Science.gov

Sample records for airs atmospheric science

  1. Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.

  2. Atmospheric science: Ancient air caught by shooting stars

    NASA Astrophysics Data System (ADS)

    Zahnle, Kevin; Buick, Roger

    2016-05-01

    Ashes of ancient meteors recovered from a 2.7-billion-year-old lake bed imply that the upper atmosphere was rich in oxygen at a time when all other evidence implies that the atmosphere was oxygen-free. See Letter p.235

  3. /Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong; Kim, Hang Goo

    2014-08-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases such as SF6, SO2, and CO2 to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air containing various concentrations of SF6 was investigated. Measurements of the kinetics of the oxide layer growth at various SF6 concentrations in air and temperatures were made. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgF2 layer was formed under SF6/Air mixtures, with a thickness ranging from 300 nm to 3 μm depending on SF6 concentration, temperature, and exposure time. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using scanning electron microscope and energy-dispersive spectroscope.

  4. PAST AND PRESENT: 50 YEARS OF AIR QUALITY MODELING RESEARCH AND ITS APPLICATIONS BY THE NOAA ATMOSPHERIC SCIENCES MODELING DIVISION

    EPA Science Inventory

    The NOAA Atmospheric Sciences Modeling Division (ASMD) celebrated its Golden Jubilee in September 2005. The partnership between NOAA and EPA began when the Air Pollution Unit of the Public Health Service, which later became part of the EPA, requested the Weather Bureau provide ...

  5. A-Train Data for Assessing Air Quality From the Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.

    2008-05-01

    A-Train Data for Assessing Air Quality from the Atmospheric Science Data Center The Atmospheric Science Data Center at NASA Langley Research Center is the archive and distribution center for data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Tropospheric Emission Spectrometer (TES) instruments. CALIPSO was launched into a sun-synchronous orbit on April 28, 2006, where it joined the A-Train constellation of four other Earth-orbiting satellites: Aqua, Aura, CloudSat and Parasol. The primary objective of CALIPSO's three-year mission is to make a global survey of the vertical structure of aerosols and clouds, and their physical properties. CALIPSO comprises three instruments, the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP), the Imaging Infrared Radiometer (IIR), and the Wide Field Camera (WFC). CALIOP is a two-wavelength, polarization- sensitive lidar that provides information about the composition of clouds, the abundance and sizes of aerosols, and the altitudes of cloud and aerosol layers. The IIR measures outgoing radiation at three wavelengths in the thermal infrared window (8.65 mm, 10.6 mm, and 12.0 mm) to determine cloud emissivity and particle size. The high resolution, nadir-viewing WFC images the region around the lidar and IIR measurements in a single spectral channel (645 nm), which is matched to Band 1 of the MODIS instrument on the Aqua satellite in the A- Train, to provide context for the data from the other instruments. CALIPSO Level 2 products include an aerosol extinction profile product, an aerosol layer product and a vertical feature mask product that includes aerosol type information. TES flies on Aura, the third of NASA's Earth Observing System spacecraft, on July 15, 2004. The primary objective of TES is to make global, three-dimensional measurements of ozone and other chemical species involved in its formation and destruction. The NASA Langley Atmospheric Science Data Center (ASDC) is the

  6. Atmospheric science

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Ackerman, Thomas; Clarke, Antony; Goodman, Jindra; Levin, Zev; Tomasko, Martin; Toon, O. Brian; Whitten, Robert

    1987-01-01

    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) growth of liquid water drop populations; (2) coalescence; (3) drop breakup; (4) breakup of freezing drops; (5) ice nucleation for large aerosols or bacteria; (6) scavenging of gases, for example, SO2 oxidation; (7) phoretic forces, i.e., thermophoresis versus diffusiophoresis; (8) Rayleigh bursting of drops; (9) charge separation due to collisions of rimed and unrimed ice; (10) charged drop dynamics; (11) growth of particles in other planetary atmospheres; and (12) freezing and liquid-liquid evaporation. The required capabilities and desired hardware for the facility are detailed.

  7. The Use of Atmospheric Science to Determine Optimal Air Quality Management Regions.

    NASA Astrophysics Data System (ADS)

    Mauzerall, D. L.

    2002-05-01

    The Clean Air Act (CAA) has required that states meet the National Ambient Air Quality Standards (NAAQS) through the development of State Implementation Plans (SIPs). In the case of relatively long-lived pollutants such as tropospheric ozone and fine particulate matter it is often not possible for an individual state to attain compliance with the NAAQS simply by controlling its own emissions because of long-range transport of these pollutants and their precursors from outside the state. Recognizing this problem, the 1990 CAA amendments provided for the establishment of multi-state air quality management regions. One such region is the eleven northeastern states which form the Northeast Ozone Transport Region (OTR). These states have cooperated in the creation of a NOx emissions trading program among large stationary sources. However, cooperation has been problematic and numerous lawsuits have resulted. If federal authority existed to define non-attainment areas such that they included all sources which contributed to the violation, regardless of whether they were in different states, attainment of environmental goals would be facilitated. The use of atmospheric chemical tracer models in conjunction with measurements of ambient concentrations of pollutants could be used to determine the distribution of the sources that significantly contribute to the violation of the NAAQS in a given region and the spatial and temporal dependences of the air quality violations on the emission sources. With federal authority, a non-attainment region could then be defined and addressed in a scientifically coherent fashion rather than in a way determined by political jurisdictions. In this talk I will discuss how a national policy goal of determining appropriate scales for air quality control could catalyze additional scientific research including analysis of measurements of ambient pollutant concentrations, improvements in air quality models, and the development of chemical weather

  8. Air ions and aerosol science

    NASA Astrophysics Data System (ADS)

    Tammet, Hannes

    1996-03-01

    Collaboration between Gas Discharge and Plasma Physics, Atmospheric Electricity, and Aerosol Science is a factor of success in the research of air ions. The concept of air ion as of any carrier of electrical current through the air is inherent to Atmospheric Electricity under which a considerable statistical information about the air ion mobility spectrum is collected. A new model of air ion size-mobility correlation has been developed proceeding from Aerosol Science and joining the methods of neighboring research fields. The predicted temperature variation of the mobility disagrees with the commonly used Langevin rule for the reduction of air ion mobilities to the standard conditions. Concurrent errors are too big to be neglected in applications. The critical diameter distinguishing cluster ions and charged aerosol particles has been estimated to be 1.4-1.8 nm.

  9. Atmospheric science and power production

    SciTech Connect

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  10. PREFACE: SPECIAL SECTION OF THE JOURNAL OF AIR & WASTE MANAGEMENT ASSOCIATION FOR PARTICULATE MATTER: ATMOSPHERIC SCIENCES, EXPOSURE AND THE FOURTH COLLOQUIUM ON PM AND HUMAN HEALTH

    EPA Science Inventory

    This dedicated issue of the Journal of the Air & Waste Management Association contains 17 peer-reviewed scientific papers that were presented at the specialty conference, “Particulate Matter: Atmospheric Sciences, Exposure and the Fourth Colloquium on PM and Human Health,” that w...

  11. TV series on atmospheric science

    NASA Astrophysics Data System (ADS)

    Cruise, Karla A.

    Acid rain, climate change, air pollution, and the possible inadvertent depletion of ozone in the upper atmosphere will be among the subjects covered in an eight-part television series that premiers April 3, 1986, on public television. Part of a 32-lecture program entitled “Earth Science for Teachers,” this series will feature new developments in the physics, chemistry, and dynamics of the atmosphere and will focus on the role of anthropogenic activities that affect atmospheric composition and climate.Public television station WHRO-TV in Norfolk, Va., in cooperation with Virginia's Department of Education in Richmond, produced the series, which involved guest lecturers from across the country. Joel S. Levine, senior research scientist in the Atmospheric Science Division at the Langley Research Center of the National Aeronautics and Space Administration (NASA) in Hampton, Va., served as the organizer and coordinator of the series. Joseph D. Exline, Associate Director for Science, Virginia Department of Education, assisted with the development and production of the series.

  12. Atmospheric Science Without Borders

    NASA Astrophysics Data System (ADS)

    Panday, Arnico; Praveen, Ps; Adhikary, Bhupesh; Bhave, Prakash; Surapipith, Vanisa; Pradhan, Bidya; Karki, Anita; Ghimire, Shreta; Thapa, Alpha; Shrestha, Sujan

    2016-04-01

    The Indo-Gangetic Plains (IGP) in northern South Asia are among the most polluted and most densely populated places in the world, and they are upwind of vulnerable ecosystems in the Himalaya mountains. They are also fragmented across 5 countries between which movement of people, data, instruments and scientific understanding have been very limited. ICIMOD's Atmosphere Initiative has for the past three years been working on filling data gaps in the region, while facilitating collaborations across borders. It has established several atmospheric observatories at low and mid elevations in Bhutan and Nepal that provide new data on the inflow of pollutants from the IGP towards the mountains, as well as quantify the effects of local emissions on air quality in mountain cities. EGU will be the first international conference where these data will be presented. ICIMOD is in the process of setting up data servers through which data from the region will be shared with scientists and the general public across borders. Meanwhile, to promote cross-border collaboration among scientists in the region, while addressing an atmospheric phenomenon that affects the lives of the several hundred million people, ICIMOD' Atmosphere Initiative has been coordinating an interdisciplinary multi-year study of persistent winter fog over the Indo-Gangetic Plains, with participation by researchers from Pakistan, India, China, Nepal, Bhutan and Bangladesh. Using a combination of in-situ measurements and sample collection, remote sensing, modeling and community based research, the researchers are studying how changing moisture availability and air pollution have led to increases in fog frequency and duration, as well as the fog's impacts on local communities and energy demand that may affect air pollution emissions. Preliminary results of the Winter 2015-2016 field campaign will be shown.

  13. Atmospheric Chemistry and Air Pollution

    DOE PAGESBeta

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  14. AIRS - the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigsten, Bjorn H.; Fetzer, Eric; Fishbein, Evan; Lee, Sung-Yung; Paganao, Thomas

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched in 2002, along with two companion microwave sounders. This AIRS sounding suite is the most advanced atmospheric sounding system to date, with measurement accuracies far surpassing those of current weather satellites. From its sun synchronous polar orbit, the AIRS system provides more than 90% of the globe every 24 hours. Much of the post-launch period has been devoted to optimizing the 'retrieval' system used to derive atmospheric and other parameters from the observations and to validate those parameters. The geophysical parameters have been produced since the beginning of 2003 - the first data were released to the public in mid-2003, and future improved versions will be released periodically. The ongoing calibration/validation effort has confirmed that the system is very accurate and stable. There are a number of applications for the AIRS products, ranging from numerical weather prediction - where positive impact on forecast accuracy has already been demonstrated, to atmospheric research - where the AIRS water vapor products near the surface and in the mid and upper troposphere as well as in the stratosphere promise to make it possible to characterize and model phenomena that are key for short-term atmospheric processes, from weather patterns to long-term processes, such as interannual variability and climate change.

  15. The atmospheric composition geostationary satellite constellation for air quality and climate science: Evaluating performance with Observation System Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.; Barre, J.; Worden, H. M.; Arellano, A. F.; Gaubert, B.; Anderson, J. L.; Mizzi, A. P.; Lahoz, W. A.

    2014-12-01

    Current satellite observations of tropospheric composition made from low Earth orbit provide at best one or two measurements each day at any given location. Coverage is global but sparse, often with large uncertainties in individual measurements that limit examination of local and regional atmospheric composition over short time periods. This has hindered the operational uptake of these data for monitoring air quality and population exposure, and for initializing and evaluating chemical weather forecasts. By the end of the current decade there are planned geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of GEO platforms to achieve continuous time-resolved high-density observations of continental domains for mapping pollutant sources and variability on diurnal and local scales. We describe Observing System Simulation Experiments (OSSEs) to evaluate the contributions of these GEO missions to improve knowledge of near-surface air pollution due to intercontinental long-range transport and quantify chemical precursor emissions. We discuss the requirements on measurement simulation, chemical transport modeling, and data assimilation for a successful OSSE infrastructure. Our approach uses an efficient computational method to sample a high-resolution global GEOS-5 chemistry Nature Run over each geographical region of the GEO constellation. The demonstration carbon monoxide (CO) observation simulator, which is being expanded to other chemical pollutants, currently produces multispectral retrievals and captures realistic scene-dependent variation in measurement vertical sensitivity and cloud cover. We use the DART Ensemble Adjustment Kalman Filter to assimilate the simulated observations in a CAM-Chem global chemistry-climate model Control Run. The impact of observing over each region is evaluated using data

  16. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    This article investigates the mechanism for those layers in the atmosphere that are free of air borne pollution even though the air above and below them carry pollutants. Atmospheric subsidence is posed as a mechanism for this phenomenon.

  17. The Atmospheric Science Literacy Framework

    NASA Astrophysics Data System (ADS)

    Johnson, R. M.; Snow, J. T.; Foster, S. Q.; Maccaffery, M.; Buhr, S.; Niepold, F.

    2008-12-01

    The Framework for Atmospheric Science Literacy was developed through a community-based process from November 2007 - July 2008. The kick-off workshop brought together a diverse group of ~60 scientists, educators, and policy makers to identify key concepts essential for atmospheric science literacy for the public and students, as well as linkages among weather, climate, and ocean literacy. The group worked together to refine a draft framework, building on an array of foundational documents. The results of that workshop were formulated into a draft framework, and the community participated through three iterations to finalize the framework, providing over 300 comments to refine the document. A team of educators has subsequently met to map the framework to the National Science Education Standards, and a version of the framework that includes this mapping will be made available for educators in 2009.

  18. The Atmospheric Sciences: Problems and Applications.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Committee on Atmospheric Sciences.

    Over the years, the Committee on Atmospheric Sciences of the National Research Council has published a number of scientific and technical reports dealing with many aspects of the atmospheric sciences. This publication is an attempt to present to a broad audience this information about problems and research in the atmospheric sciences. Chapters…

  19. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2014-01-01

    The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.

  20. Science in the Air

    ERIC Educational Resources Information Center

    Bosse, Sherrie; Jacobs, Gera; Anderson, Tara Lynn

    2009-01-01

    Young children are naturally curious. The desire to question, hypothesize, explore, and investigate is part of their very being. This inherent sense of inquiry provides the foundation for science with young children, from inquisitive toddlers to curious third-graders. Early childhood educators can build on children's questions, eagerness, and…

  1. Venus Atmospheric Maneuverable Platform Science Mission

    NASA Astrophysics Data System (ADS)

    Polidan, Ronald S.; Lee, Gregory; Ross, Floyd; Sokol, Daniel; Bolisay, Linden

    2015-11-01

    Over the past several years, we have explored a possible new approach to Venus upper atmosphere exploration by applying recent Northrop (non-NASA) development programs and have come up with a new class of exploration vehicle: an atmospheric rover. We will discuss a possible suite of instruments and measurements to study the current climate through detailed characterization of cloud level atmosphere and to understand the processes that control climate on Earth-like planets.Our Venus atmospheric rover concept, the Venus Atmospheric Maneuverable Platform (VAMP), is a hypersonic entry vehicle with an ultra-low ballistic coefficient that transitions to a semi-buoyant air vehicle (AV) after entering the Venus atmosphere. Prior to entry, the AV fully deploys to enable lifting entry and eliminates the need for an aeroshell. The mass savings realized by eliminating the aeroshell allows VAMP to accommodate significantly more instruments compared to previous Venus in situ exploration missions. VAMP targets the global Venus atmosphere between 50-65 km altitudes and would be an ideal, stable platform for atmospheric and surface interaction measurements. We will present a straw man concept of VAMP, including its science instrument accommodation capability and platform’s physical characteristics (mass, power, wingspan, etc). We will discuss the various instrument options.VAMP’s subsonic flight regime starts at ~94 km and after <1 hour, the AV will reach its cruise altitude of ~65 km. During this phase of flight, the VAMP sensor suite will acquire a pre-defined set of upper atmosphere measurements. The nominal VAMP lifetime at cruise altitude is several months to a year, providing numerous circumnavigation cycles of Venus at mid-latitude. The stability of the AV and its extended residence time provide the very long integration times required for isotopic mass analysis. VAMP communicates with the orbiter, which provides data relay and possibly additional science measurements

  2. Air Activation Following an Atmospheric Explosion

    SciTech Connect

    Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

    2013-03-13

    In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

  3. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    Layering in the Earth's atmosphere is most commonly seen where parts of the atmosphere resist the incursion of air parcels from above and below - for example, when there is an increase in temperature with height over a particular altitude range. Pollutants tend to accumulate underneath the resulting stable layers. which is why visibility often increases markedly above certain altitudes. Here we describe the occurrence of an opposite effect, in which stable layers generate a layer of remarkably clean air (we refer to these layers as clean-air 'slots') sandwiched between layers of polluted air. We have observed clean-air slots in various locations around the world, but they are particularly well defined and prevalent in southern Africa during the dry season August-September). This is because at this time in this region, stable layers are common and pollution from biomass burning is widespread.

  4. Atmospheric Science: It's More than Meteorology.

    ERIC Educational Resources Information Center

    Smith, David R.; Krockover, Gerald H.

    1988-01-01

    Indicates that atmospheric science is not just forcasting the weather. Gives an overview of current topics in meteorology including ozone depletion, acid precipitation, winter cyclones, severe local storms, the greenhouse effect, wind shear and microbursts. Outlines the Atmospheric Sciences Education Program at Purdue University to produce…

  5. Air-snow interactions and atmospheric chemistry.

    PubMed

    Dominé, Florent; Shepson, Paul B

    2002-08-30

    The presence of snow greatly perturbs the composition of near-surface polar air, and the higher concentrations of hydroxyl radicals (OH) observed result in a greater oxidative capacity of the lower atmosphere. Emissions of nitrogen oxides, nitrous acid, light aldehydes, acetone, and molecular halogens have also been detected. Photolysis of nitrate ions contained in the snow appears to play an important role in creating these perturbations. OH formed in the snowpack can oxidize organic matter and halide ions in the snow, producing carbonyl compounds and halogens that are released to the atmosphere or incorporated into snow crystals. These reactions modify the composition of the snow, of the interstitial air, and of the overlying atmosphere. Reconstructing the composition of past atmospheres from ice-core analyses may therefore require complex corrections and modeling for reactive species. PMID:12202818

  6. Air-Snow Interactions and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Dominé, Florent; Shepson, Paul B.

    2002-08-01

    The presence of snow greatly perturbs the composition of near-surface polar air, and the higher concentrations of hydroxyl radicals (OH) observed result in a greater oxidative capacity of the lower atmosphere. Emissions of nitrogen oxides, nitrous acid, light aldehydes, acetone, and molecular halogens have also been detected. Photolysis of nitrate ions contained in the snow appears to play an important role in creating these perturbations. OH formed in the snowpack can oxidize organic matter and halide ions in the snow, producing carbonyl compounds and halogens that are released to the atmosphere or incorporated into snow crystals. These reactions modify the composition of the snow, of the interstitial air, and of the overlying atmosphere. Reconstructing the composition of past atmospheres from ice-core analyses may therefore require complex corrections and modeling for reactive species.

  7. About the Atmospheric Science Data Center (ASDC)

    Atmospheric Science Data Center

    2016-06-03

    The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for the processing, archival, and distribution of NASA Earth science data in the areas of radiation budget, clouds, aerosols, and ... Earth Observing System (EOS) as part of NASA's Earth Science enterprise and the U.S. Global Change Research Program , and is ...

  8. Atmospheric science on the Galileo mission

    NASA Technical Reports Server (NTRS)

    Hunten, D. M.; Colin, L.; Hansen, J. E.

    1986-01-01

    The atmospheric science goals of the Galileo mission, and instruments of the probe and orbiter are described. The current data available, and the goals of the Galileo mission concerning the chemical composition of the Jovian atmosphere; the thermal structure of the atmosphere; the nature of cloud particles and cloud layering; the radiative energy balance; atmospheric dynamics; and the upper atmosphere are discussed. The objectives and operations of the atmospheric structure instrument, neutral mass spectrometer, helium abundance interferometer, nephelometer, net flux radiometer, lightning and radio emission detector, solid state imaging system, NIR mapping spectrometer, photopolarimeter radiometer, and UV spectrometer are examined.

  9. Bursts of intermediate ions in atmospheric air

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Salm, J.; Tammet, H.

    1998-06-01

    The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.

  10. Regional Assimilation of NASA Atmospheric Infrared Sounder (AIRS) Data

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Lapenta, William; Jediovec, Gary J.; McCarty, William; Mecikalski, John R.

    2004-01-01

    The NASA Short-term Prediction Research and Transition (SPORT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NW S forecast operations and decision-making. The Atmospheric Infrared Sounder (AIRS), is expected to advance climate research and weather prediction into the 21 st century. It is one of six instruments onboard Aqua, a satellite that is part of NASA s Earth Observing System. AIRS, along with two partner microwave sounding instruments, represents the most advanced atmospheric sounding system ever deployed in space. The system is capable of measuring the atmospheric temperature in the troposphere with radiosonde accuracies of 1 K over 1 km-thick layers under both clear and cloudy conditions, while the accuracy of the derived moisture profiles will exceed that obtained by radiosondes. It is imperative that the scientific community is prepared to take full advantage of next-generation satellite data that will become available within the next decade. The purpose of this paper is to describe a procedure designed to optimally assimilate AIRS data at high spatial resolution over both land and ocean. The assimilation system used in this study is the Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory used extensively around the globe. Results will focus on quality control issues associated with AIRS, optimal assimilation strategies, and the impact of the AIRS data on subsequent numerical forecasts at 12 km produced by the next generation Weather Research and Forecast (WRF) model.

  11. Atmospheric Infrared Sounder (AIRS) Project Status

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2006-01-01

    This viewgraph presentation reviews the status of the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU). These instruments are on board the EOS Aqua Spacecraft that was launched May 4, 2002. The instruments are working normally. The objectives of the mission were to improve weather forecasting, assist in climate studies, and provide information as to the composition of Earth's atmosphere. The Aqua spacecraft is operating normally, the the primary life-limiting resource is fuel for maneuvers. The presentation also contains charts indicating who are using the data. There is information on the type of data available, and the propsal process. Also there is a few views of some of the planned instruments that were made possible in part due to the success of AIRS.

  12. Atmospheric Soundings from AIRS/AMSU/HSB

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Atlas, Robert

    2004-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU/HSB are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and 1 km tropospheric layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. Pre-launch simulation studies indicated that these results should be achievable. Minor modifications have been made to the pre-launch retrieval algorithm as alluded to in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and temperature profiles are validated as a function of retrieved effective fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. Select fields are also compared to those contained in the ECMWF analysis, done without the benefit of AIRS data, to demonstrate information that AIRS can add to that already contained in the ECMWF analysis. Assimilation of AIRS temperature soundings in up to 80% cloud cover for the month of January 2003 into the GSFC FVSSI data assimilation system resulted in improved 5 day forecasts globally, both with regard to anomaly correlation coefficients and the prediction of location and intensity of cyclones.

  13. Three Modes of Air Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Aleam H.

    2015-09-01

    Atmospheric pressure plasma jet operating in air have gained a high interest due to its various applications in industry and biomedical. The presented air plasma jet system is consisted of stainless steel hollow needle electrode of 1 mm inner diameter which is covered with a quartz tube with a 1 mm diameter side hole. The hole is above the tube nozzle by 5 mm and it is covered by a copper ring which is connected to the ground. The needle is connected to sinusoidal 27 kHz high voltage power supply (25 kV) though a current limiting resistor of 50 k Ω. The tested distance between the needle tip and the side hole was 1 mm or 2.1 mm gape. The electric and plasma jet formation characteristics show three modes of operations. Through these modes the plasma length changes with air flow rate to increase in the first mode and to confine inside the quartz tube in the second mode, then it start to eject from the nozzle again and increase with flow rate to reach a maximum length of 7 mm at 4.5 SLM air flow rate in the third mode. The measured gas temperature of the plasma jet can approach room temperature (300 K). Moreover, the plasma jet emission spectra shows the presence of reactive O and OH radical in the plasma jet. These results indicate that the generated air plasma jet can be used a plasma sterilization.

  14. Extreme atmospheric electron densities created by extensive air showers

    NASA Astrophysics Data System (ADS)

    Rutjes, Casper; Camporeale, Enrico; Ebert, Ute; Buitink, Stijn; Scholten, Olaf; Trinh, Gia

    2016-04-01

    A sufficient density of free electrons and strong electric fields are the basic requirements to start any electrical discharge. In the context of thunderstorm discharges it has become clear that in addition droplets and or ice particles are required to enhance the electric field to values above breakdown. In our recent study [1] we have shown that these three ingredients have to interplay to allow for lightning inception, triggered by an extensive air shower event. The extensive air showers are a very stochastic natural phenomenon, creating highly coherent bursts of extreme electron density in our atmosphere. Predicting these electron density bursts accurately one has to take the uncertainty of the input variables into account. To this end we use uncertainty quantification methods, like in [2], to post-process our detailed Monte Carlo extensive air shower simulations, done with the CORSIKA [3] software package, which provides an efficient and elegant way to determine the distribution of the atmospheric electron density enhancements. We will present the latest results. [1] Dubinova, A., Rutjes, C., Ebert, E., Buitink, S., Scholten, O., and Trinh, G. T. N. "Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers." PRL 115 015002 (2015) [2] G.J.A. Loeven, J.A.S. Witteveen, H. Bijl, Probabilistic collocation: an efficient nonintrusive approach for arbitrarily distributed parametric uncertainties, 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2007, AIAA-2007-317 [3] Heck, Dieter, et al. CORSIKA: A Monte Carlo code to simulate extensive air showers. No. FZKA-6019. 1998.

  15. Portsmouth Atmospheric Science School (PASS) Project

    NASA Technical Reports Server (NTRS)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  16. Infants Can Study Air Science.

    ERIC Educational Resources Information Center

    Ward, Alan

    1983-01-01

    Provided are activities and demonstrations which can be used to teach infants about the nature of air, uses of air, and objects that fly in the air. The latter include airships, hot-air balloons, kites, parachutes, airplanes, and Hovercraft. (JN)

  17. Where are the atmospheric sciences going?

    NASA Astrophysics Data System (ADS)

    Bierly, Eugene W.

    The question of the direction of the atmospheric sciences is a difficult one, and it cannot be answered in a definitive way or with a high degree of certainty. I would like to try to give you my biased viewpoint on the situation in atmospheric sciences today, as far as the research aspect is concerned.The field of atmospheric sciences today is full to overflowing with top-notch scientific research programs. At the same time, funds for conducting this research are limited and much more difficult to obtain now than in previous years. To paraphrase the words of Charles Dickens in his Tale of Two Cities, “It is the best of times; it is the worst of times.”

  18. Laser applications to atmospheric sciences: A bibliography

    NASA Technical Reports Server (NTRS)

    Harris, F. S., Jr.

    1975-01-01

    A bibliography is given of 1460 references of the applications of lasers to atmospheric sciences. The subjects covered include: aerosols; clouds; the distribution and motion of atmospheric natural and man-made constituents; winds; temperature; turbulence; scintillation; elastic, Raman and resonance scattering; fluorescence; absorption and transmission; the application of the Doppler effect and visibility. Instrumentation, in particular lidar, is included, also data handling, and interpretation of the data for meteorological processes. Communications, geodesy and rangefinding are not included as distinct areas. The application to the atmosphere is covered, but not the ocean or its surface.

  19. Atmospheric Laboratory for Applications and Science Payload

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an STS-66 mission onboard photo of the Space Shuttle Orbiter Atlantis showing the payload of the third Atmospheric Laboratory for Applications and Science (ATLAS-3) mission. During the ATLAS missions, international teams of scientists representing many disciplines combined their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigated how Earth's middle and upper atmospheres and climate are affected by by the sun and by products of industrial and agricultural activities on Earth. Thirteen ATLAS instruments supported experiments in atmospheric sciences, solar physics, space plasma physics, and astronomy. The instruments were mounted on two Spacelab pallets in the Space Shuttle payload bay. The ATLAS-3 mission continued a variety of atmospheric and solar studies to improve understanding of the Earth's atmosphere and its energy input from the sun. A key scientific objective was to refine existing data on variations in the fragile ozone layer of the atmosphere. The Orbiter Atlantis was launched on November 3, 1994 for the ATLAS-3 mission (STS-66).

  20. Atmospheric Brown Clouds- from science towards policy

    NASA Astrophysics Data System (ADS)

    Sherestha, S.; Iyngararasan, M.

    2010-12-01

    Atmospheric Brown Clouds (ABCs) and its interaction with climate change is an emerging environmental issue. Studies demonstrate that ABCs and its interaction with build-up of greenhouse gases significantly affect the regional climate, glacial melting, hydrological cycle, agriculture and public health. For the next decades, the regional aerosol effects will continue to play a major role in environmental management as long as current strong sources of air pollution remain. An integrated multi-pollutant multi-sectoral approach for addressing atmospheric issues will result in optimum environmental and socioeconomic benefits. Regional intergovernmental networks have been established to address air pollution issues in different parts of the globe. These intergovernmental networks could be empowered to promote integrated approach for addressing the atmospheric environmental issues.

  1. Atmospheric Science: Solving Challenges of Climate Change

    SciTech Connect

    Geffen, Charlette

    2015-08-05

    PNNL’s atmospheric science research provides data required to make decisions about challenges presented by climate change: Where to site power plants, how to manage water resources, how to prepare for severe weather events and more. Our expertise in fundamental observations and modeling is recognized among the national labs and the world.

  2. Citizen Science Air Monitor (CSAM) Operating Procedures

    EPA Science Inventory

    The Citizen Science Air Monitor (CSAM) is an air monitoring system designed for measuring nitrogen dioxide (NO2) and particulate matter (PM) pollutants simultaneously. This self-contained system consists of a CairPol CairClip NO2 sensor, a Thermo Scientific personal DataRAM PM2.5...

  3. Overview of Atmospheric Ionizing Radiation (AIR)

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Tai, H.; Shinn, J. L.

    2003-01-01

    The SuperSonic Transport (SST) development program within the US was based at the Langley Research Center as was the Apollo radiation testing facility (Space Radiation Effects Laboratory) with associated radiation research groups. It was natural for the issues of the SST to be first recognized by this unique combination of research programs. With a re-examination of the technologies for commercial supersonic flight and the possible development of a High Speed Civil Transport (HSCT), the remaining issues of the SST required resolution. It was the progress of SST radiation exposure research program founded by T. Foelsche at the Langley Research Center and the identified remaining issues after that project over twenty-five years ago which became the launch point of the current atmospheric ionizing radiation (AIR) research project. Added emphasis to the need for reassessment of atmospheric radiation resulted from the major lowering of the recommended occupational exposure limits, the inclusion of aircrew as radiation workers, and the recognition of civil aircrew as a major source of occupational exposures. Furthermore, the work of Ferenc Hajnal of the Environmental Measurements Laboratory brought greater focus to the uncertainties in the neutron flux at high altitudes. A re-examination of the issues involved was committed at the Langley Research Center and by the National Council on Radiation Protection (NCRP). As a result of the NCRP review, a new flight package was assembled and flown during solar minimum at which time the galactic cosmic radiation is at a maximum (June 1997). The present workshop is the initial analysis of the new data from that flight. The present paper is an overview of the status of knowledge of atmospheric ionizing radiations. We will re-examine the exposures of the world population and examine the context of aircrew exposures with implications for the results of the present research. A condensed version of this report was given at the 1998

  4. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  5. Lighter-than-Air Science

    ERIC Educational Resources Information Center

    MOSAIC, 1977

    1977-01-01

    Reviews practical applications, particularly in scientific research, of hot air balloons. Recent U.S. governmental projects in near-space research are described. Lists (1) major accomplishments of scientific ballooning, including discoveries in cosmic ray particles, gamma and x-rays, and other radiation; (2) measurement of fluorocarbon…

  6. Education in Changing Communication in Atmospheric and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Schuepbach, E.; Brimblecombe, P.

    2009-12-01

    The “Training and Education” Programme in the European Network of Excellence in Atmospheric Composition Change ACCENT (www.accent-network.org, 2004-09) has aimed to introduce a shift in the mindset and approach to science communication among early career scientists and a wider audience. Training workshops in science communication organized across Europe and the Far East past the last five years dealt with the question where traditional lines of communication fail and how this can be remedied. In inspiring partnerships with stakeholder groups, opportunities were created for mutual learning and gaining experience in the process of translating air quality and climate change science to non-scientists. The core message is that the next generation of leaders in the field should make sure that the translation is scientifically acceptable, and should stay in control of the translation process. Evolving good practice in science communication education for future leaders in the field of atmospheric sciences in Europe and the Far East is illustrated based on ACCENT experiences.

  7. Antarctic Air Visits Paranal — Opening New Science Windows

    NASA Astrophysics Data System (ADS)

    Kerber, F.; Kuntschner, H.; Querel, R. R.; van den Ancker, M.

    2014-03-01

    Extremely low humidity (precipitable water vapour [PWV] of ~ 0.1 mm) in the atmosphere above Paranal has been measured by a water vapour radiometer over a period of about 12 hours. PWV values < 0.2 mm are usually only found at very high altitude or in Antarctica. In fact a pocket of Antarctic air has been shown to be responsible for this phenomenon and it may occur a few times per year at Paranal. We highlight the science opportunities — created by new atmospheric windows — that arise in such conditions. The community is invited to provide feedback on how to make best use of low PWV with the VLT.

  8. Atmospheric Science Program (ASP) Data Archive

    DOE Data Explorer

    The Department of Energy's Atmospheric Science Program (ASP) originally consisted of an atmospheric chemistry program, an environmental meteorology program, a tropospheric aerosol program, and NARSTO activities. In 2004, the ASP was reconfigured to focus on aerosol radiative forcing of climate change: aerosol formation and evolution and aerosol properties that affect direct and indirect influences on climate and climate change. This included developing a comprehensive understanding of the atmospheric processes that control the transport, transformation, and fate of energy related trace chemicals and particulate matter. The current focus of the program is aerosol radiative forcing of climate. Effective October 1, 2009, The ASP merged with the Atmospheric Radiation Measurement Program (ARM), with the overall program now called Atmospheric System Research. The overall research goal is one that was shared in common, i.e. to further the understanding of how the climate, as a system works, and to represent the understanding in computer models. The Office of Science and Brookhaven announced, ôA major benefit of the merge is expected to be a strengthening of the aerosol- and cloud-related research components of the programs by bringing together the ARM capabilities of continuous remote sensing measurements of cloud properties and aerosol influences on radiation with the ASP capabilities for in-situ characterization of aerosol properties, evolution, and cloud interactions.ö [http://www.asp.bnl.gov/#New] The ASP data archive has now been moved to a new location in order to be maintained with ARM data. The new url is http://iop.archive.arm.gov/arm-iop/0special-data/ASP_Campaigns_past/. BNL continues to maintain an excellent list of ASP-publications at http://www.asp.bnl.gov/asp_pubs.html

  9. The One Atmosphere Glow Discharge in Air: Phenomenology and Applications

    NASA Astrophysics Data System (ADS)

    Ben Gadri, Rami; Sherman, Daniel M.; Chen, Zhiyu; Karakaya, Fuat; Reece Roth, J.

    1999-10-01

    The existence of an atmospheric pressure RF glow plasma with the characteristics of a classical low pressure DC glow discharge has been experimentally and theoretically demonstrated [1, 2]. At the UTK Plasma Sciences Laboratory, the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) in air has been applied to a wide range of plasma processing applications. The technology is simple, technically attractive, and suitable for online treatment of webs and 3-dimensional workpieces. A parallel plate reactor and a Remote Exposure Reactor (RER) have been developed for direct plasma immersion and remote exposure, respectively. The RER is based on generating active species capable of sterilization and surface treatment in a uniform surface layer of the OAUGDP on planar panels [3], and convecting the active species to a remote chamber where the workpiece is located. A related surface plasma has been developed for indoor air filtration systems. In addition, the surface plasma on flat panels modified the boundary layer in wind tunnel tests to produce electrohydrodynamic (EHD) flow effects that can be used to increase or decrease aerodynamic drag [3]. [1] Massines et al., J. Appl. Phys., Vol. 83, N 6, pp 2950-2957, Mar. 1998. [2] J. R. Roth, "Industrial Plasma Engineering" Vol. I: Principles. Inst. Phys. Pub., Bristol and philadelphia, ISBN 0-7503-0318-2, 1995. [3] Roth et al., AIAA Paper 98-0328, 36th AIAA Meeting, Reno NV, 1998, Jan. 12-15.

  10. Atmospheric Science and the CFC Industry

    NASA Astrophysics Data System (ADS)

    Steed, J. M.

    2012-12-01

    Industry involvement with developing atmospheric science and subsequent regulations to protect ozone was unusual. Chlorofluorocarbon manufacturers were research-based businesses accustomed to understanding the science behind product-related issues. When Lovelock's measurements in 1971 implied most of the cumulative production of CFCs remained in the atmosphere, global CFC producers funded academic research to identify natural sinks for the materials. The Fluorocarbon Program Panel (FPP) began in 1972, but changed focus to atmospheric photochemistry following Rowland and Molina's work in 1974. Despite early vociferous opposition, especially by the CFC-using aerosol industry, to any regulations, leaders among the producers worked to build their scientific understanding, expanding FPP funding and launching internal work in modeling and ozone trend analysis. The key first question for industry was not how much depletion might occur, but whether it would occur at all. If so, regardless of the amount, regulations and a major transition would be required in CFC-using industries, and the response would need to be global and prompt. So long as that basic question was in doubt, some businesses and countries would resist the economic cost of action. In the meantime, the producing industry worked to identify potential alternatives and to communicate atmospheric science to the downstream industries. Although the industry science effort was often disparaged as an attack on "real" science, my only assignment when I joined DuPont's Central Research Department in 1979 was to understand and contribute to the science, keeping both the company and our customers informed. Our modeling results were published freely. FPP funding led to better knowledge of the ClO + O rate constant, significantly increasing depletion in model calculations; supported the development of the techniques used to measure in situ atmospheric ClO, so important in later strengthening the case for chlorine

  11. Applications of ISES for the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Hoell, James M., Jr.

    1990-01-01

    The proposed Information Sciences Experiment System (ISES) will offer the opportunity for real-time access to measurements acquired aboard the Earth Observation System (Eos) satellite. These measurements can then be transmitted to remotely located ground based stations. The application of such measurements to issues related to atmospheric science which was presented to a workshop convened to review possible application of the ISES in earth sciences is summarized. The proposed protocol for Eos instruments requires that measurement results be available in a central data archive within 72 hours of acquiring data. Such a turnaround of raw satellite data to the final product will clearly enhance the timeliness of the results. Compared to the time that results from many current satellite programs, the 72 hour turnaround may be considered real time. Examples are discussed showing how real-time measurements from one or more of the proposed Eos instruments could have been applied to the study of certain issues important to global atmospheric chemistry. Each of the examples discussed is based upon a field mission conducted during the past five years. Each of these examples will emphasize how real-time data could have been used to alter the course of a field experiment, thereby enhancing the scientific output. For the examples, brief overviews of the scientific rationale and objectives, the region of operation, the measurements aboard the aircraft, and finally how one or more of the proposed Eos instruments could have provided data to enhance the productivity of the mission are discussed.

  12. Hot air balloons fill gap in atmospheric and sensing platforms

    NASA Astrophysics Data System (ADS)

    Watson, Steven M.; Price, Russ

    Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.

  13. Advanced Subsetter Capabilities for Atmospheric Science Datasets

    NASA Astrophysics Data System (ADS)

    Baskin, W. E.; Perez, J.

    2012-12-01

    Within the last three years, the NASA Atmospheric Sciences Data Center (ASDC) has developed and deployed production provider-specific search and subset web applications for the CALIPSO, CERES, and TES missions. ASDC is now collaborating with the MOPITT science team to provide tailored subsetting for their level 2 satellite datasets leveraging the architecture of the recently deployed subsetting systems. This presentation explores the challenges encountered by the ASDC's development team and discusses solutions implemented for the following advanced subsetter capabilities: - On-the-fly conversion of subsetted HDF data granules to NetCDF - Generation of CF-Compliant subset results for non-gridded data (level2 swaths) - Parameter-specific filtering - Multi-dimensional spatial subsetting - Complex temporal subsetting (temporal filtering)

  14. The OMI Atmospheric Science Data Products

    NASA Astrophysics Data System (ADS)

    Johnson, J. E.; Ahmad, S. P.; Levelt, P. F.; Bhartia, P. K.; Hilsenrath, E.; Leppelmeier, G. W.

    2003-12-01

    The Ozone Monitoring Instrument (OMI), will provide measurements in the UV and Visible spectral regions (1560 wavelength bands between 270 and 500 nm with approximately 0.5 nm spectral resolution). OMI will continue the long-term Total Ozone Mapping Spectrometer (TOMS) column ozone record and will focus on monitoring the ozone layer, ozone depleting trace gases (BrO and OClO), atmospheric pollutants (tropospheric ozone, NO2, SO2, and HCHO), clouds and aerosols characteristics, and surface spectral UV irradiance and erythemal surface UV-B flux. OMI is a contribution of the Netherlands Agency for Aerospace Programs (NIVR) in collaboration with the Finnish Meteorological Institute (FMI), to NASA's Aura mission. It will be flown on the Aura spacecraft (early 2004) in a sun-synchronous polar orbit with equator crossing time approximately at 1:38 p.m in the ascending mode. The standard atmospheric chemistry and dynamics products derived from OMI, and from the other two Aura sensors, the High Resolution Dynamics Limb Sounder (HIRDLS) and the Microwave Limb Sounder (MLS), will be archived at the NASA GES DAAC. OMI atmospheric data products will provide continuity to the over 30 year long-term ozone data records obtained from the heritage atmospheric data missions including Nimbus-4 BUV and Nimbus-7 SBUV, and a series of TOMS instruments, also archived at the NASA GES DAAC. The standard satellite data sets, as well as regional subsets, related ancillary data sets, and data analysis tools are freely available to the public for the Earth System Science studies, environmental applications, and educational use. This presentation will provide an overview of the OMI instrument, data processing, data products, and the data services provided by the NASA GES DAAC's Upper Atmosphere Data Support team to the user in the areas of accessing data products, documentation, browse, and data analysis software.

  15. Atmospheric Pressure Non-Thermal Air Plasma Jet

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Aleam; Al-Mashraqi, Ahmed; Benghanem, Mohamed; Al Shariff, Samir

    2013-09-01

    Atmospheric pressure air cold plasma jet is introduced in this work. It is AC (60 Hz to 20 kHz) cold plasma jet in air. The system is consisted of a cylindrical alumina insulator tube with outer diameter of 1.59 mm and 26 mm length and 0.80 mm inner diameter. AC sinusoidal high voltage was applied to the powered electrode which is a hollow needle inserted in the Alumina tube. The inner electrode is a hollow needle with 0.80 mm and 0.46 mm outer and inner diameters respectively. The outer electrode is grounded which is a copper ring surrounded the alumina tube locates at the nozzle end. Air is blowing through the inner electrode to form a plasma jet. The jet length increases with flow rate and applied voltage to reach 1.5 cm. The gas temperature decreases with distance from the end of the nozzle and with increasing the flow rate. The spectroscopic measurement between 200 nm and 900 nm indicates that the jet contains reactive species such as OH, O in addition to the UV emission. The peak to peak current values increased from 6 mA to 12 mA. The current voltage waveform indicates that the generated jet is homogenous plasma. The jet gas temperature measurements indicate that the jet has a room temperature. This work was supported by the National Science, Technology and Innovation Plan(NSTIP) through the Science and Technology Unit (STU) at Taibah University, Al Madinah Al Munawwarah, KSA, with the grant number 08-BIO24-5.

  16. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  17. AIRS Data Support at NASA Goddard Earth Science DISC DAAC

    NASA Astrophysics Data System (ADS)

    Cho, S.; Qin, J.; Sharma, A.

    2002-05-01

    The Atmospheric Infrared Sounder (AIRS) is selected by NASA to fly on the second Earth Observing System (EOS) polar orbiting platform, EOS Aqua, which is launched in April 2002. AIRS, together with Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB), is designed to meet the requirements of the NASA Earth Science Enterprise climate research program and the NOAA operational weather forecasting The data products from the AIRS/AMSU/HSB will be archived and distributed at the Goddard Distributed Active Archive Center (GDAAC) located in the NASA Goddard Earth Sciences Data and Information Services Center (GES DAAC) in later 2002. This new dataset consists of radiances, geo-locations and atmospheric products, such as, temperature, humidity, cloud and ozone, providing measurements for temperature at an accuracy of 1 o C in layers 1 km thick and humidity with an accuracy of 20 % in layers 2 km thick in the troposphere. The data will be freely available via WWW interfaces, or an FTP containing subsetted and reformatted data products. The GES DISC DAAC Search and Order allows users to search for data by following particular paths down the hierarchy. This simple point-and- click navigational web interface shows temporal and spatial coverage, item size, description and browse images for AIRS data and one can customize search using spatial,temporal, attribute and parameter search. The EOS Data Gateway (EDG) is another user interface for searching and ordering the AIRS data together with other data products obtained from EOS instruments. The Atmospheric Dynamics Data Support Team (ADDST) at the GES DISC/DAAC will provide various services to assist users in understanding, accessing, and using AIRS data product. The ADDST has been developing tools to read, visualize and analyze the AIRS data, channel/parameter subsetting of AIRS HDF-EOS data products and supplying documentation and readme et al. Other services provided by the ADDST will contain assistance

  18. Ultraspectral Infrared Measurements from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas

    2003-01-01

    Aqua measures the Earth's water cycle, energy fluxes, vegetation and temperatures. The Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB) were launched on the EOS Aqua spacecraft in May 2002. AIRS has had good radiometric and spectral sensitivity, stability, and accuracy and is suitable for climate studies. Temperature products compare well with radiosondes and models over the limited test range (|LAT| less than 40 degrees). Early trace gas products demonstrate the potential of AIRS. NASA is developing the next generation of hyperspectral IR imagers. JPL is ready to participate with US government agencies and US industry to transfer AIRS technology and science experience.

  19. Atmospheric Effects on Cosmic Ray Air Showers Observed with HAWC

    NASA Astrophysics Data System (ADS)

    Young, Steven

    2014-01-01

    The High Altitude Water Cherenkov Gamma Ray detector (HAWC), currently under construction on the Sierra Negra volcano near Puebla, Mexico, can be used to study solar physics with its scaler data acquisition system. Increases in the scaler rates are used to observe GeV cosmic rays from solar flares while decreases in the rates show the heliospheric disturbances associated with coronal mass ejections. However, weather conditions and height-dependent state variables such as pressure and temperature affect the production of extensive particle air showers that can be detected by the scaler system. To see if these atmospheric effects can be removed, we obtained local weather data from the Global Data Assimilation System (GDAS) and the local weather station at HAWC. The scaler pulse rates were then correlated to the pressure and temperature. We present data from a Forbush decrease observed by HAWC following a significant coronal mass ejection in April 2013, and describe our efforts to remove atmospheric variations from the scaler counts. This work was partially supported by the National Science Foundation’s REU program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  20. THE ATMOSPHERIC MODEL EVALUATION TOOL (AMET); AIR QUALITY MODULE

    EPA Science Inventory

    This presentation reviews the development of the Atmospheric Model Evaluation Tool (AMET) air quality module. The AMET tool is being developed to aid in the model evaluation. This presentation focuses on the air quality evaluation portion of AMET. Presented are examples of the...

  1. Workshop on Agricultural Air Quality: State of the science

    NASA Astrophysics Data System (ADS)

    Aneja, Viney P.; Blunden, Jessica; Roelle, Paul A.; Schlesinger, William H.; Knighton, Raymond; Niyogi, Dev; Gilliam, Wendell; Jennings, Greg; Duke, Clifford S.

    The first Workshop on Agricultural Air Quality: State of the Science was held at the Bolger Center in Potomac, Maryland from 4 to 8 June 2006. This international conference assembled approximately 350 people representing 25 nations from 5 continents, with disciplines ranging from atmospheric chemistry to soil science. The workshop was designed as an open forum in which participants could openly exchange the most current knowledge and learn about numerous international perspectives regarding agricultural air quality. Participants represented many stakeholder groups concerned with the growing need to assess agricultural impacts on the atmosphere and to develop beneficial policies to improve air quality. The workshop focused on identifying methods to improve emissions inventories and best management practices for agriculture. Workshop participants also made recommendations for technological and methodological improvements in current emissions measurement and modeling practices. The workshop commenced with a session on agricultural emissions and was followed by international perspectives from the United States, Europe, Australia, India, and South America. This paper summarizes the findings and issues of the workshop and articulates future research needs. These needs were identified in three general areas: (1) improvement of emissions measurement; (2) development of appropriate emission factors; and (3) implementation of best management practices (BMPs) to minimize negative environmental impacts. Improvements in the appropriate measurements will inform decisions regarding US farming practices. A need was demonstrated for a national/international network to monitor atmospheric emissions from agriculture and their subsequent depositions to surrounding areas. Information collected through such a program may be used to assess model performance and could be critical for evaluating any future regulatory policies or BMPs. The workshop concluded that efforts to maximize

  2. Atmospheric Science using CRISM EPF Sequences

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.; Clancy, R. T.; Arvidson, R.; Smith, M. D.; Murchie, S. L.; McGuire, P. C.

    2006-12-01

    Near the end of September 2006, the MRO/CRISM (Compact Reconnaissance Imaging Spectrometer for Mars; Murchie et al., 2006, JGR, in press.) will acquire its first observations of Mars. MRO's Primary Science Phase beginning in early November. One of CRISM's investigations is characterization of seasonal variations in dust and ice aerosols and trace gases using a systematic, global grid of hyperspectral measurements of emission phase functions (EPFs) acquired repetitively throughout the Martian year. EPFs will also be obtained as part of each of approximately 5000 "targeted" observations of surface geologic features. EPF measurements allow accurate determination of column abundances of water vapor, CO, dust and ice aerosols, and their seasonal variations (e.g., Clancy et al., 2003, 108(E9), 5098). EPFs are measured using eleven superimposed images within which the slit field-of-view is swept across a target point on the Martian surface. When EPFs are taken as part of a global grid, 10x spatial pixel binning will be used in all of the images, providing data at 150-200 m/pixel. In the targeted observations, the central image will be obtained at either full resolution or with 2x binning (15-38 m/pixel). In all cases, hyperspectral data (545 wavelengths) will be taken during each of the 11 superimposed scans. There are two types of global EPF grids, one with better temporal sampling and one with better spatial sampling of the atmosphere. The "atmospheric monitoring campaign" consists one Martian day of pole-to-pole EPF's every ~9°\\ of solar longitude (Ls). There is sufficient time for 8 EPFs in an orbit, one approximately every 22°\\ of latitude. Alternate orbits (projected onto the planet) are offset in latitude by about 11°\\ north or south to increase latitudinal resolution. Longitude spacing between the orbits is about 27°. The "seasonal change campaign" occurs approximately every ~36°\\ of Ls. A grid similar to that executed during the atmospheric monitoring

  3. A Space and Atmospheric Visualization Science System

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.; Blanchard, P.; Mankofsky, A.; Goodrich, C.; Kamins, D.; Kulkarni, R.; Mcnabb, D.; Moroh, M.

    1994-01-01

    SAVS (a Space and Atmospheric Visualization Science system) is an integrated system with user-friendly functionality that employs a 'push-button' software environment that mimics the logical scientific processes in data acquisition, reduction, analysis, and visualization. All of this is accomplished without requiring a detailed understanding of the methods, networks, and modules that link the tools and effectively execute the functions. This report describes SAVS and its components, followed by several applications based on generic research interests in interplanetary and magnetospheric physics (IMP/ISTP), active experiments in space (CRRES), and mission planning focused on the earth's thermospheric, ionospheric, and mesospheric domains (TIMED). The final chapters provide a user-oriented description of interface functionalities, hands-on operations, and customized modules, with details of the primary modules presented in the appendices. The overall intent of the report is to reflect the accomplishments of the three-year development effort and to introduce potential users to the power and utility of the integrated data acquisition, analysis, and visualization system.

  4. Dispersion modeling of air pollutants in the atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Leelőssy, Ádám; Molnár, Ferenc; Izsák, Ferenc; Havasi, Ágnes; Lagzi, István; Mészáros, Róbert

    2014-09-01

    Modeling of dispersion of air pollutants in the atmosphere is one of the most important and challenging scientific problems. There are several natural and anthropogenic events where passive or chemically active compounds are emitted into the atmosphere. The effect of these chemical species can have serious impacts on our environment and human health. Modeling the dispersion of air pollutants can predict this effect. Therefore, development of various model strategies is a key element for the governmental and scientific communities. We provide here a brief review on the mathematical modeling of the dispersion of air pollutants in the atmosphere. We discuss the advantages and drawbacks of several model tools and strategies, namely Gaussian, Lagrangian, Eulerian and CFD models. We especially focus on several recent advances in this multidisciplinary research field, like parallel computing using graphical processing units, or adaptive mesh refinement.

  5. Atmospheric Sciences Information Resources in the United States--An Overview for Librarians.

    ERIC Educational Resources Information Center

    Layman, Mary; Smith, Shirley

    1993-01-01

    Presents an overview of the types of information and information sources available in the field of atmospheric sciences. Included are major library collections; organizations; government programs, including air pollution control regulations; electronic databases; and networking resources. Addresses are provided for all sources, and definitions of…

  6. The NOAA Center in Atmospheric Sciences (NCAS) at Howard University

    NASA Astrophysics Data System (ADS)

    Strachan, M. D.; Morris, V. R.

    2003-12-01

    The National Oceanic and Atmospheric Administration (NOAA) of the Department of Commerce established the NOAA Center for Atmospheric Sciences (NCAS), a Cooperative Science Center, in fall 2001 to support the development of quality education to students at minority serving institutions while meeting the prescribed goals of NOAA and the nation. NCAS was established to research some of the critical environmental conditions occurring nationally and globally, and to provide opportunities and programs for students to pursue careers in atmospheric, environmental, and oceanic sciences and remote sensing. A primary goal is to increase the number of highly qualified, well trained graduates in the fields of NOAA related atmospheric sciences. NCAS is led by Howard University, in collaboration with three partners - Jackson State University, the University of Texas at El Paso, and the University of Puerto Rico at Mayaguez. This presentation will highlight the activities and accomplishments in research, education, and outreach of NCAS over its first two years of existence. The primary benefactor of NCAS has been the Howard University Program in Atmospheric Sciences (HUPAS), a comprehensive graduate program in atmospheric sciences with core focus areas of atmospheric chemistry, atmospheric physics, and geophysical fluid dynamics.

  7. Development and test of the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Morse, Paul G.; Bates, Jerry C.; Miller, Christopher R.; Chahine, Moustafa T.; O'Callaghan, Fred; Aumann, Hartmut H.; Karnik, Avinash R.

    1999-12-01

    The Atmospheric Infrared Sounder (AIRS) has been developed for the NASA Earth Observing System (EOS) program for a scheduled launch on the EOS PM-1 spacecraft in December 2000. AIRS, working in concert with complementary microwave instrumentation on EOS PM-1 is designed to provide both new and more accurate data about the atmosphere, land and oceans for application to NASA climate studies and NOAA and DOD weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer (km) layers in the troposphere, humidity profiles to 10% accuracy and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on passive IR remote sensing using a precisely calibrated, high spectral resolution grating spectrometer operating in the 3.7 - 15.4 micrometer region. The instrument concept uses a passively cooled multi- aperture echelle array spectrometer approach in combination with advanced state of the art focal plane and cryogenic refrigerator technology to achieve unparalleled performance capability in a practical long life configuration. The AIRS instrument, which has been under development since 1991, has been fully integrated and has completed successfully a comprehensive performance verification program. Performance verification included thermal vacuum testing, environmental qualification and a full range of spatial, spectral and radiometric calibrations, which have demonstrated outstanding spectrometric performance. This paper provides a brief overview of the AIRS mission and instrument design along with key results from the test program.

  8. Developing of a New Atmospheric Ionizing Radiation (AIR) Model

    NASA Technical Reports Server (NTRS)

    Clem, John M.; deAngelis, Giovanni; Goldhagen, Paul; Wilson, John W.

    2003-01-01

    As a result of the research leading to the 1998 AIR workshop and the subsequent analysis, the neutron issues posed by Foelsche et al. and further analyzed by Hajnal have been adequately resolved. We are now engaged in developing a new atmospheric ionizing radiation (AIR) model for use in epidemiological studies and air transportation safety assessment. A team was formed to examine a promising code using the basic FLUKA software but with modifications to allow multiple charged ion breakup effects. A limited dataset of the ER-2 measurements and other cosmic ray data will be used to evaluate the use of this code.

  9. Smartphone Air Quality and Atmospheric Aerosol Characterization for Public Health Applications

    NASA Astrophysics Data System (ADS)

    Strong, S. B.; Brown, D. M.; Brown, A.

    2014-12-01

    Air quality is a major global concern. Tracking and monitoring air quality provides individuals with the knowledge to make personal decisions about their health and investigate the environment in which they live. Satellite remote sensing and ground-based observations (e.g. Environmental Protection Agency, NASA Aerosol Robotic Network) of air quality is spatially and temporarlly limited and often neglects to provide individuals with the freedom to understand their own personal environment using their personal observations. Given the ubiquitous nature of smartphones, individuals have access to powerful processing and sensing capabilities. When coupled with the appropriate sensor parameters, filters, and algorithms, smartphones can be used both for 'citizen science' air quality applications and 'professional' scientific atmospheric investigations, alike, simplifying data analysis, processing, and improving deployment efficiency. We evaluate the validity of smartphone technology for air quality investigations using standard Cimel CE 318 sun photometry and Fourier Transform Infrared Spectroradiometer (FTIR) observations at specific locations.

  10. The Atmospheric Infrared Sounder (AIRS) on the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.; Strow, Larrabee

    2001-01-01

    AIRS, the Atmospheric Infrared Sounder on the EOS-Aqua, produces global high precision spectra from 3.7 - 15.4 micron with spectral resolving power mu/delta mu = 1200 twice each day from 708 km orbital altitude. AIRS is the first hyperspectral infrared spectrometer designed to support NOAA/NCEP's operational requirements for medium range weather forecasting during its nominal 7 year lifetime. AIRS, together with the AMSU and HSB microwave radiometers, will achieve global retrieval accuracy of better then 1K rms in the lower troposphere under clear and partly cloudy condition. Based on the excellent radiometric and spectral performance demonstrated during the pre-launch testing, the assimilation of AIRS data into the forecast model is expected to result in major forecast improvements. Launch of AIRS on the EOS AQUA is scheduled for May 2001.

  11. Atmospheric Ionizing Radiation (AIR) ER-2 Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, Hsiang; Wilson, John W.; Maiden, D. L.

    1998-01-01

    Atmospheric ionizing radiation (AIR) produces chemically active radicals in biological tissues that alter the cell function or result in cell death. The AIR ER-2 flight measurements will enable scientists to study the radiation risk associated with the high-altitude operation of a commercial supersonic transport. The ER-2 radiation measurement flights will follow predetermined, carefully chosen courses to provide an appropriate database matrix which will enable the evaluation of predictive modeling techniques. Explicit scientific results such as dose rate, dose equivalent rate, magnetic cutoff, neutron flux, and air ionization rate associated with those flights are predicted by using the AIR model. Through these flight experiments, we will further increase our knowledge and understanding of the AIR environment and our ability to assess the risk from the associated hazard.

  12. Space Science in Action: Earth's Atmosphere [Videotape].

    ERIC Educational Resources Information Center

    1999

    In this videotape recording, students learn about the layers of the atmosphere and why each is important to the survival of life on the planet. Students discover why the atmosphere is responsible for weather and see how special aircraft actually fly into hurricanes. Students build their own working barometer in a hands-on activity. Contents…

  13. Atmosphere, Science (Experimental): 5343.08.

    ERIC Educational Resources Information Center

    Reese, Sandra Kay

    This unit of instruction deals with a study of the general atmosphere by layers with an emphasis on physical characteristics. The formation of layers in the atmosphere and the energy relationships that exist between them are also discussed. No requisites for prior course work, experience, or courses to be taken concurrently are required for…

  14. Dessler, Jimenez, Klein, and Nenes Receive 2012 Atmospheric Sciences Ascent Awards: Citation for Athanasios Nenes

    NASA Astrophysics Data System (ADS)

    Webster, Peter J.

    2013-11-01

    The Atmospheric Sciences section of AGU awards one of the four Ascent Awards to Professor Athanasios Nenes, of the School of Earth and Atmospheric Sciences and School of Chemical and Biomolecular Engineering of the Georgia Institute of Technology, for the creation of thermodynamical models for tropospheric aerosols and the development of physically based aerosol-cloud parameterizations. In addition, he is recognized for the design of instrumentation and techniques to characterize the hygroscopicity and activation of cloud condensation nuclei (CCN) and also for contributions to the understanding of the role of aerosols in climate and air quality.

  15. Clean Air Slots Amid Dense Atmospheric Pollution in Southern Africa

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2003-01-01

    During the flights of the University of Washington's Convair-580 in the Southern African Regional Science Initiative (SAFARI 2000) in southern Africa, a phenomenon was observed that has not been reported previously. This was the occurrence of thin layers of remarkably clean air, sandwiched between heavily polluted air, which persisted for many hours during the day. Photographs are shown of these clean air slots (CAS), and particle concentrations and light scattering coefficients in and around such slot are presented. An explanation is proposed for the propensity of CAS to form in southern Africa during the dry season.

  16. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  17. Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces

    SciTech Connect

    Tobias, Douglas J.; Stern, Abraham C.; Baer, Marcel D.; Levin, Yan; Mundy, Christopher J.

    2013-04-01

    Chemistry occurring at or near the surfaces of aqueous droplets and thin films in the atmosphere influences air quality and climate. Molecular dynamics simulations are becoming increasingly useful for gaining atomic-scale insight into the structure and reactivity of aqueous interfaces in the atmosphere. Here we review simulation studies of atmospherically relevant aqueous liquid-air interfaces, with an emphasis on ions that play important roles in the chemistry of atmospheric aerosols. In addition to surveying results from simulation studies, we discuss challenges to the refinement and experimental validation of the methodology for simulating ion adsorption to the air-water interface, and recent advances in elucidating the driving forces for adsorption. We also review the recent development of a dielectric continuum theory that is capable of reproducing simulation and experimental data on ion behavior at aqueous interfaces. MDB and CJM acknowledge support from the US Department of Energy's Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is operated for the Department of Energy by Battelle. MDB is supported by the Linus Pauling Distinguished Postdoctoral Fellowship Program at PNNL.

  18. Ideas in Practice: Studies in Atmospheric Pollution For Science Teachers

    ERIC Educational Resources Information Center

    Rowe, Donald R.

    1974-01-01

    Describes the content and structure of an enviromental course offered by the Department of Engineering Technology at Western Kentucky University. The course focuses on atmospheric pollution and is designed for science teachers currently teaching in the school system. (JR)

  19. Application of Atmospheric Infrared Sounder (AIRS) Data to Climate Research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Gaiser, Steve; Chahine, Moustafa T.

    2004-01-01

    The application of hyper spectral radiometric data to climate research requires very high absolute radiometric accuracy and stability. We use cloud-free tropical ocean data from the Atmospheric InfraRed Sounder (AIR) Calibration Data Subset (ADCS) to show that the radiometric precision and stability required climate applications has been achieved. The sea surface skin temperatures derived from the AIRS 2616cm-1 super window channel are stable relative to the RTG.SST at the better than 8 mK/year level, and the spectral calibration is stable at the 1 ppm/year level. The excellent stability and accuracy are the result of the implementation of AIRS as a grating array spectrometer, which is cooled and stabilized within 10 mK at 155 K. Analysis of daily measurements of the temperature gradient between the surface and 7 km altitude show that the AIRS Calibration Data Subset has applications which extend its original intent for calibration support to climate research. The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua satellite was launched into polar orbit in May 2002. AIRS covers the spectral region from 640 to 2700 cm-1 with 2378 independent channels and represents the first of a new generation of hyper spectral resolution sounders in support of global sounding data for weather forecasting and climate research.

  20. Updating the science of atmospheric electricity

    NASA Astrophysics Data System (ADS)

    Pinto, Osmar, Jr.; Williams, Earle R.

    2011-12-01

    XIV International Conference on Atmospheric Electricity; Rio de Janeiro, Brazil, 7-12 August 2011 The main goal of the XIV International Conference on Atmospheric Electricity (ICAE 2011) was to provide a comprehensive description of the status of knowledge in the field of atmospheric electricity, as well as to provide an opportunity for extensive interaction among researchers in this field. The history of the ICAE goes back to the first conference held in May 1954 in Portsmouth, N. H. The conference was attended by 51 scientists from 10 countries, and only three topics were addressed: fair weather electricity, thunderstorm electrification, and lightning.

  1. Atmospheric Soundings from AIRS/AMSU in Partial Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Atlas, Robert

    2005-01-01

    Simultaneous use of AIRS/AMSU-A observations allow for the determination of accurate atmospheric soundings under partial cloud cover conditions. The methodology involves the determination of the radiances AIRS would have seen if the AIRS fields of view were clear, called clear column radiances, and use of these radiances to infer the atmospheric and surface conditions giving rise to these clear column radiances. Susskind et al. demonstrate via simulation that accurate temperature soundings and clear column radiances can be derived from AIRS/AMSU-A observations in cases of up to 80% partial cloud cover, with only a small degradation in accuracy compared to that obtained in clear scenes. Susskind and Atlas show that these findings hold for real AIRS/AMSU-A soundings as well. For data assimilation purposes, this small degradation in accuracy is more than offset by a significant increase in spatial coverage (roughly 50% of global cases were accepted, compared to 3.6% of the global cases being diagnosed as clear), and assimilation of AIRS temperature soundings in partially cloudy conditions resulted in a larger improvement in forecast skill than when AIRS soundings were assimilated only under clear conditions. Alternatively, derived AIRS clear column radiances under partial cloud cover could also be used for data assimilation purposes. Further improvements in AIRS sounding methodology have been made since the results shown in Susskind and Atlas . A new version of the AIRS/AMSU-A retrieval algorithm, Version 4.0, was delivered to the Goddard DAAC in February 2005 for production of AIRS derived products, including clear column radiances. The major improvement in the Version 4.0 retrieval algorithm is with regard to a more flexible, parameter dependent, quality control. Results are shown of the accuracy and spatial distribution of temperature-moisture profiles and clear column radiances derived from AIRS/AMSU-A as a function of fractional cloud cover using the Version 4

  2. SPAS: Saturn Probe for Atmospheric Science

    NASA Astrophysics Data System (ADS)

    Li, L.; Jain, N.; Noevere, A. T.; Raghunandan, P.; Walsh, C.

    2014-06-01

    A parametric study was performed to design an atmospheric entry probe to Saturn in order to determine the gas giant’s composition and structure at depths greater than previous missions. Vehicle and trajectory parameters were chosen.

  3. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  4. Polychlorinated biphenyls and organochlorine pesticides in atmospheric air of the Northern Hovsgol region in 2008-2013

    NASA Astrophysics Data System (ADS)

    Mamontova, E. A.; Tarasova, E. N.; Goreglyad, A. V.; Tkachenko, L. L.; Mamontov, A. A.; Kuzmin, M. I.

    2015-10-01

    Results of the study of organochlorine pesticides (OCP) and polychlorinated biphenyls (PCB) from the listing of the Stockholm Convention in atmospheric air of the Northern Hovsgol region at the base of the "Khankh" stationary, Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, in 2008-2013 in the absence of clear sources of these compounds are considered. Quantitative and qualitative changes in the concentration of PCB and OCP in atmospheric air of the Northern Hovsgol region in 2008-2013 characterizing the influence of natural (annual temperature variations) and anthropogenic (atmospheric transportation from the territories of neighboring countries) are shown.

  5. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  6. Propulsion Selection for 85kft Remotely Piloted Atmospheric Science Aircraft

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mockler, Ted; Maldonado, Jaime; Hahn, Andrew; Cyrus, John; Schmitz, Paul; Harp, Jim; King, Joseph

    1996-01-01

    for unmanned military spyplanes in the early 1980's. Now adapting hardware developed for reconaissance at 65-70 kft to the interests of atmospheric science at 80-90 kft, their efforts should yield an aero powerplant that pushes the altitude limits of subsonic air breathing propulsion.

  7. Atmospheric Laboratory for Applications and Science, Mission 1

    NASA Technical Reports Server (NTRS)

    Craven, Paul D. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    The first Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission, planned for late 1990, includes experiments in four areas: Atmospheric Science, Solar Physics, Space Plasma Physics, and Astronomy. The atmospheric science investigations will study the composition of the atmosphere in the stratosphere, mesosphere, and thermosphere. The solar physics investigations will measure the total energy output of the sun. The space plasma physics investigations will study the charged particle and plasma environment of the earth. The astronomy investigation will study astronomical sources of radiation in the ultraviolet wavelengths that are inaccessible to observers on earth. Most of the experimental equipment has been flown before on one of the Spacelab missions. Brief descriptions of the experiments are given.

  8. An Atmospheric Science Observing System Simulation Experiment (OSSE) Environment

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard; Qu, Zheng; Bowman, Kevin; Eldering, Annmarie

    2010-01-01

    An atmospheric sounding mission starts with a wide range of concept designs involving measurement technologies, observing platforms, and observation scenarios. Observing system simulation experiment (OSSE) is a technical approach to evaluate the relative merits of mission and instrument concepts. At Jet Propulsion Laboratory (JPL), the OSSE team has developed an OSSE environment that allows atmospheric scientists to systematically explore a wide range of mission and instrument concepts and formulate a science traceability matrix with a quantitative science impact analysis. The OSSE environment virtually creates a multi-platform atmospheric sounding testbed (MAST) by integrating atmospheric phenomena models, forward modeling methods, and inverse modeling methods. The MAST performs OSSEs in four loosely coupled processes, observation scenario exploration, measurement quality exploration, measurement quality evaluation, and science impact analysis.

  9. Atmospheric science: Pacific trade wind intensifier

    NASA Astrophysics Data System (ADS)

    Collier, Mark

    2016-08-01

    The unprecedented recent intensification of the Pacific trade winds cannot simply be explained by natural variability alone. Now research finds that the more local influence of sulfate aerosols of human and volcanic origin play a significant role, in addition to the Pacific's coupling to the Atlantic Ocean via the 'atmospheric bridge'.

  10. VISUAL DATA MINING IN ATMOSPHERIC SCIENCE DATA

    EPA Science Inventory

    This paper discusses the use of simple visual tools to explore multivariate spatially-referenced data. It describes interactive approaches such as linked brushing, and dynamic methods such as the grand tour. applied to studying the Comprehensive Ocean-Atmosphere Data Set (COADS)....

  11. Improved AIRS/AMSU Surface and Atmospheric Soundings Under Partial Cloud Cover Using an AIRS Only Cloud Clearing Approach

    NASA Technical Reports Server (NTRS)

    Susskind, Dr. Joel

    2007-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. This paper describes the latest scientific advances made in the AIRS Science Team Version 5.0 retrieval algorithm. Starting in early 2007, the Goddard DAAC will use this algorithm to analyze near real time AIRS/AMSU observations. These products are then made available to the scientific community for research purposes. The products include twice daily measurements of the Earth's three dimensional global temperature, water vapor, and ozone distribution as well as cloud cover. In addition, accurate twice daily measurements of the earth's land and ocean temperatures are derived and reported. Scientists use this important set of observations for two major uses. They provide important information for climate studies of global and regional variability and trends of different aspects of the earth's atmosphere. They also provide information for researchers to improve the skill of weather forecasting. A very important new product of the AIRS Version 5 algorithm is accurate case-by-case error estimates of the retrieved products. This heightens their utility for use in both weather and climate applications. These error estimates are also used directly for quality control of the retrieved products.

  12. Fire Influences on Atmospheric Composition, Air Quality, and Climate

    NASA Technical Reports Server (NTRS)

    Voulgarakis, Apostolos; Field, Robert D.

    2015-01-01

    Fires impact atmospheric composition through their emissions, which range from long-lived gases to short-lived gases and aerosols. Effects are typically larger in the tropics and boreal regions but can also be substantial in highly populated areas in the northern mid-latitudes. In all regions, fire can impact air quality and health. Similarly, its effect on large-scale atmospheric processes, including regional and global atmospheric chemistry and climate forcing, can be substantial, but this remains largely unexplored. The impacts are primarily realised in the boundary layer and lower free troposphere but can also be noticeable in upper troposphere/lower stratosphere (UT/LS) region, for the most intense fires. In this review, we summarise the recent literature on findings related to fire impact on atmospheric composition, air quality and climate. We explore both observational and modelling approaches and present information on key regions and on the globe as a whole. We also discuss the current and future directions in this area of research, focusing on the major advances in emission estimates, the emerging efforts to include fire as a component in Earth system modelling and the use of modelling to assess health impacts of fire emissions.

  13. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    NASA Astrophysics Data System (ADS)

    Clark, R. D.

    2005-12-01

    , the B.S. in Integrated Earth Systems will serve those students who find excitement at the boundaries of these disciplines, and prepare them for careers in this emerging field. The ISS program will target high school students of the highest caliber who demonstrate strong aptitude in mathematics and the physical sciences, who will need a minimum amount of remedial work. These select students will be exposed to courses in Earth Systems: Cycles and Interactions, Geophysical Fluid Dynamics, Air-Sea Interaction, Boundary Layers and Turbulence, Climate Variability and Global Change, Atmosphere-Ocean Modeling, Solar-Terrestrial Interactions, Weather Systems Science, Earth Observing Systems, Remote Sensing and more, as part of the ISS curriculum. This paper will highlight the MU-DES programs and learning initiatives and expand and elaborate on the new program in ISS.

  14. Atmospheric Research -- Sensors and Science in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Sohl, John E.; Armstrong, John C.; Larson, Shane L.

    2010-10-01

    HARBOR (High Altitude Reconnaissance Balloon for Outreach and Research) is a program in which scientific payloads are designed, constructed, and flown by students using weather balloons to reach the edge of space. Ten flights have been completed involving over forty high school and college students. Students work together to build sensor and flight systems and to analyze the resulting data. Measurements include temperature, wind, turbulence, humidity, particulates, gas concentrations, balloon and flight dynamics, etc. The HARBOR program provides a mission oriented structure that is based on aerospace industry standards. As a result, a positive employment track record is becoming established with program graduates. Similar results are being observed in graduate school applications. HARBOR is now being expanded to include tethered and short duration flights. Tethered flights at elementary schools will allow us to do air quality measurements and involve primary students in science. A new collaboration will study atmospheric inversion layers using short flights with smaller payloads that will be jettisoned at lower altitudes and quickly recovered.

  15. Cold Micro-Plasma Jets in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Mohamed, A. H.; Suddala, S.; Schoenbach, K. H.

    2003-10-01

    Direct current microhollow cathode discharges (MHCDs) have been operated in air, nitrogen and oxygen at pressures of one atmosphere. The electrodes are 250 μm thick molybdenum foils, separated by an alumina insulator of the same thickness. A cylindrical hole with a diameter in the 100 μm range is drilled through all layers. By flowing gases at high pressure through this hole, plasma jets with radial dimensions on the same order as the microhole dimensions, and with lengths of up to one centimeter are generated. The gas temperature in these jets was measured by means of a micro-thermocouple. The lowest temperatures of close to room temperature were measured when the flow changed from laminar to turbulent. The results of spectral emission and absorption studies indicate high concentrations of byproducts, such as ozone, when the discharge is operated in air or oxygen. This work is supported by the U.S Air Force Office of Scientific Research (AFOSR).

  16. A Department of Atmospheric and Planetary Sciences at Hampton University

    NASA Astrophysics Data System (ADS)

    Paterson, W. R.; McCormick, M. P.; Russell, J. M.; Anderson, J.; Kireev, S.; Loughman, R. P.; Smith, W. L.

    2006-12-01

    With this presentation we discuss the status of plans for a Department of Atmospheric and Planetary Sciences at Hampton University. Hampton University is a privately endowed, non-profit, non-sectarian, co-educational, and historically black university with 38 baccalaureate, 14 masters, and 4 doctoral degree programs. The graduate program in physics currently offers advanced degrees with concentration in Atmospheric Science. The 10 students now enrolled benefit substantially from the research experience and infrastructure resident in the university's Center for Atmospheric Sciences (CAS), which is celebrating its tenth anniversary. Promoting a greater diversity of participants in geosciences is an important objective for CAS. To accomplish this, we require reliable pipelines of students into the program. One such pipeline is our undergraduate minor in Space, Earth, and Atmospheric Sciences (SEAS minor). This minor concentraton of study is contributing to awareness of geosciences on the Hampton University campus, and beyond, as our students matriculate and join the workforce, or pursue higher degrees. However, the current graduate program, with its emphasis on physics, is not necessarily optimal for atmospheric scientists, and it limits our ability to recruit students who do not have a physics degree. To increase the base of candidate students, we have proposed creation of a Department of Atmospheric and Planetary Sciences, which could attract students from a broader range of academic disciplines. The revised curriculum would provide for greater concentration in atmospheric and planetary sciences, yet maintain a degree of flexibility to allow for coursework in physics or other areas to meet the needs of individual students. The department would offer the M.S. and Ph.D. degrees, and maintain the SEAS minor. The university's administration and faculty have approved our plan for this new department pending authorization by the university's board of trustees, which will

  17. Comparing Unique Title Coverage of Web of Science and Scopus in Earth and Atmospheric Sciences

    ERIC Educational Resources Information Center

    Barnett, Philip; Lascar, Claudia

    2012-01-01

    The current journal titles in earth and atmospheric sciences, that are unique to each of two databases, Web of Science and Scopus, were identified using different methods. Comparing by subject category shows that Scopus has hundreds of unique titles, and Web of Science just 16. The titles unique to each database have low SCImago Journal Rank…

  18. AIRS Science Data Services at NASA Goddard Earth Sciences Data and Info Services

    NASA Astrophysics Data System (ADS)

    Li, J.; Theobald, M.; Vollmer, B.; Hua, X.; Won, Y.

    2007-12-01

    The Atmospheric Infrared Sounder (AIRS) is a very high spectral resolution passive infrared sounder with more than 2000 well-calibrated spectral channels measuring in the range of 3.74 - 15.4 micron. The AIRS instrument was successfully launched aboard the NASA Aqua spacecraft in May, 2002 and has been providing global coverage ever since. The infrared radiance data product is stable to 10 mK/year and accurate to better than 250 mK. The AIRS product is the most accurate and stable set of hyperspectral infrared radiance spectra measurements made in space to date, and its meets the criteria identified by the National Research Council for climate data records. In addition, working in tandem with an Advanced Microwave Sounding Unit (AMSU-A) instrument, AIRS provides a three-dimensional view of the geophysical properties of the Earth's atmosphere. The geophysical products provide daily global temperature profiles at an accuracy of 1 K per 1 km thick layer in the troposphere and moisture profiles at an accuracy of 20% per 2 km thick layer in the lower troposphere (20% - 60% in the upper troposphere). AIRS standard swath and grid data products are available from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The latest version of AIRS products (Version 5) has many improvements over previous versions including better temperature and water vapor profiles, enhanced Level 2 temperature data products over land and polar regions, first-time retrievals of carbon monoxide and methane, improvements to ozone retrievals, warning 'flags' to identify concentrations of sulfur dioxide and dust and overall improvements error and quality flag parameterization. In addition to the AIRS standard products, the swath-based AIRS products are also produced in near real time (NRT) at the GES DISC facility using the same core science algorithms as in the regular science data production but using predicted ephemeris in place of definitive ephemeris data

  19. Atmospheric Science and Remote Sensing Laboratory

    NASA Technical Reports Server (NTRS)

    Mach, Douglas; Bowdie, David

    1988-01-01

    During the contract year, scientific research on lightning and lightning hazards was carried out for the Atmospheric Electricity Group in the MSFC Remote Sensing Branch (ED43). These tasks included research on modeling the interaction of lightning optical pulses and cloud particles, estimating lightning hazard threats to the STS system, a small field project to determine the charge structure of winter and stratiform thunderstorms, and analysis of optical pulse data. These activities were performed in conjunction with the ED43 mission to develop a lightning mapper to be placed on one of the GOES-next operational satellites.

  20. Atmospheric science. Ozone and climate change.

    PubMed

    Karoly, David J

    2003-10-10

    Over the past 40 years, Southern Hemisphere circumpolar westerly winds have strengthened. In his Perspective, Karoly highlights the modeling study by Gillett and Thompson, who show that these observed Southern Hemisphere climate changes in spring and summer can be explained as a response to stratospheric ozone depletion over Antarctica. The observed strengthening of the circumpolar westerlies in winter is less likely to be the response to springtime Antarctic ozone depletion, but may be due in part to increasing atmospheric greenhouse gases. Understanding the different causes and practical impacts of these trends in Southern Hemisphere circulation is an important next step for climate researchers. PMID:14551423

  1. Natural sources of atmospheric aerosols influencing air quality across Europe.

    PubMed

    Viana, M; Pey, J; Querol, X; Alastuey, A; de Leeuw, F; Lükewille, Anke

    2014-02-15

    Atmospheric aerosols are emitted by natural and anthropogenic sources. Contributions from natural sources to ambient aerosols vary widely with time (inter-annual and seasonal variability) and as a function of the distance to source regions. This work aims to identify the main natural sources of atmospheric aerosols affecting air quality across Europe. The origin, frequency, magnitude, and spatial and temporal variability of natural events were assessed for the years 2008 and 2009. The main natural sources of atmospheric aerosols identified were African dust, sea spray and wildfires. Primary biological particles were not included in the present work. Volcanic eruptions did not affect air quality significantly in Europe during the study period. The impact of natural episodes on air quality was significant in Southern and Western Europe (Cyprus, Spain, France, UK, Greece, Malta, Italy and Portugal), where they contributed to surpass the PM10 daily and annual limit values. In Central and Northern Europe (Germany, Austria and Latvia) the impact of these events was lower, as it resulted in the exceedance of PM daily but not annual limit values. Contributions from natural sources to mean annual PM10 levels in 2008 and 2009 ranged between 1 and 2 μg/m(3) in Italy, France and Portugal, between 1 and 4 μg/m(3) in Spain (10 μg/m(3) when including the Canary Islands), 5 μg/m(3) in UK, between 3 and 8 μg/m(3) in Greece, and reached up to 13 μg/m(3) in Cyprus. The evaluation of the number of monitoring stations per country reporting natural exceedances of the daily limit value (DLV) is suggested as a potential tool for air quality monitoring networks to detect outliers in the assessment of natural contributions. It is strongly suggested that a reference methodology for the identification and quantification of African dust contributions should be adopted across Europe. PMID:24342088

  2. Applications of airborne remote sensing in atmospheric sciences research

    NASA Technical Reports Server (NTRS)

    Serafin, R. J.; Szejwach, G.; Phillips, B. B.

    1984-01-01

    This paper explores the potential for airborne remote sensing for atmospheric sciences research. Passive and active techniques from the microwave to visible bands are discussed. It is concluded that technology has progressed sufficiently in several areas that the time is right to develop and operate new remote sensing instruments for use by the community of atmospheric scientists as general purpose tools. Promising candidates include Doppler radar and lidar, infrared short range radiometry, and microwave radiometry.

  3. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2015-01-01

    This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.

  4. Earth Science for Society: Insights from Air Quality Planning and Forecasting

    NASA Astrophysics Data System (ADS)

    Friedl, L.

    2006-12-01

    Ozone, particulate matter, and other air pollutants pose significant health and environmental impacts to humans and ecosystems. Research satellite observations and atmospheric models have provided new insights on pollution distribution and regional-to-global transports. Environmental and public health organizations have developed methods to incorporate Earth science data to identify air pollutant impacts, develop policy, and provide air quality forecasts. For example, satellite observations and analytic techniques to characterize aerosols have provided national-to-local air quality managers with advanced methods to identify aerosol transport and forecast pollution episodes. Internationally, the Convention on Long-range Transboundary Air Pollution has established a task force to characterize air pollution transport and establish scientific guidance for international policy and protocols. This paper will present the use of satellite observations to characterize air pollutants (especially aerosols, ozone, and precursors) as an example of the integration of atmospheric research, observations, and associated model products into management and policy making. The paper will examine air quality applications to discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management.

  5. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  6. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  7. Atmospheric science: marine aerosols and iodine emissions.

    PubMed

    McFiggans, Gordon

    2005-02-10

    O'Dowd et al. describe the formation of marine aerosols from biogenic iodine and the growth of these aerosols into cloud-condensation nuclei (CCN). Based on chamber and modelling results, the authors suggest that biogenic organic iodine compounds emitted from macroalgae may be responsible for coastal particle bursts and that production of these compounds in the open ocean could increase CCN there too. It has since been shown that coastal particles are more likely to be produced from the photooxidation of molecular iodine. Moreover, I contend that open-ocean particle production and cloud enhancement do not result from emissions of organic iodine at atmospheric levels. For iodine particles to affect cloud properties over the remote ocean, an additional source of iodine is necessary as organic precursors cannot be responsible. PMID:15703706

  8. Visualization Techniques in Space and Atmospheric Sciences

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P. (Editor); Bredekamp, Joseph H. (Editor)

    1995-01-01

    Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility.

  9. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS

  10. Shockwave and cavitation bubble dynamics of atmospheric air

    NASA Astrophysics Data System (ADS)

    Leela, Ch.; Bagchi, S.; Tewari, Surya P.; Kiran, P. Prem

    2013-11-01

    The generation and evolution of laser induced shock waves (SWs) and the hot core plasma (HCP) created by focusing 7 ns, 532 nm laser pulses in ambient air is studied using time resolved shadowgraphic imaging technique. The dynamics of rapidly expanding plasma releasing SWs into the ambient atmosphere were studied for time delays ranging from nanoseconds to milliseconds with ns temporal resolution. The SW is observed to get detached from expanding HCP at around 3μs. Though the SWs were found to expand spherically following the Sedov-Taylor theory, the rapidly expanding HCP shows asymmetric expansion during both the expansion and cooling phase similar to that of inertial cavitation bubble (CB) dynamics. The asymmetric expansion of HCP leads to oscillation of the plasma boundary, eventually leading to collapse by forming vortices formed by the interaction of ambient air.

  11. Cold atmospheric pressure air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.

    2008-06-01

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  12. Microwave generation of stable atmospheric-pressure fireballs in air.

    PubMed

    Stephan, Karl D

    2006-11-01

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed. PMID:17279961

  13. Microwave generation of stable atmospheric-pressure fireballs in air

    NASA Astrophysics Data System (ADS)

    Stephan, Karl D.

    2006-11-01

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.

  14. Microwave generation of stable atmospheric-pressure fireballs in air

    SciTech Connect

    Stephan, Karl D.

    2006-11-15

    The generation of stable buoyant fireballs in a microwave cavity in air at atmospheric pressure without the use of vaporized solids is described. These fireballs have some of the characteristics of ball lightning and resemble those reported by Dikhtyar and Jerby [Phys. Rev. Lett. 96, 045002 (2006)], although of a different color, and do not require the presence of molten or vaporized material. Mechanisms of microwave plasma formation and fluid dynamics can account for the observed behavior of the fireballs, which do not appear to meet the accepted definition of dusty plasmas in this case. Relevance to models of ball lightning and industrial applications are discussed.

  15. Experiments on cylindrically converging blast waves in atmospheric air

    NASA Astrophysics Data System (ADS)

    Matsuo, Hideo; Nakamura, Yuichi

    1980-06-01

    Cylindrically converging blast waves have been produced in normal atmospheric conditions by the detonation of the explosives, pentaerythritoltetranitrate, (PETN), over cylindrical surfaces. The shocks generated in this way are so strong that the fronts propagating through the air become luminous of themselves. The production and the propagation of the shocks have been monitored with a framing camera and a streak camera, and the time-space relations of the shock propagations have been determined using an electrical ionization probing system. The results have shown that the trajectory of the shock fronts near the axis of the cylinder can be approximately represented by the Guderley's formula.

  16. European Meteorological Society and education in atmospheric sciences

    NASA Astrophysics Data System (ADS)

    Halenka, T.; Belda, M.

    2010-09-01

    EMS is supporting the exchange of information in the area of education in atmospheric sciences as one of its priority and organizing the educational sessions during EMS annual meetings as a good occasion for such an exchange. Brief thought will be given to the fate of the series of International Conferences on School and Popular Meteorological and Oceanographic Education - EWOC (Education in Weather, Ocean and Climate) and to the project oriented basis of further cooperation in education in atmospheric sciences across Europe. Another tool of EMS is the newly established and developed EDU portal of EMS. In most European countries the process of integration of education at university level was started after Bologna Declaration with the objective to have the system where students on some level could move to another school, or rather university. The goal is to achieve the compatibility between the systems and levels in individual countries to have no objections for students when transferring between the European countries. From this point of view EMS is trying to provide the information about the possibility of education in meteorology and climatology in different countries in centralised form, with uniform shape and content, but validated on national level. In most European countries the necessity of education in Science and Mathematics to achieve higher standard and competitiveness in research and technology development has been formulated after the Lisboa meeting. The European Meteorological Society is trying to follow this process with implication to atmospheric sciences. One of the important task of the EMS is the activity to promote public understanding of meteorology (and sciences related to it), and the ability to make use of it, through schools and more generally. One of the elements of EMS activity is the analysis of the position of atmospheric science in framework of curricula in educational systems of European countries as well as in more general sense, the

  17. The balance model of oxygen enrichment of atmospheric air

    NASA Astrophysics Data System (ADS)

    Popov, Alexander

    2013-04-01

    The study of turnover of carbon and oxygen is an important line of scientific investigation. This line takes on special significance in conditions of soil degradation, which leads to the excess content of carbon dioxide and, as result, decrease of oxygen in the atmosphere. The aim of this article is a statement the balance model of oxygen enrichment of atmospheric air (ratio O/C) depending on consumption and assimilation by plants of dissolved organic matter (DOM) and the value of the oxidation-reduction potential (Eh). Basis of model was the following: green vascular plants are facultative heterotrophic organisms with symbiotic digestion and nutrition. According to the trophology viewpoint, the plant consumption of organic compounds broadens greatly a notion about the plant nutrition and ways of its regulation. In particular, beside the main known cycle of carbon: plant - litter - humus - carbon dioxide - plant, there is the second carbon cycle (turnover of organic compounds): plant - litter - humus - DOM - plant. The biogeochemical meaning of consumption of organic compounds by plants is that plants build the structural and functional blocks of biological macromolecules in their bodies. It provides receiving of a certain "energy payoff" by plants, which leads to increase of plant biomass by both an inclusion of allochthonous organic molecules in plant tissues, and positive effect of organic compounds on plant metabolic processes. One more of powerful ecological consequence of a heterotrophic nutrition of green plants is oxygen enrichment of atmospheric air. As the organic molecules in the second biological cycle of carbon are built in plants without considerable chemical change, the atmospheric air is enriched on that amount of oxygen, which would be required on oxidation of the organic molecules absorbed by plants, in result. It was accepted that: plant-soil system was climax, the plant community was grassy, initial contents of carbon in phytomass was accepted

  18. Beyond the atmosphere: Early years of space science

    NASA Technical Reports Server (NTRS)

    Newell, H. E.

    1980-01-01

    From the rocket measurements of the upper atmosphere and Sun that began in 1946, space science gradually emerged as a new field of scientific activity. The course of the United State space program is viewed in an historical context. Major emphasis is on NASA and its programs. The funding, staffing, organization, and priorities of the space program were reviewed.

  19. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind,Joel

    2009-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS is a grating spectrometer with a number of linear arrays of detectors with each detector sensitive to outgoing radiation in a characteristic frequency v(sub i) with a spectral band pass delta v(sub i) of roughly v(sub i) /1200. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(exp -1) (15.38 gm) - 2665 cm(exp -1)' (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometer (longwave) CO2 band, and the 4.3 micrometer (shortwave) CO, absorption band. There are also two atmospheric window regions, the 12 micrometerm - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. One reason for this was concerns about the effects, during the day, of reflected sunlight and non-Local Thermodynamic Equilibrium (non-LTE) on the observed radiances in the shortwave portion of the spectrum. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses the longwave channels to determine cloud cleared radiances R(sub i) for all channels, and uses R(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used by the AIRS Science Team in preparation for the AIRS Version 6 Retrieval Algorithm. This paper describes how the effects on the radiances of solar radiation reflected by clouds and the Earth's surface, and also of non-LTE, are accounted for in the analysis of the data. Results are presented for both

  20. Urban Air Pollution: State of the Science.

    ERIC Educational Resources Information Center

    Seinfeld, John H.

    1989-01-01

    Describes the highly complex mixture of gaseous and particulate matter found in urban air. Explains progress made in the understanding of the physics and chemistry of air pollution, the effects of precursors on ozone, the role of biogenic hydrocarbons, and the principal benefit of methanol-fueled vehicles. (RT)

  1. Air Quality Measurements for Science and Policy

    EPA Science Inventory

    Air quality measurements and the methods used to conduct them are vital to advancing our knowledge of the source-to-receptor-to-health effects continuum1-3. This information then forms the basis for evaluating and managing air quality to protect human health and welfa...

  2. Modification of various metals by volume discharge in air atmosphere

    NASA Astrophysics Data System (ADS)

    Shulepov, Mikhail A.; Erofeev, Mikhail V.; Oskomov, Konstantin V.; Tarasenko, Victor F.

    2015-12-01

    The results of the modification of stainless steel, niobium and titanium by volume discharge induced by a beam of runaway electrons in air under normal pressure are presented. Changes in the chemical composition of the surface layers of metal by the action of the discharge, structural changes and changes of hardness were studied. It has been found that the concentration of oxygen and carbon in the surface layers of the samples depend on the number of discharge pulses. The aim of this work is to find possible application of this type of discharge in science and industrial production.

  3. Using Unmanned Air Systems to Monitor Methane in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Clow, Jacqueline; Smith, Jeremy Christopher

    2016-01-01

    Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.

  4. Atmospheric Modelling for Air Quality Study over the complex Himalayas

    NASA Astrophysics Data System (ADS)

    Surapipith, Vanisa; Panday, Arnico; Mukherji, Aditi; Banmali Pradhan, Bidya; Blumer, Sandro

    2014-05-01

    An Atmospheric Modelling System has been set up at International Centre for Integrated Mountain Development (ICIMOD) for the assessment of Air Quality across the Himalaya mountain ranges. The Weather Research and Forecasting (WRF) model version 3.5 has been implemented over the regional domain, stretching across 4995 x 4455 km2 centred at Ichhyakamana , the ICIMOD newly setting-up mountain-peak station (1860 m) in central Nepal, and covering terrains from sea-level to the Everest (8848 m). Simulation is carried out for the winter time period, i.e. December 2012 to February 2013, when there was an intensive field campaign SusKat, where at least 7 super stations were collecting meteorology and chemical parameters on various sites. The very complex terrain requires a high horizontal resolution (1 × 1 km2), which is achieved by nesting the domain of interest, e.g. Kathmandu Valley, into 3 coarser ones (27, 9, 3 km resolution). Model validation is performed against the field data as well as satellite data, and the challenge of capturing the necessary atmospheric processes is discussed, before moving forward with the fully coupled chemistry module (WRF-Chem), having local and regional emission databases as input. The effort aims at finding a better understanding of the atmospheric processes and air quality impact on the mountain population, as well as the impact of the long-range transport, particularly of Black Carbon aerosol deposition, to the radiative budget over the Himalayan glaciers. The higher rate of snowcap melting, and shrinkage of permafrost as noticed by glaciologists is a concern. Better prediction will supply crucial information to form the proper mitigation and adaptation strategies for saving people lives across the Himalayas in the changing climate.

  5. Characteristics of dielectric barrier discharge plasmas in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Fukuda, Y.; Fukui, K.; Iwami, R.; Matsuoka, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    Atmospheric pressure plasmas have a great advantage for industrial applications such as surface modifications, sterilization and film preparation. In particular, reactive plasmas including OH radicals can be generated in humid air. On the other hand, it is known that dielectric barrier discharge (DBD) plasmas in air are strongly affected by humidity. In this study, a twisted pair sample is used as a DBD electrode. The twisted pair consists of two enameled wires, and it is installed in a climate chamber to control ambient temperature and humidity. Repetitive impulse voltage pulses were applied to the twisted pair to produce DBD plasmas. Light emission, electromagnetic wave and current pulses were used to detect discharge activities. The discharge inception voltage (DIV) is basically determined by Paschen curve in air, however, the DIV was decreased by increasing the humidity. In addition, it was found that there were largely scattered data of DIV at the low humidity condition. After the pre-discharges, the DIV reached to the steady state value. On the other hand, there was no scattering of the observed DIV at the high humidity condition. Measurements of surface potential of the sample after the discharge show these behaviors could be explained by surface charge accumulation on the enameled wire. It is noted that there was no fluctuation in the DIV data in the case of unipolar voltage pulse.

  6. Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Figure 1

    These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner.

    Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain.

    Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel.

    The

  7. Quality Assessment of Collection 6 MODIS Atmospheric Science Products

    NASA Astrophysics Data System (ADS)

    Manoharan, V. S.; Ridgway, B.; Platnick, S. E.; Devadiga, S.; Mauoka, E.

    2015-12-01

    Since the launch of the NASA Terra and Aqua satellites in December 1999 and May 2002, respectively, atmosphere and land data acquired by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor on-board these satellites have been reprocessed five times at the MODAPS (MODIS Adaptive Processing System) located at NASA GSFC. The global land and atmosphere products use science algorithms developed by the NASA MODIS science team investigators. MODAPS completed Collection 6 reprocessing of MODIS Atmosphere science data products in April 2015 and is currently generating the Collection 6 products using the latest version of the science algorithms. This reprocessing has generated one of the longest time series of consistent data records for understanding cloud, aerosol, and other constituents in the earth's atmosphere. It is important to carefully evaluate and assess the quality of this data and remove any artifacts to maintain a useful climate data record. Quality Assessment (QA) is an integral part of the processing chain at MODAPS. This presentation will describe the QA approaches and tools adopted by the MODIS Land/Atmosphere Operational Product Evaluation (LDOPE) team to assess the quality of MODIS operational Atmospheric products produced at MODAPS. Some of the tools include global high resolution images, time series analysis and statistical QA metrics. The new high resolution global browse images with pan and zoom have provided the ability to perform QA of products in real time through synoptic QA on the web. This global browse generation has been useful in identifying production error, data loss, and data quality issues from calibration error, geolocation error and algorithm performance. A time series analysis for various science datasets in the Level-3 monthly product was recently developed for assessing any long term drifts in the data arising from instrument errors or other artifacts. This presentation will describe and discuss some test cases from the

  8. Atmospheric sciences students present papers, get career tips

    NASA Astrophysics Data System (ADS)

    Van Doren, Jane M.

    At AGU's Spring Meeting the Atmospheric Sciences Section hosted a series of special sessions to highlight student research and provide advice and information about securing successful careers in the geosciences. Eighteen graduate students presented papers and posters covering field, laboratory, and modeling efforts. Subject areas included aerosol chemistry, morphology, physics, sources and transport of atmospheric species, and issues relating to regional and global climate. The panel discussion on successfulcareers drew a wide audience, from students to accomplished researchers. Topics discussed included postdoctoral positions job applications, research funding proposals, and time management.

  9. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    SciTech Connect

    Not Available

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  10. Atmospheric Release Assessment Program (ARAP) Science and Technology Base Development

    SciTech Connect

    Ermak, D L; Sugiyama, G; Nasstrom, J S

    2002-05-10

    ARAP s integrated suite of research, development, and operational programs is focused on the creation of capabilities for predicting the consequences of atmospheric releases of hazardous materials. The foundation of ARAP lies in its science and technology base in multi-scale meteorological and dispersion modeling, field experiments, and software systems (databases, real-time data acquisition software, and remote-access tools). Scientific and technological advancements are integrated into DOENNSA s operational National Atmospheric Release Advisory Center (NARAC) at LLNL to support emergency response, pre-event planning, preparedness, and consequence analysis. Some recent ARAP development highlights are described below.

  11. The impact of atmospheric infrared sounder (AIRS) profiles on short-term weather forecasts

    NASA Astrophysics Data System (ADS)

    Zavodsky, Bradley T.; Chou, Shih-Hung; Jedlovec, Gary; Lapenta, William

    2007-04-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. Aside from monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information with sufficient accuracy such that the assimilation of the new observations, especially in data sparse regions, will lead to an improvement in weather forecasts. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 10-15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data in a regional analysis/forecast model. The paper focuses on a U.S. East-Coast cyclone from November 2005. Temperature and moisture profiles-containing information about the quality of each temperature layer-from the prototype version 5.0 Earth Observing System (EOS) science team retrieval algorithm are used in this study. The quality indicators are used to select the highest quality temperature and moisture data for each profile location and pressure level. AIRS data are assimilated into the Weather Research and Forecasting (WRF) numerical weather prediction model using the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), to produce near-real-time regional weather forecasts over the continental U.S. The preliminary assessment of the impact of the AIRS profiles will focus on intelligent use of the quality indicators, analysis impact, and forecast verification against rawinsondes

  12. European Meteorological Society and education in atmospheric sciences, EWOC

    NASA Astrophysics Data System (ADS)

    Halenka, T.; Belda, M.

    2009-04-01

    In most European countries the necessity of education in Science and Mathematics to achieve higher standard and competitiveness in research and technology development has been formulated after the Lisboa meeting. The European Meteorological Society is trying to follow this process with implication to atmospheric sciences. One of the important task of the EMS is the activity to promote public understanding of meteorology (and sciences related to it), and the ability to make use of it, through schools and more generally. One of the elements of EMS activity is the analysis of the position of atmospheric science in framework of curricula in educational systems of European countries as well as in more general sense, the place of Science education in the system. In most European countries the process of integration of education at university level was started after Bologna Declaration with the objective to have the system where students on some level could move to another school, or rather university. The goal is to achieve the compatibility between the systems and levels in individual countries to have no objections for students when transferring between the European countries. From this point of view EMS is trying to provide the information about the possibility of education in meteorology and climatology in different countries in centralised form, with uniform shape and content, but validated on national level. EMS is supporting the exchange of information in the area of education in atmospheric sciences, organizing the educational sessions during EMS annual meetings as well as participating in the series of International Conferences on School and Popular Meteorological and Oceanographic Education - EWOC (Education in Weather, Ocean and Climate).

  13. Promoting Interests in Atmospheric Science at a Liberal Arts Institution

    NASA Astrophysics Data System (ADS)

    Roussev, S.; Sherengos, P. M.; Limpasuvan, V.; Xue, M.

    2007-12-01

    Coastal Carolina University (CCU) students in Computer Science participated in a project to set up an operational weather forecast for the local community. The project involved the construction of two computing clusters and the automation of daily forecasting. Funded by NSF-MRI, two high-performance clusters were successfully established to run the University of Oklahoma's Advance Regional Prediction System (ARPS). Daily weather predictions are made over South Carolina and North Carolina at 3-km horizontal resolution (roughly 1.9 miles) using initial and boundary condition data provided by UNIDATA. At this high resolution, the model is cloud- resolving, thus providing detailed picture of heavy thunderstorms and precipitation. Forecast results are displayed on CCU's website (https://marc.coastal.edu/HPC) to complement observations at the National Weather Service in Wilmington N.C. Present efforts include providing forecasts at 1-km resolution (or finer), comparisons with other models like Weather Research and Forecasting (WRF) model, and the examination of local phenomena (like water spouts and tornadoes). Through these activities the students learn about shell scripting, cluster operating systems, and web design. More importantly, students are introduced to Atmospheric Science, the processes involved in making weather forecasts, and the interpretation of their forecasts. Simulations generated by the forecasts will be integrated into the contents of CCU's course like Fluid Dynamics, Atmospheric Sciences, Atmospheric Physics, and Remote Sensing. Operated jointly between the departments of Applied Physics and Computer Science, the clusters are expected to be used by CCU faculty and students for future research and inquiry-based projects in Computer Science, Applied Physics, and Marine Science.

  14. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  15. Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.

  16. Characteristics Of A Dielectric Barrier Discharge In Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Lai, C. K.; Chin, O. H.; Thong, K. L.

    2009-07-01

    Parallel plate dielectric barrier discharges consisting of two electrodes with glass (ɛr = 7.5) and alumina (ɛr = 9.0) as the dielectric barrier were constructed. The system is powered by a variable 20 kV high voltage supply which is capable of delivering unipolar voltage pulses at frequency of 0.1-2.5 kHz and sinusoidal voltages at 6.5 kHz and above. At atmospheric pressure, the discharges exhibit either diffuse or filamentary appearance depending on parameters which include the series capacitance established by the electrodes with the dielectric barrier and varying air gap, dielectric material, and frequency of the supply voltages. This DBD system is built for the study of bacterial sterilization.

  17. Teaching Science: Air Pressure "Eggs-periments."

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Discusses how teachers can introduce students to various scientific concept concerning motion, air composition, and heat by conducting an experiment: A peeled, hard-boiled egg is sucked into a bottle neck slightly smaller than the egg, after the bottle has been filled and emptied of hot water. Also discusses how students' understanding of the…

  18. Teaching Earth Science Using Hot Air Balloons

    ERIC Educational Resources Information Center

    Kuhl, James; Shaffer, Karen

    2008-01-01

    Constructing model hot air balloons is an activity that captures the imaginations of students, enabling teachers to present required content to minds that are open to receive it. Additionally, there are few activities that lend themselves to integrating so much content across subject areas. In this article, the authors describe how they have…

  19. Atmospheric Science Measurements by the EOS Geoscience Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Spinhirne, James

    1999-01-01

    Scheduled for Launch in July 2001, the Geoscience Laser Altimeter System (GLAS) is to be the first satellite instrument to provide full global lidar profiling of clouds and aerosol in the earth's atmosphere. GLAS is an EOS program instrument that is on its own satellite, now called the Ice, Cloud and land Elevation Satellite. The instrument is both a surface laser ranging system and an atmospheric profiling lidar. A most important surface measurement for the instrument is to study the change in the mass balance of the polar ice sheets by measuring the change in regional altitudes to an accuracy of 1.5 cm per year. The strategy to combine the surface measurement with a Cloud and aerosol lidar profiling mission is based on the compatibility of the altimetry instrument requirements with those for the required lidar measurements. The primary atmospheric science goal of the GLAS cloud and aerosol measurement is to determine the radiative forcing and vertically resolved atmospheric heating rate due to cloud and aerosol by directly observing the vertical structure and magnitude of cloud and aerosol parameters that are important for the radiative balance of the earth-atmosphere system, but which are ambiguous or impossible to obtain from existing or planned passive remote sensors. A further goal is to directly measure the height of atmospheric transition layers (inversions) which are important for dynamics and mixing, the planetary boundary layer and lifting condensation level.

  20. The relationship between ozone formation and air temperature in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Savkin, Denis; Tolmachev, Gennadii

    2016-04-01

    Studying the formation and dynamics of ozone in the atmosphere is important due to several reasons. First, the contribution of tropospheric ozone to the global greenhouse effect is only slightly less than that of water vapor, carbon dioxide, and methane. Second, tropospheric ozone acts as a strong poison that has negative effects on human health, animals, and vegetation. Third, being a potent oxidizer, ozone destroys almost all materials, including platinum group metals and compounds. Fourthly, ozone is formed in situ from precursors as a result of photochemical processes, but not emitted into the atmosphere by any industrial enterprises directly. In this work, we present some results of the study aimed at the revealing relationship between ozone formation rate and surface air temperature in the background atmosphere. It has been found that this relationship is nonlinear. Analysis of the possible reasons showed that the nonlinear character of this relationship may be due to a nonlinear increase in the reaction constants versus air temperature and a quadratic increase in the concentration of hydrocarbons with increasing temperature. This work was supported by the Ministry of Education and Science contract no.14.613.21.0013 (ID: RFMEFI61314X0013).

  1. Atmospheric sciences division. Annual report, fiscal year 1981

    SciTech Connect

    Raynor, G. S.

    1981-12-01

    The research activities of the Atmospheric Sciences Division of the Department of Energy and Environment for FY 1981 are presented. Facilities and major items of equipment are described. Research programs are summarized in three categories, modeling, field and laboratory experiments and data management and analysis. Each program is also described individually with title, principal investigator, sponsor and funding levels for FY 1981 and FY 1982. Future plans are summarized. Publications for FY 1981 are listed with abstracts. A list of personnel is included.

  2. Applications of multigrid software in the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Adams, J.; Garcia, R.; Gross, B.; Hack, J.; Haidvogel, D.; Pizzo, V.

    1992-01-01

    Elliptic partial differential equations from different areas in the atmospheric sciences are efficiently and easily solved utilizing the multigrid software package named MUDPACK. It is demonstrated that the multigrid method is more efficient than other commonly employed techniques, such as Gaussian elimination and fixed-grid relaxation. The efficiency relative to other techniques, both in terms of storage requirement and computational time, increases quickly with grid size.

  3. Ozone generation using atmospheric pressure glow discharge in air

    NASA Astrophysics Data System (ADS)

    Buntat, Z.; Smith, I. R.; Razali, N. A. M.

    2009-12-01

    This paper presents results from a study into the generation of ozone by a stable atmospheric glow discharge, using dry air as the feeding gas for ozone generation. The power supply is 50 Hz ac, with the use of a perforated aluminium sheet for the electrodes and soda lime glass as a dielectric layer in a parallel-plate configuration, stabilizing the generation process and enabling ozone to be produced. The stable glow discharge spreads uniformly at a gas breakdown voltage below 4.8 kV and requires only 330 mW discharge power, with a limitation of 3 mm on the maximum gap spacing for the dry air. With the technique providing a high collision rate between the electrons and gas molecules during the discharge process, a high ozone yield is obtained. An analysis of the effect on the production rate of parameters such as the input voltage, gas flow rate and reaction chamber dimensions resulted in a highest efficiency of production of almost 350 g kWh-1 and confirms its potential as an important ozone generation technology.

  4. Clear and Present Atmospheric Science Foci for Wind Energy (Invited)

    NASA Astrophysics Data System (ADS)

    Poulos, G. S.

    2010-12-01

    The energy capacity of installed wind farms, with the exception of 2010, has grown at approximately 40% per year in the United States. Simultaneously, wind turbines have grown in height, rotor diameter and technological sophistication altering the time and space scales relevant to their operation. The meteorological phenomena and micrometeorological climatic conditions at turbine vertical scales, in the regions of the U. S. that have been developed, are different than those from which current wind turbine standards are derived. Some spectacular technological and performance failures have resulted, whose roots can be traced in part to a lack of knowledge transfer from atmospheric science to wind energy engineering and in part to knowledge gaps in atmospheric science. The result is that a wide variety of significant and meaningful basic and applied atmospheric science research topics are available to be addressed in the near term. To consolidate the discussion we will focus on two main areas: 1. Micrometeorological climatology for wind resource assessment, site suitability and wind turbine engineering standards, and, 2. Operational wind energy-focused numerical forecasting, forensics and efficiency.

  5. Professional development for graduate students in the atmospheric sciences

    NASA Astrophysics Data System (ADS)

    Haacker, R.; Sloan, V.

    2015-12-01

    The field of atmospheric sciences is rapidly changing, and with it, the employment outlook for recent graduate students. Weather and climate applications for society and the private industry are in demand and have increased significantly over the last few years, creating new employment opportunities for atmospheric scientists. It is therefore more important than ever that our graduates are well prepared for the newly emerging careers. The Bureau's Occupational Outlook predicts that opportunities for atmospheric scientists will increase more rapidly in the private industry than in other sectors (Bureau of Labor Statistics, 2014). Employers in the private sector indicate that, while job applicants often bring the required scientific training, there is a gap between the technical and professional skills needed in those positions and those possessed by graduates. Job candidates were found to be most lacking in written and oral communication skills, adaptability, and project management (Chronicle for Higher Education, 2012). The geoscience community needs to come together to better prepare our graduate students. While some of this work can be done within academic institutions, partnerships with mentoring programs and the private industry are essential. In this paper we will present one approach taken by the Significant Opportunities in Atmospheric Research and Science (SOARS) program to improve its students' skills in project management, collaborating, communication, problem solving, and essential leadership skills.

  6. ONE ATMOSPHERE MODELING FOR AIR QUALITY: BUILDING PARTNERSHIPS THAT TRANSITION RESEARCH INTO APPLICATIONS

    EPA Science Inventory

    The Community Miultiscale Air Quality (CMAQ) modeling system is a "one atmosphere" chemical transport model that simulates the transport and fate of air pollutants from urban to continental scales and from daily to annual time intervals.

  7. Enhancing climate literacy by melding the atmospheric and geospatial sciences

    NASA Astrophysics Data System (ADS)

    Dupigny-Giroux, L.; Toolin, R.; Morrissey, L.; Fortney, M. D.; Hogan, S.; Pontius, J.; Berryman, B.; Shafer, J.; Atkins, N.; Shepherd, M.; Mote, T. L.; Raphael, M. N.

    2012-12-01

    Climate literacy involves an understanding of the interconnectedness of various components of the climate system over space and time, as well as the influence of humans on that system and the ability to use that understanding to "act accordingly". Understanding the climate system relies on techniques that include statistics, modelling, visualization and geospatial technologies such as remote sensing and geographic information science (GIS). The melding of these geospatial technologies with the atmospheric and climate sciences has become increasingly common and ubiquitous from the nightly weather presentations to the weekly U.S. Drought Monitor. This presentation will delve into the successes and ongoing challenges for a climate literate society that exist at the transdisciplinary border of the atmospheric and geospatial sciences. Two National Science Foundation (NSF) funded programs will be highlighted. The first is the Satellites, Weather and Climate (SWAC) professional development program for K-12 teachers and the second is the Diversity Climate Network (D-ClimNet) for high school to graduate students.

  8. Atmospheric Sciences Meet Astronomy: Mutual Benefits from two Different Approaches

    NASA Astrophysics Data System (ADS)

    Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Kondrak, Matthias; Unterguggenberger, Stefanie; Przybilla, Norbert; Lakićević, Maša; Zeilinger, Werner

    2016-04-01

    Light from astronomical targets has to pass the Earth's atmosphere when being observed by ground-based telescope facilities. The signal detected by modern astronomical spectrographs is significantly influenced by molecular absorption and airglow emission. The first mainly arises from various species in the lower, thus denser atmosphere, whereas the latter is caused by chemiluminescence in the mesopause region and above. As ground-based astronomical spectrographs are optimised from the near-UV to the mid-infrared regime (0.3....25μm), a number of absorption features from numerous species are directly visible (e.g. H2O, CO2, CH4, O2, O3,...). The same is true for the airglow emission arising e.g. from the hydroxyl radical and oxygen. The high resolution provided by some spectrographs and their frequent usage allows a detailed investigation of atmospheric lines. Usually being a source of noise for astronomers, which needs to be corrected for, this influence can be used to precisely analyse the composition and the state of the Earth's atmosphere above an observatory. On the other hand, a good knowledge of this allows astronomers to better correct for this influence. Thus, both, atmospheric and astronomical sciences highly benefit from a good understanding of the atmospheric state above an observatory. During the past years we conducted several studies to link astronomical and atmospheric data. For this purpose we use data taken with the Very Large Telescope (VLT) operated by the European Southern Observatory, and the Cerro Armazones Observatory (OCA, University of Bochum, Germany; Universidad Católica del Norte, Chile), both located in the Chilean Atacama desert. The three spectrographs used in our studies are X-Shooter@VLT (resolving power R˜3300...18000, wavelength range λ=0.3...2.5μm), UVES@VLT (R˜20.000....110.000, λ=0.3....1.1μm), and BESO@OCA (R=50000@Hα=0.656μm, λ=0.38 ‑ 0.84μm). In addition, we use atmospheric data obtained with the satellites

  9. Nanosecond Enhancements of the Atmospheric Electron Density by Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Rutjes, C.; Camporeale, E.; Ebert, U.; Buitink, S.; Scholten, O.; Trinh, G. T. N.; Witteveen, J.

    2015-12-01

    As is well known a sufficient density of free electrons and strong electric fields are the basic requirements to start any electrical discharge. In the context of thunderstorm discharges it has become clear that in addition droplets and or ice particles are required to enhance the electric field to values above breakdown. In our recent study [1] we have shown that these three ingredients have to interplay to allow for lightning inception, triggered by an extensive air shower event. The extensive air showers are a very stochastic natural phenomenon, creating highly coherent sub-nanosecond enhancements of the atmospheric electron density. Predicting these electron density enhancements accurately one has to take the uncertainty of the input variables into account. For this study we use the initial energy, inclination and altitude of first interaction, which will influence the evolution of the shower significantly. To this end, we use the stochastic collocation method, [2] to post-process our detailed Monte Carlo extensive air shower simulations, done with the CORSIKA [3] software package, which provides an efficient and elegant way to determine the distribution of the atmospheric electron density enhancements. [1] Dubinova, A., Rutjes, C., Ebert, E., Buitink, S., Scholten, O., and Trinh, G. T. N. "Prediction of Lightning Inception by Large Ice Particles and Extensive Air Showers." PRL 115 015002 (2015)[2] G.J.A. Loeven, J.A.S. Witteveen, H. Bijl, Probabilistic collocation: an efficient nonintrusive approach for arbitrarily distributed parametric uncertainties, 45th AIAA Aerospace Sciences Meeting, Reno, Nevada, 2007, AIAA-2007-317[3] Heck, Dieter, et al. CORSIKA: A Monte Carlo code to simulate extensive air showers. No. FZKA-6019. 1998.

  10. Introduction: Addressing Air Pollution and Health Science Questions to Inform Science and Policy

    EPA Science Inventory

    This special issue of Air Quality, Atmosphere and Health (AQAH) is the sixth and final in a series of special journal issues (Solomon 2010, 2011a, b; Solomon et al. 2011; Solomon 2012) associated with the 2010 Air Pollution and Heath Conference: Bridging the Gap between Sources ...

  11. Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Molnar, Gyula

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,

  12. Taking Science On-air with Google+

    NASA Astrophysics Data System (ADS)

    Gay, P.

    2014-01-01

    Cost has long been a deterrent when trying to stream live events to large audiences. While streaming providers like UStream have free options, they include advertising and typically limit broadcasts to originating from a single location. In the autumn of 2011, Google premiered a new, free, video streaming tool -- Hangouts on Air -- as part of their Google+ social network. This platform allows up to ten different computers to stream live content to an unlimited audience, and automatically archives that content to YouTube. In this article we discuss best practices for using this technology to stream events over the internet.

  13. Physical Sciences Facility Air Emission Control Equivalency Evaluation

    SciTech Connect

    Brown, David M.; Belew, Shan T.

    2008-10-17

    This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

  14. Air Pollution and Weather: Activities and Demonstrations for Science Classes

    ERIC Educational Resources Information Center

    Cole, Henry S.

    1973-01-01

    Discusses a number of concepts (turbulence, dispersion, vertical temperature distribution, atmospheric stability and instability, and inversions) which are prerequisite to understanding how weather affects air quality. Describes classroom demonstrations effective in introducing these concepts to students at the elementary, secondary and college…

  15. Recent Science from the Cape Verde Atmospheric Observatory (CVAO)

    NASA Astrophysics Data System (ADS)

    Read, Katie; Lee, James; Punjabi, Shalini; Carpenter, Lucy; Lewis, Alastair; Moller, Sarah; Mendes Neves, Luis; Fleming, Zoe; Evans, Mat; Arnold, Steve; Hopkins, James

    2013-04-01

    The Cape Verde Atmospheric Observatory (16,848°N, 24.871°W), a subtropical marine boundary layer atmospheric monitoring station situated at Calhau on the island of São Vicente, has been in operation since October 2006. Almost continuous measurements of the trace gases O3, CO, NMVOC, NO, and NO2 have been obtained. Other data from the CVAO, for example of greenhouse gases, aerosol (physical and chemical parameters), halocarbons, halogen oxides, are also available over various timescales (see http://ncasweb.leeds.ac.uk/capeverde/ for more details). Through the newly EU funded Global Mercury Observation System (GMOS) project, atmospheric measurements of mercury began in 2011. The observatory has hosted a number of field campaigns including Reactive Halogens in the Marine Boundary Layer experiment (RHaMBLe) in 2007 (Lee et al., 2010) which focussed on halogen chemistry and Seasonal Oxidant Study (SOS) in 2009 which looked at how the oxidation chemistry varied seasonally. The prevailing strong on-shore winds bring marine air masses with varying inputs of Saharan dust and of long range transport from North American Europe, thus the CVAO is an appealing location for both short and long term research into a variety of atmospheric phenomena. Aged air masses from North America, Europe, and Africa influence the measurements at the observatory, but fresh emissions from coastal Africa and the ocean may also play a major role. Through the use of the UK Met office's NAME model (http://www.metoffice.gov.uk/research/modelling-systems/dispersion-model) it has recently been possible to classify the air received by the site and this has since been employed in further interpretation of the datasets (Carpenter et al., 2010). Measurements from the last six years will be presented at the conference together with comparisons with the output of the CAM-Chem global chemistry transport model (Read et al., 2012). The CVAO is a global GAW (Global Atmospheric Watch) station and so data is

  16. Progress Towards AIRS Science Team Version-7 at SRT

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Kouvaris, Louis

    2016-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing level-3 Climate Data Records (CDRs) from AIRS that have been proven useful to scientists in understanding climate processes. CDRs are gridded level-3 products which include all cases passing AIRS Climate QC. SRT has made significant further improvements to AIRS Version-6. At the last Science Team Meeting, we described results using SRT AIRS Version-6.22. SRT Version-6.22 is now an official build at JPL called 6.2.4. Version-6.22 results are significantly improved compared to Version-6, especially with regard to water vapor and ozone profiles. We have adapted AIRS Version-6.22 to run with CrIS/ATMS, at the Sounder SIPS which processed CrIS/ATMS data for August 2014. JPL AIRS Version-6.22 uses the Version-6 AIRS tuning coefficients. AIRS Version-6.22 has at least two limitations which must be improved before finalization of Version-7: Version-6.22 total O3 has spurious high values in the presence of Saharan dust over the ocean; and Version-6.22 retrieved upper stratospheric temperatures are very poor in polar winter. SRT Version-6.28 addresses the first concern. John Blaisdell ran the analog of AIRS Version-6.28 in his own sandbox at JPL for the 14th and 15th of every month in 2014 and all of July and October for 2014. AIRS Version-6.28a is hot off the presses and addresses the second concern.

  17. AIRS Data Mining Service at the Goddard Earth Sciences (GES) DISC DAAC

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.; Qin, J.; Pham, L.; Lynnes, C.; Eng, E.; Li, J.

    2004-05-01

    The Atmospheric Infrared Sounder (AIRS) is a high-resolution infrared (IR) sounder with 2378 spectral channels flying on the EOS Aqua platform with two operational microwave sounders, the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB). Measurements from the three instruments are analyzed jointly to filter out the effects of clouds from the IR data in order to derive clear-column air-temperature profiles and surface temperatures with high vertical resolution and accuracy. Together, these three instruments constitute an advanced operational sounding data system that have contributed to improve global modeling efforts and numerical weather prediction; enhance studies of the global energy and water cycles, the effects of greenhouse gases, and atmosphere-surface interactions; and facilitate monitoring of climate variations and trends. The NASA Goddard Earth Sciences Data and Information Services Center/Distributed Active Archive Center (GES DISC DAAC) provides long-term archive and distribution services for AIRS/AMSU/HSB data products as well science support to assist users in understanding, accessing and using the AIRS data products. However, the high data volume generated by the AIRS/AMSU/HSB instruments and the complexity of its data format (Hierarchical Data Format, HDF) are barriers to AIRS data use. Although many researchers are interested in only a fraction of the data they receive or request, they are forced to run their algorithms on a much larger data set to extract the information of interest. In order to address this problem, the GES DAAC is expanding its data mining system to accept AIRS user's algorithms by providing online tools for spectral channels and value added product sub-settings, as well as spatial, temporal and user defined profile sub-settings. This presentation will show details of the AIRS components of the GES DAAC data mining system including technical description, input data and returning products

  18. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  19. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect

    Not Available

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  20. Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: the atmospheric infrared sounder science team version-6 retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena

    2014-01-01

    The atmospheric infrared sounder (AIRS) science team version-6 AIRS/advanced microwave sounding unit (AMSU) retrieval algorithm is now operational at the Goddard Data and Information Services Center (DISC). AIRS version-6 level-2 products are generated near real time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. Some of the significant improvements in retrieval methodology contained in the version-6 retrieval algorithm compared to that previously used in version-5 are described. In particular, the AIRS science team made major improvements with regard to the algorithms used to (1) derive surface skin temperature and surface spectral emissivity; (2) generate the initial state used to start the cloud clearing and retrieval procedures; and (3) derive error estimates and use them for quality control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, version-6 also operates in an AIRS only (AO) mode, which produces results almost as good as those of the full AIRS/AMSU mode. The improvements of some AIRS version-6 and version-6 AO products compared to those obtained using version-5 are also demonstrated.

  1. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    SciTech Connect

    1996-02-01

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

  2. Atmospheric Biosignatures in the Context of Exoplanetary Science - A Review

    NASA Astrophysics Data System (ADS)

    Grenfell, John Lee; Rauer, Heike

    We review the main principles, methods and theoretical results related to atmospheric biosignatures in exoplanetary science. The term atmospheric "biosignature" is rather diverse and there are different approaches e.g. searching for the presence of (i) a particular chemical species (e.g. ozone), (ii) a combination of species (e.g. the "triple signature") and (iii) a process such as the departure from chemical or redox equillibrium. We first review these three approaches and their applications for a range of simulated planetary atmospheres (varying e.g. central star, planet mass etc.). Debate continues as to the extent by which true biosignature signals could be destroyed or mimicked by abiotic processes. We therefore summarise understanding of "false positive" signals i.e. where abiotic processes could mimic life and "false negatives" i.e. where signals of life may be masked. Finally we provide a link with future observational facilities e.g. the E-ELT by discussing theoretical spectra and SN of some specific atmospheric case-studies.

  3. Urban Climate Effects on Air Pollution and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Rasoul, Tara; Bloss, William; Pope, Francis

    2016-04-01

    Tropospheric ozone, adversely affects the environment and human health. The presence of chlorine nitrate (ClNO2) in the troposphere can enhance ozone (O3) formation as it undergoes photolysis, releasing chlorine reactive atoms (Cl) and nitrogen dioxide (NO2), both of which enhance tropospheric ozone formation. The importance of new sources of tropospheric ClNO2 via heterogeneous processes has recently been highlighted. This study employed a box model, using the Master Chemical Mechanism (MCM version 3.2) to assess the effect of ClNO2 on air quality in urban areas within the UK. The model updated to include ClNO2 production, photolysis, a comprehensive parameterisation of dinitrogen pentoxide (N2O5) uptake, and ClNO2 production calculated from bulk aerosol composition. The model simulation revealed the presence of ClNO2 enhances the formation of NO2, organic peroxy radical (CH3O2), O3, and hydroxyl radicals (OH) when compared with simulations excluding ClNO2. In addition, the study examined the effect of temperature variation upon ClNO2 formation. The response of ClNO2 to temperature was analysed to identify the underlying drivers, of particular importance when assessing the response of atmospheric chemistry processes under potential future climates.

  4. Atmospheric science experiments applicable to Space Shuttle Spacelab missions

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.; Christian, H. J., Jr.; Fichtl, G. H.; Vaughan, W. W.; Goodman, S. J.; Robertson, F. R.

    1984-01-01

    The present lack of a lower atmosphere research satellite program for the 1980s has prompted consideration of the Space Shuttle/Spacelab system as a means of flying sensor complements geared toward specific research problems, as well as continued instrument development. Three specific examples of possible science questions related to precipitation are discussed: (1) spatial structure of mesoscale cloud and precipitation systems, (2) lightning and storm development, and (3) cyclone intensification over oceanic regions. Examples of space sensors availab le to provide measurements needed in addressing these questions are also presented. Distinctive aspects of low-earth orbit experiments would be high resolution, multispectral sensing of atmospheric phenomena by complements of instruments, and more efficient sensor development through reflights of specific hardware packages.

  5. Atmospheric Results from the MGS Horizon Science Experiment

    NASA Technical Reports Server (NTRS)

    Martin, T. Z.; Murphy, J. R.; Hollingsworth, J. L.

    1999-01-01

    The Horizon Science Experiment (HORSE) utilizes the Mars Horizon Sensor Assembly (MHSA) on the Mars Global Surveyor (MGS) orbiter to measure 15-micron band thermal emission from the Martian atmosphere. During the first two phases of aerobraking, from September 1997 to May 1998, and from September 1998 to March 1999, one of the four MGS quadrants was pointed well onto the planet consistently during the near-periapsis aerobraking passes, allowing the device to obtain data on the latitudinal variation of middle atmospheric temperature (0.2 - 2.0 mbar). Of particular interest during the first phase (L(sub s) = 182 - 300 deg) were the effects of a prominent dust storm at L(sub s) =224 deg, and wavelike behavior in the strong temperature gradient near the north polar cap. Additional information is contained in the original extended abstract.

  6. Science Laboratories and Indoor Air Quality in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Some of the issues surrounding the indoor air quality (IAQ) problems presented by science labs are discussed. Described are possible contaminants in labs, such as chemicals and biological organisms, and ways to lessen accidents arising from these sources are suggested. Some of the factors contributing to comfort, such as temperature levels, are…

  7. SOARS: Significant Opportunities in Atmospheric Research and Science

    NASA Astrophysics Data System (ADS)

    Windham, T. L.; Hagan, M. E.

    2001-05-01

    SOARS, a model program, has developed a unique mutli-year mentoring and learning community to support, teach, and guide college students from diverse backgrounds. SOARS is dedicated to increasing the number of African American, American Indian, and Hispanic/Latino students enrolled in master's and doctoral degree programs in the atmospheric and related sciences with the goal of supporting the development of a diverse, internationally competitive and globally engaged workforce within the scientific community. Since its 1996 inception, 51 undergraduates have participated. All 51 completed or are on schedule to complete their undergraduate degrees with a major in an atmospheric or related science. Currently 17 protégés are in graduate programs. Eight have completed M.S. degrees; two are Ph.D. candidates. SOARS has a retention rate of 82 percent. The SOARS learning community provides multi-year programing for protégés that includes educational and research opportunities, mentoring, career counseling and guidance, and the possibility of financial support for a graduate level program. Protégés spend their summers at NCAR, participate in ongoing research projects, an eight week scientific writing and communication workshop, and scientific seminars. They benefit from long-term mentoring from respected scientists and professionals, learn about career opportunities, practice leadership and are encouraged to complete a graduate program in an atmospheric or related science. In this presentation we highlight the SOARS program structure and objectives with particular emphasis on the mentoring model that is fundamental to SOARS. We conclude with a summary of SOARS protégés' contributions to the broader scientific community which include oral and poster presentations at national and regional scientific conferences, as well as co-authorship of refereed journal articles.

  8. Using Case Studies as a Tool for Teaching Science Policy within the Atmospheric and Space Sciences

    NASA Astrophysics Data System (ADS)

    Fisher, G.; Hooke, W.

    2006-12-01

    Earth system science is a field where policy, societal, & economic aspects are becoming increasingly important as our society becomes more dependent on activities and technologies that affect and are affected by the Earth system. It is important that present and future scientists are prepared to fully participate in the challenging opportunities that lie ahead, including communicating to policy makers, making public policy decisions, & communicating science to the public. One way of providing a better foundation is to integrate policy and science at universities. Therefore, the American Meteorological Society Policy Program (APP) is developing materials for university science policy curricula and the AMS Summer Policy Colloquium. In providing policy education activities and promoting policy research, the APP hopes to encourage more people to enter the field of science policy, contribute to and enhance the current policy dialogue, and create a clearinghouse for science policy case studies. Case studies are an excellent method to study policy issues in the atmospheric and space sciences for the following reasons: issues are too complex to be handled by any single factor (economic, social, or political science); purpose is to identify and analyze the impacts rather than test theoretical hypotheses; problems involve large number of participants (government at various levels, industries, and researchers); and study requires giving alternatives and consequence analysis for policy makers. Lessons learned will be presented on implementation of science policy case studies at the AMS Summer Policy Colloquium and George Mason University.

  9. The Impact of Physical Atmosphere on Air Quality and the Utility of Satellite Observations in Air Quality Models

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; McNider, R. T.; Park, Y. H.; Doty, K.; Khan, M. N.; Dornblaser, B.

    2012-12-01

    Physical atmosphere significantly impacts air quality as it regulates production, accumulation, and transport of atmospheric pollutants. Consequently, air quality simulations are greatly influenced by the uncertainties that emanates from the simulation of physical atmosphere. Since air quality model predictions are increasingly being used in health studies, regulatory applications, and policy making, reducing such uncertainties in model simulations is of outmost importance. This paper describes some of the critical aspects of physical atmosphere affecting air quality models that can be improved by utilizing satellite observations. Retrievals of skin temperature, surface albedo, surface insolation, cloud top temperature and cloud reflectance obtained from the Geostationary Operational Environmental Satellite (GOES) by NASA/MSFC GOES Product Generation System (GPGS) have been utilized to improve the air quality simulations used in the State Implementation Plan (SIP) attainment demonstrations. Satellite observations of ground temperature are used to recover surface moisture and heat capacity and thereby improving model simulation of air temperature. Observations of clouds are utilized to improve the photochemical reaction rates within the photochemical model and also to assimilate clouds in the meteorological model. These techniques have been implemented and tested in some of the widely used air quality decision modeling systems such as MM5/WRF/CMAQ/CAMx. The results from these activities show significant improvements in air quality simulations.

  10. AIRS Data Subsetting Service at the Goddard Earth Sciences (GES) DISC/DAAC

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto A.; Qin, Jianchun; Li, Jason; Gerasimov, Irina; Savtchenko, Andrey

    2004-01-01

    The AIRS mission, as a combination of the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), brings climate research and weather prediction into 21st century. From NASA' Aqua spacecraft, the AIRS/AMSU/HSB instruments measure humidity, temperature, cloud properties and the amounts of greenhouse gases. The AIRS also reveals land and sea- surface temperatures. Measurements from these three instruments are analyzed . jointly to filter out the effects of clouds from the IR data in order to derive clear-column air-temperature profiles and surface temperatures with high vertical resolution and accuracy. Together, they constitute an advanced operational sounding data system that have contributed to improve global modeling efforts and numerical weather prediction; enhance studies of the global energy and water cycles, the effects of greenhouse gases, and atmosphere-surface interactions; and facilitate monitoring of climate variations and trends. The high data volume generated by the AIRS/AMSU/HSB instruments and the complexity of its data format (Hierarchical Data Format, HDF) are barriers to AIRS data use. Although many researchers are interested in only a fraction of the data they receive or request, they are forced to run their algorithms on a much larger data set to extract the information of interest. In order to better server its users, the GES DISC/DAAC, provider of long-term archives and distribution services as well science support for the AIRS/AMSU/HSB data products, has developed various tools for performing channels, variables, parameter, spatial and derived products subsetting, resampling and reformatting operations. This presentation mainly describes the web-enabled subsetting services currently available at the GES DISC/DAAC that provide subsetting functions for all the Level 1B and Level 2 data products from the AIRS/AMSU/HSB instruments.

  11. LABORATORY AND COMPUTATIONAL CHEMISTRY INVESTIGATIONS OF THE GAS PHASE ATMOSPHERIC CHEMISTRY OF AIR TOXIC COMPOUNDS

    EPA Science Inventory

    A full assessment of the impact of the release of air toxic compounds into the atmospheric requires a detailed understanding of their atmospheres lifetimes and fates. To address this issue a detailed review of the atmospheric chemistry of each of these classes was carried out t...

  12. Atmospheric Laboratory for Applications and Science (ATLAS), mission 1: Introduction

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The first Atmospheric Laboratory for Applications and Science (ATLAS 1) is a NASA mission with an international payload, with the European Space Agency providing operational support for the European investigations. The ATLAS 1 represents the first of a series of shuttle-borne payloads which are intended to study the composition of the middle atmosphere and its possible variations due to solar changes over the course of an 11-year solar cycle. One of the ATLAS missions will coincide with NASA's Upper Atmospheric Research Satellite (UARS) mission and will provide crucial parameters not measured by the instrument complement on the satellite. A first in this evolutionary program, the ATLAS 1 will carry a payload of instruments originally flown on the Spacelab 1 and Spacelab 3 missions. The ATLAS mission therefore exploits the shuttle capability to return sophisticated instruments to the ground for refurbishment and updating, and the multi-mission reflight of the instruments at intervals required by the scientific goals. In addition to the investigations specific to the ATLAS objectives, the first mission payload includes others that are intended to study or use the near earth environment.

  13. Role of the Atmospheric Sciences for Solar Energy

    NASA Astrophysics Data System (ADS)

    Kleissl, J. P.; Lave, M.; Urquhart, B. G.; Mathiesen, P. J.; Bosch, J. L.; Chow, C. W.; Luoma, J. K.; Jamaly, M.; Nottrott, A. A.; Wegener, J.

    2011-12-01

    Solar energy is the fastest growing renewable energy source. Public interest, practically unlimited solar resources, and dramatic cost reductions have fueled the hopes for grid parity of solar energy production and dramatic growth of the industry. However, the variability of the solar fuel presents perceived and real challenges that can increase grid-integration costs of solar energy. Variability in global irradiance at the surface is dominated by solar geometry and atmospheric transmissivity effects with clouds explaining the majority of the non-geometry variance. Atmospheric scientists can play a major role in quantifying resource variability and improving solar forecasting models. I will start by presenting the state of the solar energy industry. Various studies of scaling of solar variability in space and time will be reviewed. Solar forecasting tools such as satellites, sky imagery, and numerical weather prediction will be introduced and state-of-the-art applications in the solar forecasting industry will be reviewed. Directions for RD&D in the atmospheric sciences will be presented.

  14. Communications Blackout Prediction for Atmospheric Entry of Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morabito, David; Edquist, Karl

    2005-01-01

    When a supersonic spacecraft enters a planetary atmosphere with v >> v(sub sound), a shock layer forms in the front of the body. An ionized sheath of plasma develops around the spacecraft, which results from the ionization of the atmospheric constituents as they are compressed and heated by the shock or heated within the boundary layer next to the surface. When the electron density surrounding the spacecraft becomes sufficiently high, communications can be disrupted (attenuation/blackout). During Mars Science Laboratory's (MSL's) atmospheric entry there will likely be a communication outage due to charged particles on the order of 60 to 100 seconds using a UHF link frequency looking out the shoulders of the wake region to orbiting relay asset. A UHF link looking out the base region would experience a shorter duration blackout, about 35 seconds for the stressed trajectory and possibly no blackout for the nominal trajectory. There is very little likelihood of a communications outage using X-band (however, X-band is not currently planned to be used during peak electron density phase of EDL).

  15. Linking Hydrology and Atmospheric Sciences in Continental Water Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    David, C. H.; Gochis, D. J.; Maidment, D. R.; Wilhelmi, O.

    2006-12-01

    Atmospheric observation and model output datasets as well as hydrologic datasets are increasingly becoming available on a continental scale. Although the availability of these datasets could allow large-scale water dynamics modeling, the different objects and semantics used in atmospheric science and hydrology set barriers to their interoperability. Recent work has demonstrated the feasibility for modeling terrestrial water dynamics for the continental United States of America. Continental water dynamics defines the interaction of the hydrosphere, the land surface and subsurface at spatial scales ranging from point to continent. The improved version of the National Hydrographic Dataset (NHDPlus, an integrated suite of geospatial datasets stored in a vector and raster GIS format) was used as hydrologic and elevation data input to the Noah community Land Surface Model, developed at NCAR. Noah was successfully run on a watershed in the Ohio River Basin with NHDPlus inputs. The use of NHDPlus as input data for Noah is a crucial improvement for community modeling efforts allowing users to by-pass much of the time consumed in Digital Elevation Model and hydrological network processing. Furthermore, the community Noah land surface model, in its hydrologically-enhanced configuration, is capable of providing flow inputs for a river dynamics model. Continued enhancement of Noah will, as a consequence, be beneficial to the atmospheric science community as well as to the hydrologic community. Ongoing research foci include using a diversity of weather drivers as an input to Noah, and investigation of how to use land surface model outputs for river forecasting, using both the ArcHydro and OpenMI frameworks.

  16. Air Sampling Instruments for Evaluation of Atmospheric Contaminants. Fourth Edition.

    ERIC Educational Resources Information Center

    American Conference of Governmental Industrial Hygienists, Cincinnati, OH.

    This text, a revision and extension of the first three editions, consists of papers discussing the basic considerations in sampling air for specific purposes, sampler calibration, systems components, sample collectors, and descriptions of air-sampling instruments. (BT)

  17. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture

  18. 1997 Canadian acid rain assessment. Volume 2: Atmospheric science assessment report

    SciTech Connect

    1997-12-31

    The introduction to this report summarizes the approach and conclusions of a 1990 assessment of long-range transport and acid deposition in Canada from the perspective of the atmospheric sciences. It then presents the results of research activities conducted since the previous assessment. Chapter 2 examines the impact to date of the emission control programs in reducing wet and dry sulfate deposition, effects on acid aerosols and visibility, and regional-scale model development, evaluation, and application. Section 3 describes the application of two regional-scale acid deposition models, the Atmospheric Environment Service Lagrangian long-range transport model and the Acid Deposition and Oxidant Model, to develop projections of the efficacy of currently legislated sulfur dioxide emission control programs in reducing sulfate deposition. The focus is on eastern Canada from 1986--1990 to 2010, when controls will have been fully implemented. The final chapter summarizes key findings of the atmospheric science component of the acid deposition program with a view to identifying requirements for additional scientific work to support policy development on the acid rain and other air issues.

  19. Aura Atmospheric Data Products and Their Availability from NASA Goddard Earth Sciences DAAC

    NASA Technical Reports Server (NTRS)

    Ahmad, S.; Johnson, J.; Gopalan, A.; Smith, P.; Leptoukh, G.; Kempler, S.

    2004-01-01

    NASA's EOS-Aura spacecraft was launched successfully on July 15, 2004. The four instruments onboard the spacecraft are the Microwave Limb Sounder (MLS), the Ozone Monitoring Instrument (OMI), the Tropospheric Emission Spectrometer (TES), and the High Resolution Dynamics Limb Sounder (HBDLS). The Aura instruments are designed to gather earth sciences measurements across the ultraviolet, visible, infra-red, thermal and microwave regions of the electromagnetic spectrum. Aura will provide over 70 distinct standard atmospheric data products for use in ozone layer and surface UV-B monitoring, air quality forecast, and atmospheric chemistry and climate change studies (http://eosaura.gsfc.nasa.gov/). These products include earth-atmosphere radiances and solar spectral irradiances; total column, tropospheric, and profiles of ozone and other trace gases, surface W-B flux; clouds and aerosol characteristics; and temperature, geopotential height, and water vapor profiles. The MLS, OMI, and HIRDLS data products will be archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC), while data from TES will be archived at NASA Langley Research Center DAAC. Some of the standard products which have gone through quick preliminary checks are already archived at the GES DAAC (http://daac.nsfc.nasa.gov/) and are available to the Aura science team and data validation team members for data validation; and to the application and visualization software developers, for testing their application modules. Once data are corrected for obvious calibration problems and partially validated using in-situ observations, they would be made available to the broader user community. This presentation will provide details of the whole suite of Aura atmospheric data products, and the time line of the availability of the rest of the preliminary products and of the partially validated provisional products. Software and took available for data access, visualization, and data

  20. A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1989-01-01

    A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.

  1. Significant Opportunities in Atmospheric Research and Science (SOARS)

    NASA Astrophysics Data System (ADS)

    Wyndam, T.

    2002-12-01

    Science education is rapidly changing. It is becoming more exciting and challenging, and also more accessible. Little more than a decade ago, the dreams of students from historically underrepresented groups to successfully pursue careers in science were admirable, but mostly elusive. Today, while African Americans, Chicano/Hispanic/LatinoAmericans, and Native Americans make up 25% of the U.S.A. population, these groups combined constitute fewer than 7% of scientists and engineers in the labor force and approximately 3% of the current AMS membership. Achieving the goal of a diverse, internationally competitive, and globally engaged workforce of scientists, engineers, and well prepared citizens calls for different educational goals and strategies. In 1995 UCAR teamed up with NSF and established a program, SOARS, that extends science education and encourages university students from diverse backgrounds to sustain interests, develop skills, and create paths that lead them to careers in the atmospheric and related sciences. SOARS combines research opportunities with a comprehensive mentoring component and a number of other proven learning strategies to create a student (protégé) centered learning community. To date, seventy-two protégés have traveled this pathway. Thirteen protégés have completed their master's degrees and are SOARS alumni: Ten have entered the professional scientific workforce; four are enrolled in Ph.D. programs; and two are Ph.D. candidates. Twenty-four protégés are enrolled in graduate programs: Three are AMS graduate fellows; one an NSF graduate fellow. Forty-two protégés have completed bachelor's degrees; three have completed associate's degrees and are now enrolled in a four-year research university. SOARS sponsorship has expanded to include DOE, NASA, and NOAA. Though SOARS continues to learn from the experiences of its community of protégés and mentors, results to date suggest that it is a successful model.

  2. Atmospheric and Geophysical Sciences Division: Program report, FY 1987

    SciTech Connect

    Not Available

    1988-05-01

    In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger of another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs.

  3. Continuous emission monitoring of metal aerosol concentrations in atmospheric air

    NASA Astrophysics Data System (ADS)

    Gomes, Anne-Marie; Sarrette, Jean-Philippe; Madon, Lydie; Almi, Abdenbi

    1996-11-01

    Improvements of an apparatus for continuous emission monitoring (CEM) by inductively coupled plasma atomic emission spectrometry (ICP-AES) of metal aerosols in air are described. The method simultaneously offers low operating costs, large volume of tested air for valuable sampling and avoids supplementary contamination or keeping of the air pollutant concentrations. Questions related to detection and calibration are discussed. The detection limits (DL) obtained for the eight pollutants studied are lower than the recommended threshold limit values (TLV) and as satisfactory as the results obtained with other CEM methods involving air-argon plasmas.

  4. PROTECTING ECOLOGICAL RESOURCES WITH THE CLEAN AIR ACT: THE ROLE OF SCIENCE

    EPA Science Inventory

    The Clean Air Act provides for establishing National Ambient Air Quality Standards (NAAQS) to protect public welfare (including crops, forests, ecosystems, and soils) from adverse effects of air pollutants, including tropospheric ozone. The formulation of policies is science-base...

  5. Atmospheric Radiation Measurement Program Science Plan. Current Status and Future Directions of the ARM Science Program

    SciTech Connect

    Ackerman, Thomas P.; Del Genio, Anthony D.; Ellingson, Robert G.; Ferrare, Richard A.; Klein, Steve A.; McFarquhar, Gregory M.; Lamb, Peter J.; Long, Charles M.; Verlinde, Johannes

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years; Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square; Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds; Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations; Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites; Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale; and, Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote

  6. Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.

  7. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  8. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  9. A new DBD-driven atmospheric pressure plasma jet source on air or nitrogen

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Panarin, Victir A.; Skakun, Victor S.; Tarasenko, Victor F.; Pechenitsin, Dmitrii S.; Kuznetsov, Vladimir S.

    2015-12-01

    The paper proposes a new atmospheric pressure plasma jet (APPJ) source for operation in air and nitrogen. The conditions for the formation of stable plasma jets 4 cm long are determined. Energy and spectral measurement data are presented.

  10. GREENHOUSE GAS RESEARCH AREAS (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The emissions programs in the Atmospheric Protection Branch (APB) of NRMRL's Air Pollution Prevention and Control Division are primarily dedicated to anthropogenic (human-influenced) sources of methane and high-global-warming refrigerants, though some work addresses carbon dioxid...

  11. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    EPA Science Inventory

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  12. GREENHOUSE GASES (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Greenhouse gas (GHG) emissions are projected for various scenarios and the most appropriate approaches and technologies for mitigation are identified by NRMRL's Air Pollution Prevention and Control Division's Atmospheric Protection Branch (APB). These methods contribute to reduct...

  13. Venus Atmospheric Maneuverable Platform (VAMP) — Air Vehicle Concept and Entry CONOPs

    NASA Astrophysics Data System (ADS)

    Sokol, D.; Lee, G.; Polidan, R.; Bolisay, L.; Barnes, N.

    2014-06-01

    This presentation discusses the continued development of the Northrop Grumman/L’GARDE team’s long-lived, maneuverable platform to explore the Venus upper atmosphere. It focuses on the air vehicle design and entry CONOPs and their interdependencies.

  14. European Meteorological Society and Education in Atmospheric Sciences, EWOC 2009

    NASA Astrophysics Data System (ADS)

    Halenka, T.; Belda, M.

    2008-12-01

    In most European countries the necessity of education in Science and Mathematics to achieve higher standard and competitiveness in research and technology development has been formulated after the Lisboa meeting. However, the reasonable development of position of these subjects in educational systems in individual countries across Europe is not so fast. The European Meteorological Society is trying to observe this process. Unfortunately the position of meteorology and climatology is not so well developed in framework of these subjects, there are some traces of our science in physics, but most of the small abundance of these topics are covered rather by geography. The low content is in contrary with the overall quite high interest in environmental issues in Europe. One of the important task of the EMS is the activity to promote public understanding of meteorology (and sciences related to it), and the ability to make use of it, through schools and more generally. EMS is performing this task through the Educational Committee which is trying to work under this EMS mission and objectives to help the process by means of its own activities and supporting some activities of EMS as a whole, e.g. organizing educational session of EMS Annual Meetings, cosponsoring other educational meeting etc. One of the elements of its own activity is the analysis of the position of atmospheric science in framework of curricula in educational systems of European countries as well as in more general sense, the place of Science education in the system. In most European countries the process of integration of education at university level was started after Bologna Declaration with the objective to have the system where students on some level could move to another school, or rather university. The goal is to achieve the compatibility between the systems and levels in individual countries to have no objections for students when transferring between the European countries. From this point of view

  15. Science from the Lunar Atmosphere and Dust Environment Explorer Mission

    NASA Astrophysics Data System (ADS)

    Elphic, Richard; Delory, Gregory; Noble, Sarah; Colaprete, Anthony; Horanyi, Mihaly; Mahaffy, Paul; Benna, Mehdi

    2014-11-01

    On September 6, 2013, a near-perfect launch of the first Minotaur V rocket successfully carried NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) into a high-eccentricity geocentric orbit. LADEE arrived at the Moon on October 6, 2013, during the government shutdown. The spacecraft impacted the lunar surface on April 18, 2014, following a completely successful mission. LADEE’s science objectives were twofold: (1) Determine the composition and variability of the lunar atmosphere; (2) Characterize the lunar exospheric dust environment, and its variability. The LADEE science payload consisted of the Lunar Dust Experiment (LDEX), which sensed dust impacts in situ, for particles between 100 nm and 5 micrometers; a neutral mass spectrometer (NMS), which sampled lunar exospheric gases in situ, over the 2-150 Dalton mass range; an ultraviolet/visible spectrometer (UVS) acquired spectra of atmospheric emissions and scattered light from tenuous dust, spanning a 250-800 nm wavelength range. UVS also performed dust extinction measurements via a separate solar viewer optic. Among the preliminary results for the lunar exosphere: (1) The helium exosphere of the Moon, first observed during Apollo, is clearly dominated by the delivery of solar wind He++. (2) Neon 20 is clearly seen as an important constituent of the exosphere. (3) Argon 40, also observed during Apollo and arising from interior outgassing, exhibits variations related to surface temperature-driven condensation and release, and is also enhanced over specific selenographic longitudes. (4) The sodium abundance varies with both lunar phase and with meteoroid influx, implicating both solar wind sputtering and impact vaporization processes. (5) Potassium was also routinely monitored and exhibits some of the same properties as sodium. (6) Other candidate species were seen by both NMS and UVS, and await confirmation. Dust measurements have revealed a persistent “shroud” of small dust particles between 0

  16. Jupiter Atmospheric Science with JIMO: Linking Science Objectives and Measurement Goals

    NASA Technical Reports Server (NTRS)

    Chanover, N. J.; Glenar, D. A.; Simon-Miller, A. A.

    2003-01-01

    Although the primary focus of the Jupiter Icy Moons Orbiter (JIMO) mission will be the characterization and study of Jupiter's icy moons, there will be opportunities throughout the mission for unprecendented observations of Jupiter. With an adaptable suite of payload instruments, the atmospheric data collected by JIMO can help to answer fundamental questions about the largest planet in our solar system that remain after (or were generated by) previous spacecraft reconnaissance (e.g. Voyager, Galileo, and Cassini). Near-IR (0.7-4 micron) spectral imaging will most likely be used to identify mineralogies and ices on the Jovian satellites by virtue of their spectral signatures. This same capability is very well tailored for studies of Jovian atmospheric dynamics and structure. Near-IR methane absorption bands allow 2-D mapping of the horizontal wind field at size scales to tens of kms, as well as the height dependence of this field above the ammonia cloud deck (700 to a few mbar), constraining current models of atmospheric vertical structure. Likewise, atmospheric ice aerosols with unique spectroscopic signatures (ammonia ice near 1.5, 2.0, and 2.8 microns and water ice between 3.0 - 3.5 microns) can be detected and mapped using spectral difference imaging or spectrally inclusive principal-component methods. Spectral imaging of the Jovian aurora via (3)H(+) emission lines between 3 - 4 microns can be used to spatially map the interplay between the satellites) Jupiter's magnetosphere, and Jupiter's atmosphere. Each of these measurements addresses one or more fundamental questions related to the energy balance in Jupiter's atmosphere. All of these tunable imaging objectives can be achieved using acousto-optic tunable filters (AOTF's), which have been used for years in ground-based observing instruments and which have been proposed for numerous planetary missions. The application of this technology to the science objectives of both the icy satellites and Jovian

  17. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields. PMID:25955053

  18. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  19. Lifetimes and fates of toxic air contaminants in California's atmosphere, June 1993. Final report

    SciTech Connect

    Atkinson, R.; Arey, J.

    1993-06-01

    The report presents information concerning the nature and rate of removal of toxic air pollutants (TAPs) from the atmosphere and any products formed; it also addresses the formation of possible TAPs in the atmosphere. It contains a comprehensive review of the atmospheric chemistry of di(2-ethylhexyl)phthalate, N-nitrosomorpholine, and dialkylnitrosamines. It also outlines the atmospheric lifetimes of 23 possible TAPs, including: hexachlorobenzene, 1,4-dichlorobenzene, dimethyl sulfate, propylene oxide, chlorobenzene, 2,4,6-trichlorophenol, benxyl chloride, acrylonitrile, toluene diisocyanates, and 1,4-dioxane. It also reviews possible atmospheric formation of TAPs. Acrolein, formaldehyde, acetaldehyde, and PAHs are shown to be present in the atmosphere largely due to atmospheric reactions. Another section describes an investigation of the mutagenicity of products of simulated atmospheric reactions of gasoline and terpenes (emitted from vegetation). These may not be major sources of ambient mutagenicity in California.

  20. Experimental Determination of the Mass of Air Molecules from the Law of Atmospheres.

    ERIC Educational Resources Information Center

    Hayn, Carl H.; Galvin, Vincent, Jr.

    1979-01-01

    A gas pressure gauge has been constructed for use in a student experiment involving the law of atmospheres. From pressure data obtained at selected elevations the average mass of air molecules is determined and compared to that calculated from the molecular weights and percentages of constituents to the air. (Author/BB)

  1. Development of Level 3 (gridded) products for the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Granger, Stephanie L.; Leroy, Stephen S.; Manning, Evan M.; Fetzer, Eric J.; Oliphant, Robert B.; Braverman, Amy; Lee, Sung-Yung; Lambrigtsen, Bjom H.

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) sounding system is a suite of infrared and microwave instruments flown as part of NASA's Earth Observing System (EOS) onboard the Aqua platform. The AIRS dataset provides a daily, global view of Earth processes at a finer vertical resolution than ever before. However, analysis of the AIRS data is a daunting task given the sheer volume and complexity of the data. The volume of data produced by the EOS project is unprecedented; the AIRS project alone will produce many terabytes of data over the lifetime of the mission. This paper describes development of AIRS Level 3 data products that will help to alleviate problems of access and usability.

  2. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  3. The impact of AIRS atmospheric temperature and moisture profiles on hurricane forecasts: Ike (2008) and Irene (2011)

    NASA Astrophysics Data System (ADS)

    Zheng, Jing; Li, Jun; Schmit, Timothy J.; Li, Jinlong; Liu, Zhiquan

    2015-03-01

    Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data, especially over the oceans where conventional data are sparse. In this study, two types of AIRS-retrieved temperature and moisture profiles, the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product, were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011). The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis, especially between 200 hPa and 700 hPa. The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa, where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals. The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere. A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene. The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment. In terms of total precipitable water and rainfall forecasts, the hurricane moisture environment was found to be affected by the AIRS sounding assimilation. Meanwhile, improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.

  4. SAVS: A Space and Atmospheric Visualization Science system

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.; Mankofsky, A.; Blanchard, P.; Goodrich, C.; McNabb, D.; Kamins, D.

    1995-01-01

    The research environment faced by space and atmospheric scientists in the 1990s is characterized by unprecedented volumes of new data, by ever-increasing repositories of unexploited mission files, and by the widespread use of empirical and large-scale computational models needed for the synthesis of understanding across data sets and discipline boundaries. The effective analysis and interpretation of such massive amounts of information have become the subjects of legitimate concern. With SAVS (a Space and Atmospheric Visualization Science System), we address these issues by creating a 'push-button' software environment that mimics the logical scientific processes in data acquisition, reduction, and analysis without requiring a detailed understanding of the methods, networks, and modules that link the tools and effectively execute the functions. SAVS provides (1) a customizable framework for accessing a powerful set of visualization tools based on the popular AVS visualization software with hooks to PV-Wave and access to Khoros modules, (2) a set of mathematical and statistical tools, (3) an extensible library of discipline-specific functions and models (e.g., MSIS, IRI, Feldstein Oval, IGRF, satellite tracking with CADRE-3, etc.), and (4) capabilities for local and remote data base access. The system treats scalar, vector, and image data, and runs on most common Unix workstations. We present a description of SAVS and its components, followed by several applications based on generic research interests in interplanetary and magnetospheric physics (IMP/ISTP), active experiments in space (CRRES), and mission planning focused on the Earth's thermospheric, ionospheric, and mesospheric domains (TIMED).

  5. Atmospheric studies from the Mars Science Laboratory Entry, Descent and Landing atmospheric structure reconstruction

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Maue, A.; Withers, P.

    2016-01-01

    The Mars Science Laboratory (MSL) entered the martian atmosphere on Aug. 6, 2012 landing in Gale crater (4.6°S, 137.4°E) in the local mid-afternoon. Aerodynamic accelerations were measured during descent and atmospheric density, pressure and temperature profiles have been calculated from this data. Using an averaging technique developed for the NASA Phoenix Mars mission, the profiles are extended to 134.1 km, twice that of the engineering reconstruction. Large-scale temperature oscillations in the MSL temperature profile are suggestive of thermal tides. Comparing the MSL temperature profile with measured Mars Climate Sounder temperature profiles and Mars Climate Database model output highlights the presence of diurnal tides. Derived vertical wavelengths for the diurnal migrating tide are larger than predicted from idealized tidal theory, indicating an added presence of nonmigrating diurnal tides. Sub-CO2 condensation mesospheric temperatures, very similar to the Pathfinder temperature profile, allude to the possibility of CO2 clouds. This is however not supported by recent observations and models.

  6. Influence of atmospheric electric fields on the radio emission from extensive air showers

    NASA Astrophysics Data System (ADS)

    Trinh, T. N. G.; Scholten, O.; Buitink, S.; van den Berg, A. M.; Corstanje, A.; Ebert, U.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Köhn, C.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; ter Veen, S.; de Vries, K. D.

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of 30-80 MHz on the magnitude of the atmospheric electric field. In this work we present an explanation of this dependence based on Monte Carlo simulations, supported by arguments based on electron dynamics in air showers and expressed in terms of a simplified model. We show that by extending the frequency window to lower frequencies, additional sensitivity to the atmospheric electric field is obtained.

  7. Do-It-Yourself Air Sensors – Exploring the Atmosphere and Turning on Light Bulbs!?

    EPA Science Inventory

    These are educational slides that will be presented in a webinar to the National Science Teachers Association. Topics covered include general air quality, current EPA research, and EPA's particle sensor kit that is a classroom activity.

  8. Final Technical Report for earmark project "Atmospheric Science Program at the University of Louisville"

    SciTech Connect

    Dowling, Timothy Edward

    2014-02-11

    We have completed a 3-year project to enhance the atmospheric science program at the University of Louisville, KY (est. 2008). The goals were to complete an undergraduate atmospheric science laboratory (Year 1) and to hire and support an assistant professor (Years 2 and 3). Both these goals were met on schedule, and slightly under budget.

  9. Communications Blackout Predictions for Atmospheric Entry of Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morabito, David D.; Edquist, Karl T.

    2005-01-01

    The Mars Science Laboratory (MSL) is expected to be a long-range, long-duration science laboratory rover on the Martian surface. MSL will provide a significant milestone that paves the way for future landed missions to Mars. NASA is studying options to launch MSL as early as 2009. There are three elements to the spacecraft; carrier (cruise stage), entry vehicle, and rover. The rover will have a UHF proximity link as the primary path for EDL communications and may have an X-band direct-to-Earth link as a back-up. Given the importance of collecting critical event telemetry data during atmospheric entry, it is important to understand the ability of a signal link to be maintained, especially during the period near peak convective heating. The received telemetry during entry (or played back later) will allow for the performance of the Entry-Descent-Landing technologies to be assessed. These technologies include guided entry for precision landing, a new sky-crane landing system and powered descent. MSL will undergo an entry profile that may result in a potential communications blackout caused by ionized particles for short periods near peak heating. The vehicle will use UHF and possibly X-band during the entry phase. The purpose of this rep0rt is to quantify or bound the likelihood of any such blackout at UHF frequencies (401 MHz) and X-band frequencies (8.4 GHz). Two entry trajectory scenarios were evaluated: a stressful entry trajectory to quantify an upper-bound for any possible blackout period, and a nominal trajectory to quantify likelihood of blackout for such cases.

  10. Communications Blackout Predictions for Atmospheric Entry of Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morabito, David D.; Edquist, Karl

    2005-01-01

    The Mars Science Laboratory (MSL) is expected to be a long-range, long-duration science laboratory rover on the Martian surface. MSL will provide a significant milestone that paves the way for future landed missions to Mars. NASA is studying options to launch MSL as early as 2009. MSL will be the first mission to demonstrate the new technology of 'smart landers', which include precision landing and hazard avoidance in order to -land at scientifically interesting sites that would otherwise be unreachable. There are three elements to the spacecraft; carrier (cruise stage), entry vehicle, and rover. The rover will have an X-band direct-to-Earth (DTE) link as well as a UHF proximity link. There is also a possibility of an X-band proximity link. Given the importance of collecting critical event telemetry data during atmospheric entry, it is important to understand the ability of a signal link to be maintained, especially during the period near peak convective heating. The received telemetry during entry (or played back later) will allow for the performance of the Entry-Descent-Landing technologies to be assessed. These technologies include guided entry for precision landing, hazard avoidance, a new sky-crane landing system and powered descent. MSL will undergo an entry profile that may result in a potential communications blackout caused by ionized plasma for short periods near peak heating. The vehicle will use UHF and possibly X-band during the entry phase. The purpose of this report is to quantify or bound the likelihood of any such blackout at UHF frequencies (401 MHz) and X-band frequencies (8.4 GHz). Two entry trajectory scenarios were evaluated: a stressful entry trajectory to quantify an upper-bound for any possible blackout period, and a nominal likely trajectory to quantify likelihood of blackout for such cases.

  11. Air Quality Science and Regulatory Efforts Require Geostationary Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Allen, D. J.; Stehr, J. W.

    2006-01-01

    Air quality scientists and regulatory agencies would benefit from the high spatial and temporal resolution trace gas and aerosol data that could be provided by instruments on a geostationary platform. More detailed time-resolved data from a geostationary platform could be used in tracking regional transport and in evaluating mesoscale air quality model performance in terms of photochemical evolution throughout the day. The diurnal cycle of photochemical pollutants is currently missing from the data provided by the current generation of atmospheric chemistry satellites which provide only one measurement per day. Often peak surface ozone mixing ratios are reached much earlier in the day during major regional pollution episodes than during local episodes due to downward mixing of ozone that had been transported above the boundary layer overnight. The regional air quality models often do not simulate this downward mixing well enough and underestimate surface ozone in regional episodes. Having high time-resolution geostationary data will make it possible to determine the magnitude of this lower-and mid-tropospheric transport that contributes to peak eight-hour average ozone and 24-hour average PM2.5 concentrations. We will show ozone and PM(sub 2.5) episodes from the CMAQ model and suggest ways in which geostationary satellite data would improve air quality forecasting. Current regulatory modeling is typically being performed at 12 km horizontal resolution. State and regional air quality regulators in regions with complex topography and/or land-sea breezes are anxious to move to 4-km or finer resolution simulations. Geostationary data at these or finer resolutions will be useful in evaluating such models.

  12. Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anzalone, A.; Aramo, C.; Arganda, E.; Argirò, S.; Arisaka, K.; Arneodo, F.; Arqueros, F.; Asch, T.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Beau, T.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bernardini, P.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Bleve, C.; Blümer, H.; Boháčová, M.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Carvalho, W.; Castellina, A.; Catalano, O.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Chye, J.; Clay, R. W.; Colombo, E.; Conceição, R.; Connolly, B.; Contreras, F.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dornic, D.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Duvernois, M. A.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrer, F.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonçalves Do Amaral, M.; Gonzalez, D.; Gonzalez, J. G.; Góra, D.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Gutiérrez, J.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Healy, M. D.; Hebbeker, T.; Hebrero, G.; Heck, D.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Krieger, A.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Leuthold, M.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Luna García, R.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Marquez Falcon, H. R.; Martello, D.; Martínez, J.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; McNeil, R. R.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meyhandan, R.; Micheletti, M. I.; Miele, G.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Newman-Holmes, C.; Newton, D.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Ortolani, F.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Parente, G.; Parizot, E.; Parlati, S.; Pastor, S.; Patel, M.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pinto, T.; Pirronello, V.; Pisanti, O.; Platino, M.; Pochon, J.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Reucroft, S.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, A.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Smiałkowski, A.; Šmída, R.; Smith, B. E.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Thao, N. T.; Thomas, D.; Ticona, R.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Torres, I.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tuci, V.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Velarde, A.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Wileman, C.; Winnick, M. G.; Wu, H.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2009-09-01

    Atmospheric parameters, such as pressure (P), temperature (T) and density (ρ∝P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ˜10% seasonal modulation and ˜2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and ρ. The former affects the longitudinal development of air showers while the latter influences the Molière radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.

  13. Challenges and opportunities of cloud computing for atmospheric sciences

    NASA Astrophysics Data System (ADS)

    Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.

    2016-04-01

    Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.

  14. DISCOVER-AQ: an innovative approach to study the vertical distribution of air quality constituents in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Wisthaler, Armin; Crawford, James H.; Müller, Markus; Mikoviny, Tomas; Cady-Pereira, Karen E.

    2014-05-01

    DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) is a multi-year NASA research project to improve remote sensing of air quality from space. Satellite-based measurements of air pollutants typically provide information integrated over the total atmospheric column while it is the lowermost part of the atmosphere that is of interest from a public health perspective. DISCOVER-AQ has implemented a new field observation strategy to collect a comprehensive dataset on the vertical distribution of air pollutants in the atmosphere. In situ measurements from the NASA P-3B Airborne Science Laboratory generate profile information of air quality constituents over a set of selected ground monitoring sites. Ground and profile information is tied to column information collected by active and passive remote sensors looking downward from a second King Air aircraft flying higher in the atmosphere above the P-3B. Vertical profiles of air pollutants are measured repetitively during different times of the day and under different meteorological conditions occurring in the timeframe of 1-month field campaigns. Targeted regions in the U.S. affected by poor air quality include the Washington/Baltimore metropolitan area (June/July 2011), the San Joaquin Valley in California (January/February 2013), the Houston metropolitan area (September 2013) and the Northern Front Range area in Colorado (June/July 2014). Herein, we will present the DISCOVER-AQ project to the European community and show preliminary analyses of the obtained data. The latter will focus on non-methane hydrocarbons and ammonia, being the species measured by our newly developed airborne PTR-ToF-MS instrument (see session AS4.17). In situ ammonia data collected over the San Joaquin Valley are in promising agreement with satellite data obtained from the Tropospheric Emission Spectrometer (TES). Web site: http://discover-aq.larc.nasa.gov/ Funding

  15. Semantic Data Access Services at NASA's Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Huffer, E.; Hertz, J.; Kusterer, J.

    2012-12-01

    The corpus of Earth Science data products at the Atmospheric Science Data Center at NASA's Langley Research Center comprises a widely heterogeneous set of products, even among those whose subject matter is very similar. Two distinct data products may both contain data on the same parameter, for instance, solar irradiance; but the instruments used, and the circumstances under which the data were collected and processed, may differ significantly. Understanding the differences is critical to using the data effectively. Data distribution services must be able to provide prospective users with enough information to allow them to meaningfully compare and evaluate the data products offered. Semantic technologies - ontologies, triple stores, reasoners, linked data - offer functionality for addressing this issue. Ontologies can provide robust, high-fidelity domain models that serve as common schema for discovering, evaluating, comparing and integrating data from disparate products. Reasoning engines and triple stores can leverage ontologies to support intelligent search applications that allow users to discover, query, retrieve, and easily reformat data from a broad spectrum of sources. We argue that because of the extremely complex nature of scientific data, data distribution systems should wholeheartedly embrace semantic technologies in order to make their data accessible to a broad array of prospective end users, and to ensure that the data they provide will be clearly understood and used appropriately by consumers. Toward this end, we propose a distribution system in which formal ontological models that accurately and comprehensively represent the ASDC's data domain, and fully leverage the expressivity and inferential capabilities of first order logic, are used to generate graph-based representations of the relevant relationships among data sets, observational systems, metadata files, and geospatial, temporal and scientific parameters to help prospective data consumers

  16. Operational readiness for the Atmospheric Infrared Sounder (AIRS) on the earth observing system aqua spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, T.; Aumann, H.; Chahine, M.; Karnik, A.; Goodson, G.; Schindler, R.; Elliot, D. A.; Hofstadter, M.

    2001-01-01

    This paper describes the AIRS science objectives, the instrument design and operation, the in-flight operational scenario, and the calibration plan. All aspects of the program are addressed here to demonstrate that the AIRS program is ready to transition to the flight segment of the program.

  17. The Study of the Atmosphere in the Science Curriculum.

    ERIC Educational Resources Information Center

    Fisher, Brian

    1998-01-01

    Seeks to justify the inclusion of meteorology within the science curriculum. Reflects upon the nature of science and some current issues in science education, and examines the reality of including meteorology within worldwide science curricula. Contains 37 references. (Author/DDR)

  18. Local, regional, and global views of tropospheric carbon monoxide from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    McMillan, W. Wallace; Yurganov, Leonid

    2008-04-01

    More than five years of CO retrievals from the Atmospheric InfraRed Sounder (AIRS) onboard NASA's Aqua satellite reveal variations in tropospheric CO on timescales from twelve hours to five years and on spatial scales from local to global. The shorter timescales are invaluable to monitor daily variations in CO emissions, to enable three-dimensional tracking of atmospheric motions, and to enhance insights into atmospheric mixing. Previous studies have utilized AIRS CO retrievals over the course of days to weeks to track plumes from large forest fires. On the local scale, we will present AIRS observations of pollution from several northern hemisphere Megacities. On the regional scale, we will present AIRS observations of the Mexico City pollution plume. We will illustrate global scale AIRS CO observations of interannual variations linked to the influence of large-scale atmospheric perturbations from the El Nino Southern Oscillation (ENSO). In particular, we observe a quasi-biennial variation in CO emissions from Indonesia with varying magnitudes in peak emission occurring in 2002, 2004, and 2006. Examining satellite rainfall measurements over Indonesia, we find the enhanced CO emission correlates with occasions of less rainfall during the month of October. Continuing this satellite record of tropospheric CO with measurements from the European IASI instrument will permit construction of a long time-series useful for further investigations of climatological variations in CO emissions and their impact on the health of the atmosphere.

  19. GENESIS SciFlo: Enabling Multi-Instrument Atmospheric Science Using Grid Workflows

    NASA Astrophysics Data System (ADS)

    Wilson, B. D.; Tang, B.; Manipon, G.; Yunck, T.; Fetzer, E.; Braverman, A.; Dobinson, E.

    2004-12-01

    The General Earth Science Investigation Suite (GENESIS) project is a NASA-sponsored partnership between the Jet Propulsion Laboratory, academia, and NASA data centers to develop a new suite of web services tools to facilitate multi-sensor investigations in Earth System Science. The goal of GENESIS is to enable large-scale, multi-instrument atmospheric science using combined datasets from the AIRS, MODIS, MISR, and GPS sensors. Investigations will include cross-comparison of spaceborne climate sensors, cloud spectral analysis, study of upper troposphere-strato-sphere water transport, study of the aerosol indirect cloud effect, and global climate model validation. The challenges are to bring together very large datasets, reformat and understand the individual instrument retrievals, co-register or re-grid the retrieved physical parameters, perform computationally-intensive data fusion and data mining operations, and accumulate complex statistics over months to years of data. To meet these challenges, we are developing a Grid computing and dataflow framework, named SciFlo, in which we are deploying a set of versatile and reusable operators for data access, subsetting, registration, mining, fusion, compression, and advanced statistical analysis. SciFlo is a system for Scientific Knowledge Creation on the Grid using a Semantically-Enabled Dataflow Execution Environment. SciFlo leverages Simple Object Access Protocol (SOAP) Web Services and the Grid Computing standards (Globus Alliance toolkits), and enables scientists to do multi-instrument Earth Science by assembling reusable web services and executable operators into a distributed computing flow (operator tree). The SciFlo client & server engines optimize the execution of such distributed data flows and allow the user to transparently find and use datasets and operators without worrying about the actual location of the Grid resources. The scientist injects a distributed computation into the Grid by simply filling out

  20. Atmospheric infrared sounder on AIRS with emphasis on level 2 products

    NASA Technical Reports Server (NTRS)

    Lee, Sung-Yung; Fetzer, Eric; Granger, Stephanie; Hearty, Thomas; Lambrigtsen, Bjorn; Manning, Evan M.; Olsen, Edward; Pagano, Thomas

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched aboard EOS Aqua in May of 2002. AIRS is a grating spectrometer with almost 2400 channels covering the 3.74 to 15.40 micron spectral region with a nominal spectral resolution ((nu)/(delta)(nu)) of 1200, with some gaps. In addition, AIRS has 4 channels in the NIR/VIS region. The AIRS operates in conjunction with the microwave sounders Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder of Brazil (HSB). The microwave sounders are mainly used for cloud clearing of IR radiances, or to remove the effect of cloud on the IR radiances.

  1. National Security Science and Technology Initiative: Air Cargo Screening

    SciTech Connect

    Bingham, Philip R; White, Tim; Cespedes, Ernesto; Bowerman, Biays; Bush, John

    2010-11-01

    The non-intrusive inspection (NII) of consolidated air cargo carried on commercial passenger aircraft continues to be a technically challenging, high-priority requirement of the Department of Homeland Security's Science and Technology Directorate (DHS S&T), the Transportation Security Agency and the Federal Aviation Administration. The goal of deploying a screening system that can reliably and cost-effectively detect explosive threats in consolidated cargo without adversely affecting the flow of commerce will require significant technical advances that will take years to develop. To address this critical National Security need, the Battelle Memorial Institute (Battelle), under a Cooperative Research and Development Agreement (CRADA) with four of its associated US Department of Energy (DOE) National Laboratories (Oak Ridge, Pacific Northwest, Idaho, and Brookhaven), conducted a research and development initiative focused on identifying, evaluating, and integrating technologies for screening consolidated air cargo for the presence of explosive threats. Battelle invested $8.5M of internal research and development funds during fiscal years 2007 through 2009. The primary results of this effort are described in this document and can be summarized as follows: (1) Completed a gap analysis that identified threat signatures and observables, candidate technologies for detection, their current state of development, and provided recommendations for improvements to meet air cargo screening requirements. (2) Defined a Commodity/Threat/Detection matrix that focuses modeling and experimental efforts, identifies technology gaps and game-changing opportunities, and provides a means of summarizing current and emerging capabilities. (3) Defined key properties (e.g., elemental composition, average density, effective atomic weight) for basic commodity and explosive benchmarks, developed virtual models of the physical distributions (pallets) of three commodity types and three explosive

  2. A Southern Hemisphere atmospheric history of carbon monoxide from South Pole firn air

    NASA Astrophysics Data System (ADS)

    Verhulst, K. R.; Aydin, M.; Novelli, P. C.; Holmes, C. D.; Prather, M. J.; Saltzman, E. S.

    2013-12-01

    Carbon monoxide (CO) is a reactive trace gas and is important to tropospheric photochemistry as a major sink of hydroxyl radicals (OH). Major sources of CO are fossil fuel combustion, linked mostly to automotive emissions, biomass burning, and oxidation of atmospheric methane. Understanding changes in carbon monoxide over the past century will improve our understanding of man's influence on the reactivity of the atmosphere. Little observational information is available about CO levels and emissions prior to the 1990s, particularly for the Southern Hemisphere. The NOAA global flask network provides the most complete instrumental record of CO, extending back to 1988. Annually averaged surface flask measurements suggest atmospheric CO levels at South Pole were relatively stable from 2004-2009 at about 51 nmol mol-1 [Novelli and Masarie, 2013]. In this study, a 20th century atmospheric history of CO is reconstructed from South Pole firn air measurements, using a 1-D firn air diffusion model. Firn air samples were collected in glass flasks from two adjacent holes drilled from the surface to 118 m at South Pole, Antarctica during the 2008/2009 field season and CO analysis was carried out by NOAA/CCG. Carbon monoxide levels increase from about 45 nmol mol-1 in the deepest firn sample at 116 m to 52 nmol mol-1 at 107 m, and remain constant at about 51-52 nmol mol-1 at shallower depths. Atmospheric histories based on the firn air reconstructions suggest that CO levels over Antarctica increased by roughly 40% (from about 36 to 50 nmol mol-1) between 1930-1990, at a rate of about 0.18 nmol mol-1 yr-1. Firn air and surface air results suggest the rate of CO increase at South Pole slowed considerably after 1990. The firn air-based atmospheric history is used to infer changes in Southern Hemisphere CO emissions over the 20th century.

  3. Technology Needs Assessment of an Atmospheric Observation System for Multidisciplinary Air Quality/Meteorology Missions, Part 2

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R.; Bortner, M. H.; Grenda, R. N.; Brehm, W. F.; Frippel, G. G.; Alyea, F.; Kraiman, H.; Folder, P.; Krowitz, L.

    1982-01-01

    The technology advancements that will be necessary to implement the atmospheric observation systems are considered. Upper and lower atmospheric air quality and meteorological parameters necessary to support the air quality investigations were included. The technology needs were found predominantly in areas related to sensors and measurements of air quality and meteorological measurements.

  4. FAST TRACK COMMUNICATION: Asymmetric surface barrier discharge plasma driven by pulsed 13.56 MHz power in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Dedrick, J.; Boswell, R. W.; Charles, C.

    2010-09-01

    Barrier discharges are a proven method of generating plasmas at high pressures, having applications in industrial processing, materials science and aerodynamics. In this paper, we present new measurements of an asymmetric surface barrier discharge plasma driven by pulsed radio frequency (rf 13.56 MHz) power in atmospheric pressure air. The voltage, current and optical emission of the discharge are measured temporally using 2.4 kVp-p (peak to peak) 13.56 MHz rf pulses, 20 µs in duration. The results exhibit different characteristics to plasma actuators, which have similar discharge geometry but are typically driven at frequencies of up to about 10 kHz. However, the electrical measurements are similar to some other atmospheric pressure, rf capacitively coupled discharge systems with symmetric electrode configurations and different feed gases.

  5. Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2013-01-01

    AIRS was launched on EOS Aqua in May 2002, together with AMSU-A and HSB (which subsequently failed early in the mission), to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS/AMSU had two primary objectives. The first objective was to provide real-time data products available for use by the operational Numerical Weather Prediction Centers in a data assimilation mode to improve the skill of their subsequent forecasts. The second objective was to provide accurate unbiased sounding products with good spatial coverage that are used to generate stable multi-year climate data sets to study the earth's interannual variability, climate processes, and possibly long-term trends. AIRS/AMSU data for all time periods are now being processed using the state of the art AIRS Science Team Version-6 retrieval methodology. The Suomi-NPP mission was launched in October 2011 as part of a sequence of Low Earth Orbiting satellite missions under the "Joint Polar Satellite System" (JPSS). NPP carries CrIS and ATMS, which are advanced infra-red and microwave atmospheric sounders that were designed as follow-ons to the AIRS and AMSU instruments. The main objective of this work is to assess whether CrIS/ATMS will be an adequate replacement for AIRS/AMSU from the perspective of the generation of accurate and consistent long term climate data records, or if improved instruments should be developed for future flight. It is critical for CrIS/ATMS to be processed using an algorithm similar to, or at least comparable to, AIRS Version-6 before such an assessment can be made. We have been conducting research to optimize products derived from CrIS/ATMS observations using a scientific approach analogous to the AIRS Version-6 retrieval algorithm. Our latest research uses Version-5.70 of the CrIS/ATMS retrieval algorithm, which is otherwise analogous to AIRS Version-6, but does not yet contain the benefit of use of a Neural-Net first guess start-up system

  6. Means of atmospheric air pollution reduction during drilling wells

    NASA Astrophysics Data System (ADS)

    Shkitsa, L.; Yatsyshyn, T.; Lyakh, M.; Sydorenko, O.

    2016-08-01

    The process of drilling oil and gas wells is the source of air pollution through drilling mud evaporation containing hazardous chemical substances. The constructive solution for cleaning device of downhole tool that contains elements covering tube and clean the surface from the mud in the process of rising from the well is offered. Inside the device is filled with magnetic fluid containing the substance neutralizing hazardous substances. The use of the equipment proposed will make it possible to avoid penetration of harmful substances into the environment and to escape the harmful effects of aggressive substances for staff health and increase rig's fire safety.

  7. Organics in the atmosphere: From air pollution to biogeochemical cycles and climate (Vilhelm Bjerknes Medal)

    NASA Astrophysics Data System (ADS)

    Kanakidou, Maria

    2016-04-01

    Organics are key players in the biosphere-atmosphere-climate interactions. They have also a significant anthropogenic component due to primary emissions or interactions with pollution. The organic pool in the atmosphere is a complex mixture of compounds of variable reactivity and properties, variable content in C, H, O, N and other elements depending on their origin and their history in the atmosphere. Multiphase atmospheric chemistry is known to produce organic acids with high oxygen content, like oxalic acid. This water soluble organic bi-acid is used as indicator for cloud processing and can form complexes with atmospheric Iron, affecting Iron solubility. Organics are also carriers of other nutrients like nitrogen and phosphorus. They also interact with solar radiation and with atmospheric water impacting on climate. In line with this vision for the role of organics in the atmosphere, we present results from a global 3-dimensional chemistry-transport model on the role of gaseous and particulate organics in atmospheric chemistry, accounting for multiphase chemistry and aerosol ageing in the atmosphere as well as nutrients emissions, atmospheric transport and deposition. Historical simulations and projections highlight the human impact on air quality and atmospheric deposition to the oceans. The results are put in the context of climate change. Uncertainties and implications of our findings for biogeochemical and climate modeling are discussed.

  8. Air exchange rates from atmospheric CO2 daily cycle

    PubMed Central

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-01-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained. PMID:26236090

  9. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  10. Improved Products for Assimilation and Model Validation from the Atmospheric Infrared Sounder (AIRS) on Aqua

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.

  11. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  12. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  13. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xianhui; Liu, Dongping; Song, Ying; Sun, Yue; Yang, Si-ze

    2013-05-01

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  14. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    SciTech Connect

    Zhang, Xianhui; Yang, Si-ze; Liu, Dongping; Song, Ying; Sun, Yue

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  15. Air ion measurements as a source of information about atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hõrrak, Urmas; Mirme, Aadu; Salm, Jaan; Tamm, Eduard; Tammet, Hannes

    The mobility spectra of air ions recorded in the course of routine atmospheric electric measurements contain information about atmospheric aerosols. The mobility spectrum of air ions is correlated with the size spectrum of aerosol particles. Two procedures of conversion (and conversion errors) are considered in this paper assuming the steady state of charge distribution. The first procedure uses the fraction model of the aerosol particle size distribution and algebraic solution of the conversion problem. The second procedure uses the parametric KL model of the particle size distribution and the least square fitting of the mobility measurements. The procedures were tested using simultaneous side-by-side measurements of air ion mobilities and aerosol particle size distributions at a rural site during a monthly period. The comparison of results shows a promising agreement between the measured and calculated size spectra in the common size range. A supplementary information about nanometer particles was obtained from air ion measurements.

  16. Internal gravity wave-atmospheric wind interaction - A cause of clear air turbulence.

    NASA Technical Reports Server (NTRS)

    Bekofske, K.; Liu, V. C.

    1972-01-01

    The interaction between an internal gravity wave (IGW) and a vertical wind shear is discussed as a possible cause in the production of clear air turbulence in the free atmosphere. It is shown that under certain typical condition the interaction of an IGW with a background wind shear near a critical level provides a mechanism for depositing sufficient momentum in certain regions of the atmosphere to significantly increase the local mean wind shear and to lead to the production of turbulence.

  17. Nonlinear dynamics and predictability in the atmospheric sciences

    SciTech Connect

    Ghil, M.; Kimoto, M.; Neelin, J.D. )

    1991-01-01

    Systematic applications of nonlinear dynamics to studies of the atmosphere and climate are reviewed for the period 1987-1990. Problems discussed include paleoclimatic applications, low-frequency atmospheric variability, and interannual variability of the ocean-atmosphere system. Emphasis is placed on applications of the successive bifurcation approach and the ergodic theory of dynamical systems to understanding and prediction of intraseasonal, interannual, and Quaternary climate changes.

  18. Atmospheric profile retrieval with AIRS data and validation at the ARM CART site

    NASA Astrophysics Data System (ADS)

    Wu, Xuebao; Li, Jun; Zhang, Wenjian; Wang, Fang

    2005-09-01

    The physical retrieval algorithm of atmospheric temperature and moisture distribution from the Atmospheric InfraRed Sounder (AIRS) radiances is presented. The retrieval algorithm is applied to AIRS clearsky radiance measurements. The algorithm employs a statistical retrieval followed by a subsequent nonlinear physical retrieval. The regression coefficients for the statistical retrieval are derived from a dataset of global radiosonde observations (RAOBs) comprising atmospheric temperature, moisture, and ozone profiles. Evaluation of the retrieved profiles is performed by a comparison with RAOBs from the Atmospheric Radiation Measurement (ARM) Program Cloud And Radiation Testbed (CART) in Oklahoma, U. S. A. Comparisons show that the physicallybased AIRS retrievals agree with the RAOBs from the ARM CART site with a Root Mean Square Error (RMSE) of 1 K on average for temperature profiles above 850 hPa, and approximately 10% on average for relative humidity profiles. With its improved spectral resolution, AIRS depicts more detailed structure than the current Geostationary Operational Environmental Satellite (GOES) sounder when comparing AIRS sounding retrievals with the operational GOES sounding products.

  19. Atmospheric Risk Assessment for the Mars Science Laboratory Entry, Descent, and Landing System

    NASA Technical Reports Server (NTRS)

    Chen, Allen; Vasavada, Ashwin; Cianciolo, Alicia; Barnes, Jeff; Tyler, Dan; Hinson, David; Lewis, Stephen

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. As with previous Mars landers, atmospheric conditions during entry, descent, and landing directly impact the performance of MSL's EDL system. While the vehicle's novel guided entry system allows it to "fly out" a range of atmospheric uncertainties, its trajectory through the atmosphere creates a variety of atmospheric sensitivities not present on previous Mars entry systems and landers. Given the mission's stringent landing capability requirements, understanding the atmosphere state and spacecraft sensitivities takes on heightened importance. MSL's guided entry trajectory differs significantly from recent Mars landers and includes events that generate different atmospheric sensitivities than past missions. The existence of these sensitivities and general advancement in the state of Mars atmospheric knowledge has led the MSL team to employ new atmosphere modeling techniques in addition to past practices. A joint EDL engineering and Mars atmosphere science and modeling team has been created to identify the key system sensitivities, gather available atmospheric data sets, develop relevant atmosphere models, and formulate methods to integrate atmosphere information into EDL performance assessments. The team consists of EDL engineers, project science staff, and Mars atmospheric scientists from a variety of institutions. This paper provides an overview of the system performance sensitivities that have driven the atmosphere modeling approach, discusses the atmosphere data sets and models employed by the team as a result of the identified sensitivities, and introduces the tools used to translate atmospheric knowledge into quantitative EDL performance assessments.

  20. Trajectories of air parcel motions in Mars' atmosphere computed using HYSPLIT.

    NASA Astrophysics Data System (ADS)

    Bruggeman, D.; Bridger, A. F. C.

    2014-12-01

    The HYSPLIT model has been adapted to compute trajectories of air and dust particle motions in the Martian atmosphere. We use winds generated by the NASA-Ames Mars General Circulation Model as input to HYSPLIT. Trajectories of air parcels emanating from the Hellas region during the MY25 dust storm will be examined in an effort to "follow the dust". Later we will examine backward trajectories to estimate the origins of surface dust at high latitudes.

  1. Level 1B products from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, H. H.; Overoye, Ken

    2003-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched May 4, 2002 on the EOS Aqua Spacecraft. A discussion is given of the objectives of the AIRS experiment, including requirements on the data products. We summarize the instrument characteristics, including sensitivity, noise, and spectral response, and preflight calibration results leading to the estimate of the calibration accuracy. The Level 1B calibration algorithm is presented as well as the results of in-flight stability and sensitivity measurements.

  2. Overview of atmospheric ionizing radiation (AIR) research: SST-present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented. Published by Elsevier Ltd on behalf of COSPAR.

  3. Summary of Atmospheric Ionizing AIR Research: SST-Present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; deAngelis, G.; Friedberg, W.; Clem, J. M.

    2003-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of the radiation exposure limits by the International Commission on Radiological Protection with the classification of aircrew as radiation workers renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  4. Overview of Atmospheric Ionizing Radiation (AIR) Research: SST - Present

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; DeAngelis, G.; Friedberg, W.

    2002-01-01

    The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent (1990) lowering of recommended exposure limits by the International Commission on Radiological Protection with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  5. Overview of Atmospheric Ionizing Radiation (AIR) research: SST-present

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Goldhagen, P.; Rafnson, V.; Clem, J.; Deangelis, G.

    The Super Sonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant passengers and crew by solar energetic particles (SEP), and neutrons were suspected to have a main role in effects due to particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Standing Committee provided recommendations on SST radiobiological issues and operational requirements. The lowering of ICRP-recommended exposure limits (1990) with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies of effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in 2000 and more recent European aircrew epidemiological studies of health outcomes brings renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  6. Overview of atmospheric ionizing radiation (AIR) Research: SST-present

    NASA Astrophysics Data System (ADS)

    Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; De Angelis, G.; Friedberg, W.

    The Supersonic Transport (SST) program proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of ICRP-recommended exposure limits 1990 with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum June 1997 and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.

  7. Cold atmospheric air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Price, Robert O.; Stacey, Michael; Swanson, R. James; Bowman, Angela; Chiavarini, Robert L.; Schoenbach, Karl H.

    2008-10-01

    By flowing ambient air through the discharge channel of a microhollow cathode geometry, we were able to sustain a stable 1.5-2 cm long afterglow plasma jet with dc voltages of only a few hundred volts. The temperature in this expelled afterglow plasma is close to room temperature. Emission spectra show atomic oxygen, hydroxyl ions and various nitrogen compounds. The low heavy-particle temperature allows us to use this exhaust stream on biological samples and tissues without thermal damage. The high levels of reactive species suggest an effective treatment for pathological skin conditions caused, in particular, by infectious agents. In first experiments, we have successfully tested the efficacy on Candida kefyr (a yeast), E.coli, and a matching E.coli strain-specific virus. All pathogens investigated responded well to the treatment. In the yeast case, complete eradication of the organism in the treated area could be achieved with an exposure of 90 seconds at a distance of 5 mm. A 10-fold increase of exposure, to 900 seconds caused no observable damage to murine integument.

  8. Atmospheric modeling of air pollution. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-02-01

    The bibliography contains citations concerning the development, validation, and application of mathematical models for air pollution studies of mobile and stationary pollution sources. The models cover a wide range of mathematical complexity, utilizing factors such as terrain features, wake effects, diffusion, atmospheric stability, atmospheric wind, precipitation scavenging, gravitational deposition, atmospheric photochemistry, and urban heat islands. The models are used to support environmental impact studies and effects of proposed emission control strategies. Excluded are models of stratospheric pollution behavior, as applied to high flying aircraft. (Contains 250 citations and includes a subject term index and title list.)

  9. Atmospheric modeling of air pollution. (Latest citations from the NTIS bibliographic database). NewSearch

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations concerning the development, validation, and application of mathematical models for air pollution studies of mobile and stationary pollution sources. The models cover a wide range of mathematical complexity, utilizing factors such as terrain features, wake effects, diffusion, atmospheric stability, atmospheric wind, precipitation scavenging, gravitational deposition, atmospheric photochemistry, and urban heat islands. The models are used to support environmental impact studies and effects of proposed emission control strategies. Excluded are models of stratospheric pollution behavior, as applied to high flying aircraft. (Contains 250 citations and includes a subject term index and title list.)

  10. Atmospheric modeling of air pollution. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the development, validation, and application of mathematical models for air pollution studies of mobile and stationary pollution sources. The models cover a wide range of mathematical complexity, utilizing factors such as terrain features, wake effects, diffusion, atmospheric stability, atmospheric wind, precipitation scavenging, gravitational deposition, atmospheric photochemistry, and urban heat islands. The models are used to support environmental impact studies and effects of proposed emission control strategies. Excluded are models of stratospheric pollution behavior, as applied to high flying aircraft. (Contains 250 citations and includes a subject term index and title list.)

  11. Atmospheric modeling of air pollution. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-03-01

    The bibliography contains citations concerning the development, validation, and application of mathematical models for air pollution studies of mobile and stationary pollution sources. The models cover a wide range of mathematical complexity, utilizing factors such as terrain features, wake effects, diffusion, atmospheric stability, atmospheric wind, precipitation scavenging, gravitational deposition, atmospheric photochemistry, and urban heat islands. The models are used to support environmental impact studies and effects of proposed emission control strategies. Excluded are models of stratospheric pollution behavior, as applied to high flying aircraft.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  12. Final Technical Report: Science and technology reviews of FACE[Free Air Carbon Enrichment

    SciTech Connect

    Strain, Boyd R.

    1998-03-23

    The purpose of this grant was to bring together the principals of all known facilities that had been developed, principals who had submitted proposals to develop FACE facilities, and principals who want to develop proposals for facilities. In addition, critical program personnel from potential funding agencies and a few high level science administrators were invited to observe the proceedings and to visit a working FACE facility. The objectives of this study are to conduct a three-day international meeting on scientific aspects of research with the new and developing free air carbon enrichment (FACE) technology. Immediately following the science meeting, conduct a two-day international meeting on experimental protocols to be applied in FACE research. To conduct a four day international meeting on the assessment of the responses of forest ecosystems to elevated atmospheric carbon dioxide. The three meetings supported by this grant were all highly successful meetings and resulted in the formation of an organized and identified working group with the acronym InterFACE (International Free-Air Carbon Dioxide Enrichment) working group.

  13. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  14. Atmospheric Properties Reconstruction from the Mars Science Laboratory Entry, Descent and Landing

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, C.; Withers, P.

    2014-07-01

    Data acquired during the entry, descent and landing of the Mars Science Laboratory were used to reconstruct the atmospheric profiles for density, pressure and temperature with excellent vertical resolution and extent.

  15. PREFACE: SPECIAL ISSUE OF ATMOSPHERIC ENVIRONMENT, FOR PARTICULATE MATTER: ATMOSPHERIC SCIENCES, EXPOSURE AND THE FOURTH COLLOQUIUM ON PM AND HUMAN HEALTH

    EPA Science Inventory

    In a continuing effort to improve communications among the atmospheric sciences, policy, and health communities, an international specialty conference was initiated in 2001 that took place in April 2003 in Pittsburgh, PA. The conference entitled, "Particulate Matter: Atmospheric...

  16. POINTS-OF-CONTACT (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Atmospheric Protection Branch's (APB's) Points-of-Contact page lists APB's research areas along with the name, phone number and e-mail address of the responsible person. APB is part of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC. The ...

  17. Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Arantchouk, L.; Point, G.; Brelet, Y.; Larour, J.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-03-01

    We developed a compact Marx generator triggered in atmospheric air by a single femtosecond laser beam undergoing filamentation. Voltage pulses of 180 kV could be generated with a subnanosecond jitter. The same laser beam was also used to initiate simultaneously guided discharges up to 21 cm long at the output of the generator.

  18. Critical Evaluation of Air-Liquid Interface Exposure Devices for In Vitro Assessment of Atmospheric Pollutants

    EPA Science Inventory

    Exposure of cells to atmospheric pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of attached cells submerged in liquid medium. However, there is still limited understanding of the ideal ALI device design features that permit reproducible a...

  19. REPRESENTATION OF ATMOSPHERIC MOTION IN MODELS OF REGIONAL-SCALE AIR POLLUTION

    EPA Science Inventory

    A method is developed for generating ensembles of wind fields for use in regional scale (1000 km) models of transport and diffusion. The underlying objective is a methodology for representing atmospheric motion in applied air pollution models that permits explicit treatment of th...

  20. Compact 180-kV Marx generator triggered in atmospheric air by femtosecond laser filaments

    SciTech Connect

    Arantchouk, L. Larour, J.; Point, G.; Brelet, Y.; Carbonnel, J.; André, Y.-B.; Mysyrowicz, A.; Houard, A.

    2014-03-10

    We developed a compact Marx generator triggered in atmospheric air by a single femtosecond laser beam undergoing filamentation. Voltage pulses of 180 kV could be generated with a subnanosecond jitter. The same laser beam was also used to initiate simultaneously guided discharges up to 21 cm long at the output of the generator.

  1. Camilla Visits Upper Atmosphere in the Name of Science

    NASA Video Gallery

    Solar Dynamics Observatory mascot, Camilla, goes for a balloon ride to study solar radiation in the upper atmosphere caused by a solar storm. This video is a comprised of five separate videos showi...

  2. Reconstructing the recent methane atmospheric budget using firn air methane stable isotope analyses

    NASA Astrophysics Data System (ADS)

    Sapart, Célia Julia; Martinerie, Patricia; Witrant, Emmanuel; Monteil, Guillaume; Banda, Narcisa; Houweling, Sander; Krol, Maarten; Chappellaz, Jerome; van de Wal, Roderik; Sperlich, Peter; van der Veen, Carina; Sturges, Bill; Blunier, Thomas; Schwander, Jakob; Etheridge, David; Röckmann, Thomas

    2015-04-01

    Methane is a strong greenhouse gas and large uncertainties exist concerning the future evolution of its atmospheric abundance. Analyzing methane mixing and stable isotope ratios in air trapped in polar ice sheets helps in reconstructing the evolution of its sources and sinks in the past. This is important to improve predictions of atmospheric CH4 mixing ratios in the future under the influence of a changing climate. We present an attempt to reconcile methane stable isotopes δ13C(CH4) and δD(CH4) records from 11 (for δ13C(CH4)) and 5 (for δD(CH4)) boreholes in firn from both Greenland and Antarctica to reconstruct a consistent methane atmospheric history over the last 50 years. In the firn, the atmospheric signal is altered mainly by diffusion and gravitation. These processes are taken into account by firn air transport models. We show that for δ13C(CH4) the atmospheric signal is of the same order of magnitude as the firn fractionation which, together with other uncertainties such as inter-calibration problems, complicates the reconstruction of a consistent δ13C(CH4) history from multi-site firn air data. For δD(CH4), the atmospheric signal is about 10 times larger than firn fractionation, therefore the reconstruction is much less sensitive to firn processes. This large signal allows a very consistent reconstruction from firn air from both Antarctica and Arctic firn air data. The δD(CH4) firn air scenarios from both poles are used as input in an atmospheric inverse model to calculate the contribution of the different sources and sinks responsible for the atmospheric changes in methane observed for the past decades. Our preliminary results show that the δD(CH4) signature of the global methane source became more enriched from 1950 to the mid-1980's and started to decrease later on and we show that it is likely caused by changes in enriched sources such as: fossil or combustion sources.

  3. Influence of atmospheric pressure supplied on permittivity of air-film of aerostatic bearing

    NASA Astrophysics Data System (ADS)

    Li, Min; Zhang, Yubing; Li, Dong-sheng

    2013-01-01

    Influence of atmospheric pressure supplied on permittivity of the air-film is researched based on the capacitive testing method of the air film thickness of aerostatic bearing. An experiment platform is designed. The experimental results illustrate that permittivity has significant negative correlation with atmospheric pressure which varies from 0.1MPa to 0.48MPa when other environmental conditions remain unchanged. The curves conform to the fourth-order polynomial approximately. All of the values of R2 are beyond 0.944 which means that trend lines fit the data curves well. Relative permittivity of the air film is between 0.996 and 1.324. This interval shows that weak current exists between restrictor and flat of the experiment which are not absolutely insulating and atmosphere of the air film is not pure. This result provides a basis both for establishing accurate mathematical model of air film thickness and capacitance value of the aerostatic bearing and for other exploratory experiments later.

  4. Advancing Solid Earth Science through Improved Atmosphere Modeling

    NASA Technical Reports Server (NTRS)

    Niell, A. E.

    2004-01-01

    We proposed to investigate and develop better models for the effect of the hydrostatic and water vapor components of the neutral atmosphere on delay for VLBI and GPS by using a Numerical Weather Model to better simulate realistic atmosphere conditions. By using a raytrace calculation through the model atmosphere at the times of actual VLBI observations, the potential improvement in geodetic results can be evaluated. Also, by calculating the actual variation of delays with elevation and azimuth, the errors in current mapping function models can be assessed. The VLBI data to be initially analyzed are the fifteen days of the CONT02 sessions of 2002 October which included eight stations. There are three segments to the research. 1) The PSU/NCAR fifth generation mesoscale numerical weather model (MM5) will be used to provide the state of the atmosphere with highest horizontal resolution of 3 km. 2) A three-dimensional raytrace program will be developed to determine the delays through the model atmosphere at the times and in the directions of the VLBI observations for each of the sites. 3) The VLBI data will be analyzed using both standard models for the atmosphere mapping functions and the mapping functions derived from the NWM raytracing.

  5. Non-LTE Steady-State Kinetics of He-Air Atmospheric Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Petrova, Tzvetelina; Petrov, George; Gillman, Eric; Boris, David; Hernández, Sandra; Walton, Scott

    2015-11-01

    A non-LTE, steady-state collisional-radiative kinetics model is developed to study discharges produced in mixtures of He, N2 and O2 (He-Air) at atmospheric pressures. The model is based on a self-consistent solution of coupled Boltzmann equation for the electron energy distribution function, electron energy balance equation, gas thermal balance equation, and a system of non-linear equations for species that govern plasma chemistry (electrons, ions, radicals, atoms and molecules in ground and excited states). The model and results can be applied to study a variety of atmospheric pressure plasmas generated in He-Air mixtures, such as plasma jets, dielectric barrier discharges, laser-induced plasmas, microwave plasmas, etc. In this talk, collisional rates and species densities are obtained as a function of He-to-air ratio and the results are benchmarked against available experimental data. Work supported by the NRL Base Program.

  6. Air and Weather Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 2.

    ERIC Educational Resources Information Center

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the importance of air and air pressure in students' everyday lives; (2) oxidation…

  7. Air Pollution and the Social Sciences: Formulating and Implementing Control Programs.

    ERIC Educational Resources Information Center

    Downing, Paul B., Ed.

    The social science literature, dealing with air quality, up to mid-1970 is reviewed and synthesized in five separately authored chapters, one for each of sociology, psychology, political science, law and economies. In addition to suggesting what each discipline can contribute to the solution of the air pollution problem, gaps in the literature are…

  8. Atmospheric science: Sea-spray particles cause freezing in clouds

    NASA Astrophysics Data System (ADS)

    Russell, Lynn M.

    2015-09-01

    Ice clouds in marine regions at high latitudes might form in warmer and drier air than was previously believed because of freezing induced by airborne particles that contain organic materials from ocean surface waters. See Letter p.234

  9. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    ERIC Educational Resources Information Center

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  10. Atmospheric Sciences. Test Edition. AAAS Study Guides on Contemporary Problems, No. 6.

    ERIC Educational Resources Information Center

    Schaefer, Vincent J.; Mohnen, Volker A.

    This is one of several study guides on contemporary problems produced by the American Association for the Advancement of Science with support of the National Science Foundation. This study guide includes the following sections: (1) Solar Radiation and Its Interaction with the Earth's Atmosphere System; (2) The Water Cycle; (3) Fundamentals of Air…

  11. 75 FR 38079 - National Oceanic and Atmospheric Administration (NOAA) Science Advisory Board (SAB)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ...The Science Advisory Board (SAB) was established by a Decision Memorandum dated September 25, 1997, and is the only Federal Advisory Committee with responsibility to advise the Under Secretary of Commerce for Oceans and Atmosphere on strategies for research, education, and application of science to operations and information services. SAB activities and advice provide necessary input to ensure......

  12. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaozhen; Barnet, Chris; Maddy, Eric; Sweeney, Colm; Liu, Xingpin; Zhou, Lihang; Goldberg, Mitch

    2008-09-01

    This paper presents the characterization and validation of retrievals of atmospheric methane (CH4) vertical profiles by the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua platform. AIRS channels near 7.6 μm are used for CH4 retrieval, and they are most sensitive to the middle to upper troposphere, i.e., about 200-300 hPa in the tropics and 400-500 hPa in the polar region. The atmospheric temperature-humidity profiles, surface skin temperature, and emissivity required to derive CH4 are obtained from retrievals using separate AIRS channels and the Advanced Microwave Sounding Unit (AMSU). Comparison of AIRS retrieved profiles with some in situ aircraft CH4 profiles implied that the forward model used in the AIRS retrieval system V4.0 required a 2% increase in methane absorption coefficients for strong absorption channels, and this bias adjustment was implemented in the AIRS retrieval system V5.0. As a new operational product in V5.0, AIRS CH4 were validated using in situ aircraft observations at 22 sites of the NOAA Earth System Research Laboratory, Global Monitoring Division (NOAA/ESRL/GMD), ranging from the Arctic to the tropical South Pacific Ocean, but their altitudes are usually above 300 hPa. The results show the bias of the retrieved CH4 profiles for this version is -1.4˜0.1% and its RMS difference is about 0.5-1.6%, depending on altitude. These validation comparisons provide critical assessment of the retrieval algorithm and will continue using more in situ observations together with future improvement to the retrieval algorithm. AIRS CH4 products include not only the CH4 profile but also the information content. As examples, the products of AIRS CH4 in August 2004 and the difference of CH4 in May and September 2004 are shown. From these results a few features are evident: (1) a large AIRS CH4 plume southwest of the Tibetan plateau that may be associated with deep convection during the Asian summer monsoon; (2) high mixing ratios of AIRS CH4 in

  13. Gas chromatograph analysis on closed air and nitrogen oxide storage atmospheres of recalcitrant seeds of Quercus Alba

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage of recalcitrant seeds remains an unsolved problem. This study investigated the quantitative gas analysis of nitrous oxide (N2O) and air atmospheres on the recalcitrant seeds of Quercus alba by using gas chromatograph. Ten seeds were placed in each sealed atmospheric system of air and 98/2% N...

  14. Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet

    NASA Astrophysics Data System (ADS)

    Mu-Yang, Qian; Cong-Ying, Yang; Zhen-dong, Wang; Xiao-Chang, Chen; San-Qiu, Liu; De-Zhen, Wang

    2016-01-01

    A numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet is presented. The generation and loss mechanisms of the OH radicals in a positive half-cycle of the applied voltage are studied and discussed. It is found that the peak OH density increases with water content in air (varying from 0% to 1%) and reaches 6.3×1018 m-3 when the water content is 1%. Besides, as the water content increases from 0.01% to 1%, the space-averaged reaction rate of three-body recombination increases dramatically and is comparable to those of main OH generation reactions. Project supported by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

  15. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative

  16. Hot, cold, and annual reference atmospheres for Edwards Air Force Base, California (1975 version)

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1975-01-01

    Reference atmospheres pertaining to summer (hot), winter (cold), and mean annual conditions for Edwards Air Force Base, California, are presented from surface to 90 km altitude (700 km for the annual model). Computed values of pressure, kinetic temperature, virtual temperature, and density and relative differences percentage departure from the Edwards reference atmospheres, 1975 (ERA-75) of the atmospheric parameters versus altitude are tabulated in 250 m increments. Hydrostatic and gas law equations were used in conjunction with radiosonde and rocketsonde thermodynamic data in determining the vertical structure of these atmospheric models. The thermodynamic parameters were all subjected to a fifth degree least-squares curve-fit procedure, and the resulting coefficients were incorporated into Univac 1108 computer subroutines so that any quantity may be recomputed at any desired altitude using these subroutines.

  17. 75 FR 4069 - Science Advisory Board Staff Office; Notification of a Clean Air Scientific Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... issued the final rule to revise both the primary and secondary NAAQS for PM (71 FR 61144) and retain PM... AGENCY Science Advisory Board Staff Office; Notification of a Clean Air Scientific Advisory Committee... Clean Air Scientific Advisory Committee (CASAC) Ambient Air Monitoring & Methods Subcommittee (AAMMS...

  18. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  19. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  20. Communicating atmospheric science and research to diverse audiences using a field campaign

    NASA Astrophysics Data System (ADS)

    Clarke, K. C.

    2010-12-01

    There are growing concerns among the nation’s leading science organizations about the American public’s lack of scientific literacy, participation in science, and understanding of the value of scientific research. Coupled with these concerns is the need to improve the communication of science and research to our diverse populations, and to include them in the scientific process. As these concerns extend to atmospheric processes, the effects could be magnified: the atmosphere dynamically changes from calm weather conditions to extreme high impact events that significantly affect community services and decision-making processes. However, efforts are under way to address these concerns by bridging the gap between science and community service. In recent years, research field campaigns have emerged as effective tools for communicating science and engaging science participation. They help to facilitate the understanding of atmospheric processes by the public, and their collected data sets are potentially useful for formal and informal science education and communication. Through funding from the National Science Foundation, campaigns such as T-PARC are being used to develop instructional materials to improve the public’s scientific knowledge, foster science literacy and participation, and to prepare the next generation of scientists from diverse backgrounds. In the present study, instructional materials have been presented in a variety of media with the goal of including these diverse audiences in the scientific conversation.

  1. The effect of the atmospheric condition on the extensive air shower analysis at the Telescope Array experiment

    SciTech Connect

    Kobayashi, Y.; Tsunesada, Y.; Tokuno, H.; Kakimoto, F.; Tomida, T.

    2011-09-22

    The accuracies in determination of air shower parameters such as longitudinal profiles or primary energies with the fluorescence detection technique are strongly dependent on atmospheric conditions of the molecular and aerosol components. Moreover, air fluorescence photon yield depends on the atmospheric density, and the transparency of the air for fluorescence photons depends on the atmospheric conditions from EAS to FDs. In this paper, we describe the atmospheric monitoring system in the Telescope Array (TA experiment), and the impact of the atmospheric conditions in air shower reconstructions. The systematic uncertainties of the determination of the primary cosmic ray energies and of the measurement of depth of maximum development (X{sub max}) of EASs due to atmospheric variance are evaluated by Monte Carlo simulation.

  2. Wind tunnel experiments: cold-air pooling and atmospheric decoupling above a melting snow patch

    NASA Astrophysics Data System (ADS)

    Mott, R.; Paterna, E.; Horender, S.; Crivelli, P.; Lehning, M.

    2015-10-01

    The longevity of perennial snow fields is not fully understood but it is known that strong atmospheric stability and thus boundary layer decoupling limits the amount of (sensible and latent) heat that can be transmitted to the snow surface. The strong stability is typically caused by two factors, (i) the temperature difference between the (melting) snow surface and the near-surface atmosphere and (ii) cold-air pooling in topographic depressions. These factors are almost always a prerequisite for perennial snow fields to exist. For the first time, this contribution investigates the relative importance of the two factors in a controlled wind tunnel environment. Vertical profiles of sensible heat fluxes are measured using two-component hot wire and one-component cold-wire anemometry directly over the melting snow patch. The comparison between a flat snow surface and one that has a depression shows that atmospheric decoupling is strongly increased in the case of topographic sheltering but only for low to moderate wind speeds. For those conditions, the near-surface suppression of turbulent mixing was observed to be strongest and drainage flows were decoupled from the surface enhancing atmospheric stability and promoting the cold-air pooling over the single snow patch. Further work is required to systematically and quantitatively describe the flux distribution for varying terrain geometry, wind speeds and air temperatures.

  3. Development of Atmospheric Air 85Kr Monitoring Methodology on the Territory of the USSR

    NASA Astrophysics Data System (ADS)

    Pakhomov, Sergei; Dubasov, Yury

    2014-05-01

    Highly sensitive, low-background and high-performance method of beta-radioactivity measurements of the gas samples was developed in mid-eighties at Khlopin Radium institute. This method was based on the use of the serial automated installation for liquid scintillation measurements and special scintillating cells. Cells were equipped with the gas valve, and their internal surface were covered by a thin layer of organic scintillator. This method found was successfully was applied for 85Kr activity measurements in atmospheric krypton samples and for 85Kr concentration measurements in atmospheric air. For the first time, method developed for 85Kr activity measurements, was practically tested in May - June, 1986, while studying radioactive pollution characteristics in the air basin of Russia and Ukraine after the Chernobyl NPP accident. Thus for sampling of atmospheric krypton the industrial krypton-xenon mix manufactured at air-separating plants, located in the cities of Cherepovets, Lipetsk, Krivoi Rog and Enakiyevo was used. In the end of April and in the first half of May it was determined that 1,5-fold excess concentrations of 85Kr in atmospheric air were observed in atmospheric air of considerable part of the European territory of Russia and Ukraine During the period from 1987 to 1991 this method was used for monitoring of 85Kr on the territory of the former USSR in the air basin of Russia, Ukraine and Kazakhstan. Industrial krypton-xenon mix manufactured at 14 large air-separating plants was also used for sampling. Six of them were situated in Russia (Novomoskovsk, Lipetsk, Cherepovets, Chelyabinsk, Nizhni Tagil, Orsk). Seven - in Ukraine (Enakiyevo, Kommunarsk, Krivoi Rog, Makeyevka, Mariupol, Severodonetsk, Dneprodzerzhinsk). One plant was situated in Temirtau, in Kazakhstan. The analysis indicated that in Krivoi Rog; Dneprozhzerzhinsk; Severodonetsk; Makeyevka; Mariupol; Enakiyevo; Kommunarsk; Novomoskovsk and Cherepovets the average 85Kr concentration in

  4. Evaluation of the NOAA CAREERS Weather Camp's Effectiveness in Promoting Atmospheric Science amongst High School Students

    NASA Astrophysics Data System (ADS)

    Olgin, J. G.; Fitzgerald, R. M.; Morris, V. R.

    2013-12-01

    The NOAA Center for Atmospheric Science (NCAS) sponsors the Channeling Atmospheric Research into Educational Experiences Reaching Students program (CAREERS); a program that manages a network of weather camps for students in secondary education with particular focus on increasing access for students from traditionally underrepresented backgrounds. Hosted by a college or university, the primary mission goals of the program are to engage students in discussions, lectures and interactive projects to better learn and comprehend a suite of atmospheric science disciplines (i.e. weather forecasting, environmental modeling, atmospheric data acquisition), and guide talented students towards higher education to pursue careers in atmospheric science primarily, or toward other STEM field professions. The need to evaluate and analyze the program's efficacy is crucial for continued growth and sustainability. Therefore a means to identify and measure the success of the program's initiatives will be addressed. Two Hispanic serving institutions, the University of Texas at El Paso (UTEP) and the University of Puerto Rico in Mayaguez (UPRM), both hosted the CAREER weather camps during the summers of 2012 and 2013, and provide the basis of this initial analysis. Participants performed entrance surveys of their knowledge of atmospheric science prior to the course. They were then re-evaluated through exit surveys over the topics covered during the weather camp. These data will be analyzed to correlate which program activities worked best in increasing participant awareness (i.e. geology tours of the local area, discussion on local climate variations, geophysical and geochemical demonstrations), and comprehension of atmospheric science. A comparison between the two universities on their uniqueness in program design and execution will also highlight those activities that best progressed CAREERS' program goals. Results from this analysis, along with possible new strategies for improved

  5. Increasing Access to Atmospheric Science Research at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Bethea, K. L.; LaPan, J. C.

    2013-12-01

    The Science Directorate (SD) at NASA's Langley Research Center conducts cutting edge research in fundamental atmospheric science topics including radiation and climate, air quality, active remote sensing, and upper atmospheric composition. These topics matter to the public, as they improve our understanding of our home planet. Thus, we have had ongoing efforts to improve public access to the results of our research. These efforts have accelerated with the release of the February OSTP memo. Our efforts can be grouped in two main categories: 1. Visual presentation techniques to improve science understanding: For fundamental concepts such as the Earth's energy budget, we have worked to display information in a more "digestible" way for lay audiences with more pictures and fewer words. These audiences are iPad-lovers and TV-watchers with shorter attention spans than audiences of the past. They are also educators and students who need a basic understanding of a concept delivered briefly to fit into busy classroom schedules. We seek to reach them with a quick, visual message packed with important information. This presentation will share several examples of visual techniques, such as infographics (e.g., a history of lidar at Langley and a timeline of atmospheric research, ozone garden diagrams (http://science-edu.larc.nasa.gov/ozonegarden/ozone-cycle.php); history of lidar at LaRC; DISCOVER-AQ maps. It will also share examples of animations and interactive graphics (DISCOVER-AQ); and customized presentations (e.g., to explain the energy budget or to give a general overview of research). One of the challenges we face is a required culture shift between the way scientists traditionally share knowledge with each other and the way these public audiences ingest knowledge. A cross-disciplinary communications team in SD is crucial to bridge that gap. 2. Lay research summaries to make research more accessible: Peer-reviewed publications are a primary product of the SD, with more

  6. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Migała, Krzysztof; Urban, Grzegorz; Tomczyński, Karol

    2016-07-01

    The results of meteorological measurements carried out continuously on Mt Śnieżka in Karkonosze mountains since 1880 well document the warming observed on a global scale. Data analysis indicates warming expressed by an increase in the mean annual air temperature of 0.8 °C/100 years. A much higher temperature increase was recorded in the last two decades at the turn of the twenty-first century. Mean decade air temperatures increased from -0.1 to 1.5 °C. It has been shown that there are relationships between air temperature at Mt Śnieżka and global mechanisms of atmospheric and oceanic circulation. Thermal conditions of the Karkonosze (Mt Śnieżka) accurately reflect global climate trends and impact of the North Atlantic Oscillation (NAO) index, macrotypes of atmospheric circulation in Europe (GWL) and Atlantic Multidecadal Oscillation (AMO). The increase in air temperature during the 1989-2012 solar magnetic cycle may reveal a synergy effect to which astrophysical effects and atmospheric and oceanic circulation effects contribute, modified by constantly increasing anthropogenic factors.

  7. Simulation of cold atmospheric plasma component composition and particle densities in air

    NASA Astrophysics Data System (ADS)

    Kirsanov, Gennady; Bekasov, Vladimir; Eliseev, Stepan; Kudryavtsev, Anatoly; Sisoev, Sergey

    2015-11-01

    Recently discharges in air at atmospheric pressure were the subject of numerous studies. Of particular interest are the cold streams of air plasma, which contains large amounts of chemically active species. It is their action can be decisive in the interaction with living tissues. Therefore, in addition to its physical properties, it is important to know the component composition and particle densities. The goal was to develop a numerical model of atmospheric pressure glow microdischarge in air with the definition of the component composition of plasma. To achieve this goal the task was broken down into two sub-tasks, in the first simulated microdischarge atmospheric pressure in air using a simplified set of plasma chemical reactions in order to obtain the basic characteristics of the discharge, which are the initial approximations in the problem of the calculation of the densities with detailed plasma chemistry, including 53 spices and over 600 chemical reactions. As a result of the model was created, which can be adapted for calculating the component composition of plasma of various sources. Calculate the density of particles in the glow microdischarges and dynamics of their change in time.

  8. Simulation of cold atmospheric plasma component composition and particle densities in air

    NASA Astrophysics Data System (ADS)

    Kirsanov, Gennady; Chirtsov, Alexander; Kudryavtsev, Anatoliy

    2015-11-01

    Recently discharges in air at atmospheric pressure were the subject of numerous studies. Of particular interest are the cold streams of air plasma, which contains large amounts of chemically active species. It is their action can be decisive in the interaction with living tissues. Therefore, in addition to its physical properties, it is important to know the component composition and particle densities. The goal was to develop a numerical model of atmospheric pressure glow microdischarge in air with the definition of the component composition of plasma. To achieve this goal the task was divided into two sub-tasks, in the first simulated microdischarge atmospheric pressure in air using a simplified set of plasma chemical reactions in order to obtain the basic characteristics of the discharge, which are the initial approximations in the problem of the calculation of the densities with detailed plasma chemistry, including 53 spices and over 600 chemical reactions. As a result of the model was created, which can be adapted for calculating the component composition of plasma of various sources. Calculate the density of particles in the glow microdischarges and dynamics of their change in time.

  9. Improved Impact of Atmospheric Infrared Sounder (AIRS) Radiance Assimilation in Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Chou, Shih-Hung; Jedlovec, Gary

    2012-01-01

    Improvements to global and regional numerical weather prediction (NWP) have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) that mimics the analysis methodology, domain, and observational datasets for the regional North American Mesoscale (NAM) model run at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) are run to examine the impact of each type of AIRS data set. The first configuration will assimilate the AIRS radiance data along with other conventional and satellite data using techniques implemented within the operational system; the second configuration will assimilate AIRS retrieved profiles instead of AIRS radiances in the same manner. Preliminary results of this study will be presented and focus on the analysis impact of the radiances and profiles for selected cases.

  10. Satellite observation of atmospheric methane: intercomparison between AIRS and GOSAT TANSO-FTS retrievals

    NASA Astrophysics Data System (ADS)

    Zou, M.; Xiong, X.; Saitoh, N.; Warner, J.; Zhang, Y.; Chen, L.; Weng, F.

    2015-10-01

    Space-borne observations of atmospheric methane (CH4) have been made using the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite since August 2002 and the Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT) since April 2009. This study compared the GOSAT TANSO-FTS thermal infrared (TIR) version 1.0 CH4 product with the collocated AIRS version 6 CH4 product using data from 1 August 2010 to 30 June 2012, including the CH4 mixing ratios and the total column amounts. The results show that at 300-600 hPa, where both AIRS and GOSAT-TIR CH4 have peak sensitivities, they agree very well, but GOSAT-TIR retrievals tend to be higher than AIRS in layer 200-300 hPa. At 300 hPa the CH4 mixing ratio from GOSAT-TIR is, on average, 10.3 ± 31.8 ppbv higher than that from AIRS, and at 600 hPa GOSAT-TIR retrieved CH4 is -16.2 ± 25.7 ppbv lower than AIRS CH4. Comparison of the total column amount of CH4 shows that GOSAT-TIR agrees with AIRS to within 1 % in the mid-latitude regions of Southern Hemisphere and in tropics. In the mid to high latitudes in the Northern Hemisphere, GOSAT-TIR is ~ 1-2 % lower than AIRS, and in the high-latitude regions of Southern Hemisphere the difference of GOSAT from AIRS varies from -3 % in October to +2 % in July. The difference between AIRS and GOSAT TANSO-FTS retrievals is mainly due to the difference in retrieval algorithms and instruments itself, and the larger difference in the high latitude regions is associated with the low information content and small degree of freedoms of the retrieval. The degree of freedom of GOSAT-TIR retrievals is lower than that of AIRS also indicates that the constraint in GOSAT-TIR retrieval may be too strong. From the good correlation between AIRS and GOSAT-TIR retrievals and the seasonal variation they observed we are confident that the thermal infrared measurements from AIRS and GOSAT-TIR can provide

  11. Satellite observation of atmospheric methane: intercomparison between AIRS and GOSAT TANSO-FTS retrievals

    NASA Astrophysics Data System (ADS)

    Zou, Mingmin; Xiong, Xiaozhen; Saitoh, Naoko; Warner, Juying; Zhang, Ying; Chen, Liangfu; Weng, Fuzhong; Fan, Meng

    2016-08-01

    Space-borne observations of atmospheric methane (CH4) have been made using the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite since August 2002 and the Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT) since April 2009. This study compared the GOSAT TANSO-FTS thermal infrared (TIR) version 1.0 CH4 product with the collocated AIRS version 6 CH4 product using data from 1 August 2010 to 30 June 2012, including the CH4 mixing ratios and the total column amounts. The results show that at 300-600 hPa, where both AIRS and GOSAT-TIR CH4 have peak sensitivities, they agree very well, but GOSAT-TIR retrievals tend to be higher than AIRS in layer 200-300 hPa. At 300 hPa the CH4 mixing ratio from GOSAT-TIR is, on average, 10.3 ± 31.8 ppbv higher than that from AIRS, and at 600 hPa GOSAT-TIR retrieved CH4 is -16.2 ± 25.7 ppbv lower than AIRS CH4. Comparison of the total column amount of CH4 shows that GOSAT-TIR agrees with AIRS to within 1 % in the mid-latitude regions of the Southern Hemisphere and in the tropics. In the mid to high latitudes in the Northern Hemisphere, comparison shows that GOSAT-TIR is ˜ 1-2 % lower than AIRS, and in the high-latitude regions of the Southern Hemisphere the difference of GOSAT from AIRS varies from -3 % in October to +2 % in July. The difference between AIRS and GOSAT TANSO-FTS retrievals is mainly due to the difference in retrieval algorithms and instruments themselves, and the larger difference in the high-latitude regions is associated with the low information content and small degrees of freedom of the retrieval. The degrees of freedom of GOSAT-TIR retrievals are lower than that of AIRS, which also indicates that the constraint in GOSAT-TIR retrievals may be too strong. From the good correlation between AIRS and GOSAT-TIR retrievals and the seasonal variation they observed, we are confident that the thermal infrared

  12. Validating AIRS upper atmosphere water vapor retrievals using aircraft and balloon in situ measurements

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Webster, C. R.; Farmer, C. B.; May, R. D.; Herman, R. L.; Weinstock, E. M.; Christensen, L. E.; Lait, L. R.; Newman, P. A.

    2004-11-01

    This paper provides an initial assessment of the accuracy of the Atmospheric Infrared Sounder (AIRS) water vapor retrievals from 500 to 100 mbar. AIRS satellite measurements are compared with accurate aircraft (NASA WB57) and balloon in situ water vapor measurements obtained during the NASA Pre-Aura Validation Experiment (Pre-AVE) in Costa Rica during Jan. 2004. AIRS retrieval (each pressure level of a single footprint) of water vapor amount agrees with the in situ measurements to ~25% or better if matched closely in time (1 hr) and space (50-100 km). Both AIRS and in situ measurements observe similar significant variation in moisture amount over a two-day period, associated with large-scale changes in weather patterns.

  13. Air-vegetation exchange of SOCs as a control of atmospheric concentrations and residence times

    SciTech Connect

    Hornbuckle, K.C.; Eisenreich, S.J.

    1994-12-31

    Semi-volatile organic compounds (SOCs) such as the polychlorinated biphenyls exhibit seasonal maxima in atmospheric concentrations with highest values in the warm summer. This generally believed to result from the effect of temperature on SOC vapor pressure with direct and important implications to global transport. The authors have conducted a series of field experiments whereby air samples were collected above an ombrotrophic, forested bog in northern MN at a frequency of 6 day{sup {minus}1} during the fall, winter, spring and summer. Samples of Sphagnum moss and other vegetation were also collected on each occasion. All samples were analyzed for PCBs, low MW PAHs, gaseous hydrocarbons and selected pesticides. Meteorological and soils data were collected during all experiments (air and soil temperature, wind direction and velocity, RH). Diurnal concentration data, air-plant and air-soil partition coefficients and probable mechanisms and kinetics of SOC-plant interactions will be presented.

  14. ATMOSPHERIC MERCURY SCIENCE PROGRAMS BEING UNDERTAKEN IN NORTH AMERICA

    EPA Science Inventory

    National and international concern about the health effects and continued use of mercury (Hg) as well as other metals has defined the need for estimates of the long term risks to ecosystems and human health from Hg released from human activities. The atmosphere is one of the mec...

  15. Sources of Atmospheric Pollutants Impacting Air and Water Quality in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Gertler, A. W.; Cahill, T. A.; Gillies, J.; Kuhns, H.

    2008-12-01

    Starting in the second half of the 20th century, decline in Lake Tahoe's water clarity and degradation in the basin's air quality have become major concerns due to its unique scenic features. Gaseous and particulate nitrogen (N) and particulate phosphorus (P) loading via direct atmospheric deposition and sediment transport to the lake have also been implicated as responsible for its eutrophication and decline in water clarity. Estimates suggest that atmospheric N deposition contributes 55% of the total N loading to the lake, while atmospheric P deposition contributes 15% of the total P loading. In order to improve both air quality and, as a consequence, water quality, it is necessary to develop an understanding of the sources of the atmospheric pollutants. Once this is accomplished, it is possible to implement cost-effective strategies to reduce this impact. This paper summarizes the findings of a series of studies performed to determine the levels and sources of ambient air pollutants in the basin. Projects have included the development of a Tahoe-specific emissions inventory, long-term measurements of road dust resuspension, modeling to determine the fraction of pollutants coming from in-basin vs. out-of-basin sources, particulate source apportionment, and estimates of nitric acid deposition. These studies found that the pollutants most closely connected to the decline in water quality come largely from within basin sources, as opposed to those coming from the Central Valley and upwind urban areas of California. These results indicate regulators need to control pollutant emissions within the Tahoe basin in order to reduce the impact of atmospheric pollutants on both air and water quality.

  16. Improving SLCF Science in the Himalayan Region: ICIMOD's Atmosphere Initiative

    NASA Astrophysics Data System (ADS)

    Panday, A. K.; Pradhan, B. B.; Surapipith, V.

    2013-12-01

    What fraction of the black carbon arriving on Yala Glacier in Langtang, Nepal, is from cooking fires in the houses in the valley below? What fraction is from elsewhere in rural Nepal? What fraction is from industrial and transport sources in Kathmandu? What fraction is from northern India and beyond? What fraction is from the high altitude forest fires that take place during March or April? Effectively mitigating the impacts of black carbon and other short-lived climate forcers requires detailed understanding not just of emissions and impacts, but also of the atmospheric transport pathways that connect the two. In mountainous areas of the Hindu-Kush Himalaya detailed quantitative knowledge about emissions, atmospheric processes, and impacts is still largely missing. The International Centre for Integrated Mountain Development (ICIMOD) is an intergovernmental organization covering Afghanistan, Pakistan, India, Nepal, China, Bhutan, Bangladesh, and Myanmar. ICIMOD's recently established Atmosphere Initiative not only assesses mitigation options and contributes to policy and capacity building in the region, but also works actively to promote collaboration among researchers in the region, while building up an in-house team whose research will address key questions about SLCF. In Spring 2013 ICIMOD's Atmosphere Initiative, in collaboration with the Institute for Advanced Sustainability Studies (IASS) in Potsdam, Germany, carried out the largest field campaign to date in Nepal, hosting instruments belonging to dozens of institutions around the world, at nine field site within and upwind of the Kathmandu Valley, Nepal. The dataset that has been collected gives unprecedented insights into the emissions and atmospheric processes taking place downwind of and within the largest urban agglomeration in the Himalaya region. Meanwhile, in collaboration with national partner institutions, ICIMOD is in the process of setting up one atmospheric observatory each in Bhutan and in

  17. a Mesoscale Atmospheric Dispersion Modeling System for Simulations of Topographically Induced Atmospheric Flow and Air Pollution Dispersion.

    NASA Astrophysics Data System (ADS)

    Boybeyi, Zafer

    A mesoscale atmospheric dispersion modeling system has been developed to investigate mesoscale circulations and associated air pollution dispersion, including effects of terrain topography, large water bodies and urban areas. The system is based on a three-dimensional mesoscale meteorological model coupled with two dispersion models (an Eulerian dispersion model and a Lagrangian particle dispersion model). The mesoscale model is hydrostatic and based on primitive equations formulated in a terrain-following coordinate system with a E-varepsilon turbulence closure scheme. The Eulerian dispersion model is based on numerical solution of the advection-diffusion equation to allow one to simulate releases of non-buoyant pollutants (especially from area and volume sources). The Lagrangian particle dispersion model allows one to simulate releases of buoyant pollutants from arbitrary sources (particularly from point and line sources). The air pollution dispersion models included in the system are driven by the meteorological information provided by the mesoscale model. Mesoscale atmospheric circulations associated with sea and lake breezes have been examined using the mesoscale model. A series of model sensitivity studies were performed to investigate the effects of different environmental parameters on these circulations. It was found that the spatial and temporal variation of the sea and lake breeze convergence zones and the associated convective activities depend to a large extent on the direction and the magnitude of the ambient wind. Dispersion of methyl isocyanate gas from the Bhopal accident was investigated using the mesoscale atmospheric dispersion modeling system. A series of numerical experiments were performed to investigate the possible role of the mesoscale circulations on this industrial gas episode. The temporal and spatial variations of the wind and turbulence fields were simulated with the mesoscale model. The dispersion characteristics of the accidental

  18. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  19. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Hinckley, Daniel A.; Bidleman, Terry F.; Rice, Clifford P.

    1991-04-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for Organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average α-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average γ-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (α-HCH, average 79% saturation; γ-HCH, average 28% saturation). The flux for α-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of γ-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  20. Thermal Characteristics of Air in the Problem of Hypersonic Motion of Bodies in the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Alhussan, K.; Morozov, D. O.; Stankevich, Yu. A.; Stanchits, L. K.; Stepanov, K. L.

    2014-07-01

    The thermal properties of hot air needed for describing the hypersonic motion of bodies in the Earth's atmosphere have been considered. Such motion, as is known, is accompanied by the propagation of strong shock waves analogous to waves generated by powerful explosions. Calculations have been made and data banks have been created for the equations of state and thermal characteristics of air in the temperature and density ranges corresponding to velocities of motion of bodies of up to 10 km/s at altitudes of 0-100 km. The formulation of the problem of hypersonic motion in the absence of thermodynamic equilibrium is discussed.

  1. Atmospheric Infrared Sounder (AIRS) sounding evaluation and analysis of the pre-convective environment

    NASA Astrophysics Data System (ADS)

    Botes, Danelle; Mecikalski, John R.; Jedlovec, Gary J.

    2012-05-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral instrument onboard the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) Aqua satellite. This study investigates the performance of AIRS soundings in characterizing the stability in the pre-convective environment of the southeastern United States. AIRS soundings are collocated with radiosonde observations within ±1 degree and 2 h of the Aqua overpass. For each case, the AIRS sounding with maximum PBest quality indicator (signifying the pressure level above which the sounding is of best quality) is chosen for analysis. Rapid Update Cycle soundings from 1800 UTC analyses are used to evaluate the results from AIRS. Precipitable water and stability indices including convective available potential energy, convective inhibition, Lifted Index, K-Index, and Total Totals are derived from all soundings. Results indicate that AIRS underestimates instability due to a dry bias at the surface and roughly 900 hPa. A simple method is presented for reconstructing a RAOB-like inversion (in terms of magnitude and altitude) within AIRS soundings, hence developing more representative RAOB-like soundings that can benefit the operational forecaster.

  2. Atmospheric Science Program. Summaries of research in FY 1994

    SciTech Connect

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  3. Soil-air exchange controls on background atmospheric concentrations of organochlorine pesticides

    NASA Astrophysics Data System (ADS)

    Cabrerizo, A.; Dachs, J.; Jones, K. C.; Barceló, D.

    2011-09-01

    Soils are the major terrestrial reservoir of persistent organic pollutants, and thus net volatilization from soil, when it happens, may exert a control on the atmospheric occurrence and variability of organic pollutants. Here, we report and discuss the concentrations of legacy organochlorine pesticides (OCPs) such as hexachlorobencene (HCB), hexaclorocyclohexanes (HCH) and dichlorodiphenyltrichloroethane (DDT) in the atmosphere and in soils, their measured fugacities in soil, the soil-air partition coefficients (KSA) and soil-air fugacity ratios (fs/fa) in rural background areas of N-NE Spain and N-NW England. Four sampling campaigns were carried out in Spain and UK to assess seasonal variability and differences between sampling sites. KSA values were significantly dependent on soil temperature and soil organic matter quantity, and to a minor extent on organic matter type. HCH isomers and DDT metabolites in soil are close to equilibrium with the atmosphere at rural background areas of Spain with a tendency to volatilize and deposit during warm and cold periods, respectively. The mixture of HCH and DDT found in the atmosphere is clearly strongly influenced by the mixture of HCH and DDT which escapes from soil, with significant correlations between them (r2 ranging between 0.74-0.76 and p-level < 0.001 for the Ebro sampling sites), thus suggesting a close coupling of air and soil concentrations demonstrating that net volatilization from soil control the atmospheric levels of OCPs in the Northern Spain background atmosphere. Conversely, soils at rural UK sites were usually a sink for atmospheric DDT and HCH, but not for HCB. The negative statistically significant relationship found between log KSA and the log (fs/fa) ratio, suggests that high latitude regions, due to the high soil organic matter content and lower temperatures, will act as larger traps and accumulate more atmospheric OCPs. Thus, the extent to which soils are secondary sources to the atmosphere is

  4. Soil-Air exchange controls on background atmospheric concentrations of organochlorine pesticides

    NASA Astrophysics Data System (ADS)

    Cabrerizo, A.; Dachs, J.; Jones, K. C.; Barceló, D.

    2011-12-01

    Soils are the major terrestrial reservoir of persistent organic pollutants, and thus net volatilization from soil, when it happens, may exert a control on the atmospheric occurrence and variability of organic pollutants. Here, we report and discuss the concentrations of legacy organochlorine pesticides (OCPs) such as hexachlorobenzene (HCB), hexaclorocyclohexanes (HCH) and dichlorodiphenyltrichloroethane (DDT) in the atmosphere and in soils, their measured fugacities in soil, the soil-air partition coefficients (KSA) and soil-air fugacity ratios (fs/fa) in rural background areas of N-NE Spain and N-NW England. Four sampling campaigns were carried out in Spain and UK to assess seasonal variability and differences between sampling sites. KSA values were significantly dependent on soil temperature and soil organic matter quantity, and to a minor extent on organic matter type. HCH isomers and DDT metabolites in soil are close to equilibrium with the overlying atmosphere at rural background areas of Spain with a tendency to volatilize and deposit during warm and cold periods, respectively. The mixture of HCH and DDT found in the atmosphere is clearly strongly influenced by the mixture of HCH and DDT which escapes from soil, with significant correlations between them (r2 ranging between 0.63-0.76 and p-level<0.001 for the Ebro sampling sites), thus suggesting a close coupling of air and soil concentrations, demonstrating that net volatilization from soil control the atmospheric levels of OCPs in the Northern Spain background atmosphere. Conversely, soils at rural UK sites were usually a sink for atmospheric DDT and HCH, but not for HCB. The negative statistically significant relationship found between log KSA and the log (fs/fa) ratio, suggests that high latitude regions, due to the high soil organic matter content and lower temperatures, will act as larger traps and accumulate more atmospheric OCPs. Thus, the extent to which soils are secondary sources to the atmosphere

  5. The influence of scales of atmospheric motion on air pollution over Portugal

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Trigo, Ricardo; Mendes, Manuel; Jerez, Sonia; Gouveia, Célia Marina

    2014-05-01

    Air pollution is determined by the combination of different factors, namely, emissions, physical constrains, meteorology and chemical processes [1,2,3]. The relative importance of such factors is influenced by their interaction on diverse scales of atmospheric motion. Each scale depicts different meteorological conditions, which, when combined with the different air pollution sources and photochemistry, result in varying ambient concentrations [2]. Identifying the dominant scales of atmospheric motion over a given airshed can be of great importance for many applications such as air pollution and pollen dispersion or wind energy management [2]. Portugal has been affected by numerous air pollution episodes during the last decade. These episodes are often related to peak emissions from local industry or transport, but can also be associated to regional transport from other urban areas or to exceptional emission events, such as forest fires. This research aims to identify the scales of atmospheric motion which contribute to an increase of air pollution. A method is proposed for differentiating between the scales of atmospheric motion that can be applied on a daily basis from data collected at several wind-measuring sites in a given airshed and to reanalysis datasets. The method is based on the daily mean wind recirculation and the mean and standard deviation between sites. The determination of the thresholds between scales is performed empirically following the approach of Levy et al. [2] and also through a automatic statistical approach computed taking into account the tails of the distributions (e.g. 95% and 99% percentile) of the different wind samples. A comparison is made with two objective approaches: 1) daily synoptic classification for the same period over the region [4] and 2) a 3-D backward trajectory approach [5,6] for specific episodes. Furthermore, the outcomes are expected to support the Portuguese authorities on the implementation of strategies for a

  6. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F.

    2011-05-15

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches {approx}5 Multiplication-Sign 10{sup 10} are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU{sub m}, where U{sub m} is the maximum gap voltage, is relatively small.

  7. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  8. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. PMID:10548806

  9. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  10. Atmospheric Parameter Climatologies from AIRS: Monitoring Short-, and Longer-Term Climate Variabilities and 'Trends'

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel

    2008-01-01

    The AIRS instrument is currently the best space-based tool to simultaneously monitor the vertical distribution of key climatically important atmospheric parameters as well as surface properties, and has provided high quality data for more than 5 years. AIRS analysis results produced at the GODDARD/DAAC, based on Versions 4 & 5 of the AIRS retrieval algorithm, are currently available for public use. Here, first we present an assessment of interrelationships of anomalies (proxies of climate variability based on 5 full years, since Sept. 2002) of various climate parameters at different spatial scales. We also present AIRS-retrievals-based global, regional and 1x1 degree grid-scale "trend"-analyses of important atmospheric parameters for this 5-year period. Note that here "trend" simply means the linear fit to the anomaly (relative the mean seasonal cycle) time series of various parameters at the above-mentioned spatial scales, and we present these to illustrate the usefulness of continuing AIRS-based climate observations. Preliminary validation efforts, in terms of intercomparisons of interannual variabilities with other available satellite data analysis results, will also be addressed. For example, we show that the outgoing longwave radiation (OLR) interannual spatial variabilities from the available state-of-the-art CERES measurements and from the AIRS computations are in remarkably good agreement. Version 6 of the AIRS retrieval scheme (currently under development) promises to further improve bias agreements for the absolute values by implementing a more accurate radiative transfer model for the OLR computations and by improving surface emissivity retrievals.

  11. The Atmospheric Infrared Sounder (AIRS) on the NASA Aqua Spacecraft: A General Remote Sensing Tool for Understanding Atmospheric Structure, Dynamics and Composition

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Fetzer, Eric J.

    2010-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. Early in the mission, the AIRS instrument demonstrated its value to the weather forecasting community with better than 6 hours of improvement on the 5 day forecast. Now with over eight years of consistent and stable data from AIRS, scientists are able to examine processes governing weather and climate and look at seasonal and interannual trends from the AIRSdata with high statistical confidence. Naturally, long-term climate trends require a longer data set, but indications are that the Aqua spacecraft and the AIRS instrument should last beyond 2018. This paper briefly describes the AIRS data products and presents some of the most significant findings involving the use of AIRS data in the areas of weather forecast improvement, climate processes and model validation, cloud and polar processes, and atmospheric composition (chemistry and dust).

  12. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    NASA Astrophysics Data System (ADS)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  13. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley; Stano, Geoffrey; Jedlovec, Gary

    2011-01-01

    The Short-term Prediction Research and Transition (SPoRT) is a project to transition those NASA observations and research capabilities to the weather forecasting community to improve the short-term regional forecasts. This poster reviews the work to demonstrate the value to these forecasts of profiles from the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite with particular assistance in predicting thunderstorm forecasts by the profiles of the pre-convective environment.

  14. NASA Airborne Science: Studying Earth From the Air

    NASA Video Gallery

    Journalists and social media followers were briefed on the goals of NASA's Earth science program and a half-dozen current or near-term Earth science missions, and learned about how a small fleet of...

  15. Emission of burning emulsified diesel oil with sodium sulfate in salty atmospheric air.

    PubMed

    Lin, Cherng-Yuan; Pan, Jenq-Yih

    2003-01-01

    The effects of sodium sulfate in fuel oil and salty atmospheric air on the emission characteristics of furnaces or boilers burned with emulsified diesel oils are considered in this study. An industrial cylindrical furnace made of stainless steel associated with an automatic oil-fired burner was used for the emission measurements. Both neat diesel oil and emulsified diesel oil with distilled water were used as the tested oils. A homogenizing and emulsifying machine was employed to stir the diesel oil and sodium sulfate powder into a homogeneous oil mixture, and to prepare emulsions of micro-droplets of water dispersed in diesel oil. The experimental results showed that the existence of sodium chloride in atmospheric air enhanced SO2 formation. The use of emulsified diesel oil with 300-ppm sodium sulfate as fuel reduced the burning gas temperature and NOx emission while increased O2 emission. Moreover, the presence of sodium chloride in atmospheric air hindered the completeness of the combustion process and thus resulted in lower burning efficiency and larger excess oxygen emission. PMID:14672327

  16. Ground-based air-sampling measurements near the Nevada Test Site after atmospheric nuclear tests.

    PubMed

    Cederwall, R T; Ricker, Y E; Cederwall, P L; Homan, D N; Anspaugh, L R

    1990-11-01

    Historical air-sampling data measured within 320 km (200 mi) of the Nevada Test Site (NTS) have been reviewed for periods following atmospheric nuclear tests, primarily in the 1950s. These data come mostly from high-volume air samplers, with some from cascade-impactor samplers. Measurements considered here are for beta radiation from gross fission products. The resulting air-quality data base is comprised of almost 13,000 samples from 42 sampling locations downwind of the NTS. In order to compile an accurate air-quality data base for use in estimating exposure via inhalation, raw data values were sought where possible, and the required calculations were performed on a computer with state-of-the-art algorithms. The data-processing procedures consisted of (1) entry and error checking of historical data; (2) determination of appropriate background values, air-sampling volumes, and net air concentrations; and (3) calculation of integrated air concentration (C) for each sample (considering fallout arrival times). Comparing C values for collocated high-volume and cascade-impactor samplers during the Upshot-Knothole series showed similar lognormal distributions, but with a geometric mean C for cascade impactors about half that for the high-volume air samplers. Overall, the uncertainty in C values is about a factor of three. In the past, it has been assumed that C could be related to ground deposition by a constant having units of velocity. In our data bases, simultaneous measurements of air concentration and ground deposition at the same locations were not related by a constant; indeed, there was a great amount of scatter. This suggests that the relationship between C and ground deposition in this situation is too complex to be treated adequately by simple approaches. PMID:2211113

  17. Ground-based air-sampling measurements near the Nevada Test Site after atmospheric nuclear tests

    SciTech Connect

    Cederwall, R.T.; Ricker, Y.E.; Cederwall, P.L.; Homan, D.N.; Anspaugh, L.R. )

    1990-11-01

    Historical air-sampling data measured within 320 km (200 mi) of the Nevada Test Site (NTS) have been reviewed for periods following atmospheric nuclear tests, primarily in the 1950s. These data come mostly from high-volume air samplers, with some from cascade-impactor samplers. Measurements considered here are for beta radiation from gross fission products. The resulting air-quality data base is comprised of almost 13,000 samples from 42 sampling locations downwind of the NTS. In order to compile an accurate air-quality data base for use in estimating exposure via inhalation, raw data values were sought where possible, and the required calculations were performed on a computer with state-of-the-art algorithms. The data-processing procedures consisted of (1) entry and error checking of historical data; (2) determination of appropriate background values, air-sampling volumes, and net air concentrations; and (3) calculation of integrated air concentration (C) for each sample (considering fallout arrival times). Comparing C values for collocated high-volume and cascade-impactor samplers during the Upshot-Knothole series showed similar lognormal distributions, but with a geometric mean C for cascade impactors about half that for the high-volume air samplers. Overall, the uncertainty in C values is about a factor of three. In the past, it has been assumed that C could be related to ground deposition by a constant having units of velocity. In our data bases, simultaneous measurements of air concentration and ground deposition at the same locations were not related by a constant; indeed, there was a great amount of scatter. This suggests that the relationship between C and ground deposition in this situation is too complex to be treated adequately by simple approaches.

  18. Venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Young, Douglas C.; Wade, Larry O.; Burney, Lewis G.

    1992-01-01

    Documentation of the installation and use of venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms is presented. Information on the types of venturis that are useful for meeting the pumping requirements of atmospheric-sampling experiments is also presented. A description of the configuration and installation of the venturi system vacuum line is included with details on the modifications that were made to adapt a venturi to the NASA Electra aircraft at GSFC, Wallops Flight Facility. Flight test results are given for several venturis with emphasis on applications to the Differential Absorption Carbon Monoxide Measurement (DACOM) system at LaRC. This is a source document for atmospheric scientists interested in using the venturi systems installed on the NASA Electra or adapting the technology to other aircraft.

  19. Measurement of the First Townsend's Ionization Coefficients in Helium, Air, and Nitrogen at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Ran, Junxia; Luo, Haiyun; Yue, Yang; Wang, Xinxin

    2014-07-01

    In the past the first Townsend’s ionization coefficient α could only be measured with Townsend discharge in gases at low pressure. After realizing Townsend discharge in some gases at atmospheric pressure by using dielectric barrier electrodes, we had developed a new method for measuring α coefficient at atmospheric pressure, a new optical method based on the discharge images taken with ICCD camera. With this newly developed method α coefficient in helium, nitrogen and air at atmospheric pressure were measured. The results were found to be in good agreement with the data obtained at lower pressure but same reduced field E/p by other groups. It seems that the value of α coefficient is sensitive to the purity of the working gas.

  20. Circular polarization of radio emission from air showers probes atmospheric electric fields in thunderclouds.

    NASA Astrophysics Data System (ADS)

    Gia Trinh, Thi Ngoc; Scholten, Olaf; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Horandel, Jörg R.; Nelles, Anna; Schellart, Pim; Rachen, Jorg; Rossetto, Laura; Rutjes, Casper; ter Veen, Sander; Thoudam, Satyendra

    2016-04-01

    When a high-energy cosmic-ray particle enters the upper layer of the atmosphere, it generates many secondary high-energy particles and forms a cosmic-ray-induced air shower. In the leading plasma of this shower electric currents are induced that emit electromagnetic radiation. These radio waves can be detected with LOw-Frequency ARray (LOFAR) radio telescope. Events have been collected under fair-weather conditions as well as under atmospheric conditions where thunderstorms occur. For the events under the fair weather conditions the emission process is well understood by present models. For the events measured under the thunderstorm conditions, we observe a large fraction of the circular polarization near the core of the shower which is not shown in the events under the fair-weather conditions. This can be explained by the change of direction of the atmospheric electric fields with altitude. Therefore, measuring the circular polarization of radio emission from cosmic ray extensive air showers during the thunderstorm conditions helps to have a better understanding about the structure of atmospheric electric fields in the thunderclouds.

  1. A 60-yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    NASA Astrophysics Data System (ADS)

    Petrenko, V. V.; Martinerie, P.; Novelli, P.; Etheridge, D. M.; Levin, I.; Wang, Z.; Blunier, T.; Chappellaz, J.; Kaiser, J.; Lang, P.; Steele, L. P.; Hammer, S.; Mak, J.; Langenfelds, R. L.; Schwander, J.; Severinghaus, J. P.; Witrant, E.; Petron, G.; Battle, M. O.; Forster, G.; Sturges, W. T.; Lamarque, J.-F.; Steffen, K.; White, J. W. C.

    2012-08-01

    We present a reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO was already higher in 1950 than it is today. CO mole fractions rose gradually until the 1970s and peaked in the 1970s or early 1980s, followed by a decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radical (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless large changes in OH are assumed. We argue that the available CO emission inventories chronically underestimate NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.

  2. NASA Langley Atmospheric Science Data Centers Near Real-Time Data Products

    NASA Astrophysics Data System (ADS)

    Davenport, T.; Parker, L.; Rinsland, P. L.

    2014-12-01

    Over the past decade the Atmospheric Science Data Center (ASDC) at NASA Langley Research Center has archived and distributed a variety of satellite mission data sets. NASA's goal in Earth science is to observe, understand, and model the Earth system to discover how it is changing, to better predict change, and to understand the consequences for life on Earth. The ASDC has collaborated with Science Teams to accommodate emerging science users in the climate and modeling communities. The ASDC has expanded its original role to support operational usage by related Earth Science satellites, support land and ocean assimilations, support of field campaigns, outreach programs, and application projects for agriculture and energy industries to bridge the gap between Earth science research results and the adoption of data and prediction capabilities for reliable and sustained use in Decision Support Systems (DSS). For example; these products are being used by the community performing data assimilations to regulate aerosol mass in global transport models to improve model response and forecast accuracy, to assess the performance of components of a global coupled atmospheric-ocean climate model, improve atmospheric motion vector (winds) impact on numerical weather prediction models, and to provide internet-based access to parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems. These more focused applications often require Near Real-Time (NRT) products. Generating NRT products pose their own unique set challenges for the ASDC and the Science Teams. Examples of ASDC NRT products and challenges will be discussed.

  3. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  4. Atmospheric loss of pesticides above an artificial vineyard during air-assisted spraying

    NASA Astrophysics Data System (ADS)

    Gil, Yvan; Sinfort, Carole; Brunet, Yves; Polveche, Vincent; Bonicelli, Bernard

    A procedure to assess pesticide emission to the air and characterise possible air pollution sources was carried out using a tracer dye and 2 mm PVC lines during air-assisted spraying of an artificial vineyard. Three experiments were performed to evaluate the method feasibility, quantify upward movements of sprayed droplets and investigate the influence of microclimatic variables on pesticide emission. During each experiment two test series were carried out with two droplet size distributions (very fine and fine spray, according to the BCPC classification). The amount of sprayed liquid collected at 2.5 m above ground varied between 9.0% and 10.7% of the total dose applied for very fine spray and between 5.6% and 7.3% for fine spray. In stable atmospheric conditions the spray drifted along the mean wind direction over the crop whereas in unstable conditions the sprayed liquid plume was larger, with a greater amount of material sent to higher levels. A statistical model based on a simple multiple regression featuring droplet characteristics and microclimatic variables (wind speed, temperature, stability parameter and relative humidity) provided a robust estimate of spray loss just above the crop, with an acceptable determination coefficient ( R2=0.84). This method is therefore suitable for quantifying spray drift and provides a way to study the influence of several variables on the amount of pesticide released into the atmosphere by air-assisted spraying, with suitable accuracy.

  5. Ultraviolet Laser Raman Scattering for Temperature Measurement in Atmospheric Air Microdischarges

    NASA Astrophysics Data System (ADS)

    Caplinger, James; Adams, Steven; Williamson, James; Clark, Jerry

    2011-10-01

    Vibrational Raman scattering for temperature measurement within a dc microdischarge in atmospheric pressure air has been investigated using a pulsed ultraviolet laser. The Raman signal analysis method involved monitoring Q-branch signals originating from multiple N2(X) vibrational states populated in the microdischarge. The translational temperature of N2(X) in the microdischarge was calculated using the total Raman signal intensity calibrated with room temperature air. Also, the distribution of Q-branch intensities among vibrational states allowed for direct measurement of the vibrational temperature of N2(X). Raman scattering results are compared to passive optical emission spectral analyses of the N2 second positive system from which the rotational and vibrational temperatures of the N2(C) excited state were also calculated. A comparison of the N2(X) and N2(C) temperatures derived from Raman scattering and emission spectroscopy, respectively, is presented. This work was supported by the Air Force Office of Scientific Research.

  6. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability. PMID:24498952

  7. Torrefaction and low temperature carbonization of oil palm fiber and Eucalyptus in nitrogen and air atmospheres.

    PubMed

    Lu, Ke-Miao; Lee, Wen-Jhy; Chen, Wei-Hsin; Liu, Shih-Hsien; Lin, Ta-Chang

    2012-11-01

    Torrefaction is a pretreatment method for upgrading biomass as solid fuels. To provide flexible operations for effectively upgrading biomass at lower costs, the aim of this study was to investigate the properties of oil palm fiber and eucalyptus pretreated in nitrogen and air atmospheres at temperatures of 250-350°C for 1h. Based on energy and solid yield and introducing an energy-mass co-benefit index (EMCI), oil palm fiber pretreatment under nitrogen at 300°C provided the solid fuel with higher energy density and less volume compared to other temperatures. Pretreatment of oil palm fiber in air resulted in the fuel with low solid and energy yields and is therefore not recommended. For eucalyptus, nitrogen and air can be employed to upgrade the biomass, and the suggested temperatures are 325 and 275°C, respectively. PMID:22940305

  8. Cassini Imaging Science: initial results on Saturn's atmosphere.

    PubMed

    Porco, C C; Baker, E; Barbara, J; Beurle, K; Brahic, A; Burns, J A; Charnoz, S; Cooper, N; Dawson, D D; Del Genio, A D; Denk, T; Dones, L; Dyudina, U; Evans, M W; Giese, B; Grazier, K; Helfenstein, P; Ingersoll, A P; Jacobson, R A; Johnson, T V; McEwen, A; Murray, C D; Neukum, G; Owen, W M; Perry, J; Roatsch, T; Spitale, J; Squyres, S; Thomas, P; Tiscareno, M; Turtle, E; Vasavada, A R; Veverka, J; Wagner, R; West, R

    2005-02-25

    The Cassini Imaging Science Subsystem (ISS) began observing Saturn in early February 2004. From analysis of cloud motions through early October 2004, we report vertical wind shear in Saturn's equatorial jet and a maximum wind speed of approximately 375 meters per second, a value that differs from both Hubble Space Telescope and Voyager values. We also report a particularly active narrow southern mid-latitude region in which dark ovals are observed both to merge with each other and to arise from the eruptions of large, bright storms. Bright storm eruptions are correlated with Saturn's electrostatic discharges, which are thought to originate from lightning. PMID:15731441

  9. Electro-optic and holographic measurement techniques for the atmospheric sciences. [considering spacecraft simulation applications

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Lemons, J. F.; Kurtz, R. L.; Liu, H.-K.

    1977-01-01

    A comprehensive examination is made of recent advanced research directions in the applications of electro-optical and holographic instrumentations and methods to atmospheric sciences problems. In addition, an overview is given of the in-house research program for environmental and atmospheric measurements with emphasis on particulates systems. Special treatment is made of the instrument methods and applications work in the areas of laser scattering spectrometers and pulsed holography sizing systems. Selected engineering tests data on space simulation chamber programs are discussed.

  10. Atmospheric Infrared Sounder (AIRS) High Spectral Resolution Radiance Climate-Quality Dataset for Validating Climate Analyses

    NASA Astrophysics Data System (ADS)

    Goldberg, M.; Zhou, L.; Liu, X.; Cheng, Z.

    2009-12-01

    There is growing consensus that persistent and increasing anthropogenic emissions, since the beginning of the industrial revolution in the 19th century, are increasing atmospheric temperatures, increasing sea levels, melting ice caps and glaciers, increasing the occurrence of severe weather, and causing regional shifts in precipitation patterns. Changes in these parameters or occurrences are responses to changes in climate forcing terms, notably greenhouse gases. The NASA Atmospheric InfraRed Sounder (AIRS), launched in May of 2002, is the first high spectral resolution infrared sounder with nearly complete global coverage on a daily basis. High spectral resolution in the infrared provides sensitivity to nearly all climate forcings, responses and feedbacks. The AIRS radiances are sensitive to changes in carbon dioxide, methane, carbon monoxide, ozone, water vapor, temperature, clouds, aerosols, and surface characteristics, and also have been demonstrated through intercomparisons with airborne interferometers and with the EUMETSAT Infrared Atmospheric Sounding Interferometer(IASI) to have excellent accuracy, stability and precision. Such "benchmark" attributes are important for validating climate models and analyses. The AIRS data are applied to generate the first ever spectrally resolved infrared radiance (SRIR) dataset (2002- 2006) for monitoring changes in atmospheric temperature and constituents and for assessing the accuracy of climate and weather model analyses and forecasts. The SRIR dataset is a very powerful climate application. Spectral signatures derived from the dataset confirmed the largest depletion of ozone over the Arctic in 2005, and also verified that the European Center for Medium Range Weather (ECMWF) model analysis water vapor fields are significantly more accurate than the analyses of the National Centers for Environmental Prediction (NCEP). The NCEP moisture fields are generally 20% more moist than those from ECMWF. Applications included

  11. Putting Climate on a Map: Increasing Usability of Atmospheric Science Through GIS

    NASA Astrophysics Data System (ADS)

    Wilhelmi, O.

    2006-12-01

    Atmospheric science community is challenged not only with integration of complex physical processes into weather forecast and climate prediction models but also with understanding the interactions between climate, environment, and society and integrating societal and environmental information with weather and climate. Climate-and weather-related policy and decision-making largely depend on usability of atmospheric science output and accessibility of data. Geographic Information Systems (GIS) have been widely used in many societal sectors and academic disciplines for spatial visualization, impacts analysis and decision-making. The GIS technology evolved from the requirements of the users which until recently did not include atmospheric scientists. Recent advances in GIS space-time representation, development of interoperability standards and an increased focus on societally relevant and interdisciplinary research brought GIS to the forefront in both research and science dissemination. This presentation will discuss the role for GIS in increasing usability of atmospheric science. Two aspects of GIS will be emphasized: an analysis tool for interdisciplinary integrated research, and a mechanism for connecting weather and climate science with other academic communities and the stakeholders. Examples from recent projects will be used to illustrate these concepts. One example will show that GIS can play an important role in an assessment of climate change impacts, increasing public awareness to climate change and providing a framework for planning and policy decisions. Another example will focus on integration of meteorological and socio-economic information in an assessment of risk and vulnerability to flash floods and extreme precipitation events.

  12. Science of atmospheric phenomena with JEM-EUSO

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.; Słomiński, J.

    2015-11-01

    The main goal of the JEM-EUSO experiment is the study of Ultra High Energy Cosmic Rays (UHECR, 1019-1021 e V), but the method which will be used (detection of the secondary light emissions induced by cosmic rays in the atmosphere) allows to study other luminous phenomena. The UHECRs will be detected through the measurement of the emission in the range between 290 and 430 m, where some part of Transient Luminous Events (TLEs) emission also appears. This work discusses the possibility of using the JEM-EUSO Telescope to get new scientific results on TLEs. The high time resolution of this instrument allows to observe the evolution of TLEs with great precision just at the moment of their origin. The paper consists of four parts: review of the present knowledge on the TLE, presentation of the results of the simulations of the TLE images in the JEM-EUSO telescope, results of the Russian experiment Tatiana-2 and discussion of the possible progress achievable in this field with JEM-EUSO as well as possible cooperation with other space projects devoted to the study of TLE - TARANIS and ASIM. In atmospheric physics, the study of TLEs became one of the main physical subjects of interest after their discovery in 1989. In the years 1992 - 1994 detection was performed from satellite, aircraft and space shuttle and recently from the International Space Station. These events have short duration (milliseconds) and small scales (km to tens of km) and appear at altitudes 50 - 100 km. Their nature is still not clear and each new experimental data can be useful for a better understanding of these mysterious phenomena.

  13. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  14. The promise of remote sensing in the atmospheric sciences

    NASA Technical Reports Server (NTRS)

    Atlas, D.

    1981-01-01

    The applications and advances in remote sensing technology for weather prediction, mesoscale meteorology, severe storms, and climate studies are discussed. Doppler radar permits tracking of the three-dimensional field of motion within storms, thereby increasing the accuracy of convective storm modeling. Single Doppler units are also employed for detecting mesoscale storm vortices and tornado vortex signatures with lead times of 30 min. Clear air radar in pulsed and high resolution FM-CW forms reveals boundary layer convection, Kelvin-Helmoltz waves, shear layer turbulence, and wave motions. Lidar is successfully employed for stratospheric aerosol measurements, while Doppler lidar provides data on winds from the ground and can be based in space. Sodar is useful for determining the structure of the PBL. Details and techniques of satellite-based remote sensing are presented, and results from the GWE and FGGE experiments are discussed.

  15. Dessler, Jimenez, Klein, and Nenes Receive 2012 Atmospheric Sciences Ascent Awards: Response

    NASA Astrophysics Data System (ADS)

    Nenes, Athanasios

    2013-11-01

    It is a rare privilege and a deeply fulfilling experience to pursue science while helping shape future generations of scientists and engineers. To be awarded on top of it is humbling to say the least. I am deeply grateful to my nominator and supporters and thank the AGU Atmospheric Sciences Section Awards Committee for this honor. What makes the Ascent Award even more special is its strong vote of confidence for the future, which is both energizing and inspiring.

  16. Wind tunnel experiments: cold-air pooling and atmospheric decoupling above a melting snow patch

    NASA Astrophysics Data System (ADS)

    Mott, Rebecca; Paterna, Enrico; Horender, Stefan; Crivelli, Philip; Lehning, Michael

    2016-02-01

    The longevity of perennial snowfields is not fully understood, but it is known that strong atmospheric stability and thus boundary-layer decoupling limit the amount of (sensible and latent) heat that can be transmitted from the atmosphere to the snow surface. The strong stability is typically caused by two factors, (i) the temperature difference between the (melting) snow surface and the near-surface atmosphere and (ii) cold-air pooling in topographic depressions. These factors are almost always a prerequisite for perennial snowfields to exist. For the first time, this contribution investigates the relative importance of the two factors in a controlled wind tunnel environment. Vertical profiles of sensible heat and momentum fluxes are measured using two-component hot-wire and one-component cold-wire anemometry directly over the melting snow patch. The comparison between a flat snow surface and one that has a depression shows that atmospheric decoupling is strongly increased in the case of topographic sheltering but only for low to moderate wind speeds. For those conditions, the near-surface suppression of turbulent mixing was observed to be strongest, and the ambient flow was decoupled from the surface, enhancing near-surface atmospheric stability over the single snow patch.

  17. A Study of the Effects of Atmospheric Phenomena on Mars Science Laboratory Entry Performance

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia D.; Way, David W.; Powell, Richard W.

    2008-01-01

    At Earth during entry the shuttle has experienced what has come to be known as potholes in the sky or regions of the atmosphere where the density changes suddenly. Because of the small data set of atmospheric information where the Mars Science Laboratory (MSL) parachute deploys, the purpose of this study is to examine the effect similar atmospheric pothole characteristics, should they exist at Mars, would have on MSL entry performance. The study considers the sensitivity of entry design metrics, including altitude and range error at parachute deploy and propellant use, to pothole like density and wind phenomena.

  18. Air Enquirer's multi-sensor boxes as a tool for High School Education and Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Morguí, Josep-Anton; Font, Anna; Cañas, Lidia; Vázquez-García, Eusebi; Gini, Andrea; Corominas, Ariadna; Àgueda, Alba; Lobo, Agustin; Ferraz, Carlos; Nofuentes, Manel; Ulldemolins, Delmir; Roca, Alex; Kamnang, Armand; Grossi, Claudia; Curcoll, Roger; Batet, Oscar; Borràs, Silvia; Occhipinti, Paola; Rodó, Xavier

    2016-04-01

    An educational tool was designed with the aim of making more comprehensive the research done on Greenhouse Gases (GHGs) in the ClimaDat Spanish network of atmospheric observation stations (www.climadat.es). This tool is called Air Enquirer and it consist of a multi-sensor box. It is envisaged to build more than two hundred boxes to yield them to the Spanish High Schools through the Education department (www.educaixa.com) of the "Obra Social 'La Caixa'", who funds this research. The starting point for the development of the Air Enquirers was the experience at IC3 (www.ic3.cat) in the CarboSchools+ FP7 project (www.carboschools.cat, www.carboschools.eu). The Air Enquirer's multi-sensor box is based in Arduino's architecture and contains sensors for CO2, temperature, relative humidity, pressure, and both infrared and visible luminance. The Air Enquirer is designed for taking continuous measurements. Every Air Enquirer ensemble of measurements is used to convert values to standard units (water content in ppmv, and CO2 in ppmv_dry). These values are referred to a calibration made with Cavity Ring Down Spectrometry (Picarro®) under different temperature, pressure, humidity and CO2 concentrations. Multiple sets of Air Enquirers are intercalibrated for its use in parallel during the experiments. The different experiments proposed to the students will be outdoor (observational) or indoor (experimental, in the lab) focusing on understanding the biogeochemistry of GHGs in the ecosystems (mainly CO2), the exchange (flux) of gases, the organic matter production, respiration and decomposition processes, the influence of the anthropogenic activities on the gases (and particles) exchanges, and their interaction with the structure and composition of the atmosphere (temperature, water content, cooling and warming processes, radiative forcing, vertical gradients and horizontal patterns). In order to ensure Air Enquirers a high-profile research performance the experimental designs

  19. Radiocarbon ( 14C) measurements to quantify sources of atmospheric carbon monoxide in urban air

    NASA Astrophysics Data System (ADS)

    Klouda, George A.; Connolly, Michael V.

    Atmospheric air samples were collected during the winter of 1989-1990 in Albuquerque, NM, U.S.A., for radiocarbon ( 14C) analysis of carbon monoxide (CO). An experimental sample design was prepared to target periods when the concentration of CO exceeds the 9 μl l-1 (volume fraction), 8 h National Ambient Air Quality Standard (NAAQS) and during periods of attainment. Sampling sites, time of day, sampling duration, and meteorology were carefully considered so that source impacts be optimal. A balanced sampling factorial design was used to yield maximum information from the constraints imposed; the number of samples was limited by the number of sample canisters available, time and resources. Radiocarbon measurements of urban CO, " clean-air" CO background from Niwot Ridge, Colorado, average (wood) logs and oxygenated-gasolines were used in a three-source model to calculate the contribution of wood burning to the total atmospheric CO burden in Albuquerque. Results show that the estimated fractional contribution of residential wood combustion (Θ' Rwc) ranged from 0 to 0.30 of CO concentrations corrected for " clean-air" background. For these same samples, the respective CO concentrations attributed to wood burning range from 0 to 0.90 μmol mol -1 (mole fraction), well below the NAAQS. In all cases, fossil CO is the predominant source of ambient CO concentrations ranging from 0.96 to 6.34 μmol mol -1 A final comment is made on the potential of fossil CO measurements as an indirect tracer of atmospheric benzene, relevant to exposure risk estimates of motor vehicle emissions and occupational health and safety standards.

  20. Retrieval of Atmospheric and Surface Parameters from AIRS/AMSU/HSB Data Under Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Einaudi, Franco (Technical Monitor)

    2002-01-01

    New state of the art methodology is described to analyze AIRS/AMSU/HSB data in the presence of multiple cloud formations. The methodology forms the basis for the AIRS Science Team algorithm which will be used to analyze AIRS/AMSU/HSB data on EOS Aqua. The cloud clearing methodology requires no knowledge of the spectral properties of the clouds. The basic retrieval methodology is general and extracts the maximum information from the radiances, consistent with the channel noise covariance matrix. The retrieval methodology minimizes the dependence of the solution on the first guess field and the first guess error characteristics. Results are shown for AIRS Science Team simulation studies with multiple cloud formations. These simulation studies imply that clear column radiances can be reconstructed under partial cloud cover with an accuracy comparable to single spot channel noise in the temperature and water vapor sounding regions, temperature soundings can be produced under partial cloud cover with RMS errors on the order of, or better than, 1deg K in 1 km thick layers from the surface to 700 mb, 1 km layers from 700 mb to 300 mb, 3 km layers from 300 mb to 30 mb, and 5 km layers from 30 mb to 1 mb, and moisture profiles can be obtained with an accuracy better than 20% absolute errors in 1 km layers from the surface to nearly 200 mb.

  1. The Role of Exposure Science in Air Quality Management

    EPA Science Inventory

    Air quality standards and regulations are designed to protect public health and the environment. However, there are issues regarding whether the current standards and regulations should be adjusted to be more protective or to more effectively target air quality management activi...

  2. The Salty Science of the Aluminum-Air Battery

    ERIC Educational Resources Information Center

    Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul

    2008-01-01

    Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an…

  3. Atmospheric Science Experiment for Mars: ATMIS for the Netlander 2005 Mission

    NASA Technical Reports Server (NTRS)

    Harri, A.-M.; Siili, T.; Angrilli, A.; Calcutt, S.; Crisp, D.; Larsen, S.; Polkko, J.; Pommereau, J.-P.; Malique, C.; Tillman, J. E.

    1999-01-01

    ATMIS (Atmospheric and Meteorological Instrumentation System) is a versatile suite of atmospheric instrumentation to be accommodated onboard the Netlander Mission slated for launch in 2005. Four Netlanders are planned to form a geophysical measurement network on the surface of Mars. The atmospheric sciences are among the scientific disciplines benefiting most of the network concept. The goal of the ATMIS instrument is to provide new data on the atmospheric vertical structure, regional and global circulation phenomena, the Martian Planetary Boundary Layer (PBL) and atmosphere-surface interactions, dust storm triggering mechanisms, as well as the climatological cycles of H2O, dust and CO2. To reach the goal of characterization of a number of phenomena exhibiting both spatial and temporal variations, simultaneous observations of multiple variables at spatially displaced sites Deforming a network D are required. The in situ observations made by the ATMIS sensors will be supported by extensive modeling efforts. Additional information is contained in the original extended abstract.

  4. Atmospheric and Science Complexity Effects on Surface Bidirectional Reflectance

    NASA Technical Reports Server (NTRS)

    Diner, D. J. (Principal Investigator); Martonchik, J. V.; Sythe, W. D.; Hessom, C.

    1985-01-01

    Among the tools used in passive remote sensing of Earth resources in the visible and near-infrared spectral regions are measurements of spectral signature and bidirectional reflectance functions (BDRFs). Determination of surface properties using these observables is complicated by a number of factors, including: (1) mixing of surface components, such as soil and vegetation, (2) multiple reflections of radiation due to complex geometry, such as in crop canopies, and (3) atmospheric effects. In order to bridge the diversity in these different approaches, there is a need for a fundamental physical understanding of the influence of the various effects and a quantiative measure of their relative importance. In particular, we consider scene complexity effects using the example of reflection by vegetative surfaces. The interaction of sunlight with a crop canopy and interpretation of the spectral and angular dependence of the emergent radiation is basically a multidimensional radiative transfer problem. The complex canopy geometry, underlying soil cover, and presence of diffuse as well as collimated illumination will modify the reflectance characteristics of the canopy relative to those of the individual elements.

  5. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Xu, Xiang-De; Yang, Shuai; Zhang, Wei

    2012-12-01

    The Tibet Plateau (TP) is a key region that imposes profound impacts on the atmospheric water cycle and energy budget of Asia, even the global climate. In this work, we develop a climatology of origin (destination) of air mass and moisture transported to (from) the TP using a Lagrangian moisture diagnosis combined with the forward and backward atmospheric tracking schemes. The climatology is derived from 6-h particle positions based on 5-year (2005-2009) seasonal summer trajectory dataset from the Lagrangian particle dispersion model FLEXPART using NCEP/GFS data as input, where the regional model atmosphere was globally filled with particles. The results show that (1) the dominant origin of the moisture supplied to the TP is a narrow tropical-subtropical band in the extended Arabian Sea covering a long distance from the Indian subcontinent to the Southern Hemisphere. Two additional moisture sources are located in the northwestern part of TP and the Bay of Bengal and play a secondary role. This result indicates that the moisture transporting to the TP more depends on the Indian summer monsoon controlled by large-scale circulation. (2) The moisture departing from the TP can be transported rapidly to East Asia, including East China, Korea, Japan, and even East Pacific. The qualitative similarity between the regions of diagnosed moisture loss and the pattern of the observed precipitation highlights the robustness of the role of the TP on precipitation over East Asia. (3) In contrast to the moisture origin confined in the low level, the origin and fate of whole column air mass over the TP is largely controlled by a strong high-level Asian anticyclone. The results show that the TP is a crossroad of air mass where air enters mainly from the northwest and northeast and continues in two separate streams: one goes southwestwards over the Indian Ocean and the other southeastwards through western North Pacific. Both of them partly enter the trade wind zone, which manifests the

  6. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  7. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. ); Gerritsen, W.; Stewart, A.; Robinson, K. )

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  8. Probing Atmospheric Electric Fields through Radio Emission from Cosmic-Ray-Induced Air Showers

    NASA Astrophysics Data System (ADS)

    Scholten, Olaf; Trinh, Gia; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Hoerandel, Joerg; Nelles, Anna; Schellart, Pim; Rachen, Joerg; Rutjes, Casper; ter Veen, Sander; Rossetto, Laura; Thoudam, Satyendra

    2016-04-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate coherent radio wave emission that has been detected with LOFAR, a large and dense array of simple radio antennas primarily developed for radio-astronomy observations. Our measurements are performed in the 30-80 MHz frequency band. For fair weather conditions the observations are in excellent agreement with model calculations. However, for air showers measured under thunderstorm conditions we observe large differences in the intensity and polarization patterns from the predictions of fair weather models. We will show that the linear as well as the circular polarization of the radio waves carry clear information on the magnitude and orientation of the electric fields at different heights in the thunderstorm clouds. We will show that from the measured data at LOFAR the thunderstorm electric fields can be reconstructed. We thus have established the measurement of radio emission from extensive air showers induced by cosmic rays as a new tool to probe the atmospheric electric fields present in thunderclouds in a non-intrusive way. In part this presentation is based on the work: P. Schellart et al., Phys. Rev. Lett. 114, 165001 (2015).

  9. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G.; Gerritsen, W.; Stewart, A.; Robinson, K.

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  10. Characteristics of atmospheric visibility and its relationship with air pollution in Korea.

    PubMed

    Lee, Jeong-Young; Jo, Wan-Kuen; Chun, Ho-Hwan

    2014-09-01

    Although analysis of long-term data is necessary to obtain reliable information on characteristics of atmospheric visibility and its relationship with air pollution, it has rarely been performed. Therefore, a long-term evaluation of atmospheric visibility in characteristically different Korean cities, as well as a remote island, during 2001 to 2009, was performed in this study. In general, visibility decreased in the studied areas during the 9-yr study period. In addition, all areas displayed a distinct seasonal trend, with high visibility in the cold season relative to the warm season. Weekday visibility, however, did not significantly differ from weekend visibility. Similarly, the number of days per year for both low (<10 km) and high visibility (>19 km) fluctuated during the study period. Busan (a coastal city) exhibited the highest visibility, with an overall average of 17.6 km, followed by Daegu (a basin city), Ulsan (with concentrated petrochemical industries), Ullungdo (a remote island), and Seoul (the capital of Korea). Visibility was found to be significantly correlated with target air pollutants, except for ozone, for all metropolitan cities, whereas it was significantly correlated only with particulate matter with an aerodynamic diameter <10 μm (PM10) and ozone on the remote island (Ullungdo). Among the metropolitan cities, Seoul exhibited the lowest visibility for both the PM10 standard exceedance and non-exceedance days, followed by Ulsan, Daegu, and Busan. The results of this study can be used to establish effective strategies for improving urban visibility and air quality. PMID:25603237

  11. Sterilization of soybean powder with plasma treatment in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Iwami, R.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.; Nakayama, A.; Nakagawa, K.

    2013-10-01

    Sterilization of foods has been performed by conventional methods such as heat, steam and chemical solutions. However, these sterilization techniques could cause damages to the food material. It is considered that plasma sterilization at atmospheric pressure is one of the promising alternative methods because of the low temperature process. In our previous study, the inactivation of Bacillus atrophaeusspores by a dielectric barrier discharge (DBD) plasma produced in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The results showed that the inactivation of Bacillus atrophaeusspores was found to be dependent strongly on the humidity. In the present study, the plasma treatment technique in humid air is applied to sterilization of soybean powder. Effects of plasma sterilization were successfully confirmed by a colony counting method. It was found that the sterilization efficiency was increased by using the humid air as the discharge gas. In the conference, an improvement of the plasma treatment system to enhance the sterilization efficiency will be shown.

  12. Active Learning in the Atmospheric Science Classroom and beyond through High-Altitude Ballooning

    ERIC Educational Resources Information Center

    Coleman, Jill S. M.; Mitchell, Melissa

    2014-01-01

    This article describes the implementation of high-altitude balloon (HAB) research into a variety of undergraduate atmospheric science classes as a means of increasing active student engagement in real-world, problem-solving events. Because high-altitude balloons are capable of reaching heights of 80,000-100,000 ft (24-30 km), they provide a…

  13. Proceedings of the third Atmospheric Radiation Measurement (ARM) science team meeting

    SciTech Connect

    Not Available

    1994-03-01

    This document contains the summaries of papers presented at the 1993 Atmospheric Radiation Measurement (ARM) Science Team meeting held in Morman, Oklahoma. To put these papers in context, it is useful to consider the history and status of the ARM Program at the time of the meeting. Individual papers have been cataloged separately.

  14. A Citation Analysis of Atmospheric Science Publications by Faculty at Texas A&M University

    ERIC Educational Resources Information Center

    Kimball, Rusty; Stephens, Jane; Hubbard, David; Pickett, Carmelita

    2013-01-01

    A citation analysis of publications produced by the Department of Atmospheric Sciences faculty at Texas A&M University was conducted. This study included a detailed analysis of 5,082 cited publications by source, format, and age. TAMU Libraries holdings were then assessed using the works cited within the context of the 80/20 rule. The sources…

  15. Informational webinar for EPA STAR RFA on "Air, Climate and Energy (ACE) Centers: Science Supporting Solutions"

    EPA Science Inventory

    The purpose of this webinar presentation is to discuss the application process and required elements for the Air, Climate and Energy (ACE) Centers: Science Supporting Solutions RFA. EPA is seeking research on the development of sound science to systematically inform policy makers...

  16. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  17. A Community Hydrometeorology Laboratory for Fostering Collaborative Research by the Atmospheric and Hydrologic Sciences

    USGS Publications Warehouse

    Warner, T.T.; Yates, D.N.; Leavesley, G.H.

    2000-01-01

    A new community laboratory for fostering collaborative research between the atmospheric and hydrologie sciences communities is described. This facility, located at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, allows scientists from both communities to more easily focus resources and attention on interdisciplinary problems in atmospheric, hydrologic, and other related sciences. Researchers can remotely access the computing tools to use them or to download them to their own facility, or they can visit NCAR and use the laboratory with other scientists in joint research projects. An application of this facility is described, where scientists from NCAR, the University of Colorado, and the United States Geological Survey used quantitative precipitation estimates from weather radar to simulate a flash flood in the Buffalo Creek watershed in the mountainous Front Range near Denver, Colorado.

  18. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows Hurricane Frances as captured by instruments onboard two different satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean.

    The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central 'eye'. The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures.

    The power of the SeaWinds scatterometer data set lies in its ability to generate global maps of wind speed and direction, giving us a snapshot of how the atmosphere is circulating. Weather prediction centers, including the Tropical Prediction Center - a branch of NOAA that monitors the creation of ocean-born storms, use scatterometer data to help it 'see' where these storms are brewing so that warnings can be issued and the storms, with often erratic motions, can be tracked.

    While the SeaWinds instrument isn't designed to gather hurricane data, having difficulty seeing the surface in heavy rain, it's data can be used in combination with other data sets to give us an insight into these storms. In

  19. Improved atmospheric soundings and error estimates from analysis of AIRS/AMSU data

    NASA Astrophysics Data System (ADS)

    Susskind, Joel

    2007-09-01

    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave CO II channel observations in the spectral region 700 cm -1 to 750 cm -1 are used exclusively for cloud clearing purposes, while shortwave CO II channels in the spectral region 2195 cm -1 to 2395 cm -1 are used for temperature sounding purposes. The new methodology for improved error estimates and their use in quality control is described briefly and results are shown indicative of their accuracy. Results are also shown of forecast impact experiments assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System using different quality control thresholds.

  20. Improved Atmospheric Soundings and Error Estimates from Analysis of AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2007-01-01

    The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave C02 channel observations in the spectral region 700 cm-' to 750 cm-' are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm-' to 2395 cm-' are used for temperature sounding purposes. The new methodology for improved error estimates and their use in quality control is described briefly and results are shown indicative of their accuracy. Results are also shown of forecast impact experiments assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System using different quality control thresholds.

  1. Monitoring of atmospheric aerosol emissions using a remotely piloted air vehicle (RPV)-Borne Sensor Suite

    SciTech Connect

    1996-05-01

    We have developed a small sensor system, the micro-atmospheric measurement system ({mu}-AMS), to monitor and track aerosol emissions. The system was developed to fly aboard a remotely piloted air vehicle, or other mobile platform, to provide real-time particle measurements in effluent plumes and to collect particles for chemical analysis. The {mu}-AMS instrument measures atmospheric parameters including particle mass concentration and size distribution, temperature, humidity, and airspeed, altitude and position (by GPS receiver) each second. The sensor data are stored onboard and are also down linked to a ground station in real time. The {mu}-AMS is battery powered, small (8 in. dia x 36 in.), and lightweight (15 pounds). Aerosol concentrations and size distributions from above ground explosive tests, airbone urban pollution, and traffic-produced particulates are presented.

  2. Revisiting Atmospheric Lead in NYC - Comparison of Archived Air Filters to Urban Park Sediments and Soils

    NASA Astrophysics Data System (ADS)

    Chillrud, S. N.; Ross, J. M.; Yan, B.; Bopp, R.

    2015-12-01

    Urban lake sediments have the potential to be used for reconstructing history of aerosols, providing data before the start of urban air quality monitoring. In a previous study, the similarity between radionuclide and excess Pb inventories (57 g/m^2) in Central Park Lake (CPL) sediments and those same parameters in Central Park soils (CPS) was interpreted to indicate that urban lake sediment cores from CPL represent deposition of atmospheric aerosols over the history of the park, which was constructed in the 1860s. Furthermore, metal ratios and metal chronologies indicated that incineration was the major source of Pb to the NYC atmosphere over the 20th century. In this report, we compare the lake chronologies for metals to a set of archived air filters collected by the Department of Energy's Environmental Measurement Lab (EML). These weekly filters of total suspended particulates (TSP) were collected by a high volume sampler located in lower Manhattan for radionuclides as part of the program focused on documenting radioactive fallout from nuclear weapons testing. Metal concentrations measured in subsamples of the EML filters collected between the 1970s to 1990s showed Pb decreasing more slowly than the records of Pb added to gasoline. Metal ratios in the filters were similar to the ratios measured in CPL sediments; the Pb to Sn ratios were roughly 20:1 and the Pb to Zn ratios were in close to 1. The similarity of the ratios provides additional solid support that the CP Lake sediment cores reflect atmospheric inputs. The enrichment of Pb in the large aerosol particle fraction (TSP), relative to fine PM2.5 fraction, demonstrates that the resuspended NYC soils and their historical contaminant burden, are the primary, current source of Pb to NYC air.

  3. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments

    PubMed Central

    Sung, Su-Jin; Huh, Jung-Bo; Yun, Mi-Jung; Chang, Brian Myung W.; Jeong, Chang-Mo

    2013-01-01

    PURPOSE Autoclaves and UV sterilizers have been commonly used to prevent cross-infections between dental patients and dental instruments or materials contaminated by saliva and blood. To develop a dental sterilizer which can sterilize most materials, such as metals, rubbers, and plastics, the sterilization effect of an atmospheric pressure non-thermal air plasma device was evaluated. MATERIALS AND METHODS After inoculating E. coli and B. subtilis the diamond burs and polyvinyl siloxane materials were sterilized by exposing them to the plasma for different lengths of time (30, 60, 90, 120, 180 and, 240 seconds). The diamond burs and polyvinyl siloxane materials were immersed in PBS solutions, cultured on agar plates and quantified by counting the colony forming units. The data were analyzed using one-way ANOVA and significance was assessed by the LSD post hoc test (α=0.05). RESULTS The device was effective in killing E. coli contained in the plasma device compared with the UV sterilizer. The atmospheric pressure non-thermal air plasma device contributed greatly to the sterilization of diamond burs and polyvinyl siloxane materials inoculated with E. coli and B. subtilis. Diamond burs and polyvinyl siloxane materials inoculated with E. coli was effective after 60 and 90 seconds. The diamond burs and polyvinyl siloxane materials inoculated with B. subtilis was effective after 120 and 180 seconds. CONCLUSION The atmospheric pressure non-thermal air plasma device was effective in killing both E. coli and B. subtilis, and was more effective in killing E. coli than the UV sterilizer. PMID:23508991

  4. Comparison of halocarbon measurements in an atmospheric dry whole air sample

    PubMed Central

    Hall, Bradley D.; Harth, Christina M.; Kim, Jin Seog; Lee, Jeongsoon; Montzka, Stephen A.; Mühle, Jens; Reimann, Stefan; Vollmer, Martin K.; Weiss, Ray F.

    2015-01-01

    The growing awareness of climate change/global warming, and continuing concerns regarding stratospheric ozone depletion, will require continued measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track atmospheric mole fractions and assess the impact of policy on emission rates, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. Precise measurements of these species aid in determining small changes in their atmospheric abundance. A common source of standards/scales and/or well-documented agreement of different scales used to calibrate the measurement instrumentation are key to understanding many sets of data reported by researchers. This report describes the results of a comparison study among National Metrology Institutes and atmospheric research laboratories for the chlorofluorocarbons (CFCs) dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and 1,1,2-trichlorotrifluoroethane (CFC-113); the hydrochlorofluorocarbons (HCFCs) chlorodifluoromethane (HCFC-22) and 1-chloro-1,1-difluoroethane (HCFC-142b); and the hydrofluorocarbon (HFC) 1,1,1,2-tetrafluoroethane (HFC-134a), all in a dried whole air sample. The objective of this study is to compare calibration standards/scales and the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. The results of this study show agreement among four independent calibration scales to better than 2.5% in almost all cases, with many of the reported agreements being better than 1.0%. PMID:26753167

  5. Decline of hexachlorocyclohexane in the Arctic atmosphere and reversal of air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Bidleman, T. F.; Jantunen, L. M.; Falconer, R. L.; Barrie, L. A.; Fellin, P.

    1995-02-01

    Hexachlorocyclohexanes (HCHs) are the most abundant organochlorine pesticides in the arctic atmosphere and ocean surface water. A compilation of measurements made between 1979-93 from stations in the Canadian and Norwegian Arctic and from cruises in the Bering and Chukchi seas indicates that atmospheric concentrations of α-HCH have declined significantly (p < 0.01), with a time for 50% decrease of about 4 y in summer-fall and 6 y in winter-spring. The 1992-93 levels of about 100 pg m-3 are 2-4 fold lower than values in the mid-1980s. The trend in γ-HCH is less pronounced, but a decrease is also suggested from measurements in the Canadian Arctic and the Bering-Chukchi seas. HCHs in ocean surface water have remained relatively constant since the early 1980s. The decline in atmospheric α-HCH has reversed the net direction of air-sea gas exchange to the point where some northern waters are now sources of the pesticide to the atmosphere instead of sinks.

  6. Long-period humidity variability in the Arctic atmosphere from upper-air observations

    NASA Astrophysics Data System (ADS)

    Agurenko, A.; Khokhlova, A.

    2014-12-01

    Under climate change, atmospheric water content also tends to change. This gives rise to changes in the amount of moisture transferred, clouds and precipitation, as well as in hydrological regime. This work analyzes seasonal climatic characteristics of precipitated water in the Arctic atmosphere, by using 1972-2011 data from 55 upper-air stations located north of 60°N. Regions of maximum and minimum mean values and variability trends are determined. In the summer, water amount is shown to increase in nearly the whole of the latitudinal zone. The comparison with the similar characteristics of reanalysis obtained by the other authors shows a good agreement. Time variation in the atmosphere moisture transport crossing 70°N, which is calculated from observation data, is presented and compared with model results. The work is supported by the joint EC ERA.Net RUS and Russian Fundamental Research Fund Project "Arctic Climate Processes Linked Through the Circulation of the Atmosphere" (ACPCA) (project 12-05-91656-ЭРА_а).

  7. A study of the glow discharge characteristics of contact electrodes at atmospheric pressure in air

    SciTech Connect

    Liu, Wenzheng Sun, Guangliang Li, Chuanhui; Zhang, Rongrong

    2014-04-15

    Electric field distributions and discharge properties of rod-rod contact electrodes were studied under the condition of DBD for the steady generation of atmospheric pressure glow discharge plasma (APGD) in air. We found that under the effect of the initial electrons generated in a nanometer-scale gap, the rod-rod cross-contact electrodes yielded APGD plasma in air. Regarding the rod-rod cross-contact electrodes, increasing the working voltage expanded the strong electric field area of the gas gap so that both discharge area and discharge power increased, and the increase in the number of contact points kept the initial discharge voltage unchanged and caused an increase in the plasma discharge area and discharge power. A mesh-like structure of cross-contact electrodes was designed and used to generate more APGD plasma, suggesting high applicability.

  8. Simulation of a runaway electron avalanche developing in an atmospheric pressure air discharge

    SciTech Connect

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-12-15

    To gain a better understanding of the operation of atmospheric pressure air discharges, the formation of a runaway electron beam at an individual emission site on the cathode has been numerically simulated. The model provides a description of the dynamics of the fast electrons emitted into an air gap from the surface of the emission zone by solving numerically two-dimensional equations for the electrons. It is supposed that the electric field at the surface of the emission zone is enhanced, providing conditions for continuous acceleration of the emitted electrons. It is shown that the formation of a runaway electron beam in a highly overvolted discharge is largely associated with avalanche-type processes and that the number of electrons in the avalanche reaches 50% of the total number of runaway electrons.

  9. A multi-aperture spectrometer design for the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Robert; Hatch, Marcus

    1990-01-01

    The baseline multiaperture echelle spectrometer for the Atmospheric IR Sounder (AIRS) is described in terms of design and applications. The functional requirements for the optical design are set forth including the 1-K measurement goal, the 3.4-15.4 spectral bandpass, and the full global coverage twice daily. The multiaperture spectrometer is compared to the cross-dispersed spectrometer, and the multiaperture model is found to permit specific adjustments to the signal-to-noise ratio. The optical design of the spectrometer is described in terms of the focal-plane constraints, the multiaperture pupil-imaging relay, the spectrometer collimator, and the grating format and efficiency. The multiaperture design is found to have a good spectral-response function, and a 1.2 percent signal change is noted for a 95-percent unpolarized scene. The AIRS instrument is illustrated in its deployment configuration and is concluded to be capable of fulfilling the performance requirements.

  10. Sensitivity of Air-sea Exchange In A Regional Scale Coupled Ice/ocean/atmosphere Model

    NASA Astrophysics Data System (ADS)

    Schrum, C.; Hübner, U.; Jacob, D.; Podzun, R.

    The sub-systems ice, ocean and atmosphere are coupled on the global as well as the regional scale. However, regional coupled modeling is only in the beginning, full cou- pled models which are able to describe the interaction on the regional scale and the feedback mechanism are rare at the moment. For the North Sea and the Baltic Sea such a coupled model has been developed and exemplary integrated over a full seasonal cy- cle. By comparison of different regionalization studies the impact of the regional at- mospheric modeling and coupling on the air sea fluxes have been investigated. It was shown that the regionalization as well as the coupling show strong influence on the air/sea fluxes and thus on the oceanic conditions. Further problems in regional mod- eling like the description of storm track variability and its influence on the regional ocean model were identified.

  11. Microstructure and DC electrical conductivity of spinel nickel ferrite sintered in air and nitrogen atmospheres

    SciTech Connect

    Liu, Baogang; Zhou, Kechao; Li, Zhiyou; Zhang, Dou; Zhang, Lei

    2010-11-15

    In recent years, the development of inert anode materials has gained considerable attention because such materials are capable of producing only environment-friendly O{sub 2} and saving energy during aluminum electrolysis. Nickel ferrite was prepared by a solid-state reaction as the inert anode in this study and its microstructures and direct current conductivities were analyzed in detail regarding the effects of different sintering atmospheres. A single-phase spinel structure was confirmed for all samples by X-ray powder diffraction. The grain sizes and the relative densities of the samples sintered in nitrogen increased by over 7 {mu}m and 10.8%, respectively, compared to those sintered in air. The direct current conductivities of the samples sintered in nitrogen showed a drastic increase compared to those sintered in air, believed to be due to the effects of increased Fe{sup 2+} ion concentration at octahedral sites and the increase of the relative density.

  12. A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    NASA Astrophysics Data System (ADS)

    Petrenko, V. V.; Martinerie, P.; Novelli, P.; Etheridge, D. M.; Levin, I.; Wang, Z.; Blunier, T.; Chappellaz, J.; Kaiser, J.; Lang, P.; Steele, L. P.; Hammer, S.; Mak, J.; Langenfelds, R. L.; Schwander, J.; Severinghaus, J. P.; Witrant, E.; Petron, G.; Battle, M. O.; Forster, G.; Sturges, W. T.; Lamarque, J.-F.; Steffen, K.; White, J. W. C.

    2013-08-01

    We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140-150 nmol mol-1, which is higher than today's values. CO mole fractions rose by 10-15 nmol mol-1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ≈ 30 nmol mol-1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.

  13. [Temporal behavior of light emission of dielectric barrier discharges in air at atmospheric pressure].

    PubMed

    Yin, Zeng-qian; Dong, Li-fang; Han, Li; Li, Xue-chen; Chai, Zhi-fang

    2002-12-01

    The experimental setup of dielectric barrier discharge was designed which is propitious to optical measurement. Temporal behavior of light emission of dielectric barrier discharges (filamentary model) in air at atmospheric pressure was measured by using optical method. Temporal behavior of dielectric barrier discharges was obtained. The experimental results show that the discharge burst in each half cycle of applied voltage consists of a series of discharge pulses, the duration of each discharge pulse is about 30-50 ns, and the interval of the neighboring discharge pulses is about a few hundred ns. The result is of great importance to the application of dielectric barrier discharges. PMID:12914154

  14. Atmospheric Boundary Layer Height Evolution with Lidar in Buenos Aires from 2008 to 2011

    NASA Astrophysics Data System (ADS)

    Pawelko, Ezequiel Eduardo; Salvador, Jacobo Omar; Ristori, Pablo Roberto; Pallotta, Juan Vicente; Otero, Lidia Ana; Quel, Eduardo Jaime

    2016-06-01

    The analysis of the atmospheric boundary layer top height evolution is obtained from 2008 to 2011 in Buenos Aires using the multiwavelength lidar located at CEILAP (CITEDEF-CONICET) (34°33' S; 58°30' W; 17 m asl). Algorithms recognition based on covariance wavelet transform are applied to obtain seasonal statistics. This method is being evaluated for use in the Lidar Network in Argentina and it is being deployed in Patagonia region currently. The technique operates in real time in both low and high aerosol loads and with almost no human supervision.

  15. Spectrum of the Runaway Electron Beam Generated During a Nanosecond Discharge in Air at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.

    2016-04-01

    The spectrum of supershort avalanche runaway electron beam generated in air at atmospheric pressure is experimentally investigated using a time-of-flight spectrometer and attenuation curves. It is shown that the maximum of the electron energy distribution for the main (second) group of electrons is less than the energy eUm, where Um is the maximal voltage across the gap, and the difference between these energies depends on the design of the cathode and the interelectrode gap in a gas diode. It is confirmed that there are three groups of electrons with different energies in the runaway electron beam spectrum.

  16. 10 ns pulsed atmospheric air plasma for uniform treatment of polymeric surfaces

    SciTech Connect

    Walsh, J. L.; Kong, M. G.

    2007-12-17

    This letter reports an experimental study of a 10 ns pulsed dielectric barrier discharge in atmospheric air, excited with a train of 65 ns voltage pulses at a repetition frequency of 5 kHz. It is shown that these ultrashort pulses produce a homogenous discharge with very high electron density in excess of 10{sup 13} cm{sup -3} and low gas temperature, which are particularly desirable for uniform treatment of thermally sensitive polymer films. Their treatment of polypropylene films is found to introduce microscale surface patterns as well as various carbon-oxygen bonds, both useful for improving the hydrophilic properties of polymeric materials.

  17. Atmospheric effects and sidereal-diurnal variations in extended air showers

    NASA Technical Reports Server (NTRS)

    Efimov, N. N.; Krasilnikov, D. D.; Nikolskiy, S. N.; Shamsutdinova, F. K.

    1975-01-01

    Observations are presented on the variations of extended air shower intensity with an average power of 1.4 x 10,000 and 1.4 x 100,000 particles at sea level. The effect of disintegrating particles and the essential role of cascades formed above the lower third of the atmosphere are examined. However, the authors failed to discover anisotropy of initial particles with an energy of 10 to the 14th power to 10 to the 15th power eV with an accuracy of up to 0.1%.

  18. [On the presence of 20-methylcholanthrene in the atmospheric air (author's transl)].

    PubMed

    Morlin, Z; Kertész, M; Kiss, A; Szeili, J

    1979-01-01

    The strongly carcinogenic polycyclic aromatic hydrocarbon 20-Methylcholanthrene was detected in the urban atmospheric air in Budapest (the capital of Hungary). The main source of this pollution seems to be the motor vehicle traffic, since samples from a heavy traffic junction contained up to six times higher 20-Methylcholanthrene concentrations than samples from a low traffic area. Ultraviolet absorption spectrophotometry yielded similar results. The presence of 20-Methylcholanthrene is apparently connected with the presence of 3,4-Benzpyrene and 1,2-Benzpyrene, respectively. PMID:94726

  19. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  20. Land use changes and its impacts on air quality and atmospheric patterns

    NASA Astrophysics Data System (ADS)

    Freitas, E. D.; Mazzoli, C. R.; Martins, L. D.; Martins, J. A.; Carvalho, V.; Andrade, M.

    2013-05-01

    Possible modifications on atmospheric patterns and air quality caused by land use changes are discussed in this work. With the increasing interest in alternative energy sources, mainly due to the replacement of fossil fuels, large part of the Brazilian territory is being used for sugar cane cultivation. The resultant modifications in land use and some activities associated to this crop are studied with some detail through numerical modeling of the atmosphere. The same tool was applied to study the effect of surface type and emission sources over urban areas in the neighborhoods of the cultivated areas, in particular those located in the Metropolitan Area of Campinas, inside the state of São Paulo, Brazil. The main focus of this work was to identify some relationship between these two types of land use modification and its influence on the regional atmospheric circulation patterns and air quality over agricultural and urban areas affected by biomass burning and the traditional sources of pollutants, such as industries and vehicles. First, the effect of urban areas was analyzed and it was possible to identify typical patterns associated with urban heat islands, especially over the city of Campinas. In this region, air temperature differences up to 3 K were detected during night time. During the day, due to the atmospheric conditions of the studied period, this effect was not significant. Afterwards, the effect of sugar cane cultivated regions was discussed. The results show that the regions of sugar cane grow can significantly modify the surface energy fluxes, with direct consequences to the standards of local temperature and humidity and over nearby regions. Sensitivity tests were carried out during part of September, 2007, through the substitution of the sugar cane by a generic crop in the model, and show that during the day the cultivated areas can present temperatures up to 0,65 k higher than those in the case of the generic one. Throughout the dispersion module

  1. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  2. Validation of the Atmospheric Infrared Sounder (AIRS) over the Antarctic Plateau: Low Radiance, Low Humidity, and Thin Clouds

    NASA Technical Reports Server (NTRS)

    Tobin, David C.

    2005-01-01

    The main goal of the project has been to use specialized measurements collected at the Antarctic Plateau to provide validation of the Atmospheric InfraRed Sounder (AIRS) spectral radiances and some AIRS Level 2 products. As proposed, efforts conducted at the University of Wisconsin are focused on providing technical information, data, and software in support of the validation studies.

  3. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  4. Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere.

    PubMed

    Cao, Y; Mishchenko, A; Yu, G L; Khestanova, E; Rooney, A P; Prestat, E; Kretinin, A V; Blake, P; Shalom, M B; Woods, C; Chapman, J; Balakrishnan, G; Grigorieva, I V; Novoselov, K S; Piot, B A; Potemski, M; Watanabe, K; Taniguchi, T; Haigh, S J; Geim, A K; Gorbachev, R V

    2015-08-12

    Many layered materials can be cleaved down to individual atomic planes, similar to graphene, but only a small minority of them are stable under ambient conditions. The rest react and decompose in air, which has severely hindered their investigation and potential applications. Here we introduce a remedial approach based on cleavage, transfer, alignment, and encapsulation of air-sensitive crystals, all inside a controlled inert atmosphere. To illustrate the technology, we choose two archetypal two-dimensional crystals that are of intense scientific interest but are unstable in air: black phosphorus and niobium diselenide. Our field-effect devices made from their monolayers are conductive and fully stable under ambient conditions, which is in contrast to the counterparts processed in air. NbSe2 remains superconducting down to the monolayer thickness. Starting with a trilayer, phosphorene devices reach sufficiently high mobilities to exhibit Landau quantization. The approach offers a venue to significantly expand the range of experimentally accessible two-dimensional crystals and their heterostructures. PMID:26132110

  5. High-speed sterilization technique using dielectric barrier discharge plasmas in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Miyamae, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma produced by an ac voltage application of 1 kHz in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where the air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of Bacillus atrophaeus spores was found to be dependent strongly on the humidity, and was completed within 15 min at a relative humidity of 90 % and a temperature of 30 C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. It is considered that reactive species such as hydroxyl radicals that are effective for the inactivation of Bacillus atrophaeus spores could be produced by the DBD plasma in the humid air. Repetitive micro-pulsed discharge plasmas in the humid air will be applied for the sterilization experiment to enhance the sterilization efficiency.

  6. Report on the search for atmospheric holes using airs image data

    NASA Technical Reports Server (NTRS)

    Reinleitner, Lee A.

    1991-01-01

    Frank et al (1986) presented a very controversial hypothesis which states that the Earth is being bombarded by water-vapor clouds resulting from the disruption and vaporization of small comets. This hypothesis was based on single-pixel intensity decreases in the images of the earth's dayglow emissions at vacuum-ultraviolet (VUV) wavelengths using the DE-1 imager. These dark spots, or atmospheric holes, are hypothesized to be the result of VUV absorption by a water-vapor cloud between the imager and the dayglow-emitting region. Examined here is the VUV data set from the Auroral Ionospheric Remote Sensor (AIRS) instrument that was flown on the Polar BEAR satellite. AIRS was uniquely situated to test this hypothesis. Due to the altitude of the sensor, the holes should show multi-pixel intensity decreases in a scan line. A statistical estimate indicated that sufficient 130.4-nm data from AIRS existed to detect eight to nine such holes, but none was detected. The probability of this occurring is less than 1.0 x 10(exp -4). A statistical estimate indicated that sufficient 135.6-nm data from AIRS existed to detect approx. 2 holes, and two ambiguous cases are shown. In spite of the two ambiguous cases, the 135.6-nm data did not show clear support for the small-comet hypothesis. The 130.4-nm data clearly do not support the small-comet hypothesis.

  7. The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Iraci, Laura T.; Al-Saddi, J.; Chance, K.; Chavez, F.; Chin, M.; Coble, P.; Davis, C.; DiGiacomo, P. M.; Edwards, D.; Eldering, A.; Goes, J.; Herman, J.; Hu, C.; Jacob, D. J.; Jordan, C.; Kawa, S. R.; Key, R.; Liu, X.; Lohrenz, S.; Mannino, A.; Natraj, V.; Neil, D.; Neu, J.; Newchurch, M.; Pickering, K.; Salisbury, J.; Sosik, H.; Subramaniam, A.; Tzortziou, M; Wang, J.; Wang, M.

    2012-01-01

    The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

  8. What is in my air? Feds facilitating citizen science in the EPA Next Generation Air Monitoring Program

    NASA Astrophysics Data System (ADS)

    French, R. A.; Preuss, P.

    2013-12-01

    Recent advances in the development of small-scale and inexpensive air pollutant sensors, coupled with the ubiquitous use of wireless and mobile technology, will transform the field of air quality monitoring. For the first time, the general public may purchase air monitors, which can measure their personal exposure to NOx, Ozone, black carbon, and VOCs for a few hundred dollars. Concerned citizens may now gather the data for themselves to answer questions such as, ';what am I breathing?' and ';is my air clean?' The research and policy community will have access to real-time air quality data collected at the local and regional scale, making targeted protection of environmental health possible. With these benefits come many questions from citizen scientists, policymakers, and researchers. These include, what is the quality of the data? How will the public interpret data from the air sensors and are there guidelines to interpret that data? How do you know if the air sensor is trustworthy? Recognizing that this revolution in air quality monitoring will proceed regardless of the involvement of the government, the Innovation Team at the EPA Office of Research and Development, in partnership with the Office of Enforcement and Compliance Assistance and the Office of Air and Radiation, seized the opportunity to ensure that users of next generation air sensors can realize the full potential benefits of these innovative technologies. These efforts include releasing an EPA Draft Roadmap for Next Generation Air Monitoring, testing air sensors under laboratory and field conditions, field demonstrations of new air sensor technology for the public, and building a community of air sensor developers, researchers, local, state and federal officials, and community members through workshops and a website. This presentation will review the status of those programs, highlighting the particular programs of interest to citizen scientists. The Next Generation Air Monitoring program may serve

  9. The Salty Science of the Aluminum-Air Battery

    NASA Astrophysics Data System (ADS)

    Chasteen, Stephanie V.; Chasteen, N. Dennis; Doherty, Paul

    2008-12-01

    Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries in which metal reacts with oxygen in the air in order to generate free electrons, which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an electrolyte to bring electrons from the anode to the cathode. That's true, but it leaves the battery as a black box. Physics teachers often don't have the background to explain the chemistry behind these batteries. We've written this paper to explore the electrochemistry behind an air battery using copper cathode, aluminum anode, and saltwater.

  10. Recruiting student in Sciences in Rural Environment: The Air Pollution Workshop

    NASA Astrophysics Data System (ADS)

    Kubatova, A.; Pedersen, D.

    2011-12-01

    The number of students in sciences is declining and thus it is critical to employ a variety of initiatives to familiarize students with various topics in sciences as well as the university environment. In particular, this is a challenge in rural communities where many students do not have easy access to university campuses. Therefore, we have implemented a workshop for junior and senior high school students. We decided to run this workshop on the campus, as this provided not only exposure of the students to scientific and lecturing facilities, but also to life at the university. Holding the workshop on the university campus also enabled faculty and graduate students from several departments to participate, thus allowing for presentation of a wide variety of topics within atmospheric sciences. Our experiences with the continuously growing workshops - from 50 to 180 participating students - will be shared. Participants were students from both rural and urban areas. These workshops, therefore, contributed to our outreach and service to the local community and to students coming from the rural communities of the upper Midwest and Western states. The workshops are organized annually over the spring break, thus ensuring availability of facilities on the campus. The one-day workshop includes a short cycle of presentations focused on the characterization of atmospheric PM and several critical issues connected with it. The expert faculty members from several departments involved in such research present on global warming, air pollution, aerosol formation, measurement using an aircraft, the relation of emissions and energy production, and on modeling of atmospheric processes. This lecture series (each no longer than 15 min) was broken down by fun demonstrations to break the ice and attract students' attention. Following the presentations, students participated in demonstrations performed in the Chemistry Department. The demonstrations included several hands-on activities

  11. First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Lemmon, Mark T.; Spanovich, Nicole; Banfield, Don; Budney, Charles J.; Clancy, R. Todd; Ghosh, Amitabha; Landis, Geoffrey A.; Smith, Peter; Whitney, Barbara; Christensen, Philip R.; Squyres, Steven W.

    2004-01-01

    Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.

  12. Atmosphere Assessment for MARS Science Laboratory Entry, Descent and Landing Operations

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia D.; Cantor, Bruce; Barnes, Jeff; Tyler, Daniel, Jr.; Rafkin, Scot; Chen, Allen; Kass, David; Mischna, Michael; Vasavada, Ashwin R.

    2013-01-01

    On August 6, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed on the surface of Mars. The Entry, Descent and Landing (EDL) sequence was designed using atmospheric conditions estimated from mesoscale numerical models. The models, developed by two independent organizations (Oregon State University and the Southwest Research Institute), were validated against observations at Mars from three prior years. In the weeks and days before entry, the MSL "Council of Atmospheres" (CoA), a group of atmospheric scientists and modelers, instrument experts and EDL simulation engineers, evaluated the latest Mars data from orbiting assets including the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI) and Mars Climate Sounder (MCS), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). The observations were compared to the mesoscale models developed for EDL performance simulation to determine if a spacecraft parameter update was necessary prior to entry. This paper summarizes the daily atmosphere observations and comparison to the performance simulation atmosphere models. Options to modify the atmosphere model in the simulation to compensate for atmosphere effects are also presented. Finally, a summary of the CoA decisions and recommendations to the MSL project in the days leading up to EDL is provided.

  13. Citizen Science Air Monitor (CSAM) Quality Assurance Guidelines

    EPA Science Inventory

    Many communities in the United States are potentially impacted by a wide variety of environmental pollution sources. The U.S. Environmental Protection Agency (EPA) encourages communities to advocate for environmental and public health mitigations and to raise awareness of air pol...

  14. Transporting Students into Thin Air: Using Science to Enhance Reading

    ERIC Educational Resources Information Center

    Bricker, Patricia; Rogowski, Nick; Hedt, Melissa; Rolfe, Nadeen

    2010-01-01

    The "Into Thin Air" unit, based on the book by Jon Krakauer, was designed as an interdisciplinary unit for a small group of academically gifted sixth-grade students. It included hands-on, minds-on activities that would immerse students in the scientific, social, and personal struggles people face while attempting to climb the world's tallest…

  15. Squid rocket science: How squid launch into air

    NASA Astrophysics Data System (ADS)

    O'Dor, Ron; Stewart, Julia; Gilly, William; Payne, John; Borges, Teresa Cerveira; Thys, Tierney

    2013-10-01

    Squid not only swim, they can also fly like rockets, accelerating through the air by forcefully expelling water out of their mantles. Using available lab and field data from four squid species, Sthenoteuthis pteropus, Dosidicus gigas, Illex illecebrosus and Loligo opalescens, including sixteen remarkable photographs of flying S. pteropus off the coast of Brazil, we compared the cost of transport in both water and air and discussed methods of maximizing power output through funnel and mantle constriction. Additionally we found that fin flaps develop at approximately the same size range as flight behaviors in these squids, consistent with previous hypotheses that flaps could function as ailerons whilst aloft. S. pteropus acceleration in air (265 body lengths [BL]/s2; 24.5m/s2) was found to exceed that in water (79BL/s2) three-fold based on estimated mantle length from still photos. Velocities in air (37BL/s; 3.4m/s) exceed those in water (11BL/s) almost four-fold. Given the obvious advantages of this extreme mode of transport, squid flight may in fact be more common than previously thought and potentially employed to reduce migration cost in addition to predation avoidance. Clearly squid flight, the role of fin flaps and funnel, and the energetic benefits are worthy of extended investigation.

  16. FT-IR remote sensing of atmospheric species: Application to global change and air pollution

    SciTech Connect

    Vazquez, G.J.

    1995-12-31

    In this contribution, the author describes two applications of Fourier Transform Infrared Spectroscopy to the monitoring of atmospheric compounds. Firstly, the author reports FTIR solar spectroscopy measurements carried out at ground level at NCAR and on airplanes employing a spectrometer of 0.06 cm{sup -1} resolution. Sample atmospheric spectra and fitting examples are presented for key species relevant to stratospheric chemistry and global change: ozone (O{sub 3}), a chlorofluorocarbon (CF{sub 2}Cl{sub 2}), a greenhouse gas (N{sub 2}O), HCl, NO and HNO{sub 3}. Secondly, the author briefly describes urban air pollution measurements at an intersection with heavy traffic in Tucson, AZ. Two FTIR spectrometers of 1 cm{sup -1} resolution were employed to carry out long-path open-path measurements of the CO/CO{sub 2} ratio and SF{sub 6}. Two FEAT and two LPUV instruments were employed for ancillary measurements of CO, CO{sub 2}, NO, and aromatic hydrocarbons. Measurements of CO at two heights and a comparison of CO/CO{sub 2} ratios obtained by FEAT exhaust emission and FTIR ambient air measurements are reported.

  17. Advances in Atmospheric Radiation Measurements and Modeling Needed to Improve Air Safety

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Atwell, William; Beck, Peter; Benton, Eric; Copeland, Kyle; Dyer, Clive; Gersey, Brad; Getley, Ian; Hands, Alex; Holland, Michael; Hong, Sunhak; Hwang, Junga; Jones, Bryn; Malone, Kathleen; Meier, Matthias M.; Mertens, Chris; Phillips, Tony; Ryden, Keith; Schwadron, Nathan; Wender, Stephen A.; Wilkins, Richard; Xapsos, Michael A.

    2015-04-01

    Air safety is tied to the phenomenon of ionizing radiation from space weather, primarily from galactic cosmic rays but also from solar energetic particles. A global framework for addressing radiation issues in this environment has been constructed, but more must be done at international and national levels. Health consequences from atmospheric radiation exposure are likely to exist. In addition, severe solar radiation events may cause economic consequences in the international aviation community due to exposure limits being reached by some crew members. Impacts from a radiation environment upon avionics from high-energy particles and low-energy, thermalized neutrons are now recognized as an area of active interest. A broad community recognizes that there are a number of mitigation paths that can be taken relative to the human tissue and avionics exposure risks. These include developing active monitoring and measurement programs as well as improving scientific modeling capabilities that can eventually be turned into operations. A number of roadblocks to risk mitigation still exist, such as effective pilot training programs as well as monitoring, measuring, and regulatory measures. An active international effort toward observing the weather of atmospheric radiation must occur to make progress in mitigating radiation exposure risks. Stakeholders in this process include standard-making bodies, scientific organizations, regulatory organizations, air traffic management systems, aircraft owners and operators, pilots and crew, and even the public.

  18. Self-pulsing discharges in pre-heated air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Janda, Mário; Machala, Zdenko; Dvonč, Lukáš; Lacoste, Deanna; Laux, Christophe O.

    2015-01-01

    The paper presents investigations of self-pulsing discharges in atmospheric pressure air pre-heated to 300-1000 K. Despite using a direct-current power supply, two self-pulsing discharge regimes, a repetitive transient spark (TS) and a repetitive streamer (RS) were generated. The pulse repetition frequency, on the order of a few kHz, can be controlled by adjusting the generator voltage. The TS is a discharge initiated by a streamer, followed by a short (tens of ns) spark current pulse (˜ 1 A), associated with the total discharging of the internal capacity of the electric circuit. The TS is suitable for the study of ‘memory’ effects (pre-heating, pre-ionization) on the mechanisms of streamer-to-spark transition and electrical breakdown in atmospheric pressure air. The TS regime was stable below ˜600 K. Above ˜600 K, a stable repetitive streamer (RS) regime was observed. In this regime, the breakdown and spark did not occur. After the initial streamer, the internal capacity of the electrical circuit discharged partially. With further pre-heating of the gas, the stable TS appeared again at ˜1000 K.

  19. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Nan, Jialiang; Shi, Chanzhen; Fu, Qingyan; Gao, Song; Wang, Dongfang; Cui, Huxiong; Saiz-Lopez, Alfonso; Zhou, Bin

    2015-10-01

    Atmospheric ammonia (NH3) has great environmental implications due to its important role in ecosystem and global nitrogen cycle, as well as contribution to secondary particle formation. Here, we report long-term continuous measurements of NH3 at different locations (i.e. urban, industrial and rural) in Shanghai, China, which provide an unprecedented portrait of temporal and spatial characteristics of atmospheric NH3 in and around this megacity. In addition to point emission sources, air masses originated from or that have passed over ammonia rich areas, e.g. rural and industrial sites, increase the observed NH3 concentrations inside the urban area of Shanghai. Remarkable high-frequency NH3 variations were measured at the industrial site, indicating instantaneous nearby industrial emission peaks. Additionally, we observed strong positive exponential correlations between NH4+/(NH4++NH3) and sulfate-nitrate-ammonium (SNA) aerosols, PM2.5 mass concentrations, implying a considerable contribution of gas-to-particle conversion of ammonia to SNA aerosol formation. Lower temperature and higher humidity conditions were found to favor the conversion of gaseous ammonia to particle ammonium, particularly in autumn. Although NH3 is currently not included in China’s emission control policies of air pollution precursors, our results highlight the urgency and importance of monitoring gaseous ammonia and improving its emission inventory in and around Shanghai.

  20. Sub-nanosecond dynamics of atmospheric air discharge under highly inhomogeneous and transient electric field

    NASA Astrophysics Data System (ADS)

    Tardiveau, Pierre; Magne, Lionel; Pasquiers, Stephane; Jeanney, Pascal; Bournonville, Blandine

    2015-09-01

    The effects of the application of extreme overvoltages (>500%) in air gaps over less than a few nanoseconds bring us to reconsider the classical physics of streamer used to describe air discharges at atmospheric pressure. Non equilibrium discharges created by extremely transient and intense electric fields in standard conditions of pressure and temperature exhibit unusual diffuse and large structure. In point-to-plane electrode configurations, a plasma cloud is observed which properties depend on voltage pulses features (amplitude, rise time, length, and frequency) and electrodes properties (material, shape, and gap length). Our parametric experimental study is based on fast electrical characterization and sub-nanosecond imaging and shows the different stages of propagation of the cloud. This work details the conditions to maximize the cloud size without moving towards a multi-channel streamer regime. Based on the analysis and the Abel transform processing of the emission of excited states of nitrogen from the discharge, a focus is made on the structuration of the plasma cloud while it is propagating. It shows how much, according to the experimental conditions, the external electric field can be screened by the plasma and, inversely, how deep and how long a high electric field can be sustained in the gap, that is challenging for pulsed atmospheric plasmas applications. This work benefits from the financial support of the National Agency of Research within the framework of the project ANR-13-BS09-0014.

  1. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    NASA Astrophysics Data System (ADS)

    Mamede, Anne-Sophie; Nuns, Nicolas; Cristol, Anne-Lise; Cantrel, Laurent; Souvi, Sidi; Cristol, Sylvain; Paul, Jean-François

    2016-04-01

    In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8-12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe2O3 oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  2. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China

    PubMed Central

    Wang, Shanshan; Nan, Jialiang; Shi, Chanzhen; Fu, Qingyan; Gao, Song; Wang, Dongfang; Cui, Huxiong; Saiz-Lopez, Alfonso; Zhou, Bin

    2015-01-01

    Atmospheric ammonia (NH3) has great environmental implications due to its important role in ecosystem and global nitrogen cycle, as well as contribution to secondary particle formation. Here, we report long-term continuous measurements of NH3 at different locations (i.e. urban, industrial and rural) in Shanghai, China, which provide an unprecedented portrait of temporal and spatial characteristics of atmospheric NH3 in and around this megacity. In addition to point emission sources, air masses originated from or that have passed over ammonia rich areas, e.g. rural and industrial sites, increase the observed NH3 concentrations inside the urban area of Shanghai. Remarkable high-frequency NH3 variations were measured at the industrial site, indicating instantaneous nearby industrial emission peaks. Additionally, we observed strong positive exponential correlations between NH4+/(NH4++NH3) and sulfate-nitrate-ammonium (SNA) aerosols, PM2.5 mass concentrations, implying a considerable contribution of gas-to-particle conversion of ammonia to SNA aerosol formation. Lower temperature and higher humidity conditions were found to favor the conversion of gaseous ammonia to particle ammonium, particularly in autumn. Although NH3 is currently not included in China’s emission control policies of air pollution precursors, our results highlight the urgency and importance of monitoring gaseous ammonia and improving its emission inventory in and around Shanghai. PMID:26514559

  3. A new dynamical atmospheric ionizing radiation (AIR) model for epidemiological studies

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clem, J. M.; Goldhagen, P. E.; Wilson, J. W.

    2003-01-01

    A new Atmospheric Ionizing Radiation (AIR) model is currently being developed for use in radiation dose evaluation in epidemiological studies targeted to atmospheric flight personnel such as civilian airlines crewmembers. The model will allow computing values for biologically relevant parameters, e.g. dose equivalent and effective dose, for individual flights from 1945. Each flight is described by its actual three dimensional flight profile, i.e. geographic coordinates and altitudes varying with time. Solar modulated primary particles are filtered with a new analytical fully angular dependent geomagnetic cut off rigidity model, as a function of latitude, longitude, arrival direction, altitude and time. The particle transport results have been obtained with a technique based on the three-dimensional Monte Carlo transport code FLUKA, with a special procedure to deal with HZE particles. Particle fluxes are transformed into dose-related quantities and then integrated all along the flight path to obtain the overall flight dose. Preliminary validations of the particle transport technique using data from the AIR Project ER-2 flight campaign of measurements are encouraging. Future efforts will deal with modeling of the effects of the aircraft structure as well as inclusion of solar particle events. Published by Elsevier Ltd on behalf of COSPAR.

  4. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    SciTech Connect

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  5. Atmospheric science facility pallet-only mode space transportation system payload (feasibility study), Volume 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The economic and technical feasibility is assessed of employing a pallet-only mode for conducting Atmospheric Magnetospheric Plasmas-in-Space experiments. A baseline design incorporating the experiment and instrument descriptions is developed. The prime instruments are packaged into four pallets in a physical and functional manner compatible with the Space Transportation System capabilities and/or constraints and an orbiter seven-day mission timeline. Operational compatibility is verified between the orbiter/payload and supporting facilities. The development status and the schedule requirements applicable to the Atmospheric Science Facility mission are identified. Conclusions and recommendations are presented and discussed.

  6. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) - Total Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning.

    This movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms.

    This movie shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft

  7. Study of air-pollution mixing heights and atmospheric turbulence over New York City - data report

    SciTech Connect

    SethuRaman, S.; Henderson, C.; Volk, T.; Hoffert, M.I.

    1982-08-01

    A major factor that affects the variation of ground-level concentration of air pollutants such as particulates, sulfur oxide, nitrogen oxides, carbon monoxide, hydrocarbons, and photochemical oxidants is the mixing height in the earth's atmosphere close to the surface. This is the layer within which processes associated with the atmospheric turbulence generated by the surface roughness and heating dominate. In order to investigate the variation of this mixing height and associated turbulence over New York City, an experiment was performed over the Barney building of New York University located in lower Manhattan. The mixing height was measured continuously with an acoustic sounder for 10 days from the roof of the Barney building estimated to be 50m above the street level. Several meteorological instruments were used on a 16m tower located on the roof of this building to study other atmospheric variables in the mixed layer. A description is given of the instruments and the data acquisition system used in the experiment. The data reveal significant heights of the mixed layer (200 to 400m) during nocturnal conditions which are probably due to urban heat island effects. Horizontal turbulence levels vary between 10 and 20 percent.

  8. Heat treatment's effects on hydroxyapatite powders in water vapor and air atmosphere

    NASA Astrophysics Data System (ADS)

    Karabulut, A.; Baştan, F. E.; Erdoǧan, G.; Üstel, F.

    2015-03-01

    Hydroxyapatite (HA; Ca10(PO4)6(OH)2) is the main chemical constituent of bone tissue (~70%) as well as HA which is a calcium phosphate based ceramic material forms inorganic tissue of bone and tooth as hard tissues is used in production of prosthesis for synthetic bone, fractured and broken bone restoration, coating of metallic biomaterials and dental applications because of its bio compatibility. It is known that Hydroxyapatite decomposes with high heat energy after heat treatment. Therefore hydroxyapatite powders that heated in water vapor will less decomposed phases and lower amorphous phase content than in air atmosphere. In this study high purity hydroxyapatite powders were heat treated with open atmosphere furnace and water vapor atmosphere with 900, 1000, 1200 °C. Morphology of same powder size used in this process by SEM analyzed. Chemical structures of synthesized coatings have been examined by XRD. The determination of particle size and morphological structure of has been characterized by Particle Sizer, and SEM analysis, respectively. Weight change of sample was recorded by thermogravimetric analysis (TGA) during heating and cooling.

  9. Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma

    PubMed Central

    Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G.; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L.

    2012-01-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm2). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log10 to 5 log10 reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided. PMID:22467505

  10. Atmospheric properties reconstruction from the Mars Science Laboratory Entry, Descent and Landing

    NASA Astrophysics Data System (ADS)

    Holstein-Rathlou, Christina; Withers, Paul

    2014-11-01

    The Mars Science Laboratory (MSL) landed on August 5, 2012 in Gale Crater on Mars (4.5 S, 137.4 E) [1]. The MSL entry vehicle measured accelerations and angular velocity during its descent through the Martian atmosphere using accelerometers and gyroscopes in an inertial measurement unit. We have applied smoothing techniques previously developed for the NASA Phoenix Mars mission [2] to these acceleration data. Smoothed accelerations were used in conjunction with the vehicle’s aerodynamic database to reconstruct atmospheric density, pressure and temperature profiles to above 120 km altitude. The density profile was estimated using axial accelerations in the drag force equation. Corresponding pressure and temperature profiles were calculated using the hydrostatic equilibrium and ideal gas law, respectively. In contrast to previous missions, MSL used a guided entry that resulted in periods of near-horizontal flight at approximately 20 km altitude [3], during which pressure could not be determined from hydrostatic equilibrium. Instead, atmospheric pressures at low altitudes were determined independently by the Mars Entry Atmospheric Data System (MEADS) [4]. These were used in conjunction with accelerometer-derived densities to extend the atmospheric temperature profile through the period of near-horizontal flight. Although the results present only a snapshot of the regional atmospheric conditions at the time of entry, descent and landing of MSL, they have excellent vertical resolution and vertical extent, thereby complementing orbital observations. We will present an overview of our atmospheric reconstruction process, the derived atmospheric profiles, and preliminary scientific interpretation of the atmospheric results. References: [1] Vasavada, A.R. et al (2014), JGR-Planets, 119, 6, 1134-1161 [2] Withers, P. (2013) Planet. & Space Sci., 79-80, 52-55, [3] Dutta, S. et al. (2013) 23rd AAS/AIAA Space Flight Mechanics Meeting, AAS 13-309, [4] Schoenenberger, M. et al

  11. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  12. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  13. Space Charge Transient Kinetic Characteristics in DC Air Corona Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Liu, Xinghua; Xian, Richang; Sun, Xuefeng; Wang, Tao; Lv, Xuebin; Chen, Suhong; Yang, Fan

    2014-08-01

    Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona discharges. Using a two-dimensional axisymmetrical kinetics model, into which the photoionization effect is incorporated, the DC air corona discharge at atmosphere pressure is studied. The plasma model is based on a self-consistent, multi-component, and continuum description of the air discharge, which is comprised of 12 species and 22 reactions. The discharge voltage-current characteristic predicted by the model is found to be in quite good agreement with experimental measurements. The behavior of the electronic avalanche progress is also described. O2+ and N2+ are the dominant positive ions, and the values of O- and O2- densities are much smaller than that of the electron. The electron and positive ion have a low-density thin layer near the anode, which is a result of the surface reaction and absorption effect of the electrode. As time progresses, the electric field increases and extends along the cathode surface, whereas the cathode fall shrinks after the corona discharge hits the cathode; thus, in the cathode sheath, the electron temperature increases and the position of its peak approaches to the cathode. The present computational model contributes to the understanding of this physical mechanism, and suggests ways to improve the electrical insulation system.

  14. Simulation of radio emission from air showers in atmospheric electric fields

    SciTech Connect

    Buitink, S.; Huege, T.; Falcke, H; Kuijpers, J.

    2010-02-25

    We study the effect of atmospheric electric fields on the radio pulse emitted by cos- mic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are accelerated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the electric field on the shower particles. We find that the radio pulse is significantly altered in background fields of the order of ~100 V/cm and higher. Practically, this means that air showers passing through thunderstorms emit radio pulses that are not a reliable measure for the shower energy. Under other weather circumstances significant electric field effects are expected to occur rarely, but nimbostratus clouds can harbor fields that are large enough. In general, the contribution of the electric field to the radio pulse has polarization properties that are different from the geomagnetic pulse. In order to filter out radio pulses that have been affected by electric field effects, radio air shower experiments should keep weatherinformation and perform full polarization measurements of the radio signal.

  15. Compact High-Velocity Atmospheric Pressure Dielectric Barrier Plasma Jet in Ambient Air

    NASA Astrophysics Data System (ADS)

    Annette, Meiners; Michael, Leck; Bernd, Abel

    2015-01-01

    In this paper, a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted. In the present technological approach, the employment of air poses a significant challenge. The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime. The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient. In this way, the electron density and in turn the density of reactive species is increased. In addition, the plasma jet assembly is equipped with a short electrode. This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species. The plasma jet is formed within and emitted by a small conical nozzle. A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle. In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma. The range of short-lived active plasma species is in turn considerably enhanced. The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment. Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.

  16. Measurement of transient force produced by a propagating arc magnetohydrodynamic plasma actuator in quiescent atmospheric air

    NASA Astrophysics Data System (ADS)

    Choi, Young Joon; Sirohi, Jayant; Raja, Laxminarayan L.

    2015-10-01

    An experimental study was conducted on a magnetohydrodynamic plasma actuator consisting of two parallel, six inch long, copper electrodes flush mounted on an insulating ceramic plate. An electrical arc is generated by a  ∼1 kA current pulse at  ∼100 V across the electrodes. A self-induced Lorentz force drives the arc along the electrodes. The motion of the arc induces flow in the surrounding air through compression as well as entrainment, and generates a transient force, about  ∼4 ms in duration. Experiments were performed on a prototype actuator in quiescent atmospheric air to characterize the motion of the arc and the momentum transferred to the surrounding air. Measurements included transient force and total impulse generated by the actuator as well as the armature voltage and current. The arc shape and transit velocity were determined by high-speed imaging. A peak force of 0.4 N imparting an impulse of 0.68 mN-s was measured for a peak current of 1.2 kA. The force scaled with the square of the armature current and the impulse scaled linearly with the spent capacitor energy. The results provide insight into the mechanisms of body force generation and momentum transfer of a magnetohydrodynamic plasma actuator.

  17. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    SciTech Connect

    Johnson, Michael J.; Go, David B.

    2015-12-28

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  18. CMAQ (Community Multi-Scale Air Quality) atmospheric distribution model adaptation to region of Hungary

    NASA Astrophysics Data System (ADS)

    Lázár, Dóra; Weidinger, Tamás

    2016-04-01

    For our days, it has become important to measure and predict the concentration of harmful atmospheric pollutants such as dust, aerosol particles of different size ranges, nitrogen compounds, and ozone. The Department of Meteorology at Eötvös Loránd University has been applying the WRF (Weather Research and Forecasting) model several years ago, which is suitable for weather forecasting tasks and provides input data for various environmental models (e.g. DNDC). By adapting the CMAQ (Community Multi-scale Air Quality) model we have designed a combined ambient air-meteorological model (WRF-CMAQ). In this research it is important to apply different emission databases and a background model describing the initial distribution of the pollutant. We used SMOKE (Sparse Matrix Operator Kernel Emissions) model for construction emission dataset from EMEP (European Monitoring and Evaluation Programme) inventories and GEOS-Chem model for initial and boundary conditions. Our model settings were CMAQ CB05 (Carbon Bond 2005) chemical mechanism with 108 x 108 km, 36 x 36 km and 12 x 12 km grids for regions of Europe, the Carpathian Basin and Hungary respectively. i) The structure of the model system, ii) a case study for Carpathian Basin (an anticyclonic weather situation at 21th September 2012) are presented. iii) Verification of ozone forecast has been provided based on the measurements of background air pollution stations. iv) Effects of model attributes (f.e. transition time, emission dataset, parameterizations) for the ozone forecast in Hungary are also investigated.

  19. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    NASA Astrophysics Data System (ADS)

    Johnson, Michael J.; Go, David B.

    2015-12-01

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ˜30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  20. Historical Research in the Atmospheric Sciences: The Value of Literature Reviews, Libraries, and Librarians.

    NASA Astrophysics Data System (ADS)

    Schultz, David M.

    2004-07-01

    Based on a talk given at the sixth annual meeting of the Atmospheric Science Librarians International, this paper explores the author's experiences performing reviews of the scientific literature as a tool to advancing meteorology and studying the history of science. Three phases of performing literature searches with varying degrees of interaction with a research librarian are considered: do it yourself, librarian assisted, and librarian as collaborator. Examples are given for each phase: occluded fronts, conditional symmetric instability, and static instability terminology, respectively. Electronic availability of information is changing the relationship between scientists and librarians. Yet, despite these changes, books on library shelves and knowledgeable human librarians remain essential to the scientific enterprise.

  1. Science on Spacelab. [astronomy, high energy astrophysics, life sciences, and solar, atmospheric and space physics

    NASA Technical Reports Server (NTRS)

    Schmerling, E. R.

    1977-01-01

    Spacelab was developed by the European Space Agency for the conduction of scientific and technological experiments in space. Spacelab can be taken into earth orbit by the Space Shuttle and returned to earth after a period of 1-3 weeks. The Spacelab modular system of pallets, pressurized modules, and racks can contain large payloads with high power and telemetry requirements. A working group has defined the 'Atmospheres, Magnetospheres, and Plasmas-in-Space' project. The project objectives include the absolute measurement of solar flux in a number of carefully selected bands at the same time at which atmospheric measurements are made. NASA is committed to the concept that the scientist is to play a key role in its scientific programs.

  2. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping

    EPA Science Inventory

    Research in Action: Collect air quality data to characterize near-road/near-source hotspots; Determine potential impact on nearby residences & roadways; Case study of successful use of such data; Relationship between distance to roadways and industrial sources, exposure to...

  3. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 3: Atmospheric Sciences

    SciTech Connect

    Not Available

    1990-06-01

    This 1989 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment, safety, and health conducted during fiscal year 1989. The report again consists of five parts, each in a separate volume. This volume contains research in the atmospheric sciences. Currently, the broad goals of atmospheric research at PNL are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, continental, and global scales in the air, in clouds, and on the surface. The redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. Eventually, large-scale experiments on cloud processing and redistribution of contaminants will be integrated into the national program on global change, investigating how energy pollutants affect aerosols and clouds and the transfer of radiant energy through them. As the significance of this effect becomes clear, its global impact on climate will be studied through experimental and modeling research. The description of ongoing atmospheric research at PNL is organized in terms of the following study areas: atmospheric studies in complex terrain, large-scale atmospheric transport and processing of emissions, and climate change. This report describes the progress in FY 1989 in each of these areas. A divider page summarizes the goals of each area and lists project titles that support research activities. 9 refs., 2 figs., 3 tabs.

  4. 75 FR 64726 - Science Advisory Board Staff Office; Request for Nominations of Experts To Serve on the Clean Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ...The EPA Science Advisory Board (SAB) Staff Office is requesting public nominations of experts to serve on the Clean Air Scientific Advisory Committee (CASAC) Air Monitoring and Methods Subcommittee...

  5. 75 FR 4070 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Air Quality Modeling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... AGENCY Science Advisory Board Staff Office; Notification of a Public Meeting of the Air Quality Modeling... public meeting of the Air Quality Modeling Subcommittee (AQMS) of the Advisory Council on Clean Air... air quality modeling results for scenarios with and without EPA's regulatory programs...

  6. Extending radiative transfer models by use of Bayes rule. [in atmospheric science

    NASA Technical Reports Server (NTRS)

    Whitney, C.

    1977-01-01

    This paper presents a procedure that extends some existing radiative transfer modeling techniques to problems in atmospheric science where curvature and layering of the medium and dynamic range and angular resolution of the signal are important. Example problems include twilight and limb scan simulations. Techniques that are extended include successive orders of scattering, matrix operator, doubling, Gauss-Seidel iteration, discrete ordinates and spherical harmonics. The procedure for extending them is based on Bayes' rule from probability theory.

  7. Atmospheric Chemistry Measurements in Schools and Outreach Activities with Low-cost Air Quality Sensors

    NASA Astrophysics Data System (ADS)

    Fleming, Z.; Monks, P. S.; McKenzie, K.

    2014-12-01

    The increasing range of low cost air quality sensors entering the market-place or being developed in-house in the last couple of years has led to many possibilities for using these instruments for public outreach activities or citizen science projects. A range of instruments sent out into local schools for the children to interpret and analyse the data and put the air quality in their area into context. A teaching package with tutorials has been developed to bring the data to life and link in with curriculum.The instruments have also been positioned around the city of Leicester in the UK to help understand the spatial variations in air quality and to assess the impact of retro-fitting buses on a busy bus route. The data is easily accessible online on a near real time basis and the various instruments can be compared with others around the country or the world from classrooms around the world.We will give an overview of the instrumentation with a comparison with commercial and cutting edge research instrumentation, the type of activities that were carried out and the public outreach forums where the data can be used.

  8. Role of water and discharge mode on modulating properties in an atmospheric air MHCD jet

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Chenying; Lei, Juzhang; Hu, Huimin; Zheng, Peichao; He, Wei

    2016-04-01

    A portable micro hollow cathode discharge (MHCD) device was designed in this paper to generate water-air plasma jet. The results showed that MHCD jet pattern was changed from self-pulsing discharge mode to DC mode with the increasing of voltage, and the critical voltage value of discharge mode increased with the rise of gas flow. In order to study the influences of discharge mode and water content on MHCD jet, the electrical characteristics and radicals were all measured in different conditions. We found that the length of jet decreased and temperature increased with raising water-air ratio, and during self-pulsing discharge mode, •OH content was extremely low because of the low energy of electron, but level of NO was raised with gradually increasing applied voltage. In DC mode, the results showed there was least NO content, on the other hand •OH content increased with rise of voltage and water-air ratio. O existed in both discharge modes and the effect of water content on the O production was complex. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  9. An experiment to determine atmospheric CO concentrations of tropical South Atlantic air samples

    NASA Astrophysics Data System (ADS)

    Kirchhoff, V. W. J. H.; Aires, C. B.; Alvala, P. C.

    2003-04-01

    New observations of atmospheric carbon monoxide, CO, are described, from tropical South Atlantic air samples. A new observational site, Maxaranguape, was set up in a clean remote environment right next to the ocean on the north-east coast of Brazil, to obtain CO mixing ratios and auxiliary data (meteorological parameters, ozone (O3), carbon dioxide (CO2) and methane (CH4)) during three sequential seasonal cycles. The seasonal variations of temperature, humidity and precipitation are shown for the new site. Chromatographic separation followed by mercury oxide detection is used to measure CO. The seasonality of the CO data was clearly established. Minima are seen during April, May and June showing wet-period averages of 56.1 parts per billion by volume (ppbv), with standard deviation 8.7 ppbv; during dry-period months, August to November, the average was 77.7 ± 16.5 ppbv. For comparison, CO concentrations were also measured over continental areas in Brazil. Much larger values have been found in moderate 'burning' regions, such as the south of the state of Mato Grosso and the north-western part of the state of Parana, where 200 ppbv in the dry season has been observed. Since normally the air masses have travelled for several days over the ocean, the air masses over the site present low chemical activity. Daily variations of CO2 are very small, of the order of a few percent relative to the diurnal mean. Only on rare occasions, when the wind direction changes, is the sampled air contaminated from flowing over the inhabited shoreline to the south, and then CO2 varies inversely with O3. The monthly mean CH4 data does not show a clear seasonal variation, possibly because the amplitude of the CH4 variation is only of the order of 1%, which is close to the precision of the measuring instrument.

  10. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  11. DYNAMICS of optical-microphysical properties of atmospheric haze at stepwise change of air humidity

    NASA Astrophysics Data System (ADS)

    Rakhimov, Rustam F.; Kozlov, Valerii S.; Shmargunov, Vladimir P.

    2015-11-01

    The three-day cycle of spectronephelometric measurements of the angular aerosol scattering coefficients of the near-ground aerosol at the stepwise increase/decrease of the relative air humidity of 50, 65, 75, 85, and 90% has been conducted in the Large Aerosol Chamber of IAO SB RAS filled with the atmospheric air. The results of solution of the inverse problem have shown that the condensation coarsening of particles at the simultaneous decrease of their refractive index and the imaginary part of the complex refraction index (absorption index) is stably observed with an increase of the relative air humidity for ultrafine (with radii of 30-100 nm) and fine (100-370 nm) particles. However, for the coarse particles (370-600 nm), the increase of humidity leads to the effect of increase of the refractive index from 1.60 to 1.66, while the values of the absorption index are low (˜10-5) and vary only slightly at the aerosol humidification. The effective radius of particles (165-195 nm) and the single scattering albedo (0.71-0.83) increase synchronously with an increase of the air humidity. For two days of aerosol evolution in the closed volume of the chamber, the total extinction and absorption coefficients also vary synchronously with the variation of humidity, but at the third day the influence of humidity on the absorption coefficient was not observed. A possible reason for appearance of specific condensation peculiarities is the influence of humidity variations on the inflow/outflow of particles smaller than 30 nm and larger than 600 nm having various physical-chemical composition into the optically active size range.

  12. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model

  13. The Lunar Atmosphere and Dust Environment Explorer (LADEE): Initial Science Results

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Hine, B.; Delory, G. T.; Salute, J. S.; Noble, S.; Colaprete, A.; Horanyi, M.; Mahaffy, P.

    2014-01-01

    On September 6, 2013, a nearperfect launch of the first Minotaur V rocket successfully carried NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) into a higheccentricity geocentric orbit. The launch, from NASA's Wallops Flight Facility in Virginia, was visible from much of the eastern seaboard. Over the next 30 days, LADEE performed three phasing orbits, with near-perfect maneuvers that placed apogee at ever higher altitudes in preparation for rendezvous with the Moon. LADEE arrived at the Moon on October 6, 2013, during the government shutdown. LADEE's science objectives are twofold: (1) Determine the composition of the lunar atmosphere, investigate processes controlling its distribution and variability, including sources, sinks, and surface interactions; (2) Characterize the lunar exospheric dust environment, measure its spatial and temporal variability, and effects on the lunar atmosphere, if any.

  14. Review of the Physical Science Facility Stack Air Sampling Probe Locations

    SciTech Connect

    Glissmeyer, John A.

    2007-09-30

    This letter report reviews compliance of the current design of the Physical Science Facility (PSF) stack air sampling locations with the ANSI/HPS N13.1-1999 standard. The review was based on performance criteria used for locating air sampling probes, the design documents provided and available information on systems previously tested for compliance with the criteria. Recommendations are presented for ways to bring the design into compliance with the requirements for the sampling probe placement.

  15. The Passy-2015 field experiment: wintertime atmospheric dynamics and air quality in a narrow alpine valley

    NASA Astrophysics Data System (ADS)

    Paci, Alexandre; Staquet, Chantal

    2016-04-01

    Wintertime anticyclonic conditions lead to the formation of persistent stable boundary layers which may induce severe air pollution episodes in urban or industrialized area, particularly in mountain regions. The Arve river valley in the Northern Alps is very sensitive to this phenomenon, in particular close to the city of Passy (Haute-Savoie), 20 km down valley past Chamonix. This place is indeed one of the worst place in France regarding air quality, the concentration of fine particles and Benzo(a)pyrene (a carcinogenic organic compound) regularly exceeding the EU legal admissible level during winter. Besides air quality measurements, such as the ones presently carried in the area by the local air quality agency Air Rhône-Alpes or in the DECOMBIO project led by LGGE, it is crucial to improve our knowledge of the atmospheric boundary layer dynamics and processes at the valley scale under these persistent stable conditions in order to improve our understanding on how it drives pollutant dispersion. These issues motivated the Passy-2015 field experiment which took place during the winter 2014-2015. A relatively large set-up of instruments was deployed on a main measurement site in the valley center and on four other satellite sites. It includes several remote sensing instruments, a surface flux station, a 10 m instrumented tower, a large aperture scintillometer, a fog monitoring station among others. Most of the instruments were present from early January to the end of February. During two intensive observation periods, 6-14 February and 17-20 February, the instrumental set-up was completed on the main site with high frequency radio-soundings (up to one per 1h30), a tethered balloon, a remote controlled drone quadcopter and a sodar. The field campaign, the instruments, the meteorological situations observed and preliminary results will be presented. This field experiment is part of the Passy project funded by ADEME through the French national programme LEFE/INSU and

  16. Earth Science Data and Applications for K-16 Education from the NASA Langley Atmospheric Science Data Center

    NASA Astrophysics Data System (ADS)

    Phelps, C. S.; Chambers, L. H.; Alston, E. J.; Moore, S. W.; Oots, P. C.

    2005-05-01

    NASA's Science Mission Directorate aims to stimulate public interest in Earth system science and to encourage young scholars to consider careers in science, technology, engineering and mathematics. NASA's Atmospheric Science Data Center (ASDC) at Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry that are being produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. However, barriers still exist in the use of these actual satellite observations by educators in the classroom to supplement the educational process. Thus, NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities by reducing the ASDC data holdings to `microsets' that can be easily accessible and explored by the K-16 educators and students. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. A MY NASA DATA Live Access Server (LAS) has been populated with ASDC data such that users can create custom microsets online for desired time series, parameters and geographical regions. The LAS interface is suitable for novice to advanced users, teachers or students. The microsets may be visual representations of data or text output for spreadsheet analysis. Currently, over 148 parameters from the Clouds and the Earth's Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud Climatology Project (ISCCP) are available and provide important information on clouds, fluxes and cycles in the Earth system. Additionally, a MY NASA DATA OPeNDAP server has been established to facilitate file transfer of

  17. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants -- Trichlorotrifluoroethane and trichloroethylene

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Takahashi, Tadashi; Masuda, Senichi

    1996-03-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharged plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide--50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject high electric power in the gas and to decompose the contaminants. A Gas Chromatograph Mass Spectrometer was used to analyze discharge products of dense CFC-113 or trichloroethylene. Among the detected products were HCl, CClFO, and CHCl{sub 3}. Two different electrode configurations; the silent discharge (coaxial) electrode and the coil-electrode were also tested and compared to each other as a gas reactor.

  18. Energy of electrons generated during a subnanosecond breakdown in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F. Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Rybka, D. V.

    2013-07-15

    The influence of the cathode design on the energy of the main group of electrons generated during a subnanosecond breakdown in atmospheric-pressure air was studied experimentally. The electron energy was measured using a time-of-flight spectrometer with a picosecond time resolution. It is shown that the energy of the main group of electrons increases with increasing cathode curvature radius. It is established using 400- to 650-{mu}m-thick aluminum foils that the electron energy reaches its maximum value in voltage pulses with abrupt trailing edges and amplitudes below the maximum amplitude. Electrons with maximum energies are generated with a stronger spatial and amplitude scatter than those with average energies.

  19. Cell immobilization on polymer by air atmospheric pressure plasma jet treatment

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Kwon, Jae-Sung; Om, Ji-yeon; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-08-01

    The study of cell immobilization on delicate polymer by an air atmospheric pressure plasma jet (AAPPJ) is required for its medical application. The aim of this study was to evaluate whether AAPPJ treatment induce cell immobilization effect on delicate polymers without significant change of surface roughness by AAPPJ treatment. After surface roughness, dynamic contact angle, and chemical characteristics were investigated, the immobilization effect was evaluated with the mouse fibroblast L929 cell line. Surface roughness change was not observed (P > 0.05) in either delicate dental wax or polystyrene plate (PSP) as advancing and receding contact angles significantly decreased (P < 0.05), thanks to decreased hydrocarbon and formation of oxygen-related functional groups in treated PSP. Adherent L929 cells with elongated morphology were found in treated PSP along with the formation of immobilization markers vinculin and actin cytoskeleton. Increased PTK2 gene expression upregulated these markers on treated PSP.

  20. Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure.

    PubMed

    Soares de Lima Filho, Elton; Nemova, Galina; Loranger, Sébastien; Kashyap, Raman

    2013-10-21

    We report for the first time the experimental demonstration of optical cooling of a bulk crystal at atmospheric pressure. The use of a fiber Bragg grating (FBG) sensor to measure laser-induced cooling in real time is also demonstrated for the first time. A temperature drop of 8.8 K from the chamber temperature was observed in a Yb:YAG crystal in air when pumped with 4.2 W at 1029 nm. A background absorption of 2.9 × 10⁻⁴ cm⁻¹ was estimated with a pump wavelength at 1550 nm. Simulations predict further cooling if the pump power is optimized for the sample's dimensions. PMID:24150315

  1. Atmospheric control of Aedes aegypti populations in Buenos Aires (Argentina) and its variability

    NASA Astrophysics Data System (ADS)

    de Garín, A.; Bejarán, R. A.; Carbajo, A. E.; de Casas, S. C.; Schweigmann, N. J.

    The mosquito Aedes aegypti is the main urban vector responsible for the transmission of dengue fever and dengue hemorrhagic fever. The city of Buenos Aires, Argentina, is located at the southern end of the world distribution of the species. The population abundance of Ae. aegypti is mainly regulated by environmental factors. We calculated the potential number of times that a female could lay eggs during its mean life expectancy, based on potential egg production and daily meteorological records. The model considers those variables implying physical hazard to the survival of Ae. aegypti, mosquito flying activity and oviposition. The results, obtained after calibration and validation of the model with field observations, show significant correlation (P<0.001) for different lags depending on the life stage. From these results, more favorable atmospheric conditions for Ae. aegypti reproduction (linked to the urban climatic change) can be observed. The climatic variability in the last decade resembles conditions at the end of 19th century.

  2. Response of atmospheric pressure and air temperature to the solar events in October 2003

    NASA Astrophysics Data System (ADS)

    Avakyan, S. V.; Voronin, N. A.; Nikol'sky, G. A.

    2015-12-01

    Variations in the main weather parameters were studied for effects of solar flares and magnetic storms: the air temperature T and the atmospheric pressure P. We report the results of our comparison of these parameters measured at the mountain meteorological observatory near Kislovodsk (2100 m above sea level) to the monitoring data on strong solargeomagnetic perturbations for October 2003. We observed a decrease in the value of P for medium and large flares (of the type M > 4) in nine cases (82%) and an increase in T after magnetic storms with K p > 5 in 16 cases (84%). Hence, the manifestation of solar flares and magnetic storms in weather parameter variations ( T and P) at an altitude of 2100 m was proven, and the contribution of the radiooptical three-step trigger mechanism to solar-weather relations was qualitatively confirmed.

  3. Generation of Atmospheric Pressure Plasma by Repetitive Nanosecond Pulses in Air Using Water Electrodes

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Yu, Yang; Zhang, Cheng; Jiang, Hui; Yan, Ping; Zhou, Yuanxiang

    2011-12-01

    Dielectric barrier discharge (DBD) excitated by pulsed power is a promising method for producing nonthermal plasma at atmospheric pressure. Discharge characteristic in a DBD with salt water as electrodes by a home-made unipolar nanosecond-pulse power source is presented in this paper. The generator is capable of providing repetitive pulses with the voltage up to 30 kV and duration of 70 ns at a 300 Ω resistive load. Applied voltage and discharge current are measured under various experimental conditions. The DBD created between two liquid electrodes shows that the discharge is homogeneous and diffuse in the whole discharge regime. Spectra diagnosis is conducted by an optical emission spectroscopy. The air plasma has strong emission from nitrogen species below 400 nm, notably the nitrogen second positive system.

  4. Atmospheric-air plasma enhances coating of different lubricating agents on polyester fiber

    NASA Astrophysics Data System (ADS)

    Ebrahimi, I.; Kiumarsi, A.; Parvinzadeh Gashti, M.; Rashidian, R.; Norouzi, M. Hossein

    2011-10-01

    This research work involves the plasma treatment of polyethylene terephthalate fiber to improve performance of various ionic lubricating agents. To do this, polyester fabric was pre-scoured with detergent, treated with atmospheric-air plasma and then coated with anionic, cationic and nonionic emulsions. Chemical and physical properties of samples were investigated by the use of Fourier transform infrared spectroscopy (FTIR), bending lengths (BL), wrinkle recovery angles (WRA), fiber friction coefficient analysis (FFCA), moisture absorbency (MA), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). Study on chemical properties of fibers revealed that the plasma pretreatment modifies the surface of fibers and increases the reactivity of substrate toward various ionic emulsions. Physical properties of textiles indicated that the combination of plasma and emulsion treatments on polyester can improve crease resistant, drapeability and water repellency due to uniform coating of various emulsions on surface of textiles.

  5. Effect of laser intensity on radio frequency emissions from laser induced breakdown of atmospheric air

    NASA Astrophysics Data System (ADS)

    Vinoth Kumar, L.; Manikanta, E.; Leela, Ch.; Prem Kiran, P.

    2016-06-01

    The studies on the effect of input laser intensity, through the variation of laser focusing geometry, on radio frequency (RF) emissions, over 30-1000 MHz from nanosecond (ns) and picosecond (ps) laser induced breakdown (LIB) of atmospheric air are presented. The RF emissions from the ns and ps LIB were observed to be decreasing and increasing, respectively, when traversed from tight to loose focusing conditions. The angular and radial intensities of the RF emissions from the ns and ps LIB are found to be consistent with sin2θ/r2 dependence of the electric dipole radiation. The normalized RF emissions were observed to vary with incident laser intensity (Iλ2), indicating the increase in the induced dipole moment at moderate input laser intensities and the damping of radiation due to higher recombination rate of plasma at higher input laser intensities.

  6. Bio-Decontamination of Water and Surfaces by DC Discharges in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Machala, Zdenko; Tarabová, Barbora; Pelach, Michal; Šipoldová, Zuzana; Hensel, Karol; Janda, Mário; Šikurová, Libuša

    Two types of DC-driven atmospheric air discharges, including a streamer corona and a transient spark with short high current pulses of limited energy, were employed for bio-decontamination of water and various surfaces (agar plates, plastic foils, human teeth) contaminated by bacteria or spores (Salmonella typhimurium, Bacillus cereus). Both discharges generate cold non-equilibrium plasma. The discharges combined with the electro-spraying of the treated water through the needle electrode lead to fast and efficient bio-decontamination. Experiments comparing direct and indirect plasma effects, oxidation stress measurements in the cell membranes, and chemical changes induced in the treated water enable assessment of the plasma agents being responsible for microbial inactivation. Radicals and reactive oxygen species seem to be dominant biocidal agents, although deeper understanding of the plasma-induced water chemistry and of the temporal evolution of the bio-inactivation processes is needed.

  7. Atmospheric pollution: a case study of degrading urban air quality over Punjab, India.

    PubMed

    Sehra, Parmjit Singh

    2007-01-01

    This paper presents the results of a case study of urban air quality over a densely populated city Ludhiana situated in Punjab, India, in the form of monthly and annual average concentrations of Suspended Particulate Matter (SPM), NO2 and SO2 for the periods 1988-1989, 1994-1999 and 2001-2005 which is generally found to be increasing with time and thus requires immediate corrective measures lest the situation becomes totally uncontrollable. The present situation is as bad as in other metropolitan Indian cities, although it seems to have somewhat improved as indicated by the latest 2001-2005 data in comparison with the past 1988-1989 and 1994-1999 data, but much more still needs to be done. In addition to the industrial and vehicular pollution, the agricultural pollution due to the burning of wheat and rice straws by the farmers should also be checked because it also creates tremendous pollution in the atmosphere. PMID:18472555

  8. Science and adventure with British Exploring in Arctic Norway: Atmospheric Chemistry research with Young people

    NASA Astrophysics Data System (ADS)

    Fleming, Zoe

    2013-04-01

    British Exploring (formerly known as British Schools Exploring Society) has been running expeditions for young people since 1932 and presently runs as many as seven expeditions a year on several continents to remote locations. Some highlights from the Arctic Norway expedition of summer 2012 are presented here, in particular following the Atmospheric Chemistry group that carried out a survey of the pollution in the local environment. The group travelled from fjord to mountain top and spent a few days exploring the Øksfjordjøkelen ice cap. The mobile nature of the expedition meant that the science had to become back-pack science, carried from one remote camp-site to another but this still allowed some cutting-edge science to be carried out that was linked with academic research.

  9. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  10. Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberer, Mark; Shidner, Jeremy D.

    2013-01-01

    On August 5th 2012, The Mars Science Laboratory entry vehicle successfully entered Mars atmosphere and landed the Curiosity rover on its surface. A Kalman filter approach has been implemented to reconstruct the entry, descent, and landing trajectory based on all available data. The data sources considered in the Kalman filtering approach include the inertial measurement unit accelerations and angular rates, the terrain descent sensor, the measured landing site, orbit determination solutions for the initial conditions, and a new set of instrumentation for planetary entry reconstruction consisting of forebody pressure sensors, known as the Mars Entry Atmospheric Data System. These pressure measurements are unique for planetary entry, descent, and landing reconstruction as they enable a reconstruction of the freestream atmospheric conditions without any prior assumptions being made on the vehicle aerodynamics. Moreover, the processing of these pressure measurements in the Kalman filter approach enables the identification of atmospheric winds, which has not been accomplished in past planetary entry reconstructions. This separation of atmosphere and aerodynamics allows for aerodynamic model reconciliation and uncertainty quantification, which directly impacts future missions. This paper describes the mathematical formulation of the Kalman filtering approach, a summary of data sources and preprocessing activities, and results of the reconstruction.

  11. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  12. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  13. Functionalization of graphene by atmospheric pressure plasma jet in air or H2O2 environments

    NASA Astrophysics Data System (ADS)

    Huang, Weixin; Ptasinska, Sylwia

    2016-03-01

    The functionalization of graphene, which deforms its band structure, can result in a metal-semiconductor transition. In this work, we report a facile strategy to oxidize single-layer graphene using an atmospheric pressure plasma jet (APPJ) that generates a variety of reactive plasma species at close to ambient temperature. We systematically characterized the oxygen content and chemical structure of the graphene films after plasma treatment under different oxidative conditions (ambient air atmosphere or hydrogen peroxide solution) by X-ray Photoelectron Spectroscopy (XPS). Plasma-treated graphene films containing more than 40% oxygen were obtained in both oxidative environments. Interestingly, prolonged irradiation led to the reduction of graphene oxides. N-doping of graphene also occurred during the APPJ treatment in H2O2 solution; the nitrogen content of the doped graphene was dependent on the duration of irradiation and reached up to 8.1% within 40 min. Moreover, the H2O2 solution served as a buffer layer that prevented damage to the graphene during plasma irradiation. Four-point probe measurement revealed an increase in sheet resistance of the plasma-treated graphene, indicating the transition of the material property from semi-metallic to semiconducting.

  14. Pyrolysis and combustion of tobacco in a cigarette smoking simulator under air and nitrogen atmosphere.

    PubMed

    Busch, Christian; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin G; Zimmermann, Ralf

    2012-04-01

    A coupling between a cigarette smoking simulator and a time-of-flight mass spectrometer was constructed to allow investigation of tobacco smoke formation under simulated burning conditions. The cigarette smoking simulator is designed to burn a sample in close approximation to the conditions experienced by a lit cigarette. The apparatus also permits conditions outside those of normal cigarette burning to be investigated for mechanistic understanding purposes. It allows control of parameters such as smouldering and puff temperatures, as well as combustion rate and puffing volume. In this study, the system enabled examination of the effects of "smoking" a cigarette under a nitrogen atmosphere. Time-of-flight mass spectrometry combined with a soft ionisation technique is expedient to analyse complex mixtures such as tobacco smoke with a high time resolution. The objective of the study was to separate pyrolysis from combustion processes to reveal the formation mechanism of several selected toxicants. A purposely designed adapter, with no measurable dead volume or memory effects, enables the analysis of pyrolysis and combustion gases from tobacco and tobacco products (e.g. 3R4F reference cigarette) with minimum aging. The combined system demonstrates clear distinctions between smoke composition found under air and nitrogen smoking atmospheres based on the corresponding mass spectra and visualisations using principal component analysis. PMID:22392377

  15. Repetitively pulsed atmospheric pressure discharge treatment of rough polymer surfaces: I. Humid air discharges

    NASA Astrophysics Data System (ADS)

    Bhoj, Ananth N.; Kushner, Mark J.

    2008-08-01

    Plasmas generated at atmospheric pressure are used to functionalize the surfaces of polymers by creating new surface-resident chemical groups. The polymers used in textiles and biomedical applications often have non-planar surfaces whose functionalization requires penetration of plasma generated species into sometimes complex surface features. In this regard, the atmospheric pressure plasma treatment of a rough polypropylene surface was computationally investigated using a two-dimensional plasma hydrodynamics model integrated with a surface kinetics model. Repetitively pulsed discharges produced in a dielectric barrier-corona configuration in humid air were considered to affix O. Macroscopic non-uniformities in treatment result from the spatial variations in radical densities which depend on the polarity of the discharge. Microscopic non-uniformities arise due to the higher reactivity of plasma produced species, such as OH radicals, which are consumed before they can diffuse deeper into surface features. The consequences of applied voltage magnitude and polarity, and the relative humidity on discharge dynamics and radical generation leading to surface functionalization, are discussed.

  16. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  17. OPERATION OF FUSION REACTORS IN ONE ATMOSPHERE OF AIR INSTEAD OF VACUUM SYSTEMS

    SciTech Connect

    Roth, J. Reece

    2009-07-26

    Engineering design studies of both magnetic and inertial fusion power plants have assumed that the plasma will undergo fusion reactions in a vacuum environment. Operation under vacuum requires an expensive additional major system for the reactor-a vacuum vessel with vacuum pumping, and raises the possibility of sudden unplanned outages if the vacuum containment is breached. It would be desirable in many respects if fusion reactors could be made to operate at one atmosphere with air surrounding the plasma, thus eliminating the requirement of a pressure vessel and vacuum pumping. This would have obvious economic, reliability, and engineering advantages for currently envisaged power plant reactors; it would make possible forms of reactor control not possible under vacuum conditions (i.e. adiabatic compression of the fusion plasma by increasing the pressure of surrounding gas); it would allow reactors used as aircraft engines to operate as turbojets or ramjets in the atmosphere, and it would allow reactors used as fusion rockets to take off from the surface of the earth instead of low earth orbit.

  18. Study on Reduction of Time Lag for Laser-Induced Electrical Discharge in Atmospheric Air with Non-Uniform Electric Field

    NASA Astrophysics Data System (ADS)

    Okano, Daisuke

    1998-11-01

    Study on Reduction of Time Lag for Laser-Induced Electrical Discharge in Atmospheric Air with Non-Uniform Electric Field* , Daisuke Okano, Kyushu Tokai University, 9-1-1 Toroku, Kumamoto, Japan. -----As an electrical discharge can be inductively occurred [1] by a pulsed laser-produced plasma (PLPP) in a rod-to-plate air gap stressed by a DC high voltage(Va), the starting point of laser-induced electrical discharge (LIED) is almost delayed more than few microseconds from focusing the laser beam. It is expected that the LIED by a PLPP is effectively occurred by reducing the time lag. The aim of our research focuses on the reduction for the time lag of LIED using CO2- and YAG pulsed lasers. The typical results are summarized as follows.The time lag of LIED in an atmospheric air gap (30mm) stressed at Va=30 kV is strongly reduced to 33 using CO2- and YAG pulsed lasers. The mechanism for the time lag of LIED is due to the electron attachment and detachment. [1] M.Inoue, T.Takashima, D.Okano et.al., Bull. of Inst. of Industrial Sci. & technical res.in Kyushu Tokai University, No.11 (1995)165 in Japanese. . *This work was supported by Grant-in-Aid for Scientific Research (C)-no.10650295 of The Ministry of education, Science Sports and Culture in japan.

  19. On the '-1' scaling of air temperature spectra in atmospheric surface layer flows

    NASA Astrophysics Data System (ADS)

    Li, D.; Katul, G. G.; Gentine, P.

    2015-12-01

    The spectral properties of scalar turbulence at high wavenumbers have been extensively studied in turbulent flows, and existing theories explaining the k-5/3 scaling within the inertial subrange appear satisfactory at high Reynolds numbers. Equivalent theories for the low wavenumber range have been comparatively lacking because boundary conditions prohibit attainment of such universal behavior. A number of atmospheric surface layer (ASL) experiments reported a k-1 scaling in air temperature spectra ETT(k) at low wavenumbers but other experiments did not. Here, the occurrence of a k-1 scaling in ETT(k) in an idealized ASL flow across a wide range of atmospheric stability regimes is investigated theoretically and experimentally. Experiments reveal a k-1 scaling persisted across different atmospheric stability parameter values (ζ) ranging from mildly unstable to mildly stable conditions (-0.1< ζ < 0.2). As instability increases, the k-1 scaling vanishes. Based on a combined spectral and co-spectral budget models and upon using a Heisenberg eddy viscosity as a closure to the spectral flux transfer term, conditions promoting a k-1 scaling are identified. Existence of a k-1 scaling is shown to be primarily linked to an imbalance between the production and dissipation rates of half the temperature variance. The role of the imbalance between the production and dissipation rates of half the temperature variance in controlling the existence of a '-1' scaling suggests that the '-1' scaling in ETT(k) does not necessarily concur with the '-1' scaling in the spectra of longitudinal velocity Euu(k). This finding explains why some ASL experiments reported k-1 in Euu(k) but not ETT(k). It also differs from prior arguments derived from directional-dimensional analysis that lead to simultaneous k-1 scaling in Euu(k) and ETT(k) at low wavenumbers in a neutral ASL.

  20. Nanoparticle formation by laser ablation in air and by spark discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Itina, T. E.; Voloshko, A.

    2013-12-01

    Recent promising methods of nanoparticle fabrication include laser ablation and spark discharge. Despite different experimental conditions, a striking similarity is often observed in the sizes of the obtained particles. To explain this result, we elucidate physical mechanisms involved in the formation of metallic nanoparticles. In particular, we compare supersaturation degree and sizes of critical nucleus obtained under laser ablation conditions with that obtained for spark discharge in air. For this, the dynamics of the expansion of either ablated or eroded products is described by using a three-dimensional blast wave model. Firstly, we consider nanosecond laser ablation in air. In the presence of a background gas, the plume expansion is limited by the gas pressure. Nanoparticles are mostly formed by nucleation and condensation taking place in the supersaturated vapor. Secondly, we investigate nanoparticles formation by spark discharge at atmospheric pressure. After efficient photoionization and streamer expansion, the cathode material suffers erosion and NPs appear. The calculation results allow us to examine the sizes of critical nuclei as function of the experimental parameters and to reveal the conditions favorable for the size reduction and for the increase in the nanoparticle yield.

  1. Atmospheric properties measurements and data collection from a hot-air balloon

    NASA Astrophysics Data System (ADS)

    Watson, Steven M.; Olson, N.; Dalley, R. P.; Bone, W. J.; Kroutil, Robert T.; Herr, Kenneth C.; Hall, Jeff L.; Schere, G. J.; Polak, M. L.; Wilkerson, Thomas D.; Bodrero, Dennis M.; Borys, R. O.; Lowenthal, D.

    1995-02-01

    Tethered and free-flying manned hot air balloons have been demonstrated as platforms for various atmospheric measurements and remote sensing tasks. We have been performing experiments in these areas since the winter of 1993. These platforms are extremely inexpensive to operate, do not cause disturbances such as prop wash and high airspeeds, and have substantial payload lifting and altitude capabilities. The equipment operated and tested on the balloons included FTIR spectrometers, multi-spectral imaging spectrometer, PM10 Beta attenuation monitor, mid- and far-infrared cameras, a radiometer, video recording equipment, ozone meter, condensation nuclei counter, aerodynamic particle sizer with associated computer equipment, a tethersonde and a 2.9 kW portable generator providing power to the equipment. Carbon monoxide and ozone concentration data and particle concentrations and size distributions were collected as functions of altitude in a wintertime inversion layer at Logan, Utah and summertime conditions in Salt Lake City, Utah and surrounding areas. Various FTIR spectrometers have been flown to characterize chemical plumes emitted from a simulated industrial stack. We also flew the balloon into diesel and fog oil smokes generated by U.S. Army and U.S. Air Force turbine generators to obtain particle size distributions.

  2. Air and steam coal partial gasification in an atmospheric fluidized bed

    SciTech Connect

    Hongcang Zhou; Baosheng Jing; Zhaoping Zhong; Yaji Huang; Rui Xiao

    2005-08-01

    Using the mixture of air and steam as gasification medium, three different rank coal partial gasification studies were carried out in a bench-scale atmospheric fluidized bed with the various operating parameters. The effects of air/coal (Fa/Fc) ratio, steam/coal (Fs/Fc) ratio, bed temperature, and coal rank on the fuel gas compositions and the high heating value (HHV) were reported in this paper. The results show that there is an optimal Fa/Fc ratio and Fs/Fc ratio for coal partial gasification. A rise of bed temperature favors the semigasification reaction of coal, but the concentrations of carbon monoxide and methane and the HHV decrease with the rise of bed temperature, except hydrogen. In addition, the gas HHVs are between 2.2 and 3.4 MJ/Nm{sup 3}. The gas yield and carbon conversion increase with Fa/Fc ratio, Fs/Fc ratio, and bed temperature, while they decrease with the rise of the rank of coal. 7 refs., 9 figs., 2 tabs.

  3. Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Jia, Caixia; Chen, Ping; Liu, Wei; Li, Bin; Wang, Qian

    2011-02-01

    Aramid fiber samples are treated by air dielectric barrier discharge (DBD) plasma at atmospheric pressure; the plasma treatment time is investigated as the major parameter. The effects of this treatment on the fiber surface physical and chemical properties are studied by using surface characterization techniques. Scanning electron microscopy (SEM) is performed to determine the surface morphology changes, X-ray photoelectron spectroscopy (XPS) is analyzed to reveal the surface chemical composition variations and dynamic contact angle analysis (DCAA) is used to examine the changes of the fiber surface wettability. In addition, the wetting behavior of a kind of thermoplastic resin, poly(phthalazinone ether sulfone ketone) (PPESK), on aramid fiber surface is also observed by SEM photos. The study shows that there seems to be an optimum treatment condition for surface modification of aramid fiber by the air DBD plasma. In this paper, after the 12 s, 27.6 W/cm3 plasma treatment the aramid fiber surface roughness is significantly improved, some new oxygen-containing groups such as C-O, Cdbnd O and Odbnd C-O are generated on the fiber surface and the fiber surface wettability is greatly enhanced, which results in the better wetting behavior of PPESK resin on the plasma-treated aramid fiber.

  4. Trajectories of air parcel motions in Mars' atmosphere computed using HYSPLIT

    NASA Astrophysics Data System (ADS)

    Bruggeman, David

    An analysis of the advection of air parcels in the Martian atmosphere during the 2001 global dust storm through the use of three-dimensional trajectories is presented. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, well-known for trajectory, dispersion, and deposition modeling, and originally developed for Earth was modified for Mars to provide forward and backward trajectories. The custom HYSPLIT for Mars uses meteorological input generated by the NASA Ames Mars General Circulation Model (MGCM). The 2001 global dust storm was the earliest on record (Ls ˜ 180°) and originated from local dust storms around the Hellas basin as the storm expanded asymmetrically to the east. Trajectories near Hellas and Claritas Fossae correspond with dust transport detected using satellite imagery. Forward trajectories at Ls = 184° from Hellas show flow to the south, transporting dust around the south polar cap, while after Ls = 188° there is an eastward shift in propagation. Air parcel trajectories intersecting the surface during the dust storm may indicate the processes involved with global dust storms contributing to dust layers in the polar regions. Backward trajectories from Claritas Fossae reveal the dust activity in this region was the result of local dust storm activity instead of the propagation of dust eastward from the Hellas region.

  5. Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Gerken, Tobias; Wei, Dandan; Chase, Randy J.; Fuentes, Jose D.; Schumacher, Courtney; Machado, Luiz A. T.; Andreoli, Rita V.; Chamecki, Marcelo; Ferreira de Souza, Rodrigo A.; Freire, Livia S.; Jardine, Angela B.; Manzi, Antonio O.; Nascimento dos Santos, Rosa M.; von Randow, Celso; dos Santos Costa, Patrícia; Stoy, Paul C.; Tóta, Julio; Trowbridge, Amy M.

    2016-01-01

    From April 2014 to January 2015, ozone (O3) dynamics were investigated as part of GoAmazon 2014/5 project in the central Amazon rainforest of Brazil. Just above the forest canopy, maximum hourly O3 mixing ratios averaged 20 ppbv (parts per billion on a volume basis) during the June-September dry months and 15 ppbv during the wet months. Ozone levels occasionally exceeded 75 ppbv in response to influences from biomass burning and regional air pollution. Individual convective storms transported O3-rich air parcels from the mid-troposphere to the surface and abruptly enhanced the regional atmospheric boundary layer by as much as 25 ppbv. In contrast to the individual storms, days with multiple convective systems produced successive, cumulative ground-level O3 increases. The magnitude of O3 enhancements depended on the vertical distribution of O3 within storm downdrafts and origin of downdrafts in the troposphere. Ozone mixing ratios remained enhanced for > 2 h following the passage of storms, which enhanced chemical processing of rainforest-emitted isoprene and monoterpenes. Reactions of isoprene and monoterpenes with O3 are modeled to generate maximum hydroxyl radical formation rates of 6 × 106 radicals cm-3s-1. Therefore, one key conclusion of the present study is that downdrafts of convective storms are estimated to transport enough O3 to the surface to initiate a series of reactions that reduce the lifetimes of rainforest-emitted hydrocarbons.

  6. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest.

    PubMed

    Klämpfl, Tobias G; Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E; Schmidt, Hans-Ulrich

    2012-08-01

    Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log(10) CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D(23)(°)(C) values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068

  7. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    NASA Astrophysics Data System (ADS)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  8. Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest

    PubMed Central

    Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L.; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E.; Schmidt, Hans-Ulrich

    2012-01-01

    Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log10 CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D23°C values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068

  9. Estimation of Greenland's Ice Cover Melting Area Using the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Imbiriba, B.; Desouza-Machado, S. G.; Hannon, S.; Strow, L. L.

    2012-12-01

    Using the Atmospheric Infrared Sounder (AIRS), we are able to detect the melting of Greenland's ice cover for the July 12, 2012 warming event and estimate the corresponding fractional melted area. We collect all of AIRS' overpasses above Greenland, using the reflected solar radiation to avoid cloudy scenes. We perform a retrieval of the skin surface temperature in order to classify a scene as likely frozen (skin temperature well below the freezing point), likely melted (skin temperature well above freezing point), or thawing. Using empirical snow and water emissivity data we retrieve an effective scene snow/water fraction. For this day we estimate that 90% of the ice cover exhibits some thawing and that 53% of the ice cover area was effectivelly covered with liquid water. For contrast we also look at July 8, 2012, and verify that most of the island, 68%, was frozen at that date. We also see a correlation of the thawing area with the solar angle as the day progresses.

  10. Laser-rf creation and diagnostics of seeded atmospheric pressure air and nitrogen plasmas

    SciTech Connect

    Luo Siqi; Denning, C. Mark; Scharer, John E.

    2008-07-01

    A laser initiation and radio frequency (rf) sustainment technique has been developed and improved from our previous work to create and sustain large-volume, high-pressure air and nitrogen plasmas. This technique utilizes a laser-initiated, 15 mTorr partial pressure tetrakis (dimethylamino) ethylene seed plasma with a 75 Torr background gas pressure to achieve high-pressure air/nitrogen plasma breakdown and reduce the rf power requirement needed to sustain the plasma. Upon the laser plasma initiation, the chamber pressure is raised to 760 Torr in 0.5 s through a pulsed gas valve, and the end of the chamber is subsequently opened to the ambient air. The atmospheric-pressure plasma is then maintained with the 13.56 MHz rf power. Using this technique, large-volume (1000 cm{sup 3}), high electron density (on the order of 10{sup 11-12} cm{sup -3}), 760 Torr air and nitrogen plasmas have been created while rf power reflection is minimized during the entire plasma pulse utilizing a dynamic matching method. This plasma can project far away from the antenna region (30 cm), and the rf power budget is 5 W/cm{sup 3}. Temporal evolution of the plasma electron density and total electron-neutral collision frequency during the pulsed plasma is diagnosed using millimeter wave interferometry. Optical emission spectroscopy (OES) aided by SPECAIR, a special OES simulation program for air-constituent plasmas, is used to analyze the radiating species and thermodynamic characteristics of the plasma. Rotational and vibrational temperatures of 4400-4600{+-}100 K are obtained from the emission spectra from the N{sub 2}(2+) and N{sub 2}{sup +}(1-) transitions by matching the experimental spectrum results with the SPECAIR simulation results. Based on the relation between the electron collision frequency and the neutral density, utilizing millimeter wave interferometry, the electron temperature of the 760 Torr nitrogen plasma is found to be 8700{+-}100 K (0.75{+-}0.1 eV). Therefore, the plasma

  11. Towards European-scale Air Quality operational services for GMES Atmosphere

    NASA Astrophysics Data System (ADS)

    Peuch, V.-H.; Rouil, L.; Tarrason, L.; Elbern, H.; Gems/Macc Regional Subprojects Teams

    2009-09-01

    Basing upon the experience gained in national operational or pre-operational air quality forecasting activities, as for instance Prév'Air in France or EURAD in Germany, a range of European scale services have been developing in the context of the EU-funded project GEMS (6th FP) and are now brought a step further in the new project MACC (7th FP). Within the GEMS project, analyses, hindcasts and forecasts from a range of state-of-the-art Regional Air Quality models have been performed on a quasi-operational daily basis since the beginning of 2008. The models cover Europe with horizontal resolutions ranging from 0.2° to 0.5°, and rely on ECMWF operational meteorological forecasts as well as on GEMS global "chemical weather” data, in the form of chemical boundary conditions for key medium to long-lived trace gases and aerosols. They also all consider the same high-resolution (~8km) anthropogenic and biogenic emissions inventories, developed by TNO (The Netherlands) and NKUA (Greece). Access in quasi Near-Real-Time to AQ monitoring data has been obtained for over 15 European countries through fruitful collaborations with national and regional monitoring agencies. This has provided an interesting context, unprecedented to such an extent, to jointly monitor the performances of regional Air Quality forecasts, assess uncertainties and elaborate ensemble products that build upon the models' spread and their respective skills (both in average and for the few days preceding each forecast). Also a hindcast run covering the whole year of 2003 and using chemical boundaries from GEMS global re-analysis of tropospheric reactive gases has been performed and studied. This year 2003 was indeed marked by several episodes in spring and summer (heat wave) with strong health impacts due (at least in part) to bad Air Quality. The GEMS project has ended in May 2009 and the MACC project has started. Within MACC, a stronger emphasis is put on the use of chemical data assimilation and on

  12. Investigations of the spatial and temporal resolution of retrievals of atmospheric carbon dioxide from the Atmospheric InfraRed Sounder (AIRS).

    NASA Astrophysics Data System (ADS)

    Maddy, Eric Sean

    As the dominant anthropogenic greenhouse gas, carbon dioxide (CO 2), represents an important component of climate change (IPCC 2007). Owing to burning of fossil fuels and deforestation, atmospheric CO2 concentrations have increased over 110 parts-per-million by volume (ppmv) from 270 ppmv to 380 ppmv since the dawn of the Industrial Revolution. Understanding of the spatial distribution of the sources and sinks of atmospheric CO 2 is necessary not only to predict the future atmospheric abundances but also their effect on future climate. Although designed for deriving high precision temperature and moisture profiles, NASA's Atmospheric InfraRed Sounder (AIRS) IR measurements include broad vertical sensitivity (between 3 and 10 km) to atmospheric CO2 variations. Coupled with AIRS' broad swath pattern and a technique referred to as "cloud-clearing" these measurements enable daily global spatial coverage. Nevertheless, AIRS' ability to determine the spatial distribution of carbon dioxide (CO2) is strongly dependent on its ability to separate the radiative effects of CO2 from temperature not to mention measurement uncertainties due to clouds and other geophysical variables such as moisture and ozone. This research presents a thorough investigation into the temporal and spatial scales that the AIRS can separate temperature (and other geophysical variables) from CO2. Through our detailed understanding of the way satellites view the Earth's atmosphere, we have developed an algorithm capable of retrieving global middle-to-upper tropospheric CO2 concentrations in all-weather conditions with total uncertainties ranging between 1 to 2 ppmv. From a radiative perspective, roughly equivalent to 30 mK to 60 mK, 1 to 2 ppmv, is an awesome feat for a space-borne sensor. Necessary for the remarkable performance of this algorithm, we developed methodologies capable of separating the radiative effect of CO2 variability from temperature, improved the fast rapid transmittance algorithm

  13. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping?

    EPA Science Inventory

    Project GoalDevelop tools Citizen Scientists can use to assist them in conducting environmental monitoringResearch PlanIdentify a citizen science project as a potential pilot study locationEstablish their pollutant monitoring interestsDevelop a sensor package to meet their needs ...

  14. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  15. Variation of atmospheric air pollution under conditions of rapid economic change—Estonia 1994-1999

    NASA Astrophysics Data System (ADS)

    Kimmel, V.; Tammet, H.; Truuts, T.

    Estonia is an example of a country with economy in transition whose atmospheric air pollution has been remarkably influenced by economic changes. During the period of 1994-1999 GDP increased by one-fourth, while agricultural production, electricity and heat production dropped by one-sixths during the studied period. These processes are reflected in the quantity of emissions and structure of air pollution. The study is based on the measurements of concentrations of pollutants at six Estonian Euroairnet monitoring stations—at three sites in the capital city and at three sites in remote areas. The pollutants concerned are the first-priority pollutants in the European Union legislation—nitrogen oxides, SO 2, O 3, particulate matter, and additionally CO. The study reveals that concentrations of gaseous pollutants in Estonia remain within the EU limit values except for ozone in remote areas. The main trend during the studied period was a significant, up to several times, decrease in concentrations of SO 2 and CO while the decrease of nitrogen oxides was less remarkable. The paper propose ratio of NO x/SO 2 as an index describing increasing transport loads and drop in use of sulphur-rich fuels—thus of structure of economy. The annual variation of pollutants is explained by seasonal variations of anthropogenic activity in conditions where local fuels are widely used for heating during winter. Air pollution in Estonian rural stations mostly originated from transboundary fluxes. The 1-3 day delay of the weekly minimum of pollutant concentrations and the wind roses allow to conclude that essential part of pollutants is imported from West Europe.

  16. Can citizen science produce good science? Testing the OPAL Air Survey methodology, using lichens as indicators of nitrogenous pollution.

    PubMed

    Tregidgo, Daniel J; West, Sarah E; Ashmore, Mike R

    2013-11-01

    Citizen science is having increasing influence on environmental monitoring as its advantages are becoming recognised. However methodologies are often simplified to make them accessible to citizen scientists. We tested whether a recent citizen science survey (the OPAL Air Survey) could detect trends in lichen community composition over transects away from roads. We hypothesised that the abundance of nitrophilic lichens would decrease with distance from the road, while that of nitrophobic lichens would increase. The hypothesised changes were detected along strong pollution gradients, but not where the road source was relatively weak, or background pollution relatively high. We conclude that the simplified OPAL methodology can detect large contrasts in nitrogenous pollution, but it may not be able to detect more subtle changes in pollution exposure. Similar studies are needed in conjunction with the ever-growing body of citizen science work to ensure that the limitations of these methods are fully understood. PMID:23631940

  17. Aging Characteristics on Epoxy Resin Surface Under Repetitive Microsecond Pulses in Air at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Liu, Xiong; Zhang, Cheng; Wang, Ruixue; Rao, Zhangquan; Shao, Tao

    2016-03-01

    Research on aging characteristics of epoxy resin (EP) under repetitive microsecond pulses is important for the design of insulating materials in high power apparatus. It is because that very fast transient overvoltage always occurs in a power system, which causes flashover and is one of the main factors causing aging effects of EP materials. Therefore, it is essential to obtain a better understanding of the aging effect on an EP surface resulting from flashover. In this work, aging effects on an EP surface were investigated by surface flashover discharge under repetitive microsecond pulses in atmospheric pressure. The investigations of parameters such as the surface micro-morphology and chemical composition of the insulation material under different degrees of aging were conducted with the aid of measurement methods such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Results showed that with the accumulation of aging energy on the material surface, the particles formed on the material surface increased both in number and size, leading to the growth of surface roughness and a reduction in the water contact angle; the surface also became more absorbent. Furthermore, in the aging process, the molecular chains of EP on the surface were broken, resulting in oxidation and carbonisation. supported by the Natural Science Foundation of Hebei Province (No. E2015502081), National Natural Science Foundation of China (Nos. 51222701, 51307060), and the National Basic Research Program of China (No. 2014CB239505-3)

  18. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  19. Modeling Activities in the Department of Energy’s Atmospheric Sciences Program

    SciTech Connect

    Fast, Jerome D.; Ghan, Steven J.; Schwartz, Stephen E.

    2009-03-01

    The Department of Energy's Atmospheric Science Program (ASP) conducts research pertinent to radiative forcing of climate change by atmospheric aerosols. The program consists of approximately 40 highly interactive peer-reviewed research projects that examine aerosol properties and processes and the evolution of aerosols in the atmosphere. Principal components of the program are instrument development, laboratory experiments, field studies, theoretical investigations, and modeling. The objectives of the Program are to 1) improve the understanding of aerosol processes associated with light scattering and absorption properties and interactions with clouds that affect Earth's radiative balance and to 2) develop model-based representations of these processes that enable the effects of aerosols on Earth's climate system to be properly represented in global-scale numerical climate models. Although only a few of the research projects within ASP are explicitly identified as primarily modeling activities, modeling actually comprises a substantial component of a large fraction of ASP research projects. This document describes the modeling activities within the Program as a whole, the objectives and intended outcomes of these activities, and the linkages among the several modeling components and with global-scale modeling activities conducted under the support of the Department of Energy's Climate Sciences Program and other aerosol and climate research programs.

  20. Experimental investigation on large-area dielectric barrier discharge in atmospheric nitrogen and air assisted by the ultraviolet lamp.

    PubMed

    Zhang, Yan; Gu, Biao; Wang, Wenchun; Wang, Dezhen; Peng, Xuwen

    2009-04-01

    In this paper, ultraviolet radiation produced by the ultraviolet lamp is employed to supply pre-ionization for the dielectric barrier discharge in N(2) or air at atmospheric pressure. The effect of the ultraviolet pre-ionization on improving the uniformity of the dielectric barrier discharge is investigated experimentally. The atmospheric pressure glow discharge of the large area (270 mm x 120 mm) is obtained successfully via the ultraviolet pre-ionization in atmospheric DBD in N(2) when the gas gap decrease to 3mm. Based on the emission spectra, the mechanism which ultraviolet pre-ionization improves the uniformity of the dielectric barrier discharge is discussed. PMID:19129005

  1. Cris-atms Retrievals Using an AIRS Science Team Version 6-like Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2014-01-01

    CrIS is the infrared high spectral resolution atmospheric sounder launched on Suomi-NPP in 2011. CrISATMS comprise the IRMW Sounding Suite on Suomi-NPP. CrIS is functionally equivalent to AIRS, the high spectral resolution IR sounder launched on EOS Aqua in 2002 and ATMS is functionally equivalent to AMSU on EOS Aqua. CrIS is an interferometer and AIRS is a grating spectrometer. Spectral coverage, spectral resolution, and channel noise of CrIS is similar to AIRS. CrIS spectral sampling is roughly twice as coarse as AIRSAIRS has 2378 channels between 650 cm-1 and 2665 cm-1. CrIS has 1305 channels between 650 cm-1 and 2550 cm-1. Spatial resolution of CrIS is comparable to AIRS.

  2. Silenced science: air pollution decision-making at the EPA threatens public health.

    PubMed

    Rest, Kathleen

    2007-01-01

    The saga of the Environmental Protection Agency's new particulate matter (PM) rule is yet another example of this Administration's disregard for and disrespect of science and scientists--and may signal the beginning of a disturbing trend to reduce the role of science in protecting the quality of our air. Political interference in the PM case is clear. And more trouble may be in the wings when it comes to acceptable levels of ozone pollution and the process for setting the National Ambient Air Quality Standards (NAAQS). For several years, the Union of Concerned Scientists has been actively monitoring and documenting the misuse of science in public policy-making. Consider this a call to arms. Now is the time to engage your elected officials on these issues. PMID:17434855

  3. 59 FR- Science Advisory Board; Indoor Air Quality/Total Human Exposure Committee; Public MeetingApril 7...

    Federal Register 2010, 2011, 2012, 2013, 2014

    1994-03-18

    ... From the Federal Register Online via the Government Printing Office ] ENVIRONMENTAL PROTECTION AGENCY Science Advisory Board; Indoor Air Quality/Total Human Exposure Committee; Public Meeting--April 7-8, 1994 The Indoor Air Quality/Total Human Exposure Committee (IAQC) of the Science Advisory...

  4. A-Train Data Depot: Integrating, Visualizing, and Extracting Cloudsat, CALIPSO, MODIS, and AIRS Atmospheric Measurements Along the A-Train Tracks

    NASA Technical Reports Server (NTRS)

    Kempler, Steven; Stephens, Graeme; Winkler, Dave; Leptoukh, Greg; Reinke, Don; Smith, Peter

    2006-01-01

    The succession of US and international Earth observing satellites that follow each other, seconds to minutes apart, across the local afternoon equator crossing is called the ATrain. The A-Train consists of the following satellites, in order of equator crossing: OCO, EOS Aqua, CloudSat, CALIPSO, PARASOL, and EOS Aura. Flying in such formation increases the number of observations, validates observations, and enables coordination between science observations, resulting in a more complete virtual science platform (Kelly, 2000). The goal of this project is to create the first ever A-Train virtual data portal/center, the A-Train Data Depot (ATDD), to process, archive, access, visualize, analyze and correlate distributed atmosphere measurements from various A-Train instruments along A-Train tracks. The ATDD will enable the free movement of remotely located A-Train data so that they are combined to create a consolidated vertical view of the Earth's Atmosphere along the A-Train tracks. Once the infrastructure of the ATDD is in place, it will be easily evolved to serve data from all A-Train data measurements: one stop shopping. The innovative approach of analyzing and visualizing atmospheric profiles along the platforms track (i.e., time) will be accommodated by reusing the GSFC Atmospheric Composition Data and Information Services Center (ACDISC) visualization and analysis tool, GIOVANNI, existing data reduction tools, on-line archiving for fast data access, access to remote data without unnecessary data transfers, and data retrieval by users finding data desirable for further study. Initial measurements utilized include CALIPSO lidar backscatter, CloudSat radar reflectivity, clear air relative humidity, water vapor and temperature from AIRS, and cloud properties and aerosols from both MODIS. This will be foilowed by associated measurements from TVILS, =MI, HIRDLS, sad TES. Given the independent nature of instrumentlplatform development, the ATDD project has been met with

  5. Air Quality Impacts of Atmospheric Particles & Trace Gases: Field Studies in Diverse Environments

    NASA Astrophysics Data System (ADS)

    Mwaniki, George R.

    Air pollution impacts occur at all scales, meaning that policies and air quality management practices must be implemented and coordinated at the local, regional, national, and global scales. This dissertation is part of a continuing effort to improve our understanding of various air quality related issues in different environments. The dissertation consists of four studies. In the first study, wintertime chemical composition of water-soluble particulate matter with aerodynamic diameter less than 2.5 microm (PM2.5) was monitored in the Treasure Valley region near Boise, Idaho. This study was aimed at understanding the major drivers of wintertime PM2.5 within the locality of Boise and its suburbs. From this study, organics and particulate nitrate were the dominant contributors to the PM2.5 mass during wintertime. In the second study, particle size distribution, light scattering coefficient, speciated water soluble PM2.5, and cloud condensation nuclei (CCN) concentration were monitored in a mixed deciduous forest in Northern Michigan during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX-2009). The overall goal of this study was to understand on how emissions of biogenic volatile organic compounds (BVOC) affect the gas-phase and particle-phase chemistry in the near-canopy environment, and the implications on local and regional air quality. From this study aerosol derived from the oxidation of BVOCs exhibited reduced hygroscopicity and CCN activation potential compared to aerosols derived from anthropogenic activities. The third study employed the eddy covariance (EC) technique to understand source-sink interactions of carbon dioxide (CO2), methane (CH 4), carbon monoxide (CO) and nitrous oxide (N2O) in Xi'an, China. In this study urban vegetation were found to play a major role in regulating CO2 emissions within the city while vehicular activities were a major driver for CO and CH4 fluxes. In the fourth study, visibility degradation effects of

  6. Observations of Mars Neutral Atmosphere during the Polar Night by the Mars Express Radio Science Experiment

    NASA Astrophysics Data System (ADS)

    Tyler, G. L.; Pätzold, M.; Tellmann, S.; Häusler, B.; Hinson, D. P.

    2006-09-01

    The Radio Science Experiment on Mars Express (MaRS) sounds the Martian atmophere and ionosphere making use of spacecraft radio signals at 3.6 and 13 cm-wavelength and an Earth-Mars occultation geometry. Vertical profiles of pressure, temperature, and density in the neutral atmosphere are obtained with an altitude resolution of only a few hundred meters. The elliptical orbit of Mars Express permits examination of a large range of local times and locations and therefore can be used to investigate latitudinal, diurnal, and seasonal variations of Mars atmosphere. Daytime atmospheric profiles collected from both hemispheres since March 2004 allow us to study the development of the atmosphere in the early morning and the polar night. The second occultation season, December 2004, produced 32 profiles located in the southern polar latitudes at an average solar longitude of about 130°. Approximately 30 profiles obtained during the fourth occultation season, July 2005-April 2006, provide data on the north polar region at latitudes above 70° and a solar longitude of about 271°. The polar night at 75° north shows a 142-145 K isothermal atmosphere up to an altitude of 40 km, which is at or close to the condensation line of CO2. A similar behavior is observed during the southern polar night at 80° south, but with a significant warming at longitudes passing through Hellas. Model calculations of a Martian General Circulation Model (GCM) developed by the Laboratoire de Météorologie Dynamique de C.N.R.S. (LMD) support the interpretation of the observed atmospheric phenomena. The MaRS investigation is funded by the DLR Grant 50QP9909 and by the NASA Mars Program.

  7. Climate simulations with a new air-sea turbulent flux parameterization in the National Center for Atmospheric Research Community Atmosphere Model (CAM3)

    NASA Astrophysics Data System (ADS)

    Ban, Junmei; Gao, Zhiqiu; Lenschow, Donald H.

    2010-01-01

    This study examines climate simulations with the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3) using a new air-sea turbulent flux parameterization scheme. The current air-sea turbulent flux scheme in CAM3 consists of three basic bulk flux equations that are solved simultaneously by an iterative computational technique. We recently developed a new turbulent flux parameterization scheme where the Obukhov stability length is parameterized directly by using a bulk Richardson number, an aerodynamic roughness length, and a heat roughness length. Its advantages are that it (1) avoids the iterative process and thus increases the computational efficiency, (2) takes account of the difference between z0m and z0h and allows large z0m/z0h, and (3) preserves the accuracy of iteration. An offline test using Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) data shows that the original scheme overestimates the surface fluxes under very weak winds but the new scheme gives better results. Under identical initial and boundary conditions, the original CAM3 and CAM3 coupled with the new turbulent flux scheme are used to simulate the global distribution of air-sea surface turbulent fluxes, and precipitation. Comparisons of model outputs against the European Remote Sensing Satellites (ERS), the Objectively Analyzed air-sea Fluxes (OAFlux), and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) show that: (1) the new scheme produces more realistic surface wind stress in the North Pacific and North Atlantic trade wind belts and wintertime extratropical storm track regions; (2) the latent heat flux in the Northern Hemisphere trade wind zones shows modest improvement in the new scheme, and the latent heat flux bias in the western boundary current region of the Gulf Stream is reduced; and (3) the simulated precipitation in the new scheme is closer to observation in the Asian monsoon

  8. Fundamental remote sensing science research program: The Scene Radiation and Atmospheric Effects Characterization Project

    NASA Technical Reports Server (NTRS)

    Deering, D. W.

    1985-01-01

    The Scene Radiation and Atmospheric Effects Characterization (SRAEC) Project was established within the NASA Fundamental Remote Sensing Science Research Program to improve our understanding of the fundamental relationships of energy interactions between the sensor and the surface target, including the effect of the atmosphere. The current studies are generalized into the following five subject areas: optical scene modeling, Earth-space radiative transfer, electromagnetic properties of surface materials, microwave scene modeling, and scatterometry studies. This report has been prepared to provide a brief overview of the SRAEC Project history and objectives and to report on the scientific findings and project accomplishments made by the nineteen principal investigators since the project's initiation just over three years ago. This annual summary report derives from the most recent annual principal investigators meeting held January 29 to 31, 1985.

  9. Atmospheric modeling of air pollution. 1979-May, 1980 (a bibliography with abstracts). Report for 1979-May 80

    SciTech Connect

    Carrigan, B.

    1980-06-01

    Lower atmospheric modeling of air pollution from both mobile and stationary sources are covered in the bibliography. Models cover local diffusion, urban heat islands, precipitation washout, worldwide diffusion, climatology, and smog. Stratospheric modeling concerning supersonic aircraft are excluded. (This updated bibliography contains 130 abstracts, 88 of which are new entries to the previous edition.)

  10. Atmospheric modeling of air pollution. 1979-October 1981 (Citations from the NTIS Data Base). Report for 1979-October 1981

    SciTech Connect

    Not Available

    1981-11-01

    Lower atmospheric modeling of air pollution from both mobile and stationary sources are covered in the bibliography. Models cover local diffusion, urban heat islands, precipitation washout, worldwide diffusion, climatology, and smog. Stratospheric modeling concerning supersonic aircraft are excluded. (This updated bibliography contains 248 citations, 118 of which are new entries to the previous edition.)

  11. Atmospheric modeling of air pollution. 1977-78 (a bibliography with abstracts). Report for 1977-1978

    SciTech Connect

    Carrigan, B.

    1980-06-01

    Lower atmospheric modeling of air pollution from both mobile and stationary sources are covered in the bibliography. Models cover local diffusion, urban heat islands, precipitation washout, worldwide diffusion, climatology, and smog. Stratospheric modeling concerning supersonic aircraft are excluded. (This updated bibliography contains 216 abstracts, none of which are new entries to the previous edition.)

  12. Direct measurement of the characteristic three-body electron attachment time in the atmospheric air in direct current electric field

    SciTech Connect

    Shutov, A. V.; Smetanin, I. V.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Ustinovskii, N. N.; Zvorykin, V. D.

    2013-07-15

    We report the results of theoretical and experimental study of the characteristic time for three-body attachment of electrons produced by 100 fs UV laser pulse in the atmosphere air in the external DC electric field ranged from 0.2 to 10 kV/cm.

  13. Assessment of a Constructivist-Motivated Mentoring Program to Enhance the Teaching Skills of Atmospheric Science Graduate Students

    ERIC Educational Resources Information Center

    Drossman, Howard; Benedict, Jim; McGrath-Spangler, Erica; Van Roekel, Luke; Wells, Kelley

    2011-01-01

    This article describes a collaborative mentoring program in which graduate students (fellows) from a university atmospheric science research department team-taught environmental science classes with professors in a liberal arts college. The mentorship allowed fellows to develop and test the effectiveness of curriculum based on the Process Oriented…

  14. The Junior Science & Humanities Symposium: Management and Operations, 2003-2004. Theme--Atmosphere--The Other Ocean.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document reviews the Pacific Region Junior Science and Humanities Symposium (PJSHS) program for 2003-2004 which is a 10-month, precollege student research program held in Japan. The theme is AtmosphereThe Other Ocean. The program includes a one-week symposium of student delegates who have completed research projects in the sciences or have…

  15. The Effect of Air Density on Atmospheric Electric Fields Required for Lightning Initiation from a Long Airborne Object

    NASA Technical Reports Server (NTRS)

    Bazelyan, E. M.; Aleksandrov, N. L.; Raizer, Yu. Pl.; Konchankov, A. M.

    2006-01-01

    The purpose of the work was to determine minimum atmospheric electric fields required for lightning initiation from an airborne vehicle at various altitudes up to 10 km. The problem was reduced to the determination of a condition for initiation of a viable positive leader from a conductive object in an ambient electric field. It was shown that, depending on air density and shape and dimensions of the object, critical atmospheric fields are governed by the condition for leader viability or that for corona onset. To establish quantitative criteria for reduced air densities, available observations of spark discharges in long laboratory gaps were analyzed, the effect of air density on leader velocity was discussed and evolution in time of the properties of plasma in the leader channel was numerically simulated. The results obtained were used to evaluate the effect of pressure on the quantitative relationships between the potential difference near the leader tip, leader current and its velocity; based on these relationships, criteria for steady development of a leader were determined for various air pressures. Atmospheric electric fields required for lightning initiation from rods and ellipsoidal objects of various dimensions were calculated at different air densities. It was shown that there is no simple way to extend critical ambient fields obtained for some given objects and pressures to other objects and pressures.

  16. 75 FR 54146 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Clean Air Scientific...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ...The Environmental Protection Agency (EPA or Agency) Science Advisory Board (SAB) Staff Office announces a public meeting on September 29-30, 2010, of the Clean Air Scientific Advisory Committee (CASAC) Ambient Air Monitoring & Methods Subcommittee (AAMMS) to provide advice concerning the development of a guidance document on network design for near-road ambient air monitoring and the......

  17. Deactivating bacteria with RF Driven Hollow Slot Microplasmas in Open Air at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Yu, Zengqi; Pruden, Amy; Sharma, Ashish; Collins, George

    2003-10-01

    A hollow slot discharge operating in open air at atmospheric pressure has demonstrated its ability to deactivate bacterial growth on nearby surfaces exposed to the RF driven plasma. The cold plasma exits from a hollow slot with a width of 0.2 mm and variable length of 1-35 cm. An internal electrode was powered by 13.56 MHz radio-frequency power at a voltage below 200 V. External electrically grounded slots face the work piece. The plasma plume extends millimeters to centimeter beyond the hollow slot toward the work piece to be irradiated. Argon-Oxygen gas mixtures, at 33 liters per minute flow, were passed through the electrodes and the downstream plasma was employed for the process, with treatment exposure time varied from 0.06 to 0.18 seconds. Bacterial cultures were fixed to 0.22 micron cellulose filter membranes and passed under the plasma at a controlled rate at a distance of about 5-10 millimeters from the grounded slot electrode. Preliminary studies on the effectiveness of the plasma for sterilization were carried out on E. coli. Cultures were grown overnight on the membranes after exposure and the resulting colony forming units (cfu) were determined in treated and untreated groups. In the plasma treated group, a 98.2% kill rate was observed with the lowest exposure time, and increased to 99.8% when the exposure time was tripled. These studies clearly demonstrate the ability of the RF-driven hollow slot atmospheric plasma to inhibit bacterial growth on surfaces.

  18. A fully coupled regional atmospheric numerical model for integrated air quality and weather forecasting.

    NASA Astrophysics Data System (ADS)

    Freitas, S. R.; Longo, K. M.; Marecal, V.; Pirre, M.; Gmai, T.

    2012-04-01

    A new numerical modelling tool devoted to local and regional studies of atmospheric chemistry from surface to the lower stratosphere designed for both operational and research purposes will be presented. This model is based on the limited-area model CATT-BRAMS (Coupled Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System, Freitas et al. 2009, Longo et al. 2010) which is a meteorological model (BRAMS) including transport processes of gaseous and aerosols (CATT model). BRAMS is a version of the RAMS model (Walko et al. 2000) adapted to better represent tropical and subtropical processes and several new features. CATT-BRAMS has been used operationally at CPTEC (Brazilian Center for Weather Prediction and Climate Studies) since 2003 providing coupled weather and air quality forecast. In the Chemistry-CATT-BRAMS (called hereafter CCATT-BRAMS) a chemical module is fully coupled to the meteorological/tracer transport model CATT-BRAMS. This module includes gaseous chemistry, photochemistry, scavenging and dry deposition. The CCATT-BRAMS model takes advantages of the BRAMS specific development for the tropics/subtropics and of the recent availability of preprocessing tools for chemical mechanisms and of fast codes for photolysis rates. Similarly to BRAMS this model is conceived to run for horizontal resolutions ranging from a few meters to more than a hundred kilometres depending on the chosen scientific objective. In the last decade CCATT-BRAMS has being broadly (or extensively) used for applications mainly over South America, with strong emphasis over the Amazonia area and the main South American megacities. An overview of the model development and main applications will be presented.

  19. Future emissions and atmospheric fate of HFC-1234yf from mobile air conditioners in Europe.

    PubMed

    Henne, Stephan; Shallcross, Dudley E; Reimann, Stefan; Xiao, Ping; Brunner, Dominik; O'Doherty, Simon; Buchmann, Brigitte

    2012-02-01

    HFC-1234yf (2,3,3,3-tetrafluoropropene) is under discussion for replacing HFC-134a (1,1,1,2-tetrafluoroethane) as a cooling agent in mobile air conditioners (MACs) in the European vehicle fleet. Some HFC-1234yf will be released into the atmosphere, where it is almost completely transformed to the persistent trifluoroacetic acid (TFA). Future emissions of HFC-1234yf after a complete conversion of the European vehicle fleet were assessed. Taking current day leakage rates and predicted vehicle numbers for the year 2020 into account, European total HFC-1234yf emissions from MACs were predicted to range between 11.0 and 19.2 Gg yr(-1). Resulting TFA deposition rates and rainwater concentrations over Europe were assessed with two Lagrangian chemistry transport models. Mean European summer-time TFA mixing ratios of about 0.15 ppt (high emission scenario) will surpass previously measured levels in background air in Germany and Switzerland by more than a factor of 10. Mean deposition rates (wet + dry) of TFA were estimated to be 0.65-0.76 kg km(-2) yr(-1), with a maxium of ∼2.0 kg km(-2) yr(-1) occurring in Northern Italy. About 30-40% of the European HFC-1234yf emissions were deposited as TFA within Europe, while the remaining fraction was exported toward the Atlantic Ocean, Central Asia, Northern, and Tropical Africa. Largest annual mean TFA concentrations in rainwater were simulated over the Mediterranean and Northern Africa, reaching up to 2500 ng L(-1), while maxima over the continent of about 2000 ng L(-1) occurred in the Czech Republic and Southern Germany. These highest annual mean concentrations are at least 60 times lower than previously determined to be a safe level for the most sensitive aquatic life-forms. Rainwater concentrations during individual rain events would still be 1 order of magnitude lower than the no effect level. To verify these results future occasional sampling of TFA in the atmospheric environment should be considered. If future HFC-1234yf

  20. ATMOSPHERIC DEPOSITION MONITORING -- CLEAN AIR STATUS AND TRENDS NETWORK (CASTNET) OPERATION

    EPA Science Inventory

    CAMD operates a national monitoring network mandated by the 1990 Clean Air Act Amendments (CAAA) to determine the effectiveness of promulgated emission reductions. The Clean Air Status and Trends Network (CASTNET) provides data for determining relationships between emissions, air...