing are presented for altitudes from 7.6 kilometers (25,000 feet) to 13.7 kilometers (45,000 feet), Mach numbers from 0.6 to 1.2, and Reynolds numbers from 0.8 x 10 to the 7th power to 2.3 x 10 to the 7th power. Flight results for the airplane with and without area-rule fuselage fairings are compared. The techniques used to determine the lift and drag characteristics of the airplane are discussed. Flight data are compared with wind-tunnel model results, where applicable.

  3. Flight Tests of an Airplane Showing Dependence of the Maximum Lift Coefficient on the Test Conditions

    NASA Technical Reports Server (NTRS)

    Soule, H A; Hootman, James A

    1937-01-01

    Data are presented to show the extent to which the maximum lift coefficient and consequently the minimum speed of an airplane, determined by flight tests, may vary with test conditions. The data show that cl-max may vary as much as 14 percent, depending on the altitude and wing loading at which the tests were made, the position or motion of the propeller, and the rate at which the angle of attack is changing when the maximum lift coefficient is obtained. The variation of the maximum lift coefficient with these factors, which are under the control of the test engineer, shows the need of standardizing the test procedure. A further variation is shown with wing conditions as affected by weathering and vibration, factors that cannot be completely controlled.

  4. Flight-determined stability and control coefficients of the F-111A airplane

    NASA Technical Reports Server (NTRS)

    Iliff, K. W.; Maine, R. E.; Steers, S. T.

    1978-01-01

    A complete set of linear stability and control derivatives of the F-111A airplane was determined with a modified maximum likelihood estimator. The derivatives were determined at wing sweep angles of 26 deg, 35 deg, and 58 deg. The flight conditions included a Mach number range of 0.63 to 1.43 and an angle of attack range of 2 deg to 15 deg. Maneuvers were performed at normal accelerations from 0.9g to 3.8g during steady turns to assess the aeroelastic effects on the stability and control characteristics. The derivatives generally showed consistent trends and reasonable agreement with the wind tunnel estimates. Significant Mach effects were observed for Mach numbers as low as 0.82. No large effects attributable to aeroelasticity were noted.

  5. Review of Flight Tests of NACA C and D Cowlings on the XP-42 Airplane

    NASA Technical Reports Server (NTRS)

    Johnston, J Ford

    1943-01-01

    Results of flight tests of the performance and cooling characteristics of three NACA D cowlings and of a conventional NACA D cowling on the XP-42 airplane are summarized and compared. The D cowling is, in general, characterized by the use of an annular inlet and diffuser section for the engine-cooling air. The D cowlings tested were a long-nose high-inlet-velocity cowling, a short-nose high-inlet-velocity cowling, and a short-nose low inlet-velocity cowling. The use of wide-chord propeller cuffs or an axial-flow fan with the D cowlings increased the cooling pressure recoveries in the climb condition at the expense of some of the improvement in speed.

  6. In-flight acoustic measurements on a light twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Mcdaniel, C. D.; Wilby, E. G.

    1985-01-01

    Four series of flight tests were conducted to measure sound pressure levels inside and outside the cabin of a twin-engined turboprop airplane. Particular emphasis was placed on harmonics of the propeller blade passage frequency. The cabin was unfurnished for the first three flights, when the main objective was to investigate the repeatability of the data. For the fourth flight, the cabin was treated with fiberglass batts. Typically, the exterior sound pressure levels were found to vary 3 to 5 dB for a given harmonic, but variations as high as 8 dB were observed. The variability of harmonic levels within the cabin was slightly higher but depended on control of the relative phase between the propellers; when phase was not controlled the average variability was about 10 dB. Noise reductions provided by the fuselage structure were in the range of 20 to 40 dB, when an exterior microphone in the plane of rotation of the propeller was used as reference.

  7. Ground-based and in-flight simulator studies of flight characteristics of a twin-fuselage passenger transport airplane during approach and landing

    NASA Technical Reports Server (NTRS)

    Grantham, W. D.; Smith, P. M.; Neely, W. R., Jr.; Deal, P. L.; Yenni, K. R.

    1985-01-01

    Six-degree-of-freedom ground-based and in-flight simulator studies were conducted to evaluate the low-speed flight characteristics of a twin-fuselage passenger transport airplane and to compare these characteristics with those of a large, single-fuselage (reference) transport configuration similar to the Lockheed C-5A airplane. The primary piloting task was the approach and landing task. The results of this study indicated that the twin-fuselage transport concept had acceptable but unsatisfactory longitudinal and lateral-directional low-speed flight characteristics, and that stability and control augmentation would be required in order to improve the handling qualities. Through the use of rate-command/attitude-hold augmentation in the pitch and roll axes, and the use of several turn coordination features, the handling qualities of the simulated transport were improved appreciably. The in-flight test results showed excellent agreement with those of the six-degree-of-freedom ground-based simulator handling qualities tests. As a result of the in-flight simulation study, a roll-control-induced normal-acceleration criterion was developed. The handling qualities of the augmented twin-fuselage passenger transport airplane exhibited an improvement over the handling characteristics of the reference (single-fuselage) transport.

  8. Stall Characteristics Obtained from Flight 10 of Northrop X-4 No. 2 Airplane (USAF No. 46-677)

    NASA Technical Reports Server (NTRS)

    Sadoff, Melvin; Sisk, Thomas R

    1950-01-01

    NACA instrumentation has been installed ii the X-J4 airplanes to obtain stability and control data during the acceptance tests conducted by the Northrop Aircraft Corporation. This report presents data obtained on the stalling characteristics of the airplane in the clean and gear- down configurations. The center of gravity was located at approximately 18 percent of the mean aerodynamic chord during the tests. The results indicated that the airplane was not completely stalled when stall was gradually approached during nominally U accelerated flight but that it was completely stalled during a more abruptly approached stall in accelerated flight. The stall in accelerated flight was relatively mild, and this was attributed to the nature of the variation of lift with angle of attack for the 001-614 airfoil section, the plan form of the wing, and to the fact that the initial sideslip at the stall produced (as shown by wind-tunnel tests of a model of the airplane) a more symmetrical stall pattern.

  9. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. This presentation provides highlights of a technical paper that outlines this ultimate goal, including plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  10. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a NASA F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this paper provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  11. Conceptual Design for a Dual-Bell Rocket Nozzle System Using a NASA F-15 Airplane as the Flight Testbed

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ruf, Joseph H.; Bui, Trong T.; Martinez, Martel; St. John, Clinton W.

    2014-01-01

    The dual-bell rocket nozzle was first proposed in 1949, offering a potential improvement in rocket nozzle performance over the conventional-bell nozzle. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. In 2013 a proposal was constructed that offered a National Aeronautics and Space Administration (NASA) F-15 airplane as the flight testbed, with the plan to operate a dual-bell rocket nozzle during captive-carried flight. If implemented, this capability will permit nozzle operation into an external flow field similar to that of a launch vehicle, and facilitate an improved understanding of dual-bell nozzle plume sensitivity to external flow-field effects. More importantly, this flight testbed can be utilized to help quantify the performance benefit with the dual-bell nozzle, as well as to advance its technology readiness level. Toward this ultimate goal, this report provides plans for future flights to quantify the external flow field of the airplane near the nozzle experiment, as well as details on the conceptual design for the dual-bell nozzle cold-flow propellant feed system integration within the NASA F-15 Propulsion Flight Test Fixture. The current study shows that this concept of flight research is feasible, and could result in valuable flight data for the dual-bell nozzle.

  12. 77 FR 41931 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ...We are revising an earlier proposed airworthiness directive (AD) for certain The Boeing Company Model 737-600, -700, -700C, -800, and -900 series airplanes. That NPRM proposed to require inspecting the orientation of both sides of the coil cord connector keyways of the number 2 windows on the flight deck; re-clocking the connector keyways to 12 o'clock, if necessary; and replacing the coil......

  13. 77 FR 41045 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ...We are adopting a new airworthiness directive (AD) for certain The Boeing Company Model 777-200, -200LR, -300, -300ER, and 777F series airplanes. This AD was prompted by a report indicating that a fire originated near the first officer's area, which caused extensive damage to the flight deck. This AD requires replacing the low-pressure oxygen hoses with non-conductive low-pressure oxygen hoses......

  14. 78 FR 63130 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ...We propose to adopt a new airworthiness directive (AD) for certain The Boeing Company Model 777F series airplanes. This proposed AD was prompted by a report of a fire that originated near the first officer's seat and caused extensive damage to the flight deck. This proposed AD would require replacing the low-pressure oxygen hoses with non-conductive low-pressure oxygen hoses in the stowage box......

  15. 77 FR 6518 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ...We propose to adopt a new airworthiness directive (AD) for certain The Boeing Company Model 777-200, -200LR, -300, -300ER, and 777F series airplanes. This proposed AD was prompted by a report indicating that a fire originated near the first officer's area, which caused extensive damage to the flight deck. This proposed AD would require replacing the low-pressure oxygen hoses with......

  16. Voice measures of workload in the advanced flight deck: Additional studies

    NASA Technical Reports Server (NTRS)

    Schneider, Sid J.; Alpert, Murray

    1989-01-01

    These studies investigated acoustical analysis of the voice as a measure of workload in individual operators. In the first study, voice samples were recorded from a single operator during high, medium, and low workload conditions. Mean amplitude, frequency, syllable duration, and emphasis all tended to increase as workload increased. In the second study, NASA test pilots performed a laboratory task, and used a flight simulator under differing work conditions. For two of the pilots, high workload in the simulator brought about greater amplitude, peak duration, and stress. In both the laboratory and simulator tasks, high workload tended to be associated with more statistically significant drop-offs in the acoustical measures than were lower workload levels. There was a great deal of intra-subject variability in the acoustical measures. The results suggested that in individual operators, increased workload might be revealed by high initial amplitude and frequency, followed by rapid drop-offs over time.

  17. Development of an air ground data exchange concept: Flight deck perspective

    NASA Technical Reports Server (NTRS)

    Flathers, G. W., II

    1987-01-01

    The planned modernization of the U.S. National Airspace System (NAS) includes the development and use of a digital data link as a means to exchange information between aircraft and ground-based facilities. This report presents an operationally-oriented concept on how data link could be used for applications related directly to air traffic control. The specific goal is to establish the role that data link could play in the air-ground communications. Due regard is given to the unique characteristics of data link and voice communications, current principles of air traffic control, operational procedures, human factors/man-machine interfaces, and the integration of data link with other air and ground systems. The resulting concept is illustrated in the form of a paper-and-pencil simulation in which data link and voice communications during the course of a hypothetical flight are described.

  18. Flight Deck Data Link Displays: An Evaluation of Textual and Graphical Implementations

    NASA Technical Reports Server (NTRS)

    McGann, Alison; Lozito, Sandy; Corker, Kevin; Ashford, Rose (Technical Monitor)

    2001-01-01

    In Experiment 1, 16 pilots participated in a part-task simulation study that evaluated pilot data link communication for short and long message types and for two textual formats. No differences were found between the two textual formats when evaluating data link transaction times and pilot performance on a secondary task. Pilots initiated flight changes more quickly with the T-Scan format, where location of clearance information roughly corresponded to the cockpit instrument layout. Longer messages were less problematic than two short messages sent in close succession as pilots required more verbal clarification for closely spaced messages. 24 pilots participated in a second experiment that evaluated pilot communication performance for textual data link, two implementations of graphical data link, and a combined graphical and textual information modality. The two modalities incorporating text resulted in significantly faster transaction times and better performance on the secondary task than the two graphical-only implementations. The interval between messages was also more systematically varied in Experiment 2, and a short interval between messages significantly increased the access time for the second message. This delay in access was long enough to increase significantly the total transaction time of the second message, and this effect was exaggerated for the graphical-only implementations. Time to view the message before acknowledgement and time to initiate flight changes were not affected by the interval manipulation, This suggests that pilots adopt a sequential message handling strategy, and presenting messages closely in succession may present operational problems in a data link Air Traffic Control (ATC) environment. The results of this study also indicate that the perceived importance of message content is currently a crucial element in pilot data link communication.

  19. Flight evaluation of the effect of winglets on performance and handling qualities of a single-engine general aviation airplane

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Vandam, C. P.; Brown, P. W.; Deal, P. L.

    1980-01-01

    A flight evaluation was conducted to determine the effects of winglets on the performance and handling qualities of a light, single-engine general aviation airplane. The performance measurements were made with a pace airplane to provide calibrated airspeeds; uncalibrated panel instruments in the test airplane were used to provide additional quantitative performance data. These tests were conducted with winglets on and off during the same day to measure relative performance effects. Handling qualities were evaluated by means of pilot comments. Winglets increased cruise speed 8 knots (5.6 percent) at 3962 m (13,000 ft) density altitude and 51 percent maximum continuous power setting. Maximum speed at 3962 m was virtually unchanged. Rate of climb increased approximately 6 percent, or 0.25 m/sec (50 ft/min), at 1524 m (5000 ft). Stall speed was virtually unchanged. Handling qualities were favorably affected.

  20. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  1. Comparison of Wind-Tunnel and Flight Measurements of Stability and Control Characteristics of a Douglas A-26 Airplane

    NASA Technical Reports Server (NTRS)

    Kayten, Gerald G; Koven, William

    1945-01-01

    Stability and control characteristics determined from tests in the Langley 19-foot pressure tunnel of a 0.2375-scale model of the Douglas XA-26 airplane are compared with those measured in flight tests of a Douglas A-26 airplane. Agreement regarding static longitudinal stability as indicated by the elevator-fixed neutral points and by the variation of elevator deflection in both straight and turning flight was found to be good except at speeds approaching the stall. At these low speeds the airplane possessed noticeably improved stability, which was attributed to pronounced stalling at the root of the production wing. The pronounced root stalling did not occur on the smooth, well-faired model wing. Elevator tab effectiveness determined from model tests agreed well with flight-test tab effectiveness, but control-force variations with speed and acceleration were not in good agreement. The use of model hinge-moment data obtained at zero sideslip appeared to be satisfactory for the determination of aileron forces in sideslip. Fairly good correlation in aileron effectiveness and control forces was obtained; fabric distortion may have been responsible to some extent for higher flight values of aileron force at high speeds. Estimation of sideslip developed in an abrupt aileron roll was fair, but determination of the rudder deflection required to maintain zero sideslip in a rapid aileron roll was not entirely satisfactory.

  2. Wind-tunnel investigation of the flight characteristics of a canard general-aviation airplane configuration

    NASA Technical Reports Server (NTRS)

    Satran, D. R.

    1986-01-01

    A 0.36-scale model of a canard general-aviation airplane with a single pusher propeller and winglets was tested in the Langley 30- by 60-Foot Wind Tunnel to determine the static and dynamic stability and control and free-flight behavior of the configuration. Model variables made testing of the model possible with the canard in high and low positions, with increased winglet area, with outboard wing leading-edge droop, with fuselage-mounted vertical fin and rudder, with enlarged rudders, with dual deflecting rudders, and with ailerons mounted closer to the wing tips. The basic model exhibited generally good longitudinal and lateral stability and control characteristics. The removal of an outboard leading-edge droop degraded roll damping and produced lightly damped roll (wing rock) oscillations. In general, the model exhibited very stable dihedral effect but weak directional stability. Rudder and aileron control power were sufficiently adequate for control of most flight conditions, but appeared to be relatively weak for maneuvering compared with those of more conventionally configured models.

  3. Usability Evaluation of a Flight-Deck Airflow Hazard Visualization System

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2004-01-01

    Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground, such as vortices, downdrafts, low level wind shear, microbursts, or turbulence from surrounding vegetation or structures near the landing site. These hazards can be dangerous even to airliners; there have been hundreds of fatalities in the United States in the last two decades attributable to airliner encounters with microbursts and low level wind shear alone. However, helicopters are especially vulnerable to airflow hazards because they often have to operate in confined spaces and under operationally stressful conditions (such as emergency search and rescue, military or shipboard operations). Providing helicopter pilots with an augmented-reality display visualizing local airflow hazards may be of significant benefit. However, the form such a visualization might take, and whether it does indeed provide a benefit, had not been studied before our experiment. We recruited experienced military and civilian helicopter pilots for a preliminary usability study to evaluate a prototype augmented-reality visualization system. The study had two goals: first, to assess the efficacy of presenting airflow data in flight; and second, to obtain expert feedback on sample presentations of hazard indicators to refine our design choices. The study addressed the optimal way to provide critical safety information to the pilot, what level of detail to provide, whether to display specific aerodynamic causes or potential effects only, and how to safely and effectively shift the locus of attention during a high-workload task. Three-dimensional visual cues, with varying shape, color, transparency, texture, depth cueing, and use of motion, depicting regions of hazardous airflow, were developed and presented to the pilots. The study results indicated that such a visualization system could be of significant value in improving safety during critical takeoff and landing operations, and also

  4. Presentation of flight control design and handling quality commonality by separate surface stability augmentation for the family of commuter airplanes

    NASA Technical Reports Server (NTRS)

    Hensley, Douglas; Creighton, Thomas; Haddad, Raphael; Hendrich, Louis; Morgan, Louise; Russell, Mark; Swift, Gerald

    1987-01-01

    The methodology and results for a flight control design and implementation for common handling qualities by Separate Surface Stability Augmentation (SSSA) for the family of commuter airplanes are contained. The open and closed loop dynamics and the design results of augmenting for common handling qualities are presented. The physical and technology requirements are presented for implementing the SSSA system. The conclusion of this report and recommendations for changes or improvement are discussed.

  5. Pressure distribution on wing ribs of the VE-7 and TS airplanes in flight Part II : pull-ups

    NASA Technical Reports Server (NTRS)

    Rhode, R V

    1928-01-01

    This paper is the second of a series of notes, each of which presents the complete results of pressure distribution tests made at Langley Field by the National Advisory Committee for Aeronautics, on wing and tail ribs of the VE-7 and TS airplanes for a particular maneuver of flight. The results for pull-ups are presented in the form of curves which show the variation of pressure distribution, total loads, normal acceleration and center of pressure with respect to time.

  6. Wind-tunnel free-flight investigation of a 0.15-scale model of the F-106B airplane with vortex flaps

    NASA Technical Reports Server (NTRS)

    Yip, Long P.

    1987-01-01

    An investigation to determine the effects of vortex flaps on the flight dynamic characteristics of the F-106B in the area of low-speed, high-angle-of-attack flight was undertaken on a 0.15-scale model of the airplane in the Langley 30- by 60-Foot Tunnel. Static force tests, dynamic forced-oscillation tests, as well as free-flight tests were conducted to obtain a data base on the flight characteristics of the F-106B airplane with vortex flaps. Vortex flap configurations tested included a full-span gothic flap, a full-span constant-chord flap, and a part-span gothic flap.

  7. Comparison of Wind-Tunnel and Flight Measurements of Stability and Control Characteristics of a Douglas A-26 Airplane

    NASA Technical Reports Server (NTRS)

    Koven, William; Kayten, Gerald G.

    1946-01-01

    Tests in Langley pressure tunnel of model XA-26 bomber were compared with those of A-26B (twin-engine attack bomber) and showed that static longitudinal stability, indicated by elevator-fixed neutral points, and variation of elevator deflection in straight and turning flight were good. Airplane possessed improved stability at low speeds which was attributed to pronounced stalling at root of production wing. At rudder-force reversal at speeds higher than those in flight tests, agreement in rudder-fixed and rudder-free static directional stability was good. Hinge moment obtained at zero sideslip was satisfactory for determining aileron forces in sideslip.

  8. Longitudinal Aerodynamic Modeling of the Adaptive Compliant Trailing Edge Flaps on a GIII Airplane and Comparisons to Flight Data

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.; Bui, Trong T.; Garcia, Christian A.; Cumming, Stephen B.

    2016-01-01

    A pair of compliant trailing edge flaps was flown on a modified GIII airplane. Prior to flight test, multiple analysis tools of various levels of complexity were used to predict the aerodynamic effects of the flaps. Vortex lattice, full potential flow, and full Navier-Stokes aerodynamic analysis software programs were used for prediction, in addition to another program that used empirical data. After the flight-test series, lift and pitching moment coefficient increments due to the flaps were estimated from flight data and compared to the results of the predictive tools. The predicted lift increments matched flight data well for all predictive tools for small flap deflections. All tools over-predicted lift increments for large flap deflections. The potential flow and Navier-Stokes programs predicted pitching moment coefficient increments better than the other tools.

  9. Full-scale Wind-tunnel and Flight Tests of a Fairchild 22 Airplane Equipped with a Fowler Flap

    NASA Technical Reports Server (NTRS)

    Dearborn, C H; Soule, H A

    1936-01-01

    Full-scale wind-tunnel and flight tests were made of a Fairchild 22 airplane equipped with a Fowler flap to determine the effect of the flap on the performance and control characteristics of the airplane. In the wind-tunnel tests of the airplane with the horizontal tail surfaces removed, the flap was found to increase the maximum lift coefficient from 1.27 to 2.41. In the flight test, the flap was found to decrease the minimum speed from 58.8 to 44.4 miles per hour. The required take-off run to attain an altitude of 50 feet was reduced from 935 feet to 700 feet by the use of the flap, the minimum distance being obtained with five-sixths full deflection. The landing run from a height of 50 feet was reduced one-third. The longitudinal and directional control was adversely affected by the flap, indicating that the design of the tail surfaces is more critical with a flapped than a plain wing.

  10. Mercury On Deck

    NASA Technical Reports Server (NTRS)

    1963-01-01

    The crew of the U.S.S. Kearsarge spell out the words 'Mercury 9' on the ship's flight deck while on the way to the recovery area where astronaut Gordon Cooper is expected to splash down in his 'Faith 7' Mercury space capsule.

  11. Pressure Distribution over a Wing and Tail Rib of a VE-7 and of a TS Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr

    1928-01-01

    This investigation was made to determine the pressure distribution over a rib of the wing and over a rib of the horizontal tail surface of an airplane in flight and to obtain information as to the time correlation of the loads occurring on these ribs. Two airplanes, VE-7 and TS, were selected in order to obtain the information for a thin and a thick wing section. In each case the pressure distribution was recorded for the full range of angle of attack in level flight and throughout violent maneuvers. The results show: (a) that the present rib load specifications in use by the Army Air Corps and the Bureau of Aeronautics, Navy Department, are in fair agreement with the loads actually occurring in flight, but could be slightly improved; (b) that there appears to be no definite sequence in which wing and tail surface ribs reach their respective maximum loads in different maneuvers; (c) that in accelerated flight, at air speeds less than or equal to 60 per cent of the maximum speed, the accelerations measured agree very closely with the theoretically possible maximum accelerations. In maneuvers at higher air speeds the observed accelerations were smaller than those theoretically possible. (author)

  12. The Effect of Mass Distribution on the Lateral Stability and Control Characteristics of an Airplane as Determined by Tests of a Model in the Free-flight Tunnel

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Seacord, Charles L , Jr

    1943-01-01

    The effects of mass distribution on lateral stability and control characteristics of an airplane have been determined by flight tests of a model in the NACA free-flight tunnel. In the investigation, the rolling and yawing moments of inertia were increased from normal values to values up to five times normal. For each moment-of-inertia condition, combinations of dihedral and vertical-tail area representing a variety of airplane configurations were tested. The results of the flight tests of the model were correlated with calculated stability and control characteristics and, in general, good agreement was obtained.

  13. Aerodynamic Characteristics and Flying Qualities of a Tailless Triangular-wing Airplane Configuration as Obtained from Flights of Rocket-propelled Models at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mitcham, Grady L; Stevens, Joseph E; Norris, Harry P

    1956-01-01

    A flight investigation of rocket-powered models of a tailless triangular-wing airplane configuration was made through the transonic and low supersonic speed range at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. An analysis of the aerodynamic coefficients, stability derivatives, and flying qualities based on the results obtained from the successful flight tests of three models is presented.

  14. Correlation of the Drag Characteristics of a Typical Pursuit Airplane Obtained from High-Speed Wind-Tunnel and Flight Tests

    NASA Technical Reports Server (NTRS)

    Nissen, James M; Gadebero, Burnett L; Hamilton, William T

    1948-01-01

    In order to obtain a correlation of drag data from wind-tunnel and flight tests at high Mach numbers, a typical pursuit airplane, with the propeller removed, was tested in flight at Mach numbers up to 0.755, and the results were compared with wind-tunnel tests of a 1/3-scale model of the airplane. The tests results show that the drag characteristics of the test airplane can be predicted with satisfactory accuracy from tests in the Ames 16-foot high-speed wind tunnel of the Ames Aeronautical Laboratory at both high and low Mach numbers. It is considered that this result is not unique with the airplane.

  15. Flight Characteristics of a 1/4-Scale Model of the XFV-1 Airplane (TED No. NACA DE-378)

    NASA Technical Reports Server (NTRS)

    Kelly, Mark W.; Smaus, Louis H.

    1952-01-01

    A l/4-scale dynamically similar model of the XFV-1 airplane has been flown in the Ames 40- by 80-foot wind tunnel, using the trailing flight-cable technique. This investigation was devoted to establishing the flight characteristics of the model in forward flight from hovering to wing stall, and in yawed flight (wing span alined with the relative wind) from hovering to the maximum speed at which controlled flight could be maintained. Landings, take-offs, and hovering characteristics in flights close to the ground were also investigated.. Since the remote control system for the model was rather complicated and provided artificial damping about the pitch, roll, and yaw axes, sufficient data from the control-system calibration tests are included in this report to specify the performance of the control system in relation to both the model flight tests and the design of an automatic control system for the full-scale airplane. The model in hovering flight appeared to be neutrally stable. The response of the model to the controls was very rapid, and it was always necessary to provide some amount of artificial damping to maintain control. The model could be landed with little difficulty by hovering approximately a foot above the floor and then cutting the power. Take-offs were more difficult to perform, primarily because the rate of change in power to the model motors was limited by the characteristics of the available power source. The model was,capable of controlled yawed flight at translational velocities up to and including 20 feet per second. The effectiveness of the controls decreased with increasing speed, however, and at 25 fps control in pitch, and probably roll, was lost completely. The model was flown in controlled forward flight from hovering up to 70 fps. During these flights the model appeared to be more difficult to control in yaw than it was in pitch or roll. The flights of the model were recorded by motion picture cameras. These motion pictures are

  16. Motion of the two-control airplane in rectilinear flight after initial disturbances with introduction of controls following an exponential law

    NASA Technical Reports Server (NTRS)

    Klemin, Alexander

    1937-01-01

    An airplane in steady rectilinear flight was assumed to experience an initial disturbance in rolling or yawing velocity. The equations of motion were solved to see if it was possible to hasten recovery of a stable airplane or to secure recovery of an unstable airplane by the application of a single lateral control following an exponential law. The sample computations indicate that, for initial disturbances complex in character, it would be difficult to secure correlation with any type of exponential control. The possibility is visualized that the two-control operation may seriously impair the ability to hasten recovery or counteract instability.

  17. Flight measured and calculated exhaust jet conditions for an F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Hernandez, Francisco J.; Burcham, Frank W., Jr.

    1988-01-01

    The exhaust jet conditions, in terms of temperature and Mach number, were determined for a nozzle-aft end acoustic study flown on an F-15 aircraft. Jet properties for the F100 EMD engines were calculated using the engine manufacturer's specification deck. The effects of atmospheric temperature on jet Mach number, M10, were calculated. Values of turbine discharge pressure, PT6M, jet Mach number, and jet temperature were calculated as a function of aircraft Mach number, altitude, and power lever angle for the test day conditions. At a typical test point with a Mach number of 0.9, intermediate power setting, and an altitude of 20,000 ft, M10 was equal to 1.63. Flight measured and calculated values of PT6M were compared for intermediate power at altitudes of 15500, 20500, and 31000 ft. It was found that at 31000 ft, there was excellent agreement between both, but for lower altitudes the specification deck overpredicted the flight data. The calculated jet Mach numbers were believed to be accurate to within 2 percent.

  18. Full-scale Wind-tunnel and Flight Tests of a Fairchild 22 Airplane Equipped with External-airfoil Flaps

    NASA Technical Reports Server (NTRS)

    Reed, Warren D; Clay, William C

    1937-01-01

    Wind-tunnel and flight tests have been made of a Fairchild 22 airplane equipped with a wing having external-airfoil flaps that also perform the function of ailerons. Lift, drag, and pitching-moment coefficients of the airplane with several flap settings, and the rolling- and yawing-moment coefficients with the flaps deflected as ailerons were measured in the full-scale tunnel with the horizontal tail surfaces and propeller removed. The effect of the flaps on the low speed and on the take-off and landing characteristics, the effectiveness of flaps when used as ailerons, and the forces required to operate them as ailerons were determined in flight. The wind-tunnel tests showed that the flaps increased the maximum lift coefficient of the airplane from 1.51 with the flap in the minimum drag position to 2.12 with the flap in the minimum drag position to 2.12 with the flap deflected 30 degrees. In the flight tests the minimum speed decreased from 46.8 miles per hour with the flaps up to 41.3 miles per hour with the flaps deflected. The required take-off run to attain a height of 50 feet was reduced from 820 to 750 feet and the landing run from a height of 50 feet was reduced from 930 to 480 feet. The flaps for this installation gave lateral control that was not entirely satisfactory. Their rolling action was good but the adverse yaw resulting from their use was greater than is considerable, and the stick forces required to operate them increased too rapidly with speed.

  19. Aerodynamic and Landing Measurements Obtained During the First Powered Flight of the North American X-15 Research Airplane

    NASA Technical Reports Server (NTRS)

    1960-01-01

    During the first powered flight of the North American X-15 research airplane on September 17, 1959, a Mach number of 2.1 and an altitude of 52,000 feet were attained. Static and dynamic maneuvers were performed to evaluate the characteristics of the airplane at subsonic and supersonic speeds. Data from these maneuvers as well as from the launch and landing phases are presented, discussed, and compared with predicted values. The rate of separation of the X-15 from the B-52 carrier airplane at launch was less than that predicted by wind-tunnel studies and was less rapid than in the lightweight condition of the initial glide flight. In addition, the angular motions and bank angle attained following the launch were of lesser magnitude than in the glide flight. Stable longitudinal-stability trends were apparent during the acceleration to maximum speed, and the pilot reported experiencing little or no transonic trim excursions. An inexplicable high-frequency vibration, which occurred at Mach numbers above 1.4, is being investigated further. Essentially linear lift and stability characteristics were indicated within the limited ranges of angle of attack and angle of sideslip investigated. The dynamic longitudinal and lateral-directional stability and control-effectiveness characteristics appeared satisfactory to the pilot. Although the longitudinal- and lateral-directional-damping ratios showed no significant change from subsonic to supersonic speeds, on the basis of time to damp, the damping characteristics at supersonic speeds appeared to the pilot to be somewhat improved over those at subsonic speeds.

  20. Transition-flight Tests of a Model of a Low-wing Transport Vertical-take-off Airplane with Tilting Wing and Propellers

    NASA Technical Reports Server (NTRS)

    Lovell, Powell M , Jr; Parlett, Lysle P

    1956-01-01

    An investigation of the stability and control of a low-wing four-engine transport vertical-take-off airplane during the transition from hovering to normal forward flight has been conducted with a remotely controlled free-flight model. The model had four propellers distributed along the wing with the thrust axes in the wing-chord plane. The wing could be rotated to 90 degrees incidence so that the propeller thrust axes were vertical for hovering flight.

  1. Flight Measurements to Determine Effect of a Spring-Loaded Tab on Longitudinal Stability of an Airplane

    NASA Technical Reports Server (NTRS)

    Hunter, Paul A.; Reeder, John P.

    1946-01-01

    In conjunction with a program of research on the general problem of stability of airplanes in the climbing condition, tests have been made of a spring-loaded tb which. is referred to as a ?springy tab,? installed on the elevator of a low-wing scout bomber. The tab was arranged to deflect upward with decrease in speed which caused an increase in the pull force required to trim at low speeds and thereby increased the stick-free static longitudinal stability of the airplane. It was found that the springy tab would increase the stick-free stability in all flight conditions, would reduce the danger of inadvertent stalling because of the definite pull force required to stall the airplane with power on, would reduce the effect of center-of-gravity position on stick-free static stability, and would have little effect on the elevator stick forces in accelerated f11ght. Another advantage of the springy tab is that it might be used to provide almost any desired variation of elevator stick force with speed by adjusting the tab hinge-moment characteristics and the variation of spring moment with tab deflection. Unlike the bungee and the bobweight, the springy tab would provide stick-free static stability without requiring a pull force to hold the stick back while taxying. A device similar to the springy tab may be used on the rudder or ailerons to eliminate undesirable trim-force variations with speed.

  2. Wind-tunnel Tests of a 2-engine Airplane Model as a Preliminary Study of Flight Conditions Arising on the Failure of the Engine

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1938-01-01

    Wind tunnel tests of a 15-foot-span model of a two-engine low wing transport airplane were made as a preliminary study of the emergency arising from the failure of one engine in flight. Two methods of reducing the initial yawing moment resulting from the failure of one engine were investigated and the equilibrium conditions were explored for two basic modes on one engine, one with zero angle of sideslip and the other with several degrees of sideslip. The added drag resulting from the unsymmetrical attitudes required for flight on one engine was determined for the model airplane. The effects of the application of power upon the stability, controllability, lift, and drag of the model airplane were measured. A dynamic pressure survey of the propeller slipstream was made in the neighborhood of the tail surfaces at three angles of attack. The added parasite drag of the model airplane resulting from the unfavorable conditions of flight on one engine was estimated. From 35 to 50 percent of this added drag was due to the drag of the dead engine propeller and the other 50 to 65 percent was due to the unsymmetrical attitude of the airplane. The mode of flight on one engine in which the angle of sideslip was zero was found to require less power than the mode in which the angle of sideslip was several degrees.

  3. Analysis of Eye-Tracking Data with Regards to the Complexity of Flight Deck Information Automation and Management - Inattentional Blindness, System State Awareness, and EFB Usage

    NASA Technical Reports Server (NTRS)

    Dill, Evan T.; Young, Steven D.

    2015-01-01

    In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems, and the procedures for interacting with these systems, appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it can place a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. Evidence supporting this observation is becoming widespread, yet has been largely anecdotal or the result of subjective analysis. One way to gain more insight into this issue is through experimentation using more objective measures or indicators. This study utilizes and analyzes eye-tracking data obtained during a high-fidelity flight simulation study wherein many of the complexities of current flight decks, as well as those planned for the next generation air transportation system (NextGen), were emulated. The following paper presents the findings of this study with a focus on electronic flight bag (EFB) usage, system state awareness (SSA) and events involving suspected inattentional blindness (IB).

  4. Glass-Cockpit Pilot Subjective Ratings of Predictive Information, Collocation, and Mission Status Graphics: An Analysis and Summary of the Future Focus of Flight Deck Research Survey

    NASA Technical Reports Server (NTRS)

    Bartolone, Anthony; Trujillo, Anna

    2002-01-01

    NASA Langley Research Center has been researching ways to improve flight crew decision aiding for systems management. Our current investigation is how to display a wide variety of aircraft parameters in ways that will improve the flight crew's situation awareness. To accomplish this, new means are being explored that will monitor the overall health of a flight and report the current status of the aircraft and forecast impending problems to the pilots. The initial step in this research was to conduct a survey addressing how current glass-cockpit commercial pilots would value a prediction of the status of critical aircraft systems. We also addressed how this new type of data ought to be conveyed and utilized. Therefore, two other items associated with predictive information were also included in the survey. The first addressed the need for system status, alerts and procedures, and system controls to be more logically grouped together, or collocated, on the flight deck. The second idea called for the survey respondents opinions on the functionality of mission status graphics; a display methodology that groups a variety of parameters onto a single display that can instantaneously convey a complete overview of both an aircraft's system and mission health.

  5. Stability and Controls Analysis and Flight Test Results of a 24-Foot Telescoping Nose Boom on an F-15B Airplane

    NASA Technical Reports Server (NTRS)

    Moua, Cheng M.; Cox, Timothy H.; McWherter, Shaun C.

    2008-01-01

    The Quiet Spike(TradeMark) F-15B flight research program investigated supersonic shock reduction using a 24-ft telescoping nose boom on an F-15B airplane. The program goal was to collect flight data for model validation up to 1.8 Mach. In the area of stability and controls, the primary concerns were to assess the potential destabilizing effect of the oversized nose boom on the stability, controllability, and handling qualities of the airplane and to ensure adequate stability margins across the entire research flight envelope. This paper reports on the stability and control analytical methods, flight envelope clearance approach, and flight test results of the F-15B telescoping nose boom configuration. Also discussed are brief pilot commentary on typical piloting tasks and refueling tasks.

  6. 78 FR 15112 - Rulemaking Advisory Committee; Transport Airplane Performance and Handling Characteristics-New Task

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee; Transport Airplane Performance and... guidance material for airplane performance and handling characteristics in new transport category airplanes...: Joe Jacobsen, Airplane & Flight Crew Interface Branch, ANM-111, Transport Airplane...

  7. Determination of model structure and parameters of an airplane from pre- and post-stall flight data

    NASA Technical Reports Server (NTRS)

    Klein, V.; Batterson, J. G.; Murphy, P. C.

    1981-01-01

    A procedure for airplane model structure determination from flight data based on modified stepwise regression (MSR), several decision criteria and postulated aerodynamic model equations is presented. The MSR is constructed to force a linear model for the aerodynamic coefficient first, then select significant nonlinear terms and reject nonsignificant terms from the model. In addition to the statistical criteria in the stepwise regression, the prediction sum of squares (PRESS) criterion and analysis of residuals are examined for the selection of an adequate model. The procedure is used in examples with simulated and real flight data. It is shown that the MSR performs better than the ordinary stepwise regression and that the technique can be also applied to the large amplitude maneuvers.

  8. Initial Investigations of Controller Tools and Procedures for Schedule-Based Arrival Operations with Mixed Flight-Deck Interval Management Equipage

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Cabrall, Christopher; Kupfer, Michael; Omar, Faisal G.; Prevot, Thomas

    2012-01-01

    NASA?s Air Traffic Management Demonstration-1 (ATD-1) is a multi-year effort to demonstrate high-throughput, fuel-efficient arrivals at a major U.S. airport using NASA-developed scheduling automation, controller decision-support tools, and ADS-B-enabled Flight-Deck Interval Management (FIM) avionics. First-year accomplishments include the development of a concept of operations for managing scheduled arrivals flying Optimized Profile Descents with equipped aircraft conducting FIM operations, and the integration of laboratory prototypes of the core ATD-1 technologies. Following each integration phase, a human-in-the-loop simulation was conducted to evaluate and refine controller tools, procedures, and clearance phraseology. From a ground-side perspective, the results indicate the concept is viable and the operations are safe and acceptable. Additional training is required for smooth operations that yield notable benefits, particularly in the areas of FIM operations and clearance phraseology.

  9. Flight test operations using an F-106B research airplane modified with a wing leading-edge vortex flap

    NASA Technical Reports Server (NTRS)

    Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.

    1992-01-01

    Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.

  10. Flight evaluations of the effect of advanced control systems and displays on the handling qualities of a general aviation airplane.

    NASA Technical Reports Server (NTRS)

    Loschke, P. C.; Barber, M. R.; Jarvis, C. R.; Enevoldson, E. K.

    1972-01-01

    Flight tests have shown that, by means of improved displays and advanced control systems, it is possible to transform a typical light airplane into a flying machine that borders on being perfect from a handling-qualities standpoint. A flight-director display and an attitude-command control system used in combination transformed a vehicle with poor handling qualities during ILS approaches in turbulent air into a vehicle with extremely good handling qualities. The attitude-command control system also improved the ride qualities of the airplane. A rate-command control system was less beneficial than an attitude-command control system. Although this paper deals primarily with general aviation aircraft, the results presented pertain to other types of aircraft. Short-takeoff-and-landing (STOL) aircraft would be a natural application of the control systems because, as a result of their low speeds, they encounter many of the handling-qualities problems noted on light aircraft. The improved ride qualities should be of interest to all airline operations, and for STOL aircraft in particular, because of their prolonged exposure to low-altitude turbulence.

  11. New capabilities for older aircraft: A study of pilot integration of retro-fit digital avionics to analog-instrumented flight decks

    NASA Astrophysics Data System (ADS)

    Breuer, Glynn E.

    The purpose of this study was to determine whether applying Gilbert's Behavior Engineering Model to military tactical aviation organizations would foster effective user integration of retro-fit digital avionics in analog-instrumented flight decks. This study examined the relationship between the reported presence of environmental supports and personal repertory supports as defined by Gilbert, and the reported self-efficacy of users of retro-fit digital avionics to analog flight decks, and examined the efficacious behaviors of users as they attain mastery of the equipment and procedures, and user reported best practices and criteria for masterful performance in the use of retro-fit digital avionics and components. This study used a mixed methodology, using quantitative surveys to measure the perceived level of organizational supports that foster mastery of retro-fit digital avionic components, and qualitative interviews to ascertain the efficacious behaviors and best practices of masterful users of these devices. The results of this study indicate that there is some relationship between the reported presence of organizational supports and personal repertory supports and the reported self-mastery and perceived organizational mastery of retro-fit digital avionics applied to the operation of the research aircraft. The primary recommendation is that unit leadership decide exactly the capabilities desired from retro-fit equipment, publish these standards, ensure training in these standards is effective, and evaluate performance based on these standards. Conclusions indicate that sufficient time and resources are available to the individual within the study population, and the organization as a whole, to apply Gilbert's criteria toward the mastery of retro-fit digital avionics applied to the operation of the research aircraft.

  12. Preliminary design-lift/cruise fan research and technology airplane flight control system

    NASA Technical Reports Server (NTRS)

    Gotlieb, P.; Lewis, G. E.; Little, L. J.

    1976-01-01

    This report presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling qualities levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft interconnecting the three variable pitch fans and three power plants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy.

  13. Investigation of the Forces Acting on Gliders in Automobile-pulley-winch and Airplane Towed Flight

    NASA Technical Reports Server (NTRS)

    Klemperer, W B

    1942-01-01

    The magnitude, the direction, and the fluctuation of towing forces exerted upon gliders by towing them aloft behind an automobile, by means of a winch, and by airplane were measured under a variety of conditions covering a range from gentle to severe types of operation. For these tests the towing forces did not exceed 92 percent of the gross weight of the glider. The results indicate that in pulley and winch towing the towing forces are of about the same magnitude as in automobile towing. Speed increases in the accelerated phases of the towing jerks encountered in airplane towing can readily become critical as speeds in excess of placard speeds can be attained. Passage through the slipstream of the towing airplane can be equivalent to a severe gust that, at high speed, may impose high wing loads and require large control moments.

  14. Wind-tunnel static and free-flight investigation of high-angle-of-attack stability and control characteristics of a model of the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Jordan, Frank L., Jr.; Hahne, David E.

    1992-01-01

    An investigation was conducted in the Langley 30- by 60-Foot Tunnel and the Langley 12-Foot Low-Speed Tunnel to identify factors contributing to a directional divergence at high angles of attack for the EA-6B airplane. The study consisted of static wind-tunnel tests, smoke and tuft flow-visualization tests, and free-flight tests of a 1/8.5-scale model of the airplane. The results of the investigation indicate that the directional divergence of the airplane is brought about by a loss of directional stability and effective dihedral at high angles of attack. Several modifications were tested that significantly alleviate the stability problem. The results of the free-flight study show that the modified configuration exhibits good dynamic stability characteristics and could be flown at angles of attack significantly higher than those of the unmodified configuration.

  15. An Apparatus for Varying Effective Dihedral in Flight with Application to a Study of Tolerable Dihedral on a Conventional Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Kauffman, William M; Liddell, Charles J , Jr; Smith, Allan; Van Dyke, Rudolph D , Jr

    1949-01-01

    An apparatus for varying effective dihedral in flight by means of servo actuation of the ailerons in response to sideslip angle is described. The results of brief flight tests of the apparatus on a conventional fighter airplane are presented and discussed. The apparatus is shown to have satisfactory simulated a wide range of effective dihedral under static and dynamic conditions. The effects of a small amount of servo lag are shown to be measurable when the apparatus is simulating small negative values of dihedral. However, these effects were not considered by the pilots to give the airplane an artificial feel. The results of an investigation employing the apparatus to determine the tolerable (safe for normal fighter operation) range of effective dihedral on the test airplane are presented.

  16. Flight and Static Exhaust Flow Properties of an F110-GE-129 Engine in an F-16XL Airplane During Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Holzman, Jon K.; Webb, Lannie D.; Burcham, Frank W., Jr.

    1996-01-01

    The exhaust flow properties (mass flow, pressure, temperature, velocity, and Mach number) of the F110-GE-129 engine in an F-16XL airplane were determined from a series of flight tests flown at NASA Dryden Flight Research Center, Edwards, California. These tests were performed in conjunction with NASA Langley Research Center, Hampton, Virginia (LARC) as part of a study to investigate the acoustic characteristics of jet engines operating at high nozzle pressure conditions. The range of interest for both objectives was from Mach 0.3 to Mach 0.9. NASA Dryden flew the airplane and acquired and analyzed the engine data to determine the exhaust characteristics. NASA Langley collected the flyover acoustic measurements and correlated these results with their current predictive codes. This paper describes the airplane, tests, and methods used to determine the exhaust flow properties and presents the exhaust flow properties. No acoustics results are presented.

  17. Piloted simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Brown, P. W.; Yenni, K. R.

    1986-01-01

    A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.

  18. Summary of flight tests to determine the spin and controllability characteristics of a remotely piloted, large-scale (3/8) fighter airplane model

    NASA Technical Reports Server (NTRS)

    Holleman, E. C.

    1976-01-01

    An unpowered, large, dynamically scaled airplane model was test flown by remote pilot to investigate the stability and controllability of the configuration at high angles of attack. The configuration proved to be departure/spin resistant; however, spins were obtained by using techniques developed on a flight support simulator. Spin modes at high and medium high angles of attack were identified, and recovery techniques were investigated. A flight support simulation of the airplane model mechanized with low speed wind tunnel data over an angle of attack range of + or - 90 deg. and an angle of sideslip range of + or - 40 deg. provided insight into the effects of altitude, stability, aerodynamic damping, and the operation of the augmented flight control system on spins. Aerodynamic derivatives determined from flight maneuvers were used to correlate model controllability with two proposed departure/spin design criteria.

  19. 75 FR 70854 - Harmonization of Various Airworthiness Standards for Transport Category Airplanes-Flight Rules

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... preamble to Amendment 25- 72, Special Review: Transport Category Airplane Airworthiness Standards (55 FR... complete Privacy Act Statement in the Federal Register published on April 11, 2000 (65 FR 19477-78) or you... Conditions. In the preamble to that rulemaking (72 FR 44665), the FAA stated that we needed more time...

  20. 78 FR 6195 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Embraer S.A. Model EMB-550 airplanes was published in the Federal Register on November 9, 2012, (77 FR... Protection: Performance Credit for Automatic Takeoff Thrust Control System (ATTCS) During Go-Around AGENCY... design feature associated with the use of an Automatic Takeoff Thrust Control System (ATTCS) during...

  1. 78 FR 75285 - Special Conditions: Bombardier Inc., Models BD-500-1A10 and BD-500-1A11 Series Airplanes; Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-11

    ... BD- 500-1A11 Series Airplanes; Flight Envelope Protection: Normal Load Factor (g) Limiting AGENCY... April 11, 2000 (65 FR 19477-19478), as well as at http://DocketsInfo.dot.gov/ . Docket: Background... following: Knowledge that the limit system will protect the structure, Low stick...

  2. Flight-test of the glide-slope track and flare-control laws for an automatic landing system for a powered-lift STOL airplane

    NASA Technical Reports Server (NTRS)

    Watson, D. M.; Hardy, G. H.; Warner, D. N., Jr.

    1983-01-01

    An automatic landing system was developed for the Augmentor Wing Jet STOL Research Airplane to establish the feasibility and examine the operating characteristics of a powered-lift STOL transport flying a steep, microwave landing system (MLS) glide slope to automatically land on a STOL port. The flight test results address the longitudinal aspects of automatic powered lift STOL airplane operation including glide slope tracking on the backside of the power curve, flare, and touchdown. Three different autoland control laws were evaluated to demonstrate the tradeoff between control complexity and the resulting performance. The flight test and simulation methodology used in developing conventional jet transport systems was applied to the powered-lift STOL airplane. The results obtained suggest that an automatic landing system for a powered-lift STOL airplane operating into an MLS-equipped STOL port is feasible. However, the airplane must be provided with a means of rapidly regulation lift to satisfactorily provide the glide slope tracking and control of touchdown sink rate needed for automatic landings.

  3. A Simulation Study of Instrument Meteorological Condition Approaches to Dual Parallel Runways Spaced 3400 and 2500 Feet Apart Using Flight-Deck-Centered Technology

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C.; Scanlon, Charles H.

    1999-01-01

    A number of our nations airports depend on closely spaced parallel runway operations to handle their normal traffic throughput when weather conditions are favorable. For safety these operations are curtailed in Instrument Meteorological Conditions (IMC) when the ceiling or visibility deteriorates and operations in many cases are limited to the equivalent of a single runway. Where parallel runway spacing is less than 2500 feet, capacity loss in IMC is on the order of 50 percent for these runways. Clearly, these capacity losses result in landing delays, inconveniences to the public, increased operational cost to the airlines, and general interruption of commerce. This document presents a description and the results of a fixed-base simulation study to evaluate an initial concept that includes a set of procedures for conducting safe flight in closely spaced parallel runway operations in IMC. Consideration of flight-deck information technology and displays to support the procedures is also included in the discussions. The procedures and supporting technology rely heavily on airborne capabilities operating in conjunction with the air traffic control system.

  4. Minimum time and fuel flight profiles for an F-15 airplane with a Highly Integrated Digital Electronic Control (HIDEC) system

    NASA Technical Reports Server (NTRS)

    Haering, E. A., Jr.; Burcham, F. W., Jr.

    1984-01-01

    A simulation study was conducted to optimize minimum time and fuel consumption paths for an F-15 airplane powered by two F100 Engine Model Derivative (EMD) engines. The benefits of using variable stall margin (uptrim) to increase performance were also determined. This study supports the NASA Highly Integrated Digital Electronic Control (HIDEC) program. The basis for this comparison was minimum time and fuel used to reach Mach 2 at 13,716 m (45,000 ft) from the initial conditions of Mach 0.15 at 1524 m (5000 ft). Results were also compared to a pilot's estimated minimum time and fuel trajectory determined from the F-15 flight manual and previous experience. The minimum time trajectory took 15 percent less time than the pilot's estimate for the standard EMD engines, while the minimum fuel trajectory used 1 percent less fuel than the pilot's estimate for the minimum fuel trajectory. The F-15 airplane with EMD engines and uptrim, was 23 percent faster than the pilot's estimate. The minimum fuel used was 5 percent less than the estimate.

  5. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Overseas and...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.513 Flight time limitations: Overseas and international...

  6. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Deadhead... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation:...

  7. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Overseas and...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.513 Flight time limitations: Overseas and international...

  8. 14 CFR 121.513 - Flight time limitations: Overseas and international operations: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Overseas and...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.513 Flight time limitations: Overseas and international...

  9. 14 CFR 121.519 - Flight time limitations: Deadhead transportation: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Deadhead... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.519 Flight time limitations: Deadhead transportation:...

  10. Maximum likelihood method for estimating airplane stability and control parameters from flight data in frequency domain

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1980-01-01

    A frequency domain maximum likelihood method is developed for the estimation of airplane stability and control parameters from measured data. The model of an airplane is represented by a discrete-type steady state Kalman filter with time variables replaced by their Fourier series expansions. The likelihood function of innovations is formulated, and by its maximization with respect to unknown parameters the estimation algorithm is obtained. This algorithm is then simplified to the output error estimation method with the data in the form of transformed time histories, frequency response curves, or spectral and cross-spectral densities. The development is followed by a discussion on the equivalence of the cost function in the time and frequency domains, and on advantages and disadvantages of the frequency domain approach. The algorithm developed is applied in four examples to the estimation of longitudinal parameters of a general aviation airplane using computer generated and measured data in turbulent and still air. The cost functions in the time and frequency domains are shown to be equivalent; therefore, both approaches are complementary and not contradictory. Despite some computational advantages of parameter estimation in the frequency domain, this approach is limited to linear equations of motion with constant coefficients.

  11. Free-Flight-Tunnel Investigation of the Dynamic Stability and Control Characteristics of a Chance Vought F7U-3 Airplane in Towed Flight

    NASA Technical Reports Server (NTRS)

    Grana, David C.; Shanks, Robert E.

    1952-01-01

    As part of a program to determine the feasibility of using a fighter airplane as a parasite in combination with a Consolidated Vultee RB-36 for long-range reconnaissance missions (project FICON), an experimental investigation has been made in the Langley free-flight tunnel to determine the dynamic stability and control characteristics of a 1/17.5-scale model of a Chance Vought F7U-3 airplane in several tow configurations. The investigation consisted of flight tests in which the model was towed from a strut in the tunnel by a towline and by a direct coupling which provided complete angular freedom. The tests with the direct coupling also included a study of the effect of spring restraint in roll in order to simulate approximately the proposed full-scale arrangement in which the only freedom is that permitted by the flexibility of the launching and retrieving trapeze carried by the-bomber. For the tow configurations in which a towline was used (15 and 38 feet full scale), the model had a very unstable lateral oscillation which could not be controlled. The stability was also unsatisfactory for the tow configuration in Which the model was coupled directly to the strut with complete angular freedom. When spring restraint in roll was added, however, the stability was satisfactory. The use of the yaw damper which increased the damping in yaw to about six times the normal value of the model appeared to have no appreciable effect on the lateral oscillations in the towline configurations, but produced a slight improvement in the case of the direct coupling configurations. The longitudinal stability was satisfactory for those cases in which the lateral stability was good enough to permit study of longitudinal motions.

  12. Measurements in Flight of the Lateral-Control Characteristics of an Airplane Equipped with Full-Span Zap Flaps and Simple Circular-Arc-Type Ailerons

    NASA Technical Reports Server (NTRS)

    Christophersen, Don R.; Spahr, J. Richard

    1944-01-01

    Flight tests were conducted on the OS2U-2 seaplane with simple circular-arc-type ailerons directly connected to the actuating torque tube. Two aileron test installations were made, differing only in the inclination of the projecting surface with the wing's upper surface. The lateral-control characteristics of the airplane were determined from data obtained in stalls and rudder-fixed aileron rolls. The revised ailerons were deficient in maximum rolling effectiveness, but were capable of controlling the rolling tendencies of the airplane near the stall.

  13. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  14. Managing systems faults on the commercial flight deck: Analysis of pilots' organization and prioritization of fault management information

    NASA Technical Reports Server (NTRS)

    Rogers, William H.

    1993-01-01

    In rare instances, flight crews of commercial aircraft must manage complex systems faults in addition to all their normal flight tasks. Pilot errors in fault management have been attributed, at least in part, to an incomplete or inaccurate awareness of the fault situation. The current study is part of a program aimed at assuring that the types of information potentially available from an intelligent fault management aiding concept developed at NASA Langley called 'Faultfinde' (see Abbott, Schutte, Palmer, and Ricks, 1987) are an asset rather than a liability: additional information should improve pilot performance and aircraft safety, but it should not confuse, distract, overload, mislead, or generally exacerbate already difficult circumstances.

  15. A study of the use of experimental stability derivatives in the calculation of the lateral disturbed motions of a swept-wing airplane and comparison with flight results

    NASA Technical Reports Server (NTRS)

    Bird, John D; Jaquet, Byron M

    1951-01-01

    An investigation was made to determine the accuracy with which the lateral flight motions of a swept-wing airplane could be predicted from experimental stability derivatives, determined in the 6-foot-diameter rolling-flow test section and 6 by 6-foot curved-flow test section of the Langley stability tunnel. In addition, determination of the significance of including the nonlinear aerodynamic effects of sideslip in the calculations of the motions was desired. All experimental aerodynamic data necessary for prediction of the lateral flight motions are presented along with a number of comparisons between flight and calculated motions caused by rudder and aileron disturbances.

  16. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms August 21, 1946 to August 22, 1946 at Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Tolefson, H. B.

    1946-01-01

    Tables I and II of this report summarize the gust and draft velocity data for thunderstorm flights 25 and 26 of August 21, 1946 and August 22, 1946, respectively. These dta were evaluated from records of NACA instruments installed in P-61C airplanes and are of the type presented in reference 1 for previous flights. Table III summarizes the readings of a milliammeter which was used in conjunction with other equipment to indicate ambient air temperature during thunderstorm surveys. These data were read from motion-picture records of the instrument and include all cases in which variations in the instrument indications were noted during the present flights.

  17. Flight investigation of the effect of tail configuration on stall, spin, and recovery characteristics of a low-wing general aviation research airplane

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Patton, James M., Jr.; Sliwa, Steven M.

    1987-01-01

    Flight tests were performed to investigate the stall, spin, and recovery characteristics of a low-wing, single-engine, light airplane with four interchangeable tail configurations. The four tail configurations were evaluated for effects of varying mass distribution, center-of-gravity position, and control inputs. The airplane tended to roll-off at the stall. Variations in tail configuration produced spins ranging from 40 deg to 60 deg angle of attack and turn rates of about 145 to 208 deg/sec. Some unrecoverable flat spins were encountered which required use of the airplane spin chute for recovery. For recoverable spins, antispin rudder followed by forward wheel with ailerons centered provided the quickest spin recovery. The moderate spin modes agreed very well with those predicted from spin-tunnel model tests, however, the flat spin was at a lower angle of attack and a slower rotation rate than indicated by the model tests.

  18. Force Tests of a 1/5-Scale Model of the McDonnell XP-85 Airplane with Conventional Tail Assembly in the Langley Free-Flight Tunnel

    NASA Technical Reports Server (NTRS)

    Paulson, John W.; Johnson, Joseph L.

    1947-01-01

    At the request of the Air Materiel Command, Army Air Forces an investigation of the low-speed, power-off stability and control characteristics of the McDonnell XP-85 airplane is being conducted in the Langley free-flight tunnel. The XP-85 airplane is a parasite fighter carried in a bomb bay of the B-36 airplane. As a part of the investigation a few force tests were made of a 1/5 scale model of the XP-85 with a conventional tail assembly installed in place of the original design five-unit tail assembly. The total area of the conventional assembly was approximately 80 percent of the area of the five-unit assembly. The results of this investigation showed that the conventional tail assembly gave about the same longitudinal stability characteristics as the original configuration and improved the directional and lateral stability.

  19. A revolutionary approach to composite construction and flight management systems for small, general aviation airplanes

    NASA Technical Reports Server (NTRS)

    Roskam, Jan; Wenninger, ED

    1992-01-01

    The design studies for two composite general aviation airplanes are presented. The main consideration for both of the designs was to avoid the typical 'metal replacement' philosophy that has hindered the widespread use of composites in general aviation aircraft. The first design is for a low wing aircraft based on the Smith Aircraft Corporation GT-3 Global Trainer. The second aircraft is a composite version of the Cessna 152. The project was conducted as a graduate level design class under the auspices of the KU/NASA/USRA Advanced Design Program in aeronautics. The results obtained from the Fall semester of 1991 and the Spring semester of 1992 are presented.

  20. 76 FR 31456 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Federal Register on February 17, 2011 (76 FR 9265). One supportive comment was received and these special...; Electronic Flight Control System: Control Surface Position Awareness AGENCY: Federal Aviation Administration... design features include an electronic flight control system. The applicable airworthiness regulations...

  1. 76 FR 14795 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System Mode...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... December 13, 2010 (75 FR 77569). Only one comment was received. Clarification of Conditions That Should Be...; Electronic Flight Control System Mode Annunciation. AGENCY: Federal Aviation Administration (FAA), DOT... electronic flight control system. The applicable airworthiness regulations do not contain adequate...

  2. Measurements in Flight of the Flying Qualities of a Chance Vought F4U-4 Airplane: TED No. NACA 2388

    NASA Technical Reports Server (NTRS)

    Liddell, Charles J., Jr.; Reynolds, Robert M.; Christofferson, Frank E.

    1947-01-01

    The results of flight tests to determine flying qualities of a Chance Vought F4U-4 airplane are presented and discussed herein. In addition to comprehensive measurements at low altitude (about 8000 ft), tests of limited scope were made at high altitude (about 25,000 ft). The more important characteristics, based on a comparison of the test results and opinions of the pilots with the Navy requirements, can be summarized as follows: 1. The short-period control-free oscillations of the elevator angle and the normal acceleration were satisfactorily damped. 2. The most rearward center-of-gravity locations for satisfactory static longitudinal stability with power on, as determined by the control-force variations, were approximately 30 and 27 percent M.A.C. with flaps and gear up and down, respectively. 3. In maneuvering flight the conditions for which control-force gradients of satisfactory magnitude were obtained were seriously limited by sizable changes in the gradient with center-of-gravity location, airspeed, altitude, acceleration factor, and direction of turn. 4. The elevator and rudder controls were satisfactory for landings and take-offs. 5. The trim tabs were sufficiently effective for all controls. 6. The directional and lateral dynamic stability was positive, but the rudder oscillation did not damp within one cycle. The airplane oscillation damped sufficiently at low altitude but not at high altitude. 7. Both rudder-fixed and rudder-free static directional stability were positive over a sideslip range of +/-15 deg. However, the rudder force tended to reverse at high angles of right sideslip with flaps and gear up, power on, at low speeds. 8. The stick-fixed static lateral stability (dihedral effect) was positive in all conditions, but the stick-free dihedral effect was neutral at low speeds with flap and gear down, power on. 9. The yaw due to abrupt full aileron deflection at low speed was mot excessive, and the rudder control was adequate to hold trim

  3. Flight tests of a radio-controlled airplane mode with a free-wing, free-canard configuration

    NASA Technical Reports Server (NTRS)

    Gee, S. W.

    1978-01-01

    Flight characteristics, controllability, and potential operating problems were investigated in a radio-controlled airplane model in which the wing is so attached to the fuselage that it is free to pivot about a spanwise axis forward of its aerodynamic center and is subject only to aerodynamic pitching moments imposed by lift and drag forces and a control surface. A simple technique of flying the test vehicle in formation with a pickup truck was used to obtain trim data. The test vehicle was flown through a series of maneuvers designed to permit evaluation of certain characteristics by observation. The free-wing free-canard concept was determined to be workable. Stall/spin characteristics were considered to be excellent, and no effect on longitudinal stability was observed when center of gravity changes were made. Several problems were encountered during the early stages of flight testing, such as aerodynamic lockup of the free canard and excessive control sensitivity. Lack of onboard instrumentation precluded any conclusions about gust alleviation or ride qualities.

  4. Flight Calibration of four airspeed systems on a swept-wing airplane at Mach numbers up to 1.04 by the NACA radar-phototheodolite method

    NASA Technical Reports Server (NTRS)

    Thompson, Jim Rogers; Bray, Richard S; COOPER GEORGE E

    1950-01-01

    The calibrations of four airspeed systems installed in a North American F-86A airplane have been determined in flight at Mach numbers up to 1.04 by the NACA radar-phototheodolite method. The variation of the static-pressure error per unit indicated impact pressure is presented for three systems typical of those currently in use in flight research, a nose boom and two different wing-tip booms, and for the standard service system installed in the airplane. A limited amount of information on the effect of airplane normal-force coefficient on the static-pressure error is included. The results are compared with available theory and with results from wind-tunnel tests of the airspeed heads alone. Of the systems investigated, a nose-boom installation was found to be most suitable for research use at transonic and low supersonic speeds because it provided the greatest sensitivity of the indicated Mach number to a unit change in true Mach number at very high subsonic speeds, and because it was least sensitive to changes in airplane normal-force coefficient. The static-pressure error of the nose-boom system was small and constant above a Mach number of 1.03 after passage of the fuselage bow shock wave over the airspeed head.

  5. Spinning Characteristics of the XN2Y-1 Airplane Obtained from the Spinning Balance and Compared with Results from the Spinning Tunnel and from Flight Tests

    NASA Technical Reports Server (NTRS)

    Bamber, M J; House, R O

    1937-01-01

    Report presents the results of tests of a 1/10-scale model of the XN2Y-1 airplane tested in the NACA 5-foot vertical wind tunnel in which the six components of forces and moments were measured. The model was tested in 17 attitudes in which the full-scale airplane had been observed to spin, in order to determine the effects of scale, tunnel, and interference. In addition, a series of tests was made to cover the range of angles of attack, angles of sideslip, rates of rotation, and control setting likely to be encountered by a spinning airplane. The data were used to estimate the probable attitudes in steady spins of an airplane in flight and of a model in the free-spinning tunnel. The estimated attitudes of steady spin were compared with attitudes measured in flight and in the spinning tunnel. The results indicate that corrections for certain scale and tunnel effects are necessary to estimate full-scale spinning attitudes from model results.

  6. The airplane: A simulated commercial air transportation study

    NASA Technical Reports Server (NTRS)

    Dauteuil, Mark; Geniesse, Pete; Hunniford, Michael; Lawler, Kathleen; Quirk, Elena; Tognarelli, Michael

    1993-01-01

    The 'Airplane' is a moderate-range, 70 passenger aircraft. It is designed to serve demands for flights up to 10,000 feet and it cruises at 32 ft/s. The major drivers for the design of the Airplane are economic competitiveness, takeoff performance, and weight minimization. The Airplane is propelled by a single Astro 15 electric motor and a Zinger 12-8 propeller. The wing section is a Spica airfoil which, because of its flat bottom, provides simplicity in manufacturing and thus helps to cut costs. The wing is constructed of a single load bearing mainspar and shape-holding ribs coated with Monokote skin, lending to a light weight structural makeup. The fuselage houses the motor, flight deck and passenger compartments as well as the fuel and control actuating systems. The wing will be attached to the top of the fuselage as will the fuel and control actuator systems for easy disassembly and maintenance. The aircraft is maneuvered about its pitch axis by means of an aft elevator on the flat plate horizontal tail. The twin vertical tail surfaces are also flat plates and each features a rudder for both directional and roll control. Along with wing dihedral, the rudders will be used to roll the aircraft. The Airplane is less costly to operate at its own maximum range and capacity as well as at its maximum range and the HB-40's maximum capacity than the HB-40.

  7. Flight investigation of the effects of an outboard wing-leading-edge modification on stall/spin characteristics of a low-wing, single-engine, T-tail light airplane

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Dicarlo, Daniel J.; Patton, James M., Jr.

    1987-01-01

    Flight tests were performed to investigate the change in stall/spin characteristics due to the addition of an outboard wing-leading-edge modification to a four-place, low-wing, single-engine, T-tail, general aviation research airplane. Stalls and attempted spins were performed for various weights, center of gravity positions, power settings, flap deflections, and landing-gear positions. Both stall behavior and wind resistance were improved compared with the baseline airplane. The latter would readily spin for all combinations of power settings, flap deflections, and aileron inputs, but the modified airplane did not spin at idle power or with flaps extended. With maximum power and flaps retracted, the modified airplane did enter spins with abused loadings or for certain combinations of maneuver and control input. The modified airplane tended to spin at a higher angle of attack than the baseline airplane.

  8. Determination of Longitudinal Stability and Control Characteristics from Free-Flight Model Tests with Results at Transonic Speeds for Three Airplane Configurations

    NASA Technical Reports Server (NTRS)

    Gillis, Clarence L; Mitchell, Jesse L

    1957-01-01

    A test technique and data analysis method has been developed for determining the longitudinal aerodynamic characteristics from free-flight tests of rocket-propelled models. The technique makes use of accelerometers and an angle-of-attack indicator to permit instantaneous measurements of lift, drag, and pitching moments. The data, obtained during transient oscillations resulting from control-surface disturbances, are analyzed by essentially nonlinear direct methods (such as cross plots of the variation of lift coefficient with angle of attack) and by linear indirect methods by using the equations of motion for a transient oscillation. The analysis procedure has been set forth in some detail and the feasibility of the method has been demonstrated by data measured through the transonic speed range on several airplane configurations. It was shown that the flight conditions and dynamic similitude factors for the tests described were reasonably close to typical full-scale airplane conditions.

  9. In-flight investigation of the effects of pilot location and control system design on airplane flying qualities for approach and landing

    NASA Technical Reports Server (NTRS)

    Weingarten, N. C.; Chalk, C. R.

    1982-01-01

    The handling qualities of large airplanes in the approach and landing flight phase were studied. The primary variables were relative pilot position with respect to center of rotation, command path time delays and phase shifts, augmentation schemes and levels of augmentation. It is indicated that the approach and landing task with large airplanes is a low bandwidth task. Low equivalent short period frequencies and relatively long time delays are tolerated only when the pilot is located at considerable distance forward of the center of rotation. The control problem experienced by the pilots, when seated behind the center of rotation, tended to occur at low altitude when they were using visual cues of rate of sink and altitude. A direct lift controller improved final flight path control of the shuttle like configurations.

  10. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  11. 14 CFR 121.344 - Digital flight data recorders for transport category airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Safety Board under 49 CFR 830 of its regulations and that results in termination of the flight, the... bus status; (75) DC electrical bus status; (76) APU bleed valve position (when an information...

  12. 76 FR 22163 - Ninth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  13. 76 FR 38741 - Tenth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  14. 75 FR 9016 - Fifth Meeting: RTCA Special Committee 221: Aircraft Secondary Barriers and Alternative Flight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... Alternative Flight Deck Security Procedures AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 221 meeting: Aircraft Secondary Barriers and Alternative Flight Deck... Special Committee 221: Aircraft Secondary Barriers and Alternative Flight Deck Security Procedures....

  15. Global Aerodynamic Modeling for Stall/Upset Recovery Training Using Efficient Piloted Flight Test Techniques

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunningham, Kevin; Hill, Melissa A.

    2013-01-01

    Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.

  16. A comparison of flight and simulation data for three automatic landing system control laws for the Augmentor wing jet STOL research airplane

    NASA Technical Reports Server (NTRS)

    Feinreich, B.; Gevaert, G.

    1980-01-01

    Automatic flare and decrab control laws for conventional takeoff and landing aircraft were adapted to the unique requirements of the powered lift short takeoff and landing airplane. Three longitudinal autoland control laws were developed. Direct lift and direct drag control were used in the longitudinal axis. A fast time simulation was used for the control law synthesis, with emphasis on stochastic performance prediction and evaluation. Good correlation with flight test results was obtained.

  17. A Flight Study of the Effects on Tracking Performance of Changes in the Lateral-oscillatory Characteristics of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Van Dyke, Rudolph D , Jr; Mcneill, Walter E; Drinkwater, Fred J , III

    1953-01-01

    A study of the effects of variations in lateral-oscillatory characteristics on air-to-air tracking performance has been made, using a conventional, propeller-driven fighter airplane equipped with servo devices for varying these characteristics in flight. Tracking runs were made both in smooth air and in simulated rough air. The lateral-oscillation period, damping, and roll coupling were varied over wide ranges during the investigation.

  18. Flight-determined engine exhaust characteristics of an F404 engine in an F-18 airplane

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.; Burcham, Frank W., Jr.; Webb, Lannie D.

    1993-01-01

    Personnel at the NASA Langley Research Center (NASA-Langley) and the NASA Dryden Flight Research Facility (NASA-Dryden) recently completed a joint acoustic flight test program. Several types of aircraft with high nozzle pressure ratio engines were flown to satisfy a twofold objective. First, assessments were made of subsonic climb-to-cruise noise from flights conducted at varying altitudes in a Mach 0.30 to 0.90 range. Second, using data from flights conducted at constant altitude in a Mach 0.30 to 0.95 range, engineers obtained a high quality noise database. This database was desired to validate the Aircraft Noise Prediction Program and other system noise prediction codes. NASA-Dryden personnel analyzed the engine data from several aircraft that were flown in the test program to determine the exhaust characteristics. The analysis of the exhaust characteristics from the F-18 aircraft are reported. An overview of the flight test planning, instrumentation, test procedures, data analysis, engine modeling codes, and results are presented.

  19. Flight test report of the NASA icing research airplane: Performance, stability, and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Jordan, J. L.; Platz, S. J.; Schinstock, W. C.

    1986-01-01

    Flight test results are presented documenting the effect of airframe icing on performance and stability and control of a NASA DHC-6 icing research aircraft. Kohlman System Research, Inc., provided the data acquisition system and data analysis under contract to NASA. Performance modeling methods and MMLE techniques were used to determine the effects of natural ice on the aircraft. Results showed that ice had a significant effect on the drag coefficient of the aircraft and a modest effect on the MMLE derived longitudinal stability coefficients (code version MMLE). Data is also presented on asymmetric power sign slip maneuvers showing rudder floating characteristics with and without ice on the vertical stabilizer.

  20. Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.

    1983-01-01

    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.