Science.gov

Sample records for airplanes reciprocating engine-powered

  1. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight,...

  2. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight,...

  3. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight,...

  4. 14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered... Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations. (a) No person may take off a reciprocating engine powered airplane from an airport located at...

  5. 14 CFR 135.371 - Large transport category airplanes: Reciprocating engine powered: En route limitations: One...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.371 Large transport category airplanes: Reciprocating engine powered: En route limitations... reciprocating engine powered large transport category airplane may take off that airplane at a weight,...

  6. 14 CFR 135.375 - Large transport category airplanes: Reciprocating engine powered: Landing limitations...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.375 Large transport category airplanes: Reciprocating engine powered: Landing limitations... reciprocating engine powered large transport category airplane may take off that airplane, unless its weight...

  7. 14 CFR 135.375 - Large transport category airplanes: Reciprocating engine powered: Landing limitations...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.375 Large transport category airplanes: Reciprocating engine powered: Landing limitations... reciprocating engine powered large transport category airplane may take off that airplane, unless its weight...

  8. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative. 121.181 Section 121.181 Aeronautics and Space FEDERAL... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered:...

  9. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport category airplanes: Reciprocating engine powered: Weight limitations. (a) No person may take off a reciprocating engine powered large transport category airplane from an airport located at an elevation...

  10. 14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations....

  11. 14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.185 Airplanes: Reciprocating engine-powered: Landing...

  12. 14 CFR 121.179 - Airplanes: Reciprocating engine-powered: En route limitations: All engines operating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered: En...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.179 Airplanes: Reciprocating engine-powered: En route limitations:...

  13. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations....

  14. 14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.185 Airplanes: Reciprocating engine-powered: Landing...

  15. 14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing...

  16. 14 CFR 121.179 - Airplanes: Reciprocating engine-powered: En route limitations: All engines operating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered: En...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.179 Airplanes: Reciprocating engine-powered: En route limitations:...

  17. 14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing...

  18. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations....

  19. 14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.185 Airplanes: Reciprocating engine-powered: Landing...

  20. 14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations....

  1. 14 CFR 121.179 - Airplanes: Reciprocating engine-powered: En route limitations: All engines operating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Reciprocating engine-powered: En...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.179 Airplanes: Reciprocating engine-powered: En route limitations:...

  2. 14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.187 Airplanes: Reciprocating engine-powered: Landing...

  3. 14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations....

  4. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1047 Cooling test procedures for reciprocating engine powered airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes...

  5. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1047 Cooling test procedures for reciprocating engine powered airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes...

  6. 14 CFR 135.369 - Large transport category airplanes: Reciprocating engine powered: En route limitations: All...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Reciprocating engine powered: En route limitations: All engines operating. 135.369 Section 135.369 Aeronautics... Limitations § 135.369 Large transport category airplanes: Reciprocating engine powered: En route...

  7. 14 CFR 121.179 - Airplanes: Reciprocating engine-powered: En route limitations: All engines operating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered: En route limitations: All engines operating. 121.179 Section 121.179 Aeronautics and Space FEDERAL AVIATION... Performance Operating Limitations § 121.179 Airplanes: Reciprocating engine-powered: En route limitations:...

  8. 14 CFR 135.371 - Large transport category airplanes: Reciprocating engine powered: En route limitations: One...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Reciprocating engine powered: En route limitations: One engine inoperative. 135.371 Section 135.371 Aeronautics... Limitations § 135.371 Large transport category airplanes: Reciprocating engine powered: En route...

  9. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1047 Cooling test procedures for reciprocating engine powered... negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  10. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1047 Cooling test procedures for reciprocating engine powered... negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  11. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport category airplanes: Reciprocating engine powered: Weight limitations. (a) No person may take off...

  12. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.367 Large transport category airplanes: Reciprocating engine powered: Takeoff limitations. (a)...

  13. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport category airplanes: Reciprocating engine powered: Weight limitations. (a) No person may take off...

  14. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport category airplanes: Reciprocating engine powered: Weight limitations. (a) No person may take off...

  15. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.367 Large transport category airplanes: Reciprocating engine powered: Takeoff limitations. (a)...

  16. 14 CFR 135.377 - Large transport category airplanes: Reciprocating engine powered: Landing limitations: Alternate...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.377 Large transport category airplanes: Reciprocating engine powered: Landing limitations... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category...

  17. 14 CFR 135.369 - Large transport category airplanes: Reciprocating engine powered: En route limitations: All...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.369 Large transport category airplanes: Reciprocating engine powered: En route limitations... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category...

  18. 14 CFR 135.377 - Large transport category airplanes: Reciprocating engine powered: Landing limitations: Alternate...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEMAND OPERATIONS AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.377 Large transport category airplanes: Reciprocating engine powered: Landing limitations... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category...

  19. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and V So is expressed in knots) at an altitude of at least 1,000 feet above the highest ground or... procedure, operate a reciprocating engine powered airplane, at an all-engines-operating altitude that allows... the Airplane Flight Manual for the appropriate weight and altitude) used in calculating the...

  20. 14 CFR 121.327 - Supplemental oxygen: Reciprocating engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Supplemental oxygen: Reciprocating engine... Equipment Requirements § 121.327 Supplemental oxygen: Reciprocating engine powered airplanes. (a) General. Except where supplemental oxygen is provided in accordance with § 121.331, no person may operate...

  1. 14 CFR 121.327 - Supplemental oxygen: Reciprocating engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Supplemental oxygen: Reciprocating engine... Equipment Requirements § 121.327 Supplemental oxygen: Reciprocating engine powered airplanes. (a) General. Except where supplemental oxygen is provided in accordance with § 121.331, no person may operate...

  2. 14 CFR 121.327 - Supplemental oxygen: Reciprocating engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Supplemental oxygen: Reciprocating engine... Equipment Requirements § 121.327 Supplemental oxygen: Reciprocating engine powered airplanes. (a) General. Except where supplemental oxygen is provided in accordance with § 121.331, no person may operate...

  3. 14 CFR 121.327 - Supplemental oxygen: Reciprocating engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Supplemental oxygen: Reciprocating engine... Equipment Requirements § 121.327 Supplemental oxygen: Reciprocating engine powered airplanes. (a) General. Except where supplemental oxygen is provided in accordance with § 121.331, no person may operate...

  4. 14 CFR 121.327 - Supplemental oxygen: Reciprocating engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Supplemental oxygen: Reciprocating engine... Equipment Requirements § 121.327 Supplemental oxygen: Reciprocating engine powered airplanes. (a) General. Except where supplemental oxygen is provided in accordance with § 121.331, no person may operate...

  5. 14 CFR 135.373 - Part 25 transport category airplanes with four or more engines: Reciprocating engine powered: En...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Part 25 transport category airplanes with four or more engines: Reciprocating engine powered: En route limitations: Two engines inoperative. 135... engines: Reciprocating engine powered: En route limitations: Two engines inoperative. (a) No person...

  6. 14 CFR 121.183 - Part 25 airplanes with four or more engines: Reciprocating engine powered: En route limitations...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Part 25 airplanes with four or more engines: Reciprocating engine powered: En route limitations: Two engines inoperative. 121.183 Section 121.183 Aeronautics... more engines: Reciprocating engine powered: En route limitations: Two engines inoperative. (a)...

  7. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes with negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  8. 14 CFR 135.371 - Large transport category airplanes: Reciprocating engine powered: En route limitations: One...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and Vso is expressed in knots) at an altitude of least 1,000 feet above the highest ground or... an all-engines-operating altitude that allows the airplane to continue, after an engine failure, to...) The rate of climb (as prescribed in the Airplane Flight Manual for the appropriate weight and...

  9. 14 CFR 135.371 - Large transport category airplanes: Reciprocating engine powered: En route limitations: One...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Vso is expressed in knots) at an altitude of least 1,000 feet above the highest ground or... an all-engines-operating altitude that allows the airplane to continue, after an engine failure, to...) The rate of climb (as prescribed in the Airplane Flight Manual for the appropriate weight and...

  10. 14 CFR 135.371 - Large transport category airplanes: Reciprocating engine powered: En route limitations: One...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and Vso is expressed in knots) at an altitude of least 1,000 feet above the highest ground or... an all-engines-operating altitude that allows the airplane to continue, after an engine failure, to...) The rate of climb (as prescribed in the Airplane Flight Manual for the appropriate weight and...

  11. 14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Landing limitations: Alternate airport. 121.187 Section 121.187 Aeronautics and Space FEDERAL AVIATION...: Alternate airport. (a) No person may list an airport as an alternate airport in a dispatch or flight release unless the airplane (at the weight anticipated at the time of arrival at the airport), based on...

  12. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate... turbine engine powered airplane unless (based on the assumptions in § 121.195 (b)) that airplane at...

  13. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate... turbine engine powered airplane unless (based on the assumptions in § 121.195 (b)) that airplane at...

  14. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in...

  15. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in...

  16. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane...

  17. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane...

  18. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane...

  19. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in...

  20. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane...

  1. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in...

  2. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane...

  3. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate... turbine engine powered airplane unless (based on the assumptions in § 121.195 (b)) that airplane at...

  4. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate... turbine engine powered airplane unless (based on the assumptions in § 121.195 (b)) that airplane at...

  5. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate... turbine engine powered airplane unless (based on the assumptions in § 121.195 (b)) that airplane at...

  6. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered airplane may take off that...

  7. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered airplane may take off that...

  8. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered airplane may take off that...

  9. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered airplane may take off that...

  10. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.193 Airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered airplane along an intended route unless he...

  11. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.193 Airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered airplane along an intended route unless he...

  12. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine powered: Landing limitations: Alternate airports. 135.387 Section 135.387 Aeronautics and Space....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  13. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  14. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  15. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  16. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  17. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  18. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  19. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  20. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  1. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  2. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  3. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  4. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  5. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  6. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  7. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  8. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  9. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  10. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  11. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  12. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  13. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  14. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  15. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and terrain. (c) A program manager or other person flying a turbine engine powered large transport... characteristics of that airplane, and considering other conditions such as landing aids and terrain. (3)...

  16. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cooling test procedures for turbine engine powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine...

  17. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling test procedures for turbine engine powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine...

  18. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cooling test procedures for turbine engine powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine...

  19. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cooling test procedures for turbine engine powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine...

  20. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cooling test procedures for turbine engine powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine...

  1. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Supplemental oxygen for sustenance: Turbine... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a... airplane with sustaining oxygen and dispensing equipment for use as set forth in this section: (1)...

  2. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Supplemental oxygen for sustenance: Turbine... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a... airplane with sustaining oxygen and dispensing equipment for use as set forth in this section: (1)...

  3. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Supplemental oxygen for sustenance: Turbine... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a... airplane with sustaining oxygen and dispensing equipment for use as set forth in this section: (1)...

  4. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Supplemental oxygen for sustenance: Turbine... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a... airplane with sustaining oxygen and dispensing equipment for use as set forth in this section: (1)...

  5. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Supplemental oxygen for sustenance: Turbine... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a... airplane with sustaining oxygen and dispensing equipment for use as set forth in this section: (1)...

  6. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an...

  7. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an...

  8. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  9. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  10. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  11. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  12. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  13. The Direct Measurement of Engine Power on an Airplane in Flight with a Hub Type Dynamometer

    NASA Technical Reports Server (NTRS)

    Gove, W D; Green, M W

    1927-01-01

    This report describes tests made to obtain direct measurements of engine power in flight. Tests were made with a Bendemann hub dynamometer installed on a modified DH-4 Airplane, Liberty 12 Engine, to determine the suitability of this apparatus. This dynamometer unit, which was designed specially for use with a liberty 12 engine, is a special propeller hub in which is incorporated a system of pistons and cylinders interposed between the propeller and the engine crankshaft. The torque and thrust forces are balanced by fluid pressures, which are recorded by instruments in the cockpit. These tests have shown the suitability of this type of hub dynamometer for measurement of power in flight and for the determination of the torque and power coefficients of the propeller. (author)

  14. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 121.197. (2) Its weight, according to the two-engine-inoperative, en route, net flight path data in... path (considering the ambient temperature anticipated along the track) having a positive slope at an... for in the net flight path data in the Airplane Flight Manual. (b) Aircraft certificated...

  15. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 121.197. (2) Its weight, according to the two-engine-inoperative, en route, net flight path data in... path (considering the ambient temperature anticipated along the track) having a positive slope at an... for in the net flight path data in the Airplane Flight Manual. (b) Aircraft certificated...

  16. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the takeoff and reach a height of 50 feet, as indicated by the takeoff path data, before passing over... by the takeoff path data) or 200 feet horizontally within the airport boundaries and 300 feet... takeoff path data) and after that without banking more than 15 degrees. (b) In applying this...

  17. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reach a height of 50 feet, as indicated by the takeoff path data, before passing over the end of the... path data) or 200 feet horizontally within the airport boundaries and 300 feet horizontally beyond the boundaries, without banking before reaching a height of 50 feet (as shown by the takeoff path data)...

  18. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reach a height of 50 feet, as indicated by the takeoff path data, before passing over the end of the... path data) or 200 feet horizontally within the airport boundaries and 300 feet horizontally beyond the boundaries, without banking before reaching a height of 50 feet (as shown by the takeoff path data)...

  19. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the takeoff and reach a height of 50 feet, as indicated by the takeoff path data, before passing over... by the takeoff path data) or 200 feet horizontally within the airport boundaries and 300 feet... takeoff path data) and after that without banking more than 15 degrees. (b) In applying this...

  20. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the takeoff and reach a height of 50 feet, as indicated by the takeoff path data, before passing over... by the takeoff path data) or 200 feet horizontally within the airport boundaries and 300 feet... takeoff path data) and after that without banking more than 15 degrees. (b) In applying this...

  1. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reach a height of 50 feet, as indicated by the takeoff path data, before passing over the end of the... path data) or 200 feet horizontally within the airport boundaries and 300 feet horizontally beyond the boundaries, without banking before reaching a height of 50 feet (as shown by the takeoff path data)...

  2. 14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Landing limitations: Destination airport. 121.185 Section 121.185 Aeronautics and Space FEDERAL AVIATION...: Destination airport. (a) Except as provided in paragraph (b) of this section no person operating a... determining the allowable landing weight at the destination airport the following is assumed: (1) The...

  3. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  4. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  5. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  6. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  7. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  8. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplanes, other than turbo propeller: Flag and supplemental operations. 121.645 Section 121.645 Aeronautics... airplanes, other than turbo propeller: Flag and supplemental operations. (a) Any flag operation within the...-propeller powered airplane) unless, considering wind and other weather conditions expected, it has...

  9. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplanes, other than turbo propeller: Flag and supplemental operations. 121.645 Section 121.645 Aeronautics... airplanes, other than turbo propeller: Flag and supplemental operations. (a) Any flag operation within the...-propeller powered airplane) unless, considering wind and other weather conditions expected, it has...

  10. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes, other than turbo propeller: Flag and supplemental operations. 121.645 Section 121.645 Aeronautics... airplanes, other than turbo propeller: Flag and supplemental operations. (a) Any flag operation within the...-propeller powered airplane) unless, considering wind and other weather conditions expected, it has...

  11. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes, other than turbo propeller: Flag and supplemental operations. 121.645 Section 121.645 Aeronautics... airplanes, other than turbo propeller: Flag and supplemental operations. (a) Any flag operation within the...-propeller powered airplane) unless, considering wind and other weather conditions expected, it has...

  12. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes, other than turbo propeller: Flag and supplemental operations. 121.645 Section 121.645 Aeronautics... airplanes, other than turbo propeller: Flag and supplemental operations. (a) Any flag operation within the...-propeller powered airplane) unless, considering wind and other weather conditions expected, it has...

  13. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... meets § 135.387. (2) Its weight, according to the two-engine-inoperative, en route, net flight path data... assumed to fail simultaneously to an airport that meets § 135.387, with a net flight path (considering the... the net flight path data in the Airplane Flight Manual. (b) Airplanes certificated after September...

  14. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... meets § 135.387. (2) Its weight, according to the two-engine-inoperative, en route, net flight path data... assumed to fail simultaneously to an airport that meets § 135.387, with a net flight path (considering the... the net flight path data in the Airplane Flight Manual. (b) Airplanes certificated after September...

  15. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) When operating at flight altitudes above flight level 250, one pilot at the controls of the airplane... station at the controls of the airplane when operating at flight altitudes above flight level 250, the... in the event of cabin pressurization failure. (b) Crewmembers. When operating at flight...

  16. 14 CFR 121.183 - Part 25 airplanes with four or more engines: Reciprocating engine powered: En route limitations...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) at an altitude of 1,000 feet above the highest ground or obstruction within 10 miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of...) Where the engines are assumed to fail at an altitude above the prescribed minimum altitude,...

  17. 14 CFR 121.183 - Part 25 airplanes with four or more engines: Reciprocating engine powered: En route limitations...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) at an altitude of 1,000 feet above the highest ground or obstruction within 10 miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of...) Where the engines are assumed to fail at an altitude above the prescribed minimum altitude,...

  18. 14 CFR 121.183 - Part 25 airplanes with four or more engines: Reciprocating engine powered: En route limitations...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) at an altitude of 1,000 feet above the highest ground or obstruction within 10 miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of...) Where the engines are assumed to fail at an altitude above the prescribed minimum altitude,...

  19. 14 CFR 135.373 - Part 25 transport category airplanes with four or more engines: Reciprocating engine powered: En...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of feet per minute obtained by multiplying the number of knots squared by 0.013) at an altitude of 1..., or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of paragraph (a)(2) of... engines are assumed to fail at an altitude above the prescribed minimum altitude, compliance with...

  20. 14 CFR 135.373 - Part 25 transport category airplanes with four or more engines: Reciprocating engine powered: En...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of feet per minute obtained by multiplying the number of knots squared by 0.013) at an altitude of 1..., or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of paragraph (a)(2) of... engines are assumed to fail at an altitude above the prescribed minimum altitude, compliance with...

  1. 14 CFR 135.373 - Part 25 transport category airplanes with four or more engines: Reciprocating engine powered: En...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of feet per minute obtained by multiplying the number of knots squared by 0.013) at an altitude of 1..., or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of paragraph (a)(2) of... engines are assumed to fail at an altitude above the prescribed minimum altitude, compliance with...

  2. 14 CFR 121.183 - Part 25 airplanes with four or more engines: Reciprocating engine powered: En route limitations...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) at an altitude of 1,000 feet above the highest ground or obstruction within 10 miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of...) Where the engines are assumed to fail at an altitude above the prescribed minimum altitude,...

  3. 14 CFR 135.373 - Part 25 transport category airplanes with four or more engines: Reciprocating engine powered: En...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of feet per minute obtained by multiplying the number of knots squared by 0.013) at an altitude of 1..., or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of paragraph (a)(2) of... engines are assumed to fail at an altitude above the prescribed minimum altitude, compliance with...

  4. The Way to Increased Airplane Engine Power

    NASA Technical Reports Server (NTRS)

    Vohrer, Eugen

    1939-01-01

    The purpose of this paper is to give an outline of the present state of development and point out the possibilities available for the further increase in the power/displacement ratio, the economy, and the reliability of the engine. Some of the aspects discussed are methods of increasing take-off power, the various methods of preparation of the fuel mixture and their effect on power, economy, and safety.

  5. Diesel engine power prognosis

    SciTech Connect

    Armstrong, L.R.; Berret, P.; Zablocki, E.

    1985-01-01

    The increased demands imposed upon maintenance personnel by ever increasing vehicle complexity has markedly stressed the ability of these individuals to perform vehicle diagnostics in a timely fashion. As a response to this growing problem the vehicle industry and its supporting communities have developed sophisticated automated test equipment to support the maintenance function. The availability of test equipment capable of conveniently performing complete vehicle tests has led to a natural extension of vehicle diagnosis, in the form of vehicle prognosis. Vehicle prognosis directly addresses the issue of timely vehicle maintenance by identifying potential failures in advance of or during their occurance. The prognostic approach selected for a system is necessarily dependent on the types of failures occuring within the system. Of the three general types of failures, random, stress related and detectable, only the latter two represent cases for which vehicle prognosis is currently feasible. Prognosis for stress related failures is accomplished by monitoring system stress until internal components have completed their life cycles. Prognosis for detectable failures is accomplished by monitoring the progress of a measurable parameter as it degrades with system use. The rate at which this parameter changes with use provides information vital to the development of a prognosis. It is the latter approach which is discussed in this document. This paper describes the process of developing algorithms for diesel engine power prognosis using the specific example of a Cummins VT903 engine. It also includes a discussion for the extension of the techniques presented to other engines. Finally, the economic and technological issues affecting algorithm scope and utility are analyzed.

  6. 14 CFR 135.398 - Commuter category airplanes performance operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... all commuter category airplanes notwithstanding their stated applicability to turbine-engine-powered... used, the elevation of the airport, the effective runway gradient, and ambient temperature, and...

  7. 14 CFR 135.398 - Commuter category airplanes performance operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... all commuter category airplanes notwithstanding their stated applicability to turbine-engine-powered... used, the elevation of the airport, the effective runway gradient, and ambient temperature, and...

  8. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains a... under standard conditions in still air) of 60 minutes for a two-engine airplane or 180 minutes for...

  9. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains...

  10. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains...

  11. 14 CFR 121.161 - Airplane limitations: Type of route.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane limitations: Type of route. 121... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.161 Airplane... specifications, no certificate holder may operate a turbine-engine-powered airplane over a route that contains...

  12. 14 CFR 91.605 - Transport category civil airplane weight limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff.... (b) No person may operate a turbine-engine-powered transport category airplane certificated after... airport, the runway to be used, the effective runway gradient, the ambient temperature and wind...

  13. 14 CFR 91.605 - Transport category civil airplane weight limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff.... (b) No person may operate a turbine-engine-powered transport category airplane certificated after... airport, the runway to be used, the effective runway gradient, the ambient temperature and wind...

  14. 14 CFR 23.45 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... atmospheric conditions, for commuter category airplanes, for reciprocating engine-powered airplanes of more than 6,000 pounds maximum weight, and for turbine engine-powered airplanes. (b) Performance data must... level to 10,000 feet; and (2) For reciprocating engine-powered airplanes of 6,000 pounds, or...

  15. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Small nontransport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.399 Small nontransport category airplane performance operating limitations. (a) No person may operate a reciprocating engine...

  16. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Small nontransport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.399 Small nontransport category airplane performance operating limitations. (a) No person may operate a reciprocating engine...

  17. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Small nontransport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.399 Small nontransport category airplane performance operating limitations. (a) No person may operate a reciprocating engine...

  18. 14 CFR 135.397 - Small transport category airplane performance operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Small transport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.397 Small transport category airplane performance operating limitations. (a) No person may operate a reciprocating...

  19. 14 CFR 135.397 - Small transport category airplane performance operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Small transport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.397 Small transport category airplane performance operating limitations. (a) No person may operate a reciprocating...

  20. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Small nontransport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.399 Small nontransport category airplane performance operating limitations. (a) No person may operate a reciprocating engine...

  1. 14 CFR 135.397 - Small transport category airplane performance operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Small transport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.397 Small transport category airplane performance operating limitations. (a) No person may operate a reciprocating...

  2. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  3. Reciprocal translocations

    SciTech Connect

    1993-12-31

    Chapter 26, describes reciprocal translocations of chromosomes: their occurrence, breakpoints, and multiple rearrangements. In addition, phenotypes of balanced and unbalanced translocation carriers and fetal death are discussed. Examples of translocation families are given. Meiosis and genetic risk in translocation carriers is presented. Finally, sperm chromosomes in meiotic segregation analysis is mentioned. 39 refs., 3 figs., 1 tab.

  4. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    SciTech Connect

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  5. Study of small turbofan engines applicable to single-engine light airplanes

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.

    1976-01-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  6. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., 1957, but before October 1, 1958 (SR422), that allows a takeoff path that clears all obstacles either by at least (35+0.01D) feet vertically (D is the distance along the intended flight path from the end... after September 30, 1958 (SR 422A, 422B), that allows a net takeoff flight path that clears...

  7. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... certificated after August 26, 1957, but before October 1, 1958 (SR422), that allows a takeoff path that clears... flight path from the end of the runway in feet), or by at least 200 feet horizontally within the airport... certificated after September 30, 1958 (SR422A, 422B), that allows a net takeoff flight path that clears...

  8. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... altitude of at least 1,000 feet above all terrain and obstructions within five miles on each side of the... track) having a positive slope at an altitude of at least 1,000 feet above all terrain and obstructions... ambient temperatures anticipated along the track) clearing vertically by at least 2,000 feet all...

  9. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... feet above all terrain and obstructions within five statute miles on each side of the intended track... airport where a landing can be made under § 121.197, clearing all terrain and obstructions within...

  10. The Light Airplane

    NASA Technical Reports Server (NTRS)

    Driggs, Ivan H.

    1925-01-01

    This report begins with a review and analysis of the work being done to develop light airplanes in the U.S. and abroad. A technical discussion of the construction and innovations in light airplanes is then presented.

  11. β-reciprocal polynomials

    NASA Astrophysics Data System (ADS)

    Withers, Christopher S.; Nadarajah, Saralees

    2016-07-01

    A new class of polynomials pn(x) known as β-reciprocal polynomials is defined. Given a parameter ? that is not a root of -1, we show that the only β-reciprocal polynomials are pn(x) ≡ xn. When β is a root of -1, other polynomials are possible. For example, the Hermite polynomials are i-reciprocal, ?.

  12. Reciprocating pellet press

    DOEpatents

    Jones, Charles W.

    1981-04-07

    A machine for pressing loose powder into pellets using a series of reciprocating motions has an interchangeable punch and die as its only accurately machines parts. The machine reciprocates horizontally between powder receiving and pressing positions. It reciprocates vertically to press, strip and release a pellet.

  13. 14 CFR 23.45 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., for reciprocating engine-powered airplanes of more than 6,000 pounds maximum weight, and for turbine engine-powered airplanes. (b) Performance data must be determined over not less than the following ranges of conditions— (1) Airport altitudes from sea level to 10,000 feet; and (2) For reciprocating...

  14. The effect of humidity on engine power at altitude

    NASA Technical Reports Server (NTRS)

    Brooks, D G; Garlock, E A

    1933-01-01

    From tests made in the altitude chamber of the Bureau of Standards, it was found that the effect of humidity on engine power is the same at altitudes up to 25,000 feet as at sea level. Earlier tests on automotive engines, made under sea-level conditions, showed that water vapor acts as an inert diluent, reducing engine power in proportion to the amount of vapor present. By combining the effects of atmospheric pressure, temperature, and humidity, it is shown that the indicated power obtainable from an engine is proportional to its mass rate of consumption of oxygen. This has led the National Advisory Committee for Aeronautics to adopt a standard basis for the correction of engine performance, in which the effect of humidity is included.

  15. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  16. Reciprocity in directed networks

    NASA Astrophysics Data System (ADS)

    Yin, Mei; Zhu, Lingjiong

    2016-04-01

    Reciprocity is an important characteristic of directed networks and has been widely used in the modeling of World Wide Web, email, social, and other complex networks. In this paper, we take a statistical physics point of view and study the limiting entropy and free energy densities from the microcanonical ensemble, the canonical ensemble, and the grand canonical ensemble whose sufficient statistics are given by edge and reciprocal densities. The sparse case is also studied for the grand canonical ensemble. Extensions to more general reciprocal models including reciprocal triangle and star densities will likewise be discussed.

  17. The Airplane Experiment.

    ERIC Educational Resources Information Center

    Larson, Lee; Grant, Roderick

    1991-01-01

    Presents an experiment to investigate centripetal force and acceleration that utilizes an airplane suspended on a string from a spring balance. Investigates the possibility that lift on the wings of the airplane accounts for the differences between calculated tension and measured tension on the string. (MDH)

  18. Metal Airplane Construction

    NASA Technical Reports Server (NTRS)

    1926-01-01

    It has long been thought that metal construction of airplanes would involve an increase in weight as compared with wood construction. Recent experience has shown that such is not the case. This report describes the materials used, treatment of, and characteristics of metal airplane construction.

  19. 14 CFR 33.8 - Selection of engine power and thrust ratings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES General § 33.8 Selection of engine power and thrust ratings. (a) Requested engine power and thrust ratings must be selected by the applicant. (b) Each... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Selection of engine power and...

  20. Reciprocating Linear Electric Motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, M. P.

    1984-01-01

    Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.

  1. The Structure of Reciprocity

    ERIC Educational Resources Information Center

    Molm, Linda D.

    2010-01-01

    Reciprocity is one of the defining features of social exchange and social life, yet exchange theorists have tended to take it for granted. Drawing on work from a decade-long theoretical research program, I argue that reciprocity is structured and variable across different forms of exchange, that these variations in the structure of reciprocity…

  2. Reciprocity and uncertainty.

    PubMed

    Bereby-Meyer, Yoella

    2012-02-01

    Guala points to a discrepancy between strong negative reciprocity observed in the lab and the way cooperation is sustained "in the wild." This commentary suggests that in lab experiments, strong negative reciprocity is limited when uncertainty exists regarding the players' actions and the intentions. Thus, costly punishment is indeed a limited mechanism for sustaining cooperation in an uncertain environment.

  3. The Value of Reciprocity

    ERIC Educational Resources Information Center

    Molm, Linda D.; Schaefer, David R.; Collett, Jessica L.

    2007-01-01

    The value of reciprocity in social exchange potentially comprises both instrumental value (the value of the actual benefits received from exchange) and communicative or symbolic value (the expressive and uncertainty reduction value conveyed by features of the act of reciprocity itself). While all forms of exchange provide instrumental value, we…

  4. Reciprocal NUT spacetimes

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Chattopadhyay, Surajit; Myrzakulov, Ratbay

    2015-05-01

    In this paper, we study the Ehlers' transformation (sometimes called gravitational duality rotation) for reciprocal static metrics. First, we introduce the concept of reciprocal metric. We prove a theorem which shows how we can construct a certain new static solution of Einstein field equations using a seed metric. Later, we investigate the family of stationary spacetimes of such reciprocal metrics. The key here is a theorem from Ehlers', which relates any static vacuum solution to a unique stationary metric. The stationary metric has a magnetic charge. The spacetime represents Newman-Unti-Tamburino (NUT) solutions. Since any stationary spacetime can be decomposed into a 1 + 3 time-space decomposition, Einstein field equations for any stationary spacetime can be written in the form of Maxwell's equations for gravitoelectromagnetic fields. Further, we show that this set of equations is invariant under reciprocal transformations. An additional point is that the NUT charge changes the sign. As an instructive example, by starting from the reciprocal Schwarzschild as a spherically symmetric solution and reciprocal Morgan-Morgan disk model as seed metrics we find their corresponding stationary spacetimes. Starting from any static seed metric, performing the reciprocal transformation and by applying an additional Ehlers' transformation we obtain a family of NUT spaces with negative NUT factor (reciprocal NUT factors).

  5. Reciprocity and uncertainty.

    PubMed

    Bereby-Meyer, Yoella

    2012-02-01

    Guala points to a discrepancy between strong negative reciprocity observed in the lab and the way cooperation is sustained "in the wild." This commentary suggests that in lab experiments, strong negative reciprocity is limited when uncertainty exists regarding the players' actions and the intentions. Thus, costly punishment is indeed a limited mechanism for sustaining cooperation in an uncertain environment. PMID:22289307

  6. The Effect of Supercharger Capacity on Engine and Airplane Performance

    NASA Technical Reports Server (NTRS)

    Schey, O W; Gove, W D

    1930-01-01

    This report presents the results of an investigation to determine the effect of different supercharger capacities on the performance of an airplane and its engine . The tests were conducted on a DH4-M2 airplane powered with a Liberty 12 engine. In this investigation four supercharger capacities, obtained by driving a roots type supercharger at 1.615, 1.957, 2.4, and 3 time engine speed, were used to maintain sea-level pressure at the carburetor to altitudes of 7,000, 11,500, 17,000, and 22,000 feet, respectively. The performance of the airplane in climb and in level flight was determined for each of the four supercharger drive ratios and for the unsupercharged condition. The engine power was measured during these tests by means of a calibrated propeller. It was found that very little sacrifice in sea-level performance was experienced with the larger supercharger drive ratios as compared with performance obtained when using the smaller drive ratios. The results indicate that further increase in supercharger capacity over that obtained when using 3:1 drive ratio would give a slight increase in ceiling and in high-altitude performance but would considerably impair the performance for an appreciable distance below the critical altitude. As the supercharger capacity was increased, the height at which sea-level high speeds could be equaled or improved became a larger percentage of the maximum height of operation of the airplane.

  7. MLS: Airplane system modeling

    NASA Technical Reports Server (NTRS)

    Thompson, A. D.; Stapleton, B. P.; Walen, D. B.; Rieder, P. F.; Moss, D. G.

    1981-01-01

    Analysis, modeling, and simulations were conducted as part of a multiyear investigation of the more important airplane-system-related items of the microwave landing system (MLS). Particular emphasis was placed upon the airplane RF system, including the antenna radiation distribution, the cabling options from the antenna to the receiver, and the overall impact of the airborne system gains and losses upon the direct-path signal structure. In addition, effort was expended toward determining the impact of the MLS upon the airplane flight management system and developing the initial stages of a fast-time MLS automatic control system simulation model. Results ot these studies are presented.

  8. General airplane performance

    NASA Technical Reports Server (NTRS)

    Rockfeller, W C

    1939-01-01

    Equations have been developed for the analysis of the performance of the ideal airplane, leading to an approximate physical interpretation of the performance problem. The basic sea-level airplane parameters have been generalized to altitude parameters and a new parameter has been introduced and physically interpreted. The performance analysis for actual airplanes has been obtained in terms of the equivalent ideal airplane in order that the charts developed for use in practical calculations will for the most part apply to any type of engine-propeller combination and system of control, the only additional material required consisting of the actual engine and propeller curves for propulsion unit. Finally, a more exact method for the calculation of the climb characteristics for the constant-speed controllable propeller is presented in the appendix.

  9. The Bristol "Badminton" Airplane

    NASA Technical Reports Server (NTRS)

    1926-01-01

    The Bristol Badminton, Type 99 airplane has a radial aircooled engine (a Bristol Jupiter 9 cylinder 450 HP.) and three fuel tanks. It is a single seat biplane weighing 1,840 lbs. empty and 2,460 lbs. loaded.

  10. Stall-proof Airplanes

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1927-01-01

    My lecture has to do with the following questions. Is the danger of stalling necessarily inherent in the airplane in its present form and structure, or can it be diminished or eliminated by suitable means? Do we possess such means or devices and how must they operate? In this connection I will devote special attention to the exhibition of stall-proof airplanes by Fokker under the auspices of the English Air Ministry, which took place in Croyden last April.

  11. Hidden patterns of reciprocity.

    PubMed

    Syi

    2014-03-21

    Reciprocity can help the evolution of cooperation. To model both types of reciprocity, we need the concept of strategy. In the case of direct reciprocity there are four second-order action rules (Simple Tit-for-tat, Contrite Tit-for-tat, Pavlov, and Grim Trigger), which are able to promote cooperation. In the case of indirect reciprocity the key component of cooperation is the assessment rule. There are, again, four elementary second-order assessment rules (Image Scoring, Simple Standing, Stern Judging, and Shunning). The eight concepts can be formalized in an ontologically thin way we need only an action predicate and a value function, two agent concepts, and the constant of goodness. The formalism helps us to discover that the action and assessment rules can be paired, and that they show the same patterns. The logic of these patterns can be interpreted with the concept of punishment that has an inherent paradoxical nature.

  12. Hidden patterns of reciprocity.

    PubMed

    Syi

    2014-03-21

    Reciprocity can help the evolution of cooperation. To model both types of reciprocity, we need the concept of strategy. In the case of direct reciprocity there are four second-order action rules (Simple Tit-for-tat, Contrite Tit-for-tat, Pavlov, and Grim Trigger), which are able to promote cooperation. In the case of indirect reciprocity the key component of cooperation is the assessment rule. There are, again, four elementary second-order assessment rules (Image Scoring, Simple Standing, Stern Judging, and Shunning). The eight concepts can be formalized in an ontologically thin way we need only an action predicate and a value function, two agent concepts, and the constant of goodness. The formalism helps us to discover that the action and assessment rules can be paired, and that they show the same patterns. The logic of these patterns can be interpreted with the concept of punishment that has an inherent paradoxical nature. PMID:24368125

  13. Improving Free-Piston Stirling Engine Power Density

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  14. Reciprocating piston engine

    SciTech Connect

    Eickmann, K.

    1986-01-07

    This patent describes a reciprocating combustion engine consisting of a cylinder, a piston reciprocating in the cylinder, a top for closing one end of the cylinder, inlets and outlets extending to and from the cylinder for the intake of combustible gas and the expelling of burned exhaust gases. The engine also consists of a device for ignition of the combustible gas, a means of cooling the cylinder and top, a turbine of a turbocharger connected to the outlet, and a compressor of the turbocharger connected to the inlet.

  15. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical...

  16. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical...

  17. 40 CFR 1045.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... power and engine speed for an engine, using the mapping procedures of 40 CFR part 1065, based on the...) Maximum engine power for an engine family is generally the weighted average value of maximum engine power of each engine configuration within the engine family based on your total U.S.-directed...

  18. Series of Reciprocal Triangular Numbers

    ERIC Educational Resources Information Center

    Bruckman, Paul; Dence, Joseph B.; Dence, Thomas P.; Young, Justin

    2013-01-01

    Reciprocal triangular numbers have appeared in series since the very first infinite series were summed. Here we attack a number of subseries of the reciprocal triangular numbers by methodically expressing them as integrals.

  19. Reciprocal Predicates in Japanese.

    ERIC Educational Resources Information Center

    Ishii, Yasuo

    A study of reciprocals in Japanese compares two kinds: (1) a verbal suffix "aw"; and (2) an NP argument "otagai." Although "otagai" appears to be taken care of by syntactic binding theory, it is proposed that there is no evidence for the existence of a syntactic position of the object NP in the case of "aw." The suffix can be characterized as…

  20. The evolution of airplanes

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Charles, J. D.; Lorente, S.

    2014-07-01

    The prevailing view is that we cannot witness biological evolution because it occurred on a time scale immensely greater than our lifetime. Here, we show that we can witness evolution in our lifetime by watching the evolution of the flying human-and-machine species: the airplane. We document this evolution, and we also predict it based on a physics principle: the constructal law. We show that the airplanes must obey theoretical allometric rules that unite them with the birds and other animals. For example, the larger airplanes are faster, more efficient as vehicles, and have greater range. The engine mass is proportional to the body size: this scaling is analogous to animal design, where the mass of the motive organs (muscle, heart, lung) is proportional to the body size. Large or small, airplanes exhibit a proportionality between wing span and fuselage length, and between fuel load and body size. The animal-design counterparts of these features are evident. The view that emerges is that the evolution phenomenon is broader than biological evolution. The evolution of technology, river basins, and animal design is one phenomenon, and it belongs in physics.

  1. Automatic Stability of Airplanes

    NASA Technical Reports Server (NTRS)

    Haus, FR

    1932-01-01

    It is endeavored in this report to give a full outline of the problem of airplane stability and to classify the proposed solutions systematically. Longitudinal stability, which can be studied separately, is considered first. The combination of lateral and directional stabilities, which cannot be separated, will be dealt with later.

  2. 14 CFR 23.45 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... controlling the engine cooling air supply in the position used in the cooling tests required by § 23.1041 to..., for reciprocating engine-powered airplanes of more than 6,000 pounds maximum weight, and for turbine engine-powered airplanes. (b) Performance data must be determined over not less than the following...

  3. 14 CFR 23.45 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... controlling the engine cooling air supply in the position used in the cooling tests required by § 23.1041 to..., for reciprocating engine-powered airplanes of more than 6,000 pounds maximum weight, and for turbine engine-powered airplanes. (b) Performance data must be determined over not less than the following...

  4. 14 CFR 121.335 - Equipment standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply...

  5. 14 CFR 121.335 - Equipment standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply...

  6. 14 CFR 121.335 - Equipment standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Equipment standards. (a) Reciprocating engine powered airplanes. The oxygen apparatus, the minimum rates of oxygen flow, and the supply of oxygen necessary to comply with § 121.327 must meet the standards...) Turbine engine powered airplanes. The oxygen apparatus, the minimum rate of oxygen flow, and the supply...

  7. 14 CFR 25.101 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... following relative humidities; (1) For turbine engine powered airplanes, a relative humidity of— (i) 80... 50 °F. Between these two temperatures, the relative humidity must vary linearly. (2) For reciprocating engine powered airplanes, a relative humidity of 80 percent in a standard atmosphere. Engine...

  8. 14 CFR 25.101 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... following relative humidities; (1) For turbine engine powered airplanes, a relative humidity of— (i) 80... 50 °F. Between these two temperatures, the relative humidity must vary linearly. (2) For reciprocating engine powered airplanes, a relative humidity of 80 percent in a standard atmosphere. Engine...

  9. 14 CFR 25.101 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... following relative humidities; (1) For turbine engine powered airplanes, a relative humidity of— (i) 80... 50 °F. Between these two temperatures, the relative humidity must vary linearly. (2) For reciprocating engine powered airplanes, a relative humidity of 80 percent in a standard atmosphere. Engine...

  10. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... feet above all terrain and obstructions within five statute miles on each side of the intended track...) having a positive slope at an altitude of at least 1,000 feet above all terrain and obstructions within... terrain and obstructions within five statute miles on each side of the intended track. For the purposes...

  11. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Supplemental oxygen for emergency descent..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.333 Supplemental oxygen... shall furnish oxygen and dispensing equipment to comply with paragraphs (b) through (e) of this...

  12. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Supplemental oxygen for emergency descent..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.333 Supplemental oxygen... shall furnish oxygen and dispensing equipment to comply with paragraphs (b) through (e) of this...

  13. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Supplemental oxygen for emergency descent..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.333 Supplemental oxygen... shall furnish oxygen and dispensing equipment to comply with paragraphs (b) through (e) of this...

  14. 14 CFR 121.333 - Supplemental oxygen for emergency descent and for first aid; turbine engine powered airplanes...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Supplemental oxygen for emergency descent..., FLAG, AND SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.333 Supplemental oxygen... shall furnish oxygen and dispensing equipment to comply with paragraphs (b) through (e) of this...

  15. Stirling engine power control and motion conversion mechanism

    DOEpatents

    Marks, David T.

    1983-01-01

    A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

  16. Reciprocity relations in aerodynamics

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Spreiter, John R

    1953-01-01

    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  17. Contractor safety training reciprocity

    SciTech Connect

    Melancon, R.

    1996-08-01

    In June, 1995, the National Petroleum Refiners Association (NPRA) adhoc committee on Contractor Safety Training, turned over the task of developing reciprocity agreements with all Contractor Safety Training Councils to the Executive Directors of each of the Council`s. The Council representatives were to develop these agreements based on the NPRA adhoc committee training objectives that were developed jointly by representatives of the petroleum industry, chemical industry, contractors and the Council`s.

  18. Exploring Venus by Solar Airplane

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    A solar-powered airplane is proposed to explore the atmospheric environment of Venus. Venus has several advantages for a solar airplane. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The Earthlike atmospheric pressure means that the power required for flight is lower for Venus than that of Mars, and the slow rotation of Venus allows an airplane to be designed for continuous sunlight, with no energy storage needed for night-time flight. These factors mean that Venus is perhaps the easiest planet in the solar system for flight of a long-duration solar airplane.

  19. Study of a High Voltage Ion Engine Power Supply

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.; Mayer, Eric

    1996-01-01

    A complete laboratory breadboard version of a ion engine power converter was built and tested. This prototype operated on a line voltage of 80-120 Vdc, and provided output ratings of 1100 V at 1.8 kW, and 250 V at 20 mA. The high-voltage (HV) output voltage rating was revised from the original value of 1350 V at the beginning of the project. The LV output was designed to hold up during a 1-A surge current lasting up to 1 second. The prototype power converter included a internal housekeeping power supply which also operated from the line input. The power consumed in housekeeping was included in the overall energy budget presented for the ion engine converter. HV and LV output voltage setpoints were commanded through potentiometers. The HV converter itself reached its highest power efficiency of slightly over 93% at low line and maximum output. This would dip below 90% at high line. The no-load (rated output voltages, zero load current) power consumption of the entire system was less than 13 W. A careful loss breakdown shows that converter losses are predominately Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) conduction losses and HV rectifier snubbing losses, with the rectifier snubbing losses becoming predominant at high line. This suggests that further improvements in power efficiency could best be obtained by either developing a rectifier that was adequately protected against voltage overshoot with less snubbing, or by developing a pre-regulator to reduced the range of line voltage on the converter. The transient testing showed the converter to be fully protected against load faults, including a direct short-circuit from the HV output to the LV output terminals. Two currents sensors were used: one to directly detect any core ratcheting on the output transformer and re-initiate a soft start, and the other to directly detect a load fault and quickly shut down the converter for load protection. The finished converter has been extensively fault tested

  20. Automated airplane surface generation

    SciTech Connect

    Smith, R.E.; Cordero, Y.; Jones, W.

    1996-12-31

    An efficient methodology and software axe presented for defining a class of airplane configurations. A small set of engineering design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tall, horizontal tail, and canard components. Wing, canard, and tail surface grids axe manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage is described by an algebraic function with four design parameters. The computed surface grids are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations. Both batch and interactive software are discussed for applying the methodology.

  1. Mechanical control of airplanes

    NASA Technical Reports Server (NTRS)

    Boykow, H

    1929-01-01

    Before undertaking a detailed description of an automatic-control mechanism, I will state briefly the fundamental conditions for such devices. These are: 1) it must be sensitive at one or more reference values; 2) it must stop the angular motions of the airplane not produced by the pilot; and 3) it must be possible to switch it off and on by a simple hand lever.

  2. Strength calculations on airplanes

    NASA Technical Reports Server (NTRS)

    Baumann, A

    1925-01-01

    Every strength calculation, including those on airplanes, must be preceded by a determination of the forces to be taken into account. In the following discussion, it will be assumed that the magnitudes of these forces are known and that it is only a question of how, on the basis of these known forces, to meet the prescribed conditions on the one hand and the practical requirements on the other.

  3. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  4. 14 CFR 23.63 - Climb: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...— (1) Out of ground effect; and (2) At speeds that are not less than those at which compliance with the..., and acrobatic category reciprocating engine-powered airplanes of 6,000 pounds or less maximum weight... landing weight, as appropriate, in a standard atmosphere. (c) For reciprocating engine-powered...

  5. Trend of airplane flight characteristics

    NASA Technical Reports Server (NTRS)

    Von Koppen, Joachim

    1933-01-01

    This report describes the development of airplane characteristics since the war and indicates the direction development should take in the immediate future. Some of the major topics include: the behavior of an airplane about its lateral, vertical, and longitudinal axes. Behavior at large angles of attack and landing characteristics are also included.

  6. An ultrafast reciprocating probe

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Tan, Yi; Wang, Wenhao; Gao, Zhe

    2016-11-01

    For tokamak plasma diagnostics, an ultrafast reciprocating probe system driven by magnetic field coils, achieving a maximum velocity of 21 m/s, is introduced. The probes are attached with a driving hoop made of carbon steel and accelerated by three acceleration coils in series, then decelerated by two deceleration coils and buffer springs and return slowly. The coils with a current of about 1 kA generate a magnetic field of about 1 T. This probe system has been tested on the SUNIST (Sino-UNIted Spherical Tokamak) spherical tokamak. Radial profiles of the floating potential and other plasma parameters measured by this probe system are given.

  7. High pressure reciprocating pump

    SciTech Connect

    Besic, D.

    1990-05-01

    This patent describes an improvement in a reciprocating pump having a plunger and a pumping chamber. It comprises: the plunger having a bore communicating with an intersection opening and wherein the plunger incudes a central axis; a suction valve and a discharge valve, each having an axis of actuation parallel to a central axis of the plunger; the suction valve comprising a cylindrical core having a central passageway, and the core is slidably received by a seating member and resiliently biased to the seating member.

  8. Reciprocating magnetic refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    A 4 to 15 K magnetic refrigerator to test as an alternative to the Joule-Thomson circuit as the low temperature stage of a 4 to 300 K closed-cycle refrigerator was developed. The reciprocating magnetic refrigerator consists of two matrices of gadolinium gallium garnet spheres located in tandem on a single piston which alternately moves each matrix into a 7 telsa magnetic field. A separate helium gas circuit is used as the heat exchange mechanism for the low and the high temperature extremes of the magnetic refrigerator. Details of the design and results of the initial refrigerator component tests are presented.

  9. 77 FR 6023 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-07

    ... adequacy of existing regulations, the service history of airplanes subject to those regulations, and... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... airplanes and Model A310-203, -204, - 221, and -222 airplanes. This proposed AD was prompted by a report...

  10. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93 Airplane... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane limitations. 125.93 Section...

  11. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding...

  12. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories... airplanes that have a seating configuration, excluding pilot seats, of nine or less, a maximum...

  13. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Airplane categories. 23.3 Section 23.3... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane categories. (a) The normal category is limited to airplanes that have a seating configuration, excluding...

  14. 8. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model No. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. It received steam from the locomotive type, fire-tube portable boiler in the background. The engine's water pump which pumped water from the feed-water clarifying cistern, in between the boiler and engine, through a pre-heat system and on to the boiler, is seen in front of the fluted cylinder. The fly-ball governor, missing its balls, the steam port, and manual throttle valve are above and behind the cylinder. The flywheel, drive shaft, and pulley are on the left side of the engine bed. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  15. 10. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model No. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. To the left of the horizontal (fluted) cylinder is the water pump which moved the boiler feed water through the engine's pre-heat system (the exhaust steam heated the boiler feedwater before it was pumped on to the boiler). The steam-feed port, manual throttle valve, and fly-ball governor and pulley and to the right of the cylinder. The drive shaft with flywheel to the left and pulley to the right are seen behind the piston rod, cross-head, wrist pen, connecting rod and the slide valve and eccentric. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  16. 21. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model no. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. Steam-feed pipe at top left of engine. Steam exhaust pipe leaves base of engine on right end and projects upwards. The boiler feed and supply pipe running water through the engine's pre-heat system are seen running to the lower left end of the engine. Pulley in the foreground was not used. The centrifugals were powered by a belt running from the flywheel in the background. Ball-type governor and pulley are on left end of the engine. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  17. Reciprocal relations in electroacoustics

    SciTech Connect

    Chassagne, C.; Bedeaux, D.

    2014-07-28

    In a colloidal suspension, one can generate sound waves by the application of an alternating electric field (Electrokinetic Sonic Amplitude, i.e., ESA). Another phenomenon is electrophoresis (Electrophoretic Mobility, i.e., EM) where a colloidal particle moves relative to the solvent in an electric field. Vice versa one can generate electric fields or electric currents by sound waves (Colloid Vibration Potential/Current, i.e., CVP/CVI). In 1988 and 1990, O’Brien [J. Fluid Mech. 190, 71–86 (1988) and O’Brien, J. Fluid Mech. 212, 81–93 (1990)] derived a reciprocal relation between the proportionality coefficients of the EM and CVI phenomena. In this paper, we will generalize his proof by constructing the relevant entropy production from which the linear force-flux relations follow. General relations are derived for electrolyte solutions, of which colloidal suspensions are a particular case. The relations between CVI, CVP, EM, and ESA are discussed. O’Brien's reciprocal relation then follows as an Onsager relation. The relation is valid for any applied electric field frequency, particle surface charge and particle concentration (even in the presence of particle-particle interactions) provided the system is isotropic.

  18. 14 CFR 25.1011 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for reciprocating engine powered airplanes, the following fuel/oil ratios may be used: (1) For airplanes without a reserve oil or oil transfer system, a fuel/oil ratio of 30:1 by volume. (2) For airplanes with either a reserve oil or oil transfer system, a fuel/oil ratio of 40:1 by volume. (c)...

  19. Toward a Behavior of Reciprocity

    PubMed Central

    Gernsbacher, Morton Ann

    2014-01-01

    It is frequently believed that autism is characterized by a lack of social or emotional reciprocity. In this article, I question that assumption by demonstrating how many professionals—researchers and clinicians—and likewise many parents, have neglected the true meaning of reciprocity. Reciprocity is “a relation of mutual dependence or action or influence,” or “a mode of exchange in which transactions take place between individuals who are symmetrically placed.” Assumptions by clinicians and researchers suggest that they have forgotten that reciprocity needs to be mutual and symmetrical—that reciprocity is a two-way street. Research is reviewed to illustrate that when professionals, peers, and parents are taught to act reciprocally, autistic children become more responsive. In one randomized clinical trial of “reciprocity training” to parents, their autistic children's language developed rapidly and their social engagement increased markedly. Other demonstrations of how parents and professionals can increase their behavior of reciprocity are provided. PMID:25598865

  20. Trust, Respect, and Reciprocity

    PubMed Central

    Phong, Tran Viet; Nhan, Le Nguyen Thanh; Dung, Nguyen Thanh; Ngan, Ta Thi Dieu; Kinh, Nguyen Van; Parker, Michael; Bull, Susan

    2015-01-01

    International science funders and publishers are driving a growing trend in data sharing. There is mounting pressure on researchers in low- and middle-income settings to conform to new sharing policies, despite minimal empirically grounded accounts of the ethical challenges of implementing the policies in these settings. This study used in-depth interviews and focus group discussions with 48 stakeholders in Vietnam to explore the experiences, attitudes, and expectations that inform ethical and effective approaches to sharing clinical research data. Distinct views on the role of trust, respect, and reciprocity were among those that emerged to inform culturally appropriate best practices. We conclude by discussing the challenges that authors of data-sharing policies should consider in this unique context. PMID:26297747

  1. Reciprocating linear motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, Michael P. (Inventor)

    1987-01-01

    A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.

  2. Reciprocating wind engine

    SciTech Connect

    Van Mechelen, B.

    1980-12-09

    A reciprocating wind engine is described which utilizes plural, movably mounted sets of panels to form pistons. Cooperating first and second pistons may be spaced from each other on either side of a central crankshaft. As the wind strikes the surface of a first set of panels, the first piston is moved toward the crankshaft and the second piston is pulled toward the crankshaft from the opposite side. When both pistons are adjacent the crankshaft, the panels on the first or windward piston open to allow the wind to pass therethrough into contact with the panels of the second piston which are closed to present a uniform surface to the wind. The pistons are forced away from the crankshaft to complete one cycle of operation. The output from the crankshaft may be utilized to generate electricity, or for any other suitable purpose. Plural engine segments may be cooperatively joined together to form a bank of such units.

  3. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  4. Upstream reciprocity in heterogeneous networks.

    PubMed

    Iwagami, Akio; Masuda, Naoki

    2010-08-01

    Many mechanisms for the emergence and maintenance of altruistic behavior in social dilemma situations have been proposed. Indirect reciprocity is one such mechanism, where other-regarding actions of a player are eventually rewarded by other players with whom the original player has not interacted. The upstream reciprocity (also called generalized indirect reciprocity) is a type of indirect reciprocity and represents the concept that those helped by somebody will help other unspecified players. In spite of the evidence for the enhancement of helping behavior by upstream reciprocity in rats and humans, theoretical support for this mechanism is not strong. In the present study, we numerically investigate upstream reciprocity in heterogeneous contact networks, in which the players generally have different number of neighbors. We show that heterogeneous networks considerably enhance cooperation in a game of upstream reciprocity. In heterogeneous networks, the most generous strategy, by which a player helps a neighbor on being helped and in addition initiates helping behavior, first occupies hubs in a network and then disseminates to other players. The scenario to achieve enhanced altruism resembles that seen in the case of the Prisoner's Dilemma game in heterogeneous networks.

  5. Healthy reciprocity in sexual interaction.

    PubMed

    Heino, J; Ojanlatva, A

    2000-02-01

    The purpose of the article is to discuss reciprocity in sexual interaction within a couple relationship in which heterosexual orientation is assumed and satisfaction considered. Reciprocity is modelled as an exchange of services which at its best functions as an unwritten contract, a mutual understanding regarding fairness of returned services, and a desire to comply with this principle together with a loved one/lover. An equal treatment of and balanced attitudes towards one another are present together with a just distribution of benefits and concessions or compromises. Reciprocity involves a relative term although healthy reciprocity can be defined for discussion and assessed as a degree of mutual satisfaction. Sexual interaction issues, skills to obtain satisfaction, and sexual and emotional compatibility are important elements in reciprocity. Understandable communication is an essential contributor in the implementation of reciprocity. Conflict-making dialogue should generally be avoided and connotive meanings of words taken into account. Erotophilia-erotophobia dimensions influence both the learning about and attitudes towards sexuality and contribute to personal and professional abilities to assess sexual problems and to attend to them. Erotic touch is a minimum requirement of love making. Sexual orientation, sexual desire, and intimacy influence sexual compatibility. Equity and exchange models are discussed, and a reciprocity model is proposed.

  6. The structure of airplane fabrics

    NASA Technical Reports Server (NTRS)

    Walen, E Dean

    1920-01-01

    This report prepared by the Bureau of Standards for the National Advisory Committee for Aeronautics supplies the necessary information regarding the apparatus and methods of testing and inspecting airplane fabrics.

  7. Gamma rays at airplane altitudes

    SciTech Connect

    Iwai, J.; Koss, T.; Lord, J.; Strausz, S.; Wilkes, J.; Woosley, J. )

    1990-03-20

    An examination of the gamma ray flux above 1 TeV in the atmosphere is needed to better understand the anomalous showers from point sources. Suggestions are made for future experiments on board airplanes.

  8. Differential equations in airplane mechanics

    NASA Technical Reports Server (NTRS)

    Carleman, M T

    1922-01-01

    In the following report, we will first draw some conclusions of purely theoretical interest, from the general equations of motion. At the end, we will consider the motion of an airplane, with the engine dead and with the assumption that the angle of attack remains constant. Thus we arrive at a simple result, which can be rendered practically utilizable for determining the trajectory of an airplane descending at a constant steering angle.

  9. Airplane Upset Training Evaluation Report

    NASA Technical Reports Server (NTRS)

    Gawron, Valerie J.; Jones, Patricia M. (Technical Monitor)

    2002-01-01

    Airplane upset accidents are a leading factor in hull losses and fatalities. This study compared five types of airplane-upset training. Each group was composed of eight, non-military pilots flying in their probationary year for airlines operating in the United States. The first group, 'No aero / no upset,' was made up of pilots without any airplane upset training or aerobatic flight experience; the second group, 'Aero/no upset,' of pilots without any airplane-upset training but with aerobatic experience; the third group, 'No aero/upset,' of pilots who had received airplane-upset training in both ground school and in the simulator; the fourth group, 'Aero/upset,' received the same training as Group Three but in addition had aerobatic flight experience; and the fifth group, 'In-flight' received in-flight airplane upset training using an instrumented in-flight simulator. Recovery performance indicated that clearly training works - specifically, all 40 pilots recovered from the windshear upset. However few pilots were trained or understood the use of bank to change the direction of the lift vector to recover from nose high upsets. Further, very few thought of, or used differential thrust to recover from rudder or aileron induced roll upsets. In addition, recovery from icing-induced stalls was inadequate.

  10. Airplane design for gusts

    NASA Technical Reports Server (NTRS)

    Houbolt, J. C.

    1977-01-01

    There are two basic approaches used for the structural design of aircraft due to dust encounter. One is a discrete gust approach, the other is based on power spectral techniques. Both of these approaches are explained in this report. Tacit to the above approaches is the assumption that loading on the airplane arises primarily from vertical gusts. A study of atmospheric turbulence was made not only on the vertical component, but on the longitudinal and transverse gust components as well. An analysis was made to establish the loads that develop when explicit consideration is given to both the vertical and head-wind components. The results are reported. Also included in this report are brief comments on gust effects during approach and landing.

  11. Direct reciprocity in spatial populations enhances R-reciprocity as well as ST-reciprocity.

    PubMed

    Miyaji, Kohei; Tanimoto, Jun; Wang, Zhen; Hagishima, Aya; Ikegaya, Naoki

    2013-01-01

    As is well-known, spatial reciprocity plays an important role in facilitating the emergence of cooperative traits, and the effect of direct reciprocity is also obvious for explaining the cooperation dynamics. However, how the combination of these two scenarios influences cooperation is still unclear. In the present work, we study the evolution of cooperation in 2 × 2 games via considering both spatial structured populations and direct reciprocity driven by the strategy with 1-memory length. Our results show that cooperation can be significantly facilitated on the whole parameter plane. For prisoner's dilemma game, cooperation dominates the system even at strong dilemma, where maximal social payoff is still realized. In this sense, R-reciprocity forms and it is robust to the extremely strong dilemma. Interestingly, when turning to chicken game, we find that ST-reciprocity is also guaranteed, through which social average payoff and cooperation is greatly enhanced. This reciprocity mechanism is supported by mean-field analysis and different interaction topologies. Thus, our study indicates that direct reciprocity in structured populations can be regarded as a more powerful factor for the sustainability of cooperation.

  12. Direct reciprocity in spatial populations enhances R-reciprocity as well as ST-reciprocity.

    PubMed

    Miyaji, Kohei; Tanimoto, Jun; Wang, Zhen; Hagishima, Aya; Ikegaya, Naoki

    2013-01-01

    As is well-known, spatial reciprocity plays an important role in facilitating the emergence of cooperative traits, and the effect of direct reciprocity is also obvious for explaining the cooperation dynamics. However, how the combination of these two scenarios influences cooperation is still unclear. In the present work, we study the evolution of cooperation in 2 × 2 games via considering both spatial structured populations and direct reciprocity driven by the strategy with 1-memory length. Our results show that cooperation can be significantly facilitated on the whole parameter plane. For prisoner's dilemma game, cooperation dominates the system even at strong dilemma, where maximal social payoff is still realized. In this sense, R-reciprocity forms and it is robust to the extremely strong dilemma. Interestingly, when turning to chicken game, we find that ST-reciprocity is also guaranteed, through which social average payoff and cooperation is greatly enhanced. This reciprocity mechanism is supported by mean-field analysis and different interaction topologies. Thus, our study indicates that direct reciprocity in structured populations can be regarded as a more powerful factor for the sustainability of cooperation. PMID:23951272

  13. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... paragraph (b) of this section: (1) Airplanes with high bypass ratio jet engines. For an airplane that has jet engines with a bypass ratio of 2 or more before a change in type design— (i) The airplane, after... do not have high bypass ratio jet engines. For an airplane that does not have jet engines with...

  14. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... paragraph (b) of this section: (1) Airplanes with high bypass ratio jet engines. For an airplane that has jet engines with a bypass ratio of 2 or more before a change in type design— (i) The airplane, after... do not have high bypass ratio jet engines. For an airplane that does not have jet engines with...

  15. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... paragraph (b) of this section: (1) Airplanes with high bypass ratio jet engines. For an airplane that has jet engines with a bypass ratio of 2 or more before a change in type design— (i) The airplane, after... do not have high bypass ratio jet engines. For an airplane that does not have jet engines with...

  16. Social evolution: reciprocity there is.

    PubMed

    Taborsky, Michael

    2013-06-01

    The theory of cooperation predicts that altruism can be established by reciprocity, yet empirical evidence from nature is contentious. Increasingly though, experimental results from social vertebrates challenge the nearly exclusive explanatory power of relatedness for the evolution of cooperation.

  17. Group formation through indirect reciprocity

    NASA Astrophysics Data System (ADS)

    Oishi, Koji; Shimada, Takashi; Ito, Nobuyasu

    2013-03-01

    The emergence of group structure of cooperative relations is studied in an agent-based model. It is proved that specific types of reciprocity norms lead individuals to split into two groups only inside of which they are cooperative. The condition for the evolutionary stability of the norms is also obtained. This result suggests reciprocity norms, which usually promote cooperation, can cause society's separation into multiple groups.

  18. Moral assessment in indirect reciprocity.

    PubMed

    Sigmund, Karl

    2012-04-21

    Indirect reciprocity is one of the mechanisms for cooperation, and seems to be of particular interest for the evolution of human societies. A large part is based on assessing reputations and acting accordingly. This paper gives a brief overview of different assessment rules for indirect reciprocity, and studies them by using evolutionary game dynamics. Even the simplest binary assessment rules lead to complex outcomes and require considerable cognitive abilities.

  19. 40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission Standards and Related Requirements § 1051.140 What is my vehicle's maximum engine power and... the mapping procedures of 40 CFR part 1065, based on the manufacturer's design and...

  20. 40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission Standards and Related Requirements § 1051.140 What is my vehicle's maximum engine power and... the mapping procedures of 40 CFR part 1065, based on the manufacturer's design and...

  1. 40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission Standards and Related Requirements § 1051.140 What is my vehicle's maximum engine power and... the mapping procedures of 40 CFR part 1065, based on the manufacturer's design and...

  2. 40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission Standards and Related Requirements § 1051.140 What is my vehicle's maximum engine power and... the mapping procedures of 40 CFR part 1065, based on the manufacturer's design and...

  3. 40 CFR 1051.140 - What is my vehicle's maximum engine power and displacement?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission Standards and Related Requirements § 1051.140 What is my vehicle's maximum engine power and... the mapping procedures of 40 CFR part 1065, based on the manufacturer's design and...

  4. 40 CFR 1039.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What is my engine's maximum engine power? 1039.140 Section 1039.140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Emission Standards and Related Requirements...

  5. 40 CFR 1054.140 - What is my engine's maximum engine power and displacement?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine...

  6. 40 CFR 1054.140 - What is my engine's maximum engine power and displacement?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine...

  7. 40 CFR 1054.140 - What is my engine's maximum engine power and displacement?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... power and displacement? 1054.140 Section 1054.140 Protection of Environment ENVIRONMENTAL PROTECTION... engine power and displacement? This section describes how to quantify your engine's maximum engine...

  8. The X-15 airplane - Lessons learned

    NASA Technical Reports Server (NTRS)

    Dana, William H.

    1993-01-01

    The X-15 rocket research airplane flew to an altitude of 354,000 ft and reached Mach 6.70. In almost 200 flights, this airplane was used to gather aerodynamic-heating, structural loads, stability and control, and atmospheric-reentry data. This paper describes the origins, design, and operation of the X-15 airplane. In addition, lessons learned from the X-15 airplane that are applicable to designing and testing the National Aero-Space Plane are discussed.

  9. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355 Airplane... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 125.355 Section...

  10. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  11. 14 CFR 23.3 - Airplane categories.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane categories. 23.3 Section 23.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES General § 23.3 Airplane...

  12. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  13. 76 FR 77934 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... series airplanes. Since we issued AD 2005-23-02, Amendment 39-14360 (70 FR 69067, November 14, 2005), The... certain ACT equipped airplanes, produced after AD 2005-23-02, Amendment 39-14360 (70 FR 69067, November 14...-14360 (70 FR 69067, November 14, 2005). Applicability (c) This AD applies to Airbus airplanes listed...

  14. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93...

  15. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  16. 14 CFR 121.605 - Airplane equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane equipment. 121.605 Section 121.605..., FLAG, AND SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.605 Airplane equipment. No person may dispatch or release an airplane unless it is airworthy and is equipped as prescribed in §...

  17. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93...

  18. 14 CFR 125.93 - Airplane limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane limitations. 125.93 Section 125.93...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements § 125.93...

  19. Direct reciprocity in structured populations.

    PubMed

    van Veelen, Matthijs; García, Julián; Rand, David G; Nowak, Martin A

    2012-06-19

    Reciprocity and repeated games have been at the center of attention when studying the evolution of human cooperation. Direct reciprocity is considered to be a powerful mechanism for the evolution of cooperation, and it is generally assumed that it can lead to high levels of cooperation. Here we explore an open-ended, infinite strategy space, where every strategy that can be encoded by a finite state automaton is a possible mutant. Surprisingly, we find that direct reciprocity alone does not lead to high levels of cooperation. Instead we observe perpetual oscillations between cooperation and defection, with defection being substantially more frequent than cooperation. The reason for this is that "indirect invasions" remove equilibrium strategies: every strategy has neutral mutants, which in turn can be invaded by other strategies. However, reciprocity is not the only way to promote cooperation. Another mechanism for the evolution of cooperation, which has received as much attention, is assortment because of population structure. Here we develop a theory that allows us to study the synergistic interaction between direct reciprocity and assortment. This framework is particularly well suited for understanding human interactions, which are typically repeated and occur in relatively fluid but not unstructured populations. We show that if repeated games are combined with only a small amount of assortment, then natural selection favors the behavior typically observed among humans: high levels of cooperation implemented using conditional strategies.

  20. Indirect Reciprocity; A Field Experiment

    PubMed Central

    van Apeldoorn, Jacobien; Schram, Arthur

    2016-01-01

    Indirect reciprocity involves cooperative acts towards strangers, either in response to their kindness to third parties (downstream) or after receiving kindness from others oneself (upstream). It is considered to be important for the evolution of cooperative behavior amongst humans. Though it has been widely studied theoretically, the empirical evidence of indirect reciprocity has thus far been limited and based solely on behavior in laboratory experiments. We provide evidence from an online environment where members can repeatedly ask and offer services to each other, free of charge. For the purpose of this study we created several new member profiles, which differ only in terms of their serving history. We then sent out a large number of service requests to different members from all over the world. We observe that a service request is more likely to be rewarded for those with a profile history of offering the service (to third parties) in the past. This provides clear evidence of (downstream) indirect reciprocity. We find no support for upstream indirect reciprocity (in this case, rewarding the service request after having previously received the service from third parties), however. Our evidence of downstream indirect reciprocity cannot be attributed to reputational effects concerning one’s trustworthiness as a service user. PMID:27043712

  1. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  2. Assortment and the evolution of generalized reciprocity.

    PubMed

    Rankin, Daniel J; Taborsky, Michael

    2009-07-01

    Reciprocity is often invoked to explain cooperation. Reciprocity is cognitively demanding, and both direct and indirect reciprocity require that individuals store information about the propensity of their partners to cooperate. By contrast, generalized reciprocity, wherein individuals help on the condition that they received help previously, only relies on whether an individual received help in a previous encounter. Such anonymous information makes generalized reciprocity hard to evolve in a well-mixed population, as the strategy will lose out to pure defectors. Here we analyze a model for the evolution of generalized reciprocity, incorporating assortment of encounters, to investigate the conditions under which it will evolve. We show that, in a well-mixed population, generalized reciprocity cannot evolve. However, incorporating assortment of encounters can favor the evolution of generalized reciprocity in which indiscriminate cooperation and defection are both unstable. We show that generalized reciprocity can evolve under both the prisoner's dilemma and the snowdrift game.

  3. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 125.75 Section 125... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual or... approved Airplane Flight Manual or the approved equivalent aboard each airplane it operates. A...

  4. The Testing of Airplane Fabrics

    NASA Technical Reports Server (NTRS)

    Schraivogel, Karl

    1932-01-01

    This report considers the determining factors in the choice of airplane fabrics, describes the customary methods of testing and reports some of the experimental results. To sum up briefly the results obtained with the different fabrics, it may be said that increasing the strength of covering fabrics by using coarser yarns ordinarily offers no difficulty, because the weight increment from doping is relatively smaller.

  5. Testing a Windmill Airplane ("autogiro")

    NASA Technical Reports Server (NTRS)

    Seiferth, R

    1927-01-01

    In order to clear up the matter ( In the Spanish report it was stated that the reference surface for the calculation of the coefficients c(sub a) and c(sub w) was the area of all four wings, instead of a single wing), the model of a windwill airplane was tested in the Gottingen wind tunnel.

  6. Glues Used in Airplane Parts

    NASA Technical Reports Server (NTRS)

    Allen, S W; Truax, T R

    1920-01-01

    This report was prepared for the National Advisory Committee for Aeronautics and presents the results of investigations conducted by the Forest Products Laboratory of the United States Forest Service on the manufacture, preparation, application, testing and physical properties of the different types of glues used in wood airplane parts.

  7. Vibration Response of Airplane Structures

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore; Gelalles, A G

    1935-01-01

    This report presents test results of experiments on the vibration-response characteristics of airplane structures on the ground and in flight. It also gives details regarding the construction and operation of vibration instruments developed by the National Advisory Committee for Aeronautics.

  8. Paper Airplanes: A Classroom Activity

    ERIC Educational Resources Information Center

    Painter, Richard A.

    1976-01-01

    A learning experience is described for upper elementary or junior high students involving the manufacture, transportation, and marketing of a product for consumers. Steps are given and roles are assigned for students to convert raw material (paper) to a finished product (paper airplanes) and to sell it. (AV)

  9. Safeguards Against Flutter of Airplanes

    NASA Technical Reports Server (NTRS)

    deVries, Gerhard

    1956-01-01

    This report is a complilation of practical rules, derived at the same time from theory and from experience, intended to guide the aeronautical engineer in the design of flutter-free airplanes. Rules applicable to the wing, the ailerons, flaps, tabs,tail surfaces, and fuselage are discussed.

  10. Indirect reciprocity with optional interactions.

    PubMed

    Ghang, Whan; Nowak, Martin A

    2015-01-21

    Indirect reciprocity is a mechanism for the evolution of cooperation that is relevant for prosocial behavior among humans. Indirect reciprocity means that my behavior towards you also depends on what you have done to others. Indirect reciprocity is associated with the evolution of social intelligence and human language. Most approaches to indirect reciprocity assume obligatory interactions, but here we explore optional interactions. In any one round a game between two players is offered. A cooperator accepts a game unless the reputation of the other player indicates a defector. For a game to take place, both players must accept. In a game between a cooperator and a defector, the reputation of the defector is revealed to all players with probability Q. After a sufficiently large number of rounds the identity of all defectors is known and cooperators are no longer exploited. The crucial condition for evolution of cooperation can be written as hQB>1, where h is the average number of rounds per person and B=(b/c)-1 specifies the benefit-to-cost ratio. We analyze both stochastic and deterministic evolutionary game dynamics. We study two extensions that deal with uncertainty: hesitation and malicious gossip.

  11. Do infants detect indirect reciprocity?

    PubMed

    Meristo, Marek; Surian, Luca

    2013-10-01

    In social interactions involving indirect reciprocity, agent A acts prosocially towards B and this prompts C to act prosocially towards A. This happens because A's actions enhanced its reputation in the eyes of third parties. Indirect reciprocity may have been of central importance in the evolution of morality as one of the major mechanisms leading to the selection of helping and fair attitudes. Here we show that 10-month-old infants expect third parties to act positively towards fair donors who have distributed attractive resources equally between two recipients, rather than toward unfair donors who made unequal distributions. Infants' responses were dependent on the reciprocator's perceptual exposure to previous relevant events: they expected the reciprocator to reward the fair donor only when it had seen the distributive actions performed by the donors. We propose that infants were able to generate evaluations of agents that were based on the fairness of their distributive actions and to generate expectations about the social preferences of informed third parties.

  12. Indirect reciprocity under incomplete observation.

    PubMed

    Nakamura, Mitsuhiro; Masuda, Naoki

    2011-07-01

    Indirect reciprocity, in which individuals help others with a good reputation but not those with a bad reputation, is a mechanism for cooperation in social dilemma situations when individuals do not repeatedly interact with the same partners. In a relatively large society where indirect reciprocity is relevant, individuals may not know each other's reputation even indirectly. Previous studies investigated the situations where individuals playing the game have to determine the action possibly without knowing others' reputations. Nevertheless, the possibility that observers of the game, who generate the reputation of the interacting players, assign reputations without complete information about them has been neglected. Because an individual acts as an interacting player and as an observer on different occasions if indirect reciprocity is endogenously sustained in a society, the incompleteness of information may affect either role. We examine the game of indirect reciprocity when the reputations of players are not necessarily known to observers and to interacting players. We find that the trustful discriminator, which cooperates with good and unknown players and defects against bad players, realizes cooperative societies under seven social norms. Among the seven social norms, three of the four suspicious norms under which cooperation (defection) to unknown players leads to a good (bad) reputation enable cooperation down to a relatively small observation probability. In contrast, the three trustful norms under which both cooperation and defection to unknown players lead to a good reputation are relatively efficient.

  13. Reciprocity theory of homogeneous reactions

    NASA Astrophysics Data System (ADS)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  14. Reciprocity and Humility in Wonderland

    ERIC Educational Resources Information Center

    Harry, Beth

    2011-01-01

    This article supports the perspective of Jan Valle regarding the importance of recognizing the subjectivity inherent in decisions about Learning Disabilities. The author argues that the perspectives of both parents and professionals are informed by subjective judgments that must be taken into account in decision making. A reciprocal approach to…

  15. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations....

  16. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations....

  17. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations....

  18. 14 CFR 121.207 - Provisionally certificated airplanes: Operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Provisionally certificated airplanes... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.207 Provisionally certificated airplanes: Operating limitations....

  19. An Inquiry into Relationship Suicides and Reciprocity

    ERIC Educational Resources Information Center

    Davis, Mark S.; Callanan, Valerie J.; Lester, David; Haines, Janet

    2009-01-01

    Few theories on suicide have been grounded in the norm of reciprocity. There is literature on suicide, however, describing motivations such as retaliation and retreat which can be interpreted as modes of adaptation to the norm of reciprocity. We propose a reciprocity-based theory to explain suicides associated with relationship problems. Employing…

  20. 47 CFR 51.221 - Reciprocal compensation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Reciprocal compensation. 51.221 Section 51.221... Obligations of All Local Exchange Carriers § 51.221 Reciprocal compensation. The rules governing reciprocal compensation are set forth in subpart H of this part....

  1. Capuchin Monkeys Judge Third-Party Reciprocity

    ERIC Educational Resources Information Center

    Anderson, James R.; Takimoto, Ayaka; Kuroshima, Hika; Fujita, Kazuo

    2013-01-01

    Increasing interest is being shown in how children develop an understanding of reciprocity in social exchanges and fairness in resource distribution, including social exchanges between third parties. Although there are descriptions of reciprocity on a one-to-one basis in other species, whether nonhumans detect reciprocity and violations of…

  2. 14 CFR 23.66 - Takeoff climb: One-engine inoperative.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reciprocating engine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered... determined at each weight, altitude, and ambient temperature within the operational limits established by the... climb speed equal to that achieved at 50 feet in the demonstration of § 23.53....

  3. 14 CFR 23.66 - Takeoff climb: One-engine inoperative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reciprocating engine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered... determined at each weight, altitude, and ambient temperature within the operational limits established by the... climb speed equal to that achieved at 50 feet in the demonstration of § 23.53....

  4. Annoyance caused by propeller airplane flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1984-01-01

    Laboratory experiments were conducted to provide information on quantifying the annoyance response of people to propeller airplane noise. The items of interest were current noise metrics, tone corrections, duration corrections, critical band corrections, and the effects of engine type, operation type, maximum takeoff weight, blade passage frequency, and blade tip speed. In each experiment, 64 subjects judged the annoyance of recordings of propeller and jet airplane operations presented at d-weighted sound pressure levels of 70, 80, and 90 dB in a testing room which simulates the outdoor acoustic environment. The first experiment examined 11 propeller airplanes with maximum takeoff weights greater than or equal to 5700 kg. The second experiment examined 14 propeller airplanes weighting 5700 kg or less. Five jet airplanes were included in each experiment. For both the heavy and light propeller airplanes, perceived noise level and perceived level (Stevens Mark VII procedure) predicted annoyance better than other current noise metrics.

  5. Headache during airplane travel ("airplane headache"): first case in Greece.

    PubMed

    Kararizou, Evangelia; Anagnostou, Evangelos; Paraskevas, George P; Vassilopoulou, Sofia D; Naoumis, Dimitrios; Kararizos, Grigoris; Spengos, Konstantinos

    2011-08-01

    Headache related to airplane flights is rare. We describe a 37-year-old female patient with multiple intense, jabbing headache episodes over the last 3 years that occur exclusively during airplane flights. The pain manifests during take-off and landing, and is located always in the left retro-orbital and frontotemporal area. It is occasionally accompanied by dizziness, but no additional symptoms occur. Pain intensity diminishes and disappears after 15-20 min. Apart from occasional dizziness, no other symptoms occur. The patient has a history of tension-type headache and polycystic ovaries. Blood tests and imaging revealed no abnormalities. Here, we present the first case in Greece. We review the current literature on this rare syndrome and discuss on possible pathophysiology and the investigation of possible co-factors such as anxiety and depression.

  6. Crash Tests of Protective Airplane Floors

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1986-01-01

    Energy-absorbing floors reduce structural buckling and impact forces on occupants. 56-page report discusses crash tests of energy-absorbing aircraft floors. Describes test facility and procedures; airplanes, structural modifications, and seats; crash dynamics; floor and seat behavior; and responses of anthropometric dummies seated in airplanes. Also presents plots of accelerations, photographs and diagrams of test facility, and photographs and drawings of airplanes before, during, and after testing.

  7. Analysis of Stresses in German Airplanes

    NASA Technical Reports Server (NTRS)

    Hoff, Wilhelm

    1923-01-01

    This report contains an account of the origin of the views and fundamental principles underlying the construction of German airplanes during the war. The report contains a detailed discussion of the aerodynamic principles and their use in determining the strength of airplanes, the analysis of the strength qualities of materials and in the construction, the calculated strength of air flows and a description of tests made in determining the strength of airplanes.

  8. Reciprocal food sharing in the vampire bat

    NASA Astrophysics Data System (ADS)

    Wilkinson, Gerald S.

    1984-03-01

    Behavioural reciprocity can be evolutionarily stable1-3. Initial increase in frequency depends, however, on reciprocal altruists interacting predominantly with other reciprocal altruists either by associating within kin groups or by having sufficient memory to recognize and not aid nonreciprocators. Theory thus suggests that reciprocity should evolve more easily among animals which live in kin groups. Data are available separating reciprocity from nepotism only for unrelated nonhuman animals4. Here, I show that food sharing by regurgitation of blood among wild vampire bats (Desmodus rotundus) depends equally and independently on degree of relatedness and an index of opportunity for recipro cation. That reciprocity operates within groups containing both kin and nonkin is supported further with data on the availability of blood-sharing occasions, estimates of the economics of shar ing blood, and experiments which show that unrelated bats will reciprocally exchange blood in captivity.

  9. Reciprocal uniparental disomy in yeast

    PubMed Central

    Andersen, Sabrina L.; Petes, Thomas D.

    2012-01-01

    In the diploid cells of most organisms, including humans, each chromosome is usually distinguishable from its partner homolog by multiple single-nucleotide polymorphisms. One common type of genetic alteration observed in tumor cells is uniparental disomy (UPD), in which a pair of homologous chromosomes are derived from a single parent, resulting in loss of heterozygosity for all single-nucleotide polymorphisms while maintaining diploidy. Somatic UPD events are usually explained as reflecting two consecutive nondisjunction events. Here we report a previously undescribed mode of chromosome segregation in Saccharomyces cerevisiae in which one cell division produces daughter cells with reciprocal UPD for the same pair of chromosomes without an aneuploid intermediate. One pair of sister chromatids is segregated into one daughter cell and the other pair is segregated into the other daughter cell, mimicking a meiotic chromosome segregation pattern. We term this process “reciprocal uniparental disomy.” PMID:22665764

  10. An Autonomously Reciprocating Transmembrane Nanoactuator.

    PubMed

    Watson, Matthew A; Cockroft, Scott L

    2016-01-22

    Biological molecular machines operate far from equilibrium by coupling chemical potential to repeated cycles of dissipative nanomechanical motion. This principle has been exploited in supramolecular systems that exhibit true machine behavior in solution and on surfaces. However, designed membrane-spanning assemblies developed to date have been limited to simple switches or stochastic shuttles, and true machine behavior has remained elusive. Herein, we present a transmembrane nanoactuator that turns over chemical fuel to drive autonomous reciprocating (back-and-forth) nanomechanical motion. Ratcheted reciprocating motion of a DNA/PEG copolymer threaded through a single α-hemolysin pore was induced by a combination of DNA strand displacement processes and enzyme-catalyzed reactions. Ion-current recordings revealed saw-tooth patterns, indicating that the assemblies operated in autonomous, asymmetric cycles of conformational change at rates of up to one cycle per minute. PMID:26661295

  11. Piston reciprocating compressed air engine

    SciTech Connect

    Cestero, L.G.

    1987-03-24

    A compressed air engine is described comprising: (a). a reservoir of compressed air, (b). two power cylinders each containing a reciprocating piston connected to a crankshaft and flywheel, (c). a transfer cylinder which communicates with each power cylinder and the reservoir, and contains a reciprocating piston connected to the crankshaft, (d). valve means controlled by rotation of the crankshaft for supplying compressed air from the reservoir to each power cylinder and for exhausting compressed air from each power cylinder to the transfer cylinder, (e). valve means controlled by rotation of the crankshaft for supplying from the transfer cylinder to the reservoir compressed air supplied to the transfer cylinder on the exhaust strokes of the pistons of the power cylinders, and (f). an externally powered fan for assisting the exhaust of compressed air from each power cylinder to the transfer cylinder and from there to the compressed air reservoir.

  12. Best compression: Reciprocating or rotary?

    SciTech Connect

    Cahill, C.

    1997-07-01

    A compressor is a device used to increase the pressure of a compressible fluid. The inlet pressure can vary from a deep vacuum to a high positive pressure. The discharge pressure can range from subatmospheric levels to tens of thousands of pounds per square inch. Compressors come in numerous forms, but for oilfield applications there are two primary types, reciprocating and rotary. Both reciprocating and rotary compressors are grouped in the intermittent mode of compression. Intermittent is cyclic in nature, in that a specific quantity of gas is ingested by the compressor, acted upon and discharged before the cycle is repeated. Reciprocating compression is the most common form of compression used for oilfield applications. Rotary screw compressors have a long history but are relative newcomers to oilfield applications. The rotary screw compressor-technically a helical rotor compressor-dates back to 1878. That was when the first rotary screw was manufactured for the purpose of compressing air. Today thousands of rotary screw compression packages are being used throughout the world to compress natural gas.

  13. Evolution of cooperation without reciprocity

    NASA Astrophysics Data System (ADS)

    Riolo, Rick L.; Cohen, Michael D.; Axelrod, Robert

    2001-11-01

    A long-standing problem in biological and social sciences is to understand the conditions required for the emergence and maintenance of cooperation in evolving populations. For many situations, kin selection is an adequate explanation, although kin-recognition may still be a problem. Explanations of cooperation between non-kin include continuing interactions that provide a shadow of the future (that is, the expectation of an ongoing relationship) that can sustain reciprocity, possibly supported by mechanisms to bias interactions such as embedding the agents in a two-dimensional space or other context-preserving networks. Another explanation, indirect reciprocity, applies when benevolence to one agent increases the chance of receiving help from others. Here we use computer simulations to show that cooperation can arise when agents donate to others who are sufficiently similar to themselves in some arbitrary characteristic. Such a characteristic, or `tag', can be a marking, display, or other observable trait. Tag-based donation can lead to the emergence of cooperation among agents who have only rudimentary ability to detect environmental signals and, unlike models of direct or indirect reciprocity, no memory of past encounters is required.

  14. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Exhaust heat exchangers. 25.1125 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat...

  15. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Exhaust heat exchangers. 25.1125 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat...

  16. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Exhaust heat exchangers. 25.1125 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat...

  17. 14 CFR 23.1563 - Airspeed placards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the airspeed indicator. This placard must list— (a) The operating maneuvering speed, VO; and (b) The maximum landing gear operating speed V LO. (c) For reciprocating multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of...

  18. 14 CFR 23.65 - Climb: All engines operating.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-powered airplane of 6,000 pounds or less maximum weight must have a steady climb gradient at sea level of... takeoff position(s); and (4) A climb speed not less than the greater of 1.1 VMC and 1.2 VS1 for... acrobatic category reciprocating engine-powered airplane of more than 6,000 pounds maximum weight,...

  19. 14 CFR 23.1563 - Airspeed placards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maneuvering speed, VO; and (b) The maximum landing gear operating speed V LO. (c) For reciprocating multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under §...

  20. 14 CFR 23.1563 - Airspeed placards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... maneuvering speed, VO; and (b) The maximum landing gear operating speed V LO. (c) For reciprocating multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under §...

  1. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 23.977 Section 23.977... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... strainer must— (1) For reciprocating engine powered airplanes, have 8 to 16 meshes per inch; and (2)...

  2. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 23.977 Section 23.977... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... strainer must— (1) For reciprocating engine powered airplanes, have 8 to 16 meshes per inch; and (2)...

  3. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel tank outlet. 25.977 Section 25.977... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... reciprocating engine powered airplanes, have 8 to 16 meshes per inch; and (2) For turbine engine...

  4. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 25.977 Section 25.977... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... reciprocating engine powered airplanes, have 8 to 16 meshes per inch; and (2) For turbine engine...

  5. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 23.977 Section 23.977... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... strainer must— (1) For reciprocating engine powered airplanes, have 8 to 16 meshes per inch; and (2)...

  6. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel tank outlet. 25.977 Section 25.977... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... reciprocating engine powered airplanes, have 8 to 16 meshes per inch; and (2) For turbine engine...

  7. 14 CFR 23.977 - Fuel tank outlet.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel tank outlet. 23.977 Section 23.977... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Fuel System § 23.977 Fuel... strainer must— (1) For reciprocating engine powered airplanes, have 8 to 16 meshes per inch; and (2)...

  8. 14 CFR 25.977 - Fuel tank outlet.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel tank outlet. 25.977 Section 25.977... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System § 25.977 Fuel tank outlet. (a) There must be... reciprocating engine powered airplanes, have 8 to 16 meshes per inch; and (2) For turbine engine...

  9. Imperfect information facilitates the evolution of reciprocity.

    PubMed

    Kurokawa, Shun

    2016-06-01

    The existence of cooperation demands explanation since cooperation is costly to the actor. Reciprocity has long been regarded as a potential explanatory mechanism for the existence of cooperation. Reciprocity is a mechanism wherein a cooperator responds to an opponent's behavior by switching his/her own behavior. Hence, a possible problematic case relevant to the theory of reciprocity evolution arises when the mechanism is such that the information regarding an opponent's behavior is imperfect. Although it has been confirmed also by previous theoretical studies that imperfect information interferes with the evolution of reciprocity, this argument is based on the assumption that there are no mistakes in behavior. And, a previous study presumed that it might be expected that when such mistakes occur, reciprocity can more readily evolve in the case of imperfect information than in the case of perfect information. The reason why the previous study considers so is that in the former case, reciprocators can miss defections incurred by other reciprocators' mistakes due to imperfect information, allowing cooperation to persist when such reciprocators meet. However, contrary to this expectation, the previous study has shown that even when mistakes occur, imperfect information interferes with the evolution of reciprocity. Nevertheless, the previous study assumed that payoffs are linear (i.e., that the effect of behavior is additive and there are no synergetic effects). In this study, we revisited the same problem but removed the assumption that payoffs are linear. We used evolutionarily stable strategy analysis to compare the condition for reciprocity to evolve when mistakes occur and information is imperfect with the condition for reciprocity to evolve when mistakes occur and information is perfect. Our study revealed that when payoffs are not linear, imperfect information can facilitate the evolution of reciprocity when mistakes occur; while when payoffs are linear

  10. Subsonic Airplane For High-Altitude Research

    NASA Technical Reports Server (NTRS)

    Chambers, Alan; Reed, R. Dale

    1993-01-01

    Report discusses engineering issues considered in design of conceptual subsonic airplane intended to cruise at altitudes of 100,000 ft or higher. Airplane would carry scientific instruments for research in chemistry and physics of atmosphere, particularly, for studies of ozone hole, greenhouse gases, and climatic effects.

  11. 77 FR 34283 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... series airplanes. Comments We have considered the following comment received on the earlier NPRM (76 FR... Manager, Transport Airplane Directorate, Aircraft Certification Service. BILLING CODE 4910-13-P ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Airbus...

  12. Research on the control of airplanes

    NASA Technical Reports Server (NTRS)

    Jones, B Melvill

    1928-01-01

    Our task is to endeavor to obtain precise experimental records of the motion of stalled airplanes, both when left to themselves and when the pilot is trying to control them. The apparatus which we use consists of a box containing tree gyroscopes which are slightly deflected against a spring control when the airplane is turning.

  13. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355...

  14. 78 FR 46536 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Procedures (44 FR 11034, February 26, 1979); 3. Will not affect intrastate aviation in Alaska; and 4. Will... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... B4-600R series airplanes. This proposed AD was prompted by reports of cracks found in the bottom...

  15. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355...

  16. 14 CFR 125.355 - Airplane equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane equipment. 125.355 Section 125.355...: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Flight Release Rules § 125.355...

  17. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  18. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine airplanes... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Accessories for multiengine airplanes....

  19. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. Link to an..., 2010. (a) With each airplane or rotorcraft that was not type certificated with an Airplane...

  20. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft that was not type certificated with an Airplane or Rotorcraft Flight...

  1. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977,...

  2. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual...

  3. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977,...

  4. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  5. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  6. 14 CFR 21.5 - Airplane or Rotorcraft Flight Manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Airplane or Rotorcraft Flight Manual. 21.5... CERTIFICATION PROCEDURES FOR PRODUCTS AND PARTS General § 21.5 Airplane or Rotorcraft Flight Manual. (a) With each airplane or rotorcraft not type certificated with an Airplane or Rotorcraft Flight Manual...

  7. 14 CFR 91.853 - Final compliance: Civil subsonic airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Final compliance: Civil subsonic airplanes... Noise Limits § 91.853 Final compliance: Civil subsonic airplanes. Except as provided in § 91.873, after... airplane subject to § 91.801(c) of this subpart, unless that airplane has been shown to comply with Stage...

  8. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual...

  9. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual...

  10. 14 CFR 91.821 - Civil supersonic airplanes: Noise limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Civil supersonic airplanes: Noise limits... Noise Limits § 91.821 Civil supersonic airplanes: Noise limits. Except for Concorde airplanes having... airplane that does not comply with Stage 2 noise limits of part 36 in effect on October 13, 1977,...

  11. 14 CFR 125.75 - Airplane flight manual.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane flight manual. 125.75 Section 125... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Airplane flight manual. (a) Each certificate holder shall keep a current approved Airplane Flight Manual...

  12. Prolonging Microgravity on Parabolic Airplane Flights

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2003-01-01

    Three techniques have been proposed to prolong the intervals of time available for microgravity experiments aboard airplanes flown along parabolic trajectories. Typically, a pilot strives to keep an airplane on such a trajectory during a nominal time interval as long as 25 seconds, and an experimental apparatus is released to float freely in the airplane cabin to take advantage of the microgravitational environment of the trajectory for as long as possible. It is usually not possible to maintain effective microgravity during the entire nominal time interval because random aerodynamic forces and fluctuations in pilot control inputs cause the airplane to deviate slightly from a perfect parabolic trajectory, such that the freely floating apparatus bumps into the ceiling, floor, or a wall of the airplane before the completion of the parabola.

  13. Optimal back-to-front airplane boarding.

    PubMed

    Bachmat, Eitan; Khachaturov, Vassilii; Kuperman, Ran

    2013-06-01

    The problem of finding an optimal back-to-front airplane boarding policy is explored, using a mathematical model that is related to the 1+1 polynuclear growth model with concave boundary conditions and to causal sets in gravity. We study all airplane configurations and boarding group sizes. Optimal boarding policies for various airplane configurations are presented. Detailed calculations are provided along with simulations that support the main conclusions of the theory. We show that the effectiveness of back-to-front policies undergoes a phase transition when passing from lightly congested airplanes to heavily congested airplanes. The phase transition also affects the nature of the optimal or near-optimal policies. Under what we consider to be realistic conditions, optimal back-to-front policies lead to a modest 8-12% improvement in boarding time over random (no policy) boarding, using two boarding groups. Having more than two groups is not effective. PMID:23848727

  14. Directional excitation without breaking reciprocity

    NASA Astrophysics Data System (ADS)

    Ramezani, Hamidreza; Dubois, Marc; Wang, Yuan; Shen, Y. Ron; Zhang, Xiang

    2016-09-01

    We propose a mechanism for directional excitation without breaking reciprocity. This is achieved by embedding an impedance matched parity-time symmetric potential in a three-port system. The amplitude distribution within the gain and loss regions is strongly influenced by the direction of the incoming field. Consequently, the excitation of the third port is contingent on the direction of incidence while transmission in the main channel is immune. Our design improves the four-port directional coupler scheme, as there is no need to implement an anechoic termination to one of the ports.

  15. Towards a unified theory of reciprocity.

    PubMed

    Rosas, Alejandro

    2012-02-01

    In a unified theory of human reciprocity, the strong and weak forms are similar because neither is biologically altruistic and both require normative motivation to support cooperation. However, strong reciprocity is necessary to support cooperation in public goods games. It involves inflicting costs on defectors; and though the costs for punishers are recouped, recouping costs requires complex institutions that would not have emerged if weak reciprocity had been enough.

  16. 76 FR 4219 - Airworthiness Directives; Airbus Model A330-200 Series Airplanes; Model A330-300 Series Airplanes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3. Will not have a significant...-200 Series Airplanes; Model A330-300 Series Airplanes; Model A340-200 Series Airplanes; and Model A340-300 Series Airplanes AGENCY: Federal Aviation Administration (FAA), Department of Transportation...

  17. Reciprocating motion of active deformable particles

    NASA Astrophysics Data System (ADS)

    Tarama, M.; Ohta, T.

    2016-05-01

    Reciprocating motion of an active deformable particle in a homogeneous medium is studied theoretically. For generality, we employ a simple model derived from symmetry considerations for the center-of-mass velocity and elliptical and triangular deformations in two dimensions. We carry out, for the first time, a systematic investigation of the reciprocating motion of a self-propelled particle. It is clarified that spontaneous breaking of the front-rear asymmetry is essential for the reciprocating motion. Moreover, two routes are found for the formation of the reciprocating motion. One is a bifurcation from a motionless stationary state. The other is destabilisation of an oscillatory rectilinear motion.

  18. Evolution of spite through indirect reciprocity.

    PubMed Central

    Johnstone, Rufus A.; Bshary, Redouan

    2004-01-01

    How can cooperation persist in the face of a temptation to 'cheat'? Several recent papers have suggested that the answer may lie in indirect reciprocity. Altruistic individuals may benefit by eliciting altruism from observers, rather than (as in direct reciprocity) from the recipient of the aid they provide. Here, we point out that indirect reciprocity need not always favour cooperation; by contrast, it may support spiteful behaviour, which is costly for the both actor and recipient. Existing theory suggests spite is unlikely to persist, but we demonstrate that it may do so when spiteful individuals are less likely to incur aggression from observers (a negative form of indirect reciprocity). PMID:15347514

  19. Investigation of Icing Characteristics of Typical Light Airplane Engine Induction Systems

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1949-01-01

    The icing characteristics of two typical light-airplane engine induction systems were investigated using the carburetors and manifolds of engines in the horsepower ranges from 65 to 85 and 165 to 185. The smaller system consisted of a float-type carburetor with an unheated manifold and the larger system consisted of a single-barrel pressure-type carburetor with an oil-jacketed manifold. Carburetor-air temperature and humidity limits of visible and serious Icing were determined for various engine power conditions. Several.methods of achieving ice-free induction systems are discussed along with estimates of surface heating requirements of the various induct ion-system components. A study was also made of the icing characteristics of a typical light-airplane air scoop with an exposed filter and a modified system that provided a normal ram inlet with the filter located in a position to Induce inertia separation of the free water from the charge air. The principle of operation of float-type carburetors is proved to make them inherently more susceptible to icing at the throttle plate than pressure-type carburetors.. The results indicated that proper jacketing and heating of all parts exposed to the fuel spray can satisfactorily reduce or eliminate icing in the float-type carburetor and the manifold. Pressure-type carburetors can be protected from serious Icing by proper location of the fuel-discharge nozzle combined with suitable application of heat to critical parts.

  20. The FAA aging airplane program plan for transport aircraft

    NASA Technical Reports Server (NTRS)

    Curtis, Dayton; Lewis, Jess

    1992-01-01

    The Federal Aviation Administration (FAA) Aging Airplane Program is focused on five program areas: maintenance, transport airplanes, commuter airplanes, airplane engines, and research. These programs are complementary and concurrent, and have been in effect since 1988. The programs address the aging airplane challenge through different methods, including policies, procedures, and hardware development. Each program is carefully monitored and its progress tracked to ensure that the needs of the FAA, the industry, and the flying public are being met.

  1. Indirect reciprocity with trinary reputations.

    PubMed

    Tanabe, Shoma; Suzuki, Hideyuki; Masuda, Naoki

    2013-01-21

    Indirect reciprocity is a reputation-based mechanism for cooperation in social dilemma situations when individuals do not repeatedly meet. The conditions under which cooperation based on indirect reciprocity occurs have been examined in great details. Most previous theoretical analysis assumed for mathematical tractability that an individual possesses a binary reputation value, i.e., good or bad, which depends on their past actions and other factors. However, in real situations, reputations of individuals may be multiple valued. Another puzzling discrepancy between the theory and experiments is the status of the so-called image scoring, in which cooperation and defection are judged to be good and bad, respectively, independent of other factors. Such an assessment rule is found in behavioral experiments, whereas it is known to be unstable in theory. In the present study, we fill both gaps by analyzing a trinary reputation model. By an exhaustive search, we identify all the cooperative and stable equilibria composed of a homogeneous population or a heterogeneous population containing two types of players. Some results derived for the trinary reputation model are direct extensions of those for the binary model. However, we find that the trinary model allows cooperation under image scoring under some mild conditions.

  2. Indirect reciprocity with trinary reputations.

    PubMed

    Tanabe, Shoma; Suzuki, Hideyuki; Masuda, Naoki

    2013-01-21

    Indirect reciprocity is a reputation-based mechanism for cooperation in social dilemma situations when individuals do not repeatedly meet. The conditions under which cooperation based on indirect reciprocity occurs have been examined in great details. Most previous theoretical analysis assumed for mathematical tractability that an individual possesses a binary reputation value, i.e., good or bad, which depends on their past actions and other factors. However, in real situations, reputations of individuals may be multiple valued. Another puzzling discrepancy between the theory and experiments is the status of the so-called image scoring, in which cooperation and defection are judged to be good and bad, respectively, independent of other factors. Such an assessment rule is found in behavioral experiments, whereas it is known to be unstable in theory. In the present study, we fill both gaps by analyzing a trinary reputation model. By an exhaustive search, we identify all the cooperative and stable equilibria composed of a homogeneous population or a heterogeneous population containing two types of players. Some results derived for the trinary reputation model are direct extensions of those for the binary model. However, we find that the trinary model allows cooperation under image scoring under some mild conditions. PMID:23123557

  3. Wind tunnel test of model target thrust reversers for the Pratt and Whitney aircraft JT8D-100 series engines installed on a 727-200 airplane

    NASA Technical Reports Server (NTRS)

    Hambly, D.

    1974-01-01

    The results of a low speed wind tunnel test of 0.046 scale model target thrust reversers installed on a 727-200 model airplane are presented. The full airplane model was mounted on a force balance, except for the nacelles and thrust reversers, which were independently mounted and isolated from it. The installation had the capability of simulating the inlet airflows and of supplying the correct proportions of primary and secondary air to the nozzles. The objectives of the test were to assess the compatibility of the thrust reversers target door design with the engine and airplane. The following measurements were made: hot gas ingestion at the nacelle inlets; model lift, drag, and pitching moment; hot gas impingement on the airplane structure; and qualitative assessment of the rudder effectiveness. The major parameters controlling hot gas ingestion were found to be thrust reverser orientation, engine power setting, and the lip height of the bottom thrust reverser doors on the side nacelles. The thrust reversers tended to increase the model lift, decrease the drag, and decrease the pitching moment.

  4. 78 FR 73993 - Special Conditions: Cessna Model 680 Series Airplanes; Aircraft Electronic System Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... design feature associated with the architecture and connectivity capabilities of the airplanes' computer... vulnerabilities to the airplanes' systems. The proposed network architecture includes the following connectivity... architecture is novel or unusual for executive jet airplanes by allowing connection to airplane...

  5. The New York Schools Insurance Reciprocal.

    ERIC Educational Resources Information Center

    Lapetina, Alison J.

    1990-01-01

    Describes the New York Schools Insurance Reciprocal (NYSIR), which provides both property and liability coverage for school districts. A reciprocal is wholly owned by those insured. NYSIR insures 55 school district subscribers, providing a service that specifically accommodates school district needs and saves them money. (MLF)

  6. Reciprocal Tutoring: Design with Cognitive Load Sharing

    ERIC Educational Resources Information Center

    Chou, Chih-Yueh; Chan, Tak-Wai

    2016-01-01

    "Reciprocal tutoring," as reported in "Exploring the design of computer supports for reciprocal tutoring" (Chan and Chou 1997), has extended the meaning and scope of "intelligent tutoring" originally implemented in stand alone computers. This research is a follow-up to our studies on a "learning companion…

  7. The Effects of Reciprocal Teaching on Comprehension.

    ERIC Educational Resources Information Center

    Frances, Shannon M.; Eckart, Joyce A.

    An action research project investigated the effect of reciprocal teaching instruction and use on the comprehension of seventh-grade general English students. Reciprocal teaching is a form of dialogue structured around four skills--question generation, summarization, clarification, and prediction. These techniques are used in small group…

  8. Education, Gift and Reciprocity: A Preliminary Discussion

    ERIC Educational Resources Information Center

    Sabourin, Eric

    2013-01-01

    This paper analyzes the importance and role of the reciprocity relationship in education. It presents a review on the mobilization of the principle of reciprocity--in the anthropological but also sociological and economic senses--in educational processes, especially in adult education. The study is divided into three parts. The first part analyzes…

  9. An Introduction to the Onsager Reciprocal Relations

    ERIC Educational Resources Information Center

    Monroe, Charles W.; Newman, John

    2007-01-01

    The Onsager reciprocal relations are essential to multicomponent transport theory. A discussion of the principles that should be used to derive flux laws for coupled diffusion is presented here. Fluctuation theory is employed to determine the reciprocal relation for transport coefficients that characterize coupled mass and heat transfer in binary…

  10. Reflexive and Reciprocal Elements in Ixil.

    ERIC Educational Resources Information Center

    Ayres, Glenn

    1990-01-01

    Reflexives and reciprocals in Ixil, a Mayan language of Guatemala, appear to have features that distinguish them from reflexives surveyed in typological studies such as Faltz (1985) and Geniusiene (1987). Third person reflexives and reciprocals seem to have the form of a possessed noun optionally followed by a possessor NP. Moreover, reflexives…

  11. Automated visual inspection of an airplane exterior

    NASA Astrophysics Data System (ADS)

    Jovančević, Igor; Orteu, Jean-José; Sentenac, Thierry; Gilblas, Rémi

    2015-04-01

    This paper deals with the inspection of an airplane using a Pan-Tilt-Zoom camera mounted on a mobile robot moving around the airplane. We present image processing methods for detection and inspection of four different types of items on the airplane exterior. Our detection approach is focused on the regular shapes such as rounded corner rectangles and ellipses, while inspection relies on clues such as uniformity of isolated image regions, convexity of segmented shapes and periodicity of the image intensity signal. The initial results are promising and demonstrate the feasibility of the envisioned robotic system.

  12. 77 FR 15291 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ...We propose to adopt a new airworthiness directive (AD) for all Airbus Model A300 B4-603, B4-605R, and B4-622R airplanes; Model A300 C4-605R Variant F airplanes; and Model A300 F4-600R series airplanes. This proposed AD was prompted by a report that chafing was detected between the autopilot electrical wiring conduit and the wing bottom skin. This proposed AD would require modifying the wiring......

  13. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    NASA Technical Reports Server (NTRS)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  14. Multiplicative noise enhances spatial reciprocity

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Chen, Shen-Shen

    2014-11-01

    Recent research has identified the heterogeneity as crucial for the evolution of cooperation in spatial population. However, the influence of heterogeneous noise is still lacking. Inspired by this interesting question, in this work, we try to incorporate heterogeneous noise into the evaluation of utility, where only a proportion of population possesses noise, whose range can also be tuned. We find that increasing heterogeneous noise monotonously promotes cooperation and even translates the full defection phase (of the homogeneous version) into the complete cooperation phase. Moreover, the promotion effect of this mechanism can be attributed to the leading role of cooperators who have the heterogeneous noise. These type of cooperators can attract more agents penetrating into the robust cooperator clusters, which is beyond the text of traditional spatial reciprocity. We hope that our work may shed light on the understanding of the cooperative behavior in the society.

  15. Development of light and small airplanes

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1926-01-01

    The author has endeavored to select only the most important lines of development and has limited the description of individual airplanes to a few typical examples. Comparisons are presented between German and foreign accomplishments.

  16. Precision controllability of the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Matheny, N. W.

    1979-01-01

    A flying qualities evaluation conducted on a preproduction F-15 airplane permitted an assessment to be made of its precision controllability in the high subsonic and low transonic flight regime over the allowable angle of attack range. Precision controllability, or gunsight tracking, studies were conducted in windup turn maneuvers with the gunsight in the caged pipper mode and depressed 70 mils. This evaluation showed the F-15 airplane to experience severe buffet and mild-to-moderate wing rock at the higher angles of attack. It showed the F-15 airplane radial tracking precision to vary from approximately 6 to 20 mils over the load factor range tested. Tracking in the presence of wing rock essentially doubled the radial tracking error generated at the lower angles of attack. The stability augmentation system affected the tracking precision of the F-15 airplane more than it did that of previous aircraft studied.

  17. Fire prevention on airplanes. Part I

    NASA Technical Reports Server (NTRS)

    Sabatier, J

    1929-01-01

    Various methods for preventing fires in airplanes are presented with most efforts centering around prevention of backfires, new engine and carburetor designs, as well as investigations on different types of fuels.

  18. 77 FR 58336 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); 3. Will not... inclusive, 1071 through 1075 inclusive, 1077, 1080, and 1082. (2) Model A340-313 airplane, MSN 0955....

  19. The Kiln Drying of Wood for Airplanes

    NASA Technical Reports Server (NTRS)

    Tiemann, Harry D

    1919-01-01

    This report is descriptive of various methods used in the kiln drying of woods for airplanes and gives the results of physical tests on different types of woods after being dried by the various kiln-drying methods.

  20. A study of commuter airplane design optimization

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Wyatt, R. D.; Griswold, D. A.; Hammer, J. L.

    1977-01-01

    Problems of commuter airplane configuration design were studied to affect a minimization of direct operating costs. Factors considered were the minimization of fuselage drag, methods of wing design, and the estimated drag of an airplane submerged in a propellor slipstream; all design criteria were studied under a set of fixed performance, mission, and stability constraints. Configuration design data were assembled for application by a computerized design methodology program similar to the NASA-Ames General Aviation Synthesis Program.

  1. Airplane-Runway-Performance Monitoring System

    NASA Technical Reports Server (NTRS)

    Middleton, David B.; Person, Lee H., Jr.; Srivatsan, Raghavachari

    1992-01-01

    Airplane-Runway-Performance Monitoring System (ARPMS) increases safety during takeoffs and landings by providing pilots with symbolic "head-up" and "head-down" information pertinent to decisions to continue or abort takeoffs or landings. Provides graphic information concerning where airplane could be stopped. Pilot monitors ground speed and predicted stopping point while looking at actual runway. High potential for incorporation into cockpit environment for entire aerospace community.

  2. Reciprocity and Ethical Tuberculosis Treatment and Control.

    PubMed

    Silva, Diego S; Dawson, Angus; Upshur, Ross E G

    2016-03-01

    This paper explores the notion of reciprocity in the context of active pulmonary and laryngeal tuberculosis (TB) treatment and related control policies and practices. We seek to do three things: First, we sketch the background to contemporary global TB care and suggest that poverty is a key feature when considering the treatment of TB patients. We use two examples from TB care to explore the role of reciprocity: isolation and the use of novel TB drugs. Second, we explore alternative means of justifying the use of reciprocity through appeal to different moral and political theoretical traditions (i.e., virtue ethics, deontology, and consequentialism). We suggest that each theory can be used to provide reasons to take reciprocity seriously as an independent moral concept, despite any other differences. Third, we explore general meanings and uses of the concept of reciprocity, with the primary intention of demonstrating that it cannot be simply reduced to other more frequently invoked moral concepts such as beneficence or justice. We argue that reciprocity can function as a mid-level principle in public health, and generally, captures a core social obligation arising once an individual or group is burdened as a result of acting for the benefit of others (even if they derive a benefit themselves). We conclude that while more needs to be explored in relation to the theoretical justification and application of reciprocity, sufficient arguments can be made for it to be taken more seriously as a key principle within public health ethics and bioethics more generally. PMID:26797512

  3. Reciprocity and Ethical Tuberculosis Treatment and Control.

    PubMed

    Silva, Diego S; Dawson, Angus; Upshur, Ross E G

    2016-03-01

    This paper explores the notion of reciprocity in the context of active pulmonary and laryngeal tuberculosis (TB) treatment and related control policies and practices. We seek to do three things: First, we sketch the background to contemporary global TB care and suggest that poverty is a key feature when considering the treatment of TB patients. We use two examples from TB care to explore the role of reciprocity: isolation and the use of novel TB drugs. Second, we explore alternative means of justifying the use of reciprocity through appeal to different moral and political theoretical traditions (i.e., virtue ethics, deontology, and consequentialism). We suggest that each theory can be used to provide reasons to take reciprocity seriously as an independent moral concept, despite any other differences. Third, we explore general meanings and uses of the concept of reciprocity, with the primary intention of demonstrating that it cannot be simply reduced to other more frequently invoked moral concepts such as beneficence or justice. We argue that reciprocity can function as a mid-level principle in public health, and generally, captures a core social obligation arising once an individual or group is burdened as a result of acting for the benefit of others (even if they derive a benefit themselves). We conclude that while more needs to be explored in relation to the theoretical justification and application of reciprocity, sufficient arguments can be made for it to be taken more seriously as a key principle within public health ethics and bioethics more generally.

  4. Factors of airplane engine performance

    NASA Technical Reports Server (NTRS)

    Gage, Victor R

    1921-01-01

    This report is based upon an analysis of a large number of airplane-engine tests. It contains the results of a search for fundamental relations between many variables of engine operation. The data used came from over 100 groups of tests made upon several engines, primarily for military information. The types of engines were the Liberty 12 and three models of the Hispano-Suiza. The tests were made in the altitude chamber, where conditions simulated altitudes up to about 30,000 feet, with engine speeds ranging from 1,200 to 2,200 r.p.m. The compression ratios of the different engines ranged from under 5 to over 8 to 1. The data taken on the tests were exceptionally complete, including variations of pressure and temperature, besides the brake and friction torques, rates of fuel and air consumption, the jacket and exhaust heat losses.

  5. Two distinct neural mechanisms underlying indirect reciprocity.

    PubMed

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  6. Two distinct neural mechanisms underlying indirect reciprocity

    PubMed Central

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-01-01

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards. PMID:24591599

  7. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  8. Self-reciprocating radioisotope-powered cantilever

    NASA Astrophysics Data System (ADS)

    Li, Hui; Lal, Amit; Blanchard, James; Henderson, Douglass

    2002-07-01

    A reciprocating cantilever utilizing emitted charges from a millicurie radioisotope thin film is presented. The actuator realizes a direct collected-charge-to-motion conversion. The reciprocation is obtained by self-timed contact between the cantilever and the radioisotope source. A static model balancing the electrostatic and mechanical forces from an equivalent circuit leads to an analytical solution useful for device characterization. Measured reciprocating periods agree with predicted values from the analytical model. A scaling analysis shows that microscale arrays of such cantilevers provide an integrated sensor and actuator platform.

  9. Summary of V-G and VGH Data Collected on Lockheed Electra Airplanes During Airplane Operations

    NASA Technical Reports Server (NTRS)

    Jewel, Joseph W., Jr.; Fetner, Mary W.

    1961-01-01

    Data obtained by NASA VGH and V-G recorders on several Lockheed Electra airplanes operated over three domestic routes have been analyzed to determine the in-flight accelerations, airspeed practices, and landing accelerations experienced by this particular airplane. The results indicate that the accelerations caused by gusts and maneuvers are comparable to corresponding results for piston-engine transport airplanes. Oscillatory accelerations (apparently caused by the autopilot or control system) appear to occur about one-tenth as frequently as accelerations due to gusts. Airspeed operating practices in rough air generally follow the trends shown by piston-engine transports in that there is no significant difference between the average airspeed in rough or smooth air. Placard speeds were exceeded more frequently by the Electra airplane than by piston-engine transport airplanes. Generally, the landing-impact accelerations were higher than those for piston-engine transports.

  10. Reciprocating piston internal combustion engine

    SciTech Connect

    Hayashi, Y.

    1986-04-15

    A reciprocating piston internal combustion engine is described which consists of: a piston movably disposed within an engine cylinder, the piston having a top surface and a piston ring, the engine cylinder and the top surface of the piston defining a combustion chamber, the piston having first and second sections which are divided by a vertical plane containing an axis of a piston pin, the first section being formed with a major thrust surface and the second section being formed with a minor thrust surface; and means for thrusting the piston against a major thrust side wall of the cylinder before the piston reaches top dead center in the cylinder, the thrusting means comprising: means defining a space in the piston, the space communicating with the combustion chamber and being located in the piston second section; a movable member disposed within the space, the movable member being capable of being thrust in the direction of a minor thrust side wall of the cylinder by gas pressure within the combustion chamber and being arranged to thrust the piston ring against the minor thrust side wall when thrust by the gas pressure; and means for producing gas pressure within the combustion chamber such that the gas pressure enters the space at the compression stroke of the engine so that the movable member receives the gas pressure and is thrust toward the minor thrust side wall of the cylinder such that the piston is thrust against a major thrust side wall of the cylinder.

  11. Reciprocal engine with floating liner

    SciTech Connect

    Paul, M.A.; Paul, A.

    1989-06-27

    An internal combustion engine with a heat recovery system is described comprising: a cylinder with a cylinder wall; a piston with a piston head, the piston being reciprocally displaceable in the cylinder; a fuel injection means with fuel connected to the cylinder; and, an air intake passage and an exhaust passage connected to the cylinder, such that air is delivered to the cylinder, compressed by the piston, and fuel from the fuel injection means is delivered to the cylinder and combusted in a working chamber; wherein the heat recovery system includes an air-porous, heat-resistant tubular liner suspended in the cylinder and displaced from the wall of the cylinder, the piston having a deep groove with inner and outer walls in the head of the piston into which the liner is received when the piston is displaced compressing the air, the liner being spaced from the inner and outer walls of the groove such that three insulating zones are provided between combustion gases in the cylinder and the cylinder wall during displacement of the piston.

  12. Radioisotope Stirling Engine Powered Airship for Low Altitude Operation on Venus

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    2012-01-01

    The feasibility of a Stirling engine powered airship for the near surface exploration of Venus was evaluated. The heat source for the Stirling engine was limited to 10 general purpose heat source (GPHS) blocks. The baseline airship utilized hydrogen as the lifting gas and the electronics and payload were enclosed in a cooled insulated pressure vessel to maintain the internal temperature at 320 K and 1 Bar pressure. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the Venus surface based on the available thermal power. The atmospheric conditions on Venus were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Venus surface. From this baseline design additional trades were made to see how other factors affected the design such as the internal temperature of the payload chamber and the flight altitude. In addition other lifting methods were evaluated such as an evacuated chamber, heated atmospheric gas and augmented heated lifting gas. However none of these methods proved viable.

  13. An inquiry into relationship suicides and reciprocity.

    PubMed

    Davis, Mark S; Callanan, Valerie J; Lester, David; Haines, Janet

    2009-10-01

    Few theories on suicide have been grounded in the norm of reciprocity. There is literature on suicide, however, describing motivations such as retaliation and retreat which can be interpreted as modes of adaptation to the norm of reciprocity. We propose a reciprocity-based theory to explain suicides associated with relationship problems. Employing a content analysis of suicide notes, we tested the theory, finding evidence of exploitation, exploiter guilt, retaliation, and retreat as motives for committing relationship-based suicide. Reciprocity-based note writers were more likely to have used alcohol or drugs in the hours prior to committing suicide, and they were also more likely to have made their intentions known beforehand. Implications for future research as well as for suicide prevention are discussed.

  14. 78 FR 53792 - Draft Guidance for Reciprocity

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... (Reciprocity).'' The document has been updated from the previous revision to include safety culture, security.... Brian J. McDermott, Director, Division of Materials Safety and State Agreements, Office of Federal...

  15. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  16. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  17. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  18. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Reciprocating-type air compressors. 56.13010... and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  19. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  20. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 56.13010... and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  1. 14 CFR 125.407 - Maintenance log: Airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Maintenance log: Airplanes. 125.407 Section... Maintenance log: Airplanes. (a) Each person who takes corrective action or defers action concerning a reported... record the action taken in the airplane maintenance log in accordance with part 43 of this chapter....

  2. 78 FR 28729 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ..., 2012) Nord Wind Airlines reported the status of compliance of its airplanes with the NPRM (77 FR 65506... Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are... series airplanes. That AD currently requires modifying the nacelle strut and wing structure,...

  3. 78 FR 27310 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... airplanes: AD 2007-16-12, Amendment 39-15151 (72 FR 44740, August 9, 2007), requires changes to existing... 767-200, -300, and -400ER series airplanes: AD 2008-23-15, Amendment 39-15736 (73 FR 70267, November..., -600, - 700, -700C, -800, and -900 series airplanes: AD 2009-12-06, Amendment 39-15929 (74 FR...

  4. A study of the factors affecting the range of airplanes

    NASA Technical Reports Server (NTRS)

    Biermann, David

    1937-01-01

    A study was made of the most important factors affecting the range of airplanes. Numerical examples are given showing the effects of different variables on the range of a two-engine airplane. The takeoff problems of long-range airplanes are analyzed.

  5. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off,...

  6. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent...

  7. 14 CFR 125.91 - Airplane requirements: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Requirements... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane requirements: General....

  8. 14 CFR 121.199 - Nontransport category airplanes: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplane can be safely controlled in flight after an engine becomes inoperative) or 115 percent of the... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Nontransport category airplanes: Takeoff... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance...

  9. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Single-engine airplanes prohibited. 121.159... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.159 Single-engine airplanes prohibited. No certificate holder may operate a single-engine airplane under this part....

  10. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Single-engine airplanes prohibited. 121.159... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.159 Single-engine airplanes prohibited. No certificate holder may operate a single-engine airplane under this part....

  11. 78 FR 21074 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... FR 19979, April 14, 2008). For airplanes having S/Ns 7003 through 7990 inclusive: Within 14 days... effective date of this AD. (k) New Replacement of Defective Pitch Feel Simulator Unit For airplanes having S.... Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking...

  12. 77 FR 54856 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... review copies of the referenced service information at the FAA, Transport Airplane Directorate, 1601 Lind... structural integrity of older transport category airplanes, the FAA concluded that the incidence of fatigue... for all airplanes in the transport fleet. Since the establishment of the SSI Supplemental...

  13. 78 FR 4038 - Critical Parts for Airplane Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ..., FAA published a notice of proposed rulemaking titled ``Critical Parts for Airplane Propellers'' (76 FR... Federal Aviation Administration 14 CFR Part 35 RIN 2120-AJ88 Critical Parts for Airplane Propellers AGENCY... Administration (FAA) is amending the airworthiness standards for airplane propellers. This action would require...

  14. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type...

  15. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off,...

  16. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Single-engine airplanes prohibited. 121.159 Section 121.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplanes prohibited. No certificate holder may operate a single-engine airplane under this part....

  17. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical...

  18. 14 CFR 121.141 - Airplane flight manual.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane flight manual. 121.141 Section 121... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Manual Requirements § 121.141 Airplane flight manual. (a) Each certificate holder shall keep a current approved airplane flight manual for each type...

  19. 14 CFR 125.205 - Equipment requirements: Airplanes under IFR.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Equipment requirements: Airplanes under IFR... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Equipment Requirements § 125.205 Equipment requirements: Airplanes under IFR. No person may operate...

  20. 14 CFR 125.407 - Maintenance log: Airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Maintenance log: Airplanes. 125.407 Section... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Maintenance log: Airplanes. (a) Each person who takes corrective action or defers action concerning a...

  1. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Accessories for multiengine airplanes. 23... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine...

  2. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Single-engine airplanes prohibited. 121.159 Section 121.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... airplanes prohibited. No certificate holder may operate a single-engine airplane under this part....

  3. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent...

  4. 14 CFR 121.199 - Nontransport category airplanes: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Nontransport category airplanes: Takeoff... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.199 Nontransport category airplanes: Takeoff limitations. (a) No person operating...

  5. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent...

  6. 14 CFR 121.199 - Nontransport category airplanes: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Nontransport category airplanes: Takeoff... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.199 Nontransport category airplanes: Takeoff limitations. (a) No person operating...

  7. 14 CFR 125.91 - Airplane requirements: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane requirements: General. 125.91... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane...

  8. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Glide: Single-engine airplanes. 23.71... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Flight Performance § 23.71 Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical...

  9. 14 CFR 125.205 - Equipment requirements: Airplanes under IFR.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Equipment requirements: Airplanes under IFR... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Equipment Requirements § 125.205 Equipment requirements: Airplanes under IFR. No person may operate...

  10. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Accessories for multiengine airplanes. 23... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine...

  11. 14 CFR 23.1437 - Accessories for multiengine airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Accessories for multiengine airplanes. 23... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 23.1437 Accessories for multiengine airplanes. For multiengine...

  12. 14 CFR 125.407 - Maintenance log: Airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Maintenance log: Airplanes. 125.407 Section... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Maintenance log: Airplanes. (a) Each person who takes corrective action or defers action concerning a...

  13. 14 CFR 125.91 - Airplane requirements: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane requirements: General. 125.91... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane...

  14. 14 CFR 125.205 - Equipment requirements: Airplanes under IFR.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Equipment requirements: Airplanes under IFR... CERTIFICATION AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD... Equipment Requirements § 125.205 Equipment requirements: Airplanes under IFR. No person may operate...

  15. 14 CFR 125.91 - Airplane requirements: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane requirements: General. 125.91... AND OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6,000 POUNDS OR MORE; AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane...

  16. 14 CFR 125.407 - Maintenance log: Airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Maintenance log: Airplanes. 125.407 Section... OPERATIONS: AIRPLANES HAVING A SEATING CAPACITY OF 20 OR MORE PASSENGERS OR A MAXIMUM PAYLOAD CAPACITY OF 6... Maintenance log: Airplanes. (a) Each person who takes corrective action or defers action concerning a...

  17. 14 CFR 121.199 - Nontransport category airplanes: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Nontransport category airplanes: Takeoff... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.199 Nontransport category airplanes: Takeoff limitations. (a) No person operating...

  18. 14 CFR 121.303 - Airplane instruments and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane instruments and equipment. 121.303... Airplane instruments and equipment. (a) Unless otherwise specified, the instrument and equipment... airspeed limitation and item of related information in the Airplane Flight Manual and pertinent...

  19. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off,...

  20. 14 CFR 121.570 - Airplane evacuation capability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane evacuation capability. 121.570... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Operations § 121.570 Airplane evacuation capability. (a) No person may cause an airplane carrying passengers to be moved on the surface, take off,...

  1. Quantifying and scaling airplane performance in turbulence

    NASA Astrophysics Data System (ADS)

    Richardson, Johnhenri R.

    This dissertation studies the effects of turbulent wind on airplane airspeed and normal load factor, determining how these effects scale with airplane size and developing envelopes to account for them. The results have applications in design and control of aircraft, especially small scale aircraft, for robustness with respect to turbulence. Using linearized airplane dynamics and the Dryden gust model, this dissertation presents analytical and numerical scaling laws for airplane performance in gusts, safety margins that guarantee, with specified probability, that steady flight can be maintained when stochastic wind gusts act upon an airplane, and envelopes to visualize these safety margins. Presented here for the first time are scaling laws for the phugoid natural frequency, phugoid damping ratio, airspeed variance in turbulence, and flight path angle variance in turbulence. The results show that small aircraft are more susceptible to high frequency gusts, that the phugoid damping ratio does not depend directly on airplane size, that the airspeed and flight path angle variances can be parameterized by the ratio of the phugoid natural frequency to a characteristic turbulence frequency, and that the coefficient of variation of the airspeed decreases with increasing airplane size. Accompanying numerical examples validate the results using eleven different airplanes models, focusing on NASA's hypothetical Boeing 757 analog the Generic Transport Model and its operational 5.5% scale model, the NASA T2. Also presented here for the first time are stationary flight, where the flight state is a stationary random process, and the stationary flight envelope, an adjusted steady flight envelope to visualize safety margins for stationary flight. The dissertation shows that driving the linearized airplane equations of motion with stationary, stochastic gusts results in stationary flight. It also shows how feedback control can enlarge the stationary flight envelope by alleviating

  2. Precision controllability of the YF-17 airplane

    NASA Technical Reports Server (NTRS)

    Sisk, T. R.; Mataeny, N. W.

    1980-01-01

    A flying qualities evaluation conducted on the YF-17 airplane permitted assessment of its precision controllability in the transonic flight regime over the allowable angle of attack range. The precision controllability (tailchase tracking) study was conducted in constant-g and windup turn tracking maneuvers with the command augmentation system (CAS) on, automatic maneuver flaps, and the caged pipper gunsight depressed 70 mils. This study showed that the YF-17 airplane tracks essentially as well at 7 g's to 8 g's as earlier fighters did at 4 g's to 5 g's before they encountered wing rock. The pilots considered the YF-17 airplane one of the best tracking airplanes they had flown. Wing rock at the higher angles of attack degraded tracking precision, and lack of control harmony made precision controllability more difficult. The revised automatic maneuver flap schedule incorporated in the airplane at the time of the tests did not appear to be optimum. The largest tracking errors and greatest pilot workload occurred at high normal load factors at low angles of attack. The pilots reported that the high-g maneuvers caused some tunnel vision and that they found it difficult to think clearly after repeated maneuvers.

  3. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H., Jr. (Inventor)

    1994-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (VR) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  4. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)

    1996-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  5. 14 CFR 135.422 - Aging airplane inspections and records reviews for multiengine airplanes certificated with nine...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Aging airplane inspections and records... Maintenance, and Alterations § 135.422 Aging airplane inspections and records reviews for multiengine... aging airplane inspection and records review required by this section. During the inspection and...

  6. 14 CFR 135.422 - Aging airplane inspections and records reviews for multiengine airplanes certificated with nine...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Aging airplane inspections and records... Maintenance, and Alterations § 135.422 Aging airplane inspections and records reviews for multiengine... aging airplane inspection and records review required by this section. During the inspection and...

  7. 14 CFR 135.422 - Aging airplane inspections and records reviews for multiengine airplanes certificated with nine...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aging airplane inspections and records... Maintenance, and Alterations § 135.422 Aging airplane inspections and records reviews for multiengine... aging airplane inspection and records review required by this section. During the inspection and...

  8. 14 CFR 135.422 - Aging airplane inspections and records reviews for multiengine airplanes certificated with nine...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Aging airplane inspections and records... Maintenance, and Alterations § 135.422 Aging airplane inspections and records reviews for multiengine... aging airplane inspection and records review required by this section. During the inspection and...

  9. 14 CFR 135.422 - Aging airplane inspections and records reviews for multiengine airplanes certificated with nine...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Aging airplane inspections and records... Maintenance, and Alterations § 135.422 Aging airplane inspections and records reviews for multiengine... aging airplane inspection and records review required by this section. During the inspection and...

  10. Analytic prediction of airplane equilibrium spin characteristics

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.

    1972-01-01

    The nonlinear equations of motion are solved algebraically for conditions for which an airplane is in an equilibrium spin. Constrained minimization techniques are employed in obtaining the solution. Linear characteristics of the airplane about the equilibrium points are also presented and their significance in identifying the stability characteristics of the equilibrium points is discussed. Computer time requirements are small making the method appear potentially applicable in airplane design. Results are obtained for several configurations and are compared with other analytic-numerical methods employed in spin prediction. Correlation with experimental results is discussed for one configuration for which a rather extensive data base was available. A need is indicated for higher Reynolds number data taken under conditions which more accurately simulate a spin.

  11. The Development of German Army Airplanes During the War

    NASA Technical Reports Server (NTRS)

    Wilhelm, Hoff

    1921-01-01

    The author, who was a captain of the Reserves in the Technical Department of the Aviation Division (Board of Airplane Experts) during the war, shows what means were taken for the creation of new airplane types and what tests were employed for trying out their flying properties, capacities and structural reliability. The principal representative types of each of the classes of airplanes are described and the characteristics of the important structural parts are discussed. Data regarding the number of airplanes at the front and the flying efficiency of the various classes of airplanes are given.

  12. Evolution of indirect reciprocity in groups of various sizes and comparison with direct reciprocity.

    PubMed

    Suzuki, Shinsuke; Akiyama, Eizo

    2007-04-01

    Recently many studies have investigated the evolution of indirect reciprocity through which cooperative action is returned by a third individual, e.g. individual A helped B and then receives help from C. Most studies on indirect reciprocity have presumed that only two individuals take part in a single interaction (group), e.g. A helps B and C helps A. In this paper, we investigate the evolution of indirect reciprocity when more than two individuals take part in a single group, and compare the result with direct reciprocity through which cooperative action is directly returned by the recipient. Our analyses show the following. In the population with discriminating cooperators and unconditional defectors, whether implementation error is included or not, (i) both strategies are evolutionarily stable and the evolution of indirect reciprocity becomes more difficult as group size increases, and (ii) the condition for the evolution of indirect reciprocity under standing reputation criterion where the third individuals distinguish between justified and unjustified defections is more relaxed than that under image scoring reputation criterion in which the third individuals do not distinguish with. Furthermore, in the population that also includes unconditional cooperators, (iii) in the presence of errors in implementation, the discriminating strategy is evolutionarily stable not only under standing but also under image scoring if group size is larger than two. Finally, (iv) in the absence of errors in implementation, the condition for the evolution of direct reciprocity is equivalent to that for the evolution of indirect reciprocity under standing, and, in the presence of errors, the condition for the evolution of direct reciprocity is very close to that for the evolution of indirect reciprocity under image scoring.

  13. Noise exposure levels from model airplane engines.

    PubMed

    Pearlman, R C; Miller, M

    1985-01-01

    Previous research indicates that noise levels from unmuffled model airplane engines produce sufficient noise to cause TTS. The present study explored SPLs of smaller engines under 3.25 cc (.19 cu. in.) and the effectiveness of engine mufflers. Results showed that model airplanes can exceed a widely used damage risk criterion (DRC) but that engine mufflers can reduce levels below DRC. Handling model gasoline engines should be added to the list of recreational activities such as snow-mobile and motorcycle riding, shooting, etc. in which the participant's hearing may be in jeopardy. Suggestions are presented to the model engine enthusiast for avoiding damage to hearing.

  14. Stresses Produced in Airplane Wings by Gusts

    NASA Technical Reports Server (NTRS)

    Kussner, Hans Georg

    1932-01-01

    Accurate prediction of gust stress being out of the question because of the multiplicity of the free air movements, the exploration of gust stress is restricted to static method which must be based upon: 1) stress measurements in free flight; 2) check of design specifications of approved type airplanes. With these empirical data the stress must be compared which can be computed for a gust of known intensity and structure. This "maximum gust" then must be so defined as to cover the whole ambit of empiricism and thus serve as prediction for new airplane designs.

  15. Solar-powered airplanes: A historical perspective and future challenges

    NASA Astrophysics Data System (ADS)

    Zhu, Xiongfeng; Guo, Zheng; Hou, Zhongxi

    2014-11-01

    Solar-powered airplanes are studied in this research. A solar-powered airplane consumes solar energy instead of traditional fossil fuels; thus it has received a significant amount of interest from researchers and the public alike. The historical development of solar-powered airplanes is reviewed. Notable prototypes, particularly those sponsored by the government, are introduced in detail. Possible future applications of solar-powered airplanes in the civilian and military fields are proposed. Finally, the challenges being faced by solar-powered airplanes are discussed. This study proposes that the solar-powered airplanes are potential alternatives to some present technologies and that they complement current satellites, traditional airplanes, airships, and balloons. However, these planes require further development and enormous technical obstacles must be addressed.

  16. Three-person game facilitates indirect reciprocity under image scoring.

    PubMed

    Suzuki, Shinsuke; Akiyama, Eizo

    2007-11-01

    Reputation building plays an important role in the evolution of reciprocal altruism when the same individuals do not interact repeatedly because, by referring to reputation, a reciprocator can know which partners are cooperative and can reciprocate with a cooperator. This reciprocity based on reputation is called indirect reciprocity. Previous studies of indirect reciprocity have focused only on two-person games in which only two individuals participate in a single interaction, and have claimed that indirectly reciprocal cooperation cannot be established under image scoring reputation criterion where the reputation of an individual who has cooperated (defected) becomes good (bad). In this study, we specifically examine three-person games, and reveal that indirectly reciprocal cooperation can be formed and maintained stably, even under image scoring, by a nucleus shield mechanism. In the nucleus shield, reciprocators are a shield that keeps out unconditional defectors, whereas unconditional cooperators are the backbone of cooperation that retains a good reputation among the population.

  17. Measuring and making decisions for social reciprocity.

    PubMed

    Solanas, Antonio; Leiva, David; Sierra, Vicenta; Salafranca, Lluís

    2009-08-01

    Social reciprocity may explain certain emerging psychological processes likely to be founded on dyadic relations. Although indexes and statistics have been proposed to measure and make statistical decisions regarding social reciprocity in groups, these tools were generally developed to identify association patterns rather than to quantify the discrepancies between what each individual addresses to his or her partners and what is received from those partners in return. Additionally, social researchers' interest extends beyond measuring groups at the global level because dyadic and individual measurements are also necessary for proper descriptions of social interactions. This study is concerned with a new statistic for measuring social reciprocity at the global level and with decomposing that statistic in order to identify which dyads and individuals account for a significant part of asymmetry in social interactions. In addition to a set of indexes, some exact analytical results are derived, and a way of making statistical decisions is proposed.

  18. Theory of reciprocating contact for viscoelastic solids

    NASA Astrophysics Data System (ADS)

    Putignano, Carmine; Carbone, Giuseppe; Dini, Daniele

    2016-04-01

    A theory of reciprocating contacts for linear viscoelastic materials is presented. Results are discussed for the case of a rigid sphere sinusoidally driven in sliding contact with a viscoelastic half-space. Depending on the size of the contact, the frequency and amplitude of the reciprocating motion, and on the relaxation time of the viscoelastic body, we establish that the contact behavior may range from the steady-state viscoelastic solution, in which traction forces always oppose the direction of the sliding rigid punch, to a more elaborate trend, which is due to the strong interaction between different regions of the path covered during the reciprocating motion. Practical implications span a number of applications, ranging from seismic engineering to biotechnology.

  19. Gauge invariance and reciprocity in quantum mechanics

    SciTech Connect

    Leung, P. T.; Young, K.

    2010-03-15

    Reciprocity in wave propagation usually refers to the symmetry of the Green's function under the interchange of the source and the observer coordinates, but this condition is not gauge invariant in quantum mechanics, a problem that is particularly significant in the presence of a vector potential. Several possible alternative criteria are given and analyzed with reference to different examples with nonzero magnetic fields and/or vector potentials, including the case of a multiply connected spatial domain. It is shown that the appropriate reciprocity criterion allows for specific phase factors separable into functions of the source and observer coordinates and that this condition is robust with respect to the addition of any scalar potential. In the Aharonov-Bohm effect, reciprocity beyond monoenergetic experiments holds only because of subsidiary conditions satisfied in actual experiments: the test charge is in units of e and the flux is produced by a condensate of particles with charge 2e.

  20. Reciprocating Feed System Development Status

    NASA Technical Reports Server (NTRS)

    Trewek, Mary (Technical Monitor); Blackmon, James B.; Eddleman, David E.

    2005-01-01

    The reciprocating feed system (RFS) is an alternative means of providing high pressure propellant flow at low cost and system mass, with high fail-operational reliability. The RFS functions by storing the liquid propellants in large, low-pressure tanks and then expelling each propellant through two or three small, high-pressure tanks. Each RFS tank is sequentially filled, pressurized, expelled, vented, and refilled so as to provide a constant, or variable, mass flow rate to the engine. This type of system is much lighter than a conventional pressure fed system in part due to the greatly reduced amount of inert tank weight. The delivered payload for an RFS is superior to that of conventional pressure fed systems for conditions of high total impulse and it is competitive with turbopump systems, up to approximately 2000 psi. An advanced version of the RFS uses autogenous pressurization and thrust augmentation to achieve higher performance. In this version, the pressurization gases are combusted in a small engine, thus making the pressurization system, in effect, part of the propulsion system. The RFS appears to be much less expensive than a turbopump system, due to reduced research and development cost and hardware cost, since it is basically composed of small high- pressure tanks, a pressurization system, and control valves. A major benefit is the high reliability fail-operational mode; in the event of a failure in one of the three tank-systems, it can operate on the two remaining tanks. Other benefits include variable pressure and flow rates, ease of engine restart in micro-gravity, and enhanced propellant acquisition and control under adverse acceleration conditions. We present a system mass analysis tool that accepts user inputs for various design and mission parameters and calculates such output values payload and vehicle weights for the conventional pressure fed system, the RFS, the Autogenous Pressurization Thrust Augmentation (APTA) RFS, and turbopump systems

  1. Evolution of cooperation by generalized reciprocity

    PubMed Central

    Pfeiffer, Thomas; Rutte, Claudia; Killingback, Timothy; Taborsky, Michael; Bonhoeffer, Sebastian

    2005-01-01

    The evolution of cooperation by direct reciprocity requires that individuals recognize their present partner and remember the outcome of their last encounter with that specific partner. Direct reciprocity thus requires advanced cognitive abilities. Here, we demonstrate that if individuals repeatedly interact within small groups with different partners in a two person Prisoner's Dilemma, cooperation can emerge and also be maintained in the absence of such cognitive capabilities. It is sufficient for an individual to base their decision of whether or not to cooperate on the outcome of their last encounter—even if it was with a different partner. PMID:16024372

  2. Feasibility analysis of reciprocating magnetic heat pumps

    NASA Technical Reports Server (NTRS)

    Larson, A. V.; Hartley, J. G.; Shelton, Sam V.; Smith, M. M.

    1989-01-01

    A reciprocating gadolinium core in a regeneration fluid column in the warm bore of a superconducting solenoidal magnet is considered for magnetic refrigeration in 3.517 MW (1000 ton) applications. A procedure is presented to minimize the amount of superconducting cable needed in the magnet design. Estimated system capital costs for an ideal magnetic refrigerator of this type become comparable to conventional chillers as the frequency of reciprocation approaches 10 Hertz. A 1-D finite difference analysis of a regenerator cycling at 0.027 Hertz is presented which exhibits some of the features seen in the experiments of G. V. Brown.

  3. Analysis of reciprocating compressor piston rod failures

    SciTech Connect

    Tripp, H.A.; Drosjack, M.J.

    1984-02-01

    This report presents the analysis of five piston rod failures which occurred on reciprocating compressors. Calculations are shown for rod stress which includes nominal rod loading sources as well as additional loads due to unusual pressure losses in the compressor valves, flexure of the rods due to misalignment, and manufacturing errors. The additional loads were incorporated on the basis of field measurements. The stress values are used with Baquin's equation to produce fatigue life curves for the rods. Based on the calculations, recommendations for modified rods were made. The calculation procedures are described in a manner which will permit their application to other reciprocating compressors.

  4. 77 FR 73340 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... +33 5 61 19 76 95; fax +33 5 61 19 68 20; email retrofit.ata@fr.thalesgroup.com ; Internet http://www... products, which was published in the Federal Register on July 11, 2012 (77 FR 40823). That earlier SNPRM..., and A321 series airplanes. Since that SNPRM (77 FR 40823, July 11, 2012) was issued, we...

  5. 78 FR 17071 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... been embodied in production. (2) Model A330-223F and -243F airplanes, all manufacturer serial numbers..., 2012 (77 FR 66764). That NPRM proposed to correct an unsafe condition for the specified products. The Mandatory Continuing Airworthiness Information (MCAI) states: It was noticed in production that the...

  6. 77 FR 60331 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...; 2. Is not a ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034... any category; all manufacturer serial numbers, except airplanes on which Airbus modification 37866 has been embodied in production. (d) Subject Air Transport Association (ATA) of America Code 32:...

  7. 77 FR 64701 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... B2-1A and A300 B4-601 airplanes were inadvertently omitted from the Applicability of the NPRM (77 FR... in the Federal Register on February 22, 2012 (77 FR 10409). That NPRM proposed to correct ] an unsafe... requested that the time for submitting reports, proposed in the NPRM (77 FR 10409, February 22, 2012) as...

  8. 77 FR 65799 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... series airplanes. This AD was prompted by reports of the ram air turbine (RAT) not deploying when tested. This AD requires identification of the supplier, part number, and serial number of the installed RAT actuator, and re-identification of the actuator and RAT, or replacement of the RAT actuator with...

  9. 78 FR 68352 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ..., before further flight, replace all four forward engine mount bolts and associated nuts, on the engine... inspection interval for certain pylon bolts must be reduced. This AD requires a torque check of forward... broken bolts, which could lead to engine detachment in-flight, and damage to the airplane. DATES: This...

  10. 76 FR 65419 - Airworthiness Directives; SOCATA Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... identified in this proposed AD, contact SOCATA--Direction des Services--65921 Tarbes Cedex 9--France... deflection, Socata's analysis shows that the airplane is still capable of achieving its published cross wind... distribution of power and responsibilities among the various levels of government. For the reasons...

  11. 77 FR 1622 - Airworthiness Directives; Socata Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... AD, contact Socata--Direction des Services--65921 Tarbes Cedex 9--France; telephone +33 (0) 62 41... in the Federal Register on October 21, 2011 (76 FR 65419). That NPRM proposed to correct an unsafe... that the airplane is still capable of achieving its published cross wind landing limits. Comments...

  12. Two-stroke-cycle engines for airplanes

    NASA Technical Reports Server (NTRS)

    Jalbert, J

    1926-01-01

    Now that the two-stroke-cycle engine has begun to make its appearance in automobiles, it is important to know what services we have a right to expect of it in aeronautics, what conditions must be met by engines of this type for use on airplanes and what has been accomplished.

  13. 77 FR 65146 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ... rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); 3. Will not... and retard mode, in case of go-around, might lead to a temporary loss of airplane longitudinal control... comments by any of the following methods: Federal eRulemaking Portal: Go to...

  14. A Mechanical Device for Illustrating Airplane Stability

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1921-01-01

    An instrument is described which will illustrate completely in a qualitative sense the longitudinal stability characteristics of an airplane. The instrument is primarily of use for the lecture room, but it is hoped that ultimately it will be possible to obtain quantitative results from it.

  15. 76 FR 72350 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... should have been removed by repair machining was below the level of detectability of the Non Destructive... proposed AD. Discussion On March 31, 2008, we issued AD 2008-08-04, Amendment 39-15456 (73 FR 19975, April..., A319, A320, and A321 airplanes. Since we issued AD 2008-08-04, Amendment 39-15456 (73 FR 19975,...

  16. 78 FR 21227 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... specified products. That SNPRM was published in the Federal Register on September 7, 2012 (77 FR 55163... SNPRM (77 FR 55163, September 7, 2012) be changed from ``* * * first flight of the airplane,'' to... consistent with the intent that was proposed in the SNPRM (77 FR 55163, September 7, 2012) for correcting...

  17. 77 FR 26996 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-08

    ... airplanes. This proposed AD was prompted by reports that medium-head fasteners were installed in lieu of... demonstrated could have an affect on panel fatigue life. This proposed AD would require repetitive inspections... 35 in Airbus A320 final assembly line. Investigations revealed that medium head fasteners,...

  18. Safety and design in airplane construction

    NASA Technical Reports Server (NTRS)

    Teichmann, Alfred

    1934-01-01

    The author gives a survey of the principles of stress analysis and design of airplane structures, and discusses the fundamental strength specifications and their effect on the stress analysis as compared with the safety factors used in other branches of engineering.

  19. 78 FR 8054 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ...) inspection for cracking of the area around the fasteners of the landing plate of the wing bottom skin panel... the inspection of the area around the fasteners of the landing plate of the wing bottom skin panel... A310 series airplanes. The existing AD currently requires repetitive inspections for fatigue...

  20. 77 FR 51729 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ..., between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service information... information at the FAA, Transport Airplane Directorate, 1601 Lind Avenue SW., Renton, Washington. For information on the availability of this material at the FAA, call 425-227-1221. Examining the AD Docket...

  1. 78 FR 46543 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ..., Amendment 39-14028 (70 FR 16104, March 30, 2005)]. This condition, if not detected and corrected, may lead... rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); 3. Will not... and Model A340-200 and -300 series airplanes. This proposed AD was prompted by reports of...

  2. 77 FR 59732 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... and Procedures (44 FR 11034, February 26, 1979); 3. Will not affect intrastate aviation in Alaska; and... A340-500 and -600 series airplanes. This AD requires repetitive inspections for corrosion of the drag... having corrosion protection, which terminates the repetitive inspections required by this AD. This AD...

  3. A study of airplane engine tests

    NASA Technical Reports Server (NTRS)

    Gage, Victor R

    1920-01-01

    This report is a study of the results obtained from a large number of test of an Hispano-Suiza airplane engine in the altitude laboratory of the Bureau of Standards. It was originally undertaken to determine the heat distribution in such an engine, but many other factors are also considered as bearing on this matter.

  4. 77 FR 68050 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... to the specified products. That NPRM published in the Federal Register on May 22, 2012 (77 FR 30228... comments received on the proposal (77 FR 30228, May 22, 2012) and the FAA's response to each comment. Request To Clarify That Freighter Airplanes Are Not Affected UPS stated that the NPRM (77 FR 30228, May...

  5. 14 CFR 129.25 - Airplane security.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... security. Foreign air carriers conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter XII. ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplane security. 129.25 Section...

  6. 78 FR 41286 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... airplanes). (2) Airbus Service Bulletin A320-32-1346, Revision 02, dated November 4, 2009 (for Model A318... NPRM was published in the Federal Register on October 3, 2012 (77 FR 60331). The NPRM proposed to... issued AD 2007-0065, currently at Revision 2. For the reasons described above, this AD...

  7. 77 FR 75833 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... requires repetitive detailed inspections of the forward fitting at FR 40 without nut removal, and a one-time eddy current or liquid penetrant inspection of the forward fitting at FR 40 with nut removal, and... cracks of the forward fitting at FR 40 without nut removal on both sides of the airplane, in...

  8. 77 FR 16492 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... Policies and Procedures (44 FR 11034, February 26, 1979); 3. Will not affect intrastate aviation in Alaska... airplanes. This proposed AD was prompted by reports that some nuts installed on the wing, including on... certain nuts are installed or cracked, and replacing the affected nuts if necessary. We are proposing...

  9. 76 FR 50405 - Airworthiness Directives; SOCATA Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... Facility, U.S. Department of Transportation, Docket Operations, M-30, West Building Ground Floor, Room W12...: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri 64106; telephone: (816) 329-4119; fax: (816) 329-4090; e-mail:...

  10. 14 CFR 129.25 - Airplane security.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... security requirements in 49 CFR chapter XII. ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplane security. 129.25 Section 129.25... AND FOREIGN OPERATORS OF U.S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.25...

  11. 14 CFR 129.25 - Airplane security.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... security requirements in 49 CFR chapter XII. ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplane security. 129.25 Section 129.25... AND FOREIGN OPERATORS OF U.S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.25...

  12. 14 CFR 129.25 - Airplane security.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... security requirements in 49 CFR chapter XII. ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplane security. 129.25 Section 129.25... AND FOREIGN OPERATORS OF U.S.-REGISTERED AIRCRAFT ENGAGED IN COMMON CARRIAGE General § 129.25...

  13. 77 FR 60658 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); 3. Will not... airplanes. This proposed AD was prompted by a report of two fatigue cracks on the left-hand and right-hand... proposed AD would require a high frequency eddy current (HFEC) inspection for any cracking on the...

  14. 14 CFR 129.25 - Airplane security.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... security. Foreign air carriers conducting operations under this part must comply with the applicable security requirements in 49 CFR chapter XII. ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplane security. 129.25 Section...

  15. From Born Reciprocity to Reciprocal Relativity: A Paradigm for Space-Time Physics

    NASA Astrophysics Data System (ADS)

    Jarvis, Peter

    Born's principle of reciprocity -- the exchangeability of relativistic energy-momentum and time-position -- can be seen as a discrete element of a continuous group of symmetry transformations which transcend relativity. Invariance under the semi-direct product of the Weyl-Heisenberg group H(4) of canonical commutation relations with the non-compact unitary group U(3, 1) -- the so-called quaplectic group U(3, 1) ⋉ H(4) -- has been considered by Low as an extension of Born reciprocity to a fundamental symmetry principle of `reciprocal relativity' for the physics of non-inertial frames and high energy processes...

  16. 14 CFR 121.205 - Nontransport category airplanes: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Nontransport category airplanes: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.205 Nontransport category airplanes: Landing limitations:...

  17. 14 CFR 121.205 - Nontransport category airplanes: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Nontransport category airplanes: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.205 Nontransport category airplanes: Landing limitations:...

  18. 14 CFR 121.205 - Nontransport category airplanes: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Nontransport category airplanes: Landing... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.205 Nontransport category airplanes: Landing limitations:...

  19. 47 CFR 51.703 - Reciprocal compensation obligation of LECs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Reciprocal compensation obligation of LECs. 51.703 Section 51.703 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Reciprocal Compensation for Transport and Termination...

  20. Development of Trust and Reciprocity in Adolescence

    ERIC Educational Resources Information Center

    van den Bos, Wouter; Westenberg, Michiel; van Dijk, Eric; Crone, Eveline A.

    2010-01-01

    We investigate the development of two types of prosocial behavior, trust and reciprocity, as defined using a game-theoretical task that allows investigation of real-time social interaction, among 4 age groups from 9 to 25 years. By manipulating the possible outcome alternatives, we could distinguish among important determinants of trust and…