Science.gov

Sample records for airplanes reciprocating engine

  1. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight,...

  2. 14 CFR 121.181 - Airplanes: Reciprocating engine-powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered: En... OPERATIONS Airplane Performance Operating Limitations § 121.181 Airplanes: Reciprocating engine-powered: En... person operating a reciprocating engine powered airplane may take off that airplane at a weight,...

  3. 14 CFR 121.179 - Airplanes: Reciprocating engine-powered: En route limitations: All engines operating.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered: En...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.179 Airplanes: Reciprocating engine-powered: En route limitations:...

  4. 14 CFR 121.179 - Airplanes: Reciprocating engine-powered: En route limitations: All engines operating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered: En...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.179 Airplanes: Reciprocating engine-powered: En route limitations:...

  5. 14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations....

  6. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations....

  7. 14 CFR 121.177 - Airplanes: Reciprocating engine-powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.177 Airplanes: Reciprocating engine-powered: Takeoff limitations....

  8. 14 CFR 121.175 - Airplanes: Reciprocating engine-powered: Weight limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Reciprocating engine-powered... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.175 Airplanes: Reciprocating engine-powered: Weight limitations....

  9. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine powered airplanes. 23.1047 Section 23.1047 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1047 Cooling test procedures for reciprocating engine powered airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes...

  10. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.367 Large transport category airplanes: Reciprocating engine powered: Takeoff limitations. (a)...

  11. 14 CFR 135.367 - Large transport category airplanes: Reciprocating engine powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.367 Large transport category airplanes: Reciprocating engine powered: Takeoff limitations. (a)...

  12. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport category airplanes: Reciprocating engine powered: Weight limitations. (a) No person may take off...

  13. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large transport category airplanes: Reciprocating engine powered: Weight limitations. (a) No person may take off...

  14. 14 CFR 121.327 - Supplemental oxygen: Reciprocating engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Supplemental oxygen: Reciprocating engine... Equipment Requirements § 121.327 Supplemental oxygen: Reciprocating engine powered airplanes. (a) General. Except where supplemental oxygen is provided in accordance with § 121.331, no person may operate...

  15. 14 CFR 121.327 - Supplemental oxygen: Reciprocating engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Supplemental oxygen: Reciprocating engine... Equipment Requirements § 121.327 Supplemental oxygen: Reciprocating engine powered airplanes. (a) General. Except where supplemental oxygen is provided in accordance with § 121.331, no person may operate...

  16. 14 CFR 121.327 - Supplemental oxygen: Reciprocating engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Supplemental oxygen: Reciprocating engine... Equipment Requirements § 121.327 Supplemental oxygen: Reciprocating engine powered airplanes. (a) General. Except where supplemental oxygen is provided in accordance with § 121.331, no person may operate...

  17. 14 CFR 121.327 - Supplemental oxygen: Reciprocating engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Supplemental oxygen: Reciprocating engine... Equipment Requirements § 121.327 Supplemental oxygen: Reciprocating engine powered airplanes. (a) General. Except where supplemental oxygen is provided in accordance with § 121.331, no person may operate...

  18. 14 CFR 121.327 - Supplemental oxygen: Reciprocating engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Supplemental oxygen: Reciprocating engine... Equipment Requirements § 121.327 Supplemental oxygen: Reciprocating engine powered airplanes. (a) General. Except where supplemental oxygen is provided in accordance with § 121.331, no person may operate...

  19. 14 CFR 135.365 - Large transport category airplanes: Reciprocating engine powered: Weight limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Reciprocating engine powered: Weight limitations. 135.365 Section 135.365 Aeronautics and Space FEDERAL AVIATION... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.365 Large...

  20. 14 CFR 135.369 - Large transport category airplanes: Reciprocating engine powered: En route limitations: All...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND... Limitations § 135.369 Large transport category airplanes: Reciprocating engine powered: En route...

  1. 14 CFR 135.369 - Large transport category airplanes: Reciprocating engine powered: En route limitations: All...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND... Limitations § 135.369 Large transport category airplanes: Reciprocating engine powered: En route...

  2. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes with negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  3. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes with negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  4. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes with negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  5. 14 CFR 23.1047 - Cooling test procedures for reciprocating engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes. Compliance with § 23.1041 must be shown for the climb (or, for multiengine airplanes with negative one-engine-inoperative rates of climb, the descent) stage of flight. The airplane must be flown...

  6. 14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Landing limitations: Alternate airport. 121.187 Section 121.187 Aeronautics and Space FEDERAL AVIATION...: Alternate airport. (a) No person may list an airport as an alternate airport in a dispatch or flight release unless the airplane (at the weight anticipated at the time of arrival at the airport), based on...

  7. 14 CFR 121.187 - Airplanes: Reciprocating engine-powered: Landing limitations: Alternate airport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: Landing limitations: Alternate airport. 121.187 Section 121.187 Aeronautics and Space FEDERAL AVIATION...: Alternate airport. (a) No person may list an airport as an alternate airport in a dispatch or flight release unless the airplane (at the weight anticipated at the time of arrival at the airport), based on...

  8. 14 CFR 121.183 - Part 25 airplanes with four or more engines: Reciprocating engine powered: En route limitations...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) at an altitude of 1,000 feet above the highest ground or obstruction within 10 miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of...) Where the engines are assumed to fail at an altitude above the prescribed minimum altitude,...

  9. 14 CFR 121.183 - Part 25 airplanes with four or more engines: Reciprocating engine powered: En route limitations...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) at an altitude of 1,000 feet above the highest ground or obstruction within 10 miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of...) Where the engines are assumed to fail at an altitude above the prescribed minimum altitude,...

  10. 14 CFR 135.373 - Part 25 transport category airplanes with four or more engines: Reciprocating engine powered: En...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of feet per minute obtained by multiplying the number of knots squared by 0.013) at an altitude of 1..., or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of paragraph (a)(2) of... engines are assumed to fail at an altitude above the prescribed minimum altitude, compliance with...

  11. 14 CFR 121.183 - Part 25 airplanes with four or more engines: Reciprocating engine powered: En route limitations...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) at an altitude of 1,000 feet above the highest ground or obstruction within 10 miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of...) Where the engines are assumed to fail at an altitude above the prescribed minimum altitude,...

  12. 14 CFR 135.373 - Part 25 transport category airplanes with four or more engines: Reciprocating engine powered: En...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of feet per minute obtained by multiplying the number of knots squared by 0.013) at an altitude of 1..., or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of paragraph (a)(2) of... engines are assumed to fail at an altitude above the prescribed minimum altitude, compliance with...

  13. 14 CFR 135.373 - Part 25 transport category airplanes with four or more engines: Reciprocating engine powered: En...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of feet per minute obtained by multiplying the number of knots squared by 0.013) at an altitude of 1..., or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of paragraph (a)(2) of... engines are assumed to fail at an altitude above the prescribed minimum altitude, compliance with...

  14. 14 CFR 121.183 - Part 25 airplanes with four or more engines: Reciprocating engine powered: En route limitations...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) at an altitude of 1,000 feet above the highest ground or obstruction within 10 miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of...) Where the engines are assumed to fail at an altitude above the prescribed minimum altitude,...

  15. 14 CFR 135.373 - Part 25 transport category airplanes with four or more engines: Reciprocating engine powered: En...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of feet per minute obtained by multiplying the number of knots squared by 0.013) at an altitude of 1..., or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of paragraph (a)(2) of... engines are assumed to fail at an altitude above the prescribed minimum altitude, compliance with...

  16. 14 CFR 135.373 - Part 25 transport category airplanes with four or more engines: Reciprocating engine powered: En...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of feet per minute obtained by multiplying the number of knots squared by 0.013) at an altitude of 1..., or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of paragraph (a)(2) of... engines are assumed to fail at an altitude above the prescribed minimum altitude, compliance with...

  17. 14 CFR 121.183 - Part 25 airplanes with four or more engines: Reciprocating engine powered: En route limitations...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) at an altitude of 1,000 feet above the highest ground or obstruction within 10 miles on each side of the intended track, or at an altitude of 5,000 feet, whichever is higher. (b) For the purposes of...) Where the engines are assumed to fail at an altitude above the prescribed minimum altitude,...

  18. Simpler valve for reciprocating engines

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1978-01-01

    Simpler design eliminating camshafts, cams, and mechanical springs should improve reliability of hydrazine powered reciprocating engines. Valve is expected to improve efficiency, and reduce weight of engines in range up to 50 horsepower.

  19. 76 FR 72128 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation... engines installed on, but not limited to, Diamond Aircraft Industries Model DA 42 airplanes. The existing... the PPRV, part number (P/N) 05-7212- E002801, on TAE 125-02-99 engines, from 300 hours to 600...

  20. Reciprocating piston engine

    SciTech Connect

    White, A.

    1986-09-02

    This patent describes a reciprocating piston engine wherein there is included the combination of one or more pistons individually reciprocatably mounted each within a cylinder, an intake valve located within a cylinder through which fuel and air can be admitted into the cylinder, compressed and the fuel burned to drive a piston during a power stroke, an exhaust valve located within a cylinder through which burned fuel can be exhausted by movement of a piston to expell the burned gases during an exhaust stroke, a piston having a crown side and a side opposite the crown side to which a piston shaft is attached, the crown side of the piston facing into the cylinder wherein the intake and exhaust valves are located, an elongated roller gear to which the piston shaft is attached, the elongated roller gear is open centered and has an inside face thereof provided with a continuous array of teeth, a drive shaft, a roller gear pinion operatively engaged with the drive shaft, rotation of which produces rotation of the drive shaft, the roller gear pinion being provided with a continuous array of teeth for continuous meshing engagement with the teeth on the inside face of the elongated roller gear, movement of a piston acting through a piston shaft and elongated roller gear producing rotation of the drive shaft via action upon roller gear pinion, the impovement comprising, in the combination, a pair of rails, one each of which is disposed on opposite sides of the teeth of the elongated roller gear, a pair of rollers, one each of which is disposed on opposite sides adjacent and parallel to the teeth of roller gear pinion, the rollers of the roller gear pinion contacting and rolling along the rails of the elongated roller gear to maintain a proper relationship and root clearance between the meshing teeth of an elongated roller gear and a roller gear pinion for effecting the continuous rolling and meshing engagement.

  1. Factors of airplane engine performance

    NASA Technical Reports Server (NTRS)

    Gage, Victor R

    1921-01-01

    This report is based upon an analysis of a large number of airplane-engine tests. It contains the results of a search for fundamental relations between many variables of engine operation. The data used came from over 100 groups of tests made upon several engines, primarily for military information. The types of engines were the Liberty 12 and three models of the Hispano-Suiza. The tests were made in the altitude chamber, where conditions simulated altitudes up to about 30,000 feet, with engine speeds ranging from 1,200 to 2,200 r.p.m. The compression ratios of the different engines ranged from under 5 to over 8 to 1. The data taken on the tests were exceptionally complete, including variations of pressure and temperature, besides the brake and friction torques, rates of fuel and air consumption, the jacket and exhaust heat losses.

  2. 77 FR 9837 - Airworthiness Directives; Lycoming Engines Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ...; AD 2012-03-07] RIN 2120-AA64 Airworthiness Directives; Lycoming Engines Reciprocating Engines AGENCY... airworthiness directive (AD) for certain Lycoming Engines reciprocating engines. This AD was prompted by a... carburetor with one eligible for installation. We are issuing this AD to prevent engine in-flight...

  3. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    Energy independence and fuel savings are hallmarks of the nation’s energy strategy. The advancement of natural gas reciprocating engine power generation technology is critical to the nation’s future. A new engine platform that meets the efficiency, emissions, fuel flexibility, cost and reliability/maintainability targets will enable American manufacturers to have highly competitive products that provide substantial environmental and economic benefits in the US and in international markets. Along with Cummins and Waukesha, Caterpillar participated in a multiyear cooperative agreement with the Department of Energy to create a 50% efficiency natural gas powered reciprocating engine system with a 95% reduction in NOx emissions by the year 2013. This platform developed under this agreement will be a significant contributor to the US energy strategy and will enable gas engine technology to remain a highly competitive choice, meeting customer cost of electricity targets, and regulatory environmental standard. Engine development under the Advanced Reciprocating Engine System (ARES) program was divided into phases, with the ultimate goal being approached in a series of incremental steps. This incremental approach would promote the commercialization of ARES technologies as soon as they emerged from development and would provide a technical and commercial foundation of later-developing technologies. Demonstrations of the Phase I and Phase II technology were completed in 2004 and 2008, respectively. Program tasks in Phase III included component and system development and testing from 2009-2012. Two advanced ignition technology evaluations were investigated under the ARES program: laser ignition and distributed ignition (DIGN). In collaboration with Colorado State University (CSU), a laser ignition system was developed to provide ignition at lean burn and high boost conditions. Much work has been performed in Caterpillar’s DIGN program under the ARES program. This work

  4. A study of airplane engine tests

    NASA Technical Reports Server (NTRS)

    Gage, Victor R

    1920-01-01

    This report is a study of the results obtained from a large number of test of an Hispano-Suiza airplane engine in the altitude laboratory of the Bureau of Standards. It was originally undertaken to determine the heat distribution in such an engine, but many other factors are also considered as bearing on this matter.

  5. Two-stroke-cycle engines for airplanes

    NASA Technical Reports Server (NTRS)

    Jalbert, J

    1926-01-01

    Now that the two-stroke-cycle engine has begun to make its appearance in automobiles, it is important to know what services we have a right to expect of it in aeronautics, what conditions must be met by engines of this type for use on airplanes and what has been accomplished.

  6. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Single-engine airplanes prohibited. 121.159... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.159 Single-engine airplanes prohibited. No certificate holder may operate a single-engine airplane under this part....

  7. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Single-engine airplanes prohibited. 121.159... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.159 Single-engine airplanes prohibited. No certificate holder may operate a single-engine airplane under this part....

  8. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Single-engine airplanes prohibited. 121.159... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.159 Single-engine airplanes prohibited. No certificate holder may operate a single-engine airplane under this part....

  9. 14 CFR 121.159 - Single-engine airplanes prohibited.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Single-engine airplanes prohibited. 121.159... REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Aircraft Requirements § 121.159 Single-engine airplanes prohibited. No certificate holder may operate a single-engine airplane under this part....

  10. A reciprocating rotating-block engine

    SciTech Connect

    O`Connor, L.

    1995-06-01

    This article describes the Newbold power plant, a lightweight, clean burning, and efficient engine that is designed to be used in a variety of small-engine applications, from ultralight planes to wheelchairs. A new turbo rotary-power engine brings together different design concepts from engine technology, including the rotary motion of a block, which is applied in a rotary engine, and the reciprocating motion of pistons. The new power plant also uses an air delivery system that operates similar to a turbojet engine. The turbo rotary-power engine, developed by Vernon Newbold, founder of Newbold and Associates, in Lyons, CO, produces power from the heat generated by combustion of most liquid or gaseous fuels. Production engines, expected to be built in August, will be optimized to operate using diesel fuel.

  11. Hydrazine monopropellant reciprocating engine development

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1979-01-01

    A hydrazine fueled piston engine for providing 11.2 kW was developed to satisfy the need for an efficient power supply in the range from 3.7 to 74.6 kW where existing nonair-breathing power supplies such as fuel cells or turbines are inappropriate. The engine was developed for an aircraft to fly to 21.3 km and above and cruise for extended periods. A remotely piloted aircraft and the associated flight control techniques for this application were designed. The engine is geared down internally (2:1) to accommodate a 1.8 m diameter propeller. An alternator is included to provide electrical power. The pusher-type engine is mounted onto the aft closure of the fuel tank, which also provides mounting for all other propulsion equipment. About 20 hrs of run time demonstrated good efficiency and adequate life. One flight test to 6.1 km was made using the engine with a small fixed-pitch four-bladed propeller. The test was successful in demonstrating operational characteristics and future potential.

  12. 77 FR 20743 - Airworthiness Directives; Lycoming Engines Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Lycoming Engines Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Supplemental notice of... airworthiness directive (AD) for certain Lycoming Engines (L)O-360, (L)IO-360, AEIO-360, O-540, IO-540,...

  13. 77 FR 58003 - Airworthiness Directives; Lycoming Engines Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ...-20-AD; Amendment 39-17196; AD 2012-19-01] RIN 2120-AA64 Airworthiness Directives; Lycoming Engines Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are superseding an existing airworthiness directive (AD) for certain Lycoming Engines (L)O-360, (L)IO-360,...

  14. 77 FR 5167 - Airworthiness Directives; Lycoming Engines Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ...-26-AD; Amendment 39-16909; AD 71-13-01R1] RIN 2120-AA64 Airworthiness Directives; Lycoming Engines.... SUMMARY: We are rescinding an airworthiness directive (AD) for Lycoming Engines model TIO-540-A series reciprocating engines. The existing AD, AD 71-13-01, was prompted by a report of a failed fuel injector...

  15. 78 FR 59293 - Airworthiness Directives; Continental Motors, Inc. Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Motors, Inc. Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... our proposed airworthiness directive (AD) for certain Continental Motors, Inc., engines with...

  16. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  17. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Glide: Single-engine airplanes. 23.71... Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles... with the engine inoperative, its propeller in the minimum drag position, and landing gear and...

  18. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Glide: Single-engine airplanes. 23.71... Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles... with the engine inoperative, its propeller in the minimum drag position, and landing gear and...

  19. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered airplane may take off that...

  20. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered airplane may take off that...

  1. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered airplane may take off that...

  2. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered airplane may take off that...

  3. 14 CFR 121.191 - Airplanes: Turbine engine powered: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.191 Airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered airplane may take off that...

  4. Advanced Natural Gas Reciprocating Engines(s)

    SciTech Connect

    Zurlo, James

    2012-04-05

    The ARES program was initiated in 2001 to improve the overall brake thermal efficiency of stationary, natural gas, reciprocating engines. The ARES program is a joint award that is shared by Dresser, Inc., Caterpillar and Cummins. The ARES program was divided into three phases; ARES I (achieve 44% BTE), ARES II (achieve 47% BTE) and ARES III (achieve 50% BTE). Dresser, Inc. completed ARES I in March 2005 which resulted in the commercialization of the APG1000 product line. ARES II activities were completed in September 2010 and the technology developed is currently being integrated into products. ARES III activities began in October 2010. The ARES program goal is to improve the efficiency of natural gas reciprocating engines. The ARES project is structured in three phases with higher efficiency goals in each phase. The ARES objectives are as follows: 1. Achieve 44% (ARES I), 47% (ARES II), and 50% brake thermal efficiency (BTE) as a final ARES III objective 2. Achieve 0.1 g/bhp-hr NOx emissions (with after-treatment) 3. Reduce the cost of the produced electricity by 10% 4. Improve or maintain reliability, durability and maintenance costs

  5. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are...-inoperative, en route, net flight path data in the Airplane Flight Manual, allows the airplane to fly from the... airport, and thereafter to fly for 15 minutes at cruise power or thrust, or both, and that the...

  6. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.193 Airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered airplane along an intended route unless he...

  7. 14 CFR 121.193 - Airplanes: Turbine engine powered: En route limitations: Two engines inoperative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: En route... Performance Operating Limitations § 121.193 Airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered airplane along an intended route unless he...

  8. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Glide: Single-engine airplanes. 23.71 Section 23.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical...

  9. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Glide: Single-engine airplanes. 23.71 Section 23.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical...

  10. Balancing mechanism for reciprocating piston engine

    SciTech Connect

    Murata, N.; Ogino, T.

    1987-04-14

    This patent describes a balancing mechanism for a reciprocating piston internal combustion engine which includes a cylinder, a piston reciprocatable in the cylinder, a crankcase, a crankshaft mounted in the crankshaft, a crankpin connected to the piston, and a pair of crank arms bridging the crankshaft and crankpin. The crank arms and crankpin rotate with the crankshaft during operation and form a rotating mass. The balancing mechanism comprises at least one rotating counterweight attached to and rotating with the crankshaft, and eccentric journal means on the crankshaft adjacent the crank arms, rotating with the crankshaft. The journal means has an axis spaced to the side of the crankshaft axis which is opposite from the crankpin. The rotating counterweight and the eccentric journal means counterbalancing the rotating mass.

  11. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  12. 78 FR 47228 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of... Thielert Aircraft Engines GmbH TAE 125-01 reciprocating engines. This proposed AD was prompted by a report of engine power loss due to engine coolant contaminating the engine clutch. The design of the...

  13. Pilot Transition Courses for Complex Single-Engine and Light Twin-Engine Airplanes.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    This publication is intended for use by certificated airplane pilots and provides transitional knowledge and skills for more complex single-engine or light twin-engine airplanes. The training should be conducted by a competent flight instructor certified in the class of airplane and familiar with the make and model. A syllabus outline of ground…

  14. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane...

  15. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in...

  16. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane...

  17. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in...

  18. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in...

  19. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane...

  20. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane...

  1. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in...

  2. 14 CFR 121.195 - Airplanes: Turbine engine powered: Landing limitations: Destination airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.195 Airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered airplane may take off that airplane...

  3. 14 CFR 121.189 - Airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Takeoff... Limitations § 121.189 Airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine powered airplane may take off that airplane at a weight greater than that listed in...

  4. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate... turbine engine powered airplane unless (based on the assumptions in § 121.195 (b)) that airplane at...

  5. 14 CFR 121.197 - Airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airplanes: Turbine engine powered: Landing... Performance Operating Limitations § 121.197 Airplanes: Turbine engine powered: Landing limitations: Alternate... turbine engine powered airplane unless (based on the assumptions in § 121.195 (b)) that airplane at...

  6. 78 FR 70216 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH TAE 125-01 reciprocating engines. This AD requires applying sealant to close the engine clutch...

  7. 18. MAINTENANCE SHOP, FIRST FLOOR, INTERIOR, ENGINE AND AIRPLANE OVERHAUL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. MAINTENANCE SHOP, FIRST FLOOR, INTERIOR, ENGINE AND AIRPLANE OVERHAUL AREAS; LOOKING EAST - Northwest Airways Hangar & Administration Building, 590 Bayfield Street, St. Paul Downtown Airport (Holman), Saint Paul, Ramsey County, MN

  8. 17. MAINTENANCE SHOP, FIRST FLOOR, INTERIOR, ENGINE AND AIRPLANE OVERHAUL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. MAINTENANCE SHOP, FIRST FLOOR, INTERIOR, ENGINE AND AIRPLANE OVERHAUL AREAS; LOOKING WEST. - Northwest Airways Hangar & Administration Building, 590 Bayfield Street, St. Paul Downtown Airport (Holman), Saint Paul, Ramsey County, MN

  9. 14 CFR 23.71 - Glide: Single-engine airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Glide: Single-engine airplanes. The maximum horizontal distance traveled in still air, in nautical miles, per 1,000 feet of altitude lost in a glide, and the speed necessary to achieve this must be...

  10. 77 FR 13488 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final... TAE 125-02-99 reciprocating engines installed on, but not limited to, Diamond Aircraft Industries...-E002801, on TAE 125-02-99 engine. This AD was prompted by TAE increasing the life of the PPRV, part...

  11. 76 FR 79051 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ...-AD; Amendment 39-16894; AD 2011-26-04] RIN 2120-AA64 Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule... reciprocating engines manufactured by Lycoming Engines. That AD currently requires inspection, replacement...

  12. 78 FR 70240 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... Directives; Lycoming Engines, Fuel Injected Reciprocating Engines AGENCY: Federal Aviation Administration... airworthiness directive (AD) 2011-26- 04 that applies to certain Lycoming Engines fuel injected reciprocating engines. AD 2011-26-04 requires inspection, replacement if necessary, and proper clamping of...

  13. 78 FR 1733 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are superseding an existing airworthiness directive (AD) for all Thielert Aircraft Engines GmbH models TAE 125-01, TAE 125-02- 99, and TAE 125-02-114 reciprocating engines. That AD...

  14. 77 FR 4217 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH (TAE) ] TAE 125-02-99 and TAE 125-02-114 reciprocating engines. This AD was prompted by in-flight...

  15. 78 FR 1728 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Engines GmbH Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for all Thielert Aircraft Engines GmbH (TAE) TAE 125-02-99 and TAE 125-02-114 reciprocating engines. This AD requires inspection of the oil...

  16. Measured Engine Installation Effects of Four Civil Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Senzig, David A.; Fleming, Gregg G.; Shepherd, Kevin P.

    2001-01-01

    The Federal Aviation Administration's Integrated Noise Model (INM) is one of the primary tools for land use planning around airports. The INM currently calculates airplane noise lateral attenuation using the methods contained in the Society of Automotive Engineer's Aerospace Information Report No. 1751 (SAE AIR 1751). Researchers have noted that improved lateral attenuation algorithms may improve airplane noise prediction. The authors of SAE AIR 1751 based existing methods on empirical data collected from flight tests using 1960s-technology airplanes with tail-mounted engines. To determine whether the SAE AIR 1751 methods are applicable for predicting the engine installation component of lateral attenuation for airplanes with wing-mounted engines, the National Aeronautics and Space Administration (NASA) sponsored a series of flight tests during September 2000 at their Wallops Flight Facility. Four airplanes, a Boeing 767-400, a Douglas DC-9, a Dassault Falcon 2000, and a Beech KingAir, were flown through a 20 microphone array. The airplanes were flown through the array at various power settings, flap settings, and altitudes to simulate take-off and arrival configurations. This paper presents the preliminary findings of this study.

  17. 77 FR 72203 - Airworthiness Directives; Lycoming Engines and Continental Motors, Inc. Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-05

    ... and Continental Motors, Inc. Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT... Lycoming Engines TSIO-540-AK1A, and Continental Motors, Inc. TSIO-360- MB, TSIO-360-SB, and TSIO-360-RB... Motors, Inc. Reciprocating Engines: Amendment 39-17279; Docket No. FAA-2012-1245; Directorate...

  18. Study of small turbofan engines applicable to single-engine light airplanes

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.

    1976-01-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  19. 75 FR 20518 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Full Authority Digital Engine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... Airplane; Full Authority Digital Engine Control (FADEC) System AGENCY: Federal Aviation Administration (FAA... issued for the Cirrus Design Corporation model SF50 airplane. This airplane will have a novel or unusual... Aviation Administration, Aircraft Certification Service, Small Airplane Directorate, ACE-111, 901...

  20. The calculated performance of airplanes equipped with supercharging engines

    NASA Technical Reports Server (NTRS)

    Kemble, E C

    1921-01-01

    In part one of this report are presented the theoretical performance curves of an airplane engine equipped with a supercharging compressor. In predicting the gross power of a supercharging engine, the writer uses temperature and pressure correction factors based on experiments made at the Bureau of Standards (NACA report nos. 45 and 46). Means for estimating the temperature rise in the compressor are outlined. Part two of this report presents an estimation of the performance curves of an airplane fitted with a supercharging engine. A supercharging installation suitable for commercial use is described, and it is shown that with the use of the compressor a great saving in fuel and a considerable increase in carrying capacity can be effected simultaneously. In an appendix the writer derives a theoretical formula for the correction of the thrust coefficient of an airscrew to offset the added resistance of the airplane due to the slip-stream effect.

  1. The impact of the All Electric Airplane on production engineering

    SciTech Connect

    Cronin, M.J.

    1981-01-01

    The emergence of an All Electric Airplane in the role of an energy efficient transport is described in relation to the increasing fuel problems, which are impacting on the economic viability of the aerospace industry. The paper reviews the All Electric Airplane (which performs electrically all those functions normally powered by hydraulics, pneumatics and engine bleed air) for its impact upon the design/implementation of the aircraft systems, the advanced technology engines, the aircraft's ground-logistic support, and the producibility aspects of these advanced transport aircraft. The simplification of engine design and the prospective improvements in its specific-fuel-consumption are highlighted along with the overall simplification of the aircraft production aspects of the All Electric Airplane.

  2. Laboratory Tests of Reciprocating Internal Combustion Engines.

    DTIC Science & Technology

    1985-01-24

    and stabilize it. f. Repeat steps c and d. g. Repeat steps e and f until maximum engine speed is achieved h. Decrease the engine speed 200 rpm for...diesel engines or 400 rpm for *gasoline, and stabilize it. i. Repeat steps c and d. j. Repeat steps h and i until original speed is achieved. k. Stop the...load to 1/4 full load. d. Repeat step b. e. Repeat steps c and d for 1/2, 3/4, and full loads. f. Increase engine speed 200 rpm and reduce the load

  3. The Effect of Supercharger Capacity on Engine and Airplane Performance

    NASA Technical Reports Server (NTRS)

    Schey, O W; Gove, W D

    1930-01-01

    This report presents the results of an investigation to determine the effect of different supercharger capacities on the performance of an airplane and its engine . The tests were conducted on a DH4-M2 airplane powered with a Liberty 12 engine. In this investigation four supercharger capacities, obtained by driving a roots type supercharger at 1.615, 1.957, 2.4, and 3 time engine speed, were used to maintain sea-level pressure at the carburetor to altitudes of 7,000, 11,500, 17,000, and 22,000 feet, respectively. The performance of the airplane in climb and in level flight was determined for each of the four supercharger drive ratios and for the unsupercharged condition. The engine power was measured during these tests by means of a calibrated propeller. It was found that very little sacrifice in sea-level performance was experienced with the larger supercharger drive ratios as compared with performance obtained when using the smaller drive ratios. The results indicate that further increase in supercharger capacity over that obtained when using 3:1 drive ratio would give a slight increase in ceiling and in high-altitude performance but would considerably impair the performance for an appreciable distance below the critical altitude. As the supercharger capacity was increased, the height at which sea-level high speeds could be equaled or improved became a larger percentage of the maximum height of operation of the airplane.

  4. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  5. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  6. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  7. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  8. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  9. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  10. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  11. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  12. 14 CFR 125.377 - Fuel supply: Turbine-engine-powered airplanes other than turbopropeller.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fuel supply: Turbine-engine-powered... AIRCRAFT Flight Release Rules § 125.377 Fuel supply: Turbine-engine-powered airplanes other than... takeoff a turbine-powered airplane (other than a turbopropeller-powered airplane) unless, considering...

  13. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take...

  14. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  15. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on...

  16. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an...

  17. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an...

  18. Organic rankine cycle system for use with a reciprocating engine

    DOEpatents

    Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.

    2006-01-17

    In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.

  19. 76 FR 44245 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... engine mounts and the supporting structures must be designed to withstand a ``limit engine torque load... occur about once in the lifetime of any airplane. Section 25.305 requires that supporting structures be... of producing much higher transient loads on the engine mounts and supporting structures. As a...

  20. Functioning of reduction gears on airplane engines

    NASA Technical Reports Server (NTRS)

    Matteucci, Raffaelli

    1926-01-01

    In undertaking to analyze the functioning conditions of a reduction gear on an aviation engine, we will consider an ordinary twelve-cylinder V-engine. The reduction gear employed consists either of a pair of spur gears, one of which is integral with the engine shaft and the other with the propeller shaft, or of a planetary system of gears.

  1. 76 FR 68636 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ...-01] RIN 2120-AA64 Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for comments. SUMMARY: We are superseding an existing airworthiness directive (AD) for Thielert Aircraft Engines...

  2. 78 FR 2615 - Airworthiness Directives; Lycoming Engines and Continental Motors, Inc. Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ...-41-AD; Amendment 39-17279; AD 2012-24-09] RIN 2120-AA64 Airworthiness Directives; Lycoming Engines and Continental Motors, Inc. Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT... published in the Federal Register. That AD applies to Lycoming Engines TSIO-540-AK1A, and Continental...

  3. 76 FR 8661 - Airworthiness Directives; Lycoming Engines, Fuel Injected Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... airworthiness directive (AD) that applies to certain fuel injected reciprocating engines manufactured by Lycoming Engines. The existing AD currently requires inspection, replacement if necessary, and proper clamping of externally mounted fuel injector fuel lines. That AD also exempts engines that have...

  4. 76 FR 42609 - Airworthiness Directives; Lycoming Engines Model TIO 540-A Series Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... directive (AD) for Lycoming Engines model TIO 540-A series reciprocating engines. The existing AD, AD 71-13... issued AD 71-13-01, we became aware that Lycoming Engines no longer supports Service Bulletin (SB) No. 335A, which was incorporated by reference in AD 71-13-01. The intent of the requirements of that SB...

  5. 78 FR 64394 - Airworthiness Directives; Lycoming Engines and Continental Motors, Inc. Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... and Continental Motors, Inc. Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT...-24-09 for Lycoming Engines TIO-540-AK1A, and Continental Motors, Inc. (CMI) TSIO- 360-MB, TSIO-360-SB... adding the following new AD: 2013-21-02 Lycoming Engines and Continental Motors, Inc.: Amendment...

  6. 76 FR 63822 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Limit Engine Torque Loads...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ...) Model G280 Airplane, Limit Engine Torque Loads for Sudden Engine Stoppage AGENCY: Federal Aviation... conditions are issued for the Gulfstream Aerospace LP (GALP) model G280 airplane. This airplane will have a...: Federal Aviation Administration, Transport Airplane Directorate, Attn: Rules Docket (ANM-113), Docket...

  7. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Small nontransport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.399 Small nontransport category airplane performance operating limitations. (a) No person may operate a reciprocating engine...

  8. 14 CFR 135.399 - Small nontransport category airplane performance operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Small nontransport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.399 Small nontransport category airplane performance operating limitations. (a) No person may operate a reciprocating engine...

  9. 76 FR 75735 - Certification of Part 23 Turbofan- and Turbojet-Powered Airplanes and Miscellaneous Amendments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ...This action enhances safety by amending the applicable standards for part 23 turbofan- and turbojet-powered airplanes--which are commonly referred to as ``part 23 jets,'' or ``jets''--as well as turbopropeller-driven and reciprocating-engine airplanes, to reflect the current needs of industry, accommodate future trends, address emerging technologies, and provide for future airplane operations.......

  10. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  11. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  12. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  13. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  14. 14 CFR 135.379 - Large transport category airplanes: Turbine engine powered: Takeoff limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... category airplanes: Turbine engine powered: Takeoff limitations. (a) No person operating a turbine engine... existing at take- off. (b) No person operating a turbine engine powered large transport category...

  15. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  16. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  17. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  18. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  19. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category...

  20. Design and analysis of a fuel-efficient single-engine, turboprop-powered, business airplane

    NASA Technical Reports Server (NTRS)

    Martin, G. L.; Everest, D. E., Jr.; Lovell, W. A.; Price, J. E.; Walkley, K. B.; Washburn, G. F.

    1981-01-01

    The speed, range, payload, and fuel efficiency of a general aviation airplane powered by one turboprop engine was determined and compared to a twin engine turboprop aircraft. An airplane configuration was developed which can carry six people for a noreserve range of 2,408 km at a cruise speed above 154 m/s, and a cruise altitude of about 9,144 m. The cruise speed is comparable to that of the fastest of the current twin turboprop powered airplanes. It is found that the airplane has a cruise specific range greater than all twin turboprop engine airplanes flying in its speed range and most twin piston engine airplanes flying at considerably slower cruise airspeeds.

  1. 76 FR 82110 - Airworthiness Directives; Thielert Aircraft Engines GmbH Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ...-30-AD; Amendment 39-16906; AD 2010-06-12R1] RIN 2120-AA64 Airworthiness Directives; Thielert Aircraft.... SUMMARY: We are revising an existing airworthiness directive (AD) for Thielert Aircraft Engines GmbH models TAE 125-02-99 and TAE 125-01 reciprocating engines. That AD currently requires replacing...

  2. The Way to Increased Airplane Engine Power

    NASA Technical Reports Server (NTRS)

    Vohrer, Eugen

    1939-01-01

    The purpose of this paper is to give an outline of the present state of development and point out the possibilities available for the further increase in the power/displacement ratio, the economy, and the reliability of the engine. Some of the aspects discussed are methods of increasing take-off power, the various methods of preparation of the fuel mixture and their effect on power, economy, and safety.

  3. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  4. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  5. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  6. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  7. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers: airplanes. 121.511 Section 121.511 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  8. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  9. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  10. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  11. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  12. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large...

  13. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cooling test procedures for turbine engine powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine...

  14. 14 CFR 23.1045 - Cooling test procedures for turbine engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cooling test procedures for turbine engine powered airplanes. 23.1045 Section 23.1045 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... CATEGORY AIRPLANES Powerplant Cooling § 23.1045 Cooling test procedures for turbine engine...

  15. Telemetry Boards Interpret Rocket, Airplane Engine Data

    NASA Technical Reports Server (NTRS)

    2009-01-01

    For all the data gathered by the space shuttle while in orbit, NASA engineers are just as concerned about the information it generates on the ground. From the moment the shuttle s wheels touch the runway to the break of its electrical umbilical cord at 0.4 seconds before its next launch, sensors feed streams of data about the status of the vehicle and its various systems to Kennedy Space Center s shuttle crews. Even while the shuttle orbiter is refitted in Kennedy s orbiter processing facility, engineers constantly monitor everything from power levels to the testing of the mechanical arm in the orbiter s payload bay. On the launch pad and up until liftoff, the Launch Control Center, attached to the large Vehicle Assembly Building, screens all of the shuttle s vital data. (Once the shuttle clears its launch tower, this responsibility shifts to Mission Control at Johnson Space Center, with Kennedy in a backup role.) Ground systems for satellite launches also generate significant amounts of data. At Cape Canaveral Air Force Station, across the Banana River from Kennedy s location on Merritt Island, Florida, NASA rockets carrying precious satellite payloads into space flood the Launch Vehicle Data Center with sensor information on temperature, speed, trajectory, and vibration. The remote measurement and transmission of systems data called telemetry is essential to ensuring the safe and successful launch of the Agency s space missions. When a launch is unsuccessful, as it was for this year s Orbiting Carbon Observatory satellite, telemetry data also provides valuable clues as to what went wrong and how to remedy any problems for future attempts. All of this information is streamed from sensors in the form of binary code: strings of ones and zeros. One small company has partnered with NASA to provide technology that renders raw telemetry data intelligible not only for Agency engineers, but also for those in the private sector.

  16. Icing-Protection Requirements for Reciprocating-Engine Induction System

    NASA Technical Reports Server (NTRS)

    Coles, Willard D; Rollin, Vern G; Mulholland, Donald R

    1950-01-01

    Despite the development of relatively ice-free fuel-metering systems, the widespread use of alternate and heated-air intakes, and the use of alcohol for emergency de-icing, icing of aircraft-engine induction systems is a serious problem. Investigations have been made to study and to combat all phases of this icing problem. From these investigations, criterions for safe operation and for design of new induction systems have been established. The results were obtained from laboratory investigations of carburetor-supercharger combinations, wind-tunnel investigations of air scoops, multicylinder-engine studies, and flight investigations. Characteristics of three forms of ice, impact, throttling, and fuel evaporation were studied. The effects of several factors on the icing characteristics were also studied and included: (1) atmospheric conditions, (2) engine and air-scoop configurations, including light-airplane system, (3) type fuel used, and (4) operating variables, such as power condition, use of a manifold pressure regulator, mixture setting, carburetor heat, and water-alcohol injection. In addition, ice-detection methods were investigated and methods of preventing and removing induction-system ice were studied. Recommendations are given for design and operation with regard to induction-system design.

  17. Study of small civil turbofan engines applicable to military trainer airplanes

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.; Merrill, G. L.; Burnett, G. A.

    1975-01-01

    Small turbofan engine design concepts were applied to military trainer airplanes to establish the potential for commonality between civil and military engines. Several trainer configurations were defined and studied. A ""best'' engine was defined for the trainer mission, and sensitivity analyses were performed to determine the effects on airplane size and efficiency of wing loading, power loading, configuration, aerodynamic quality, and engine quality. It is concluded that a small civil aircraft is applicable to military trainer airplanes. Aircraft designed with these engines are smaller, less costly, and more efficient than existing trainer aircraft.

  18. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in the Airplane Flight Manual, allows the airplane to fly from the point where the two engines are... fly from the point where the two engines are assumed to fail simultaneously to an airport that meets... over the airport, and after that to fly for 15 minutes at cruise power or thrust, or both, and that...

  19. LES on unstructured deforming meshes: Towards reciprocating IC engines

    NASA Technical Reports Server (NTRS)

    Haworth, D. C.; Jansen, K.

    1996-01-01

    A variable explicit/implicit characteristics-based advection scheme that is second-order accurate in space and time has been developed recently for unstructured deforming meshes (O'Rourke & Sahota 1996a). To explore the suitability of this methodology for Large-Eddy Simulation (LES), three subgrid-scale turbulence models have been implemented in the CHAD CFD code (O'Rourke & Sahota 1996b): a constant-coefficient Smagorinsky model, a dynamic Smagorinsky model for flows having one or more directions of statistical homogeneity, and a Lagrangian dynamic Smagorinsky model for flows having no spatial or temporal homogeneity (Meneveau et al. 1996). Computations have been made for three canonical flows, progressing towards the intended application of in-cylinder flow in a reciprocating engine. Grid sizes were selected to be comparable to the coarsest meshes used in earlier spectral LES studies. Quantitative results are reported for decaying homogeneous isotropic turbulence, and for a planar channel flow. Computations are compared to experimental measurements, to Direct-Numerical Simulation (DNS) data, and to Rapid-Distortion Theory (RDT) where appropriate. Generally satisfactory evolution of first and second moments is found on these coarse meshes; deviations are attributed to insufficient mesh resolution. Issues include mesh resolution and computational requirements for a specified level of accuracy, analytic characterization of the filtering implied by the numerical method, wall treatment, and inflow boundary conditions. To resolve these issues, finer-mesh simulations and computations of a simplified axisymmetric reciprocating piston-cylinder assembly are in progress.

  20. Lateral-directional aerodynamic characteristics of light, twin-engine, propeller driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Analytical procedures and design data for predicting the lateral-directional static and dynamic stability and control characteristics of light, twin engine, propeller driven airplanes for propeller-off and power-on conditions are reported. Although the consideration of power effects is limited to twin engine airplanes, the propeller-off considerations are applicable to single engine airplanes as well. The procedures are applied to a twin engine, propeller driven, semi-low-wing airplane in the clean configuration through the linear lift range. The calculated derivative characteristics are compared with wind tunnel and flight data. Included in the calculated characteristics are the spiral mode, roll mode, and Dutch roll mode over the speed range of the airplane.

  1. 78 FR 48795 - Airworthiness Directives; BRP-Powertrain GmbH & Co KG Rotax Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... reciprocating engines. That AD required a one-time visual inspection for excessive oil or carbon deposits on the... S4; 914 F2; 914 F3; and 914 F4 reciprocating engines. That AD required a one-time visual inspection... visual inspection of the center and grounding electrodes of both top and bottom spark plugs on...

  2. Practical flight test method for determining reciprocating engine cooling requirements

    NASA Technical Reports Server (NTRS)

    Ward, D. T.; Miley, S. J.

    1984-01-01

    It is pointed out that efficient and effective cooling of air-cooled reciprocating aircraft engines is a continuing problem for the general aviation industry. Miley et al. (1981) have reported results of a study regarding the controlling variables for cooling and installation aerodynamics. The present investigation is concerned with experimental methods which were developed to determine cooling requirements of an instrumented prototype or production aircraft, taking into account a flight test procedure which has been refined and further verified with additional testing. It is shown that this test procedure represents a straightforward means of determining cooling requirements with minimal instrumentation. Attention is given to some background information, the development history of the NACA cooling correlation method, and the proposed modification of the NACA cooling correlation.

  3. 77 FR 30881 - Airworthiness Directives; Continental Motors, Inc. (CMI) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ...-13] RIN 2120-AA64 Airworthiness Directives; Continental Motors, Inc. (CMI) Reciprocating Engines... are superseding an existing airworthiness directive (AD) for certain Continental Motors, Inc. (CMI... starter adapter gear shaft failure which could cause oil scavenge pump failure and engine...

  4. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Supplemental oxygen for sustenance: Turbine... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a... airplane with sustaining oxygen and dispensing equipment for use as set forth in this section: (1)...

  5. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Supplemental oxygen for sustenance: Turbine... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a... airplane with sustaining oxygen and dispensing equipment for use as set forth in this section: (1)...

  6. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Supplemental oxygen for sustenance: Turbine... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a... airplane with sustaining oxygen and dispensing equipment for use as set forth in this section: (1)...

  7. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Supplemental oxygen for sustenance: Turbine... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a... airplane with sustaining oxygen and dispensing equipment for use as set forth in this section: (1)...

  8. 14 CFR 121.329 - Supplemental oxygen for sustenance: Turbine engine powered airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Supplemental oxygen for sustenance: Turbine... Equipment Requirements § 121.329 Supplemental oxygen for sustenance: Turbine engine powered airplanes. (a... airplane with sustaining oxygen and dispensing equipment for use as set forth in this section: (1)...

  9. An Investigation of a Thermal Ice-Prevention System for a Twin-Engine Transport Airplane

    NASA Technical Reports Server (NTRS)

    Jones, Alun R

    1946-01-01

    Several previously published reports on a comprehensive investigation of a thermal ice-prevention system for a typical twin-engine transport airplane are correlated with some unpublished data to present the entire investigation in one publication. Several previously published reports on a comprehensive investigation of a thermal ice-prevention system for a typical twin-engine transport airplane are correlated with some unpublished data to present the entire investigation in one publication. The thermal system investigated was based upon the transfer of heat from the engine exhaust gas to air, which is then caused to flow along the inner surface of any portion of the airplane for which protection is desired.

  10. 75 FR 39803 - Airworthiness Directives; Thielert Aircraft Engines GmbH Model TAE 125-01 Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... Engines GmbH Model TAE 125-01 Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT... increase inside the crankcase of the engine in excess of the oil seal design pressure limits. Leaking engine oil may adversely affect the gearbox clutch or the engine lubrication system. This condition,...

  11. 77 FR 3090 - Airworthiness Directives; BRP-POWERTRAIN GMBH & CO KG Rotax Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ...-07] RIN 2120-AA64 Airworthiness Directives; BRP--POWERTRAIN GMBH & CO KG Rotax Reciprocating Engines... airworthiness directive (AD) for BRP-- POWERTRAIN GMBH & CO KG Rotax 914 F2, 914 F3, and 914 F4 reciprocating.... The FAA amends Sec. 39.13 by adding the following new AD: 2012-01-07 BRP--POWERTRAIN GMBH & CO...

  12. 76 FR 14115 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces a public meeting of the FAA's Aviation Rulemaking Advisory...

  13. 78 FR 60995 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of rescheduled public meeting. SUMMARY: This notice announces the rescheduling of a public meeting of the FAA's...

  14. 75 FR 55393 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces a public meeting of the FAA's Aviation Rulemaking Advisory Committee...

  15. 76 FR 60115 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces a public meeting of the FAA's Aviation Rulemaking Advisory Committee...

  16. 77 FR 24759 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces a public meeting of the FAA's Aviation Rulemaking Advisory Committee...

  17. 77 FR 40699 - Aviation Rulemaking Advisory Committee Teleconference on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee Teleconference on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public teleconference. SUMMARY: This notice announces a public teleconference of the FAA's Aviation Rulemaking...

  18. 75 FR 10551 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-08

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces a public meeting of the FAA's Aviation Rulemaking Advisory Committee...

  19. 77 FR 60005 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces a public meeting of the FAA's Aviation Rulemaking Advisory Committee...

  20. 77 FR 59243 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... Federal Aviation Administration Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public meeting. SUMMARY: This notice announces a public meeting of the FAA's Aviation Rulemaking Advisory Committee...

  1. Aerodynamic design optimization of a fuel efficient high-performance, single-engine, business airplane

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1980-01-01

    A design study has been conducted to optimize a single-engine airplane for a high-performance cruise mission. The mission analyzed included a cruise speed of about 300 knots, a cruise range of about 1300 nautical miles, and a six-passenger payload (5340 N (1200 lb)). The purpose of the study is to investigate the combinations of wing design, engine, and operating altitude required for the mission. The results show that these mission performance characteristics can be achieved with fuel efficiencies competitive with present-day high-performance, single- and twin-engine, business airplanes. It is noted that relaxation of the present Federal Aviation Regulation, Part 23, stall-speed requirement for single-engine airplanes facilitates the optimization of the airplane for fuel efficiency.

  2. Investigation of the misfueling of reciprocating piston aircraft engines

    NASA Technical Reports Server (NTRS)

    Scott, J. Holland, Jr.

    1988-01-01

    The Aircraft Misfueling Detection Project was developed by the Goddard Space Flight Center/Wallops Flight Facility at Wallops Island, Virginia. Its purpose was to investigate the misfueling of reciprocating piston aircraft engines by the inadvertent introduction of jet fuel in lieu of or as a contaminant of aviation gasoline. The final objective was the development of a device(s) that will satisfactorily detect misfueling and provide pilots with sufficient warning to avoid injury, fatality, or equipment damage. Two devices have been developed and successfully tested: one, a small contamination detection kit, for use by the pilot, and a second, more sensitive, modified gas chromatograph for use by the fixed-base operator. The gas chromatograph, in addition to providing excellent quality control of the fixed-base operator's fuel handling, is a very good backup for the detection kit in the event it produces negative results. Design parameters were developed to the extent that they may be applied easily to commercial production by the aircraft industry.

  3. A review and thermodynamic analysis of an external combustion, reciprocating engine

    SciTech Connect

    Caton, J.A.; West, J.E.

    1996-12-31

    The open cycle reciprocating Brayton engine concept uses separate and different cylinders for compression and expansion, and combustion occurs in an external burner at approximately constant pressure. Although this general engine concept dates back to Brayton in 1876, no known engine has been constructed or tested. Because of the nature of the combustion process (continuous) and the separation of the compression and expansion processes, the open cycle reciprocating Brayton engine has the potential to produce lower emissions and to possess higher efficiencies than conventional reciprocating engines. In contrast to conventional engines, the Brayton engine may use intercooling, recuperation and reduced heat loss technologies. This report reviews previous efforts concerning this concept, and describes the development and use of a thermodynamic based simulation for the open cycle reciprocating Brayton engine. Using this simulation, the indicated thermal efficiency of the base case open cycle reciprocating Brayton engine was 45.6%. In addition, the indicated thermal efficiency for high expander wall temperatures was as high as 50% for the highest wall temperatures. For a continuous flow combustor such as proposed for the open cycle reciprocating Brayton engine, the hydrocarbon and carbon monoxide emissions will be negligible for well designed combustors. Regarding nitric oxides, similar gas turbine combustors have been designed to minimize the nitric oxide emissions. Today`s gas turbines easily may produce less than 25 ppm of nitric oxide, and some are even as low as 10 ppm. For the more typical emission of 25 ppm, the open cycle reciprocating Brayton engine is expected to emit less than one-half of the Federal regulation for nitric oxides without any catalyst system.

  4. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor W. Wong; Tian Tian; Grant Smedley; Jeffrey Jocsak

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scale Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology

  5. Advanced Reciprocating Engine Systems (ARES): Raising the Bar on Engine Technology with Increased Efficiency and Reduced Emissions, at Attractive Costs

    SciTech Connect

    2009-02-01

    This is a fact sheet on the U.S. Department of Energy's (DOE) Advanced Reciprocating Engine Systems program (ARES), which is designed to promote separate, but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the United States.

  6. Phase 2 program on ground test of refanned JT8D turbofan engines and nacelles for the 727 airplane. Volume 4: Airplane evaluation and analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The retrofit of JT8D-109 (refan) engines are evaluated on a 727-200 airplane in terms of airworthiness, performance, and noise. Design of certifiable hardware, manufacture, and ground testing of the essential nacelle components is included along with analysis of the certifiable airplane design to ensure airworthiness compliance and to predict the in-flight performance and noise characteristics of the modified airplane. The analyses confirm that the 727 refan airplane is certifiable. The refan airplane range would be 15% less that of the baseline airplane and block fuel would be increased by 1.5% to 3%. However, with this particular 727-200 model, with a brake release gross weight of 172,500 lb (78,245 kg), it is possible to operate the airplane (with minor structural modifications) at higher gross weights and increase the range up to 15% over the 727-200 (baseline) airplane. The refan airplane FAR Part 36 noise levels would be 6 to 8 EPNdB (effective perceived noise in decibels) below the baseline. Noise footprint studies showed that approach noise contour areas are small compared to takeoff areas. The 727 refan realizes a 68% to 83% reduction in annoyance-weighted area when compared to the 727-200 over a range of gross weights and operational procedures.

  7. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  8. Highly integrated digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Haering, E. A., Jr.

    1984-01-01

    The Highly Integrated Digital Electronic Control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine/airframe control systems. This system is being used on the F-15 airplane. An integrated flightpath management mode and an integrated adaptive engine stall margin mode are implemented into the system. The adaptive stall margin mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the engine stall margin are continuously computed; the excess stall margin is used to uptrim the engine for more thrust. The integrated flightpath management mode optimizes the flightpath and throttle setting to reach a desired flight condition. The increase in thrust and the improvement in airplane performance is discussed.

  9. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor W. Wong; Tian Tian; Grant Smedley

    2003-08-28

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelines for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.

  10. Reciprocating seals: Lubrication and wear resistance. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning theoretical and practical analyses of reciprocating seal wear and lubrication. Topics include behavior, friction coefficient, cylinder wear, lubrication film thickness, friction forces, design innovations, lubricating oil viscosity, and wear modeling relative to reciprocating seal frictional wear and lifetime optimization. Applications in piston ring lubrication, internal combustion engines, and vehicle suspension systems are considered. (Contains 250 citations and includes a subject term index and title list.)

  11. 75 FR 27487 - Airworthiness Directives; Bombardier-Rotax GmbH 912 F Series and 912 S Series Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... GmbH 912 F Series and 912 S Series Reciprocating Engines AGENCY: Federal Aviation Administration (FAA... AD applies to Bombardier-Rotax 912 F series and 912 S series reciprocating engines with fuel pumps..., 892236, 892540, or 892545, on any engine. FAA AD Differences (f) This AD differs from the MCAI...

  12. Simulator study of vortex encounters by a twin-engine, commercial, jet transport airplane

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Keyser, G. L., Jr.

    1982-01-01

    A simulator study of vortex encounters was conducted for a twin-engine, commercial, jet transport airplane encountering the vortex flow field of a heavy, four-engine, commercial, jet transport airplane in the final-approach configuration. The encounters were conducted with fixed controls and with a pilot using a state-of-the-art, manual-control system. Piloted encounters with the base-line vortex flow field out of ground effect (unattenuated) resulted in initial bank-angle excursions greater than 40 deg, coupled with initial sideslip-angle excursions greater than 10 deg. The severity of these initial upsets was significantly reduced when the vortex center was moved laterally or vertically away from the flight path of the encountering airplane. Smaller reductions occurred when the flow field was attenuated by the flight spoilers on the generating airplane. The largest reduction in the severity of the initial upsets, however, was from aging in ground effect. The severity of the initial upsets of the following airplane was relatively unaffected by the approach speed. Increasing the lift coefficient of the generating airplane resulted in an increase in the severity of the initial upsets.

  13. A controls engineering approach for analyzing airplane input-output characteristics

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas

    1991-01-01

    An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.

  14. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

  15. Crash tests of four identical high-wing single-engine airplanes

    NASA Technical Reports Server (NTRS)

    Vaughan, V. L., Jr.; Hayduk, R. J.

    1980-01-01

    Four identical four place, high wing, single engine airplane specimens with nominal masses of 1043 kg were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. These tests were conducted with nominal velocities of 25 m/sec along the flight path angles, ground contact pitch angles, and roll angles. Three of the airplane specimens were crashed on a concrete surface; one was crashed on soil. Crash tests revealed that on a hard landing, the main landing gear absorbed about twice the energy for which the gear was designed but sprang back, tending to tip the airplane up to its nose. On concrete surfaces, the airplane impacted and remained in the impact attitude. On soil, the airplane flipped over on its back. The crash impact on the nose of the airplane, whether on soil or concrete, caused massive structural crushing of the forward fuselage. The liveable volume was maintained in both the hard landing and the nose down specimens but was not maintained in the roll impact and nose down on soil specimens.

  16. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    SciTech Connect

    Victor Wong; Tian Tian; G. Smedley; L. Moughon; Rosalind Takata; J. Jocsak

    2006-11-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies

  17. Non-reciprocal geometric wave diode by engineering asymmetric shapes of nonlinear materials.

    PubMed

    Li, Nianbei; Ren, Jie

    2014-08-29

    Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports.

  18. Non-Reciprocal Geometric Wave Diode by Engineering Asymmetric Shapes of Nonlinear Materials

    PubMed Central

    Li, Nianbei; Ren, Jie

    2014-01-01

    Unidirectional nonreciprocal transport is at the heart of many fundamental problems and applications in both science and technology. Here we study the novel design of wave diode devices by engineering asymmetric shapes of nonlinear materials to realize the function of non-reciprocal wave propagations. We first show analytical results revealing that both nonlinearity and asymmetry are necessary to induce such non-reciprocal (asymmetric) wave propagations. Detailed numerical simulations are further performed for a more realistic geometric wave diode model with typical asymmetric shape, where good non-reciprocal wave diode effect is demonstrated. Finally, we discuss the scalability of geometric wave diodes. The results open a flexible way for designing wave diodes efficiently simply through shape engineering of nonlinear materials, which may find broad implications in controlling energy, mass and information transports. PMID:25169668

  19. Analysis of VGH data from two types of four-engine airplanes in commercial cargo service

    NASA Technical Reports Server (NTRS)

    Healy, F. M.

    1972-01-01

    Data are presented for derived gust velocities and for incremental normal accelerations due to gusts, maneuvers, and landing impacts. The data were obtained from NASA VGH recorders installed on three four-engine cargo airplanes operated by three airlines. Continental United States and trans-Pacific routes were covered.

  20. 78 FR 21700 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... and Minutes FAA Report ARAC Report Transport Canada Report EASA Report Flight Controls Harmonization Working Group Report Aging Airplanes Working Group Report Engine Harmonization Working Group--New Tasking Flight Test Harmonization Working Group--New Tasking Action Item Review and Other Business Attendance...

  1. 78 FR 22166 - Airworthiness Directives; BRP-Powertrain GmbH & Co KG Rotax Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... reciprocating engines. This AD requires a one-time visual inspection for excessive oil deposits or carbon... would require a one-time visual inspection for excessive oil deposits or carbon deposits on the No. 2... after the effective date of this AD, whichever occurs first, perform a one-time visual inspection of...

  2. Longitudinal aerodynamic characteristics of light, twin-engine, propeller-driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Representative state-of-the-art analytical procedures and design data for predicting the longitudinal static and dynamic stability and control characteristics of light, propeller-driven airplanes are presented. Procedures for predicting drag characteristics are also included. The procedures are applied to a twin-engine, propeller-driven airplane in the clean configuration from zero lift to stall conditions. The calculated characteristics are compared with wind-tunnel and flight data. Included in the comparisons are level-flight trim characteristics, period and damping of the short-period oscillatory mode, and windup-turn characteristics. All calculations are documented.

  3. Recent tests on the Carter small reciprocating steam engines

    NASA Astrophysics Data System (ADS)

    Kiceniuk, T.; Wingenbach, W.

    1982-07-01

    The Jay Carter Enterprises (JCE) Paratransit Vehicle steam engine was tested over a range of conditions which might be experienced by the power converter subsystem of the Small Community Solar Thermal Power Experiment. Some difficulties were encountered getting the engine ready for testing. These difficulties were related to the five year dormancy of the entire system and to incomplete development work that had been going on at the time of cessation of steam engine work at JCE. Other difficulties were related to the fact that the particular expander being tested never ran before and possessed some manufacturing defects. Nevertheless, the engine was operated successfully and results of testing do verify results of computer simulations of the engine in regard to the effect of temperature and power level variations. Engine efficiency was good but generally lower than expected and performance dropped as testing continued. The effect of change in expansion ratio was not demonstrated because of deterioration in engine performance. Post-test inspection revealed numerous correctable defects.

  4. Recent tests on the Carter small reciprocating steam engines

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.; Wingenbach, W.

    1982-01-01

    The Jay Carter Enterprises (JCE) Paratransit Vehicle steam engine was tested over a range of conditions which might be experienced by the power converter subsystem of the Small Community Solar Thermal Power Experiment. Some difficulties were encountered getting the engine ready for testing. These difficulties were related to the five year dormancy of the entire system and to incomplete development work that had been going on at the time of cessation of steam engine work at JCE. Other difficulties were related to the fact that the particular expander being tested never ran before and possessed some manufacturing defects. Nevertheless, the engine was operated successfully and results of testing do verify results of computer simulations of the engine in regard to the effect of temperature and power level variations. Engine efficiency was good but generally lower than expected and performance dropped as testing continued. The effect of change in expansion ratio was not demonstrated because of deterioration in engine performance. Post-test inspection revealed numerous correctable defects.

  5. 76 FR 11844 - Aviation Rulemaking Advisory Committee; Transport Airplane and Engine Issue Area-Phase 2 of Low...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... under the existing Avionics System Harmonization Working Group within the Transport Airplane and Engine... standards under the existing Avionics Systems Harmonization Working Group within the Transport Airplane and... considerations that should be taken into account? Is coordination necessary with other harmonization...

  6. Predicted performance benefits of an adaptive digital engine control system of an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.

    1985-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and in integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.

  7. Predicted performance benefits of an adaptive digital engine control system on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Ray, R. J.

    1985-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrating engine-airframe control systems. Currently this is accomplished on the NASA Ames Research Center's F-15 airplane. The two control modes used to implement the systems are an integrated flightpath management mode and an integrated adaptive engine control system (ADECS) mode. The ADECS mode is a highly integrated mode in which the airplane flight conditions, the resulting inlet distortion, and the available engine stall margin are continually computed. The excess stall margin is traded for thrust. The predicted increase in engine performance due to the ADECS mode is presented in this report.

  8. Drag and Propulsive Characteristics of Air-Cooled Engine-Nacelle Installations for Large Airplane

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Wilson, Herbert A , Jr

    1942-01-01

    An investigation was conducted in the NACA full-scale wind tunnel to determine the drag and the propulsive efficiency of nacelle-propeller arrangements for a large range of nacelle sizes. In contrast with usual tests with a single nacelle, these tests were conducted with nacelle-propeller installations on a large model of a four-engine airplane. Data are presented on the first part of the investigation, covering seven nacelle arrangements with nacelle diameters from 0.53 to 1.5 times the wing thickness. These ratios are similar to those occurring on airplanes weighing from about 20 to 100 tons. The results show the drag, the propulsive efficiency, and the over-all efficiency of the various nacelle arrangements as functions of the nacelle size, the propeller position, and the airplane lift coefficient. The effect of the nacelles on the aerodynamic characteristics of the model is shown for both propeller-removed and propeller-operating conditions.

  9. Injector spray characterization of methanol in reciprocating engines

    SciTech Connect

    Dodge, L.; Naegeli, D.

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  10. 78 FR 48828 - Airworthiness Directives; Continental Motors, Inc. Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Continental Motors... Engine Components International Division (ECi), used on the Continental Motors, Inc. (CMI) models 520 and... identified in this proposed AD, contact Continental Motors, Inc., PO Box 90, Mobile, AL 36601; phone:...

  11. Flight evaluation of an extended engine life mode on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Conners, Timothy R.

    1992-01-01

    An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.

  12. 75 FR 7947 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Model TAE 125-01 Reciprocating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Engines GmbH (TAE) Model TAE 125-01 Reciprocating Engines AGENCY: Federal Aviation Administration (FAA.... The MCAI describes the unsafe condition as: An in-flight engine shutdown incident was reported on an aircraft equipped with a TAE 125-01 engine. This was found to be mainly the result of a blockage of...

  13. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  14. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  15. AiResearch QCGAT engine, airplane, and nacelle design features

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.

    1980-01-01

    The quiet, clean, general aviation turbofan engine and nacelle system was designed and tested. The engine utilized the core of the AiResearch model TFE731-3 engine and incorporated several unique noise- and emissions-reduction features. Components that were successfully adapted to this core include the fan, gearbox, combustor, low-pressure turbine, and associated structure. A highly versatile workhorse nacelle incorporating interchangeable acoustic and hardwall duct liners, showed that large-engine attenuation technology could be applied to small propulsion engines. The application of the mixer compound nozzle demonstrated both performance and noise advantages on the engine. Major performance, emissions, and noise goals were demonstrated.

  16. Testing of high-octane fuels in the single-cylinder airplane engine

    NASA Technical Reports Server (NTRS)

    Seeber, Fritz

    1940-01-01

    One of the most important properties of aviation fuels for spark-ignition engines is their knock rating. The CFR engine tests of fuels of 87 octane and above does not always correspond entirely to the actual behavior of these fuels in the airplane engine. A method is therefore developed which, in contrast to the octane number determination, permits a testing of the fuel under various temperatures and fuel mixture conditions. The following reference fuels were employed: 1) Primary fuels; isooctane and n-heptane; 2) Secondary fuels; pure benzene and synthetic benzine.

  17. Reciprocating balance weight mechanism for a piston type internal combustion engine

    SciTech Connect

    Nivi, H.; Field, N.L. III

    1987-08-25

    A balancing mechanism is described for reducing the vibration of a piston type internal combustion engine having a crankshaft and a camshaft, the balancing mechanisms comprising one or more reciprocating balance weights, with each weight comprising an elongate body having a cam follower mounted at either end and with each weight being driven by two rotating cams with at least one of the cams being driven by either the crankshaft or the camshaft.

  18. Crash tests of three identical low-wing single-engine airplane

    NASA Technical Reports Server (NTRS)

    Castle, C. B.; Alfaro-Bou, E.

    1983-01-01

    Three identical four place, low wing single engine airplane specimens with nominal masses of 1043 kg were crash tested under controlled free flight conditions. The tests were conducted at the same nominal velocity of 25 m/sec along the flight path. Two airplanes were crashed on a concrete surface (at 10 and 30 deg pitch angles), and one was crashed on soil (at a -30 deg pitch angle). The three tests revealed that the specimen in the -30 deg test on soil sustained massive structural damage in the engine compartment and fire wall. Also, the highest longitudinal cabin floor accelerations occurred in this test. Severe damage, but of lesser magnitude, occurred in the -30 deg test on concrete. The highest normal cabin floor accelerations occurred in this test. The least structural damage and lowest accelerations occurred in the 10 deg test on concrete.

  19. 77 FR 53154 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-02-99 and TAE 125-02-114...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-31

    ... Directives; Thielert Aircraft Engines GmbH Models TAE 125-02-99 and TAE 125-02-114 Reciprocating Engines... reciprocating engines. This proposed AD was prompted by an in-flight shutdown of an airplane equipped with a TAE 125-02-99 engine. This proposed AD would require inspection of the oil filler plug vent hole at...

  20. Combustion of hydrogen-based mixtures in gas-fueled reciprocating engines

    NASA Astrophysics Data System (ADS)

    Smygalina, A. E.; Zaitchenko, V. M.; Ivanov, M. F.; Kiverin, A. D.

    2015-12-01

    The research is devoted to the possibility for application of hydrogen accumulated from renewable energy sources as a fuel for a reciprocating engine, which serves as an electrical generator drive. Hydrogen combustion in the chamber of a reciprocating engine, as a rule, occurs in a detonation mode. In order to obtain less hard modes, the present research proposes the usage of steam additions to hydrogen-air mixture or lean hydrogen-air mixtures. Mathematical simulation is used for investigation of combustion of mentioned mixtures in the combustion chamber of a reciprocating engine with a spark-plug ignition. The comparison of the usage of hydrogen-steam-air mixtures and lean hydrogen-air mixtures as fuels is given. The dependence of arising combustion modes and its quantitative characteristics on hydrogen content in combustible composition is investigated. The analysis of optimal combustion is presented, which is based on the consideration of two parameters: peak pressure in one cycle and the crankshaft angle corresponding to the achievement of the peak pressure.

  1. Application of selected advanced technologies to high performance, single-engine, business airplanes

    NASA Technical Reports Server (NTRS)

    Domack, C. S.; Martin, G. L.

    1984-01-01

    Improvements in performance and fuel efficiency are evaluated for five new configurations of a six place, single turboprop, business airplane derived from a conventional, aluminum construction baseline aircraft. Results show the greatest performance gains for enhancements in natural laminar flow. A conceptual diesel engine provides greater fuel efficiency but reduced performance. Less significant effects are produced by the utilization of composite materials construction or by reconfiguration from tractor to pusher propeller installation.

  2. High-Speed Tests of a Model Twin-Engine Low-Wing Transport Airplane

    NASA Technical Reports Server (NTRS)

    Becker, John V; LEONARD LLOYD H

    1942-01-01

    Report presents the results of force tests made of a 1/8-scale model of a twin-engine low-wing transport airplane in the NACA 8-foot high-speed tunnel to investigate compressibility and interference effects of speeds up to 450 miles per hour. In addition to tests of the standard arrangement of the model, tests were made with several modifications designed to reduce the drag and to increase the critical speed.

  3. 75 FR 54462 - Airworthiness Directives; Bombardier-Rotax GmbH 912 F Series and 912 S Series Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... GmbH 912 F Series and 912 S Series Reciprocating Engines AGENCY: Federal Aviation Administration (FAA... ADs (b) None. Applicability (c) This AD applies to Bombardier-Rotax 912 F series and 912 S...

  4. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    NASA Technical Reports Server (NTRS)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  5. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fuel supply: Turbine-engine powered... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered... specifications, no person may release for flight or takeoff a turbine-engine powered airplane (other than a...

  6. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fuel supply: Turbine-engine powered... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered... specifications, no person may release for flight or takeoff a turbine-engine powered airplane (other than a...

  7. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fuel supply: Turbine-engine powered... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered... specifications, no person may release for flight or takeoff a turbine-engine powered airplane (other than a...

  8. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel supply: Turbine-engine powered... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered... specifications, no person may release for flight or takeoff a turbine-engine powered airplane (other than a...

  9. 14 CFR 121.645 - Fuel supply: Turbine-engine powered airplanes, other than turbo propeller: Flag and supplemental...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fuel supply: Turbine-engine powered... SUPPLEMENTAL OPERATIONS Dispatching and Flight Release Rules § 121.645 Fuel supply: Turbine-engine powered... specifications, no person may release for flight or takeoff a turbine-engine powered airplane (other than a...

  10. Flight Research Using F100 Engine P680063 in the NASA F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Conners, Timothy R.; Maxwell, Michael D.

    1994-01-01

    The value of flight research in developing and evaluating gas turbine engines is high. NASA Dryden Flight Research Center has been conducting flight research on propulsion systems for many years. The F100 engine has been tested in the NASA F-15 research airplane in the last three decades. One engine in particular, S/N P680063, has been used for the entire program and has been flown in many pioneering propulsion flight research activities. Included are detailed flight-to-ground facility tests; tests of the first production digital engine control system, the first active stall margin control system, the first performance-seeking control system; and the first use of computer-controlled engine thrust for emergency flight control. The flight research has been supplemented with altitude facility tests at key times. This paper presents a review of the tests of engine P680063, the F-15 airplanes in which it flew, and the role of the flight test in maturing propulsion technology.

  11. The forces and moments on airplane engine mounts

    NASA Technical Reports Server (NTRS)

    Donely, Philip

    1936-01-01

    A resume of the equations and formulas for the forces and moments on an aircraft-engine mount is presented. In addition, available experimental data have been included to permit the computation of these forces and moments. A sample calculation is made and compared with present design conditions for engine mounts.

  12. Performance of a 300-horsepower Hispano-Suiza airplane engine

    NASA Technical Reports Server (NTRS)

    Sparrow, S W; White, H S

    1921-01-01

    The National Bureau of Standards tested a 300-horsepower Hispano-Suiza engine to determine the characteristic performance of the engine at various altitudes. The engine was operated at the ground, at 25,000 feet, and at intermediate altitudes, both at full loads similar to those that would be imposed upon the engine at various speeds by a propeller whose normal full-load speed was 1,800 r.p.m. Friction horsepower also was determined in order that the mechanical efficiency of the engine might be calculated. From the test data there were computed the brake horsepower, brake mean effective pressure, specific fuel consumption, mixture ratio, jacket loss, exhaust loss, and thermal, mechanical, and volumetric efficiencies. A record of jacket water temperatures, oil temperatures, manifold pressures, etc., shows the conditions under which the test was made.

  13. Modeling of reciprocating internal combustion engines for power generation and heat recovery

    SciTech Connect

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2013-02-01

    This paper presents a power generation and heat recovery model for reciprocating internal combustion engines (ICEs). The purpose of the proposed model is to provide realistic estimates of performance/efficiency maps for both electrical power output and useful thermal output for various capacities of engines for use in a preliminary CHP design/simulation process. The proposed model will serve as an alternative to constant engine efficiencies or empirical efficiency curves commonly used in the current literature for simulations of CHP systems. The engine performance/efficiency calculation algorithm has been coded to a publicly distributed FORTRAN Dynamic Link Library (DLL), and a user friendly tool has been developed using Visual Basic programming. Simulation results using the proposed model are validated against manufacturer’s technical data.

  14. Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1977-01-01

    Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.

  15. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  16. Flight test experience and controlled impact of a large, four-engine remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  17. Summary of the effects of engine throttle response on airplane formation-flying qualities

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.

    1993-01-01

    A flight evaluation was conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. This airplane was chosen because of its known, very favorable thrust response characteristics. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. The Cooper and Harper Pilot Rating Scale was used to assign levels of handling quality. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented. These results may provide engine manufacturers with guidelines to assure satisfactory handling qualities in future engine designs.

  18. Wind-tunnel Tests of a 2-engine Airplane Model as a Preliminary Study of Flight Conditions Arising on the Failure of the Engine

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1938-01-01

    Wind tunnel tests of a 15-foot-span model of a two-engine low wing transport airplane were made as a preliminary study of the emergency arising from the failure of one engine in flight. Two methods of reducing the initial yawing moment resulting from the failure of one engine were investigated and the equilibrium conditions were explored for two basic modes on one engine, one with zero angle of sideslip and the other with several degrees of sideslip. The added drag resulting from the unsymmetrical attitudes required for flight on one engine was determined for the model airplane. The effects of the application of power upon the stability, controllability, lift, and drag of the model airplane were measured. A dynamic pressure survey of the propeller slipstream was made in the neighborhood of the tail surfaces at three angles of attack. The added parasite drag of the model airplane resulting from the unfavorable conditions of flight on one engine was estimated. From 35 to 50 percent of this added drag was due to the drag of the dead engine propeller and the other 50 to 65 percent was due to the unsymmetrical attitude of the airplane. The mode of flight on one engine in which the angle of sideslip was zero was found to require less power than the mode in which the angle of sideslip was several degrees.

  19. Advanced Reciprocating Engine Systems (ARES) Research at Argonne National Laboratory. A Report

    SciTech Connect

    Gupta, Sreenath; Biruduganti, Muni; Bihari, Bipin; Sekar, Raj

    2014-08-01

    The goals of these experiments were to determine the potential of employing spectral measurements to deduce combustion metrics such as HRR, combustion temperatures, and equivalence ratios in a natural gas-fired reciprocating engine. A laser-ignited, natural gas-fired single-cylinder research engine was operated at various equivalence ratios between 0.6 and 1.0, while varying the EGR levels between 0% and maximum to thereby ensure steady combustion. Crank angle-resolved spectral signatures were collected over 266-795 nm, encompassing chemiluminescence emissions from OH*, CH*, and predominantly by CO2* species. Further, laser-induced gas breakdown spectra were recorded under various engine operating conditions.

  20. A parametric analysis microcomputer model for evaluating the thermodynamic performance of a reciprocating Brayton cycle engine

    SciTech Connect

    Tsongas, G.A. ); White, T.J. )

    1989-10-01

    A Brayton open-cycle engine is under development. It operates similarly to a gas turbine engine, but uses reciprocating piston compressor and expander components. The design appears to have a number of advantages, including multifuel capability, the potential for lower cost, and the ability to be scaled to small sizes without significant loss in efficiency. An interactive microcomputer model has been developed that analyzes the thermodynamic performance of the engine. The model incorporates all the important irreversibilities found in piston devices, including heat transfer, mechanical friction, pressure losses, and mass loss and recirculation. There are 38 input parameters to the model. Key independent operating parameters are maximum temperature, compressor rpm, and pressure ratio. The development of the model and its assumptions are outlined in this paper. The emphasis is on model applications.

  1. The Direct Measurement of Engine Power on an Airplane in Flight with a Hub Type Dynamometer

    NASA Technical Reports Server (NTRS)

    Gove, W D; Green, M W

    1927-01-01

    This report describes tests made to obtain direct measurements of engine power in flight. Tests were made with a Bendemann hub dynamometer installed on a modified DH-4 Airplane, Liberty 12 Engine, to determine the suitability of this apparatus. This dynamometer unit, which was designed specially for use with a liberty 12 engine, is a special propeller hub in which is incorporated a system of pistons and cylinders interposed between the propeller and the engine crankshaft. The torque and thrust forces are balanced by fluid pressures, which are recorded by instruments in the cockpit. These tests have shown the suitability of this type of hub dynamometer for measurement of power in flight and for the determination of the torque and power coefficients of the propeller. (author)

  2. Flight evaluation results for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Walsh, K. R.

    1983-01-01

    A digital electronic engine control (DEEC) system on an F100 engine in an F-15 airplane was evaluated in flight. Thirty flights were flown in a four-phase program from June 1981 to February 1983. Significant improvements in the operability and performance of the F100 engine were developed as a result of the flight evaluation: the augmentor envelope was increased by 15,000 ft, the airstart envelope was improved by 75 knots, and the need to periodically trim the engine was eliminated. The hydromechanical backup control performance was evaluated and was found to be satisfactory. Two system failures were encountered in the test program; both were detected and accommodated successfully. No transfers to the backup control system were required, and no automatic transfers occurred. As a result of the successful DEEC flight evaluation, the DEEC system has entered the full-scale development phase.

  3. Flight test method for the determination of reciprocating engine cooling requirements

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Lawrence, D. L.

    1981-01-01

    It is pointed out that the effective cooling of aircraft reciprocating engines is still a problem area for the general aviation industry. Miley et al. (1981) have reported the results of an investigation of problems associated with cooling and installation aerodynamics. A description is given of a flight test procedure which was developed in connection with the considered investigation. It is shown that the test procedure provides valid cooling requirements data for a particular installation. The data are in terms of easily measurable parameters. The employment of the test procedure, which is based on the NACA cooling correlation method, can lead to more effective cooling installations and the solution of existing cooling problems.

  4. 14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: Landing limitations: Destination airport. 121.185 Section 121.185 Aeronautics and Space FEDERAL AVIATION...: Destination airport. (a) Except as provided in paragraph (b) of this section no person operating a... determining the allowable landing weight at the destination airport the following is assumed: (1) The...

  5. 14 CFR 121.185 - Airplanes: Reciprocating engine-powered: Landing limitations: Destination airport.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: Landing limitations: Destination airport. 121.185 Section 121.185 Aeronautics and Space FEDERAL AVIATION...: Destination airport. (a) Except as provided in paragraph (b) of this section no person operating a... determining the allowable landing weight at the destination airport the following is assumed: (1) The...

  6. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  7. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  8. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  9. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  10. 14 CFR 121.331 - Supplemental oxygen requirements for pressurized cabin airplanes: Reciprocating engine powered...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Supplemental oxygen requirements for... SUPPLEMENTAL OPERATIONS Instrument and Equipment Requirements § 121.331 Supplemental oxygen requirements for... oxygen for each crewmember for the entire flight at those altitudes and not less than a two-hour...

  11. Advanced Natural Gas Reciprocating Engine: Parasitic Loss Control through Surface Modification

    SciTech Connect

    Farshid Sadeghi; Chin-Pei Wang

    2008-12-31

    This report presents results of our investigation on parasitic loss control through surface modification in reciprocating engine. In order to achieve the objectives several experimental and corresponding analytical models were designed and developed to corroborate our results. Four different test rigs were designed and developed to simulate the contact between the piston ring and cylinder liner (PRCL) contact. The Reciprocating Piston Test Rig (RPTR) is a novel suspended liner test apparatus which can be used to accurately measure the friction force and side load at the piston-cylinder interface. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with the experimental measurements. Comparisons between the experimental and analytical results showed good agreement. The results revealed that in the reciprocating engines higher friction occur near TDC and BDC of the stroke due to the extremely low piston speed resulting in boundary lubrication. A Small Engine Dynamometer Test Rig was also designed and developed to enable testing of cylinder liner under motored and fired conditions. Results of this study provide a baseline from which to measure the effect of surface modifications. The Pin on Disk Test Rig (POD) was used in a flat-on-flat configuration to study the friction effect of CNC machining circular pockets and laser micro-dimples. The results show that large and shallow circular pockets resulted in significant friction reduction. Deep circular pockets did not provide much load support. The Reciprocating Liner Test Rig (RLTR) was designed to simplifying the contact at the PRCL interface. Accurate measurement of friction was obtained using 3-axis piezoelectric force transducer. Two fiber optic sensors were used to measure the film thickness precisely. The results show that the friction force is reduced through the use of modified surfaces. The Shear Driven Test Rig (SDTR) was designed to simulate the mechanism of the

  12. Investigation of Icing Characteristics of Typical Light Airplane Engine Induction Systems

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1949-01-01

    The icing characteristics of two typical light-airplane engine induction systems were investigated using the carburetors and manifolds of engines in the horsepower ranges from 65 to 85 and 165 to 185. The smaller system consisted of a float-type carburetor with an unheated manifold and the larger system consisted of a single-barrel pressure-type carburetor with an oil-jacketed manifold. Carburetor-air temperature and humidity limits of visible and serious Icing were determined for various engine power conditions. Several.methods of achieving ice-free induction systems are discussed along with estimates of surface heating requirements of the various induct ion-system components. A study was also made of the icing characteristics of a typical light-airplane air scoop with an exposed filter and a modified system that provided a normal ram inlet with the filter located in a position to Induce inertia separation of the free water from the charge air. The principle of operation of float-type carburetors is proved to make them inherently more susceptible to icing at the throttle plate than pressure-type carburetors.. The results indicated that proper jacketing and heating of all parts exposed to the fuel spray can satisfactorily reduce or eliminate icing in the float-type carburetor and the manifold. Pressure-type carburetors can be protected from serious Icing by proper location of the fuel-discharge nozzle combined with suitable application of heat to critical parts.

  13. Performance improvements of single-engine business airplanes by the integration of advanced technologies

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.

    1982-01-01

    An assessment is presented of the performance gains and economic impact of the integration in general aviation aircraft of advanced technologies, relating to such aspects of design as propulsion, natural laminar flow, lift augmentation, unconventional configurations, and advanced aluminum and composite structures. All considerations are with reference to a baseline mission of 1300 nm range and 300-knot cruise speed with a 1300-lb payload, and a baseline aircraft with a 40 lb/sq ft wing loading and an aspect ratio of 8. Extensive analytical results are presented from the NASA-sponsored General Aviation Synthesis Program. Attention is given to the relative performance gains to be expected from the single-engined baseline aircraft's use of a low cost general aviation turbine engine, a spark-ignited reciprocating engine, a diesel engine, and a Wankel rotary engine.

  14. Airstart performance of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Licata, S. J.; Burcham, F. W., Jr.

    1983-01-01

    The airstart performance of the F100 engine equipped with a digital electronic engine control (DEEC) system was evaluated in an F-15 airplane. The DEEC system incorporates closed-loop airstart logic for improved capability. Spooldown and jet fuel starter-assisted airstarts were made over a range of airspeeds and altitudes. All jet fuel starter-assisted airstarts were successful, with airstart time varying from 35 to 60 sec. All spooldown airstarts at airspeeds of 200 knots and higher were successful; airstart times ranged from 45 sec at 250 knots to 135 sec at 200 knots. The effects of altitude on airstart success and time were small. The flight results agreed closely with previous altitude facility test results. The DEEC system provided successful airstarts at airspeeds at least 50 knots lower than the standard F100 engine control system.

  15. Piloted simulation study of the effects of an automated trim system on flight characteristics of a light twin-engine airplane with one engine inoperative

    NASA Technical Reports Server (NTRS)

    Stewart, E. C.; Brown, P. W.; Yenni, K. R.

    1986-01-01

    A simulation study was conducted to investigate the piloting problems associated with failure of an engine on a generic light twin-engine airplane. A primary piloting problem for a light twin-engine airplane after an engine failure is maintaining precise control of the airplane in the presence of large steady control forces. To address this problem, a simulated automatic trim system which drives the trim tabs as an open-loop function of propeller slipstream measurements was developed. The simulated automatic trim system was found to greatly increase the controllability in asymmetric powered flight without having to resort to complex control laws or an irreversible control system. However, the trim-tab control rates needed to produce the dramatic increase in controllability may require special design consideration for automatic trim system failures. Limited measurements obtained in full-scale flight tests confirmed the fundamental validity of the proposed control law.

  16. Assessment of advanced technologies for high performance single-engine business airplanes

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Holmes, B. J.

    1982-01-01

    The prospects for significantly increasing the fuel efficiency and mission capability of single engine business aircraft through the incorporation of advanced propulsion, aerodynamics and materials technologies are explored. It is found that turbine engines cannot match the fuel economy of the heavier rotary, diesel and advanced spark reciprocating engines. The rotary engine yields the lightest and smallest aircraft for a given mission requirement, and also offers greater simplicity and a multifuel capability. Great promise is also seen in the use of composite material primary structures in conjunction with laminar flow wing surfaces, a pusher propeller and conventional wing-tail configuration. This study was conducted with the General Aviation Synthesis Program, which can furnish the most accurate mission performance calculations yet obtained.

  17. A fuel-efficient cruise performance model for general aviation piston engine airplanes. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Parkinson, R. C. H.

    1983-01-01

    A fuel-efficient cruise performance model which facilitates maximizing the specific range of General Aviation airplanes powered by spark-ignition piston engines and propellers is presented. Airplanes of fixed design only are considered. The uses and limitations of typical Pilot Operating Handbook cruise performance data, for constructing cruise performance models suitable for maximizing specific range, are first examined. These data are found to be inadequate for constructing such models. A new model of General Aviation piston-prop airplane cruise performance is then developed. This model consists of two subsystem models: the airframe-propeller-atmosphere subsystem model; and the engine-atmosphere subsystem model. The new model facilitates maximizing specific range; and by virtue of its implicity and low volume data storge requirements, appears suitable for airborne microprocessor implementation.

  18. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2007-02-01

    The objective of this project is to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by exploration and production (E&P) operators to significantly lower the cost of environmental compliance and expedite project permitting. The project team takes considerable advantage of the emissions control research and development efforts and practices that have been underway in the gas pipeline industry for the last 12 years. These efforts and practices are expected to closely interface with the E&P industry to develop cost-effective options that apply to widely-used field and gathering engines, and which can be readily commercialized. The project is separated into two phases. Phase 1 work establishes an E&P industry liaison group, develops a frequency distribution of installed E&P field engines, and identifies and assesses commercially available and emerging engine emissions control and monitoring technologies. Current and expected E&P engine emissions and monitoring requirements are reviewed, and priority technologies are identified for further development. The identified promising technologies are tested on a laboratory engine to confirm their generic viability. In addition, a full-scale field test of prototype emissions controls will be conducted on at least ten representative field engine models with challenging emissions profiles. Emissions monitoring systems that are integrated with existing controls packages will be developed. Technology transfer/commercialization is expected to be implemented through compressor fleet leasing operators, engine component suppliers, the industry liaison group, and the Petroleum Technology Transfer Council. This topical report discusses work completed during Phase 1 of the project Cost Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines. In this report information, data, and results are compiled and summarized from quarterly

  19. The 727 airplane target thrust reverser static performance model test for refanned JT8D engines

    NASA Technical Reports Server (NTRS)

    Chow, C. T. P.; Atkey, E. N.

    1974-01-01

    The results of a scale model static performance test of target thrust reverser configurations for the Pratt and Whitney Aircraft JT8D-100 series engine are presented. The objective of the test was to select a series of suitable candidate reverser configurations for the subsequent airplane model wind tunnel ingestion and flight controls tests. Test results indicate that adequate reverse thrust performance with compatible engine airflow match is achievable for the selected configurations. Tapering of the lips results in loss of performance and only minimal flow directivity. Door pressure surveys were conducted on a selected number of lip and fence configurations to obtain data to support the design of the thrust reverser system.

  20. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines.

    PubMed

    Yamamoto, Shumpei; Ito, Sosuke; Shiraishi, Naoto; Sagawa, Takahiro

    2016-11-01

    In the recent progress in nonequilibrium thermodynamics, information has been recognized as a kind of thermodynamic resource that can drive thermodynamic current without any direct energy injection. In this paper, we establish the framework of linear irreversible thermodynamics for a broad class of autonomous information processing. In particular, we prove that the Onsager reciprocity holds true with information: The linear response matrix is well-defined and is shown symmetric with both of the information affinity and the conventional thermodynamic affinity. As an application, we derive a universal bound for the efficiency at maximum power for information-driven engines in the linear regime. Our result reveals the fundamental role of information flow in linear irreversible thermodynamics.

  1. Testing of reciprocating seals for application in a Stirling cycle engine

    NASA Technical Reports Server (NTRS)

    Curulla, J. F.; Beck, T. L.

    1980-01-01

    Six single stage reciprocating seal configurations to the requirements of the Stirling cycle engine were evaluated. The seals tested were: the Boeing Footseal, NASA Chevron polyimide seal, Bell seal, Quad seal, Tetraseal, and Dynabak seal. None of these seal configurations met the leakage goals of .002 cc/sec at helium gas pressure of 1.22 x 10 to the 7th power PA, rod speed of 7.19 m/sec peak, and seal environmental temperature of 408 K for 1500 hours. Most seals failed due to high temperatures. Catastrophic failures were observed for a minimum number of test runs characterized by extremely high leakage rates and large temperature rises. The Bell seal attained 63 hours of run time at significantly lowered test conditions.

  2. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shumpei; Ito, Sosuke; Shiraishi, Naoto; Sagawa, Takahiro

    2016-11-01

    In the recent progress in nonequilibrium thermodynamics, information has been recognized as a kind of thermodynamic resource that can drive thermodynamic current without any direct energy injection. In this paper, we establish the framework of linear irreversible thermodynamics for a broad class of autonomous information processing. In particular, we prove that the Onsager reciprocity holds true with information: The linear response matrix is well-defined and is shown symmetric with both of the information affinity and the conventional thermodynamic affinity. As an application, we derive a universal bound for the efficiency at maximum power for information-driven engines in the linear regime. Our result reveals the fundamental role of information flow in linear irreversible thermodynamics.

  3. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... paragraph (b) of this section: (1) Airplanes with high bypass ratio jet engines. For an airplane that has jet engines with a bypass ratio of 2 or more before a change in type design— (i) The airplane,...

  4. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... paragraph (b) of this section: (1) Airplanes with high bypass ratio jet engines. For an airplane that has jet engines with a bypass ratio of 2 or more before a change in type design— (i) The airplane,...

  5. Performance improvements of an F-15 airplane with an integrated engine-flight control system

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Walsh, Kevin R.

    1988-01-01

    An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 degrees, respectively.

  6. Preliminary flight evaluation of F100 engine model derivative airstart capability in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Cho, T. K.; Burcham, F. W., Jr.

    1984-01-01

    A series of airstarts was conducted in an F-15 airplane with two prototype F100 engine model derivative (EMD) engines equipped with digital electronic engine control (DEEC) systems. The airstart envelope and time required for airstarts were defined. The success of an airstart is most heavily dependent on airspeed. Spooldown airstarts at 200 knots and higher were all successful. Spooldown airstart times ranged from 53 sec at 250 knots to 170 sec at 175 knots. Jet fuel starter (JFS) assisted airstarts were conducted at 175 knots at two altitudes, and airstart times were 50 and 60 sec, significantly faster than unassisted airstart. The effect of altitude on airstarts was small. In addition, the airstart characteristics of the two test engines were found to closely resemble each other. The F100 EMD airstart characteristics were very similar to the DEEC equipped F100 engine tested previously. Finally, the time required to spool down from intermediate power compressor rotor speed to a given compressor rotor speed was found to be a strong function of altitude and a weaker function of airspeed.

  7. Engine Installation Effects of Four Civil Transport Airplanes: Wallops Flight Facility Study

    NASA Technical Reports Server (NTRS)

    Fleming, Gregg G.; Senzig, David A.; McCurdy, David A.; Roof, Christopher J.; Rapoza, Amanda S.

    2003-01-01

    The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), the Environmental Measurement and Modeling Division of the United States Department of Transportation s John A. Volpe National Transportation Systems Center (Volpe), and several other organizations (see Appendix A for a complete list of participating organizations and individuals) conducted a noise measurement study at NASA s Wallops Flight Facility (Wallops) near Chincoteague, Virginia during September 2000. This test was intended to determine engine installation effects on four civil transport airplanes: a Boeing 767-400, a McDonnell-Douglas DC9, a Dassault Falcon 2000, and a Beechcraft King Air. Wallops was chosen for this study because of the relatively low ambient noise of the site and the degree of control over airplane operating procedures enabled by operating over a runway closed to other uses during the test period. Measurements were conducted using a twenty microphone U-shaped array oriented perpendicular to the flight path; microphones were mounted such that ground effects were minimized and low elevation angles were observed.

  8. 14 CFR 121.201 - Nontransport category airplanes: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Nontransport category airplanes: En route...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.201 Nontransport category airplanes: En route limitations: One...

  9. 14 CFR 121.201 - Nontransport category airplanes: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Nontransport category airplanes: En route...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Airplane Performance Operating Limitations § 121.201 Nontransport category airplanes: En route limitations: One...

  10. Flight evaluation of the effect of winglets on performance and handling qualities of a single-engine general aviation airplane

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Vandam, C. P.; Brown, P. W.; Deal, P. L.

    1980-01-01

    A flight evaluation was conducted to determine the effects of winglets on the performance and handling qualities of a light, single-engine general aviation airplane. The performance measurements were made with a pace airplane to provide calibrated airspeeds; uncalibrated panel instruments in the test airplane were used to provide additional quantitative performance data. These tests were conducted with winglets on and off during the same day to measure relative performance effects. Handling qualities were evaluated by means of pilot comments. Winglets increased cruise speed 8 knots (5.6 percent) at 3962 m (13,000 ft) density altitude and 51 percent maximum continuous power setting. Maximum speed at 3962 m was virtually unchanged. Rate of climb increased approximately 6 percent, or 0.25 m/sec (50 ft/min), at 1524 m (5000 ft). Stall speed was virtually unchanged. Handling qualities were favorably affected.

  11. Effects of airplane characteristics and takeoff noise and field length constraints on engine cycle selection for a Mach 2.32 cruise application

    NASA Technical Reports Server (NTRS)

    Whitlow, J. B., Jr.

    1976-01-01

    Sideline noise and takeoff field length were varied for two types of Mach 2.32 cruise airplane to determine their effect on engine cycle selection. One of these airplanes was the NASA/Langley-LTV arrow wing while the other was a Boeing modified delta-plus-tail derived from the earlier 2707-300 concept. Advanced variable cycle engines were considered. A more conventional advanced low bypass turbofan engine was used as a baseline for comparison. Appropriate exhaust nozzle modifications were assumed, where needed, to allow all engines to receive either an inherent co-annular or annular jet noise suppression benefit. All the VCE's out-performed the baseline engine by substantial margins in a design range comparison, regardless of airplane choice or takeoff restrictions. The choice among the three VCE's considered, however, depends on the field length, noise level, and airplane selected.

  12. Evaluation of the ride quality of a light twin engine airplane using a ride quality meter

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1989-01-01

    A ride quality meter was used to establish the baseline ride quality of a light twin-engine airplane planned for use as a test bed for an experimental gust alleviation system. The ride quality meter provides estimates of passenger ride discomfort as a function of cabin noise and vibration (acceleration) in five axes (yaw axis omitted). According to the ride quality meter, in smooth air the cabin noise was the dominant source of passenger discomfort, but the total discomfort was approximately the same as that for the smooth-air condition. The researcher's subjective opinion, however, is that the total ride discomfort was much worse in the moderate turbulence than it was in the smooth air. The discrepancy is explained by the lack of measurement of the low-frequency accelerations by the ride quality meter.

  13. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E & P Field and Gathering Engines

    SciTech Connect

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2006-09-30

    Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NO{sub X} emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work tests non-production, prototype, mid-pressure fuel valves and begins analysis of these tests. This analysis reveals questions which must be answered before coming to any firm conclusions about the use of the180 psig fuel valve. The research team plans to continue with the remaining pre-combustion chamber tests in the coming quarter. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and a change in strategy is suggested. Although field engines are available to test, it is suggested that the final field testing be put on hold due to information from outside publications during this last quarter. Instead, KSU would focus on related field-testing and characterization in an outside project that will close an apparent technology gap. The results of this characterization will give a more solid footing to the field testing that will complete this project.

  14. Development and Flight Test of an Emergency Flight Control System Using Only Engine Thrust on an MD-11 Transport Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Burken, John J.; Maine, Trindel A.; Fullerton, C. Gordon

    1997-01-01

    An emergency flight control system that uses only engine thrust, called the propulsion-controlled aircraft (PCA) system, was developed and flight tested on an MD-11 airplane. The PCA system is a thrust-only control system, which augments pilot flightpath and track commands with aircraft feedback parameters to control engine thrust. The PCA system was implemented on the MD-11 airplane using only software modifications to existing computers. Results of a 25-hr flight test show that the PCA system can be used to fly to an airport and safely land a transport airplane with an inoperative flight control system. In up-and-away operation, the PCA system served as an acceptable autopilot capable of extended flight over a range of speeds, altitudes, and configurations. PCA approaches, go-arounds, and three landings without the use of any normal flight controls were demonstrated, including ILS-coupled hands-off landings. PCA operation was used to recover from an upset condition. The PCA system was also tested at altitude with all three hydraulic systems turned off. This paper reviews the principles of throttles-only flight control, a history of accidents or incidents in which some or all flight controls were lost, the MD-11 airplane and its systems, PCA system development, operation, flight testing, and pilot comments.

  15. Thrust stand evaluation of engine performance improvement algorithms in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1992-01-01

    An investigation is underway to determine the benefits of a new propulsion system optimization algorithm in an F-15 airplane. The performance seeking control (PSC) algorithm optimizes the quasi-steady-state performance of an F100 derivative turbofan engine for several modes of operation. The PSC algorithm uses an onboard software engine model that calculates thrust, stall margin, and other unmeasured variables for use in the optimization. As part of the PSC test program, the F-15 aircraft was operated on a horizontal thrust stand. Thrust was measured with highly accurate load cells. The measured thrust was compared to onboard model estimates and to results from posttest performance programs. Thrust changes using the various PSC modes were recorded. Those results were compared to benefits using the less complex highly integrated digital electronic control (HIDEC) algorithm. The PSC maximum thrust mode increased intermediate power thrust by 10 percent. The PSC engine model did very well at estimating measured thrust and closely followed the transients during optimization. Quantitative results from the evaluation of the algorithms and performance calculation models are included with emphasis on measured thrust results. The report presents a description of the PSC system and a discussion of factors affecting the accuracy of the thrust stand load measurements.

  16. Comparative Performance Obtained with XF7C-1 Airplane Using Several Different Engine Cowlings

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Johnson, Ernest; Gough, Melvin N

    1930-01-01

    Discussed here are problems with the use of cowlings with radial air cooled engines. An XF7C-1 airplane, equipped with service cowling and with narrow ring, wide ring, and exhaust collector ring cowlings over the service cowling, was used. For these four cowling conditions, the rate of climb and high speed performance were determined, the cylinder conditions were measured, and pictures to show visibility were taken. The level flight performance obtained with an engine speed of 1900 r.p.m. for the service type, the narrow ring, the wide ring, and the exhaust collector ring was 144.4, 146.6, 152.8, and 155 mph, respectively. The rate of climb was practically the same for each type tested. The visibility was not materially impaired by the use of the wide or the narrow cowlings. With the narrow ring and exhaust collector ring cowlings there was an increase in cylinder temperature. However, this increase was not enough to affect the performance of the engine. The use of an exhaust collector ring incorporated into the cowling is practical where the problem of visibility does not enter.

  17. 75 FR 53846 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    ... To, Diamond Aircraft Industries Model DA 42 Airplanes; Correction AGENCY: Federal Aviation... TAE 125-02-99 reciprocating engines, installed in, but not limited to, Diamond Aircraft Industries..., installed in, but not limited to, Diamond Aircraft Industries model DA 42 airplanes. We need to make...

  18. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....414 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... training for flight instructors (airplane), flight engineer instructors (airplane), and flight navigator... instruction. (4) For flight engineer instructors (airplane) and flight navigator instructors (airplane),...

  19. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  20. 76 FR 25648 - Special Conditions: Gulfstream Model GVI Airplane; Limit Engine Torque Loads for Sudden Engine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ..., the engine mounts and the supporting structures must be designed to withstand a ``limit engine torque... structures be able to support limit loads without detrimental permanent deformation, meaning that supporting... of producing much higher transient loads on the engine mounts and supporting structures. As a...

  1. Improving the Performance of Multi-engined Airplanes by Means of Idling Propellers : the "free-wheel" Propeller

    NASA Technical Reports Server (NTRS)

    Pillard, M

    1930-01-01

    In order to demonstrate the importance of free-wheeling propellers, this report considers the braking effect of a propeller on a stopped engine when the propeller is rigidly connected with the engine shaft and also when mounted on a free-wheel hub. The cases of propellers of asymmetric and symmetric section are discussed. The author describes the mechanism of the free-wheel propeller as constructed for this test. The results obtained with the device mounted on a 1,000 horsepower two-engine airplane are given.

  2. Tabulated pressure measurements on a large subsonic transport model airplane with high bypass ratio, powered, fan jet engines

    NASA Technical Reports Server (NTRS)

    Flechner, S. G.; Patterson, J. C., Jr.

    1972-01-01

    An experimental wind-tunnel investigation to determine the aerodynamic interference and the jet-wake interference associated with the wing, pylon, and high-bypass-ratio, powered, fan-jet model engines has been conducted on a typical high-wing logistics transport airplane configuration. Pressures were measured on the wing and pylons and on the surfaces of the engine fan cowl, turbine cowl, and plug. Combinations of wing, pylons, engines, and flow-through nacelles were tested, and the pressure coefficients are presented in tabular form. Tests were conducted at Mach numbers from 0.700 to 0.825 and angles of attack from -2 to 4 deg.

  3. Effects of inlet distortion on a static pressure probe mounted on the engine hub in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.; Myers, L. P.; Mackall, K. G.

    1985-01-01

    An inlet static pressure (PS2) probe was mounted on the hub of an F100 engine in an F-15 airplane. Flight test results showed that for low distortion conditions, the ratio of engine-face total pressure to static pressure agreed well with previous altitude facility data. Off-schedule operation of the inlet third ramp angle caused increased distortion of the inlet airflow during steady-state flight conditions. Data are shown for inlet third ramp excursions leading to engine stall. The relationships of inlet face total to static pressure ratio as a function of several distortion descriptors are also described.

  4. 75 FR 49865 - Extension of Comment Period; Airplane and Engine Certification Requirements in Supercooled Large...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Phase, and Ice Crystal Icing Conditions AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... for transport category airplanes most affected by these icing conditions, mixed phase and ice crystal conditions for all transport category airplanes, and supercooled large drop, mixed phase, and ice...

  5. In-flight acoustic measurements on a light twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Mcdaniel, C. D.; Wilby, E. G.

    1985-01-01

    Four series of flight tests were conducted to measure sound pressure levels inside and outside the cabin of a twin-engined turboprop airplane. Particular emphasis was placed on harmonics of the propeller blade passage frequency. The cabin was unfurnished for the first three flights, when the main objective was to investigate the repeatability of the data. For the fourth flight, the cabin was treated with fiberglass batts. Typically, the exterior sound pressure levels were found to vary 3 to 5 dB for a given harmonic, but variations as high as 8 dB were observed. The variability of harmonic levels within the cabin was slightly higher but depended on control of the relative phase between the propellers; when phase was not controlled the average variability was about 10 dB. Noise reductions provided by the fuselage structure were in the range of 20 to 40 dB, when an exterior microphone in the plane of rotation of the propeller was used as reference.

  6. Flight-determined engine exhaust characteristics of an F404 engine in an F-18 airplane

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.; Burcham, Frank W., Jr.; Webb, Lannie D.

    1993-01-01

    Personnel at the NASA Langley Research Center (NASA-Langley) and the NASA Dryden Flight Research Facility (NASA-Dryden) recently completed a joint acoustic flight test program. Several types of aircraft with high nozzle pressure ratio engines were flown to satisfy a twofold objective. First, assessments were made of subsonic climb-to-cruise noise from flights conducted at varying altitudes in a Mach 0.30 to 0.90 range. Second, using data from flights conducted at constant altitude in a Mach 0.30 to 0.95 range, engineers obtained a high quality noise database. This database was desired to validate the Aircraft Noise Prediction Program and other system noise prediction codes. NASA-Dryden personnel analyzed the engine data from several aircraft that were flown in the test program to determine the exhaust characteristics. The analysis of the exhaust characteristics from the F-18 aircraft are reported. An overview of the flight test planning, instrumentation, test procedures, data analysis, engine modeling codes, and results are presented.

  7. 14 CFR 121.201 - Nontransport category airplanes: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... concerned: (1) The reliability of wind and weather forecasting. (2) The location and kinds of navigation... operating at the maximum continuous power available; (5) The airplane is operating in standard...

  8. 14 CFR 135.391 - Large nontransport category airplanes: En route limitations: One engine inoperative.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reliability of wind and weather forecasting. (2) The location and kinds of navigation aids. (3) The prevailing... power available; (5) The airplane is operating in standard atmosphere; and (6) The weight of...

  9. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS...), flight engineer check airmen (airplane), and flight navigator check airmen (airplane) must include the... flight engineer check airmen (airplane) and flight navigator check airmen (airplane), training to...

  10. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS...), flight engineer check airmen (airplane), and flight navigator check airmen (airplane) must include the... flight engineer check airmen (airplane) and flight navigator check airmen (airplane), training to...

  11. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS...), flight engineer check airmen (airplane), and flight navigator check airmen (airplane) must include the... flight engineer check airmen (airplane) and flight navigator check airmen (airplane), training to...

  12. Gordon Bennett Airplane Cup

    NASA Technical Reports Server (NTRS)

    Margoulis, W

    1921-01-01

    The characteristics of the airplanes built for the Gordon Bennet Airplane Cup race that took place on September 28, 1920 are described. The airplanes are discussed from a aerodynamical point of view, with a number of new details concerning the French machines. Also discussed is the regulation of future races. The author argues that there should be no limitations on the power of the aircraft engines. He reasons that in the present state of things, liberty with regard to engine power does not lead to a search for the most powerful engine, but for one which is reliable and light, thus leading to progress.

  13. Preliminary study of temperature measurement techniques for Stirling engine reciprocating seals

    NASA Technical Reports Server (NTRS)

    Wilcock, D. F.; Hoogenboom, L.; Meinders, M.; Winer, W. O.

    1981-01-01

    Methods of determining the contact surface temperature in reciprocating seals are investigated. Direct infrared measurement of surface temperatures of a rod exiting a loaded cap seal or simulated seal are compared with surface thermocouple measurements. Significant cooling of the surface requires several milliseconds so that exit temperatures may be considered representative of internal contact temperatures.

  14. Flight and Static Exhaust Flow Properties of an F110-GE-129 Engine in an F-16XL Airplane During Acoustic Tests

    NASA Technical Reports Server (NTRS)

    Holzman, Jon K.; Webb, Lannie D.; Burcham, Frank W., Jr.

    1996-01-01

    The exhaust flow properties (mass flow, pressure, temperature, velocity, and Mach number) of the F110-GE-129 engine in an F-16XL airplane were determined from a series of flight tests flown at NASA Dryden Flight Research Center, Edwards, California. These tests were performed in conjunction with NASA Langley Research Center, Hampton, Virginia (LARC) as part of a study to investigate the acoustic characteristics of jet engines operating at high nozzle pressure conditions. The range of interest for both objectives was from Mach 0.3 to Mach 0.9. NASA Dryden flew the airplane and acquired and analyzed the engine data to determine the exhaust characteristics. NASA Langley collected the flyover acoustic measurements and correlated these results with their current predictive codes. This paper describes the airplane, tests, and methods used to determine the exhaust flow properties and presents the exhaust flow properties. No acoustics results are presented.

  15. Effect of Tilt of the Propeller Axis on the Longitudinal-stability Characteristics of Single-Engine Airplanes

    NASA Technical Reports Server (NTRS)

    Goett, Harry J; Delaney, Noel K

    1944-01-01

    Report presents the results of tests of a model of a single-engine airplane with two different tilts of the propeller axis. The results indicate that on a typical design a 5 degree downward tilt of the propeller axis will considerably reduce the destabilization effects of power. A comparison of the experimental results with those computed by use of existing theory is included. A comparison of the experimental results with those computed by use of existing theory is included. It is shown that the results can be predicted with an accuracy acceptable for preliminary design purposes, particularly at the higher powers where the effects are of significant magnitude.

  16. A 727 airplane center duct inlet low speed performance confirmation model test for refanned JT8D engines, phase 2

    NASA Technical Reports Server (NTRS)

    Kaldschmidt, G.; Syltebo, B. E.; Ting, C. T.

    1973-01-01

    The results from testing of a 0.3 scale model center duct inlet (S duct) for the Pratt and Whitney Aircraft JT8D-100 engines are presented. The objective of this test was to demonstrate that the required airflow of the JT8D-100 engine (480 lb/sec as compared to 334 lb/sec for JT8D-15) can be achieved with minimum modifications to the existing 727 airplane structure at acceptable levels of total pressure recovery and distortion. Steady-state pressure recovery, steady-state pressure distortion, and dynamic pressure measurements were taken at the engine face station. Surface static pressure measurements were taken along the duct. Test results indicated that the required airflow was achieved with acceptable pressure recovery (comparable to the current 727-200 S duct). Inlet inflow angle variation within the 727 airplane operating regime (minus 5 to 5 degrees) had no effect on the inlet performance. Pressure distortion at static and forward speed at takeoff airflow conditions are within P and WA limits for the Phase II duct when equipped with vortex generators. Static crosswind operation between 10 knots and 25 knots appears feasible at full takeoff power.

  17. The Bristol "Badminton" Airplane

    NASA Technical Reports Server (NTRS)

    1926-01-01

    The Bristol Badminton, Type 99 airplane has a radial aircooled engine (a Bristol Jupiter 9 cylinder 450 HP.) and three fuel tanks. It is a single seat biplane weighing 1,840 lbs. empty and 2,460 lbs. loaded.

  18. 75 FR 52240 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...; AD 2010-18-02] RIN 2120-AA64 Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125-02-99 Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT... reported on airplanes equipped with TAE 125 engines. Preliminary investigations showed that it was...

  19. Analysis of the turbojet engine for propulsion of supersonic fighter airplanes / David S. Gabriel, Richard P. Krebs, E.Clinton Wilcox, Stanley L.Koutz

    NASA Technical Reports Server (NTRS)

    Gabriel, David S; Krebs, Richard P; Wilcox, E Clinton; Koutz, Stanley L

    1953-01-01

    An analytical investigation was made of two supersonic interceptor type airplanes to determine the most desirable turbojet engine characteristics for this application The airplanes were designed differently primarily because of the amount of subsonic flight incorporated in the flight plan--one flight having none and the other, a cruise radius of 400 nautical miles. Several power plant design variables were varied independently to determine the effect of changes in each parameter on airplane performance. These parameters included compressor pressure ratio, compressor efficiency, turbine-inlet temperature, afterburner temperature, engine specific weight, and air-handling capacity. The effects of using a convergent-divergent exhaust nozzle and of changing the design flight Mach number were also investigated.

  20. Engine Damage to a NASA DC-8-72 Airplane From a High-Altitude Encounter With a Diffuse Volcanic Ash Cloud

    NASA Technical Reports Server (NTRS)

    Grindle, Thomas J.; Burcham, Frank W., Jr.

    2003-01-01

    The National Aeronautics and Space Administration (NASA) DC-8 airborne sciences research airplane inadvertently flew through a diffuse volcanic ash cloud of the Mt. Hekla volcano in February 2000 during a flight from Edwards Air Force Base (Edwards, California) to Kiruna, Sweden. Although the ash plume was not visible to the flight crew, sensitive research experiments and instruments detected it. In-flight performance checks and postflight visual inspections revealed no damage to the airplane or engine first-stage fan blades; subsequent detailed examination of the engines revealed clogged turbine cooling air passages. The engines were removed and overhauled. This paper presents volcanic ash plume analysis, trajectory from satellites, analysis of ash particles collected in cabin air heat exchanger filters and removed from the engines, and data from onboard instruments and engine conditions.

  1. Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid

    DOEpatents

    Geisbrecht, Rodney A.; Holcombe, Norman T.

    2006-02-07

    A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.

  2. Preliminary flight-test results of an advanced technology light twin-engine airplane /ATLIT/

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Kohlman, D. L.; Crane, H. L.

    1976-01-01

    The present status and flight-test results are presented for the ATLIT airplane. The ATLIT is a Piper PA-34 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll-control spoilers, and full-span Fowler flaps. Flight-test results on stall and spoiler roll characteristics show good agreement with wind-tunnel data. Maximum power-off lift coefficients are greater than 3.0 with flaps deflected 37 deg. With flaps down, spoiler deflections can produce roll helix angles in excess of 0.11 rad. Flight testing is planned to document climb and cruise performance, and supercritical propeller performance and noise characteristics. The airplane is scheduled for testing in the NASA-Langley Research Center Full-Scale Tunnel.

  3. The effect of chine tires on nose gear water-spray characteristics of a twin engine airplane

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Stubbs, S. M.; Mccarty, J. L.

    1975-01-01

    An experimental investigation was performed to evaluate the effectiveness of nose gear chine tires in eliminating or minimizing the engine spray ingestion problem encountered on several occasions by the Merlin 4, a twin-engine propjet airplane. A study of the photographic and television coverage indicated that under similar test conditions the spray from the chine tires presented less of a potential engine spray ingestion problem than the conventional tires. Neither tire configuration appeared to pose any ingestion problem at aircraft speeds in excess of the hydroplaning speed for each tire, however, significant differences were noted in the spray patterns of the two sets of tires at sub-hydroplaning speeds. At sub-hydroplaning speeds, the conventional tires produced substantial spray above the wing which approached the general area of the engine air inlet at lower test speeds. The chine tires produced two distinct spray plumes at sub-hydroplaning speeds: one low-level plume which presented no apparent threat of ingestion, and one which at most test speeds was observed to be below the wing leading edge and thus displaced from the intakes on the engine nacelle.

  4. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....414 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... flight training for flight instructors (airplane), flight engineer instructors (airplane), and flight... to develop during instruction. (4) For flight engineer instructors (airplane) and flight...

  5. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....414 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... flight training for flight instructors (airplane), flight engineer instructors (airplane), and flight... to develop during instruction. (4) For flight engineer instructors (airplane) and flight...

  6. 14 CFR 121.414 - Initial and transition training and checking requirements: flight instructors (airplane), flight...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....414 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED... flight training for flight instructors (airplane), flight engineer instructors (airplane), and flight... to develop during instruction. (4) For flight engineer instructors (airplane) and flight...

  7. Crash tests of four low-wing twin-engine airplanes with truss-reinforced fuselage structure

    NASA Technical Reports Server (NTRS)

    Williams, M. S.; Fasanella, E. L.

    1982-01-01

    Four six-place, low-wing, twin-engine, general aviation airplane test specimens were crash tested under controlled free flight conditions. All airplanes were impacted on a concrete test surface at a nomial flight path velocity of 27 m/sec. Two tests were conducted at a -15 deg flight path angle (0 deg pitch angle and 15 deg pitch angle), and two were conducted at a -30 deg flight path angle (-30 deg pitch angle). The average acceleration time histories (crash pulses) in the cabin area for each principal direction were calculated for each crash test. In addition, the peak floor accelerations were calculated for each test as a function of aircraft fuselage longitudinal station number. Anthropomorphic dummy accelerations were analyzed using the dynamic response index and severity index (SI) models. Parameters affecting the dummy restraint system were studied; these parameters included the effect of no upper torso restraint, measurement of the amount of inertia-reel strap pullout before locking, measurement of dummy chest forward motion, and loads in the restraints. With the SI model, the dummies with no shoulder harness received head impacts above the concussive threshold.

  8. Full-scale wind tunnel-investigation of the Advanced Technology Light Twin-Engine airplane (ATLIT). [Langley full scale tunnel

    NASA Technical Reports Server (NTRS)

    Hassell, J. L., Jr.; Newsom, W. A., Jr.; Yip, L. P.

    1980-01-01

    An investigation was conducted to evaluate the aerodynamic performance, stability, and control characteristics of the Advanced Technology Light Twin Engine airplane (ATLIT). Data were measured over an angle of attack range from -4 deg to 20 deg for various angles of sideslip between -5 deg and 15 deg at Reynolds numbers of 0.0000023 and 0.0000035 for various settings of power and flap deflection. Measurements were also made by means of special thrust torque balances to determine the installed propeller characteristics. Part of the investigation was devoted to drag cleanup of the basic airplane and to the evaluation of the effect of winglets on drag and stability.

  9. Rotary balance data for a single-engine agricultural airplane configuration for an angle-of-attack range of 8 deg to 90 deg

    NASA Technical Reports Server (NTRS)

    Mulcay, W. J.; Chu, J.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/10 scale single engine agricultural airplane model. The configurations tested include the basic airplane, various wing leading edge and wing tip devices, elevator, aileron, and rudder control settings, and other modifications. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg, and clockwise and counter-clockwise rotations covering a spin coefficient range from 0 to .9.

  10. Amphibious Airplane

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The airplane pictured is the new Air Shark I, a four-place amphibian that makes extensive use of composite materials and cruises at close to 200 miles per hour under power from a 200-horsepower engine. Air Shark I is a "homebuilt" airplane, assembled from a kit of parts and components furnished by Freedom Master Corporation, Satellite Beach, Florida. The airplane incorporates considerable NASA technology and its construction benefited from research assistance provided by Kennedy Space Center (KSC) In designing the Shark, company president Arthur M. Lueck was able to draw on NASA's aeronautical technology bank through KSC's computerized "recon" library. As a result of his work at KSC, the wing of the Air Shark I is a new airfoil developed by Langley Research Center for light aircraft. In addition, Lueck opted for NASA-developed "winglets," vertical extensions of the wing that reduce drag by smoothing air turbulence at the wingtips. The NASA technology bank also contributed to the hull design. Lueck is considering application of NASA laminar flow technology-means of smoothing the airflow over wing and fuselage-to later models for further improvement of the Shark's aerodynamic efficiency. A materials engineer, Lueck employed his own expertise in designing and selecting the materials for the composite segments, which include all structural members, exposed surfaces and many control components. The materials are fiber reinforced plastics, or FRP They offer a high strength-to-weight ratio, with a nominal strength rating about one and a half times that of structural steel. They provide other advantages: the materials can be easily molded into finished shapes without expensive tooling or machining, and they are highly corrosion resistant. The first homebuilt to be offered by Freedom Master, Air Shark I completed air and water testing in mid-1985 and the company launched production of kits.

  11. Flight investigation of the effects of an outboard wing-leading-edge modification on stall/spin characteristics of a low-wing, single-engine, T-tail light airplane

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Dicarlo, Daniel J.; Patton, James M., Jr.

    1987-01-01

    Flight tests were performed to investigate the change in stall/spin characteristics due to the addition of an outboard wing-leading-edge modification to a four-place, low-wing, single-engine, T-tail, general aviation research airplane. Stalls and attempted spins were performed for various weights, center of gravity positions, power settings, flap deflections, and landing-gear positions. Both stall behavior and wind resistance were improved compared with the baseline airplane. The latter would readily spin for all combinations of power settings, flap deflections, and aileron inputs, but the modified airplane did not spin at idle power or with flaps extended. With maximum power and flaps retracted, the modified airplane did enter spins with abused loadings or for certain combinations of maneuver and control input. The modified airplane tended to spin at a higher angle of attack than the baseline airplane.

  12. 76 FR 77382 - Airworthiness Directives; Continental Motors, Inc. (CMI) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... adapter gear shaft, leading to an inoperable oil scavenge pump and engine in-flight shutdown. DATES: This... an inoperable oil scavenge pump and engine in-flight shutdown. Relevant Service Information We... requirements affecting flight safety and was not preceded by notice and an opportunity for public...

  13. Unsteady-flow velocity measurements around an intake valve of a reciprocating engine

    SciTech Connect

    El Tahry, S.H.; Khalighi, B.; Kuziak, W.R. Jr.

    1987-01-01

    In the present work, measurements of the velocity profiles in the valve curtain area of an internal combustion engine were made using hot-wire anemometry. The three components of velocity were measured under a variety of engine speeds, valve lifts, and inlet pipe configurations. From an analysis of the results, it was found that during the intake stroke, a region spanning about 60 crank angle degrees and centered at the middle of the intake stroke could be identified where transient effects had little effect on the intake velocity profiles. In this region, the velocity profiles were fairly insensitive to engine speed and to the type of inlet pipe used, but were sensitive to the valve lift. Surrounding this region, in the early and late parts of the intake stroke, the profiles were found to be influenced by transient effects and were sensitive to engine speed, type of inlet pipe, and valve lift.

  14. Wind tunnel test of model target thrust reversers for the Pratt and Whitney aircraft JT8D-100 series engines installed on a 727-200 airplane

    NASA Technical Reports Server (NTRS)

    Hambly, D.

    1974-01-01

    The results of a low speed wind tunnel test of 0.046 scale model target thrust reversers installed on a 727-200 model airplane are presented. The full airplane model was mounted on a force balance, except for the nacelles and thrust reversers, which were independently mounted and isolated from it. The installation had the capability of simulating the inlet airflows and of supplying the correct proportions of primary and secondary air to the nozzles. The objectives of the test were to assess the compatibility of the thrust reversers target door design with the engine and airplane. The following measurements were made: hot gas ingestion at the nacelle inlets; model lift, drag, and pitching moment; hot gas impingement on the airplane structure; and qualitative assessment of the rudder effectiveness. The major parameters controlling hot gas ingestion were found to be thrust reverser orientation, engine power setting, and the lip height of the bottom thrust reverser doors on the side nacelles. The thrust reversers tended to increase the model lift, decrease the drag, and decrease the pitching moment.

  15. The 727 airplane side inlet low-speed performance confirmation model test for refanned JT8D engines

    NASA Technical Reports Server (NTRS)

    Schuehle, A. L.

    1974-01-01

    The results of a low-speed wind tunnel test of a 0.3 scale model 727 airplane side inlet for JT8D-100 engines are presented. The objectives of the test were to develop lines for a full-scale flightworthy inlet, to evaluate inlet total pressure recovery and steady-state total pressure distortion, and to obtain model-scale distortion data which can be used in the assessment of the compatibility of the inlet with the JT8D-100 series engines. A secondary objective was to obtain internal/external cowl static pressures for the determination of nacelle loads. Two basic inlet models were tested at static, forward speed, angle-of-attack (inflow angle), and cross-wind conditions. One model was with and one without an acoustic ring. Two modifications to the models were also tested, one with the ring closer to the inlet throat and one with a larger lip. Test measurements consisted of inlet surface static pressure, engine face total pressure, inlet airflow, tunnel total pressure, tunnel total temperature and tunnel velocity. Total pressure traverses were taken directly behind the ring and strut. No dynamic measurements were taken.

  16. Performance, Efficiency, and Emissions Characterization of Reciprocating Internal Combustion Engines Fueled with Hydrogen/Natural Gas Blends

    SciTech Connect

    Kirby S. Chapman; Amar Patil

    2007-06-30

    in a reciprocating four stroke cycle engine. The test matrix varied engine load and air-to-fuel ratio at throttle openings of 50% and 100% at equivalence ratios of 1.00 and 0.90 for hydrogen percentages of 10%, 20% and 30% by volume. In addition, tests were performed at 100% throttle opening, with an equivalence ratio of 0.98 and a hydrogen blend of 20% to further investigate CO emission variations. Data analysis indicated that the use of hydrogen/natural gas fuel blend penalizes the engine operation with a 1.5 to 2.0% decrease in torque, but provided up to a 36% reduction in CO, a 30% reduction in NOX, and a 5% increase in brake thermal efficiency. These results concur with previous results published in the open literature. Further reduction in emissions can be obtained by retarding the ignition timing.

  17. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    SciTech Connect

    Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  18. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect

    Greg Beshouri; Kirby S. Chapman; Jim McCarthy; Sarah R. Nuss-Warren; Mike Whelan

    2006-03-01

    This quarterly report re-evaluates current market objectives in the exploration and production industry, discusses continuing progress in testing that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine, and presents a scheme for enacting remote monitoring and control of engines during upcoming field tests. The examination of current market objectives takes into account technological developments and changing expectations for environmental permitting which may have occurred over the last year. This demonstrates that the continuing work in controlled testing and toward field testing is on track Market pressures currently affecting the gas exploration and production industry are shown to include a push for increased production, as well as an increasing cost for environmental compliance. This cost includes the direct cost of adding control technologies to field engines as well as the indirect cost of difficulty obtaining permits. Environmental regulations continue to require lower emissions targets, and some groups of engines which had not previously been regulated will be required to obtain permits in the future. While the focus remains on NOx and CO, some permits require reporting of additional emissions chemicals. Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOx emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing

  19. 78 FR 67018 - Airworthiness Directives; Embraer S.A. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... receipt. FOR FURTHER INFORMATION CONTACT: Jim Rutherford, Aerospace Engineer, FAA, Small Airplane...; email: jim.rutherford@faa.gov . SUPPLEMENTARY INFORMATION: Discussion The Agencia Nacional De Aviacoa.... Send information to ATTN: Jim Rutherford, Aerospace Engineer, FAA, Small Airplane Directorate,...

  20. 77 FR 51462 - Airworthiness Directives; BRP-Powertrain GmbH & Co KG Rotax Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-24

    ... carburetors connected to those fuel pumps for contamination within 5 flight hours after the effective date of... contamination of the carburetor, which could result in an in-flight engine shutdown, forced landing and damage... contamination within 5 flight hours after the effective date of the AD. FAA's Determination of the...

  1. 77 FR 12450 - Airworthiness Directives; BRP-Powertrain GmbH & Co KG Rotax Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... one-time inspection of the oil system for leaks and a torque check of the oil pump attachment bolts, and if leaks are detected, performing a one-time inspection of the oil pump and engine valve train, on... had the oil pump attachment bolts torqued to specification. We are issuing this AD to prevent...

  2. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect

    Kirby S. Chapman

    2004-01-01

    During the fourth reporting period, the project team investigated the Non-Selective Catalytic Reduction technologies that are in use on rich-burn four-stroke cycle engines. Several engines were instrumented and data collected to obtain a rich set of engine emissions and performance data. During the data collection, the performance of the catalyst under a variety of operating conditions was measured. This information will be necessary to specify a set of sensors that can then be used to reliably implement NSCRs as plausible technologies to reduce NOx emissions for four-stroke cycle engines used in the E&P industry. A complete summary all the technologies investigated to data is included in the report. For each technology, the summary includes a description of the process, the emission reduction that is to be expected, information on the cost of the technology, development status, practical considerations, compatibility with other air pollutant control technologies, and any references used to obtain the information.

  3. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2006-07-01

    Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOX emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing pre-combustion chambers with different characteristics and using mid-to-high-pressure fuel valves and initial runs of these tests. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and changes to the first planned field test are presented. Although changes have been made to the previous plan, it is expected that several new sites will be selected soon. Field tests will begin in the next quarter.

  4. Flight testing the digital electronic engine control in the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  5. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    SciTech Connect

    McIntyre, D. L.

    2007-05-01

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and explored in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling

  6. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect

    Sarah R. Nuss-Warren; Kirby S. Chapman

    2005-12-01

    This quarterly report discusses continuing work in the testing phase of the project that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine. In this phase, a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) is used to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NO{sub x} emissions. This report describes potential emission reduction technologies, some of which have already been tested, and describes progress toward completing remaining tests to evaluate further synergies between some of the more promising technologies. While the end-goal is a closed-loop control system coupled with a low cost NO{sub x} retrofit package, additional work remains. Technologies including pre-combustion chambers, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on preparing the test cell for tests using a 180 psig fuel valve. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine.

  7. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect

    Kirby S. Chapman

    2005-10-01

    This quarterly report discusses the results from a testing phase of the project that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine. In this phase, a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) is used to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NO{sub x} emissions. This report describes potential emission reduction technologies followed by a battery of tests that demonstrate synergies between some of the more promising technologies. While the end-goal is a closed loop control, low cost NO{sub x} retrofit package, additional work remains. The battery of tests include pre-combustion chambers, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing. During several phases of the tests, the ignition timing also was varied to determine the optimal point for ignition timing. The results from these tests suggest that an optimum exists where fuel consumption is minimized along with NO{sub x} emissions. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and the cost to operate the engine is very inexpensive.

  8. 78 FR 28128 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: We are adopting a... airplanes. This AD was prompted by reports of two in-service occurrences on Model 737-400 airplanes of total..., inability to restart the engines, and consequent forced landing of the airplane. DATES: This AD is...

  9. 75 FR 69745 - Aging Airplane Program: Widespread Fatigue Damage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ...This final rule amends FAA regulations pertaining to certification and operation of transport category airplanes to prevent widespread fatigue damage in those airplanes. For certain existing airplanes, the rule requires design approval holders to evaluate their airplanes to establish a limit of validity of the engineering data that supports the structural maintenance program (LOV). For future......

  10. Measurements of the Air-flow Velocity in the Cylinder of an Airplane Engine

    NASA Technical Reports Server (NTRS)

    Wenger, Hermann

    1939-01-01

    The object of the present investigation is to determine the velocity in the BMW-VI cylinder of an externally driven single-cylinder test engine at high engine speeds using the hot-wire method of Ulsamer.

  11. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2006-12-31

    This report highlights work done on a project intended to lower the cost of environmental compliance and expedite project permitting for Exploration and Production (E&P) operators by identifying, developing, testing, and commercializing emissions control and monitoring technologies. Promising technologies have already been identified and developed. Current work focuses on testing these promising technologies. Specifically, several technologies are being tested in the laboratory for application to lean-burn engines or fully characterized on-site for use with rich-burn engines. Upon completion of these tests, the most cost-effective and robust technologies will be tested in the field and commercialization will ensue. During this quarter, progress in laboratory testing for lean-burn engines was limited by maintenance issues on the KSU Ajax DP-115. The difficulties that required maintenance to be performed will likely require that the 180 psig prototype valve be tested in the future, if possible. The maintenance was performed, and it is expected that the Ajax will be available for testing in the coming quarter. Although laboratory testing was slowed as a result of maintenance issues, progress in experimental characterization of technologies has been significant. NSCR systems will be characterized as applied to rich-burn engines on-site. This characterization will ensure high-quality data in final field testing on rich-burn engines and is considered to be essential, despite that the work requires the delay of official field testing until 2008. Many preliminary and administrative tasks have been completed, including initial site selection, official proposal submittal, and beginning a process to approve necessary changes to installed field engines.

  12. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    SciTech Connect

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  13. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  14. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  15. Modeling dynamic reciprocity: Engineering three-dimensional culture models of breast architecture, function, and neoplastic transformation

    PubMed Central

    Nelson, Celeste M.; Bissell, Mina J.

    2010-01-01

    In order to understand why cancer develops as well as predict the outcome of pharmacological treatments, we need to model the structure and function of organs in culture so that our experimental manipulations occur under physiological contexts. This review traces the history of the development of a prototypic example, the three-dimensional (3D) model of the mammary gland acinus. We briefly describe the considerable information available on both normal mammary gland function and breast cancer generated by the current model and present future challenges that will require an increase in its complexity. We propose the need for engineered tissues that faithfully recapitulate their native structures to allow a greater understanding of tissue function, dysfunction, and potential therapeutic intervention. PMID:15963732

  16. 78 FR 57672 - Aviation Rulemaking Advisory Committee Meeting on Transport Airplane and Engine Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... Controls Working Group Report Airworthiness Assurance Working Group Report Engine Harmonization Working Group Report Flight Test Harmonization Working Group Report Any Other Business Action Items...

  17. INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - DEWALT RECIPROCATING SAW OENHP{number_sign}: 2001-01, VERSION A

    SciTech Connect

    Unknown

    2002-01-31

    Florida International University's (FIU) Hemispheric Center for Environmental Technology (HCET) evaluated five saws for their effectiveness in cutting specially prepared fiberglass-reinforced plywood crates. These crates were built as surrogates for crates that presently hold radioactively contaminated glove boxes at the Department of Energy's (DOE) Los Alamos facility. The DeWalt reciprocating saw was assessed on August 13, 2001. During the FIU test of efficacy, a team from the Operating Engineers National Hazmat Program (OENHP) evaluated the occupational safety and health issues associated with this technology. The DeWalt reciprocating saw is a hand-held industrial tool used for cutting numerous materials, including wood and various types of metals depending upon the chosen blade. Its design allows for cutting close to floors, corners, and other difficult areas. An adjustable shoe sets the cut at three separate depths. During the demonstration for the dismantling of the fiberglass-reinforced plywood crate, the saw was used for extended continuous cutting, over a period of approximately two hours. The dismantling operation involved vertical and horizontal cuts, saw blade changes, and material handling. During this process, operators experienced vibration to the hand and arm in addition to a temperature rise on the handgrip. The blade of the saw is partially exposed during handling and fully exposed during blade changes. Administrative controls, such as duty time of the operators and the machine, operator training, and personal protective equipment (PPE), such as gloves, should be considered when using the saw in this application. Personal noise sampling indicated that both workers were exposed to noise levels exceeding the Occupational Safety and Health Administration's (OSHA) Action Level of 85 decibels (dBA) with time-weighted averages (TWA's) of 88.3 and 90.6 dBA. Normally, a worker would be placed in a hearing conservation program if his TWA was greater than

  18. Analysis of in-flight acoustic data for a twin-engined turboprop airplane

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Wilby, E. G.

    1988-01-01

    Acoustic measurements were made on the exterior and interior of a general aviation turboprop airplane during four flight tests. The test conditions were carefully controlled and repeated for each flight in order to determine data variability. For the first three flights the cabin was untreated and for the fourth flight the fuselage was treated with glass fiber batts. On the exterior, measured propeller harmonic sound pressure levels showed typical standard deviations of +1.4 dB, -2.3 dB, and turbulent boundary layer pressure levels, +1.2 dB, -1.6. Propeller harmonic levels in the cabin showed greater variability, with typical standard deviations of +2.0 dB, -4.2 dB. When interior sound pressure levels from different flights with different cabin treatments were used to evaluate insertion loss, the standard deviations were typically plus or minus 6.5 dB. This is due in part to the variability of the sound pressure level measurements, but probably is also influenced by changes in the model characteristics of the cabin. Recommendations are made for the planning and performance of future flight tests to measure interior noise of propeller-driven aircraft, either high-speed advanced turboprop or general aviation propellers.

  19. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    SciTech Connect

    Keith Hohn; Sarah R. Nuss-Warren

    2011-08-31

    This final report describes a project intended to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by E&P operators to significantly lower their cost of environmental compliance and expedite project permitting. Technologies were installed and tested in controlled laboratory situations and then installed and tested on field engines based on the recommendations of an industry-based steering committee, analysis of installed horsepower, analysis of available emissions control and monitoring technologies, and review of technology and market gaps. The industry-recognized solution for lean-burn engines, a low-emissions-retrofit including increased airflow and pre-combustion chambers, was found to successfully control engine emissions of oxides of nitrogen (NO{sub X}) and carbon monoxide (CO). However, the standard non-selective catalytic reduction (NSCR) system recognized by the industry was found to be unable to consistently control both NO{sub X} and CO emissions. The standard NSCR system was observed to produce emissions levels that changed dramatically on a day-to-day or even hour-to-hour basis. Because difficulties with this system seemed to be the result of exhaust gas oxygen (EGO) sensors that produced identical output for very different exhaust gas conditions, models were developed to describe the behavior of the EGO sensor and an alternative, the universal exhaust gas oxygen (UEGO) sensor. Meanwhile, an integrated NSCR system using an advanced, signal-conditioned UEGO sensor was tested and found to control both NO{sub X} and CO emissions. In conjunction with this project, advanced monitoring technologies, such as Ion Sense, and improved sensors for emissions control, such as the AFM1000+ have been developed and commercialized.

  20. 78 FR 41684 - Special Conditions: Embraer S.A. Model EMB-550 Airplanes, Sudden Engine Stoppage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... supporting structure. Applicability As discussed above, these special conditions are applicable to the Model...-engine installations, the engine mounts, pylons, and adjacent supporting airframe structure must be... auxiliary power unit (APU) installations, the APU mounts and adjacent supporting airframe structure must...

  1. Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.

    1983-01-01

    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.

  2. 14 CFR 135.397 - Small transport category airplane performance operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Small transport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.397 Small transport category airplane performance operating limitations. (a) No person may operate a reciprocating...

  3. 14 CFR 135.397 - Small transport category airplane performance operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Small transport category airplane... PERSONS ON BOARD SUCH AIRCRAFT Airplane Performance Operating Limitations § 135.397 Small transport category airplane performance operating limitations. (a) No person may operate a reciprocating...

  4. The FAA aging airplane program plan for transport aircraft

    NASA Technical Reports Server (NTRS)

    Curtis, Dayton; Lewis, Jess

    1992-01-01

    The Federal Aviation Administration (FAA) Aging Airplane Program is focused on five program areas: maintenance, transport airplanes, commuter airplanes, airplane engines, and research. These programs are complementary and concurrent, and have been in effect since 1988. The programs address the aging airplane challenge through different methods, including policies, procedures, and hardware development. Each program is carefully monitored and its progress tracked to ensure that the needs of the FAA, the industry, and the flying public are being met.

  5. Fault detection and accommodation testing on an F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.

    1985-01-01

    The fault detection and accommodation (FDA) methodology for digital engine-control systems may range from simple comparisons of redundant parameters to the more complex and sophisticated observer models of the entire engine system. Evaluations of the various FDA schemes are done using analytical methods, simulation, and limited-altitude-facility testing. Flight testing of the FDA logic has been minimal because of the difficulty of inducing realistic faults in flight. A flight program was conducted to evaluate the fault detection and accommodation capability of a digital electronic engine control in an F-15 aircraft. The objective of the flight program was to induce selected faults and evaluate the resulting actions of the digital engine controller. Comparisons were made between the flight results and predictions. Several anomalies were found in flight and during the ground test. Simulation results showed that the inducement of dual pressure failures was not feasible since the FDA logic was not designed to accommodate these types of failures.

  6. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  7. Fault detection and accommodation testing on an F100 engine in an F-15 airplane. [digital engine control system

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Baer-Riedhart, J. L.; Maxwell, M. D.

    1985-01-01

    The fault detection and accommodation (FDA) methods that can be used for digital engine control systems are presently subjected to a flight test program in the case of the F-15 fighter's F100 engine electronic controls, inducing selected faults and then evaluating the resulting digital engine control responses. In general, flight test results were found to compare well with both ground tests and predictions. It is noted that the inducement of dual-pressure failures was not feasible, since FDA logic was not designed to accommodate them.

  8. 77 FR 58970 - Special Conditions: Embraer S.A. Model EMB-550 Airplanes, Sudden Engine Stoppage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... first of a new family of jets designed as a corporate jet, and for fractional, charter, and private... account for the full spectrum of transient dynamic loads developed from the engine-failure condition... dynamic loads resulting from: (a) The loss of any fan, compressor, or turbine blade; and separately...

  9. 77 FR 1622 - Airworthiness Directives; Socata Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... INFORMATION CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri 64106; telephone: (816) 329-4119; fax: (816) 329-4090; email: albert.mercado@faa... information to ATTN: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room...

  10. 78 FR 72834 - Airworthiness Directives; SOCATA Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-04

    ... INFORMATION CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri 64106; telephone: (816) 329-4119; fax: (816) 329-4090; email: albert.mercado@faa...: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas...

  11. Airplane Airworthiness; Transport Categories

    DTIC Science & Technology

    1962-09-01

    4b.16 (b). The operatLg conditions expected in service and following procedure which permits considerable obtainable within the time and geograp -ic...116 (c). It is also assumed that the cowl flaps on the inoperative engine will be closed when the airplane enters the third takeoff climb segment with...as for the third takeoff LAnding gear-retracted. flight path climb segment except that maximum Operating engine(s)-takeoff r. p. m. continuous power is

  12. 77 FR 60341 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines to..., ``National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion......

  13. Measurement of the Maximum Altitude Attained by the X-15 Airplane Powered with Interim Rocket Engines

    NASA Technical Reports Server (NTRS)

    Stillwell, Wendell H.; Larson, Terry J.

    1960-01-01

    On August 12, 1960, an X-15 flight was made to achieve essentially the maximum altitude expected to be possible with the interim rocket engines. N l y corrected altitude measurements showed that the maxhum geometric altitude was 136,500 feet k600 and the maximum pressure altitude, referred to the tables of the 0. S . Extension to the ICAO Standard Atmosphere, was indicated to be 133,900 feet.

  14. Electromagnetic Reciprocity.

    SciTech Connect

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories and now a

  15. Giant airplanes

    NASA Technical Reports Server (NTRS)

    Warner, Edward P

    1922-01-01

    It is hardly possible for the most imaginative aeronautical enthusiast to look forward to a time when the airplane will have reached the dimensions commensurate with those already attained by the airship.

  16. Reciprocal translocations

    SciTech Connect

    1993-12-31

    Chapter 26, describes reciprocal translocations of chromosomes: their occurrence, breakpoints, and multiple rearrangements. In addition, phenotypes of balanced and unbalanced translocation carriers and fetal death are discussed. Examples of translocation families are given. Meiosis and genetic risk in translocation carriers is presented. Finally, sperm chromosomes in meiotic segregation analysis is mentioned. 39 refs., 3 figs., 1 tab.

  17. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Reciprocating Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... air pollutants for reciprocating internal combustion engines and requesting public comment on one... the limitations on operation of emergency stationary engines to allow emergency engines to operate...

  18. Wind-Tunnel Investigation of Effects of Unsymmetrical Horizontal-Tail Arrangements on Power-on Static Longitudinal Stability of a Single-Engine Airplane Model

    NASA Technical Reports Server (NTRS)

    Purser, Paul E.; Spear, Margaret F.

    1947-01-01

    A wind-tunnel investigation has been made to determine the effects of unsymmetrical horizontal-tail arrangements on the power-on static longitudinal stability of a single-engine single-rotation airplane model. Although the tests and analyses showed that extreme asymmetry in the horizontal tail indicated a reduction in power effects on longitudinal stability for single-engine single-rotation airplanes, the particular "practical" arrangement tested did not show marked improvement. Differences in average downwash between the normal tail arrangement and various other tail arrangements estimated from computed values of propeller-slipstream rotation agreed with values estimated from pitching-moment test data for the flaps-up condition (low thrust and torque) and disagreed for the flaps-down condition (high thrust and torque). This disagreement indicated the necessity for continued research to determine the characteristics of the slip-stream behind various propeller-fuselage-wing combinations. Out-of-trim lateral forces and moments of the unsymmetrical tail arrangements that were best from consideration of longitudinal stability were no greater than those of the normal tail arrangement.

  19. The Effect on Airplane Performance of the Factors That Must Be Considered in Applying Low-Drag Cowling to Radial Engines

    NASA Technical Reports Server (NTRS)

    Mcavoy, William H; Schey, Oscar W; Young, Alfred W

    1933-01-01

    This report presents the results of flight tests with three different airplanes using several types of low-drag cowling for radial air-cooled engines. The greater part of the tests were made with a Curtiss XF7Cc-1 (Sea Hawk) with a 410 horsepower. Wasp engine, using three fuselage nose shapes and six types of outer cowling. The six cowlings were: a narrow ring, a wide ring, a wide cowling similar in the original NACA cowling, a thick ring incorporating an exhaust collector, a single-surface cowling shaped like the outer surface of the exhaust-collector cowling, and polygon-ring cowling, of which the angle of the straight sections with the thrust line could be varied over a wide range.

  20. The evolution of airplanes

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Charles, J. D.; Lorente, S.

    2014-07-01

    The prevailing view is that we cannot witness biological evolution because it occurred on a time scale immensely greater than our lifetime. Here, we show that we can witness evolution in our lifetime by watching the evolution of the flying human-and-machine species: the airplane. We document this evolution, and we also predict it based on a physics principle: the constructal law. We show that the airplanes must obey theoretical allometric rules that unite them with the birds and other animals. For example, the larger airplanes are faster, more efficient as vehicles, and have greater range. The engine mass is proportional to the body size: this scaling is analogous to animal design, where the mass of the motive organs (muscle, heart, lung) is proportional to the body size. Large or small, airplanes exhibit a proportionality between wing span and fuselage length, and between fuel load and body size. The animal-design counterparts of these features are evident. The view that emerges is that the evolution phenomenon is broader than biological evolution. The evolution of technology, river basins, and animal design is one phenomenon, and it belongs in physics.

  1. 77 FR 65799 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... electrical power generation, could result in reduced control of the airplane. DATES: This AD becomes... total engine flame out, or during a total loss of normal electrical power generation, could possibly... power generation, could result in reduced control of the airplane. (f) Compliance You are...

  2. Annoyance caused by propeller airplane flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1984-01-01

    Laboratory experiments were conducted to provide information on quantifying the annoyance response of people to propeller airplane noise. The items of interest were current noise metrics, tone corrections, duration corrections, critical band corrections, and the effects of engine type, operation type, maximum takeoff weight, blade passage frequency, and blade tip speed. In each experiment, 64 subjects judged the annoyance of recordings of propeller and jet airplane operations presented at d-weighted sound pressure levels of 70, 80, and 90 dB in a testing room which simulates the outdoor acoustic environment. The first experiment examined 11 propeller airplanes with maximum takeoff weights greater than or equal to 5700 kg. The second experiment examined 14 propeller airplanes weighting 5700 kg or less. Five jet airplanes were included in each experiment. For both the heavy and light propeller airplanes, perceived noise level and perceived level (Stevens Mark VII procedure) predicted annoyance better than other current noise metrics.

  3. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  4. 75 FR 17084 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Model TAE 125-01 Reciprocating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... or the engine lubrication system. This condition, if not corrected, could lead to in-flight cases of... or the engine lubrication system. This condition, if not corrected, could lead to in-flight cases of... may adversely affect the gearbox clutch or the engine lubrication system. This condition, if...

  5. Analysis of Acceleration, Airspeed, and Gust-Velocity Data From a Four-Engine Transport Airplane Operating Over a Northwestern United States Alaska Route

    NASA Technical Reports Server (NTRS)

    Engel, Jerome N.; Copp, Martin R.

    1959-01-01

    Acceleration, airspeed, and altitude data obtained with an NACA VGH recorder from a four-engine commercial transport airplane operating over a northwestern United States-Alaska route were evaluated to determine the magnitude and frequency of occurrence of gust and maneuver accelerations., operating airspeeds, and gust velocities. The results obtained were then compared with the results previously reported in NACA Technical Note 3475 for two similar airplanes operating over transcontinental routes in the United States. No large variations in the gust experience for the three operations were noted. The results indicate that the gust-load experience of the present operation closely approximated that of the central transcontinental route in the United States with which it is compared and showed differences of about 4 to 1 when compared with that of the southern transcontinental route in the United States. In general, accelerations due to gusts occurred much more frequently than those due to operational maneuvers. At a measured normal-acceleration increment of 0.5g, accelerations due to gusts occurred roughly 35 times more frequently than those due to operational maneuvers.

  6. Comparison of flight results with digital simulation for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1983-01-01

    Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.

  7. Automated airplane surface generation

    SciTech Connect

    Smith, R.E.; Cordero, Y.; Jones, W.

    1996-12-31

    An efficient methodology and software axe presented for defining a class of airplane configurations. A small set of engineering design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tall, horizontal tail, and canard components. Wing, canard, and tail surface grids axe manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage is described by an algebraic function with four design parameters. The computed surface grids are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations. Both batch and interactive software are discussed for applying the methodology.

  8. Effects of Boattail Area Contouring and Simulated Turbojet Exhaust on the Loading and Fuselage-tail Component Drag of a Twin-engine Fighter-type Airplane Model

    NASA Technical Reports Server (NTRS)

    Foss, Willard E , Jr; Runckel, Jack F; Lee, Edwin E , Jr

    1958-01-01

    An investigation of a twin-engine fighter-type airplane model has been conducted in the Langley 16-foot transonic tunnel to determine the effect on drag of a fuselage volume addition incorporating streamline contouring and more extensive boattailing of the engine shrouds. The effect of hot exhausts from the turbojet engines was simulated with hydrogen peroxide gas generators using scaled nonafterburning engine nozzles. Afterbody pressure distributions, base drag coefficients, and forces on the fuselage-tail configurations are presented at Mach numbers from 0.80 to 1.05 angles of attack of 0 degree and 4 degrees for jet pressure ratios from 1 to 7. The effect of jet operation on both the basic and modified models was generally to decrease base pressures but to increase most other afterbody pressures and, therefore, to result in an overall decrease in fuselage-tail component drag. The addition of volume to the basic model reduced the base drag coefficient by 0.0010 with the jets off and 0.0018 at a typical cruise operating condition of a jet pressure ratio of 3, a Mach number of 0.85, and an angle of attack of 4 degrees. The overall jet-off reduction in fuselage-tail component drag due to the volume addition was a maximum of 0.0040 at a Mach number of 0.90 for an angle of attack of 4 degrees.

  9. 78 FR 54606 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... emission standards for hazardous air pollutants for stationary reciprocating internal combustion engines and the standards of performance for stationary internal combustion engines. Subsequently, the......

  10. 75 FR 75937 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Reciprocating Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... ignition stationary reciprocating internal combustion engines. Subsequently, the Administrator received two... internal generation, combustion engine. transmission, or distribution. 622110 Medical and...

  11. Wind-tunnel investigation of the effect of power and flaps on the static lateral characteristics of a single-engine low-wing airplane model

    NASA Technical Reports Server (NTRS)

    Tamburello, Vito; Weil, Joseph

    1947-01-01

    Tests were made in the Langley 7- by 10-foot tunnel to determine the lateral-stability characteristics with and without power of a model of a typical low-wing single-engine airplane with flaps neutral, with a full-span single slotted flap, and with a full-span double slotted flap. Power decreased the dihedral effect regardless of flap condition, and the double-slotted flap configuration showed the most marked decrease. The usual effect of power in increasing the directional stability was also shown. Deflection of the single slotted flap produced negative dihedral effect, but increased the directional stability. The effects of deflecting the double slotted flap were erratic and marked changes in both effective dihedral and directional stability occurred. The addition of the tail surfaces always contributed directional stability and generally produced positive dihedral effect.

  12. Flight-measured afterbody pressure coefficients from an airplane having twin side-by-side jet engines for Mach numbers from 0.6 to 1.6

    NASA Technical Reports Server (NTRS)

    Steers, L. L.

    1979-01-01

    Afterbody pressure distribution data were obtained in flight from an airplane having twin side-by-side jet exhausts. The data were obtained in level flight at Mach numbers from 0.60 to 1.60 and at elevated load factors for Mach numbers of 0.60, 0.90, and 1.20. The test altitude varied from 2300 meters (7500 feet) to 15,200 meters (50,000 feet) over a speed range that provided a matrix of constant Mach number and constant unit Reynolds number test conditions. The results of the full-scale flight afterbody pressure distribution program are presented in the form of plotted pressure distributions and tabulated pressure coefficients with Mach number, angle of attack, engine nozzle pressure ratio, and unit Reynolds number as controlled parameters.

  13. Fire prevention on airplanes. Part I

    NASA Technical Reports Server (NTRS)

    Sabatier, J

    1929-01-01

    Various methods for preventing fires in airplanes are presented with most efforts centering around prevention of backfires, new engine and carburetor designs, as well as investigations on different types of fuels.

  14. 76 FR 18964 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Model P2006T Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... after receipt. FOR FURTHER INFORMATION CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane... 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace Engineer, FAA, Small...

  15. Jet Interference Effects on a Model of a Single-Engine Four Jet V/STOL Airplane at Mach Numbers from 0.60 to 1.00

    NASA Technical Reports Server (NTRS)

    Schmeer, James W.; Runckel, Jack F.

    1962-01-01

    An investigation was conducted in the Langley 16-foot transonic tunnel to determine the interference from four exhaust jets on the aerodynamic characteristics of a model of a V/STOL airplane. The single- engine four-jet turbofan power plant of the airplane was simulated by inducing tunnel airflow through two large side inlets and injecting the decomposition products of hydrogen peroxide into the internal flow. The heated gas mixture was exhausted through four nozzles located on the sides of the fuselage under the wing, two near the wing leading edge and two forward of the trailing edge; the nozzles were deflected downward 1.5 deg and outward 5.0 deg to simulate cruise conditions. The wing of the model was a clipped delta with leading-edge sweep of 40 deg, aspect ratio of 3.06, taper ratio of 0.218, thickness-chord ratio of 0.09 at the root and 0.07 at the tip, and 10 deg negative dihedral. Aerodynamic and longitudinal stability coefficients were obtained for the model with the tail removed, and for horizontal-tail incidences of 0 deg and -5 deg. Data were obtained at Mach numbers from 0.60 to 1.00, angles of attack from 0 deg to 12 deg, and with jet total-pressure ratios up to 3.1. Jet operation generally caused a decrease in lift, an increase in pitching-moment coefficient, and a decrease in longitudinal stability at subsonic speeds. The jet interference effects on drag were detrimental at a Mach number of 0.60 and favorable at higher speeds for cruising-flight attitudes.

  16. High speed photography and pulsed laser holography for diagnostic investigations of mixture formation and vibration in reciprocating engines

    NASA Astrophysics Data System (ADS)

    Wiegand, H.; Wanders, K.; Mueller, J.; Steinbichler, H.

    1983-08-01

    Using high speed photography, injection and mixture formation processes were recorded and the ignition delay time was determined at full load of a reference diesel engine at 2500 rpm. Pressure was measured by a quartz pressure transducer. Pressure increase was compared with ignition delay. Using holographic interferometry, the injection jet interaction with its environment in the atmosphere was shown. In order to identify the optimum points for fixing antiknocking sensors, holographic interferometry is recommended, because of its high local resolution. For localizing noise sources, holographic recording and evaluation of the vibration modes of complete engine transmission systems under sinusoidal and operational excitation is useful.

  17. 78 FR 63907 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... receipt. FOR FURTHER INFORMATION CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane...; email: albert.mercado@faa.gov . SUPPLEMENTARY INFORMATION: Comments Invited We invite you to send any... Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City,...

  18. 77 FR 56991 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ...: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri 64106; phone: (816) 329-4119; fax: (816) 329-4090; email: albert.mercado@faa.gov . SUPPLEMENTARY... information to ATTN: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room...

  19. 78 FR 73457 - Airworthiness Directives; the Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-06

    ... limit of validity (LOV) of the engineering data that support the structural maintenance program under 14... mandated programs intended to support the airplane reaching its limit of validity (LOV) of the engineering data that support the established structural maintenance program. For certain airplanes, this...

  20. 77 FR 70366 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ..., -243F, -341, -342, and -343 airplanes equipped with Rolls-Royce Trent 700 engines. This AD was prompted by reports of extensive damage to engine air intake cowls as a result of acoustic panel collapse. This AD requires repetitive inspections of the three inner acoustic panels of both engine air...

  1. 76 FR 4216 - Airworthiness Directives; SOCATA Model TBM 700 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, ACE... found in 14 CFR 39.19. Send information to Attn: Albert Mercado, Aerospace Engineer, FAA, Small...

  2. 75 FR 13239 - Airworthiness Directives; SOCATA Model TBM 700 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... receipt. FOR FURTHER INFORMATION CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane... found in 14 CFR 39.19. Send information to Attn: Albert Mercado, Aerospace Engineer, FAA, Small...

  3. 76 FR 30295 - Airworthiness Directives; SOCATA Model TBM 700 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri... procedures found in 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace Engineer, FAA,...

  4. Details of the Construction and Production of Fuel Pumps and Fuel Nozzles for the Airplane Diesel Engine

    NASA Technical Reports Server (NTRS)

    Lubenetsky, W S

    1936-01-01

    This report presents investigations into the design and construction of fuel pumps for diesel engines. The results of the pump tests on the engines showed that, with a good cut-off, accurate injection, assured by the proper adjustment of the pump elements, there is a decrease in the consumption of fuel and hence an increase in the rated power of the engine. Some of the aspects investigated include: cam profile, coefficient of discharge, and characteristics of the injection system.

  5. 76 FR 10213 - Special Conditions: Embraer Model EMB-135BJ (Legacy 650) Airplanes, Limit Engine Torque Loads for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ..., these criteria could allow some deformation in the engine- supporting structure (ultimate load design... engine mounts, pylons and adjacent supporting airframe structure must be designed to withstand 1g level..., the power-unit mounts and adjacent supporting airframe structure must be designed to withstand...

  6. Altitude-Wind-Tunnel Investigation of Oil-System Performance of XR-4360-8 Engine in XTB2D-1 Airplane

    NASA Technical Reports Server (NTRS)

    Conrad, E. William

    1946-01-01

    An investigation was conducted in the Cleveland altitude wind tunnel to determine the aerodynamic characteristics and the oil delivery critical altitude of the oil-cooler installation of an XTB2D-1 airplane. The investigation was made with the propeller removed end with the engine operating at 1800 brake horsepower, an altitude of 15,000 feet (except for tests of oil-delivery critical altitude), oil-cooler flap deflections from -20 degrees to 20 degrees and inclinations of the thrust axis of 0 degrees, 1.5 degrees, and 6 degrees. At an inclination of the thrust axis of 0 degrees and with the propeller operating, the total-pressure recovery coefficient at the face of the oil cooler varied from 0.84 to 1.10 depending on the flap deflection. With the propeller removed, the best pressure recovery at the face of the oil cooler was obtained at an inclination of the thrust axis of 1.5 degrees. Air-flow separation occurred on the inner surface of the upper lip of the oil-cooler duct inlet at an inclination of the thrust axis of 0 degrees and on the inner surface of the lower lip at 6 degrees. Static pressure coefficients over the duct lips were sufficiently low that no trouble from compressibility would be encountered in level flight. The oil-delivery critical altitude at cruising power (2230 rpm, 1675 bhp) was approximately 18,500 feet for the oil system tested.

  7. Spin-tunnel investigation of the spinning characteristics of typical single-engine general aviation airplane designs. 2: Low-wing model A; tail parachute diameter and canopy distance for emergency spin recovery

    NASA Technical Reports Server (NTRS)

    Burk, S. M., Jr.; Bowman, J. S., Jr.; White, W. L.

    1977-01-01

    A spin tunnel study is reported on a scale model of a research airplane typical of low-wing, single-engine, light general aviation airplanes to determine the tail parachute diameter and canopy distance (riser length plus suspension-line length) required for energency spin recovery. Nine tail configurations were tested, resulting in a wide range of developed spin conditions, including steep spins and flat spins. The results indicate that the full-scale parachute diameter required for satisfactory recovery from the most critical conditions investigated is about 3.2 m and that the canopy distance, which was found to be critical for flat spins, should be between 4.6 and 6.1 m.

  8. An Investigation of the Ranger V-770-8 Engine Installation for the Edo XOSE-1 Airplane II : Aerodynamics

    NASA Technical Reports Server (NTRS)

    Dennard, John S.

    1945-01-01

    Investigations were made to determine the cowling and cooling characteristics of the Ranger V-770-8 engine installation in an observation seaplane. Final cowl configurations possessed ample engine and oil-cooler pressure drops for cooling in the critical normal-power climb condition with any of the three baffle configurations tested. The indicated critical Mach number of the cowling was found to be 0.70 as determined by the pressure on the lower lip of the inlet.

  9. Investigation of Propeller-power-plant Autoprecession Boundaries for a Dynamic-aeroelastic Model of a Four-engine Turboprop Transport Airplane

    NASA Technical Reports Server (NTRS)

    Abbott, Frank T., Jr.; Kelley, H. Neale; Hampton, Kenneth D.

    1963-01-01

    A flexibly mounted aircraft engine may under certain conditions experience a self-excited whirling instability involving a coupling between the gyroscopic and aerodynamic forces acting on the propeller, and the inertial, elastic, and damping forces contributed by the power plant, nacelle, and wing. This phenomenon has been called autoprecession, or whirl instability. An experimental investigation was made in the Langley transonic dynamics tunnel at Mach numbers below 0.3 to study some of the pertinent parameters influencing the phenomenon. These parameters included propeller rotational speed, stiffness of the power-plant assembly in the pitch and yaw planes and the ratio of pitch stiffness to yaw stiffness, structural damping of the power-plant assembly in the pitch and yaw planes, simulated fuel load in the wings, and the location and number of autoprecessing powerplant assemblies. A large dynamic-aeroelastic model of a four-engine turboprop transport airplane mounted on a vertical rod in a manner which provided several limited body degrees of freedom was used in the investigation. It was found that the boundary for autoprecession decreased markedly with Increasing proreduction of power-plant stiffness and/or damping, and to a lesser degree decreased with reduction of simulated fuel load in the wings. peller rotational speed generally lowered the autoprecession boundary. This effect was more pronounced as the stiffness was increased. An inboard power plant was found to be more susceptible to autoprecession than an outboard one. Combinations in which two or more power plants had the same level of reduced stiffness resulted in autoprecession boundaries considerably lower than that of a single power plant with the same level of reduced stiffness.

  10. 77 FR 36125 - Airworthiness Directives; SOCATA Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri 64106; telephone: (816) 329-4119; fax: (816) 329-4090; email: albert.mercado@faa.gov... 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace Engineer, FAA, Small...

  11. 77 FR 14314 - Airworthiness Directives; SOCATA Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... receipt. FOR FURTHER INFORMATION CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane...; email: albert.mercado@faa.gov . SUPPLEMENTARY INFORMATION: Comments Invited We invite you to send any... 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace Engineer, FAA, Small...

  12. Reciprocating pellet press

    DOEpatents

    Jones, Charles W.

    1981-04-07

    A machine for pressing loose powder into pellets using a series of reciprocating motions has an interchangeable punch and die as its only accurately machines parts. The machine reciprocates horizontally between powder receiving and pressing positions. It reciprocates vertically to press, strip and release a pellet.

  13. 76 FR 62605 - Airworthiness Directives; Viking Air Limited Model DHC-3 (Otter) Airplanes With Supplemental Type...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Limited Model DHC-3 (Otter) Airplanes With Supplemental Type Certificate (STC) SA 09866SC AGENCY: Federal... DHC-3 (Otter) airplanes equipped with a Honeywell TPE331- 10 or -12JR turboprop engine installed per... for Viking Air Limited Model DHC-3 (Otter) airplanes equipped with a Honeywell TPE331-10 or...

  14. 14 CFR 121.413 - Initial and transition training and checking requirements: Check airmen (airplane), check airmen...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... training for pilot check airmen (airplane), flight engineer check airmen (airplane), and flight navigator... likely to develop during a check. (4) For flight engineer check airmen (airplane) and flight...

  15. 77 FR 69569 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Pitch and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... Model EMB-550 airplane. The Model EMB-550 airplane is the first of a new family of jet airplanes... 12 passengers. It is equipped with two Honeywell HTF7500-E medium bypass ratio turbofan engines mounted on aft fuselage pylons. Each engine produces approximately 6,540 pounds of thrust for...

  16. 78 FR 67323 - Special Conditions: Airbus, Model A350-900 Series Airplane; Transient Engine Failure Loads

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... would be applied to the more critical airframe supporting structure. Type Certification Basis Under... auxiliary power unit installations, the power unit mounts and adjacent supporting airframe structure must be... structural failure; and b. the maximum acceleration of the power unit. 3. For engine supporting structure,...

  17. Real-time in-flight thrust calculation on a digital electronic engine control-equipped F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1984-01-01

    Computer algorithms which calculate in-flight engine and aircraft performance real-time are discussed. The first step was completed with the implementation of a real-time thrust calculation program on a digital electronic engine control (DEEC) equiped F100 engine in an F-15 aircraft. The in-flight thrust modifications that allow calculations to be performed in real-time, to compare results to predictions, are presented.

  18. 77 FR 52201 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... installing Aero-Engine database (AEDB) software in the airplane information management system (AIMS) hardware... 3110-BCG-00R-06, media set part number 243W0033-7, in the airplane information management system... Management, P.O. Box 3707, MC 2H-65, Seattle, Washington 98124-2207; phone: 206-544-5000, extension 1;...

  19. Measurement of the handling characteristics of two light airplanes

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A flight investigation of the handling characteristics of two single engine general aviation airplanes, one a high wing and the other a low wing, included a variety of measurements of different characteristics of the airplanes. The characteristics included those of the control systems, performance, longitudinal and lateral responses, and stall motions.

  20. 76 FR 67631 - Airworthiness Directives; Cirrus Design Corporation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... Corporation Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ] ACTION: Notice of proposed... Corporation (Cirrus) Model SR22T airplanes. This proposed AD was prompted by reports of partial loss of engine... information identified in this proposed AD, contact Cirrus Design Corporation, 4515 Taylor Circle,...

  1. Design definition study of a lift/cruise fan technology V/STOL airplane: Summary

    NASA Technical Reports Server (NTRS)

    Zabinsky, J. M.; Higgins, H. C.

    1975-01-01

    A two-engine three-fan V/STOL airplane was designed to fulfill naval operational requirements. A multimission airplane was developed from study of specific point designs. Based on the multimission concept, airplanes were designed to demonstrate and develop the technology and operational procedures for this class of aircraft. Use of interconnected variable pitch fans led to a good balance between high thrust with responsive control and efficient thrust at cruise speeds. The airplanes and their characteristics are presented.

  2. Sound-Level Measurements of a Light Airplane Modified to Reduce Noise Reaching the Ground

    NASA Technical Reports Server (NTRS)

    Vogeley, A W

    1949-01-01

    An Army liaison-type airplane, representative of personal airplanes in the 150 to 200 horsepower class, has been modified to reduce propeller and engine noise according to known principles of airplane-noise reduction. Noise-level measurements demonstrate that, with reference to an observer on the ground, a noisy airplane of this class can be made quiet -- perhaps more quiet than necessary. In order to avoid extreme and unnecessary modifications, acceptable noise levels must be determined.

  3. Relative Economy of Different Methods of Airplane Construction

    NASA Technical Reports Server (NTRS)

    Herrmann, H

    1931-01-01

    A comparison of the relative economy of airplane construction shows that monoplanes are cheaper than biplanes; that all-metal construction is much more expensive than mixed construction; that multi-engine airplanes are more expensive than single-engine types of the same carrying capacity and speed;that the cost of airplanes is materially reduced by increasing their size without increasing the number of engines. The greatest economy usually coincides with the best aerodynamic and static conditions and the cost is always increased by safety requirements.

  4. Flight evaluation of a simplified gross thrust calculation technique using an F100 turbofan engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Kurtenbach, F. J.; Burcham, F. W., Jr.

    1981-01-01

    A simplified gross thrust calculation technique was evaluated in flight tests on an F-15 aircraft using prototype F100-PW-100 engines. The technique relies on afterburner duct pressure measurements and empirical corrections to an ideal one-dimensional analysis to determine thrust. In-flight gross thrust calculated by the simplified method is compared to gross thrust calculated by the engine manufacturer's gas generator model. The evaluation was conducted at Mach numbers from 0.6 to 1.5 and at altitudes from 6000 meters to 13,700 meters. The flight evaluation shows that the simplified gross thrust method and the gas generator method agreed within plus or minus 3 percent. The discrepancies between the data generally fell within an uncertainty band derived from instrumentation errors and recording system resolution.

  5. The Effects of a Highly Cambered Low-Drag Wing and of Auxiliary Flaps on the High-Speed Aerodynamic Characteristics of a Twin-Engine Pursuit Airplane Model

    NASA Technical Reports Server (NTRS)

    Ganzer, Victor M

    1944-01-01

    Results are presented for tests of two wings, an NACA 230-series wing and a highly-cambered NACA 66-series wing on a twin-engine pursuit airplane. Auxiliary control flaps were tested in combinations with each wing. Data showing comparison of high-speed aerodynamic characteristics of the model when equipped with each wing, the effect of the auxiliary control flaps on aerodynamic characteristics, and elevator effectiveness for the model with the 66-series wing are presented. High-speed aerodynamic characteristics of the model were improved with the 66-series wing.

  6. 14 CFR 135.398 - Commuter category airplanes performance operating limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... all commuter category airplanes notwithstanding their stated applicability to turbine-engine-powered... used, the elevation of the airport, the effective runway gradient, and ambient temperature, and...

  7. 14 CFR 135.398 - Commuter category airplanes performance operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... all commuter category airplanes notwithstanding their stated applicability to turbine-engine-powered... used, the elevation of the airport, the effective runway gradient, and ambient temperature, and...

  8. 14 CFR 135.398 - Commuter category airplanes performance operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... all commuter category airplanes notwithstanding their stated applicability to turbine-engine-powered... used, the elevation of the airport, the effective runway gradient, and ambient temperature, and...

  9. 14 CFR 135.398 - Commuter category airplanes performance operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... all commuter category airplanes notwithstanding their stated applicability to turbine-engine-powered... used, the elevation of the airport, the effective runway gradient, and ambient temperature, and...

  10. 14 CFR 135.398 - Commuter category airplanes performance operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... all commuter category airplanes notwithstanding their stated applicability to turbine-engine-powered... used, the elevation of the airport, the effective runway gradient, and ambient temperature, and...

  11. Reciprocity in directed networks

    NASA Astrophysics Data System (ADS)

    Yin, Mei; Zhu, Lingjiong

    2016-04-01

    Reciprocity is an important characteristic of directed networks and has been widely used in the modeling of World Wide Web, email, social, and other complex networks. In this paper, we take a statistical physics point of view and study the limiting entropy and free energy densities from the microcanonical ensemble, the canonical ensemble, and the grand canonical ensemble whose sufficient statistics are given by edge and reciprocal densities. The sparse case is also studied for the grand canonical ensemble. Extensions to more general reciprocal models including reciprocal triangle and star densities will likewise be discussed.

  12. 14 CFR 23.903 - Engines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... starting must be established and included in the Airplane Flight Manual, approved manual material, or... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.903 Engines... the airplane in the event of an engine rotor failure or of a fire originating inside the engine...

  13. 14 CFR 23.903 - Engines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... starting must be established and included in the Airplane Flight Manual, approved manual material, or... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.903 Engines... the airplane in the event of an engine rotor failure or of a fire originating inside the engine...

  14. Advanced Subsonic Airplane Design and Economic Studies

    NASA Technical Reports Server (NTRS)

    Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.

    1995-01-01

    A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.

  15. 101. STARBOARD AIRPLANE ELEVATOR MACHINERY ROOM AFT LOOKING FORWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. STARBOARD AIRPLANE ELEVATOR MACHINERY ROOM - AFT LOOKING FORWARD PORT TO STARBOARD SHOWING ELEVATOR ENGINE, LIFTING WIRES, HYDRAULIC PIPING WITH REMOTE OPERATOR. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  16. 78 FR 45052 - Critical Parts for Airplane Propellers; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Part 35 RIN 2120-AJ88 Critical Parts for Airplane... analysis to identify a propeller critical part. Manufacturers would identify propeller critical parts, and establish engineering, manufacturing, and maintenance processes for propeller critical parts....

  17. 75 FR 16660 - Airworthiness Directives; SOCATA Model TBM 700 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas... requested using the procedures found in 14 CFR 39.19. Send information to ATTN: Albert Mercado,...

  18. 75 FR 89 - Airworthiness Directives; SOCATA Model TBM 700 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... after receipt. FOR FURTHER INFORMATION CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane... the procedures found in 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace...

  19. 75 FR 59658 - Airworthiness Directives; SOCATA Model TBM 700 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri... the procedures found in 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace...

  20. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines.'' The EPA... Internal Combustion Engines; New Source Performance Standards for Stationary......

  1. Revolution in airplane construction? Grob G110: The first modern fiber glass composition airplane shortly before its maiden flight

    NASA Technical Reports Server (NTRS)

    Dorpinghaus, R.

    1982-01-01

    A single engine two passenger airplane, constructed completely from fiber reinforced plastic materials is introduced. The cockpit, controls, wing profile, and landing gear are discussed. Development of the airframe is also presented.

  2. Reciprocating Linear Electric Motor

    NASA Technical Reports Server (NTRS)

    Goldowsky, M. P.

    1984-01-01

    Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.

  3. Reciprocal NUT spacetimes

    NASA Astrophysics Data System (ADS)

    Momeni, Davood; Chattopadhyay, Surajit; Myrzakulov, Ratbay

    2015-05-01

    In this paper, we study the Ehlers' transformation (sometimes called gravitational duality rotation) for reciprocal static metrics. First, we introduce the concept of reciprocal metric. We prove a theorem which shows how we can construct a certain new static solution of Einstein field equations using a seed metric. Later, we investigate the family of stationary spacetimes of such reciprocal metrics. The key here is a theorem from Ehlers', which relates any static vacuum solution to a unique stationary metric. The stationary metric has a magnetic charge. The spacetime represents Newman-Unti-Tamburino (NUT) solutions. Since any stationary spacetime can be decomposed into a 1 + 3 time-space decomposition, Einstein field equations for any stationary spacetime can be written in the form of Maxwell's equations for gravitoelectromagnetic fields. Further, we show that this set of equations is invariant under reciprocal transformations. An additional point is that the NUT charge changes the sign. As an instructive example, by starting from the reciprocal Schwarzschild as a spherically symmetric solution and reciprocal Morgan-Morgan disk model as seed metrics we find their corresponding stationary spacetimes. Starting from any static seed metric, performing the reciprocal transformation and by applying an additional Ehlers' transformation we obtain a family of NUT spaces with negative NUT factor (reciprocal NUT factors).

  4. The Value of Reciprocity

    ERIC Educational Resources Information Center

    Molm, Linda D.; Schaefer, David R.; Collett, Jessica L.

    2007-01-01

    The value of reciprocity in social exchange potentially comprises both instrumental value (the value of the actual benefits received from exchange) and communicative or symbolic value (the expressive and uncertainty reduction value conveyed by features of the act of reciprocity itself). While all forms of exchange provide instrumental value, we…

  5. The Structure of Reciprocity

    ERIC Educational Resources Information Center

    Molm, Linda D.

    2010-01-01

    Reciprocity is one of the defining features of social exchange and social life, yet exchange theorists have tended to take it for granted. Drawing on work from a decade-long theoretical research program, I argue that reciprocity is structured and variable across different forms of exchange, that these variations in the structure of reciprocity…

  6. Reciprocity of weighted networks

    PubMed Central

    Squartini, Tiziano; Picciolo, Francesco; Ruzzenenti, Franco; Garlaschelli, Diego

    2013-01-01

    In directed networks, reciprocal links have dramatic effects on dynamical processes, network growth, and higher-order structures such as motifs and communities. While the reciprocity of binary networks has been extensively studied, that of weighted networks is still poorly understood, implying an ever-increasing gap between the availability of weighted network data and our understanding of their dyadic properties. Here we introduce a general approach to the reciprocity of weighted networks, and define quantities and null models that consistently capture empirical reciprocity patterns at different structural levels. We show that, counter-intuitively, previous reciprocity measures based on the similarity of mutual weights are uninformative. By contrast, our measures allow to consistently classify different weighted networks according to their reciprocity, track the evolution of a network's reciprocity over time, identify patterns at the level of dyads and vertices, and distinguish the effects of flux (im)balances or other (a)symmetries from a true tendency towards (anti-)reciprocation. PMID:24056721

  7. 76 FR 62673 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... during scheduled maintenance checks by operators of A300B4 and A300-600 type aeroplanes on which the... INFORMATION CONTACT: Dan Rodina, Aerospace Engineer, International Branch, ANM-116, Transport Airplane... November 3, 2010, we issued AD 2010-23-26, Amendment 39-16516 (75 FR 74610, December 1, 2010). That...

  8. 77 FR 73343 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... Rodina, Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA, 1601 Lind... Information Airbus has issued Alert Operators Transmission A25W001-12, dated June 6, 2012; and EADS SOGERMA... on U.S. operators to be $741,888, or $4,608 per product. Authority for This Rulemaking Title 49...

  9. 78 FR 52405 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... INFORMATION CONTACT: Vladimir Ulyanov, Aerospace Engineer, International Branch, ANM-116, Transport Airplane... AD on U.S. operators to be $17,850, or $595 per product. In addition, we estimate that any necessary... rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); 3. Will...

  10. 78 FR 29261 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... Ulyanov, Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA, 1601 Lind... states: One A330 operator recently reported a case where two adjacent frame (FR) forks of a forward cargo.... To address this condition, Airbus issued four separate Alert Operators Transmissions (AOT),...

  11. 78 FR 76572 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... cost Parts cost Cost per product operators Inspection 3 work-hours x $85 $0 $255 per inspection $217... comments on this proposed AD by February 3, 2014. ADDRESSES: You may send comments by any of the following..., Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA, 1601 Lind Avenue...

  12. 76 FR 50706 - Airworthiness Directives; SOCATA Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... INFORMATION CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri 64106; telephone: (816) 329-4119; fax: (816) 329-4090; e-mail: albert.mercado@faa... the procedures found in 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace...

  13. 76 FR 65419 - Airworthiness Directives; SOCATA Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    .... ] FOR FURTHER INFORMATION CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate...-mail: albert.mercado@faa.go v. SUPPLEMENTARY INFORMATION: Comments Invited We invite you to send any... the procedures found in 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace...

  14. 76 FR 50405 - Airworthiness Directives; SOCATA Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ...: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City, Missouri 64106; telephone: (816) 329-4119; fax: (816) 329-4090; e-mail: albert.mercado@faa.gov... the procedures found in 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace...

  15. Safety and design in airplane construction

    NASA Technical Reports Server (NTRS)

    Teichmann, Alfred

    1934-01-01

    The author gives a survey of the principles of stress analysis and design of airplane structures, and discusses the fundamental strength specifications and their effect on the stress analysis as compared with the safety factors used in other branches of engineering.

  16. 77 FR 26154 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... time. This AD requires installing three secondary retention plates for the gimbal bearings on the THSA... CONTACT: Dan Rodina, Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate... been identified by analysis. Primary load path failure can be caused by bearing migration from...

  17. 77 FR 7007 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... airplanes; Model A330-300 series airplanes, Model A340-200 series airplanes; Model A340-300 series airplanes; Model A340-541 airplanes; and Model A340-642 airplanes. This proposed AD was prompted by reports...

  18. The Airplane Experiment.

    ERIC Educational Resources Information Center

    Larson, Lee; Grant, Roderick

    1991-01-01

    Presents an experiment to investigate centripetal force and acceleration that utilizes an airplane suspended on a string from a spring balance. Investigates the possibility that lift on the wings of the airplane accounts for the differences between calculated tension and measured tension on the string. (MDH)

  19. 14 CFR 91.605 - Transport category civil airplane weight limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff.... (b) No person may operate a turbine-engine-powered transport category airplane certificated after... airport, the runway to be used, the effective runway gradient, the ambient temperature and wind...

  20. 14 CFR 91.605 - Transport category civil airplane weight limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff.... (b) No person may operate a turbine-engine-powered transport category airplane certificated after... airport, the runway to be used, the effective runway gradient, the ambient temperature and wind...

  1. 14 CFR 91.605 - Transport category civil airplane weight limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff.... (b) No person may operate a turbine-engine-powered transport category airplane certificated after... airport, the runway to be used, the effective runway gradient, the ambient temperature and wind...

  2. 14 CFR 91.605 - Transport category civil airplane weight limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff.... (b) No person may operate a turbine-engine-powered transport category airplane certificated after... airport, the runway to be used, the effective runway gradient, the ambient temperature and wind...

  3. 14 CFR 91.605 - Transport category civil airplane weight limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff.... (b) No person may operate a turbine-engine-powered transport category airplane certificated after... airport, the runway to be used, the effective runway gradient, the ambient temperature and wind...

  4. 77 FR 50371 - Airworthiness Directives; Bombardier, Inc. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... Series 100 & 440) airplanes. This AD was prompted by reports of jamming/malfunctioning of the left-hand engine thrust control mechanism. This AD requires modifying the left-hand engine upper core-cowl. We are issuing this AD to prevent jamming/malfunctioning of the left-hand engine thrust control mechanism,...

  5. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Lee H., Jr. (Inventor)

    1994-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (VR) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane acceleration and engine-performance anomalies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a continually predicted nominal performance based upon given conditions, performance deficiencies are detected by the system and conveyed to pilot in form of both elemental information and integrated information.

  6. Airplane takeoff and landing performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B. (Inventor); Srivatsan, Raghavachari (Inventor); Person, Jr., Lee H. (Inventor)

    1991-01-01

    The invention is a real-time takeoff and landing performance monitoring system for an aircraft which provides a pilot with graphic and metric information to assist in decisions related to achieving rotation speed (V.sub.R) within the safe zone of a runway, or stopping the aircraft on the runway after landing or take-off abort. The system processes information in two segments: a pretakeoff segment and a real-time segment. One-time inputs of ambient conditions and airplane configuration information are used in the pretakeoff segment to generate scheduled performance data. The real-time segment uses the scheduled performance data, runway length data and transducer measured parameters to monitor the performance of the airplane throughout the takeoff roll. Airplane and engine performance deficiencies are detected and annunciated. A novel and important feature of this segment is that it updates the estimated runway rolling friction coefficient. Airplane performance predictions also reflect changes in head wind occurring as the takeoff roll progresses. The system provides a head-down display and a head-up display. The head-up display is projected onto a partially reflective transparent surface through which the pilot views the runway. By comparing the present performance of the airplane with a predicted nominal performance based upon given conditions, performance deficiencies are detected by the system.

  7. 14 CFR 25.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine... airplane and of the engine. (b) (c) The turbine engine air inlet system may not, as a result of air...

  8. 14 CFR 25.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine... airplane and of the engine. (b) (c) The turbine engine air inlet system may not, as a result of air...

  9. 14 CFR 25.939 - Turbine engine operating characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine... airplane and of the engine. (b) (c) The turbine engine air inlet system may not, as a result of air...

  10. 19. View northwest of Tropic Chamber reciprocal compressors (typical), in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View northwest of Tropic Chamber reciprocal compressors (typical), in machine area. - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  11. 76 FR 12923 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... Reciprocating Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... internal combustion engines. The final rule was published on August 20, 2010. This action proposes to amend... internal combustion generation, engine. transmission, or distribution. 622110 Medical and...

  12. 76 FR 35344 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Model P2006T Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ...: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas City... 14 CFR 39.19. Send information to Attn: Albert Mercado, Aerospace Engineer, FAA, Small...

  13. 14 CFR 23.1203 - Fire detector system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine reciprocating engine powered airplanes incorporating turbochargers; (iii) Airplanes with engine(s) located where....1203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  14. 14 CFR 23.1203 - Fire detector system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... in— (1) An engine compartment of— (i) Multiengine turbine powered airplanes; (ii) Multiengine reciprocating engine powered airplanes incorporating turbochargers; (iii) Airplanes with engine(s) located where....1203 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  15. MLS: Airplane system modeling

    NASA Technical Reports Server (NTRS)

    Thompson, A. D.; Stapleton, B. P.; Walen, D. B.; Rieder, P. F.; Moss, D. G.

    1981-01-01

    Analysis, modeling, and simulations were conducted as part of a multiyear investigation of the more important airplane-system-related items of the microwave landing system (MLS). Particular emphasis was placed upon the airplane RF system, including the antenna radiation distribution, the cabling options from the antenna to the receiver, and the overall impact of the airborne system gains and losses upon the direct-path signal structure. In addition, effort was expended toward determining the impact of the MLS upon the airplane flight management system and developing the initial stages of a fast-time MLS automatic control system simulation model. Results ot these studies are presented.

  16. Theory of reciprocating contact for viscoelastic solids

    NASA Astrophysics Data System (ADS)

    Putignano, Carmine; Carbone, Giuseppe; Dini, Daniele

    2016-04-01

    A theory of reciprocating contacts for linear viscoelastic materials is presented. Results are discussed for the case of a rigid sphere sinusoidally driven in sliding contact with a viscoelastic half-space. Depending on the size of the contact, the frequency and amplitude of the reciprocating motion, and on the relaxation time of the viscoelastic body, we establish that the contact behavior may range from the steady-state viscoelastic solution, in which traction forces always oppose the direction of the sliding rigid punch, to a more elaborate trend, which is due to the strong interaction between different regions of the path covered during the reciprocating motion. Practical implications span a number of applications, ranging from seismic engineering to biotechnology.

  17. Performance of two load-limiting subfloor concepts in full-scale general aviation airplane crash tests

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1984-01-01

    Three six-place, low wing, twin-engine general aviation airplane test specimens were crash tested at the langley Impact Dynamics research Facility under controlled free-flight conditions. One structurally unmodified airplane was the baseline airplane specimen for the test series. The other airplanes were structurally modified to incorporate load-limiting (energy-absorbing) subfloor concepts into the structure for full scale crash test evaluation and comparison to the unmodified airplane test results. Typically, the lowest floor accelerations and anthropomorphic dummy occupant responses, and the least seat crushing of standard and load-limiting seats, occurred in the modified load-limiting subfloor airplanes wherein the greatest structural crushing of the subfloor took place. The better performing of the two load-limiting subfloor concepts reduced the peak airplane floor accelerations at the pilot and four seat/occupant locations to -25 to -30 g's as compared to approximately -50 to -55 g's acceleration magnitude for the unmodified airplane structure.

  18. Stall-proof Airplanes

    NASA Technical Reports Server (NTRS)

    Lachmann, G

    1927-01-01

    My lecture has to do with the following questions. Is the danger of stalling necessarily inherent in the airplane in its present form and structure, or can it be diminished or eliminated by suitable means? Do we possess such means or devices and how must they operate? In this connection I will devote special attention to the exhibition of stall-proof airplanes by Fokker under the auspices of the English Air Ministry, which took place in Croyden last April.

  19. Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug

    SciTech Connect

    McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

    2008-04-01

    To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

  20. Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1996-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  1. Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes

    NASA Technical Reports Server (NTRS)

    Duerksen, Noel

    1997-01-01

    It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.

  2. Future Propulsion Opportunities for Commuter Airplanes

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1982-01-01

    Commuter airplane propulsion opportunities are summarized. Consideration is given to advanced technology conventional turboprop engines, advanced propellers, and several unconventional alternatives: regenerative turboprops, rotaries, and diesels. Advanced versions of conventional turboprops (including propellers) offer 15-20 percent savings in fuel and 10-15 percent in DOC compared to the new crop of 1500-2000 SHP engines currently in development. Unconventional engines could boost the fuel savings to 30-40 percent. The conclusion is that several important opportunities exist and, therefore, powerplant technology need not plateau.

  3. 78 FR 42895 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-18

    ... intended to support the airplane reaching its limit of validity (LOV) of the engineering data that support.../media/Advisory_Circular/120-104.pdf ), several programs have been developed to support initiatives that... initiatives is the requirement to establish a LOV of the engineering data that support the...

  4. 76 FR 77157 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    .... Additionally, this proposed AD would require installing Aero-Engine database (AEDB) software in the airplane..., environmental, and energy aspects of this proposed AD. We will consider all comments received by the closing... actions required by paragraph (g) of this AD, install Aero-Engine database software, software part...

  5. 77 FR 66417 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-05

    ... INFORMATION CONTACT: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 ] Locust, Room....mercado@faa.gov . SUPPLEMENTARY INFORMATION: Comments Invited We invite you to send any written relevant... procedures found in 14 CFR 39.19. Send information to ATTN: Albert Mercado, Aerospace Engineer, FAA,...

  6. 78 FR 14164 - Airworthiness Directives; Costruzioni Aeronautiche Tecnam srl Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... the FAA, call (816) 329-4148. FOR FURTHER INFORMATION CONTACT: Albert Mercado, Aerospace Engineer, FAA...- 4119; fax: (816) 329-4090; email: albert.mercado@faa.gov . SUPPLEMENTARY INFORMATION: Discussion We.... Send information to ATTN: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate,...

  7. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-command flight time or flight-engineer flight time toward the 1,500 hours of total time as a pilot... crewmember. (2) Flight-engineer time, provided the time— (i) Is acquired in an airplane required to have...

  8. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... rating. 61.159 Section 61.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF...-command flight time or flight-engineer flight time toward the 1,500 hours of total time as a pilot... crewmember. (2) Flight-engineer time, provided the time— (i) Is acquired in an airplane required to have...

  9. Reciprocal Predicates in Japanese.

    ERIC Educational Resources Information Center

    Ishii, Yasuo

    A study of reciprocals in Japanese compares two kinds: (1) a verbal suffix "aw"; and (2) an NP argument "otagai." Although "otagai" appears to be taken care of by syntactic binding theory, it is proposed that there is no evidence for the existence of a syntactic position of the object NP in the case of "aw." The suffix can be characterized as…

  10. Series of Reciprocal Triangular Numbers

    ERIC Educational Resources Information Center

    Bruckman, Paul; Dence, Joseph B.; Dence, Thomas P.; Young, Justin

    2013-01-01

    Reciprocal triangular numbers have appeared in series since the very first infinite series were summed. Here we attack a number of subseries of the reciprocal triangular numbers by methodically expressing them as integrals.

  11. Advanced General Aviation Turbine Engine (GATE) concepts

    NASA Technical Reports Server (NTRS)

    Lays, E. J.; Murray, G. L.

    1979-01-01

    Concepts are discussed that project turbine engine cost savings through use of geometrically constrained components designed for low rotational speeds and low stress to permit manufacturing economies. Aerodynamic development of geometrically constrained components is recommended to maximize component efficiency. Conceptual engines, airplane applications, airplane performance, engine cost, and engine-related life cycle costs are presented. The powerplants proposed offer encouragement with respect to fuel efficiency and life cycle costs, and make possible remarkable airplane performance gains.

  12. Design of static reaction gantry for an ultralight airplane destruction test

    NASA Technical Reports Server (NTRS)

    Smith, H. W.

    1985-01-01

    The steel gantry superstructure needed to perform an airplane static test is described. Standard civil engineering design practices are used to react the loads generated by an airplane in flight. Reaction columns are mounted on a structural floor to carry the wing airloads and the downward acting fuselage loads are carried directly into the floor. The gantry can accommodate a general aviation airplane or rotorcraft. An immediate use for an ultralight airplane is shown as an example configuration of the four main steel frames.

  13. Progress made in the construction of giant airplanes in Germany during the war

    NASA Technical Reports Server (NTRS)

    Baumann, A

    1920-01-01

    The construction of giant airplanes was begun in Germany in August, 1914. The tables annexed here show that a large number of airplanes weighing up to 15.5 tons were constructed and tested in Germany during the War, and it is certain that no other country turned out airplanes of this weight nor in such large numbers. An examination of the tables shows that by the end of the War all the manufacturers had arrived at a well-defined type, namely an airplane of about 12 tons with four engines of 260 horsepower each. The aircraft listed here are discussed with regard to useful weight and aerodynamic qualities.

  14. 76 FR 721 - Airworthiness Directives; Gulfstream Aerospace Corporation Model G-1159 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... Aerospace Corporation Model G-1159 Airplanes AGENCY: Federal Aviation Administration, DOT. ACTION: Proposed... Aerospace Corporation Model G-1159 airplanes. The existing AD requires an inspection to detect cracks or... is withdrawn. FOR FURTHER INFORMATION CONTACT: Carey O'Kelley, Aerospace Engineer, Airframe...

  15. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Training courses using airplane simulators and other training devices. 121.409 Section 121.409 Aeronautics and Space FEDERAL AVIATION... in an airplane simulator as provided in § 121.424(d); or (2) A course of flight engineer training...

  16. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Training courses using airplane simulators and other training devices. 121.409 Section 121.409 Aeronautics and Space FEDERAL AVIATION... in an airplane simulator as provided in § 121.424(d); or (2) A course of flight engineer training...

  17. 14 CFR 121.409 - Training courses using airplane simulators and other training devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Training courses using airplane simulators and other training devices. 121.409 Section 121.409 Aeronautics and Space FEDERAL AVIATION... in an airplane simulator as provided in § 121.424(d); or (2) A course of flight engineer training...

  18. State of the art of piloted electric airplanes, NASA's centennial challenge data and fundamental design implications

    NASA Astrophysics Data System (ADS)

    Costello, Lori Anne

    The purpose of this study was to determine the current state of the electric airplane as primarily defined by results from NASA's Green Flight Challenge Competition. New equations must be derived in order to determine the endurance and range for electric airplanes since the standard equations depend upon weight change over a flight and the weight of an electric airplane does not change. These new equations could then be solved for the optimal velocity and altitude which were the two driving factors that could change range and endurance for a given airplane configuration. The best velocity for range and endurance is not a function of energy storage or weight change thus the results turn out to be very similar to internal combustion engine airplanes, however, the optimal altitude for the best range and endurance equates to flying as high as reasonably possible. From examining the Green Flight Challenge data of the two fully electric airplanes, the analysis suggests that the electric propulsion system is not the only measure, given today's battery technology, that helps create a viable electric airplane solution. Aerodynamic efficiency becomes very important in order to reduce the required amount of energy. Airplanes that are aerodynamically inefficient make bad electric airplanes because the energy density of batteries is still low and the energy available to carry on board is limited. The more energy wasted on drag, the less the range and endurance of the airplane can be since the addition of more batteries may not be an option.

  19. 77 FR 69572 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: High Speed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    .... The Model EMB-550 airplane is the first of a new family of jet airplanes designed for corporate flight... equipped with two Honeywell HTF7500-E medium bypass ratio turbofan engines mounted on aft fuselage pylons. Each engine produces approximately 6,540 pounds of thrust for normal takeoff. The primary...

  20. Advances in Thrust-Based Emergency Control of an Airplane

    NASA Technical Reports Server (NTRS)

    Creech, Gray; Burken, John J.; Burcham, Bill

    2003-01-01

    Engineers at NASA's Dryden Flight Research Center have received a patent on an emergency flight-control method implemented by a propulsion-controlled aircraft (PCA) system. Utilizing the preexisting auto-throttle and engine-pressure-ratio trim controls of the airplane, the PCA system provides pitch and roll control for landing an airplane safely without using aerodynamic control surfaces that have ceased to function because of a primary-flight-control-system failure. The installation of the PCA does not entail any changes in pre-existing engine hardware or software. [Aspects of the method and system at previous stages of development were reported in Thrust-Control System for Emergency Control of an Airplane (DRC-96-07), NASA Tech Briefs, Vol. 25, No. 3 (March 2001), page 68 and Emergency Landing Using Thrust Control and Shift of Weight (DRC-96-55), NASA Tech Briefs, Vol. 26, No. 5 (May 2002), page 58.]. Aircraft flight-control systems are designed with extensive redundancy to ensure low probabilities of failure. During recent years, however, several airplanes have exhibited major flight-control-system failures, leaving engine thrust as the last mode of flight control. In some of these emergency situations, engine thrusts were successfully modulated by the pilots to maintain flight paths or pitch angles, but in other situations, lateral control was also needed. In the majority of such control-system failures, crashes resulted and over 1,200 people died. The challenge lay in creating a means of sufficient degree of thrust-modulation control to safely fly and land a stricken airplane. A thrust-modulation control system designed for this purpose was flight-tested in a PCA an MD-11 airplane. The results of the flight test showed that without any operational control surfaces, a pilot can land a crippled airplane (U.S. Patent 5,330,131). The installation of the original PCA system entailed modifications not only of the flight-control computer (FCC) of the airplane but

  1. 78 FR 37703 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... blade airfoil separations, engine damage, and damage to the airplane. DATES: This AD becomes effective... prevent LP compressor blade airfoil separations, engine damage, and damage to the airplane. (e)...

  2. 14 CFR 23.903 - Engines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... starting must be established and included in the Airplane Flight Manual, approved manual material, or... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant General § 23.903 Engines... installations— (1) Design precautions must be taken to minimize the hazards to the airplane in the event of...

  3. 78 FR 14457 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines Correction In rule document 2013-01288, appearing on pages 6674-6724 in the issue of...

  4. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical...

  5. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical...

  6. 14 CFR 36.7 - Acoustical change: Transport category large airplanes and jet airplanes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes and jet airplanes. 36.7 Section 36.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 36.7 Acoustical change: Transport category large airplanes and jet airplanes. (a) Applicability. This section applies to all transport category large airplanes and jet airplanes for which an acoustical...

  7. 77 FR 62182 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... Directives; Airbus Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... B4-600, B4-600R, and F4-600R series airplanes, and Model A300 C4-605R Variant F airplanes (collectively called Model A300- 600 series airplanes); and Airbus Model A310 series airplanes. This proposed...

  8. 76 FR 78524 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... Airplanes AGENCY: Federal Aviation Administration (FAA), Department of Transportation (DOT). ACTION: Final... series airplanes, Model A340-200 and -300 series airplanes, and Model A340-500 and -600 series airplanes..., ANM-116, Transport Airplane Directorate, FAA, 1601 Lind Avenue SW., Renton, Washington...

  9. 77 FR 42952 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ...-139-AD; Amendment 39-17127; AD 2012-14-13] RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... airplanes; Model A319-111, -112, -115, - 132, and -133 airplanes; Model A320-214, -232, and -233 airplanes; and Model A321-211, -212, -213, and -231 airplanes. This AD was prompted by reports of some...

  10. 78 FR 15874 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ...-112-AD; Amendment 39-17372; AD 2013-04-14] RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes... F4-600R series airplanes, and Model A300 C4-605R Variant F airplanes (collectively called Model A300- 600 series airplanes); and Model A310 series airplanes. This AD was prompted by a report of...

  11. 78 FR 9581 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ...-052-AD; Amendment 39-17346; AD 2013-03-11] RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes..., and F4-600R series airplanes, and Model A300 C4-605R Variant F airplanes (collectively called A300-600 series airplanes); and Model A310 series airplanes. This AD was prompted by reports of cracking...

  12. 77 FR 59149 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes..., and F4-600R series airplanes, and Model A300 C4-605R Variant F airplanes (collectively called A300-600 series airplanes); and Model A310 series airplanes. This proposed AD was prompted by reports of...

  13. Follow-On Studies for Design Definition of a Lift/Cruise Fan Technology V/STOL Airplane, Volume 1

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A three engine, three fan V/STOL airplane was designed for use as a Research Technology Airplane in proof-of-concept of a candidate configuration for use as a Navy multimission airplane. Use of mechanically interconnected variable pitch fans is made to accommodate power transfer for flight control in hover and to provide flight capability in the event of a single engine failure. The airplane is a modification of a T-39A transport. Design definition is provided for high risk propulsion components and a development test program is defined.

  14. Longitudinal balancing of airplanes

    NASA Technical Reports Server (NTRS)

    Eteve, Albert

    1923-01-01

    The object of the present communication is to determine the best method for locating the center of lift of an airplane and to provide a method for making corrections. The method employed is very simple, being based on the positions given the elevator during flights at different speeds.

  15. 77 FR 6671 - Airworthiness Directives; Superior Air Parts, Lycoming Engines (Formerly Textron Lycoming), and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ..., Lycoming Engines (Formerly Textron Lycoming), and Continental Motors, Inc., Fuel- Injected Reciprocating Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule; request for comments... Engines fuel-injected reciprocating engines. That AD currently requires removing AVStar Fuel Systems,...

  16. 76 FR 15818 - Airworthiness Directives; Reims Aviation S.A. Model F406 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... availability of this material at the FAA, call 816-329-4148. FOR FURTHER INFORMATION CONTACT: Albert Mercado...: Albert Mercado, Aerospace Engineer, FAA, Small Airplane Directorate, 901 Locust, Room 301, Kansas...

  17. Reciprocating magnetic refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    A 4 to 15 K magnetic refrigerator to test as an alternative to the Joule-Thomson circuit as the low temperature stage of a 4 to 300 K closed-cycle refrigerator was developed. The reciprocating magnetic refrigerator consists of two matrices of gadolinium gallium garnet spheres located in tandem on a single piston which alternately moves each matrix into a 7 telsa magnetic field. A separate helium gas circuit is used as the heat exchange mechanism for the low and the high temperature extremes of the magnetic refrigerator. Details of the design and results of the initial refrigerator component tests are presented.

  18. High pressure reciprocating pump

    SciTech Connect

    Besic, D.

    1990-05-01

    This patent describes an improvement in a reciprocating pump having a plunger and a pumping chamber. It comprises: the plunger having a bore communicating with an intersection opening and wherein the plunger incudes a central axis; a suction valve and a discharge valve, each having an axis of actuation parallel to a central axis of the plunger; the suction valve comprising a cylindrical core having a central passageway, and the core is slidably received by a seating member and resiliently biased to the seating member.

  19. 76 FR 69168 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Airbus Airplanes..., and B4-203 airplanes; Model A300 B4-600, B4-600R, and F4-600R series airplanes, and Model C4-605R Variant F airplanes (collectively called A300-600 series airplanes); and Model A310 series airplanes....

  20. Flight duration, airspeed practices and altitude management of airplanes involved in the NASA VGH General Aviation Program

    NASA Technical Reports Server (NTRS)

    Jewel, Joseph W., Jr.

    1987-01-01

    Flight duration, airspeed, and altitude information obtained from NASA velocity gravity height (VGH) recorders is presented for each of 95 general aviation airplanes flown in twin- and single-engine executive, personal, instructional, commercial survey, aerial application, aerobatic, commuter, and float operations. These data complement normal acceleration data obtained from the same airplanes and reported in NASA-TM-84660, and together they provide a data base for the design and analysis of general aviation airplane operations.