Science.gov

Sample records for airplanes powerplant powerplant

  1. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Powerplant instruments. 25.1337 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1337 Powerplant instruments. (a) Instruments and instrument lines. (1) Each powerplant and auxiliary power unit...

  2. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1337 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1337 Powerplant... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers,...

  3. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....1337 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Instruments: Installation § 25.1337 Powerplant... hazard. (b) Fuel quantity indicator. There must be means to indicate to the flight crewmembers,...

  4. Nuclear Powerplant Safety: Operations.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Powerplant systems and procedures that ensure the day-to-day health and safety of people in and around the plant is referred to as operational safety. This safety is the result of careful planning, good engineering and design, strict licensing and regulation, and environmental monitoring. Procedures that assure operational safety at nuclear…

  5. Nuclear powerplants for mobile applications.

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. This paper examines the technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  6. 14 CFR 23.939 - Powerplant operating characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant... range of operating limitations of the airplane and of the engine. (b) Turbocharged reciprocating engine... emergency operation of the engine(s) throughout the range of operating limitations of both airplane...

  7. 14 CFR 23.939 - Powerplant operating characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant... range of operating limitations of the airplane and of the engine. (b) Turbocharged reciprocating engine... emergency operation of the engine(s) throughout the range of operating limitations of both airplane...

  8. Coal gasifier cogeneration powerplant project

    NASA Technical Reports Server (NTRS)

    Shure, L. I.; Bloomfield, H. S.

    1980-01-01

    Industrial cogeneration and utility pr systems were analyzed and a conceptual design study was conducted to evaluate the economic feasibility of a coal gasifier power plant for NASA Lewis Research Center. Site location, plant size, and electric power demand were considered in criteria developed for screening and selecting candidates that could use a wide variety of coals, including that from Ohio. A fluidized bed gasifier concept was chosen as the baseline design and key components of the powerplant were technically assessed. No barriers to environmental acceptability are foreseen. If funded, the powerplant will not only meet the needs of the research center, but will reduce the commercial risk for utilities and industries by fully verifying and demonstrating the technology, thus accelerating commercialization.

  9. Summary of Recent Hybrid Torpedo Powerplant Studies

    DTIC Science & Technology

    2007-12-01

    Powerplant Studies by Jonathan A. Peters Technical Report No. 07-004 December 2007 Supported by: E. G. Liszka, Director Office of Naval Research...To) 11/30/2007 Technical Report I 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Summary of Recent Hybrid Torpedo Powerplant Studies N00014-05-G-0106 5b...releasable Technical Report version to follow. 15 The THERMHYB package has been used successfully to support a number of powerplant development

  10. Nuclear Powerplant Safety: Design and Planning.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    The most important concern in the design, construction and operation of nuclear powerplants is safety. Nuclear power is one of the major contributors to the nation's supply of electricity; therefore, it is important to assure its safe use. Each different type of powerplant has special design features and systems to protect health and safety. One…

  11. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  12. Advanced-capability alkaline fuel cell powerplant

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    The alkaline fuel cell powerplant utilized in the Space Shuttle Orbiter has established an excellent performance and reliability record over the past decade. Recent AFC technology programs have demonstrated significant advances in cell durability and power density. These capabilities provide the basis for substantial improvement of the Orbiter powerplant, enabling new mission applications as well as enhancing performance in the Orbiter. Improved durability would extend the powerplant's time between overhaul fivefold, and permit longer-duration missions. The powerplant would also be a strong candidate for lunar/planetary surface power systems. Higher power capability would enable replacement of the Orbiter's auxiliary power units with electric motors, and benefits mass-critical applications such as the National AeroSpace Plane.

  13. 14 CFR 23.939 - Powerplant operating characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... General § 23.939 Powerplant operating characteristics. (a) Turbine engine powerplant operating... engine. (c) For turbine engines, the air inlet system must not, as a result of airflow distortion during normal operation, cause vibration harmful to the engine....

  14. 14 CFR 23.939 - Powerplant operating characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... General § 23.939 Powerplant operating characteristics. (a) Turbine engine powerplant operating... engine. (c) For turbine engines, the air inlet system must not, as a result of airflow distortion during normal operation, cause vibration harmful to the engine....

  15. Carbonate fuel cell powerplant development and commercialization

    SciTech Connect

    Williams, M.C.

    1997-04-01

    CFC powerplants offer the potential for ultrahigh efficiency energy conversion and the enhancement of the quality of our environment. Since combustion is not utilized, CFCs generate very low amounts of NOx. CFC powerplants have been exempt from air permitting requirements in California, Massachusetts. CFC is attractive for both polluted urban areas and remote applications. It is ideal as a distributed generator (sited at or near the electricity user). The US CFC developers enjoy the support of user groups (utility, other end-user members). DOE cooperates with GRI and EPRI in funding the US CFC program.

  16. 10 CFR 504.9 - Environmental requirements for certifying powerplants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... use of natural gas or petroleum, or both, as a primary energy source in any certifying powerplant... fuel as a primary energy source in a certifying powerplant. (a) NEPA compliance. Except as provided in... 10 Energy 4 2014-01-01 2014-01-01 false Environmental requirements for certifying powerplants....

  17. 10 CFR 504.9 - Environmental requirements for certifying powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... use of natural gas or petroleum, or both, as a primary energy source in any certifying powerplant... fuel as a primary energy source in a certifying powerplant. (a) NEPA compliance. Except as provided in... 10 Energy 4 2012-01-01 2012-01-01 false Environmental requirements for certifying powerplants....

  18. 10 CFR 504.9 - Environmental requirements for certifying powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... use of natural gas or petroleum, or both, as a primary energy source in any certifying powerplant... fuel as a primary energy source in a certifying powerplant. (a) NEPA compliance. Except as provided in... 10 Energy 4 2011-01-01 2011-01-01 false Environmental requirements for certifying powerplants....

  19. 14 CFR 65.87 - Powerplant rating; additional privileges.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Mechanics § 65.87... certificated mechanic with a powerplant rating may approve and return to service a powerplant or propeller or... and return it to service. (b) A certificated mechanic with a powerplant rating can approve and...

  20. 14 CFR 65.87 - Powerplant rating; additional privileges.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Mechanics § 65.87... certificated mechanic with a powerplant rating may approve and return to service a powerplant or propeller or... and return it to service. (b) A certificated mechanic with a powerplant rating can approve and...

  1. 14 CFR 65.87 - Powerplant rating; additional privileges.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Mechanics § 65.87... certificated mechanic with a powerplant rating may approve and return to service a powerplant or propeller or... and return it to service. (b) A certificated mechanic with a powerplant rating can approve and...

  2. 14 CFR 65.87 - Powerplant rating; additional privileges.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Mechanics § 65.87... certificated mechanic with a powerplant rating may approve and return to service a powerplant or propeller or... and return it to service. (b) A certificated mechanic with a powerplant rating can approve and...

  3. 14 CFR 65.87 - Powerplant rating; additional privileges.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: AIRMEN OTHER THAN FLIGHT CREWMEMBERS Mechanics § 65.87... certificated mechanic with a powerplant rating may approve and return to service a powerplant or propeller or... and return it to service. (b) A certificated mechanic with a powerplant rating can approve and...

  4. 14 CFR 27.1141 - Powerplant controls: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... open and fully closed position. (e) For turbine engine powered rotorcraft, no single failure or... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories... creep due to control loads or vibration. (d) Controls of powerplant valves required for safety must...

  5. 14 CFR 27.1141 - Powerplant controls: general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... open and fully closed position. (e) For turbine engine powered rotorcraft, no single failure or... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories... creep due to control loads or vibration. (d) Controls of powerplant valves required for safety must...

  6. 14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Powerplant Curriculum Subjects D Appendix D... Appendix D to Part 147—Powerplant Curriculum Subjects This appendix lists the subjects required in at least 750 hours of each powerplant curriculum, in addition to at least 400 hours in general...

  7. 10 CFR 504.9 - Environmental requirements for certifying powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Environmental requirements for certifying powerplants. 504.9 Section 504.9 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS EXISTING POWERPLANTS § 504.9... fuel as a primary energy source in a certifying powerplant. (a) NEPA compliance. Except as provided...

  8. Nuclear Powerplant Safety: Source Terms. Nuclear Energy.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    There has been increased public interest in the potential effects of nuclear powerplant accidents since the Soviet reactor accident at Chernobyl. People have begun to look for more information about the amount of radioactivity that might be released into the environment as a result of such an accident. When this issue is discussed by people…

  9. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Have torque limiting means on all accessory drives in order to prevent the torque limits established... approved as part of the powerplant driving the gearbox must— (1) Have torque limiting means to prevent the torque limits established for the affected drive from being exceeded; (2) Use the provisions on...

  10. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Have torque limiting means on all accessory drives in order to prevent the torque limits established... approved as part of the powerplant driving the gearbox must— (1) Have torque limiting means to prevent the torque limits established for the affected drive from being exceeded; (2) Use the provisions on...

  11. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Have torque limiting means on all accessory drives in order to prevent the torque limits established... approved as part of the powerplant driving the gearbox must— (1) Have torque limiting means to prevent the torque limits established for the affected drive from being exceeded; (2) Use the provisions on...

  12. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Have torque limiting means on all accessory drives in order to prevent the torque limits established... approved as part of the powerplant driving the gearbox must— (1) Have torque limiting means to prevent the torque limits established for the affected drive from being exceeded; (2) Use the provisions on...

  13. 14 CFR 23.1163 - Powerplant accessories.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Have torque limiting means on all accessory drives in order to prevent the torque limits established... approved as part of the powerplant driving the gearbox must— (1) Have torque limiting means to prevent the torque limits established for the affected drive from being exceeded; (2) Use the provisions on...

  14. 14 CFR 25.1163 - Powerplant accessories.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Powerplant accessories. (a) Each engine mounted accessory must— (1) Be approved for mounting on the engine involved; (2) Use the provisions on the engine for mounting; and (3) Be sealed to prevent contamination of the engine oil system and the accessory system. (b) Electrical equipment subject to arcing or...

  15. Powerplant productivity improvements and regulatory incentives

    SciTech Connect

    Hardy, D; Brown, D

    1980-10-27

    The purpose of this study was to examine the benefits to be gained from increased powerplant productivity and to validate and demonstrate the use of incentives within the regulatory process to promote the improvement of powerplant productivity. The system-wide costs savings to be gained from given productivity improvement scenarios are estimated in both the short and long term. Numerous reports and studies exist which indicate that productivity improvements at the powerplant level are feasible and cost effective. The efforts of this study widen this focus and relate system-wide productivity improvements with system-wide cost savings. The initial thrust of the regulatory section of this study is to validate the existence of reasonable incentive procedures which would enable regulatory agencies to better motivate electric utilities to improve productivity on both the powerplant and system levels. The voluntary incentive format developed in this study was designed to facilitate the link between profit and efficiency which is typically not clear in most regulated market environments. It is concluded that at the present time, many electric utilities in this country could significantly increase the productivity of their base load units, and the adoption of an incentive program of the general type recommended in this study would add to rate of return regulation the needed financial incentives to enable utilities to make such improvements without losing long-run profit. In light of the upcoming oil import target levels and mandatory cutbacks of oil and gas as boiler fuels for electric utilities, the use of incentive programs to encourage more efficient utilization of coal and nuclear base load capacity will become far more inviting over the next two decades.

  16. Coal-Based Fuel-Cell Powerplants

    NASA Technical Reports Server (NTRS)

    Ferral, J. F.; Pappano, A. W.; Jennings, C. N.

    1986-01-01

    Report assesses advanced technologyy design alternatives for integrated coal-gasifier/fuel-cell powerplants. Various gasifier, cleanup, and fuelcell options evaluated. Evaluation includes adjustments to assumed performances and costs of proposed technologies where required. Analysis identifies uncertainties remaining in designs and most promising alternatives and research and development required to develop these technologies. Bulk of report summary and detailed analysis of six major conceptual designs and variations of each. All designs for plant that uses Illinois No. 6 coal and produces 675 MW of net power.

  17. 14 CFR 121.253 - Powerplant fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Powerplant fire protection. 121.253 Section... Powerplant fire protection. (a) Designated fire zones must be protected from fire by compliance with §§ 121.255 through 121.261. (b) Designated fire zones are— (1) Engine accessory sections; (2)...

  18. 14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Powerplant Curriculum Subjects D Appendix D... (CONTINUED) SCHOOLS AND OTHER CERTIFICATED AGENCIES AVIATION MAINTENANCE TECHNICIAN SCHOOLS Pt. 147, App. D Appendix D to Part 147—Powerplant Curriculum Subjects This appendix lists the subjects required in at...

  19. 14 CFR 29.1141 - Powerplant controls: general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 29.1141 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and... required for safety must have— (1) For manual valves, positive stops or in the case of fuel valves...

  20. Seasonal issues can chill powerplant profits

    SciTech Connect

    Swanekamp, R.

    1996-07-01

    Profitable operation requires minimizing the seasonal constraints imposed by weather. This article describes how forward-thinking operators review their plans for winterization and hot-weather operation--before the thermometer darts toward either extreme. new cooling towers (CTs) are no longer oversized, leaving little room for fouling that can shoot up in hot weather. Also, powerplants are no longer being designed with surplus heat exchangers and redundant pumps--features that can help a plant get through extreme temperatures. And at a growing list of plants, the CTs are eliminated altogether, in favor of air-cooled (AC) condensers--which can have their own trouble holding condenser vacuum when the outdoor thermometer skyrockets; and, like their CT cousins, can suffer serious failures if improperly operated in winter`s freeze. Although design margins are being stretched thin, seasoned operations and maintenance (O and M) teams can minimize the constraints imposed by mother nature.

  1. Altitude-Wind-Tunnel Investigation of R-4360-18 Power-Plant Installation for XR60 Airplane. 3; Performance of Induction and Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Dupree, David T.; Hawkins, W. Kent

    1947-01-01

    A study has been made of the performance of the induction and the exhaust systems on the XR60 power-plant installation as part of an investigation conducted in the Cleveland altitude wind tunnel. Altitude flight conditions from 5000 to 30,000 feet were simulated for a range of engine powers from 750 to 3000 brake horsepower. Slipstream rotation prevented normal pressure recoveries in the right side of the main duct in the region of the right intercooler cooling-air duct inlet. Total-pressure losses in the charge-air flow between the turbosupercharger and the intercoolers were as high as 2.1 inches of mercury. The total-pressure distribution of the charge air at the intercooler inlets was irregular and varied as much as 1.0 inch of mercury from the average value at extreme conditions, Total-pressure surveys at the carburetor top deck showed a variation from the average value of 0.3 inch of mercury at take-off power and 0.05 inch of mercury at maximum cruising power, The carburetor preheater system increased the temperature of the engine charge air a maximum of about 82 F at an average cowl-inlet air temperature of 9 F, a pressure altitude of 5000 feet, and a brake horsepower of 1240.

  2. Characterization Testing of the Teledyne Passive Breadboard Fuel Cell Powerplant

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    NASA's Exploration Technology Development Program (ETDP) is tasked with the development of enabling and enhancing technologies for NASA's exploration missions. As part of that initiative, the return to the Moon requires a reliable, efficient, and lightweight fuel cell powerplant system to provide power to the Altair Lunar Lander and for lunar surface systems. Fuel cell powerplants are made up of two basic parts; the fuel cell itself and the supporting ancillary subsystem. This subsystem is designed to deliver reactants to the fuel cell and remove product water and waste heat from the fuel cell. Typically, fuel cell powerplant ancillary subsystems rely upon pumps and active water separation techniques to accomplish these tasks for closed hydrogen/oxygen systems. In a typical system, these components are the largest contributors to the overall parasitic power load of the fuel cell powerplant. A potential step towards the development of an efficient lightweight power system is to maximize the use of "passive" or low-power ancillary components as a replacement to these high-power load components

  3. Loading concepts for Hoover Powerplant to optimize plant operating efficiency

    SciTech Connect

    Stitt, S.C.

    1983-08-01

    Plant efficiency gains that could be realized at Hoover Powerplant by the use of an algorithm to optimize plant efficiency are given. Comparisons are shown between the present plant operating conditions modeled on a digital computer, and the plant with the proposed unified bus operating under control of a GELA (Generator Efficiency Loading Algorithm) system. The basic concepts of that algorithm are given.

  4. Groundwater impact assessment report for the 284-WB Powerplant Ponds

    SciTech Connect

    Alexander, D.J.; Johnson, V.G.; Lindsey, K.A.

    1993-09-01

    As required by the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement Milestone M-17-00A), this report assesses the impact of wastewater discharged to the 284-WB Powerplant Ponds on groundwater quality. The assessment reported herein expands upon the initial analysis conducted between 1989 and 1990 for the Liquid Effluent Study Final Project Plan.

  5. Overcoming Present-Day Powerplant Limitations Via Unconventional Engine Configurations

    DTIC Science & Technology

    2006-11-01

    an excellent chance of achieving Homogeneous Charge Compression Ignition ( HCCI ), the holy grail of piston engine research. Most important, the...1 OVERCOMING PRESENT-DAY POWERPLANT LIMITATIONS VIA UNCONVENTIONAL ENGINE CONFIGURATIONS P.L. Meitner* Army Research Laboratory—Vehicle...development of three unconventional engine concepts - two intermittent combustion (IC) engines and one turbine engine (via SBIR (Small Business

  6. Water consumption by nuclear powerplants and some hydrological implications

    USGS Publications Warehouse

    Giusti, Ennio V.; Meyer, E.L.

    1977-01-01

    Published data show that estimated water consumption varies with the cooling system adopted, being least in once-through cooling (about 18 cubic feet per second per 1,000 megawatts electrical) and greatest in closed cooling with mechanical draft towers (about 30 cubic feet per second per 1,000 megawatts electrical). When freshwater is used at this magnitude, water-resources economy may be affected in a given region. The critical need for cooling water at all times by the nuclear powerplant industry, coupled with the knowledge that water withdrawal in the basin will generally increase with time and will be at a maximum during low-flow periods, indicates a need for reexamination of the design low flow currently adopted and the methods used to estimate it. The amount of power generated, the name of the cooling water source, and the cooling method adopted for all nuclear powerplants projected to be in operation by 1985 in the United States are tabulated and the estimated annual evaporation at each powerplant site is shown on a map of the conterminous United States. Another map is presented that shows all nuclear powerplants located on river sites as well as stream reaches in the United States where the 7-day, 10-year low flow is at least 300 cubic feet per second or where this amount of flow can be developed with storage. (Woodard-USGS)

  7. 18 CFR 287.101 - Determination of powerplant design capacity.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 1978, a powerplant's design capacity shall be determined as follows: (a) Steam-electric generating unit. The design capacity of a steam-electric generating unit shall be maximum generator nameplate rating... for site elevation, and the maximum generator nameplate rating measured in kilowatts of the...

  8. 18 CFR 287.101 - Determination of powerplant design capacity.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 1978, a powerplant's design capacity shall be determined as follows: (a) Steam-electric generating unit. The design capacity of a steam-electric generating unit shall be maximum generator nameplate rating... for site elevation, and the maximum generator nameplate rating measured in kilowatts of the...

  9. 18 CFR 287.101 - Determination of powerplant design capacity.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 1978, a powerplant's design capacity shall be determined as follows: (a) Steam-electric generating unit. The design capacity of a steam-electric generating unit shall be maximum generator nameplate rating... adjusted for site elevation, and the maximum generator nameplate rating measured in kilowatts of the...

  10. 18 CFR 287.101 - Determination of powerplant design capacity.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Determination of powerplant design capacity. 287.101 Section 287.101 Conservation of Power and Water Resources FEDERAL ENERGY... site elevation. (c) Combined cycle unit. The design capacity of a combined cycle shall be the sum...

  11. 18 CFR 287.101 - Determination of powerplant design capacity.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Determination of powerplant design capacity. 287.101 Section 287.101 Conservation of Power and Water Resources FEDERAL ENERGY... unit's site elevation. (c) Combined cycle unit. The design capacity of a combined cycle shall be...

  12. Powerplant and Industrial Fuel Use Act annual report

    SciTech Connect

    1981-03-01

    This annual report was prepared for the Congress by the Secretary of the Department of Energy (DOE) in conjunction with the Acting Administrator of the Environmental Protection Agency (EPA) as required by Section 806 of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), Public Law 95-620, enacted November 9, 1978. This annual report describes actions taken under the legislation, which was enacted to promote national energy self-sufficiency and encourage the use of the alternate energy resources in electric powerplants and major industrial fuel-burning installations (MFBI's) in the utility, industrial and Federal governmental sectors. Annual FUA implementation activities are discussed and legislative requirements are satisfied that the annual report discuss: actions taken under FUA and under Section 2 of the Energy Supply and Environmental Coordination Act of 1974 (ESECA) Public Law 93-319 during the preceding calendar year; and the effectiveness of the provisions of both laws in achieving their purposes.

  13. Comparison of financing costs for wind turbine and fossil powerplants

    SciTech Connect

    Kahn, E.

    1995-02-01

    This paper compares the financing costs of wind turbine powerplants with those of fossil powerplants. The goal of this examination is to determine the extent to which these costs differ and what the sources of such differences may be. The discussion is organized in the following fashion. Section 2 introduces basic terminology and concepts from finance, as they apply in the powerplant setting. Section 3 reviews available data from a variety of sources to estimate the magnitude of the variables identified in Section 2. In Section 4 we examine the effect of the production tax credit enacted in the Energy Policy Act of 1992 on the financing of wind turbine projects. Conclusions are offered in Section 5. In the past two years there have been only two wind turbine projects that have been financed, so the basis for broad conclusions is limited. Nonetheless, there appears to be a significant advantage in financing costs for conventional projects compared to wind turbines. The two sources of disadvantage to wind power are first, the cost of equity capital is significantly more expensive, and second, the capital structure of wind projects has a much greater fraction of expensive equity than conventional alternatives.

  14. Overcoming Present-Day Powerplant Limitations Via Unconventional Engine Configurations

    NASA Technical Reports Server (NTRS)

    Meitner, Peter L.

    2006-01-01

    The Army Research Laboratory s Vehicle Technology Directorate is sponsoring the prototype development of three unconventional engine concepts - two intermittent combustion (IC) engines and one turbine engine (via SBIR (Small Business Innovative Research) contracts). The IC concepts are the Nutating Engine and the Bonner Engine, and the turbine concept is the POWER Engine. Each of the three engines offers unique and greatly improved capabilities (which cannot be achieved by present-day powerplants), while offering significant reductions in size and weight. This paper presents brief descriptions of the physical characteristics of the three engines, and discusses their performance potentials, as well as their development status.

  15. 10 CFR 501.51 - Prohibitions by order-electing powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Prohibitions by order-electing powerplants. 501.51 Section 501.51 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS Prohibition Rules and Orders § 501.51 Prohibitions by order—electing powerplants. (a) OFE may prohibit...

  16. 10 CFR 501.51 - Prohibitions by order-electing powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Prohibitions by order-electing powerplants. 501.51 Section 501.51 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS Prohibition Rules and Orders § 501.51 Prohibitions by order—electing powerplants. (a) OFE may prohibit...

  17. 10 CFR 501.51 - Prohibitions by order-electing powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Prohibitions by order-electing powerplants. 501.51 Section 501.51 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS Prohibition Rules and Orders § 501.51 Prohibitions by order—electing powerplants. (a) OFE may prohibit...

  18. 10 CFR 503.6 - Cost calculations for new powerplants and installations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... accounting principles consistently applied. (9) The scope of the estimates of relevant costs (as discussed... 10 Energy 4 2010-01-01 2010-01-01 false Cost calculations for new powerplants and installations... Requirements for Exemptions § 503.6 Cost calculations for new powerplants and installations. (a) General....

  19. 10 CFR 501.52 - Prohibitions by order-certifying powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 501.52 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND... prohibit by order the use of petroleum or natural gas as a primary energy source or in amounts in excess of... reasonable fuel efficiency in an existing powerplant if the owner or operator of the powerplant...

  20. 10 CFR 501.52 - Prohibitions by order-certifying powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 501.52 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND... prohibit by order the use of petroleum or natural gas as a primary energy source or in amounts in excess of... reasonable fuel efficiency in an existing powerplant if the owner or operator of the powerplant...

  1. 10 CFR 501.52 - Prohibitions by order-certifying powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 501.52 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND... prohibit by order the use of petroleum or natural gas as a primary energy source or in amounts in excess of... reasonable fuel efficiency in an existing powerplant if the owner or operator of the powerplant...

  2. Performance retention of the RB211 powerplant in service

    NASA Technical Reports Server (NTRS)

    Astridge, B. L.; Pinder, J. T.

    1981-01-01

    An understanding of the mechanisms of deterioration is essential in order that features to counteract performance degradation can be built into the basic design of an engine and nacelle. Furthermore, the interpretation must be continued in service for effective feedback to provide modifications which may be necessary in maintaining a satisfactory performance retention program. The in service assessment must be accurate as to magnitude and causes and this requires consideration of: (1) the powerplant as a complete entity, i.e., the engine components and nacelle including the thrust reverser; (2) measurement of performance in flight rather than by sole reliance on the scaling of test cell data to flight conditions (although some correlation should be possible); and (3) the relationship of engine parts condition to overhaul performance and in flight deterioration level of that engine. These aspects are addressed by consideration of the RB211 engine in service in both the Lockheed L1011 Tristar and Boeing 747 aircraft.

  3. Status of commercial fuel cell powerplant system development

    NASA Technical Reports Server (NTRS)

    Warshay, Marvin

    1987-01-01

    The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.

  4. Status of commercial fuel cell powerplant system development

    NASA Astrophysics Data System (ADS)

    Warshay, Marvin

    The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.

  5. Deer Creek Dam, Hydroelectric Powerplant, 868 feet/291 degrees from intersection ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Deer Creek Dam, Hydroelectric Powerplant, 868 feet/291 degrees from intersection of dam complex access road with U.S. Highway 189, 1,340 feet/352 degrees from the dam spillway overpass, Charleston, Wasatch County, UT

  6. Comparisons of four alternative powerplant types for future general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Wickenheiser, T. J.; Knip, G.; Plencner, R. M.; Strack, W. C.

    1980-01-01

    Recently completed NASA sponsored conceptual studies were culminated in the identification of promising new technologies for future spark ignition, diesel, rotary, and turbine engines. The results of a NASA in-house preliminary assessment study that compares these four powerplants types in several general aviation applications are reported. The evaluation consisted of installing each powerplant type in rubberized aircraft which are sized to accomplish fixed missions. The primary evaluation criteria include projected aircraft cost, total ownership cost, and mission fuel.

  7. Implications of environmental externalities assessments for solar thermal powerplants

    NASA Astrophysics Data System (ADS)

    Lee, A. D.; Baechler, M. C.

    1991-03-01

    Externalities are those impacts of one activity on other activities that are not priced in the marketplace. An externality is said to exist when two conditions hold: (1) the utility or operations of one economic agent, A, include nonmonetary variables whose values are chosen by another economic agent, B, without regard to the effects on A, and (2) B does not pay A compensation equal to the incremental costs inflicted on A. Electricity generation involves a wide range of potential and actual environmental impacts. Legislative, permitting, and regulatory requirements directly or indirectly control certain environmental impacts, implicitly causing them to become internalized in the cost of electricity generation. Electricity generation, however, often produces residual environmental impacts that meet the definition of an externality. Mechanisms have been developed by several states to include the costs associated with externalities in the cost-effectiveness analyses of new powerplants. This paper examines these costs for solar thermal plants and applies two states' scoring methodologies to estimate how including externalities would affect the levelized costs of power from a solar plant in the Pacific Northwest. It concludes that including externalities in the economics can reduce the difference between the levelized cost of a coal and solar plant by between 0.74 and 2.42 cents/kWh.

  8. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-03-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  9. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  10. A reliability and mass perspective of SP-100 Stirling cycle lunar-base powerplant designs

    SciTech Connect

    Bloomfield, H.S.

    1991-06-01

    The purpose was to obtain reliability and mass perspectives on selection of space power system conceptual designs based on SP-100 reactor and Stirling cycle power-generation subsystems. The approach taken was to: (1) develop a criterion for an acceptable overall reliability risk as a function of the expected range of emerging technology subsystem unit reliabilities; (2) conduct reliability and mass analyses for a diverse matrix of 800-kWe lunar-base design configurations employing single and multiple powerplants with both full and partial subsystem redundancy combinations; and (3) derive reliability and mass perspectives on selection of conceptual design configurations that meet an acceptable reliability criterion with the minimum system mass increase relative to reference powerplant design. The developed perspectives provided valuable insight into the considerations required to identify and characterize high-reliability and low-mass lunar-base powerplant conceptual design.

  11. A reliability and mass perspective of SP-100 Stirling cycle lunar-base powerplant designs

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1991-01-01

    The purpose was to obtain reliability and mass perspectives on selection of space power system conceptual designs based on SP-100 reactor and Stirling cycle power-generation subsystems. The approach taken was to: (1) develop a criterion for an acceptable overall reliability risk as a function of the expected range of emerging technology subsystem unit reliabilities; (2) conduct reliability and mass analyses for a diverse matrix of 800-kWe lunar-base design configurations employing single and multiple powerplants with both full and partial subsystem redundancy combinations; and (3) derive reliability and mass perspectives on selection of conceptual design configurations that meet an acceptable reliability criterion with the minimum system mass increase relative to reference powerplant design. The developed perspectives provided valuable insight into the considerations required to identify and characterize high-reliability and low-mass lunar-base powerplant conceptual design.

  12. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Prohibitions against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount...

  13. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Prohibitions against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount...

  14. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Prohibitions against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount...

  15. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Prohibitions against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.8 Prohibitions against excessive use of petroleum or natural gas... use of petroleum or natural gas in such powerplant in amounts exceeding the minimum amount...

  16. Empirical expressions for estimating length and weight of axial-flow components of VTOL powerplants

    NASA Technical Reports Server (NTRS)

    Sagerser, D. A.; Lieblein, S.; Krebs, R. P.

    1971-01-01

    Simplified equations are presented for estimating the length and weight of major powerplant components of VTOL aircraft. The equations were developed from correlations of lift and cruise engine data. Components involved include fan, fan duct, compressor, combustor, turbine, structure, and accessories. Comparisons of actual and calculated total engine weights are included for several representative engines.

  17. Application of automotive engine control technology to general aviation aircraft powerplants

    NASA Astrophysics Data System (ADS)

    Tennant, Christopher John

    1997-10-01

    The general aviation industry has lagged behind the automotive industry in powerplant development due to depressed economic conditions in their marketplace. Recent efforts to revitalize the industry have encountered the hindrance of thirty-year-old engine technology. Current automotive engine control technology has been reviewed for its potential for transfer to existing general aviation powerplants. Current automotive engine control technology was classified into basic, correction, and feedback elements for the control of fuel flow and ignition timing. The value of each element was assessed for application to a general aviation powerplant in terms of an aviation duty cycle. An extensive database produced from tests of a 1.9 liter Saturn automotive engine was used to quantify potential benefits by providing information about engine operation over a wide range of air/fuel ratios and ignition timings. It was assumed that compliance with future emissions regulations for aircraft was a serious concern. A method for quantifying the effects of some controller elements that took into account emissions, thermal efficiency and power output of the engine was developed. The study concluded that all existing automotive engine control elements offer benefits to aviation powerplants, the most predominant of which are those that control fuel delivery.

  18. 10 CFR 501.51 - Prohibitions by order-electing powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Prohibitions by order-electing powerplants. 501.51 Section 501.51 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS... order the use of petroleum or natural gas as a primary energy source or in amounts in excess of...

  19. 10 CFR 501.52 - Prohibitions by order-certifying powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Prohibitions by order-certifying powerplants. 501.52 Section 501.52 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND... prohibit by order the use of petroleum or natural gas as a primary energy source or in amounts in excess...

  20. Evaluation of nonpotable ground water in the desert area of southeastern California for powerplant cooling

    USGS Publications Warehouse

    Steinemann, Anne C.

    1989-01-01

    Powerplant siting is dependent upon many factors; in southern California the prevailing physical constraint is water availability. Increasing land-use and other environmental concerns preclude further sites along the coast. A review of available hydrologic data was made of 142 ground-water basins in the southeast California desert area to ascertain if any could be feasible sources of nonpotable powerplant cooling water. Feasibility implies the capacity to sustain a typical 1,000-megawatt electrical-power generating plant for 30 years with an ample supply of ground water for cooling. Of the 142 basins reviewed, 5 met or exceeded established hydrologic criteria for supplying the water demands of a typical powerplant. These basins are: (1) middle Amargosa valley, (2) Soda Lake valley, (3) Caves Canyon valley, (4) Chuckwalla Valley, and (5) Calzona-Vidal Valley. Geohydrologic evaluations of these five basins assessed the occurrence and suitability of ground water and effects of long-term pumping. An additional six basins met or exceeded hydrologic criteria, with qualifications, for providing powerplant cooling water. The remaining 131 basins either did not meet the criteria, or available data were insufficient to determine if the basins would meet the criteria.

  1. Proton-Exchange-Membrane Fuel Cell Powerplants Developed and Tested for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark A.; Pham, Nang T.

    2005-01-01

    Proton-exchange-membrane fuel cell (PEMFC) technology has received major attention for terrestrial applications, such as the automotive and residential markets, for the past 20 years. This attention has significantly advanced the maturity of the technology, resulting in ever more compact, efficient, reliable, and inexpensive PEMFC designs. In comparison to the terrestrial operating environment, the space operating environment is much more demanding. Microgravity to high-gravity loads and the need to use pure oxygen (rather than air) as the fuel cell oxidizer place more stringent demands on PEMFC technology. NASA and its partners from industry are leveraging terrestrial PEMFC advancements by conducting parallel space technology development for future exploration missions. A team from the NASA Glenn Research Center, NASA Johnson Space Center, and NASA Kennedy Space Center recently completed the first phase of a PEMFC powerplant development effort for exploration missions. The industry partners for this phase of the development effort were ElectroChem, Inc., and Teledyne Energy Systems, Inc. Under contract to Glenn, both of these industry partners successfully designed, fabricated, and tested a breadboard PEMFC powerplant in the 1- to 5-kW power range. These powerplants were based on existing company-proprietary fuel cell stack designs, combined with off-the-shelf components, which formed the balance of the powerplant design. Subsequent to the contractor development efforts, both powerplants were independently tested at Johnson to verify operational and performance characteristics, and to determine suitability for further technology development in the second phase of the NASA-led effort. Following the independent NASA testing, Teledyne Energy Systems, Inc., was selected to develop an engineering model PEMFC powerplant. This effort was initiated by the 2nd Generation Reusable Launch Vehicle (RLV) Program Office in 2001; it transitioned to the Next Generation Launch

  2. 14 CFR 23.1141 - Powerplant controls: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... control loads or vibration. (d) Each control must be able to withstand operating loads without failure or excessive deflection. (e) For turbine engine powered airplanes, no single failure or malfunction, or... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES...

  3. 14 CFR 23.1141 - Powerplant controls: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... control loads or vibration. (d) Each control must be able to withstand operating loads without failure or excessive deflection. (e) For turbine engine powered airplanes, no single failure or malfunction, or... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES...

  4. Apparatus and method for suppressing sound in a gas turbine engine powerplant

    NASA Technical Reports Server (NTRS)

    Wynosky, Thomas A. (Inventor); Mischke, Robert J. (Inventor)

    1992-01-01

    A method and apparatus for suppressing jet noise in a gas turbine engine powerplant 10 is disclosed. Various construction details are developed for providing sound suppression at sea level take-off operative conditions and not providing sound suppression at cruise operative conditions. In one embodiment, the powerplant 10 has a lobed mixer 152 between a primary flowpath 44 and a second flowpath 46, a diffusion region downstream of the lobed mixer region (first mixing region 76), and a deployable ejector/mixer 176 in the diffusion region which forms a second mixing region 78 having a diffusion flowpath 72 downstream of the ejector/mixer and sound absorbing structure 18 bounding the flowpath throughout the diffusion region. The method includes deploying the ejector/mixer 176 at take-off and stowing the ejector/mixer at cruise.

  5. The numerical simulation of the delayed load rejection of a pump-turbine powerplant

    NASA Astrophysics Data System (ADS)

    Fang, Y. J.; Koutnik, J.

    2012-11-01

    This paper presents results of a numerical simulation of the transient behaviour of a 4×320MW pump-turbine powerplant, where all 4 units are connected on the same headrace tunnel, the same surge tank tail water side and the same tailrace tunnel. The minimum allowable pressure at draft tube entrance during the transient will be discussed at the beginning. The simulation reveals a severe pressure drop down to -30mwc in the draft tube of the last unit, if this is load rejected app. 5 seconds later than the other 3 units. Possible active countermeasures (asynchronous guide vane closing, stepped closing of spherical valve, or limiting the operation of the powerplant) as well as the structural (passive) countermeasure (hillchart modification through new PT hydraulic design) for mitigation of this problem will be discussed and investigated in detail.

  6. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in COAL IGCC Powerplants

    SciTech Connect

    Kenneth A. Yackly

    2004-09-30

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, has been re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for Coal IGCC powerplants. The new program has been re-titled as ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants'' to better match the new scope. This technical progress report summarizes the work accomplished in the reporting period April 1, 2004 to August 31, 2004 on the revised Re-Directed and De-Scoped program activity. The program Tasks are: Task 1--IGCC Environmental Impact on high Temperature Materials: This first materials task has been refocused to address Coal IGCC environmental impacts on high temperature materials use in gas turbines and remains in the program. This task will screen material performance and quantify the effects of high temperature erosion and corrosion of hot gas path materials in Coal IGCC applications. The materials of interest will include those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: This second task develops and demonstrates new sensor technologies to determine the in-service health of advanced technology Coal IGCC powerplants, and remains in the program with a reduced scope. Its focus is now on only two critical sensor need areas for advanced Coal IGCC gas turbines: (1) Fuel Quality Sensor for detection of fuel impurities that could lead to rapid component degradation, and a Fuel Heating Value Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware.

  7. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

    SciTech Connect

    Johnson, Robert L.; Simmons, Mary Ann; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

    2005-02-25

    This report documents the fourth year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

  8. Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay

    SciTech Connect

    Simmons, Mary Ann; Johnson, Robert L.; McKinstry, Craig A.; Simmons, Carver S.; Cook, Chris B.; Brown, Richard S.; Tano, Daniel K.; Thorsten, Susan L.; Faber, Derrek M.; Lecaire, Richard; Francis, Stephen

    2004-01-01

    This report documents the third year of a four-year study to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee salmon (Oncorhynchus nerka) and rainbow trout (O. mykiss) in the forebay to the third powerplant at Grand Coulee Dam. This work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes).

  9. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  10. Technology for Bayton-cycle powerplants using solar and nuclear energy

    NASA Technical Reports Server (NTRS)

    English, R. E.

    1986-01-01

    Brayton cycle gas turbines have the potential to use either solar heat or nuclear reactors for generating from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power generating system. Their development for solar energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power generating system has already demonstrated overall efficiency of 0.29 and operated 38 000 hr. Tests of improved components show that these components would raise that efficiency to 0.32, a value twice that demonstrated by any alternate concept. Because of this high efficiency, solar Brayton cycle power generators offer the potential to increase power per unit of solar collector area to levels exceeding four times that from photovoltaic powerplants using present technology for silicon solar cells. The technologies for solar mirrors and heat receivers are reviewed and assessed. This Brayton technology for solar powerplants is equally suitable for use with the nuclear reactors. The available long time creep data on the tantalum alloy ASTAR-811C show that such Brayton cycles can evolve to cycle peak temperatures of 1500 K (2240 F). And this same technology can be extended to generate 10 to 100 MW in space by exploiting existing technology for terrestrial gas turbines in the fields of both aircraft propulsion and stationary power generation.

  11. Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants

    SciTech Connect

    Kenneth A. Yackly

    2005-12-01

    The ''Enabling & Information Technology To Increase RAM for Advanced Powerplants'' program, by DOE request, was re-directed, de-scoped to two tasks, shortened to a 2-year period of performance, and refocused to develop, validate and accelerate the commercial use of enabling materials technologies and sensors for coal/IGCC powerplants. The new program was re-titled ''Enabling Technology for Monitoring & Predicting Gas Turbine Health & Performance in IGCC Powerplants''. This final report summarizes the work accomplished from March 1, 2003 to March 31, 2004 on the four original tasks, and the work accomplished from April 1, 2004 to July 30, 2005 on the two re-directed tasks. The program Tasks are summarized below: Task 1--IGCC Environmental Impact on high Temperature Materials: The first task was refocused to address IGCC environmental impacts on high temperature materials used in gas turbines. This task screened material performance and quantified the effects of high temperature erosion and corrosion of hot gas path materials in coal/IGCC applications. The materials of interest included those in current service as well as advanced, high-performance alloys and coatings. Task 2--Material In-Service Health Monitoring: The second task was reduced in scope to demonstrate new technologies to determine the inservice health of advanced technology coal/IGCC powerplants. The task focused on two critical sensing needs for advanced coal/IGCC gas turbines: (1) Fuel Quality Sensor to rapidly determine the fuel heating value for more precise control of the gas turbine, and detection of fuel impurities that could lead to rapid component degradation. (2) Infra-Red Pyrometer to continuously measure the temperature of gas turbine buckets, nozzles, and combustor hardware. Task 3--Advanced Methods for Combustion Monitoring and Control: The third task was originally to develop and validate advanced monitoring and control methods for coal/IGCC gas turbine combustion systems. This task was

  12. Design of power-plant installations pressure-loss characteristics of duct components

    NASA Technical Reports Server (NTRS)

    Henry, John R

    1944-01-01

    A correlation of what are believed to be the most reliable data available on duct components of aircraft power-plant installations is presented. The information is given in a convenient form and is offered as an aid in designing duct systems and, subject to certain qualifications, as a guide in estimating their performance. The design and performance data include those for straight ducts; simple bends of square, circular, and elliptical cross sections; compound bends; diverging and converging bends; vaned bends; diffusers; branch ducts; internal inlets; and an angular placement of heat exchangers. Examples are included to illustrate methods of applying these data in analyzing duct systems. (author)

  13. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  14. Speculations on future opportunities to evolve Brayton powerplants aboard the space station

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1987-01-01

    The Space Station provides a unique, low-risk environment in which to evolve new capabilities. In this way, the Space Station will grow in capacity, in its range of capabilities, and its economy of operation as a laboratory and as a center for space operations. Although both Rankine and Brayton cycles, two concepts for solar dynamic power generation, now compete to power the station, this paper confines its attention to the Brayton cycle using a mixture of He and Xe as its working fluid. Such a Brayton powerplant to supply the station's increasing demands for both electric power and heat has the potential to gradually evolve higher and higher performance by exploiting already-evolved materials (ASTAR-811C and molten-Li heat storage), its peak cycle temperature rising ultimately to 1500 K. Adapting the station to exploit long tethers (200 to 300 km long) could yield increases in payloads to LEO, to GEO, and to distant destinations in the solar system. Such tethering of the Space Station would not only require additional power for electric propulsion but also would so increase nuclear safety that nuclear powerplants might provide this power. From an 8000-kWt SP-100 reactor, thermoelectric power generation could produce 300 kWe, or adapted solar-Brayton cycle, 2400 to 2800 kWe.

  15. Speculations on future opportunities to evolve Brayton powerplants aboard the space station

    SciTech Connect

    English, R.E.

    1994-09-01

    The Space Station provides a unique, low-risk environment in which to evolve new capabilities. In this way, the Station will grow in capacity, in its range of capabilities, and in its economy of operation as a laboratory, as a center for materials processing, and as a center for space operations. Although both Rankine and Brayton cycles, two concepts for solar-dynamic power generation, now compete to power the Station, this paper confines its attention to the Brayton cycle using a mixture of He and Xe as its working fluid. Such a Brayton powerplant to supply the Station`s increasing demands for both electric power and heat has the potential to gradually evolve higher and higher performance by exploiting already-evolved materials (ASTAR-811C and molten-Li heat storage), its peak cycle temperature rising ultimately to 1500 K. Adapting the Station to exploit long tethers (200 to 300 km long) could yield large increases in payloads to LEO, to GEO, and to distant destinations in the solar system. Such tethering of the Space Station would not only require additional power for electric propulsion but also would so increase nuclear safety that nuclear powerplants might provide this power. From an 8000-kWt SP-100 reactor, thermoelectric power generation could produce 300 kWe, or adapted solar-Brayton cycle, 2400 to 2800 kWe.

  16. Information and issues related to the quantification of environmental externalities for new powerplants

    SciTech Connect

    Lee, A.D.; Callaway, J.M.; Glantz, C.S.; Baechler, M.C.; Foley, L.O.

    1990-10-01

    This report provides background information for the Bonneville Power Administration (Bonneville) in its efforts to quantify the environmental externalities associated with new electricity resources. A more detailed companion document has been provided to Bonneville for internal use. This report defines what is meant by externalities, particularly in the context of electricity resources. It outlines the economics issues associated with assigning an economic value, such as cents per kilowatt hour, to the residual environmental impacts of electricity powerplants. It examines two generic theoretical approaches for estimating such values and discusses their advantages and disadvantages. The report also addresses the need to include relevant stages in the fuel cycle in estimating the costs of externalities. The fuel-cycle concept is defined and its importance is discussed. The approaches used by several states to quantify externalities are described. A review of the valuation efforts of various states and utilities indicates that three states have actually developed methodologies for assigning economic values to externalities. Information that Bonneville may need to request from resource developers to quantify externalities is discussed, and an appendix presents suggested forms for obtaining the required information. Summary information also is presented on models for analyzing the dispersion of powerplant plumes for the purpose of estimating environmental externality costs. 34 refs., 1 fig., 4 tabs.

  17. 10 CFR 504.5 - Prohibitions by order (certifying powerplants under section 301 of FUA, as amended).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... section 301 of the Act, as amended, the use of petroleum or natural gas as a primary energy source where... feasibility to use coal or another alternate fuel as a primary energy source in the unit. The informational... 10 Energy 4 2011-01-01 2011-01-01 false Prohibitions by order (certifying powerplants...

  18. 10 CFR 504.5 - Prohibitions by order (certifying powerplants under section 301 of FUA, as amended).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... section 301 of the Act, as amended, the use of petroleum or natural gas as a primary energy source where... feasibility to use coal or another alternate fuel as a primary energy source in the unit. The informational... 10 Energy 4 2012-01-01 2012-01-01 false Prohibitions by order (certifying powerplants...

  19. 10 CFR 504.5 - Prohibitions by order (certifying powerplants under section 301 of FUA, as amended).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... section 301 of the Act, as amended, the use of petroleum or natural gas as a primary energy source where... feasibility to use coal or another alternate fuel as a primary energy source in the unit. The informational... 10 Energy 4 2014-01-01 2014-01-01 false Prohibitions by order (certifying powerplants...

  20. 10 CFR 504.5 - Prohibitions by order (certifying powerplants under section 301 of FUA, as amended).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... section 301 of the Act, as amended, the use of petroleum or natural gas as a primary energy source where... feasibility to use coal or another alternate fuel as a primary energy source in the unit. The informational... 10 Energy 4 2013-01-01 2013-01-01 false Prohibitions by order (certifying powerplants...

  1. 10 CFR 504.8 - Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... petroleum or natural gas and coal or another alternate fuel as a primary energy source, for purposes of this... 10 Energy 4 2010-01-01 2010-01-01 false Prohibitions against excessive use of petroleum or natural gas in mixtures-certifying powerplants. 504.8 Section 504.8 Energy DEPARTMENT OF ENERGY...

  2. 10 CFR 504.5 - Prohibitions by order (certifying powerplants under section 301 of FUA, as amended).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... feasibility to use coal or another alternate fuel as a primary energy source in the unit. The informational... 10 Energy 4 2010-01-01 2010-01-01 false Prohibitions by order (certifying powerplants under section 301 of FUA, as amended). 504.5 Section 504.5 Energy DEPARTMENT OF ENERGY (CONTINUED)...

  3. 77 FR 74473 - Notice of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... coal or another alternate fuel as a primary energy source. Pursuant to FUA in order to meet the... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Notice of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial Fuel Use...

  4. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... fuel as its primary energy source, OFP may prohibit, by order, the use in that unit of petroleum or... 10 Energy 4 2010-01-01 2010-01-01 false Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants. 504.7 Section 504.7 Energy DEPARTMENT OF ENERGY...

  5. 10 CFR 500.3 - Electric regions-electric region groupings for reliability measurements under the Powerplant and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Electric regions-electric region groupings for reliability measurements under the Powerplant and Industrial Fuel Use Act of 1978. 500.3 Section 500.3 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS DEFINITIONS § 500.3 Electric regions—electric region groupings...

  6. 78 FR 26337 - Notice of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial Fuel Use Act... a coal capability self- certification to the Department of Energy (DOE) pursuant to Sec. 201(d) of... 501.60, 61. FUA and regulations thereunder require DOE to publish a notice of filing of...

  7. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Prohibition against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an...

  8. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Prohibition against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an...

  9. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Prohibition against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an...

  10. 10 CFR 504.7 - Prohibition against excessive use of petroleum or natural gas in mixtures-electing powerplants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Prohibition against excessive use of petroleum or natural...) ALTERNATE FUELS EXISTING POWERPLANTS § 504.7 Prohibition against excessive use of petroleum or natural gas... technically and financially feasible for a unit to use a mixture of petroleum or natural gas and an...

  11. Some issues in the seismic design of nuclear power-plant facilities

    SciTech Connect

    Hadjian, A.H.; Iwan, W.D.

    1980-09-01

    This paper summarizes the major issues discussed by an international panel of experts during the post-SMIRT (Structural Mechanics in Reactor Technology) Seminar on Extreme Load Design of Nuclear Power-Plant Facilities, which was held in Berlin, Aug. 20-21, 1979. The emphasis of the deliberations was on the state of the art of seismic-response calculations to predict the expected performance of structures and equipment during earthquakes. Four separate panels discussed issues on (1) soil-structure interaction and structural response, (2) modeling, materials, and boundary conditions, (3) damping in structures and equipment, and (4) fragility levels of equipment. The international character of the seminar was particularly helpful in the cross-pollination of ideas regarding the issues and the steps required to enhance the cause of safety of nuclear plants.

  12. Technology for Brayton-cycle space powerplants using solar and nuclear energy

    SciTech Connect

    English, R.E.

    1986-02-01

    Brayton-cycle gas turbines have the potential to use either solar heat or nuclear reactors to generate from tens of kilowatts to tens of megawatts of power in space, all this from a single technology for the power-generating system. Their development for solar-energy dynamic power generation for the space station could be the first step in an evolution of such powerplants for a very wide range of applications. At the low power level of only 10 kWe, a power-generating system has already demonstrated overall efficiency of 0.29 and operated for 38,000 hr. Tests of improved components show that, if installed in the power-generating system, these components would raise that efficiency to 0.32; this efficiency is twice that so far demonstrated by any alternate concept, a characteristic especially important for solar power systems. Because of this high efficiency, solar-heat Brayton-cycle power generators offer the potential to increase power per unit of solar-collector area to levels exceeding four times that from photovoltaic powerplants based on present technology for silicon solar cells. For the heat source, paraboloidal mirrors have been assembled from sectors here on Earth. One mirror, 1.5-m diameter, had a standard error for its surface of only 1 arc-min and a specific mass of only 1.3 kg/m 2. A heavier mirror (nearly 5 kg/m{sup 2}), assembled from 12 sectors, had a standard surface error of 3 arc-min but was 6 m in diameter. Either of these mirrors is sufficiently accurate for use with the Brayton cycle, but the techniques for actually assembling large mirrors in space must yet be worked out. For use during the shadow period of a low Earth orbit (LEO), heat could be stored in LiF, a salt that melts at 1121 K (1558{degrees}F) and whose latent heat of fusion exceeds 1 MJ/kg. Because of the prior experience with its fabrication and of its tolerance of the thermal cycling in LEO, Nb-1Zr was selected to contain the LiF.

  13. Independent Orbiter Assessment (IOA): Analysis of the electrical power generation/fuel cell powerplant subsystem

    NASA Technical Reports Server (NTRS)

    Brown, K. L.; Bertsch, P. J.

    1986-01-01

    Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Fuel Cell Powerplant (FCP) hardware. The EPG/FCP hardware is required for performing functions of electrical power generation and product water distribution in the Orbiter. Specifically, the EPG/FCP hardware consists of the following divisions: (1) Power Section Assembly (PSA); (2) Reactant Control Subsystem (RCS); (3) Thermal Control Subsystem (TCS); and (4) Water Removal Subsystem (WRS). The IOA analysis process utilized available EPG/FCP hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  14. External flow radiators for reduced space powerplant temperatures. Technical information report

    SciTech Connect

    Elliott, D.G.

    1984-01-01

    Nuclear space powerplants can operate at temperatures below 900 K and use stainless steel construction without a weight penalty if new radiator concepts can achieve radiator weights of 1-3 kg/m{sup 2}. Conventional tube-and-fin radiators weight about 10 kg/m{sup 2} because of heavy tube walls to prevent meteroid puncture. Radiator designs that do not require meteroid protection are possible; they operate with fluids of low vapor pressure that can be exposed directly to space in external-flow radiators. An example is the {open_quotes}rotating disk radiator{close_quotes} in which centrifugal force drives a liquid film radially outward across a thin rotating metal disk; meteroid punctures cause no loss of fluid other than from evaporation, which can be small. An even lighter concept is the liquid drop radiator in which heat is radiated directly from moving liquid drops. Such radiator concepts look practical, and they may be much easier to develop than the high-temperature, refractory-metal power systems necessitated by conventional radiators.

  15. Comparison of two U.S. power-plant carbon dioxide emissions data sets.

    PubMed

    Ackerman, Katherine V; Sundquist, Eric T

    2008-08-01

    Estimates of fossil-fuel CO2 emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO2 emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy's Energy Information Administration (EIA) and the Environmental Protection Agency's eGRID database. Conterminous U.S. total emissions computed from the data sets differed by 3.5% for total plant emissions (electricity plus useful thermal output) and 2.3% for electricity generation only. These differences are well within previous estimates of uncertainty in annual U.S. fossil-fuel emissions. However, the corresponding average absolute differences between estimates of emissions from individual power plants were much larger, 16.9% and 25.3%, respectively. By statistical analysis, we identified several potential sources of differences between EIA and eGRID estimates for individual plants. Estimates that are based partly or entirely on monitoring of stack gases (reported by eGRID only) differed significantly from estimates based on fuel consumption (as reported by EIA). Differences in accounting methods appear to explain differences in estimates for emissions from electricity generation from combined heat and power plants, and for total and electricity generation emissions from plants that burn nonconventional fuels (e.g., biomass). Our analysis suggests the need for care in utilizing emissions data from individual power plants, and the need for transparency in documenting the accounting and monitoring methods used to estimate emissions.

  16. Comparison of two U.S. power-plant carbon dioxide emissions data sets

    USGS Publications Warehouse

    Ackerman, K.V.; Sundquist, E.T.

    2008-01-01

    Estimates of fossil-fuel CO2 emissions are needed to address a variety of climate-change mitigation concerns over a broad range of spatial and temporal scales. We compared two data sets that report power-plant CO 2 emissions in the conterminous U.S. for 2004, the most recent year reported in both data sets. The data sets were obtained from the Department of Energy's Energy Information Administration (EIA) and the Environmental Protection Agency's eGRID database. Conterminous U.S. total emissions computed from the data sets differed by 3.5% for total plant emissions (electricity plus useful thermal output) and 2.3% for electricity generation only. These differences are well within previous estimates of uncertainty in annual U.S. fossil-fuel emissions. However, the corresponding average absolute differences between estimates of emissions from individual power plants were much larger, 16.9% and 25.3%, respectively. By statistical analysis, we identified several potential sources of differences between EIA and eGRID estimates for individual plants. Estimates that are based partly or entirely on monitoring of stack gases (reported by eGRID only) differed significantly from estimates based on fuel consumption (as reported by EIA). Differences in accounting methods appear to explain differences in estimates for emissions from electricity generation from combined heat and power plants, and for total and electricity generation emissions from plants that burn nonconventional fuels (e.g., biomass). Our analysis suggests the need for care in utilizing emissions data from individual power plants, and the need for transparency in documenting the accounting and monitoring methods used to estimate emissions.

  17. Effects of emission reductions at the Hayden powerplant on precipitation, snowpack, and surface-water chemistry in the Mount Zirkel Wilderness Area, Colorado, 1995-2003

    USGS Publications Warehouse

    Mast, M. Alisa; Campbell, Donald H.; Ingersoll, George P.

    2005-01-01

    Precipitation, snowpack, and surface-water samples collected during 1995-2003 were analyzed to evaluate the effects of emission reductions at the Hayden powerplant on water chemistry in the Mount Zirkel Wilderness Area. The Hayden powerplant, one of two large coal-fired powerplants in the Yampa Valley, was retrofitted with control systems during late 1998 and 1999 to reduce emissions of sulfur dioxide and nitrogen oxide--the primary precursors of haze and acidic precipitation. The U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, evaluated three water-chemistry data sets: wet-only precipitation chemistry from the National Atmospheric Deposition Program, snowpack chemistry from the Rocky Mountain snowpack network, and surface-water chemistry from a U.S. Geological Survey long-term lakes monitoring program. Concentrations and deposition rates of selected constituents were compared for the periods before and after emission reductions at the Hayden powerplant. Data collected during 1995-98 were used to represent the pre-control period, and data collected during 2000-2003 were used to represent the post-control period. Ten stations in the National Atmospheric Deposition Program were evaluated including two that were directly downwind from the Hayden powerplant (Dry Lake and Buffalo Pass) and eight that were upwind or more distant (more than 100 kilometers) from the powerplant. Precipitation amount at all 10 precipitation stations was lower in the post-control period than the pre-control period as a result of a regional drought that persisted during the post-control period. In contrast to precipitation amount, there was no consistent pattern of change in sulfate concentrations between periods, indicating that the drought did not have a concentrating effect on sulfate or that trends in regional sulfur dioxide emissions masked its influence. Sulfate concentrations increased at three stations between periods, remained the

  18. Development of USES Specific Aptitude Test Battery S-111R84 for Airframe-and-Powerplant Mechanic (Aircraft-Aerospace Mfg.; Air Trans.) 621.281-014.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Human Resources, Salem.

    This report is designed to provide information required to evaluate the Specific Aptitude Test Battery (SATB) for Airframe-and-Powerplant Mechanic from three points of view: (1) technical adequacy of the research, (2) fairness to minorities, and (3) usefulness of the battery to Employment Service staff and employers in selecting individuals for…

  19. Independent Orbiter Assessment (IOA): Assessment of the electrical power generation/fuel cell powerplant subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Brown, K. L.; Bertsch, P. J.

    1987-01-01

    Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Generation/Fuel Cell Powerplant (EPG/FCP) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EPG/FCP hardware.

  20. Compliance problems of small utility systems with the Powerplant and Industrial Fuel Use Act of 1978: volume II - appendices

    SciTech Connect

    1981-01-01

    A study of the problems of compliance with the Powerplant and Industrial Fuel Use Act of 1978 experienced by electric utility systems which have a total generating capacity of less than 2000 MW is presented. This volume presents the following appendices: (A) case studies (Farmington, New Mexico; Lamar, Colorado; Dover, Delaware; Wolverine Electric Cooperative, Michigan; Central Telephone and Utilities, Kansas; Sierra Pacific Power Company, Nevada; Vero Beach, Florida; Lubbock, Texas; Western Farmers Cooperative, Oklahoma; and West Texas Utilities Company, Texas); (B) contacts and responses to study; (C) joint action legislation chart; (D) Texas Municipal Power Agency case study; (E) existing generating units jointly owned with small utilities; (F) future generating units jointly owned with small utilities; (G) Federal Register Notice of April 17, 1980, and letter of inquiry to utilities; (H) small utility responses; and (I) Section 744, PIFUA. (WHK)

  1. Potential Role of Land Use and Land Cover Information in Powerplant Siting: Example of Three Mile Island

    NASA Technical Reports Server (NTRS)

    Wray, J. R.

    1982-01-01

    Selecting a site for a nuclear powerplant can be helped by digitizing land use and land cover data, population data, and other pertinent data sets, and then placing them in a geographic information system. Such a system begins with a set of standardized maps for location reference and then provides for retrieval and analysis of spatial data keyed to the maps. This makes possible thematic mapping by computer, or interactive visual display for decisionmaking. It also permits correlating land use area measurements with census and other data (such as fallout dosages), and the updating of all data sets. The system is thus a tool for dealing with resource management problems and for analyzing the interaction between people and their environment. An explanation of a computer-plotted map of land use and cover for Three Mile Island and vicinity is given.

  2. Reduction of HCl, SO{sub 2} and NO{sub x} emissions of powerplants using organic salts of calcium

    SciTech Connect

    Levendis, Y.A.; Courtemanch, B.; Steciak, J.; Wise, D.L.

    1998-04-01

    Results from laboratory investigations are described that show the benefits in using organic salts of calcium to control emissions of powerplants. These salts include calcium formate (CF, Ca(COOH){sub 2}), calcium acetate (CA, Ca(CH{sub 2}COOH){sub 2}), calcium magnesium acetate (CMA, CaMg{sub 2}(CH{sub 2}COOH){sub 6}), calcium propionate (CP, Ca(CH{sub 2}CH{sub 2}COOH){sub 2}) and calcium benzoate (CB, Ca(C{sub 6}H{sub 4}COOH){sub 2})- Such calcium-containing chemicals are sprayed in the post-combustion region of furnaces to control emissions of SO{sub 2}, HCl and NO{sub x}.

  3. 14 CFR 23.1549 - Powerplant and auxiliary power unit instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... radial or a red line; (b) Each normal operating range must be marked with a green arc or green line, not extending beyond the maximum and minimum safe limits; (c) Each takeoff and precautionary range must...

  4. 14 CFR 23.1549 - Powerplant and auxiliary power unit instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... radial or a red line; (b) Each normal operating range must be marked with a green arc or green line, not extending beyond the maximum and minimum safe limits; (c) Each takeoff and precautionary range must...

  5. 14 CFR 23.1549 - Powerplant and auxiliary power unit instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... radial or a red line; (b) Each normal operating range must be marked with a green arc or green line, not extending beyond the maximum and minimum safe limits; (c) Each takeoff and precautionary range must...

  6. 14 CFR 23.1549 - Powerplant and auxiliary power unit instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES... radial or a red line; (b) Each normal operating range must be marked with a green arc or green line, not extending beyond the maximum and minimum safe limits; (c) Each takeoff and precautionary range must...

  7. 14 CFR 25.1549 - Powerplant and auxiliary power unit instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Operating Limitations and...) Each normal operating range must be marked with a green arc or green line, not extending beyond the maximum and minimum safe limits; (c) Each takeoff and precautionary range must be marked with a yellow...

  8. 14 CFR 25.1549 - Powerplant and auxiliary power unit instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Operating Limitations and...) Each normal operating range must be marked with a green arc or green line, not extending beyond the maximum and minimum safe limits; (c) Each takeoff and precautionary range must be marked with a yellow...

  9. 14 CFR 25.1549 - Powerplant and auxiliary power unit instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Operating Limitations and...) Each normal operating range must be marked with a green arc or green line, not extending beyond the maximum and minimum safe limits; (c) Each takeoff and precautionary range must be marked with a yellow...

  10. 14 CFR 25.1549 - Powerplant and auxiliary power unit instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Operating Limitations and...) Each normal operating range must be marked with a green arc or green line, not extending beyond the maximum and minimum safe limits; (c) Each takeoff and precautionary range must be marked with a yellow...

  11. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1047 Cooling test procedures for reciprocating engine powered airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes...

  12. Presence of pathogenic microorganisms in power-plant cooling waters. Final report, October 1, 1981-June 30, 1983

    SciTech Connect

    Tyndall, R.L.

    1983-07-01

    Air was sampled at the point of discharge and at short distances downwind and upwind from industrial and power-plant cooling towers. Both high-volume electrostatic and impinger type samplers were used. Concentrates of the air samples were analyzed for Legionnaires' Disease Bacteria (LDB). In some cases, the samples were also tested for the presence of free-living amoebae. The concentrations of LDB in the air samples were well below the minimal infectious dose for guinea pigs and precluded testing of the samples for infectious LDB. Results of LDB analysis were related to the meteorological conditions at the time of sampling. Generally, the concentrations of LDB in the air at the discharge of the cooling towers were 1 x 10/sup -6/ to 1 x 10/sup -7/ of that found in comparable volumes of tower basin water. During periods of high humidity and wind speed, LDB was detected in a few downwind samples and one upwind sample. One site with extensive construction and excavation activity had higher LDB concentrations in air samples relative to other sites. Nonpathogenic Naegleria were present in one of two air samples taken in the mist at the base of a natural-draft cooling tower.

  13. Fluidization characteristics of power-plant fly ashes and fly ash-charcoal mixtures. [MS Thesis; 40 references

    SciTech Connect

    Nguyen, C.T.

    1980-03-01

    As a part of the continuing research on aluminum recovery from fly ash by HiChlor process, a plexiglass fluidization column system was constructed for measurement of fluidization parameters for power-plant fly ashes and fly ash-charcoal mixtures. Several bituminous and subbituminous coal fly ashes were tested and large differences in fluidization characteristics were observed. Fly ashes which were mechanically collected fluidized uniformly at low gas flow rates. Most fly ashes which were electrostatically precipitated exhibited channeling tendency and did not fluidize uniformly. Fluidization characteristics of electrostatically collected ashes improve when the finely divided charcoal powder is added to the mixture. The fluidization of the mixture was aided initially by a mechanical stirrer. Once the fluidization had succeeded, the beds were ready to fluidize without the assistance of a mechanical action. Smooth fluidization and large bed expansion were usually observed. The effects of charcoal size and aspect ratio on fluidization characteristics of the mixtures were also investigated. Fluidization characteristics of a fly ash-coal mixture were tested. The mixture fluidized only after being oven-dried for a few days.

  14. Assessing inundation hazards to nuclear powerplant sites using geologically extended histories of riverine floods, tsunamis, and storm surges

    USGS Publications Warehouse

    O'Connor, Jim; Atwater, Brian F.; Cohn, Timothy A.; Cronin, Thomas M.; Keith, Mackenzie K.; Smith, Christopher G.; Mason, Jr., Robert R.

    2014-01-01

    A screening of the 104 nuclear powerplants in the United States licensed by the Nuclear Regulatory Commission (at 64 sites) indicates several sites for which paleoflood studies likely would provide additional flood-frequency information. Two sites—Duane Arnold, Iowa, on the Cedar River; and David-Besse, Ohio, on the Toussaint River—have geologic conditions suitable for creating and preserving stratigraphic records of flooding and few upstream dams that may complicate flood-frequency analysis. One site—Crystal River, Florida1, on the Withlacoochee River and only 4 kilometers from the coast—has high potential as a candidate for assessing riverine and marine inundation hazards. Several sites on the Mississippi River have high geologic potential, but upstream dams almost certainly now regulate peak flows. Nevertheless, studies on the Mississippi River to evaluate long-term flood frequency may provide results applicable to a wide spectrum of regional hazard issues. Several sites in the southeastern United States have high geologic potential, and studies at these sites also may be helpful in evaluating hazards from outburst floods from landslide dams (river blockages formed by mass movements), which may be a regional hazard. For all these sites, closer investigation and field reconnaissance would be needed to confirm suitable deposits and settings for a complete paleoflood analysis. Similar screenings may help identify high-potential sites for geologic investigations of tsunami and storm-surge hazards.

  15. Exposure of thermoelectric power-plant workers to volatile organic compounds from fuel oil: genotoxic and cytotoxic effects in buccal epithelial cells.

    PubMed

    Garcia, P V; Linhares, D; Amaral, A F S; Rodrigues, A S

    2012-09-18

    Thermoelectric power-plant workers are constantly exposed to high levels of potentially genotoxic gaseous substances, such as volatile organic compounds (VOCs) from the combustion of fuel oil or the processing of naphtha. The aim of the present study was to estimate the association between such occupational exposure and the frequency of micronucleated cells and cells with other nuclear anomalies. Buccal epithelial cells were collected from a total of 44 power-plant workers (exposed group) and 47 administrative workers (non-exposed group), and examined for the frequency of micronucleated cells (MNC) and of cells with other nuclear anomalies (ONA: pyknosis, karyolysis, and karyorrhexis) by means of the micronucleus assay. The frequencies of MNC and ONA per 1000 cells in the exposed group (1.8‰ and 82.4‰, respectively) were significantly higher than in the non-exposed group (0.2‰ and 58.3‰, respectively). The exposed group had a twelve-fold increase in risk for formation of MNC compared with non-exposed individuals (RR=12.1; 95% CI, 5.0-29.2; P<0.001). The confounding factors analyzed (age, smoking status, alcohol consumption, and mouthwash use) did not show any significant association with the frequency of MNC or ONA. The findings of this study show that workers from power plants exposed to VOCs have a significantly elevated risk for DNA damage. Therefore, bio-monitoring of DNA damage is recommended for this group of workers.

  16. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2003-2004 Annual Report.

    SciTech Connect

    Simmons, M.; McKinstry, C.; Cook, C.

    2004-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly within a

  17. Pump-turbine performance test, Mt. Elbert Pumped-Storage Powerplant and Forebay Dam, Unit 1, Fryingpan-Arkansas project, Colorado. Flow measurement by the salt-velocity method

    SciTech Connect

    Lewey, A.B.; Favero, J.F.

    1984-12-01

    On September 13, 14, 22, and 23, 1982, a performance test was conducted on the vertical-shaft, single-impeller, pump-turbine designated Unit 1 at Mt. Elbert Pumped-Storage Powerplant and Forebay Dam. The operating characteristics were determined in the pump and turbine modes.

  18. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2004-2005 Annual Report.

    SciTech Connect

    Johnson, R.; McKinstry, C.; Cook, C.

    2005-02-01

    This report documents a four-year study(a) to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss) at the entrance to the forebay of the third powerplant at Grand Coulee Dam. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). In this report, emphasis is placed on the methodology and results associated with the fourth project year and compared with findings from the previous years to provide an overall project summary. Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power and Conservation Council Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph dams on the Columbia River (Figure S.1). A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish, including kokanee and rainbow trout, were entrained annually at Grand Coulee Dam. Analysis of the data found that 85% of the total entrainment occurred at the dam's third powerplant. Because these entrainment rates represent a significant loss to the tribal fisheries upstream of the dam, they have been judged unacceptable to fishery managers responsible for perpetuating the fishery in Lake Roosevelt. In an effort to reduce fish entrainment rates, the scope of work for the Chief Joseph Kokanee Enhancement Project was modified in 2001 to include a multiyear study of the efficacy of using strobe lights to deter fish from entering the third powerplant forebay. Pacific Northwest National Laboratory initiated the four-year study in collaboration with Colville Tribal

  19. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling test procedures for turbine engine powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine...

  20. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cooling test procedures for turbine engine powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine...

  1. Chief Joseph Kokanee Enhancement Project : Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grond Coulee Dam Third Powerplant Forebay.

    SciTech Connect

    Simmons, M.A.; McKinstry, C.A.; Simmons, C.S.

    2002-01-01

    Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC's Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the first year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory (PNNL). The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. Analysis of the effect of strobe lights on the distribution (numbers) and behavior of kokanee and rainbow trout was based on 51, 683 fish targets detected during the study period (June 30 through August 1, 2001). Study findings include the following: (1) Analysis of the count data indicated that significantly more fish were present when the lights were on compared to off. This was true for both the 24-hr tests as well as the 1-hr tests. Powerplant discharge, distance from lights, and date were significant factors in the analysis. (2) Behavioral results indicated that fish within 14 m of the lights were trying to avoid the lights by swimming across the lighted region or

  2. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2002-2003 Annual Report.

    SciTech Connect

    Johnson, R.; McKinstry, C.; Simmons, C.

    2003-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven-transducer splitbeam

  3. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay, 2005-2006 Annual Report.

    SciTech Connect

    Simmons, M.; Johnson, Robert; McKinstry, C.

    2006-03-01

    The construction of Grand Coulee and Chief Joseph dams on the Columbia River resulted in the complete extirpation of the anadromous fishery upstream of these structures. Today, this area is totally dependent upon resident fish resources to support local fisheries. The resident fishing is enhanced by an extensive stocking program for target species in the existing fishery, including kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss). The kokanee fishery in Lake Roosevelt has not been meeting the return goals set by fisheries managers despite the stocking program. Investigations of physical and biological factors that could affect the kokanee population found predation and entrainment had a significant impact on the fish population. In 1999 and 2000, walleye (Sander vitreum) consumed between 15% and 9%, respectively, of the hatchery kokanee within 41 days of their release, while results from a study in the late 1990s estimated that entrainment at Grand Coulee Dam could account for up to 30% of the total mortality of the stocked fish. To address the entrainment loss, the Bonneville Power Administration commissioned a study to determine if fish would avoid areas illuminated by strobe lights in the forebay of the third powerplant. This work was conducted by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). From 2002 through 2004, six strobe lights were suspended in the center of the opening to the third powerplant forebay during summer months. Results from those studies indicated that fish appeared to be attracted to the illuminated area but only at night and when flow conditions within the third powerplant forebay were minimal. However, small but consistent results from these studies indicated that under high flow conditions, fish might be avoiding the lights. The 2005 study was designed to examine whether, under high flow conditions near the penstock

  4. Large and small photovoltaic powerplants

    NASA Astrophysics Data System (ADS)

    Cormode, Daniel

    The installed base of photovoltaic power plants in the United States has roughly doubled every 1 to 2 years between 2008 and 2015. The primary economic drivers of this are government mandates for renewable power, falling prices for all PV system components, 3rd party ownership models, and a generous tariff scheme known as net-metering. Other drivers include a desire for decreasing the environmental impact of electricity generation and a desire for some degree of independence from the local electric utility. The result is that in coming years, PV power will move from being a minor niche to a mainstream source of energy. As additional PV power comes online this will create challenges for the electric grid operators. We examine some problems related to large scale adoption of PV power in the United States. We do this by first discussing questions of reliability and efficiency at the PV system level. We measure the output of a fleet of small PV systems installed at Tucson Electric Power, and we characterize the degradation of those PV systems over several years. We develop methods to predict energy output from PV systems and quantify the impact of negatives such as partial shading, inverter inefficiency and malfunction of bypass diodes. Later we characterize the variability from large PV systems, including fleets of geographically diverse utility scale power plants. We also consider the power and energy requirements needed to smooth those systems, both from the perspective of an individual system and as a fleet. Finally we report on experiments from a utility scale PV plus battery hybrid system deployed near Tucson, Arizona where we characterize the ability of this system to produce smoothly ramping power as well as production of ancillary energy services such as frequency response.

  5. CPM harnesses mammoth powerplant job

    SciTech Connect

    Shukla, J.H.; Kudich, R.L.; Steffensen, R.W.

    1985-01-01

    One of the largest air quality control retrofit projects in the nation, costing $450 million, was due to be completed in December at Ohio Edison Company's (OEC) W. H. Sammis Plant, a seven-unit coal power electric generating facility with capacity of 2,233 MW. Challenges included extremely limited work space, requiring construction of a 900 ft (270 m) long deck structure over a four-lane state highway to support dust collection equipment; severe monetary penalties attached to stringent compliance dates resulting from a court approved consent agreement with EPA; and limited outage durations available for construction tie-in of the new air quality control equipment. To meet the deadlines it was necessary to fast track the project. Built between 1959 and 1971, the seven coal-fired units as originally constructed included electrostatic precipitators. However, as a result of the Clean Air Act of 1970 and state implementation plans, stricter particulate emission standards (99.7% efficiency) had to be met. This meant retrofitting new and significantly larger dust collectors at each unit. As of November 1984 all seven APC units had met the EPA air compliance deadlines, and work was proceeding on the final tie-in outage for Unit 6. The Sammis AQC Project was on schedule and under budget, and projections indicated the December 1984 completion date would be met.

  6. Future Propulsion Opportunities for Commuter Airplanes

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1982-01-01

    Commuter airplane propulsion opportunities are summarized. Consideration is given to advanced technology conventional turboprop engines, advanced propellers, and several unconventional alternatives: regenerative turboprops, rotaries, and diesels. Advanced versions of conventional turboprops (including propellers) offer 15-20 percent savings in fuel and 10-15 percent in DOC compared to the new crop of 1500-2000 SHP engines currently in development. Unconventional engines could boost the fuel savings to 30-40 percent. The conclusion is that several important opportunities exist and, therefore, powerplant technology need not plateau.

  7. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... or torque for each engine considering the power input limitations of the transmission with one engine... allowable power or torque for each engine, considering the power input limitations of the transmission...

  8. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engine torque. For rotorcraft with main rotors driven by turboshaft engines, and that do not have a torque limiting device in the transmission system, the following apply: (1) A limit engine torque must be established if the maximum torque that the engine can exert is greater than— (i) The torque that the...

  9. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine torque. For rotorcraft with main rotors driven by turboshaft engines, and that do not have a torque limiting device in the transmission system, the following apply: (1) A limit engine torque must be established if the maximum torque that the engine can exert is greater than— (i) The torque that the...

  10. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engine torque. For rotorcraft with main rotors driven by turboshaft engines, and that do not have a torque limiting device in the transmission system, the following apply: (1) A limit engine torque must be established if the maximum torque that the engine can exert is greater than— (i) The torque that the...

  11. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... or torque for each engine considering the power input limitations of the transmission with one engine... allowable power or torque for each engine, considering the power input limitations of the transmission...

  12. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... engine torque. For rotorcraft with main rotors driven by turboshaft engines, and that do not have a torque limiting device in the transmission system, the following apply: (1) A limit engine torque must be established if the maximum torque that the engine can exert is greater than— (i) The torque that the...

  13. 14 CFR 27.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... engine torque. For rotorcraft with main rotors driven by turboshaft engines, and that do not have a torque limiting device in the transmission system, the following apply: (1) A limit engine torque must be established if the maximum torque that the engine can exert is greater than— (i) The torque that the...

  14. 14 CFR 27.1549 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... a red radial or a red line; (b) Each normal operating range must be marked with a green arc or green... range must be marked with a yellow arc or yellow line; (d) Each engine or propeller range that...

  15. 14 CFR 29.1549 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... with a red radial or a red line; (b) Each normal operating range must be marked with a green arc or... range must be marked with a yellow arc or yellow line; (d) Each engine or propeller range that...

  16. 14 CFR 29.1549 - Powerplant instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....1549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... with a red radial or a red line; (b) Each normal operating range must be marked with a green arc or... range must be marked with a yellow arc or yellow line; (d) Each engine or propeller range that...

  17. 14 CFR 27.1549 - Powerplant instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....1549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... a red radial or a red line; (b) Each normal operating range must be marked with a green arc or green... range must be marked with a yellow arc or yellow line; (d) Each engine or propeller range that...

  18. 14 CFR 27.1549 - Powerplant instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....1549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... a red radial or a red line; (b) Each normal operating range must be marked with a green arc or green... range must be marked with a yellow arc or yellow line; (d) Each engine or propeller range that...

  19. 14 CFR 29.1549 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....1549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... with a red radial or a red line; (b) Each normal operating range must be marked with a green arc or... range must be marked with a yellow arc or yellow line; (d) Each engine or propeller range that...

  20. 14 CFR 27.1549 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....1549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... a red radial or a red line; (b) Each normal operating range must be marked with a green arc or green... range must be marked with a yellow arc or yellow line; (d) Each engine or propeller range that...

  1. 14 CFR 29.1549 - Powerplant instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....1549 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... with a red radial or a red line; (b) Each normal operating range must be marked with a green arc or... range must be marked with a yellow arc or yellow line; (d) Each engine or propeller range that...

  2. 14 CFR 27.1337 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... utilizing ferromagnetic materials must be equipped with chip detectors designed to indicate the presence of ferromagnetic particles resulting from damage or excessive wear. Chip detectors must— (1) Be designed to provide... check, in flight, the function of each detector electrical circuit and signal. (2) (Secs. 313(a),...

  3. 14 CFR 29.1337 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ferromagnetic materials must be equipped with chip detectors designed to indicate the presence of ferromagnetic particles resulting from damage or excessive wear within the transmission or gearbox. Each chip detector... provided with a means to allow crewmembers to check, in flight, the function of each detector...

  4. 14 CFR 27.1337 - Powerplant instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... utilizing ferromagnetic materials must be equipped with chip detectors designed to indicate the presence of ferromagnetic particles resulting from damage or excessive wear. Chip detectors must— (1) Be designed to provide... check, in flight, the function of each detector electrical circuit and signal. (2) (Secs. 313(a),...

  5. 14 CFR 27.1337 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... utilizing ferromagnetic materials must be equipped with chip detectors designed to indicate the presence of ferromagnetic particles resulting from damage or excessive wear. Chip detectors must— (1) Be designed to provide... check, in flight, the function of each detector electrical circuit and signal. (2) (Secs. 313(a),...

  6. 14 CFR 29.1337 - Powerplant instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ferromagnetic materials must be equipped with chip detectors designed to indicate the presence of ferromagnetic particles resulting from damage or excessive wear within the transmission or gearbox. Each chip detector... provided with a means to allow crewmembers to check, in flight, the function of each detector...

  7. 14 CFR 27.1337 - Powerplant instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... utilizing ferromagnetic materials must be equipped with chip detectors designed to indicate the presence of ferromagnetic particles resulting from damage or excessive wear. Chip detectors must— (1) Be designed to provide... check, in flight, the function of each detector electrical circuit and signal. (2) (Secs. 313(a),...

  8. 14 CFR 27.1337 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... utilizing ferromagnetic materials must be equipped with chip detectors designed to indicate the presence of ferromagnetic particles resulting from damage or excessive wear. Chip detectors must— (1) Be designed to provide... check, in flight, the function of each detector electrical circuit and signal. (2) (Secs. 313(a),...

  9. 14 CFR 29.1337 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ferromagnetic materials must be equipped with chip detectors designed to indicate the presence of ferromagnetic particles resulting from damage or excessive wear within the transmission or gearbox. Each chip detector... provided with a means to allow crewmembers to check, in flight, the function of each detector...

  10. 14 CFR 29.1337 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ferromagnetic materials must be equipped with chip detectors designed to indicate the presence of ferromagnetic particles resulting from damage or excessive wear within the transmission or gearbox. Each chip detector... provided with a means to allow crewmembers to check, in flight, the function of each detector...

  11. 14 CFR 29.1337 - Powerplant instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ferromagnetic materials must be equipped with chip detectors designed to indicate the presence of ferromagnetic particles resulting from damage or excessive wear within the transmission or gearbox. Each chip detector... provided with a means to allow crewmembers to check, in flight, the function of each detector...

  12. Advanced Control Systems for Aircraft Powerplants

    DTIC Science & Technology

    1980-02-01

    injecteurs directs employ~s norma - lement dans les brfileurs de chaudi~re de chauffage central Maihenreusement, ce type d’injecteur n’a de bonnes...Alir Temperature, to2npd_’rature statique oxt(ric,.ure APA Power Lever Angle , angle, On lev&or des gas sozr acteur PT2 Pres~sion to tale entr*e so tour

  13. Emerging needs for mobile nuclear powerplants

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Incentives for broadening the present role of civilian nuclear power to include mobile nuclear power plants that are compact, lightweight, and safe are examined. Specifically discussed is the growing importance of: (1) a new international cargo transportation capability, and (2) the capability for development of resources in previously remote regions of the earth including the oceans and the Arctic. This report surveys present and potential systems (vehicles, remote stations, and machines) that would both provide these capabilities and require enough power to justify using mobile nuclear reactor power plants.

  14. 14 CFR 29.1305 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1019, if it has no bypass, to warn the pilot of the occurrence of contamination of the strainer or... indicate the occurrence of contamination of the filter to the degree established in compliance with § 29... the pilot when the engine is at the 30-second and 2-minute OEI power levels, when the event...

  15. 14 CFR 25.1305 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... has no bypass, to warn the pilot of the occurrence of contamination of the strainer or filter screen... displacement of 2,000 cubic inches or more. (8) A means to indicate to the pilot when the propeller is in... occurrence of contamination of the strainer or filter before it reaches the capacity established...

  16. 14 CFR 29.1305 - Powerplant instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....1019, if it has no bypass, to warn the pilot of the occurrence of contamination of the strainer or... indicate the occurrence of contamination of the filter to the degree established in compliance with § 29... the pilot when the engine is at the 30-second and 2-minute OEI power levels, when the event...

  17. 14 CFR 23.1305 - Powerplant instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: (i) That continuously indicates, to the pilot, the fuel pressure or fuel flow; or (ii) That continuously monitors the fuel system and warns the pilot of any fuel flow trend that could lead to engine... strainer or filter required by § 23.997 to indicate the occurrence of contamination of the strainer...

  18. 14 CFR 23.1305 - Powerplant instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: (i) That continuously indicates, to the pilot, the fuel pressure or fuel flow; or (ii) That continuously monitors the fuel system and warns the pilot of any fuel flow trend that could lead to engine... strainer or filter required by § 23.997 to indicate the occurrence of contamination of the strainer...

  19. 14 CFR 23.1305 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: (i) That continuously indicates, to the pilot, the fuel pressure or fuel flow; or (ii) That continuously monitors the fuel system and warns the pilot of any fuel flow trend that could lead to engine... strainer or filter required by § 23.997 to indicate the occurrence of contamination of the strainer...

  20. 14 CFR 23.1305 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: (i) That continuously indicates, to the pilot, the fuel pressure or fuel flow; or (ii) That continuously monitors the fuel system and warns the pilot of any fuel flow trend that could lead to engine... strainer or filter required by § 23.997 to indicate the occurrence of contamination of the strainer...

  1. 14 CFR 27.1305 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., if it has no bypass, to warn the pilot of the occurrence of contamination of the strainer or filter... with § 27.955. (n) A gas temperature indicator for each turbine engine. (o) Means to enable the pilot... occurrence of contamination of the filter at the degree established by the applicant in compliance with §...

  2. 14 CFR 25.1305 - Powerplant instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... has no bypass, to warn the pilot of the occurrence of contamination of the strainer or filter screen... displacement of 2,000 cubic inches or more. (8) A means to indicate to the pilot when the propeller is in... occurrence of contamination of the strainer or filter before it reaches the capacity established...

  3. 14 CFR 23.1305 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: (i) That continuously indicates, to the pilot, the fuel pressure or fuel flow; or (ii) That continuously monitors the fuel system and warns the pilot of any fuel flow trend that could lead to engine... strainer or filter required by § 23.997 to indicate the occurrence of contamination of the strainer...

  4. 14 CFR 25.1305 - Powerplant instruments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... has no bypass, to warn the pilot of the occurrence of contamination of the strainer or filter screen... displacement of 2,000 cubic inches or more. (8) A means to indicate to the pilot when the propeller is in... occurrence of contamination of the strainer or filter before it reaches the capacity established...

  5. 14 CFR 25.1305 - Powerplant instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... has no bypass, to warn the pilot of the occurrence of contamination of the strainer or filter screen... displacement of 2,000 cubic inches or more. (8) A means to indicate to the pilot when the propeller is in... occurrence of contamination of the strainer or filter before it reaches the capacity established...

  6. 14 CFR 27.1305 - Powerplant instruments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., if it has no bypass, to warn the pilot of the occurrence of contamination of the strainer or filter... with § 27.955. (n) A gas temperature indicator for each turbine engine. (o) Means to enable the pilot... occurrence of contamination of the filter at the degree established by the applicant in compliance with §...

  7. 14 CFR 25.1305 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... has no bypass, to warn the pilot of the occurrence of contamination of the strainer or filter screen... displacement of 2,000 cubic inches or more. (8) A means to indicate to the pilot when the propeller is in... occurrence of contamination of the strainer or filter before it reaches the capacity established...

  8. 14 CFR 29.1305 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1019, if it has no bypass, to warn the pilot of the occurrence of contamination of the strainer or... indicate the occurrence of contamination of the filter to the degree established in compliance with § 29... the pilot when the engine is at the 30-second and 2-minute OEI power levels, when the event...

  9. 14 CFR 27.1305 - Powerplant instruments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., if it has no bypass, to warn the pilot of the occurrence of contamination of the strainer or filter... with § 27.955. (n) A gas temperature indicator for each turbine engine. (o) Means to enable the pilot... occurrence of contamination of the filter at the degree established by the applicant in compliance with §...

  10. 14 CFR 25.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... power or thrust (relating to augmented or unaugmented operation as applicable). (ii) Takeoff power or thrust (relating to augmented or unaugmented operation as applicable). (2) Fuel designation...

  11. 14 CFR 25.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... power or thrust (relating to augmented or unaugmented operation as applicable). (ii) Takeoff power or thrust (relating to augmented or unaugmented operation as applicable). (2) Fuel designation...

  12. 14 CFR 25.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... power or thrust (relating to augmented or unaugmented operation as applicable). (ii) Takeoff power or thrust (relating to augmented or unaugmented operation as applicable). (2) Fuel designation...

  13. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In addition— (1) If necessary for the maintenance of proper fuel delivery pressure, there must be a connection to transmit the carburetor air intake static pressure to the proper pump relief valve connection;...

  14. 14 CFR 27.1305 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... condition with respect to cooling. (c) A fuel pressure indicator, for each pump-fed engine. (d) A fuel... system. (m) Means to indicate to the flightcrew the failure of any fuel pump installed to show compliance...; (2) Permits retrieval of the recorded data; (3) Can be reset only by ground maintenance...

  15. 14 CFR 25.1337 - Powerplant instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... supplying reciprocating engines, at a point downstream of any fuel pump except fuel injection pumps. In addition— (1) If necessary for the maintenance of proper fuel delivery pressure, there must be a connection to transmit the carburetor air intake static pressure to the proper pump relief valve connection;...

  16. 14 CFR 27.1305 - Powerplant instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... condition with respect to cooling. (c) A fuel pressure indicator, for each pump-fed engine. (d) A fuel... system. (m) Means to indicate to the flightcrew the failure of any fuel pump installed to show compliance...; (2) Permits retrieval of the recorded data; (3) Can be reset only by ground maintenance...

  17. 14 CFR 29.1305 - Powerplant instruments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system which supplies that engine does not employ any pumps, filters, or other components subject to... flightcrew the failure of any fuel pump installed to show compliance with § 29.955; (23) Warning or caution... the recorded data; (iii) Can be reset only by ground maintenance personnel; and (iv) Has a means...

  18. 14 CFR 29.1305 - Powerplant instruments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system which supplies that engine does not employ any pumps, filters, or other components subject to... flightcrew the failure of any fuel pump installed to show compliance with § 29.955; (23) Warning or caution... the recorded data; (iii) Can be reset only by ground maintenance personnel; and (iv) Has a means...

  19. Investigation of Propeller-power-plant Autoprecession Boundaries for a Dynamic-aeroelastic Model of a Four-engine Turboprop Transport Airplane

    NASA Technical Reports Server (NTRS)

    Abbott, Frank T., Jr.; Kelley, H. Neale; Hampton, Kenneth D.

    1963-01-01

    A flexibly mounted aircraft engine may under certain conditions experience a self-excited whirling instability involving a coupling between the gyroscopic and aerodynamic forces acting on the propeller, and the inertial, elastic, and damping forces contributed by the power plant, nacelle, and wing. This phenomenon has been called autoprecession, or whirl instability. An experimental investigation was made in the Langley transonic dynamics tunnel at Mach numbers below 0.3 to study some of the pertinent parameters influencing the phenomenon. These parameters included propeller rotational speed, stiffness of the power-plant assembly in the pitch and yaw planes and the ratio of pitch stiffness to yaw stiffness, structural damping of the power-plant assembly in the pitch and yaw planes, simulated fuel load in the wings, and the location and number of autoprecessing powerplant assemblies. A large dynamic-aeroelastic model of a four-engine turboprop transport airplane mounted on a vertical rod in a manner which provided several limited body degrees of freedom was used in the investigation. It was found that the boundary for autoprecession decreased markedly with Increasing proreduction of power-plant stiffness and/or damping, and to a lesser degree decreased with reduction of simulated fuel load in the wings. peller rotational speed generally lowered the autoprecession boundary. This effect was more pronounced as the stiffness was increased. An inboard power plant was found to be more susceptible to autoprecession than an outboard one. Combinations in which two or more power plants had the same level of reduced stiffness resulted in autoprecession boundaries considerably lower than that of a single power plant with the same level of reduced stiffness.

  20. 14 CFR 25.901 - Installation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.901 Installation. (a) For the purpose of this part, the airplane powerplant installation includes each component that— (1) Is necessary...

  1. 14 CFR 25.901 - Installation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.901 Installation. (a) For the purpose of this part, the airplane powerplant installation includes each component that— (1) Is necessary...

  2. 14 CFR 25.901 - Installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.901 Installation. (a) For the purpose of this part, the airplane powerplant installation includes each component that— (1) Is necessary...

  3. 14 CFR 25.901 - Installation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.901 Installation. (a) For the purpose of this part, the airplane powerplant installation includes each component that— (1) Is necessary...

  4. 14 CFR 25.901 - Installation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.901 Installation. (a) For the purpose of this part, the airplane powerplant installation includes each component that— (1) Is necessary...

  5. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    A technique for producing an acid inventory control member by spraying FEP onto a partially screened carbon paper backing is discussed. Theoretical analysis of the acid management indicates that the vapor composition of 103% H3PO4 is approximately 1.0 ppm P4O10. An SEM evaluation of corrosion resistance of phenolic resins and graphite/phenolic resin composites in H3PO4 at 185 C shows specific surface etching. Carbonization of graphite/phenolic bipolar plates is achieved without blistering.

  6. Study of fuel cell powerplant with heat recovery

    NASA Technical Reports Server (NTRS)

    King, J. M.; Grasso, A. P.; Clausi, J. V.

    1975-01-01

    It was shown that heat can be recovered from fuel cell power plants by replacing the air-cooled heat exchangers in present designs with units which transfer the heat to the integrated utility system. Energy availability for a 40-kW power plant was studied and showed that the total usable energy at rated power represents 84 percent of the fuel lower heating value. The effects of design variables on heat availability proved to be small. Design requirements were established for the heat recovery heat exchangers, including measurement of the characteristics of two candidate fuel cell coolants after exposure to fuel cell operating conditions. A heat exchanger test program was defined to assess fouling and other characteristics of fuel cell heat exchangers needed to confirm heat exchanger designs for heat recovery.

  7. 14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... systems (2) 14. Identify and select lubricants. (2) 15. Repair engine lubrication system components. (3...) 34. Identify and select propeller lubricants. (1) 35. Balance propellers. (2) 36. Repair...

  8. 14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... instrument systems (2) 9. Troubleshoot, service, and repair electrical and mechanical fluid rate-of-flow indicating systems. (3) 10. Inspect, check, service, troubleshoot, and repair electrical and mechanical.... engine electrical systems (2) 12. Repair engine electrical system components. (3) 13. Install, check,...

  9. Assessment of disk MHD generators for a base load powerplant

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.; Retallick, F. D.; Lu, C. L.; Stella, M.; Teare, J. D.; Loubsky, W. J.; Louis, J. F.; Misra, B.

    1981-01-01

    Results from a study of the disk MHD generator are presented. Both open and closed cycle disk systems were investigated. Costing of the open cycle disk components (nozzle, channel, diffuser, radiant boiler, magnet and power management) was done. However, no detailed costing was done for the closed cycle systems. Preliminary plant design for the open cycle systems was also completed. Based on the system study results, an economic assessment of the open cycle systems is presented. Costs of the open cycle disk conponents are less than comparable linear generator components. Also, costs of electricity for the open cycle disk systems are competitive with comparable linear systems. Advantages of the disk design simplicity are considered. Improvements in the channel availability or a reduction in the channel lifetime requirement are possible as a result of the disk design.

  10. 14 CFR Appendix D to Part 147 - Powerplant Curriculum Subjects

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Install, troubleshoot, and remove reciprocating engines. b. turbine engines (2) 5. Overhaul turbine engine. (3) 6. Inspect, check, service, and repair turbine engines and turbine engine installations. (3) 7. Install, troubleshoot, and remove turbine engines. c. engine inspection (3) 8. Perform...

  11. Powerplant and Industrial Fuel Use Act: annual report

    SciTech Connect

    1980-03-01

    The major purposes of the FUA program are to reduce the importation of petroleum and increase the nation's use of indigenous energy resources; to conserve natural gas and petroleum and minimize their use as primary energy sources; to foster greater use of coal; to encourage the use of synthetic fuels; and to reduce the vulnerability of the US to energy-supply interruptions. Accomplishments in the implementation of the Act by DOE are described along with descriptions of legislation and major regulations, procedures, program effectiveness, and major implementation problems. Recommendations are summarized.

  12. Magnetohydrodynamic generator scaling analysis for baseload commercial powerplants

    NASA Astrophysics Data System (ADS)

    Swallom, D. W.; Pian, C. C. P.

    1983-08-01

    MHD generator channel scaling analyses have been performed to definitize the effect of generator size and oxygen enrichment on channel performance. These studies have shown that MHD generator channels can be designed to operate efficiently over the range of 250 to 2135 thermal megawatts. The optimum design conditions for each of the thermal inputs were established by investigating various combinations of electrical load parameters, pressure ratios, magnetic field profiles, and channel lengths. These results provide design flexibility for the baseload combined cycle MHD/steam power plant.

  13. Preliminar results of paleontological salvage at Belo Monte Powerplant construction.

    PubMed

    Tomassi, H Z; Almeida, C M; Ferreira, B C; Brito, M B; Barberi, M; Rodrigues, G C; Teixeira, S P; Capuzzo, J P; Gama-Júnior, J M; Santos, M G K G

    2015-08-01

    In this paper some preliminary fossil specimens are presented. They represent a collection sampled by Belo Monte's Programa de Salvamento do Patrimônio Paleontológico (PSPP), which includes unprecedented invertebrate fauna and fossil vertebrates from Pitinga, Jatapu, Manacapuru, Maecuru e Alter do Chão formations from Amazonas basin, Brazil. The Belo Monte paleontological salvage was able to recover 495 microfossil samples and 1744 macrofossil samples on 30 months of sampling activities, and it is still ongoing. The macrofossils identified are possible plant remains, ichnofossils, graptolites, brachiopods, molluscs, athropods, Agnatha, palynomorphs (miosphores, acritarchs, algae cysts, fungi spores and unidentified types) and unidentified fossils. However, deep scientific research is not part of the scope of the program, and this collection must be further studied by researchers who visit Museu Paraense Emilio Goeldi, where the fossils will be housed. More material will be collected until the end of the program. The collection sampled allows a mosaic composition with the necessary elements to assign, in later papers, taxonomic features which may lead to accurate species identification and palaeoenvironmental interpretations.

  14. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  15. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  16. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    Component development has resulted in routine molding of 12 in. by 17 in. bipolar plates with 80 percent acceptance. A 5 C per hour post-cure heating cycle for these plates was found to give blister free materials. Lowering the resin in a bipolar plate content from 32 percent to 22 percent decreases the resistivity more than 50 percent. Evaluation of the corrosion resistance of Novolak and Resol resins at 185 C in phosphoric acid indicates a slow etch. aerosol modified phenolics, however, decompose rapidly. Estimates of acid loss by the use of analytical expressions known as Margule, van Laar, and Wilson equations were not satisfactory. Experimental evaluation of the P4O10 vapor concentration of 103 wt percent acid at 191 C provided a value of 2 ppm. This value is based on a single experiment.

  17. FAA certification requirements for future fuels, fuel systems and powerplants

    NASA Technical Reports Server (NTRS)

    Horeff, T. C.

    1983-01-01

    The current FAA procedures for approving fuels, along with a comment or two as to what might be done relative to assuring the safety of using these alternative fuels, whatever they may be are addressed.

  18. Many specialized robots perform nuclear-powerplant tasks

    SciTech Connect

    Not Available

    1989-05-01

    This article describes various specialized robots and the tasks for which they were designed in nuclear power plants. These tasks include steam generator sludge removal and inspection, spent fuel pool cleaning, data gathering, maintenance, disassembling reactor internals, opening and closing PWR and BWR vessels, autonomous monitoring of various environmental parameters within a running reactor, canopy-seal weld inspection and repair, reactor vessel inspection, and plant decommissioning.

  19. Computing and cognition in future power-plant operations

    SciTech Connect

    Kisner, R.A.; Sheridan, T.B.

    1983-01-01

    The intent of this paper is to speculate on the nature of future interactions between people and computers in the operation of power plants. In particular, the authors offer a taxonomy for examining the differing functions of operators in interacting with the plant and its computers, and the differing functions of the computers in interacting with the plant and its operators.

  20. Pathogenic amoebae in power-plant cooling lakes. Final report

    SciTech Connect

    Tyndall, R.L.; Willaert, E.; Stevens, A.R.

    1981-06-01

    Cooling waters and associated algae and sediments from four northern and four southern/western electric power plants were tested for the presence of pathogenic amoebae. Unheated control waters and algae/sediments from four northern and five southern/western sites were also tested. When comparing results from the test versus control sites, a significantly higher proportion (P less than or equal to 0.05) of the samples from the test sites were positive for thermophilic amoeba, thermophilic Naegleria and pathogenic Naegleria. The difference in number of samples positive for thermophilic Naegleria between heated and unheated waters, however, was attributable predominantly to the northern waters and algae/sediments. While two of four northern test sites yielded pathogenic Naegleria, seven of the eight isolates were obtained from one site. Seasonality effects relative to the isolation of the pathogen were also noted at this site. One pathogen was isolated from a southwestern test site. Pathogens were not isolated from any control sites. Some of the pathogenic isolates were analyzed serologically and classified as pathogenic Naegleria fowleri. Salinity, pH, conductivity, and bacteriological profiles did not obviously correlate with the presence or absence of pathogenic Naegleria. While thermal addition was significantly associated with the presence of thermophilic Naegleria (P less than or equal to 0.05), the data implicate other as yet undefined parameters associated with the presence of the pathogenic thermophile. Until further delineation of these parameters is effected, generalizations cannot be made concerning the effect of thermal impact on the growth of pathogenic amoeba in a particular cooling system.

  1. 14 CFR 23.1337 - Powerplant instruments installation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... flight. An indicator calibrated in appropriate units and clearly marked to indicate those units must be used. In addition: (1) Each fuel quantity indicator must be calibrated to read “zero” during level... under § 23.959(a); (2) Each exposed sight gauge used as a fuel quantity indicator must be...

  2. Modeling Fault Diagnosis Performance on a Marine Powerplant Simulator.

    DTIC Science & Technology

    1985-08-01

    institute of technology a unit of the university system georgia atlanta, georgia 30332 Thu doument hm ber ampo~ w . puW . , md a"Mle I (15 11 12 089...for Man- Machine Systems Research for their friendship and stimulating discus- sions: John Hammer, Richard Henneman , Mike Lewis, Janet Fath and Wan Yoon...training and cost. The . . . % . . . .. . . . . . . . . . . " q zI, 1 w w .- 12 high point of very diminishing expensive retsurnq.. / !- transfez cost

  3. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  4. 10 CFR 504.9 - Environmental requirements for certifying powerplants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... review and prepare an EA or EIS, as appropriate, and who does not have a financial or other interest in... any conflict of interest, financial or otherwise, in the outcome of either the environmental process... approve the information to be developed and supervise the gathering, analysis and presentation of...

  5. Microgravity Survey of Wilson Dam Powerplant Switchyards, Florence, Alabama.

    DTIC Science & Technology

    1984-04-01

    ofs -,hsur frce ~O~4 ~ IWLO!4 Ot4CCV 65 IS O9nOLET Fui~ t Ee SECUPI’Y CL.ISFCC CF T.IS -A -,E ’PN Pwas Fr.’. Unclassified j SECURITY CLASSIFICATION OF...35 4 36 20 5.539 4 30 10 5.546 5 40 6 5.533 5 46 20 5.!42 6 78 10 5!27 6 56 9 5 533 7109 rd 5 524 7 66 10 5 !35 8 128 10 5.512 6 78 6 5 521 9 160 40

  6. A chicken in every pot, a new boiler in every powerplant, a new powerplant at every industrial site

    SciTech Connect

    Bessette, R.D.

    1997-12-31

    The paper discusses the pressures on the industrial boiler owner today which affect how he meets his energy needs. As a result of these pressures, especially the environmental regulations, the author sees some major trends which may be indicative of what the future will hold and he discusses these. The author finally describes what the industrial power plant will be in the next 10--20 years.

  7. A noise study of the A-6 airplane and techniques for reducing its aural detection distance

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Connor, A. B.; Hubbard, H. H.

    1975-01-01

    A study was undertaken to determine the noise reduction potential of the A-6 airplane in order to reduce its aural detection distance. Static and flyby noise measurements were taken to document the basic airplane signature. The low-frequency noise which is generally most critical for aural detection was found to be broad-band in nature from this airplane, and its source is the turbojet engine exhaust. High-frequency compressor noise, which is characteristic of turbojet powerplants, and which is prominent at close range for this airplane, has no measurable effect on aural detection distance. The use of fluted-engine exhaust nozzles to change the far-field noise spectra is suggested as a possible means for reducing the aural detection distances. Detection distances associated with eight-lobe and four-lobe nozzles are estimated for a 1,000-foot altitude and grassy terrain to decrease from 4 miles to about 3 miles, and from 3 miles to about 2 miles for a 300-foot altitude and grassy terrain.

  8. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  9. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  10. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  11. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  12. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  13. 14 CFR 25.1181 - Designated fire zones; regions included.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....1181 Section 25.1181 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire... accessory section; (4) Any auxiliary power unit compartment; (5) Any fuel-burning heater and...

  14. 14 CFR 25.1181 - Designated fire zones; regions included.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....1181 Section 25.1181 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire... accessory section; (4) Any auxiliary power unit compartment; (5) Any fuel-burning heater and...

  15. 14 CFR 25.1189 - Shutoff means.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1189 Shutoff means. (a... shut off or otherwise prevent hazardous quantities of fuel, oil, deicer, and other flammable...

  16. 14 CFR 25.1181 - Designated fire zones; regions included.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1181 Section 25.1181 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire... accessory section; (4) Any auxiliary power unit compartment; (5) Any fuel-burning heater and...

  17. 14 CFR 25.1181 - Designated fire zones; regions included.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....1181 Section 25.1181 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire... accessory section; (4) Any auxiliary power unit compartment; (5) Any fuel-burning heater and...

  18. 14 CFR 25.1189 - Shutoff means.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1189 Shutoff means. (a... shut off or otherwise prevent hazardous quantities of fuel, oil, deicer, and other flammable...

  19. 14 CFR 25.1189 - Shutoff means.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1189 Shutoff means. (a... shut off or otherwise prevent hazardous quantities of fuel, oil, deicer, and other flammable...

  20. Fuel-Cell-Powered Electric Motor Drive Analyzed for a Large Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Choi, Benjamin B.

    2005-01-01

    Because of its high efficiency, fuel cell technology may be used to launch a new generation of more-electric aeropropulsion and power systems for future aircraft. Electric-motor-driven airplanes using fuel-cell powerplants would be beneficial to the environment because of fuel savings, low noise, and zero carbon-dioxide emissions. In spite of the fuel cell s efficiency benefit, to produce the same shaft drive power, a fuel cell- powered electric-drive system must be definitely heavier than a turbine-drive system. However, the fuel-cell system s overall efficiency from fuel-to-shaft power is higher than for a turbine-drive system. This means that the fuel consumption rate could be lower than for a conventional system. For heavier, fuel-laden planes for longer flights, we might achieve substantial fuel savings. In the airplane industry, in fact, an efficiency gain of even a few percentage points can make a major economic difference in operating costs.

  1. 14 CFR 23.777 - Cockpit controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Personnel and... right powerplant controls must operate the rear engine. (f) Wing flap and auxiliary lift device...

  2. 14 CFR 23.777 - Cockpit controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Personnel and... right powerplant controls must operate the rear engine. (f) Wing flap and auxiliary lift device...

  3. 14 CFR 23.1191 - Firewalls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection... equipment, must be isolated from the rest of the airplane by firewalls, shrouds, or equivalent means. (b... pass from the compartment created by the firewall or shroud to other parts of the airplane. (c)...

  4. 14 CFR 23.1191 - Firewalls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection... equipment, must be isolated from the rest of the airplane by firewalls, shrouds, or equivalent means. (b... pass from the compartment created by the firewall or shroud to other parts of the airplane. (c)...

  5. 14 CFR 23.1191 - Firewalls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection... equipment, must be isolated from the rest of the airplane by firewalls, shrouds, or equivalent means. (b... pass from the compartment created by the firewall or shroud to other parts of the airplane. (c)...

  6. 14 CFR 23.1191 - Firewalls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection... equipment, must be isolated from the rest of the airplane by firewalls, shrouds, or equivalent means. (b... pass from the compartment created by the firewall or shroud to other parts of the airplane. (c)...

  7. 14 CFR 23.1191 - Firewalls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection... equipment, must be isolated from the rest of the airplane by firewalls, shrouds, or equivalent means. (b... pass from the compartment created by the firewall or shroud to other parts of the airplane. (c)...

  8. 14 CFR 25.1191 - Firewalls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1191 Firewalls. (a) Each... rest of the airplane by firewalls, shrouds, or equivalent means. (b) Each firewall and shroud must be... the compartment to other parts of the airplane; (3) Constructed so that each opening is sealed...

  9. 14 CFR 25.1191 - Firewalls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1191 Firewalls. (a) Each... rest of the airplane by firewalls, shrouds, or equivalent means. (b) Each firewall and shroud must be... the compartment to other parts of the airplane; (3) Constructed so that each opening is sealed...

  10. 14 CFR 25.1191 - Firewalls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1191 Firewalls. (a) Each... rest of the airplane by firewalls, shrouds, or equivalent means. (b) Each firewall and shroud must be... the compartment to other parts of the airplane; (3) Constructed so that each opening is sealed...

  11. 14 CFR 23.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 23.1197 Fire extinguishing agents. For all airplanes with engine(s) embedded in the fuselage or... from any burning of fluids or other combustible materials in the area protected by the...

  12. 14 CFR 25.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1197 Fire... any burning of fluids or other combustible materials in the area protected by the fire extinguishing... airplane or as a result of discharging the fire extinguisher on the ground or in flight) from entering...

  13. 14 CFR 23.1201 - Fire extinguishing systems materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 23.1201 Fire extinguishing systems materials. For all airplanes with... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire extinguishing systems materials....

  14. 14 CFR 23.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 23.1197 Fire extinguishing agents. For commuter category airplanes, the following applies: (a... fluids or other combustible materials in the area protected by the fire extinguishing system; and...

  15. 14 CFR 25.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1197 Fire... any burning of fluids or other combustible materials in the area protected by the fire extinguishing... airplane or as a result of discharging the fire extinguisher on the ground or in flight) from entering...

  16. 14 CFR 23.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 23.1197 Fire extinguishing agents. For all airplanes with engine(s) embedded in the fuselage or... from any burning of fluids or other combustible materials in the area protected by the...

  17. 14 CFR 25.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1197 Fire... any burning of fluids or other combustible materials in the area protected by the fire extinguishing... airplane or as a result of discharging the fire extinguisher on the ground or in flight) from entering...

  18. 14 CFR 23.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 23.1197 Fire extinguishing agents. For commuter category airplanes, the following applies: (a... fluids or other combustible materials in the area protected by the fire extinguishing system; and...

  19. 14 CFR 23.1201 - Fire extinguishing systems materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 23.1201 Fire extinguishing systems materials. For all airplanes with... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire extinguishing systems materials....

  20. 14 CFR 25.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1197 Fire... any burning of fluids or other combustible materials in the area protected by the fire extinguishing... airplane or as a result of discharging the fire extinguisher on the ground or in flight) from entering...

  1. 14 CFR 23.1197 - Fire extinguishing agents.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Fire..., 2011. For commuter category airplanes, the following applies: (a) Fire extinguishing agents must— (1... materials in the area protected by the fire extinguishing system; and (2) Have thermal stability over...

  2. 14 CFR 23.777 - Cockpit controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and Construction Personnel and... structure. (c) Powerplant controls must be located— (1) For multiengine airplanes, on the pedestal or... engine and the right powerplant controls must operate the rear engine. (f) Wing flap and auxiliary...

  3. 14 CFR 25.943 - Negative acceleration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....943 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.943 Negative acceleration. No... system associated with the powerplant or auxiliary power unit may occur when the airplane is operated...

  4. 14 CFR 25.943 - Negative acceleration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....943 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.943 Negative acceleration. No... system associated with the powerplant or auxiliary power unit may occur when the airplane is operated...

  5. 14 CFR 25.943 - Negative acceleration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....943 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.943 Negative acceleration. No... system associated with the powerplant or auxiliary power unit may occur when the airplane is operated...

  6. 14 CFR 25.943 - Negative acceleration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....943 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.943 Negative acceleration. No... system associated with the powerplant or auxiliary power unit may occur when the airplane is operated...

  7. 14 CFR 25.943 - Negative acceleration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....943 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.943 Negative acceleration. No... system associated with the powerplant or auxiliary power unit may occur when the airplane is operated...

  8. 14 CFR 25.1191 - Firewalls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Firewalls. 25.1191 Section 25.1191... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1191 Firewalls. (a) Each... rest of the airplane by firewalls, shrouds, or equivalent means. (b) Each firewall and shroud must...

  9. 14 CFR 25.1191 - Firewalls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Firewalls. 25.1191 Section 25.1191... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1191 Firewalls. (a) Each... rest of the airplane by firewalls, shrouds, or equivalent means. (b) Each firewall and shroud must...

  10. 14 CFR Appendix A to Part 23 - Simplified Design Load Criteria

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... single engine excluding turbine powerplants; (2) A main wing located closer to the airplane's center of... normal to the relative wind, and to have a magnitude of 1.05 times the airplane normal loads...

  11. 14 CFR 25.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine... airplane and of the engine. (b) (c) The turbine engine air inlet system may not, as a result of air...

  12. 14 CFR 25.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine... airplane and of the engine. (b) (c) The turbine engine air inlet system may not, as a result of air...

  13. 14 CFR 25.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine... airplane and of the engine. (b) (c) The turbine engine air inlet system may not, as a result of air...

  14. Applicability of the PSD Regulations to Powerplants that are Certified by DOE as Peakload Power Plants

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  15. 10 CFR 503.6 - Cost calculations for new powerplants and installations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... using imported petroleum. (3) To conduct the general cost test, calculate the difference (DELTA) between... useful life of the unit using Equations 2 and 3. (iii) Using Equation 1, compute the difference (DELTA) between COST (ALTERNATE) and COST (OIL). If the difference (DELTA) is less than or equal to zero,...

  16. 10 CFR 503.6 - Cost calculations for new powerplants and installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... using imported petroleum. (3) To conduct the general cost test, calculate the difference (DELTA) between... difference (DELTA) between COST (ALTERNATE) and COST (OIL). If the difference (DELTA) is less than or equal... difference (DELTA) is greater than zero and if the best practicable cost estimates will not materially...

  17. 10 CFR 503.6 - Cost calculations for new powerplants and installations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... using imported petroleum. (3) To conduct the general cost test, calculate the difference (DELTA) between... useful life of the unit using Equations 2 and 3. (iii) Using Equation 1, compute the difference (DELTA) between COST (ALTERNATE) and COST (OIL). If the difference (DELTA) is less than or equal to zero,...

  18. 10 CFR 503.6 - Cost calculations for new powerplants and installations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... using imported petroleum. (3) To conduct the general cost test, calculate the difference (DELTA) between... useful life of the unit using Equations 2 and 3. (iii) Using Equation 1, compute the difference (DELTA) between COST (ALTERNATE) and COST (OIL). If the difference (DELTA) is less than or equal to zero,...

  19. Off-design analysis of a gas turbine powerplant augmented by steam injection using various fuels

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1980-01-01

    Results are compared using coal derived low and intermediate heating valve fuel gases and a conventional distillate. The results indicate that steam injection provides substantial increases in both power and efficiency within the available compressor surge margin. The results also indicate that these performance gains are relatively insensitive as to the type of fuel. Also, in a cogeneration application, steam injection could provide some degree of flexibility by varying the split between power and process steam.

  20. Effects of power-plant generated contaminants on trophic relationships in Chesapeake Bay

    SciTech Connect

    Sanders, J.G.; Riedel, G.F.; Connell, D.B.

    1997-09-01

    This project tested the hypothesis that shifts in phytoplankton species composition that occur when Chesapeake Bay phytoplankton communities are chronically exposed to low levels of toxic trace metals can lead to altered (reduced) flow of carbon to higher trophic levels of the conventional food web and increased movement of carbon through microbial food chains and degradation pathways.

  1. Power-plant fly-ash utilization: a chemical processing perspective

    SciTech Connect

    Burnet, G.; Murtha, M.J.

    1981-01-01

    The 1976 Resource Conservation and Recovery Act (RCRA) deals with the management of solid and hazardous wastes, and encourages energy and resource recovery. Recent research has indicated that solid wastes from coal combustion, including fly ash, could be classified as hazardous under present EPA definitions. The seriousness of this possibility has been recognized and new rules for coal ash waste disposal are being considered. Ames Laboratory research on fly ash utilization as an alternative to disposal includes extraction of metals from the ash and discovery of uses for the process residues. Recovery of alumina and iron oxides by physical and chemical processing would permit large scale utilization of fly ash and help reduce dependency on imports. One of the processes investigated uses a lime-soda sinter method to form soluble aluminate compounds from mixtures of fly ash, limestone, and soda ash. The aluminates are extracted, treated to remove silicates, and precipitated: the precipitate is calcined to metallurgical grade alumina. The extract residue shows promise as a raw material for the production of Portland cement. Process economics are presented, and the effects of alumina and silica contents of the fly ash, sintering temperatures and time, and sales credits for by-products are discussed.

  2. "We Burn to Learn" About Fuel-Air Mixing Within Aircraft Powerplants

    NASA Technical Reports Server (NTRS)

    Robinson, Heidi N.

    2004-01-01

    I am working with my branch s advanced diagnostics team to investigate fuel-air mixing in jet-fueled gas turbine combustors and jet-fuel reformers. Our data acquisition begins with bench-top experiments which will help with calibration of equipment for facility testing. While conducting the bench-top experiments I learned to align laser and optical equipment to collect data, to use the data acquisition software, and to process the data into graphs and images. which jet he1 is to be reformed into hydrogen. Testing will commence shortly, after which we will obtain and analyze data and meet a critical milestone for the end of September. I am also designing the layout for a Schlieren system that will be used during that time frame. A Schlieren instrument records changes in the refractive index distribution of transparent media like air flows. The refractive index distribution can then be related to density, temperature, or pressure distributions within the flow. I am working on a scheme to quantify this information and add to the knowledge of the fuel-air mixing process.

  3. Legionnaires' Disease Bacterium in power-plant cooling systems: Phase 1. Final report

    SciTech Connect

    Christensen, S.W.; Solomon, J.A.; Gough, S.B.; Tyndall, R.L.; Fliermans, C.B.

    1983-06-01

    A survey was undertaken of the distribution, density, viability, and infectivity of Legionnaires' Disease Bacteria (Legionella) in power plant cooling systems. Water samples were collected during each of the four seasons at various locations within each of nine power plants and from ambient waters at each site. Measurements of a number of physical and chemical characteristics were made, and Legionella profiles (density, viability, and infectivity for guinea pigs) were obtained. Legionella were detected in nearly all samples. Water from closed-cycle cooling systems frequently had lower densities of Legionella than the ambient water. Nonetheless, infectious Legionella, as defined by their isolation from inoculated guinea pigs, were significantly more likely to be found in samples from the plant-exposed water of closed-cycle plants than in samples from once-through plants or in ambient samples. A new species (L. oakridgensis) was initially isolated from two of the sites, and it has since been found to have a widespread distribution. Two other organisms found to cause illness in guinea pigs may also be new species. Phase II of the project involves investigating possible cause/effect relationships between physicochemical variables and Legionella. This work may contribute toward eventual control techniques for this pathogen.

  4. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Astrophysics Data System (ADS)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  5. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    NASA Astrophysics Data System (ADS)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-03-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  6. Technology development for phosphoric acid fuel cell powerplant (phase 2). [on site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    Progress is reported in the development of material, cell components, and reformers for on site integrated energy systems. Internal resistance and contact resistance were improved. Dissolved gases (O2, N2, and CO2) were found to have no effect on the electrochemical corrosion of phenolic composites. Stack performance was increased by 100 mV over the average 1979 level.

  7. Geothermal well-field and power-plant investment-decision analysis

    SciTech Connect

    Cassel, T.A.V.; Amundsen, C.B.; Edelstein, R.H.; Blair, P.D.

    1981-05-31

    Investment decisions pertaining to hydrothermal well fields and electric power plants are analyzed. Geothermal investment decision models were developed which, when coupled to a site-specific stochastic cash flow model, estimate the conditional probability of a positive decision to invest in the development of geothermal resource areas. Quantitative decision models have been developed for each major category of investor currently involved in the hydrothermal projects. These categories include: large, diversified energy resource corporations; independently operating resource firms; investor-owned electric utilities; municipal electric utilities; state-run resource agencies; and private third-party power plant investors. The geothermal cash flow, the investment decision analysis, and an example of model application for assessing the likely development of geothermal resource areas are described. The sensitivity of this investment behavior to federal incentives and research goals is also analyzed and discussed.

  8. Fighting noise with noise: Where the contest stands for powerplant applications

    SciTech Connect

    O'Keefe, W.

    1994-07-01

    This article examines the use of active noise cancellation in power plant applications. The article examines the basic concepts of active noise cancellation, types of controls and generators for the canceling noise, economic trade-off, noise regulations, working conditions and impact to employees, demonstration projects and commercial applications.

  9. Market for new coal powerplant technologies in the US: 1997 annual energy outlook results

    SciTech Connect

    Hutzler, M.J.

    1997-12-31

    Over the next 20 years, the combination of slow growth in the demand for electricity, even slower growth in the need for new capacity, especially baseload capacity, and the competitiveness of new gas-fired technologies limits the market for new coal technologies in the US. In the later years of the 1997 Annual Energy Outlook projections, post-2005, when a significant amount of new capacity is needed to replace retiring plants and meet growing demand, some new coal-fired plants are expected to be built, but new gas-fired plants are expected to remain the most economical choice for most needs. The largest market for clean coal technologies in the United States may be in retrofitting or repowering existing plants to meet stricter environmental standards, especially over the next 10 years. Key uncertainties include the rate of growth in the demand for electricity and the level of competing fuel prices, particularly natural gas. Higher than expected growth in the demand for electricity and/or relatively higher natural gas prices would increase the market for new coal technologies.

  10. A miniature powerplant for very small, very long range autonomous aircraft. Final report

    SciTech Connect

    Tad McGeer

    1999-09-29

    The authors have developed a new piston engine offering unprecedented efficiency for a new generation of miniature robotic aircraft. Following Phase 1 preliminary design in 1996--97, they have gone forward in Phase 2 to complete detail design, and are nearing completion of a first batch of ten engines. A small-engine dynamometer facility has been built in preparation for the test program. Provisions have been included for supercharging, which will allow operation at ceilings in the 10,000 m range. Component tests and detailed analysis indicate that the engine will achieve brake-specific fuel consumption well below 300 gm/kWh at power levels of several hundred watts. This level of performance opens the door to development of tabletop-sized aircraft having transpacific range and multi-day endurance, which will offer extraordinary new capabilities for meteorology, geomagnetic, and a variety of applications in environmental monitoring and military operations.

  11. Thermodynamic considerations for the design of a sonic-boom reducing powerplant.

    NASA Technical Reports Server (NTRS)

    Galanis, N.

    1972-01-01

    Third-order analytical expressions are obtained for the lift and wave-drag coefficients of a two-dimensional wing. The expressions are used to demonstrate the possibility of boomless lifting configuration designs when the cross-section area of the stream tube is reduced. The reduction is obtained by processing the captured airstream in such a manner that the stream tube area is smaller at the exit than at the entrance. Calculations by these expressions are shown to be in good agreement with exact results obtained from compressive flow tables. It is also shown that three-dimensional wing configurations of this design give the maximum thermodynamic effect when a propulsive power plant is employed for the reduction of the captured-stream area. Thermodynamic guidelines are given for power plant designs to be used for this purpose.

  12. Gas Transport and Control in Thick-Liquid Inertial Fusion PowerPlants

    SciTech Connect

    Debonnel, Christophe Sylvain

    2006-01-01

    Among the numerous potential routes to a commercial fusion power plant, the inertial path with thick-liquid protection is explored in this doctoral dissertation. Gas dynamics phenomena in such fusion target chambers have been investigated since the early 1990s with the help of a series of simulation codes known as TSUNAMI. For this doctoral work, the code was redesigned and rewritten entirely to enable the use of modern programming techniques, languages and software; improve its user-friendliness; and refine its ability to model thick-liquid protected chambers. The new ablation and gas dynamics code is named “Visual Tsunami” to emphasize its graphics-based pre- and post-processors. It is aimed at providing a versatile and user-friendly design tool for complex systems for which transient gas dynamics phenomena play a key role. Simultaneously, some of these improvements were implemented in a previous version of the code; the resulting code constitutes the version 2.8 of the TSUNAMI series. Visual Tsunami was used to design and model the novel Condensation Debris Experiment (CDE), which presents many aspects of a typical Inertial Fusion Energy (IFE) system and has therefore been used to exercise the code. Numerical and experimental results are in good agreement. In a heavy-ion IFE target chamber, proper beam and target propagation set stringent requirements for the control of ablation debris transport in the target chamber and beam tubes. When the neutralized ballistic transport mode is employed, the background gas density should be adequately low and the beam tube metallic surfaces upstream of the neutralizing region should be free of contaminants. TSUNAMI 2.8 was used for the first simulation of gas transport through the complex geometry of the liquid blanket of a hybrid target chamber and beam lines. Concurrently, the feasibility of controlling the gas density was addressed with a novel beam tube design, which introduces magnetic shutters and a long low-temperature liquid vortex; this beam tube configuration was included in the first thick-liquid heavy-ion fusion point design, the so-called Robust Point Design 2002. Additionally, novel, alternative thick-liquid chambers that can accommodate the assisted-pinch, the solenoidal final-focusing, or a Z-pinch driver are discussed.

  13. Can a wastewater treatment plant be a powerplant? A case study.

    PubMed

    Schwarzenbeck, N; Pfeiffer, W; Bomball, E

    2008-01-01

    Today wastewater treatment plants are evaluated not only in terms of their treatment efficiency but also concerning their energy efficiency. Increasing energy efficiency can be realized either through operational optimisation or by realising an already existing potential for energy generation on-site. The main source of energy at a municipal wastewater treatment plant is the biogas produced in the anaerobic sludge digester. Studies indicate excess digester capacities of about 20% in Germany available for co-fermentation of organic substrates other than sewage sludge. This paper presents an example of a municipal wastewater treatment plant going towards an energy self-sufficient operation and even a surplus energy production as the result of an increasing co-fermentation of sludge from grease skimming tanks. In 2005 on average 113% of the electricity consumed for plant operation was generated on-site in gas engines. Co-fermentation of about 30% (related to the total dry residue input) of grease interceptor sludge in the presented case does not only effect a 4-times increased gas yield, but also an intensified 20% higher anaerobic degradation of the organic matter of the sewage sludge and thus having a positive influence not only on the energy and financial balance but also on the anaerobic sludge stabilisation with respect to the degradation degree of the organic fraction.

  14. PURPA Resource Development in the Pacific Northwest : Case Studies of Ten Electricity Generating Powerplants.

    SciTech Connect

    Washington State Energy Office.

    1990-07-01

    The case studies in this document describe the Public Utilities, Regulatory Policies Act (PURPA) development process for a variety of generating technologies. Developer interactions with regulatory agencies and power purchasers are described in some detail. Equipment, installation, and maintenance costs are identified; power marketing considerations are taken into account; and potential environmental impacts, with corresponding mitigation approaches and practices are summarized. The project development case studies were prepared by the energy agencies of the four Northwest states, under contract to the Bonneville Power Administration.

  15. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  16. Acoustic agglomeration of power-plant fly ash. A comprehensive semi-annual progress report

    SciTech Connect

    Reethof, G.

    1980-02-01

    Results obtained during the reporting period are presented. The agglomeration of submicron fly ash particles has been studied as a function of sound pressure level, sound frequency, loading, and exposure time. A second generation model of the agglomeration process is being developed. A high-frequency, high-intensity variable speed siren delivering at least 600 W at frequencies up to 4000 Hz has been developed and tested. Details on the design and operation are presented. The agglomeration chamber has been completely cleaned and the aerosol generating system has been rebuilt. A mathematical model of the acoustics of agglomeration is being developed. Preliminary results of computerized electron microscopic scanning of fly ash particles during agglomeration are presented. (DMC)

  17. 10 CFR 501.51 - Prohibitions by order-electing powerplants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 501.51 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS ADMINISTRATIVE PROCEDURES AND SANCTIONS... order the use of petroleum or natural gas as a primary energy source or in amounts in excess of the minimum amount necessary to maintain reliability of operation consistent with reasonable fuel...

  18. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  19. HTRATE; Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    Rabas, T.J.

    1990-06-01

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  20. Infrared monitoring of power-plant effluents and heat sinks to optimize plant efficiency

    NASA Astrophysics Data System (ADS)

    Wurzbach, Richard N.; Seith, David A.

    2000-03-01

    Infrared imaging of the discharge canal and intake pond of the Peach Bottom Atomic Power Station was initiated to confirm a plant staff suspicion that high water intake temperatures were being influenced by recirculation of discharge flow. To minimize the angle of incidence to the water surface, the inspection was made from the top of the cooling towers. Although there was no evidence of recirculation from the plant discharge to the intake pond, two unexpected inputs of thermal energy were discovered during the inspection. A faulty sluice gate and a damaged cross-around pipe could be seen to be dumping thermal energy into the intake pond. The result was increased temperatures at the intake which threatened plant operation, decreased plant efficiency, and resulted in fewer megawatts available to sell to customers during the critical summer months.

  1. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-01-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  2. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and...

  3. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and...

  4. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a..., the design of the system, the materials used in the tank, the shut-off means, and all connections... or reservoir and each firewall or shroud isolating a designated fire zone. (c) Absorbent...

  5. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fire extinguishing system materials. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing...

  6. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fire extinguishing system materials. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing...

  7. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fire extinguishing system materials. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing...

  8. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a..., the design of the system, the materials used in the tank, the shut-off means, and all connections... or reservoir and each firewall or shroud isolating a designated fire zone. (c) Absorbent...

  9. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a..., the design of the system, the materials used in the tank, the shut-off means, and all connections... or reservoir and each firewall or shroud isolating a designated fire zone. (c) Absorbent...

  10. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fire extinguishing system materials. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing...

  11. 14 CFR 25.1201 - Fire extinguishing system materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire extinguishing system materials. 25... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1201 Fire extinguishing system materials. (a) No material in any fire extinguishing...

  12. 14 CFR 25.1185 - Flammable fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1185 Flammable fluids. (a..., the design of the system, the materials used in the tank, the shut-off means, and all connections... or reservoir and each firewall or shroud isolating a designated fire zone. (c) Absorbent...

  13. 14 CFR 25.1159 - Supercharger controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Supercharger controls. 25.1159 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1159 Supercharger controls. Each supercharger control must be accessible to the pilots or, if there is a...

  14. 14 CFR 25.1159 - Supercharger controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Supercharger controls. 25.1159 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1159 Supercharger controls. Each supercharger control must be accessible to the pilots or, if there is a...

  15. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and...

  16. 14 CFR 23.1143 - Engine controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine controls. 23.1143 Section 23.1143... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1143 Engine controls. (a) There must be a separate power or thrust control for each...

  17. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and...

  18. 14 CFR 25.1143 - Engine controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and...

  19. 14 CFR 25.1147 - Mixture controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mixture controls. 25.1147 Section 25.1147... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1147 Mixture controls. (a) If there are mixture controls, each engine must have a separate control. The controls must...

  20. 14 CFR 25.1147 - Mixture controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mixture controls. 25.1147 Section 25.1147... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1147 Mixture controls. (a) If there are mixture controls, each engine must have a separate control. The controls must...

  1. 14 CFR 25.1147 - Mixture controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Mixture controls. 25.1147 Section 25.1147... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1147 Mixture controls. (a) If there are mixture controls, each engine must have a separate control. The controls must...

  2. 14 CFR 25.1147 - Mixture controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Mixture controls. 25.1147 Section 25.1147... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1147 Mixture controls. (a) If there are mixture controls, each engine must have a separate control. The controls must...

  3. 14 CFR 25.1147 - Mixture controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Mixture controls. 25.1147 Section 25.1147... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1147 Mixture controls. (a) If there are mixture controls, each engine must have a separate control. The controls must...

  4. 14 CFR 25.1161 - Fuel jettisoning system controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel jettisoning system controls. 25.1161 Section 25.1161 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls...

  5. 14 CFR 25.1161 - Fuel jettisoning system controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel jettisoning system controls. 25.1161 Section 25.1161 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls...

  6. 14 CFR 25.1161 - Fuel jettisoning system controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel jettisoning system controls. 25.1161 Section 25.1161 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls...

  7. 14 CFR 25.1195 - Fire extinguishing systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 25.1195 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1195 Fire... reignition. An individual “one-shot” system may be used for auxiliary power units, fuel burning heaters,...

  8. 14 CFR 25.1161 - Fuel jettisoning system controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel jettisoning system controls. 25.1161 Section 25.1161 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls...

  9. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 25.1149... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed...

  10. 14 CFR 25.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller feathering controls. 25.1153... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1153 Propeller feathering controls. (a) There must be a separate propeller feathering...

  11. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 23.1149... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are...

  12. 14 CFR 23.1153 - Propeller feathering controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller feathering controls. 23.1153... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1153 Propeller feathering controls. If there are...

  13. 14 CFR 23.1155 - Turbine engine reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine reverse thrust and propeller... COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1155 Turbine engine reverse thrust and propeller pitch settings below the flight regime. For turbine engine installations,...

  14. 14 CFR 23.1155 - Turbine engine reverse thrust and propeller pitch settings below the flight regime.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine reverse thrust and propeller... COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1155 Turbine engine reverse thrust and propeller pitch settings below the flight regime. For turbine engine installations,...

  15. 14 CFR 25.1041 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false General. 25.1041 Section 25.1041 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1041 General. The powerplant and...

  16. 14 CFR 25.1041 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false General. 25.1041 Section 25.1041 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1041 General. The powerplant and...

  17. 14 CFR 25.1041 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false General. 25.1041 Section 25.1041 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1041 General. The powerplant and...

  18. 14 CFR 25.1041 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false General. 25.1041 Section 25.1041 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1041 General. The powerplant and...

  19. 14 CFR 25.1041 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false General. 25.1041 Section 25.1041 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1041 General. The powerplant and...

  20. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1182 Nacelle areas behind firewalls... immediately behind the firewall, and each portion of any engine pod attaching structure containing...

  1. 14 CFR 25.1182 - Nacelle areas behind firewalls, and engine pod attaching structures containing flammable fluid...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Nacelle areas behind firewalls, and engine...: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Fire Protection § 25.1182 Nacelle areas behind firewalls... immediately behind the firewall, and each portion of any engine pod attaching structure containing...

  2. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  3. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  4. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  5. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  6. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  7. 14 CFR 25.1105 - Induction system screens.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 25.1105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1105 Induction system... (d) It must be impossible for fuel to strike any screen....

  8. 14 CFR 25.979 - Pressure fueling system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....979 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.979 Pressure fueling system. For pressure fueling systems, the following apply: (a) Each pressure fueling system fuel...

  9. 14 CFR 25.1105 - Induction system screens.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 25.1105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1105 Induction system... (d) It must be impossible for fuel to strike any screen....

  10. 14 CFR 25.1045 - Cooling test procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1045 Cooling test procedures. (a... correspond to the applicable performance requirements. The cooling tests must be conducted with the...

  11. Giant airplanes

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    It is hardly possible for the most imaginative aeronautical enthusiast to look forward to a time when the airplane will have reached the dimensions commensurate with those already attained by the airship.

  12. 10 CFR 500.3 - Electric regions-electric region groupings for reliability measurements under the Powerplant and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of electric regions for use with regard to the Act. The regions are identified by FERC Power Supply... definition of electric regions in paragraph (a) of this section were first defined by the Federal Power... with DOE for an official determination. Electric Region Groupings and FERC PSA's: 1. Allegheny...

  13. Presence of pathogenic microorganisms in power-plant cooling waters. Report for October 1, 1979-September 30, 1981

    SciTech Connect

    Tyndall, R.L.

    1982-10-01

    Cooling waters from eleven geographically disparate power plants were tested for the presence of Naegleria fowleri and Legionella pneumophila (LDB). Control source waters for each plant were also tested for these pathogens. Water from two of the eleven plants contained pathogenic Naegleria, and infectious Legionella were found in seven of the test sites. Pathogenic Naegleria were not found in control waters, but infectious Legionella were found in five of the eleven control source water sites. Concentrations of nitrite, sulfate, and total organic carbon correlated with the concentrations of LDB. A new species of Legionella was isolated from one of the test sites. In laboratory tests, both Acanthamoeba and Naegleria were capable of supporting the growth of Legionella pneumophila.

  14. 76 FR 48833 - Notice of Filings of Self-Certifications of Coal Capability Under the Powerplant and Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... coal or another alternate fuel as a primary energy source. Pursuant to FUA section 201(d), in order to... natural gas or petroleum as its primary energy source shall certify to the Secretary of Energy (Secretary... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY...

  15. 78 FR 54879 - Notice of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... operated without the capability to use coal or another alternate fuel as a primary energy source. Pursuant... proposing to use natural gas or petroleum as its primary energy source shall certify to the Secretary of... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY...

  16. Addendum to sources of powerplant cooling water in the desert area of Southern California: a reconnaissance study

    USGS Publications Warehouse

    Koehler, J.H.; Mallory, Michael J.

    1981-01-01

    A hydrologic reconnaissance study was made in five basins in southern California previously classified as suitable for providing sufficient ground water for cooling a 1,000-megawatt electric-power generating plant. The criteria used to evaluate the basins were (1) theoretical aquifer response to pumping, (2) alternative sources of water, and (3) chemical quality of water. The basins were ranked relative to each other for the three criteria and in overall suitability. On the basis of subjective analysis, the basins were ranked in the following order for overall suitability: (1) Calzona-Vidal Valley, (2) Middle Amargosa Valley, (3) Chuckwalla Valley, (4) Soda Lake Valley, and (5) Caves Canyon Valley. (USGS)

  17. 10 CFR 500.3 - Electric regions-electric region groupings for reliability measurements under the Powerplant and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... System (APS)—7, except Duquesne Light Company. 2. American Electric Power System (AEP)—entire AEP System... Edison Company, Duquesne Light Company. 14. Cincinnati, Columbus, Dayton Group (CCD)—Cincinnati Gas and Electric Company, Columbus and Southern Ohio Electric Company, Dayton Power and Light Company. 15....

  18. 10 CFR 500.3 - Electric regions-electric region groupings for reliability measurements under the Powerplant and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... System (APS)—7, except Duquesne Light Company. 2. American Electric Power System (AEP)—entire AEP System... Edison Company, Duquesne Light Company. 14. Cincinnati, Columbus, Dayton Group (CCD)—Cincinnati Gas and Electric Company, Columbus and Southern Ohio Electric Company, Dayton Power and Light Company. 15....

  19. 10 CFR 500.3 - Electric regions-electric region groupings for reliability measurements under the Powerplant and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... System (APS)—7, except Duquesne Light Company. 2. American Electric Power System (AEP)—entire AEP System... Edison Company, Duquesne Light Company. 14. Cincinnati, Columbus, Dayton Group (CCD)—Cincinnati Gas and Electric Company, Columbus and Southern Ohio Electric Company, Dayton Power and Light Company. 15....

  20. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT OF THE UNITED STATES ARMY CORPS OF ENGINEERS GARRISON DAM HYDRO- ELECTRIC POWERPLANT - RIVERDALE, NORTH DAKOTA

    EPA Science Inventory

    The report describes the results of pollution prevention opportunity assessments conducted at a representative U.S. Army Corps of Engineers civil works dam and hydroelectric power plant. ecommended methods for reducing pollution resulting primarily from the operation of these fac...

  1. 14 CFR 23.903 - Engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Airplane Flight Manual, approved manual material, or applicable operating placards. (2) There must be means... the Airplane Flight Manual, approved manual material, or applicable operating placards. (4) It must be... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.903...

  2. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25... between the air duct source and the airplane unit served by the air. (e) Each auxiliary power unit... other compartment or area of the airplane in which a hazard would be created resulting from the entry...

  3. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel... airplane structure, a pressure of 3.5 p.s.i., or that pressure developed during maximum ultimate... the maximum limit acceleration of the airplane with a full tank, with simultaneous application of...

  4. 14 CFR 23.903 - Engines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... starting must be established and included in the Airplane Flight Manual, approved manual material, or... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.903 Engines... the airplane in the event of an engine rotor failure or of a fire originating inside the engine...

  5. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25... between the air duct source and the airplane unit served by the air. (e) Each auxiliary power unit... other compartment or area of the airplane in which a hazard would be created resulting from the entry...

  6. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel... airplane structure, a pressure of 3.5 p.s.i., or that pressure developed during maximum ultimate... the maximum limit acceleration of the airplane with a full tank, with simultaneous application of...

  7. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25... between the air duct source and the airplane unit served by the air. (e) Each auxiliary power unit... other compartment or area of the airplane in which a hazard would be created resulting from the entry...

  8. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25... between the air duct source and the airplane unit served by the air. (e) Each auxiliary power unit... other compartment or area of the airplane in which a hazard would be created resulting from the entry...

  9. 14 CFR 23.903 - Engines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... starting must be established and included in the Airplane Flight Manual, approved manual material, or... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.903 Engines... installations— (1) Design precautions must be taken to minimize the hazards to the airplane in the event of...

  10. 14 CFR 23.903 - Engines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... starting must be established and included in the Airplane Flight Manual, approved manual material, or... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.903 Engines... the airplane in the event of an engine rotor failure or of a fire originating inside the engine...

  11. 14 CFR 23.903 - Engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Airplane Flight Manual, approved manual material, or applicable operating placards. (2) There must be means... the Airplane Flight Manual, approved manual material, or applicable operating placards. (4) It must be... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.903...

  12. 14 CFR 23.965 - Fuel tank tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.965 Fuel... airplane structure, a pressure of 3.5 p.s.i., or that pressure developed during maximum ultimate... the maximum limit acceleration of the airplane with a full tank, with simultaneous application of...

  13. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  14. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.945 Thrust or power... can freeze, fluid freezing may not damage the airplane or adversely affect airplane performance....

  15. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  16. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.945 Thrust or power... can freeze, fluid freezing may not damage the airplane or adversely affect airplane performance....

  17. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.945 Thrust or power... can freeze, fluid freezing may not damage the airplane or adversely affect airplane performance....

  18. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  19. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  20. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  1. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.945 Thrust or power... can freeze, fluid freezing may not damage the airplane or adversely affect airplane performance....

  2. 14 CFR 25.945 - Thrust or power augmentation system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 25.945 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.945 Thrust or power... can freeze, fluid freezing may not damage the airplane or adversely affect airplane performance....

  3. Amphibious Airplane

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The airplane pictured is the new Air Shark I, a four-place amphibian that makes extensive use of composite materials and cruises at close to 200 miles per hour under power from a 200-horsepower engine. Air Shark I is a "homebuilt" airplane, assembled from a kit of parts and components furnished by Freedom Master Corporation, Satellite Beach, Florida. The airplane incorporates considerable NASA technology and its construction benefited from research assistance provided by Kennedy Space Center (KSC) In designing the Shark, company president Arthur M. Lueck was able to draw on NASA's aeronautical technology bank through KSC's computerized "recon" library. As a result of his work at KSC, the wing of the Air Shark I is a new airfoil developed by Langley Research Center for light aircraft. In addition, Lueck opted for NASA-developed "winglets," vertical extensions of the wing that reduce drag by smoothing air turbulence at the wingtips. The NASA technology bank also contributed to the hull design. Lueck is considering application of NASA laminar flow technology-means of smoothing the airflow over wing and fuselage-to later models for further improvement of the Shark's aerodynamic efficiency. A materials engineer, Lueck employed his own expertise in designing and selecting the materials for the composite segments, which include all structural members, exposed surfaces and many control components. The materials are fiber reinforced plastics, or FRP They offer a high strength-to-weight ratio, with a nominal strength rating about one and a half times that of structural steel. They provide other advantages: the materials can be easily molded into finished shapes without expensive tooling or machining, and they are highly corrosion resistant. The first homebuilt to be offered by Freedom Master, Air Shark I completed air and water testing in mid-1985 and the company launched production of kits.

  4. 14 CFR 23.1103 - Induction system ducts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... duct and entering any other compartment of the airplane in which a hazard would be created by the entry of the hot gases; (3) Constructed of materials suitable to the environmental conditions expected...

  5. 14 CFR 23.1103 - Induction system ducts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... duct and entering any other compartment of the airplane in which a hazard would be created by the entry of the hot gases; (3) Constructed of materials suitable to the environmental conditions expected...

  6. 14 CFR 23.1103 - Induction system ducts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... duct and entering any other compartment of the airplane in which a hazard would be created by the entry of the hot gases; (3) Constructed of materials suitable to the environmental conditions expected...

  7. 14 CFR 23.1182 - Nacelle areas behind firewalls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant... constructed of such materials and located at such distances from the firewall that they will not suffer damage sufficient to endanger the airplane if a portion of the engine side of the firewall is subjected to a...

  8. 14 CFR 23.1103 - Induction system ducts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... duct and entering any other compartment of the airplane in which a hazard would be created by the entry of the hot gases; (3) Constructed of materials suitable to the environmental conditions expected...

  9. 14 CFR 23.1182 - Nacelle areas behind firewalls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant... constructed of such materials and located at such distances from the firewall that they will not suffer damage sufficient to endanger the airplane if a portion of the engine side of the firewall is subjected to a...

  10. 14 CFR 23.1182 - Nacelle areas behind firewalls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant... constructed of such materials and located at such distances from the firewall that they will not suffer damage sufficient to endanger the airplane if a portion of the engine side of the firewall is subjected to a...

  11. 14 CFR 23.1182 - Nacelle areas behind firewalls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant... constructed of such materials and located at such distances from the firewall that they will not suffer damage sufficient to endanger the airplane if a portion of the engine side of the firewall is subjected to a...

  12. 14 CFR 23.1182 - Nacelle areas behind firewalls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant... constructed of such materials and located at such distances from the firewall that they will not suffer damage sufficient to endanger the airplane if a portion of the engine side of the firewall is subjected to a...

  13. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... operation at high temperatures and resistant to corrosion from exhaust gases; (2) There must be means...

  14. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a... suitable for continued operation at high temperatures and resistant to corrosion from exhaust gases;...

  15. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a... suitable for continued operation at high temperatures and resistant to corrosion from exhaust gases;...

  16. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a... suitable for continued operation at high temperatures and resistant to corrosion from exhaust gases;...

  17. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... operation at high temperatures and resistant to corrosion from exhaust gases; (2) There must be means...

  18. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... operation at high temperatures and resistant to corrosion from exhaust gases; (2) There must be means...

  19. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... operation at high temperatures and resistant to corrosion from exhaust gases; (2) There must be means...

  20. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a... suitable for continued operation at high temperatures and resistant to corrosion from exhaust gases;...

  1. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a... suitable for continued operation at high temperatures and resistant to corrosion from exhaust gases;...

  2. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... operation at high temperatures and resistant to corrosion from exhaust gases; (2) There must be means...

  3. 14 CFR 23.953 - Fuel system independence.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system independence. 23.953 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.953 Fuel system independence. (a) Each fuel system for a multiengine airplane must be arranged so...

  4. 14 CFR 23.953 - Fuel system independence.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system independence. 23.953 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.953 Fuel system independence. (a) Each fuel system for a multiengine airplane must be arranged so...

  5. 14 CFR 23.953 - Fuel system independence.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system independence. 23.953 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.953 Fuel system independence. (a) Each fuel system for a multiengine airplane must be arranged so...

  6. 14 CFR 25.1011 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1011 General. (a) Each engine must have... for reciprocating engine powered airplanes, the following fuel/oil ratios may be used: (1)...

  7. 14 CFR 25.1011 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1011 General. (a) Each engine must have... for reciprocating engine powered airplanes, the following fuel/oil ratios may be used: (1)...

  8. 14 CFR 25.1011 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1011 General. (a) Each engine must have... for reciprocating engine powered airplanes, the following fuel/oil ratios may be used: (1)...

  9. 14 CFR 25.1011 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1011 General. (a) Each engine must have... for reciprocating engine powered airplanes, the following fuel/oil ratios may be used: (1)...

  10. 14 CFR 25.903 - Engines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.903 Engines. (a) Engine type certificate. (1... safety of the airplane. Each component of the stopping system on the engine side of the firewall...

  11. 14 CFR 25.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....937 Section 25.937 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.937 Turbopropeller-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be...

  12. 14 CFR 25.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....937 Section 25.937 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.937 Turbopropeller-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be...

  13. 14 CFR 25.903 - Engines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.903 Engines. (a) Engine type certificate. (1... safety of the airplane. Each component of the stopping system on the engine side of the firewall...

  14. 14 CFR 25.903 - Engines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.903 Engines. (a) Engine type certificate. (1... safety of the airplane. Each component of the stopping system on the engine side of the firewall...

  15. 14 CFR 25.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....937 Section 25.937 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.937 Turbopropeller-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be...

  16. 14 CFR 25.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....937 Section 25.937 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.937 Turbopropeller-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be...

  17. 14 CFR 25.937 - Turbopropeller-drag limiting systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....937 Section 25.937 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.937 Turbopropeller-drag limiting systems. Turbopropeller power airplane propeller-drag limiting systems must be...

  18. 77 FR 7007 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... airplanes; Model A330-300 series airplanes, Model A340-200 series airplanes; Model A340-300 series airplanes; Model A340-541 airplanes; and Model A340-642 airplanes. This proposed AD was prompted by reports...

  19. Advanced General Aviation Turbine Engine (GATE) concepts

    NASA Technical Reports Server (NTRS)

    Lays, E. J.; Murray, G. L.

    1979-01-01

    Concepts are discussed that project turbine engine cost savings through use of geometrically constrained components designed for low rotational speeds and low stress to permit manufacturing economies. Aerodynamic development of geometrically constrained components is recommended to maximize component efficiency. Conceptual engines, airplane applications, airplane performance, engine cost, and engine-related life cycle costs are presented. The powerplants proposed offer encouragement with respect to fuel efficiency and life cycle costs, and make possible remarkable airplane performance gains.

  20. The Airplane Experiment.

    ERIC Educational Resources Information Center

    Larson, Lee; Grant, Roderick

    1991-01-01

    Presents an experiment to investigate centripetal force and acceleration that utilizes an airplane suspended on a string from a spring balance. Investigates the possibility that lift on the wings of the airplane accounts for the differences between calculated tension and measured tension on the string. (MDH)

  1. The limnological status of Lake Mead and Lake Mohave under present and future powerplant operations of Hoover Dam. Technical report no. 1 (final)

    SciTech Connect

    Paulson, L.J.; Baker, J.R.; Deacon, J.E.

    1980-01-01

    The U.S. Bureau of Reclamation is considering several alternatives for modifying Hoover Dam existing hydroelectric facilities, or add new facilities in the Lake Mead Recreation Area to increase peak-power output. This report deals with the investigations conducted on both Lake Mead and Mohave to assess the impacts of power modifications on the limnology of the reservoirs. Physical, chemical, biological and nutrients were measured in the Colorado River at Pierce Ferry and below Hoover Dam and in Las Vegas.

  2. MLS: Airplane system modeling

    NASA Technical Reports Server (NTRS)

    Thompson, A. D.; Stapleton, B. P.; Walen, D. B.; Rieder, P. F.; Moss, D. G.

    1981-01-01

    Analysis, modeling, and simulations were conducted as part of a multiyear investigation of the more important airplane-system-related items of the microwave landing system (MLS). Particular emphasis was placed upon the airplane RF system, including the antenna radiation distribution, the cabling options from the antenna to the receiver, and the overall impact of the airborne system gains and losses upon the direct-path signal structure. In addition, effort was expended toward determining the impact of the MLS upon the airplane flight management system and developing the initial stages of a fast-time MLS automatic control system simulation model. Results ot these studies are presented.

  3. Gordon Bennett Airplane Cup

    NASA Technical Reports Server (NTRS)

    Margoulis, W

    1921-01-01

    The characteristics of the airplanes built for the Gordon Bennet Airplane Cup race that took place on September 28, 1920 are described. The airplanes are discussed from a aerodynamical point of view, with a number of new details concerning the French machines. Also discussed is the regulation of future races. The author argues that there should be no limitations on the power of the aircraft engines. He reasons that in the present state of things, liberty with regard to engine power does not lead to a search for the most powerful engine, but for one which is reliable and light, thus leading to progress.

  4. The Bristol "Badminton" Airplane

    NASA Technical Reports Server (NTRS)

    1926-01-01

    The Bristol Badminton, Type 99 airplane has a radial aircooled engine (a Bristol Jupiter 9 cylinder 450 HP.) and three fuel tanks. It is a single seat biplane weighing 1,840 lbs. empty and 2,460 lbs. loaded.

  5. Stall-proof Airplanes

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1927-01-01

    My lecture has to do with the following questions. Is the danger of stalling necessarily inherent in the airplane in its present form and structure, or can it be diminished or eliminated by suitable means? Do we possess such means or devices and how must they operate? In this connection I will devote special attention to the exhibition of stall-proof airplanes by Fokker under the auspices of the English Air Ministry, which took place in Croyden last April.

  6. 14 CFR 25.903 - Engines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engines. 25.903 Section 25.903 Aeronautics... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.903 Engines. (a) Engine type certificate. (1) Each engine must have a type certificate and must meet the applicable requirements of part 34 of...

  7. 14 CFR 23.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel strainer or filter. 23.997 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.997 Fuel strainer or filter. There must be a fuel strainer or filter between the fuel...

  8. 14 CFR 23.994 - Fuel system components.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system components. 23.994 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.994 Fuel system components. Fuel system components in an engine nacelle or in the...

  9. 14 CFR 23.995 - Fuel valves and controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel valves and controls. 23.995 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.995 Fuel valves and controls. (a) There must be a means to allow appropriate flight...

  10. 14 CFR 23.999 - Fuel system drains.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system drains. 23.999 Section 23.999... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.999 Fuel system drains. (a) There must be at least one drain to allow safe drainage of the...

  11. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank filler connection. 23.973 Section... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.973 Fuel tank filler connection. (a) Each fuel tank filler connection must be marked as prescribed...

  12. 14 CFR 23.1107 - Induction system filters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... material particles in the induction air supply— (a) Each air filter must be capable of withstanding the... service and maintenance; and (b) Each air filter shall have a design feature to prevent material...

  13. 14 CFR 23.1107 - Induction system filters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... material particles in the induction air supply— (a) Each air filter must be capable of withstanding the... service and maintenance; and (b) Each air filter shall have a design feature to prevent material...

  14. 14 CFR 23.1107 - Induction system filters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... material particles in the induction air supply— (a) Each air filter must be capable of withstanding the... service and maintenance; and (b) Each air filter shall have a design feature to prevent material...

  15. 14 CFR 23.1107 - Induction system filters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... material particles in the induction air supply— (a) Each air filter must be capable of withstanding the... service and maintenance; and (b) Each air filter shall have a design feature to prevent material...

  16. 14 CFR 23.1107 - Induction system filters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... material particles in the induction air supply— (a) Each air filter must be capable of withstanding the... service and maintenance; and (b) Each air filter shall have a design feature to prevent material...

  17. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion...

  18. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion...

  19. 14 CFR 25.969 - Fuel tank expansion space.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank expansion space. 25.969 Section 25.969 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.969 Fuel tank expansion...

  20. 14 CFR 25.1101 - Carburetor air preheater design.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor air preheater design. 25.1101 Section 25.1101 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System §...

  1. 14 CFR 23.1199 - Extinguishing agent containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Extinguishing agent containers. 23.1199... Powerplant Fire Protection § 23.1199 Extinguishing agent containers. For commuter category airplanes, the following applies: (a) Each extinguishing agent container must have a pressure relief to prevent bursting...

  2. 14 CFR 25.903 - Engines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engines. 25.903 Section 25.903 Aeronautics... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.903 Engines. (a) Engine type certificate. (1) Each engine must have a type certificate and must meet the applicable requirements of part 34 of...

  3. 14 CFR 23.1105 - Induction system screens.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction system screens. 23.1105 Section... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1105 Induction system screens. If induction system screens are used— (a) Each screen must...

  4. 14 CFR 25.1093 - Induction system icing protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction system icing protection. 25.1093... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1093 Induction system icing protection. (a) Reciprocating engines. Each reciprocating engine air induction...

  5. 14 CFR 25.1107 - Inter-coolers and after-coolers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Inter-coolers and after-coolers. 25.1107 Section 25.1107 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1107...

  6. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction system ducts and air duct systems... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1103 Induction system ducts and air duct systems. (a) Each induction system duct upstream of the...

  7. 14 CFR 25.1105 - Induction system screens.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction system screens. 25.1105 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1105 Induction system screens. If induction system screens are used— (a) Each screen must be upstream of the carburetor; (b)...

  8. 14 CFR 23.1105 - Induction system screens.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction system screens. 23.1105 Section... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1105 Induction system screens. If induction system screens are used— (a) Each screen must...

  9. 14 CFR 23.1103 - Induction system ducts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction system ducts. 23.1103 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1103 Induction system ducts. (a) Each induction system duct must have a drain to prevent...

  10. 14 CFR 25.1093 - Induction system icing protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction system icing protection. 25.1093... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1093 Induction system icing protection. (a) Reciprocating engines. Each reciprocating engine air induction...

  11. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction system. 23.1091 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power...

  12. 14 CFR 25.1091 - Air induction.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction. 25.1091 Section 25.1091... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1091 Air induction. (a) The air induction system for each engine and auxiliary power unit must supply— (1) The air required by that...

  13. 14 CFR 25.1105 - Induction system screens.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction system screens. 25.1105 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1105 Induction system screens. If induction system screens are used— (a) Each screen must be upstream of the carburetor; (b)...

  14. 14 CFR 25.1107 - Inter-coolers and after-coolers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Inter-coolers and after-coolers. 25.1107 Section 25.1107 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1107...

  15. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator... would be subjected in operation. (b) Each oil radiator air duct must be located so that, in case of...

  16. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator... would be subjected in operation. (b) Each oil radiator air duct must be located so that, in case of...

  17. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator... would be subjected in operation. (b) Each oil radiator air duct must be located so that, in case of...

  18. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator... would be subjected in operation. (b) Each oil radiator air duct must be located so that, in case of...

  19. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator... would be subjected in operation. (b) Each oil radiator air duct must be located so that, in case of...

  20. 14 CFR 25.979 - Pressure fueling system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Pressure fueling system. 25.979 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.979 Pressure fueling system. For pressure fueling systems, the following apply: (a) Each pressure fueling system fuel...

  1. 14 CFR 25.979 - Pressure fueling system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Pressure fueling system. 25.979 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.979 Pressure fueling system. For pressure fueling systems, the following apply: (a) Each pressure fueling system fuel...

  2. 14 CFR 25.979 - Pressure fueling system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Pressure fueling system. 25.979 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.979 Pressure fueling system. For pressure fueling systems, the following apply: (a) Each pressure fueling system fuel...

  3. 14 CFR 25.979 - Pressure fueling system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Pressure fueling system. 25.979 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.979 Pressure fueling system. For pressure fueling systems, the following apply: (a) Each pressure fueling system fuel...

  4. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of...

  5. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of...

  6. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of...

  7. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of...

  8. 14 CFR 23.934 - Turbojet and turbofan engine thrust reverser systems tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbojet and turbofan engine thrust... CATEGORY AIRPLANES Powerplant General § 23.934 Turbojet and turbofan engine thrust reverser systems tests. Thrust reverser systems of turbojet or turbofan engines must meet the requirements of § 33.97 of...

  9. 14 CFR 25.1043 - Cooling tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cooling tests. 25.1043 Section 25.1043... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1043 Cooling tests. (a) General. Compliance with § 25.1041 must be shown by tests, under critical ground, water, and flight operating...

  10. 14 CFR 25.1043 - Cooling tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling tests. 25.1043 Section 25.1043... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1043 Cooling tests. (a) General. Compliance with § 25.1041 must be shown by tests, under critical ground, water, and flight operating...

  11. 14 CFR 25.1043 - Cooling tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cooling tests. 25.1043 Section 25.1043... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Cooling § 25.1043 Cooling tests. (a) General. Compliance with § 25.1041 must be shown by tests, under critical ground, water, and flight operating...

  12. 14 CFR 23.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel strainer or filter. 23.997 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.997 Fuel strainer or filter. There must be a fuel strainer or filter between the fuel...

  13. 14 CFR 25.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel strainer or filter. 25.997 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.997 Fuel strainer or filter. There must be a fuel strainer or filter between the fuel tank outlet and the inlet...

  14. 14 CFR 25.955 - Fuel flow.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel flow. 25.955 Section 25.955... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.955 Fuel flow. (a) Each fuel system must provide at least 100 percent of the fuel flow required under each intended operating condition...

  15. 14 CFR 25.995 - Fuel valves.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel valves. 25.995 Section 25.995... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition to the requirements of § 25.1189 for shutoff means, each fuel valve must— (a) (b) Be supported...

  16. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank outlet. 23.977 Section 23.977... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel tank outlet. (a) There must be a fuel strainer for the fuel tank outlet or for the booster pump....

  17. 14 CFR 25.991 - Fuel pumps.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel pumps. 25.991 Section 25.991... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel...

  18. 14 CFR 25.991 - Fuel pumps.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel pumps. 25.991 Section 25.991... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel...

  19. 14 CFR 23.955 - Fuel flow.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel flow. 23.955 Section 23.955... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.955 Fuel flow. (a) General. The ability of the fuel system to provide fuel at the rates specified in...

  20. 14 CFR 25.971 - Fuel tank sump.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank sump. 25.971 Section 25.971... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.971 Fuel tank sump. (a) Each fuel tank... fuel tank must allow drainage of any hazardous quantity of water from any part of the tank to its...

  1. 14 CFR 25.994 - Fuel system components.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system components. 25.994 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.994 Fuel system components. Fuel system components in an engine nacelle or in the fuselage must be protected from...

  2. 14 CFR 25.995 - Fuel valves.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel valves. 25.995 Section 25.995... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition to the requirements of § 25.1189 for shutoff means, each fuel valve must— (a) (b) Be supported...

  3. 14 CFR 25.995 - Fuel valves.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel valves. 25.995 Section 25.995... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition to the requirements of § 25.1189 for shutoff means, each fuel valve must— (a) (b) Be supported...

  4. 14 CFR 25.955 - Fuel flow.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel flow. 25.955 Section 25.955... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.955 Fuel flow. (a) Each fuel system must provide at least 100 percent of the fuel flow required under each intended operating condition...

  5. 14 CFR 23.991 - Fuel pumps.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 23.991 Section 23.991... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.991 Fuel pumps. (a) Main pumps. For main pumps, the following apply: (1) For reciprocating...

  6. 14 CFR 25.997 - Fuel strainer or filter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel strainer or filter. 25.997 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.997 Fuel strainer or filter. There must be a fuel strainer or filter between the fuel tank outlet and the inlet...

  7. 14 CFR 23.995 - Fuel valves and controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel valves and controls. 23.995 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.995 Fuel valves and controls. (a) There must be a means to allow appropriate flight...

  8. 14 CFR 23.959 - Unusable fuel supply.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Unusable fuel supply. 23.959 Section 23.959... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.959 Unusable fuel supply. (a) The unusable fuel supply for each tank must be established as not less than...

  9. 14 CFR 25.953 - Fuel system independence.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system independence. 25.953 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.953 Fuel system independence. Each fuel system must meet the requirements of § 25.903(b) by— (a) Allowing the supply of fuel to...

  10. 14 CFR 23.955 - Fuel flow.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel flow. 23.955 Section 23.955... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.955 Fuel flow. (a) General. The ability of the fuel system to provide fuel at the rates specified in...

  11. 14 CFR 25.991 - Fuel pumps.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel pumps. 25.991 Section 25.991... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.991 Fuel pumps. (a) Main pumps. Each fuel pump required for proper engine operation, or required to meet the fuel...

  12. 14 CFR 23.991 - Fuel pumps.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel pumps. 23.991 Section 23.991... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System Components § 23.991 Fuel pumps. (a) Main pumps. For main pumps, the following apply: (1) For reciprocating...

  13. 14 CFR 25.955 - Fuel flow.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel flow. 25.955 Section 25.955... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.955 Fuel flow. (a) Each fuel system must provide at least 100 percent of the fuel flow required under each intended operating condition...

  14. 14 CFR 23.963 - Fuel tanks: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tanks: General. 23.963 Section 23.963... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.963 Fuel tanks: General. (a) Each fuel tank must be able to withstand, without failure, the vibration,...

  15. 14 CFR 23.973 - Fuel tank filler connection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank filler connection. 23.973 Section... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.973 Fuel tank filler connection. (a) Each fuel tank filler connection must be marked as prescribed...

  16. 14 CFR 23.955 - Fuel flow.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel flow. 23.955 Section 23.955... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.955 Fuel flow. (a) General. The ability of the fuel system to provide fuel at the rates specified in...

  17. 14 CFR 25.955 - Fuel flow.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel flow. 25.955 Section 25.955... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.955 Fuel flow. (a) Each fuel system must provide at least 100 percent of the fuel flow required under each intended operating condition...

  18. 14 CFR 25.955 - Fuel flow.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel flow. 25.955 Section 25.955... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.955 Fuel flow. (a) Each fuel system must provide at least 100 percent of the fuel flow required under each intended operating condition...

  19. 14 CFR 25.995 - Fuel valves.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel valves. 25.995 Section 25.995... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition to the requirements of § 25.1189 for shutoff means, each fuel valve must— (a) (b) Be supported...

  20. 14 CFR 25.967 - Fuel tank installations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel tank installations. 25.967 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.967 Fuel tank installations. (a) Each fuel tank must be supported so that tank loads (resulting from the weight of the fuel in...