Science.gov

Sample records for airs infrared channels

  1. Channel alignment and radiometry in hyperspectral atmospheric infrared sounders

    NASA Technical Reports Server (NTRS)

    Elliott, Denis A.; Aumanna, H. H.; Pagano, Thomas S.; Overoye, Kenneth R.; Schindler, Rudolf A.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyper-spectral infrared sounder which covers the 3.7 to 15,4 micron region with 2378 spectral channels. The AIRS instrument specification called for spatial co-registration of all channels to better than 2% of the field of view. Pre-launch testing confirmed that this requirement was met, since the standard deviations in the centroids was about 1% of the 13.5 km IFOV in scan and 3% in track. Detailed analysis of global AIRS data show that the typical scene gradient in 10 micron window channels is about I .3K/km rms. The way these gradients, which are predominantly caused by clouds, manifest themselves in the data depends on the details of the instrument design and the way the spectral channels are used in the data analysis, AIRS temperature and moisture retrievals use 328 of the 2378 channels from 17 independent arrays. As a result, the effect of the boresight misalignment averages to zero mean. Any increase in the effective noise is less than 0.2K. Also, there is no discernable performance degradation of products at the 45 km spatial resolution in the presence of partially cloudy scenes with up to 80% cloudiness. Single pixel radiometric differences between channels with boresight alignment differences can be appreciable and can affect scientific investigations on a single 15km footprint scale, particularly near coastlines, thunderstorms and surface emissivity inhomogeneities.

  2. AIRS - the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigsten, Bjorn H.; Fetzer, Eric; Fishbein, Evan; Lee, Sung-Yung; Paganao, Thomas

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched in 2002, along with two companion microwave sounders. This AIRS sounding suite is the most advanced atmospheric sounding system to date, with measurement accuracies far surpassing those of current weather satellites. From its sun synchronous polar orbit, the AIRS system provides more than 90% of the globe every 24 hours. Much of the post-launch period has been devoted to optimizing the 'retrieval' system used to derive atmospheric and other parameters from the observations and to validate those parameters. The geophysical parameters have been produced since the beginning of 2003 - the first data were released to the public in mid-2003, and future improved versions will be released periodically. The ongoing calibration/validation effort has confirmed that the system is very accurate and stable. There are a number of applications for the AIRS products, ranging from numerical weather prediction - where positive impact on forecast accuracy has already been demonstrated, to atmospheric research - where the AIRS water vapor products near the surface and in the mid and upper troposphere as well as in the stratosphere promise to make it possible to characterize and model phenomena that are key for short-term atmospheric processes, from weather patterns to long-term processes, such as interannual variability and climate change.

  3. Multi-channel infrared thermometer

    DOEpatents

    Ulrickson, Michael A.

    1986-01-01

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and a light pipe array positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The light pipe array includes one light pipe for each detector in the detector array.

  4. Multi-channel infrared thermometer

    DOEpatents

    Ulrickson, M.A.

    A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an infrared detector array having a plurality of detectors; and optical means positioned between the imaging optics and the detector array for sampling, transmitting, and distributing the image over the detector surfaces. The optical means may be a light pipe array having one light pipe for each detector in the detector array.

  5. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  6. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  7. Nadir Sounding of Carbon Gases using SCIAMACHY Near Infrared Channels

    NASA Astrophysics Data System (ADS)

    Gimeno García, Sebastián; Schreier, Franz; Lichtenberg, Günter; Slijkhuis, Sander; Hess, Michael; Aberle, Bernd

    The Beer InfraRed Retrieval Algorithm (BIRRA) and Column EstimatoR Vertical InfraRed Sounding Atmosphere (CERVISA) codes have been designed to retrieve vertical column den-sities (VCDs) of atmospheric gases in the near and thermal infrared (NIR,TIR) region of the electromagnetic spectrum by means of non-linear least squares fitting of radiances. As part of the operational SCIAMACHY level 1-2 processor, BIRRA is currently used for the specific retrieval of carbon monoxide (CO) VCDs exploiting the fitting window 4282-4301 cm-1 within the SCIAMACHY channel 8. Using appropriate fitting windows in channel 6, BIRRA also allows to gain information on greenhouse gases such as methane and carbon dioxide. Unfortunately, the increasing number of dead and bad pixels -specially in the NIR channels -reduces the available spectral information and consequently makes the VCDs retrieval more and more challenging. The proper choice of the pixel mask, fitting window, auxiliary fit parameters, as well as the filtering of the Level 2 data is crucial for obtaining a high quality atmospheric product. For validation of BIRRA the closely related CERVISA code is used to retrieve CO and CH4 from nadir infrared sounding data of AIRS, IASI, or TES. BIRRA and CERVISA share a large portion of modules, e.g., for line-by-line absorption and the nonlinear least squares solver; the essential difference is the part of the forward model devoted to radiative transfer through the atmosphere, i.e., Beer's law for the NIR versus Schwarzschild's equation for the TIR. CERVISA retrieval results are compared both to the operational products of the TIR sounder and to the SCIAMACHY-BIRRA product. In this work, we present recent results of carbon monoxide and methane retrievals.

  8. Application of Atmospheric Infrared Sounder (AIRS) Data to Climate Research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Gaiser, Steve; Chahine, Moustafa T.

    2004-01-01

    The application of hyper spectral radiometric data to climate research requires very high absolute radiometric accuracy and stability. We use cloud-free tropical ocean data from the Atmospheric InfraRed Sounder (AIR) Calibration Data Subset (ADCS) to show that the radiometric precision and stability required climate applications has been achieved. The sea surface skin temperatures derived from the AIRS 2616cm-1 super window channel are stable relative to the RTG.SST at the better than 8 mK/year level, and the spectral calibration is stable at the 1 ppm/year level. The excellent stability and accuracy are the result of the implementation of AIRS as a grating array spectrometer, which is cooled and stabilized within 10 mK at 155 K. Analysis of daily measurements of the temperature gradient between the surface and 7 km altitude show that the AIRS Calibration Data Subset has applications which extend its original intent for calibration support to climate research. The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua satellite was launched into polar orbit in May 2002. AIRS covers the spectral region from 640 to 2700 cm-1 with 2378 independent channels and represents the first of a new generation of hyper spectral resolution sounders in support of global sounding data for weather forecasting and climate research.

  9. Miniaturized multi channel infrared optical gas sensor system

    NASA Astrophysics Data System (ADS)

    Wöllenstein, Jürgen; Eberhardt, Andre; Rademacher, Sven; Schmitt, Katrin

    2011-06-01

    Infrared spectroscopy uses the characteristic absorption of the molecules in the mid infrared and allows the determination of the gases and their concentration. Especially by the absorption at longer wavelengths between 8 μm and 12 μm, the so called "fingerprint" region, the molecules can be measured with highest selectivity. We present an infrared optical filter photometer for the analytical determination of trace gases in the air. The challenge in developing the filter photometer was the construction of a multi-channel system using a novel filter wheel concept - which acts as a chopper too- in order to measure simultaneously four gases: carbon monoxide, carbon dioxide, methane and ammonia. The system consists of a broadband infrared emitter, a long path cell with 1.7m optical path length, a filter wheel and analogue and digital signal processing. Multi channel filter photometers normally need one filter and one detector per target gas. There are small detection units with one, two or more detectors with integrated filters available on the market. One filter is normally used as reference at a wavelength without any cross-sensitivities to possible interfering gases (e.g. at 3.95 μm is an "atmospheric window" - a small spectral band without absorbing gases in the atmosphere). The advantage of a filter-wheel set-up is that a single IR-detector can be used, which reduces the signal drift enormously. Pyroelectric and thermopile detectors are often integrated in these kinds of spectrometers. For both detector types a modulation of the light is required and can be done - without an additional chopper - with the filter wheel.

  10. Contribution of the AIRS Shortwave Sounding Channels to Retrieval Accuracy

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis

    2006-01-01

    AIRS contains 2376 high spectral resolution channels between 650/cm and 2665/cm, including channels in both the 15 micron (near 667/cm) and 4.2 micron (near 2400/cm) COP sounding bands. Use of temperature sounding channels in the 15 micron CO2 band has considerable heritage in infra-red remote sensing. Channels in the 4.2 micron CO2 band have potential advantages for temperature sounding purposes because they are essentially insensitive to absorption by water vapor and ozone, and also have considerably sharper lower tropospheric temperature sounding weighting functions than do the 15 micron temperature sounding channels. Potential drawbacks with regard to use of 4.2 micron channels arise from effects on the observed radiances of solar radiation reflected by the surface and clouds, as well as effects of non-local thermodynamic equilibrium on shortwave observations during the day. These are of no practical consequences, however, when properly accounted for. We show results of experiments performed utilizing different spectral regions of AIRS, conducted with the AIRS Science Team candidate Version 5 algorithm. Experiments were performed using temperature sounding channels within the entire AIRS spectral coverage, within only the spectral region 650/cm to 1614 /cm; and within only the spectral region 1000/cm-2665/cm. These show the relative importance of utilizing only 15 micron temperature sounding channels, only the 4.2 micron temperature sounding channels, and both, with regards to sounding accuracy. The spectral region 2380/cm to 2400/cm is shown to contribute significantly to improve sounding accuracy in the lower troposphere, both day and night.

  11. Channel at Night in Thermal Infrared

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This nighttime thermal infrared image, taken by the thermal emission imaging system on NASA's 2001 Mars Odyssey spacecraft, shows differences in temperature that are due to differences in the abundance of rocks, sand and dust on the surface. Rocks remain warm at night, as seen in the warm (bright) rim of the five kilometer (three mile) diameter crater located on the right of this image.

    The sinuous channel floor is cold, suggesting that it is covered by material that is more finely grained than the surrounding plains. The interior of the crater shows a great deal of thermal structure, indicating that the distribution of rocks, sand and dust varies across the floor.

    The presence of rocks on the rim and inner wall indicates that this crater maintains some of its original character, despite erosion and deposition by Martian winds. Nighttime infrared images such as this one will greatly aid in mapping the physical properties of Mars' surface.

    This image is centered at 2 degrees north, 0.4 degrees west, and was acquired at about 3:15 a.m. local Martian time. North is to the right of the image.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The thermal emission imaging system was provided by Arizona State University, Tempe. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  13. The Impact of the AIRS Spatial Response on Channel-to-Channel and Multi-Instrument Data Analyses

    NASA Technical Reports Server (NTRS)

    Elliott, Denis A.; Pagano, Thomas S.; Aumann, H. H.

    2006-01-01

    The Atmospheric Infrared Sounder (AIRS) measures the infrared spectrum in 2378 channels between 3.7 and 15.4 microns with a very high spectral resolution of approximately 1200. AIRS footprints are approximately 1.1 by 0.6 degrees. Because AIRS is a grating spectrometer, each channel has a unique spatial response. Image rotation due to the scan mirror causes these spatial responses to rotate. In effect, each channel has 90 spatial responses, one for each scene footprint in the scan line. Although the spatial response for most channels is symmetric and nearly uniform, some channels have significantly asymmetric response. This paper reviews and describes the prelaunch measurements that characterized the spatial response functions. Next, it describes the conversion of the ground-based results into footprint-specific response functions valid in flight. Then we describe the postlaunch validation of the measurements, including centroid location, axes orientations, and a check on the full two-dimensional response functions. This latter check involves comparison of AIRS data with that of the Moderate Resolution Imaging Spectrometer (MODIS), which flies on the same platform as AIRS. An important result is that AIRS/MODIS brightness temperature comparisons are significantly improved (scatter reduced) when the AIRS spatial response is explicitly taken into account. Finally, a status report is given on attempts to fully verify the prelaunch measurements by deriving the AIRS spatial response from flight data alone.

  14. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  15. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    This report describes progress during the second year of our research program on Infrared Signature Masking by Air Plasmas at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Our previous annual report described spectral measurements and modeling of the radiation emitted between 3.2 and 5.5 microns by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3100 K. One of our goals was to examine the spectral emission of secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million Of CO2, which is the natural CO2 concentration in atmospheric air at room temperature, and a small amount of water vapor with an estimated mole fraction of 3.8 x 10(exp -4). As can be seen from Figure 1, it was found that the measured spectrum exhibited intense spectral features due to the fundamental rovibrational bands of NO at 4.9 - 5.5 microns and the V(3) band of CO2 (antisymmetric stretch) at 4.2-4.8 microns. These observations confirmed the well-known fact that infrared signatures between 4.15 - 5.5 microns can be masked by radiative emission in the interceptor's bow-shock. Figure I also suggested that the range 3.2 - 4.15 microns did not contain any significant emission features (lines or continuum) that could mask IR signatures. However, the signal-to-noise level, close to one in that range, precluded definite conclusions. Thus, in an effort to further investigate the spectral emission in the range of interest to signature masking problem, new measurements were made with a higher signal-to-noise ratio and an extended wavelength range.

  16. Air channel distribution during air sparging: A field experiment

    SciTech Connect

    Leeson, A.; Hinchee, R.E.; Headington, G.L.; Vogel, C.M.

    1995-12-31

    Air sparging may have the potential to improve upon conventional groundwater treatment technologies. However, judging from studies published to date and theoretical analyses, it is possible that air sparging may have a limited effect on aquifer contamination. The basic mechanisms controlling air sparging are not well understood, and current monitoring practice does not appear adequate to quantitatively evaluate the process. During this study, the effective zone of influence, defined as the areas in which air channels form, was studied as a function of flowrate and depth of injection points. This was accomplished by conducting the air sparging test in an area with shallow standing water. Air sparging points were installed at various depths, and the zone of influence was determined visually.

  17. NIRATAM-NATO infrared air target model

    NASA Astrophysics Data System (ADS)

    Noah, Meg A.; Kristl, Joseph; Schroeder, John W.; Sandford, B. P.

    1991-08-01

    NIRATAM (the NATO Infrared Air Target Model) was developed by the NATO AC 243, Panel IV, Research Study Group 6 (RSG-6). RSG-6 is composed of representatives from Denmark, France, Germany, Italy, the Netherlands, the United Kingdom, the United States of America, and Canada (as an observer). NIRATAM is based on theoretical studies, field measurements, and infrared data analysis performed over many years. The model encompasses all the major signature components required to simulate the infrared signature of an aircraft and the atmosphere. The vehicle fuselage, facet, model includes radiation due to aerodynamic heating, internal heat sources, reflected sky, earth, and solar radiation. Plume combustion gas emissions are calculated for H(subscript 2)O, CO(subscript 2), CO, and other gases as well as solid particles. Lowtran 7 is used for the atmospheric transmission and radiance. The software generates graphical outputs of the target wireframe, plume flowfield, atmospheric transmission, total signature, and plume signature. Imagery data can be used for system development and evaluation. NIRATAM can be used for many applications such as measurement planning, data analysis, systems design, and aircraft development. Ontar has agreed to assist the RSG-6 by being the NIRATAM distribution center in the United States for users approved by the national representatives. Arrangements have also been made to distribute a user-friendly NIRATAM interface. This paper describes the model, presents results, makes comparisons with measured field data, and describes the availability and procedure for obtaining the software.

  18. A multi-channel near infrared spectroradiometer

    NASA Astrophysics Data System (ADS)

    Joseph, G. B.; Biddles, B. J.; D'Silva, R. A.; Picot, A. J.; Ackerman, M. J.

    1988-01-01

    A multichannel spectroradiometer has been developed by Sira Ltd. for the study of rapidly varying events in the near infrared. The instrument is being used in the examination of gun flashes, rocket motor exhaust efflux analysis and ordnance or pyrotechnic flash studies. The spectral range of about 1.4 to 5.2 microns is covered in two bands with the first order dispersion from a pair of ruled blazed gratings being imaged onto a pair of detector arrays. Data may be logged at a rate of 1000 complete spectra per second.

  19. Calibrated infrared ground/air radiometric spectrometer

    NASA Astrophysics Data System (ADS)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  20. Improved Products for Assimilation and Model Validation from the Atmospheric Infrared Sounder (AIRS) on Aqua

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.

  1. Improved Products for Assimilation and Model Validation from the Atmospheric Infrared Sounder (AIRS) on Aqua

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.

  2. Evaluation of the AIRS near-real-time channel selection for application to numerical weather prediction

    NASA Astrophysics Data System (ADS)

    Fourrié, Nadia; Thépaut, Jean-Noël

    2003-07-01

    The Atmospheric Infrared Sounder (AIRS) on board the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) Aqua satellite provides 2378 channels for each field of view of the instrument. As it is neither feasible nor efficient to assimilate all the channels in a numerical weather-prediction system, a policy of channel selection has to be designed in this context. This paper attempts to assess the optimality of the selection of the AIRS radiance channels that are made available to the scientific community in near real time (hereafter called AIRS NRT) by the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data and Information Service. This assessment is done by comparing this channel selection with a method preserving the information content of the instrument, the so-called 'global' method. It turns out that although the selected channels are different and the information content as measured by the entropy reduction (ER) and the degrees of freedom for signal (DFS) is slightly smaller for the AIRS NRT channel set than for the 'global' set, both channel selections give similar results in terms of analysis error for temperature, humidity and ozone. The robustness of the results is then evaluated by varying the range of input parameters to the channel-selection scheme, in particular the atmospheric training dataset on which the channel selection is based, and the background-error covariance matrix. It is found that the performance of the 'global' channel selection is sensitive to the training dataset, while the AIRS NRT channel selection remains robust, even, to some extent, for the retrieval of key analysis-error structures. Altogether, the 'manually selected' AIRS NRT channels provide a good compromise between robustness and quality.

  3. Calibration analysis for a multi-channel infrared scanning radiometer

    NASA Technical Reports Server (NTRS)

    Walden, H.; Hurley, E. J.; Korb, C. L.

    1977-01-01

    A procedure for calibrating an infrared scanning spectroradiometer by a computerized parametric error analysis technique was developed. The uncertainties in the radiometric measurements of scene radiance and (for the case of a blackbody scene) temperature due to possible uncertainties in the calibration target temperature, calibration target emissivity, and instrument temperature were calculated for a range of uncertainty levels in the parameters, as well as for a gamut of scent temperatures corresponding to a given spectral channel. This technique is applicable to the radiometric calibration of any infrared radiometer. It was applied specifically to the Cloud-Top Scanning (C.T.S) Radiometer, a three-channel instrument designed for aircraftborne cloud radiance measurements in the 6.75 and 11.5 micron thermal emission spectral regions.

  4. 78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, GASEOUS NITROGEN, AND HELIUM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. The multi-channel infrared sea truth radiometric calibrator (MISTRC)

    USGS Publications Warehouse

    Suarez, M.J.; Emery, W. J.; Wick, G.A.

    1997-01-01

    A new multichannel infrared sea truth radiometer has been designed and built to improve validation of satellite-determined sea surface temperature. Horizontal grid polarized filters installed on the shortwave channels are very effective in reducing reflected solar radiation and in improving the noise characteristics. The system uses a continuous (every other cycle) seawater calibration technique. An analysis of the data from its first deployment is presented and recommendations are made for further improving the experimental method.

  6. AIRS Infrared Radiance Validation Concept Using Earth Scene Observations

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Aumann, H. H.; Pagano, T. S.; Strow, L. L.

    2001-05-01

    The Atmospheric Infrared Sounder (AIRS) will fly onboard the NASA Earth Observing Satellite (EOS)polar-orbiting Aqua spacecraft. AIRS, a high resolution infrared spectrometer with visible and near-infrared spectral channels, has been designed to provide atmospheric temperature and moisture profiles at least as accurate as those measured by standard radiosondes. Calibration studies of the response of each of the AIRS 4000+ detectors will begin as soon as the spacecraft orbit and instrument have stabilized. These studies are needed to help assess the contribution of instrument measurement errors to the spectral radiance determination. Some of the uncertainties will be determined from measurements of the onboard calibrators. Other sources of measurement uncertainty, such as scan mirror polarization and spectral response functions, require views of Earth at nadir and at oblique viewing angles, in cloud-free conditions. During early operation of the instrument, the blackbody radiance determination will rely on pre-launch measurements and models of the spectral response functions. During this phase of the operation, we have chosen an approach for initial assessment of the accuracy of the measured radiance that is not dependent on an exact knowledge of the spectral position of the detectors. Radiances will be evaluated in narrow regions that are well removed from spectral line features. There are potentially hundreds of detectors that can be used for this purpose. Our work to date has focused on a subset of these detectors located in atmospheric window regions between 2500-2700 cm-1 and 800-1200 cm-1. Pre-launch thermal-vacuum blackbody calibration results indicate that, using a reasonable cross-section of detectors, it should be possible to extrapolate the performance of a sparse set of detectors to the general state of the instrument calibration. In this paper we describe some initial results using a simple statistical methodology that compares outgoing radiances in

  7. Near-infrared spectral mapping of Titan's mountains and channels

    USGS Publications Warehouse

    Barnes, J.W.; Radebaugh, J.; Brown, R.H.; Wall, S.; Soderblom, L.; Lunine, J.; Burr, D.; Sotin, Christophe; Le, Mouelic S.; Rodriguez, S.; Buratti, B.J.; Clark, R.; Baines, K.H.; Jaumann, R.; Nicholson, P.D.; Kirk, R.L.; Lopes, R.; Lorenz, R.D.; Mitchell, Ken; Wood, C.A.

    2007-01-01

    We investigate the spectral reflectance properties of channels and mountain ranges on Titan using data from Cassini's Visual and Infrared Mapping Spectrometer (VIMS) obtained during the T9 encounter (26 December 2005). We identify the location of channels and mountains using synthetic aperture radar maps obtained from Cassini's RADAR instrument during the T13 (30 April 2006) flyby. Channels are evident even in VIMS imaging with spatial resolution coarser than the channel size. The channels share spectral characteristics with Titan's dark blue terrain (e.g., the Huygens landing site) that is consistent with an enhancement in water ice content relative to the rest of Titan. We use this fact to measure widths of ???1 km for the largest channels. Comparison of the data sets shows that in our study area within the equatorial bright spectral unit east of Xanadu, mountains are darker and bluer than surrounding smooth terrain. These results are consistent with the equatorial bright terrain possessing a veneer of material that is thinner in the regions where there are mountains and streambeds that have likely undergone more recent and extensive erosion. We suggest a model for the geographic relationship of the dark blue, dark brown, and equatorial bright spectral units based on our findings. Copyright 2007 by the American Geophysical Union.

  8. Filamentation in Air with Ultrashort Mid-Infrared Pulses

    DTIC Science & Technology

    2011-05-09

    Filamentation in air with ultrashort mid-infrared pulses Bonggu Shim,1,2 Samuel E. Schrauth,1 and Alexander L. Gaeta1,3 1School of Applied and...filamentation of ultrashort laser pulses in air in the mid-infrared regime under conditions in which the group-velocity dispersion (GVD) is anomalous. When a...and propagates several times its diffraction length. Compared with temporal self-compression in gases due to plasma formation and pulse splitting in the

  9. Infrared Photography as an Air Pollution Surveillance Instrument

    ERIC Educational Resources Information Center

    Casalinuovo, Anthony F.; Sawan, Alan

    1976-01-01

    The purpose of this study was to determine the practicality of infrared photographic analysis to air pollution agencies, by the detection of plant damage from pollutants before they are visually identifiable. Results showed that photomicrographic imaging using infrared radiation should be considered a viable surveillance tool in similiar…

  10. Infrared Photography as an Air Pollution Surveillance Instrument

    ERIC Educational Resources Information Center

    Casalinuovo, Anthony F.; Sawan, Alan

    1976-01-01

    The purpose of this study was to determine the practicality of infrared photographic analysis to air pollution agencies, by the detection of plant damage from pollutants before they are visually identifiable. Results showed that photomicrographic imaging using infrared radiation should be considered a viable surveillance tool in similiar…

  11. High resolution thermal infrared mapping of Martian channels

    NASA Technical Reports Server (NTRS)

    Craddock, R. A.; Greeley, R.; Christensen, P. R.

    1987-01-01

    Viking Infrared Thermal Mapper (IRTM) high resolution (2 to 5 km) data were compiled and compared to Viking Visual Imaging Subsystem (VIS) data and available 1:5M geologic maps for several Martian channels including Dao, Harmakhis, Mangala, Shalbatana, and Simud Valles in an effort to determine the surface characteristics and the processes active during and after the formation of these channels. Results show a dominance of aeolian processes active in and around the channels. These processes have left materials thick enough to mask any genuine channel deposits. Results also indicate that very comparable Martian channels and their surrounding terrain are blanketed by deposits which are homogeneous in their thermal inertia values. However, optimum IRTM data does not cover the entire Martian surface and because local deposits of high thermal inertia material may not be large enough in areal extent or may be in an unfavorable location on the planet, a high resolution data track may not always occur over these deposits. Therefore, aeolian processes may be even more active than the IRTM data tracts can always show.

  12. Tropical Storm Beryl as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1: AIRS Microwave Image

    This is an infrared image of Tropical Storm Beryl in the western Atlantic, from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on July 20, 2006, 1:30 am local time. This AIRS image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds. Where there are no clouds the AIRS instrument reads the infrared signal from the surface of the Earth, revealing warmer temperatures (red). This infrared image shows three large regions of strong convection surrounding the core of the storm. The largest, on the northern edge of the core, also appears in the companion microwave image to contain intense precipitation.

    The image in figure 1 is created from microwave radiation emitted by Earth's atmosphere and received by the instrument. It shows where the heaviest rainfall is taking place (in blue) in the storm. Blue areas outside of the tropical storm, where there are either some clouds or no clouds indicate where the sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a

  13. Potential infrared relaxation channels calculated for CO2 clathrate hydrates

    NASA Astrophysics Data System (ADS)

    Lakhlifi, Azzedine; Dahoo, Pierre Richard; Chassefière, Eric

    2017-01-01

    The infrared bar-spectrum of a single carbon dioxide molecule encapsulated in nano-cage clathrate hydrate is determined using the LD (Lakhlifi-Dahoo) extended site inclusion model successfully applied to analyze the spectra of CO2 isotopologues isolated in rare gas matrices. Trapping is energetically more favorable in clathrate structure of type sI than sII. CO2 exhibits hindered orientational motions (librational motions) around its equilibrium configurations in the small and large nano-cages. The orientation transitions are weak, and the spectra are purely vibrational. In the static field inside the cage, the doubly degenerate bending mode ν2 is blue shifted and split. From the scheme of the calculated energy levels for the different degrees of freedom, which is comparable to that of CO2 in rare gas matrices, it is conjectured that infrared excited CO2 will rather relax radiatively. Non-radiative channels can be analyzed by binary collision model.

  14. AIRES: An Airborne Infra-Red Echelle Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Dotson, Jessie J.; Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Telesco, Charles M.; Pina, Robert K.; Wolf, Juergen; Young, Erick T.

    1999-01-01

    SOFIA will enable astronomical observations with unprecedented angular resolution at infrared wavelengths obscured from the ground. To help open this new chapter in the exploration of the infrared universe, we are building AIRES, an Airborne Infra-Red Echelle Spectrometer. AIRES will be operated as a first generation, general purpose facility instrument by USRA, NASA's prime contractor for SOFIA. AIRES is a long slit spectrograph operating from 17 - 210 microns. In high resolution mode the spectral resolving power is approx. 10(exp 6) microns/A or approx. 10(exp 4) at 100 microns. Unfortunately, since the conference, a low resolution mode with resolving power about 100 times lower has been deleted due to budgetary constraints. AIRES includes a slit viewing camera which operates in broad bands at 18 and 25 microns.

  15. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  16. Acoustic resonance phenomena in air bleed channels in aviation engines

    NASA Astrophysics Data System (ADS)

    Aleksentsev, A. A.; Sazhenkov, A. N.; Sukhinin, S. V.

    2016-11-01

    The existence of axial-radial acoustic resonance oscillations of the basic air flow in bleed channels of aviation engines is demonstrated theoretically and experimentally. Numerical and analytical methods are used to determine the frequency of acoustic resonance oscillations for the lowest modes of open and closed bleed channels of the PS-90A engine. Experimental investigations reveal new acoustic resonance phenomena arising in the air flow in bleed channel cavities in the core duct of this engine owing to instability of the basic air flow. The results of numerical, analytical, and experimental studies of the resonance frequencies reached in the flow in bleed channel cavities in the core duct of the PS-90A engine are found to be in reasonable agreement. As a result, various types of resonance oscillations in bleed channels can be accurately described.

  17. Thermotechnical performance of an air-cooled tuyere with air cooling channels in series

    NASA Astrophysics Data System (ADS)

    Shen, Yuansheng; Zhou, Yuanyuan; Zhu, Tao; Duan, Guangbin

    2017-01-01

    To reduce the cooling air consumption for an air-cooled tuyere, an air-cooled tuyere with air cooling channels in series is developed based on several hypotheses, i.e., a transparent medium in the blast furnace, among others, and the related mathematical models are introduced and developed. Referring to the data from a BF site, the thermotechnical computation for the air-cooled tuyere was performed, and the results show that when the temperature of the inlet cooling air increases, the temperatures for the outlet cooling air, the outer surface of the tuyere, the walls of the air cooling channels and the center channel as well as the heat going into the center channel increase, but the heat absorbed by the cooling air flowing through the air cooling channels decreases. When the cooling air flow rate under the standard state increases, the physical parameters mentioned above change in an opposite directions. Compared to a water-cooled tuyere, the energy savings for an air-cooled tuyere are more than 0.23 kg/min standard coal.

  18. Guiding supersonic projectiles using optically generated air density channels

    NASA Astrophysics Data System (ADS)

    Johnson, Luke A.; Sprangle, Phillip

    2015-09-01

    We investigate the feasibility of using optically generated channels of reduced air density to provide trajectory correction (guiding) for a supersonic projectile. It is shown that the projectile experiences a force perpendicular to its direction of motion as one side of the projectile passes through a channel of reduced air density. A single channel of reduced air density can be generated by the energy deposited from filamentation of an intense laser pulse. We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. Current femtosecond laser systems with multi-millijoule pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles traveling at Mach 3.

  19. Investigation of Infra-red and Nonequilibrium Air Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, Christophe O.

    1994-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University. This program was intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Prior to this work, the radiative emission of air plasmas in the infrared had been the object of few experimental investigations, and although several infrared systems were already modeled in radiation codes such as NEQAIR, measurements were required to validate numerical predictions and indicate whether all transitions of importance were accounted for in the model. The program was further motivated by the fact that 9 excited states (A, B, C, D, B', F, H, and H') of NO radiate in the infrared, especially between 1 and 1.5 microns where at least 9 transitions involving can be observed. Because these IR transitions are relatively well separated from each other, excited NO states concentrations can be easily measured, thus providing essential information on excited-state chemistry for use in optical diagnostics or in electronic excitation model validation. Detailed comparisons between measured and simulated spectra are presented.

  20. Measurement of annular air-gap using active infrared thermography

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Shunmugasundaram, R.; Philip, John; Jayakumar, T.

    2013-11-01

    The paper discusses an infrared thermography (IRT) based procedure for quantification of annular air-gap in cylindrical geometries. Different annular air-gaps are simulated using aluminum hollow cylinders and solid stainless steel inserts of varying diameters. The specimens are externally heated using a hot air-gun and the temperature of the specimens are monitored during cooling using an infrared camera. The temperature decay during the cooling cycle follows an exponential profile in all the cases where the decay constant is air-gap dependent. The rate of temperature decay is fastest for the empty cases (without inserts) and lower for smaller air-gaps. The system is analyzed using a lumped system model by measuring the temperature over a time scale significantly higher than the transition time of the lumped system. It is observed that the Biot number of the system is less than unity, allowing analysis of the system in terms of a single time constant, neglecting internal temperature transients. It is observed that the time constant of temperature decay increases with decreasing annular air-gap. An empirical relation between the inverse of time constant of temperature decay and annular air-gaps is established. Using this calibration curve, unknown air-gaps up to 20 μm could be measured with good accuracy. Applications of this newly developed technique include detection of misalignment of concentric machineries and determination of fuel-to-clad gap of nuclear reactor fuels.

  1. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  2. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  3. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    Detailed measurements and modeling of the spectral emission of an atmospheric pressure air plasma at temperatures up to -3400 K have been made. The cold gas injected in the plasma torch contained an estimated mole fraction of water vapor of approximately 4.5 x 10(exp -3) and an estimated carbon dioxide mole fraction of approximately 3.3 x 10(exp -4). Under these conditions, the minimum level of air plasma emission is found to be between 3.9 and 4.15 microns. Outside this narrow region, significant spectral emission is detected that can be attributed to the fundamental and overtone bands of NO and OH, and to the v(sub 3) and the (v(sub 1)+v(sub 3)) bands Of CO2. Special attention was paid to the effects of ambient air absorption in the optical path between the plasma and the detector. Excellent quantitative agreement is obtained between the measured and simulated spectra, which are both on absolute intensity scales, thus lending confidence in the radiation models incorporated into NEQAIR2-IR over the course of this research program.

  4. Nighttime Cirrus Detection using Atmospheric Infrared Sounder Window Channels and Total Column Water Vapor

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; DeSouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-01-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 (micro)m infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/ near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 (micro)m window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of

  5. Nighttime Cirrus Detection using Atmospheric Infrared Sounder Window Channels and Total Column Water Vapor

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; DeSouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-01-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 (micro)m infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/ near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 (micro)m window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of

  6. Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor

    NASA Astrophysics Data System (ADS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; Desouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-04-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 μm infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 μm window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of the

  7. Infrared traffic image enhancement algorithm based on dark channel prior and gamma correction

    NASA Astrophysics Data System (ADS)

    Zheng, Lintao; Shi, Hengliang; Gu, Ming

    2017-07-01

    The infrared traffic image acquired by the intelligent traffic surveillance equipment has low contrast, little hierarchical differences in perceptions of image and the blurred vision effect. Therefore, infrared traffic image enhancement, being an indispensable key step, is applied to nearly all infrared imaging based traffic engineering applications. In this paper, we propose an infrared traffic image enhancement algorithm that is based on dark channel prior and gamma correction. In existing research dark channel prior, known as a famous image dehazing method, here is used to do infrared image enhancement for the first time. Initially, in the proposed algorithm, the original degraded infrared traffic image is transformed with dark channel prior as the initial enhanced result. A further adjustment based on the gamma curve is needed because initial enhanced result has lower brightness. Comprehensive validation experiments reveal that the proposed algorithm outperforms the current state-of-the-art algorithms.

  8. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels: The AIRS Version 6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud

  9. Infrared Laser System for Extended Area Monitoring of Air Pollution

    NASA Technical Reports Server (NTRS)

    Snowman, L. R.; Gillmeister, R. J.

    1971-01-01

    An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.

  10. 47 CFR 22.805 - Channels for general aviation air-ground service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channels for general aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.805 Channels for general aviation air-ground service. The following channels are...

  11. 47 CFR 22.805 - Channels for general aviation air-ground service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channels for general aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.805 Channels for general aviation air-ground service. The following channels are...

  12. 47 CFR 22.805 - Channels for general aviation air-ground service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Channels for general aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.805 Channels for general aviation air-ground service. The following channels are...

  13. 47 CFR 22.805 - Channels for general aviation air-ground service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Channels for general aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.805 Channels for general aviation air-ground service. The following channels are...

  14. 47 CFR 22.805 - Channels for general aviation air-ground service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Channels for general aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.805 Channels for general aviation air-ground service. The following channels are...

  15. Investigation of infra-red and nonequilibrium air radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.

    1995-01-01

    This report describes progress on the first year of a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this date, the radiative emission of air plasmas in the infrared has been the object of few experimental investigations, and although several infrared systems are already modeled in radiation codes such as NEQAIR, measurements are required to validate numerical predictions and indicate whether all transitions of importance are accounted for. The present program is motivated by the fact that 9 excited states (A, B, C, D, B', F, H, and H') of NO radiate in the infrared, especially between 1 and 1.5 microns where at least 9 transitions involving can be observed. Because these IR transitions are relatively well separated from each other, excited NO states concentrations can be easily measured, thus providing essential information on excited-state chemistry for use in optical diagnostics or in electronic excitation model validation. Developing accurate collisional-radiative models for these excited NO states is of importance as the UV-VUV transitions of NO (beta, gamma, epsilon, beta prime, gamma prime) produce a major, if not dominant, fraction of the radiation emitted by air plasmas. During the first year of the program, research has focused on the spectral range 1.0 to 1.5 microns, as detailed in Section 2 of this report. The measurements, conducted in a 50 kW radio-frequency inductively coupled plasma torch operating on air at atmospheric pressure, extend previous shock tube investigations by Wray to a wider spectral range (1.0 to 1.5 microns vs 0.9 to 1.2 microns) and higher temperatures (7600 K in the plasma torch versus 6700 K in the shock-tube). These higher temperatures in the present experiment have made it possible to

  16. Hurricane Alex as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for August 3, 2004 movie, slicing down the atmosphere with the AIRS infrared sensor

    These images of hurricane Alex were captured on August 3, 2004 at 1:30pm EDT. Located in the Atlantic Ocean located about 80 miles south-southeast of Charleston, South Carolina, Alex is now a category 2 hurricane with maximum sustained winds were near 100 mph (161 kph). Alex's center was about 65 miles (104 kilometers) northeast of Cape Hatteras and moving away from the U.S. coast.

    The major contribution to radiation (infrared light) that AIRS infrared channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movies, a set of AIRS infrared channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses.

    Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is 'stuck' to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles.

    We therefore see in a 'surface channel' at the end of the movie, signals from clouds as cold as 220 K and from Earth's surface at 310 K (about 100 F). The very coldest clouds are seen in deep convection thunderstorms over land. Images [figure removed for brevity, see original site] August 2, 2004, 1:30am ET Frame from August 2 movie, slicing down the atmosphere with the AIRS infrared sensor. Alex a tropical storm, sustained winds at 60 mph. The storm is 115 miles southeast of Charleston, South

  17. Hurricane Alex as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for August 3, 2004 movie, slicing down the atmosphere with the AIRS infrared sensor

    These images of hurricane Alex were captured on August 3, 2004 at 1:30pm EDT. Located in the Atlantic Ocean located about 80 miles south-southeast of Charleston, South Carolina, Alex is now a category 2 hurricane with maximum sustained winds were near 100 mph (161 kph). Alex's center was about 65 miles (104 kilometers) northeast of Cape Hatteras and moving away from the U.S. coast.

    The major contribution to radiation (infrared light) that AIRS infrared channels sense comes from different levels in the atmosphere, depending upon the channel wavelength. To create the movies, a set of AIRS infrared channels were selected which probe the atmosphere at progressively deeper levels. If there were no clouds, the color in each frame would be nearly uniform until the Earth's surface is encountered. The tropospheric air temperature warms at a rate of 6 K (about 11 F) for each kilometer of descent toward the surface. Thus the colors would gradually change from cold to warm as the movie progresses.

    Clouds block the infrared radiation. Thus wherever there are clouds we can penetrate no deeper in infrared. The color remains fixed as the movie progresses, for that area of the image is 'stuck' to the cloud top temperature. The coldest temperatures around 220 K (about -65 F) come from altitudes of about 10 miles.

    We therefore see in a 'surface channel' at the end of the movie, signals from clouds as cold as 220 K and from Earth's surface at 310 K (about 100 F). The very coldest clouds are seen in deep convection thunderstorms over land. Images [figure removed for brevity, see original site] August 2, 2004, 1:30am ET Frame from August 2 movie, slicing down the atmosphere with the AIRS infrared sensor. Alex a tropical storm, sustained winds at 60 mph. The storm is 115 miles southeast of Charleston, South

  18. Infrared and terahertz radiation of a crystal at axial channeling

    NASA Astrophysics Data System (ADS)

    Epp, V.; Mitrofanova, T. G.; Zotova, M. A.

    2015-08-01

    Basic properties of radiation of a crystal lattice excited by an axial channeling particle are considered. It is shown that a coherent radiation of atoms occurs if the frequency of oscillations of the channeled particle comes to a resonance with the vibrational mode of the crystal. Spectral and angular distribution of radiation and its polarization are calculated. In case of a relativistic channeled particle, the radiation of atoms is generated into a narrow cone in the direction of a crystallographic axis along which the particle is channeling. The radiation of atoms exited at axial channelling has significant degree of circular polarization.

  19. Regional Assimilation of NASA Atmospheric Infrared Sounder (AIRS) Data

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Lapenta, William; Jediovec, Gary J.; McCarty, William; Mecikalski, John R.

    2004-01-01

    The NASA Short-term Prediction Research and Transition (SPORT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NW S forecast operations and decision-making. The Atmospheric Infrared Sounder (AIRS), is expected to advance climate research and weather prediction into the 21 st century. It is one of six instruments onboard Aqua, a satellite that is part of NASA s Earth Observing System. AIRS, along with two partner microwave sounding instruments, represents the most advanced atmospheric sounding system ever deployed in space. The system is capable of measuring the atmospheric temperature in the troposphere with radiosonde accuracies of 1 K over 1 km-thick layers under both clear and cloudy conditions, while the accuracy of the derived moisture profiles will exceed that obtained by radiosondes. It is imperative that the scientific community is prepared to take full advantage of next-generation satellite data that will become available within the next decade. The purpose of this paper is to describe a procedure designed to optimally assimilate AIRS data at high spatial resolution over both land and ocean. The assimilation system used in this study is the Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory used extensively around the globe. Results will focus on quality control issues associated with AIRS, optimal assimilation strategies, and the impact of the AIRS data on subsequent numerical forecasts at 12 km produced by the next generation Weather Research and Forecast (WRF) model.

  20. Regional Assimilation of NASA Atmospheric Infrared Sounder (AIRS) Data

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Lapenta, William; Jediovec, Gary J.; McCarty, William; Mecikalski, John R.

    2004-01-01

    The NASA Short-term Prediction Research and Transition (SPORT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NW S forecast operations and decision-making. The Atmospheric Infrared Sounder (AIRS), is expected to advance climate research and weather prediction into the 21 st century. It is one of six instruments onboard Aqua, a satellite that is part of NASA s Earth Observing System. AIRS, along with two partner microwave sounding instruments, represents the most advanced atmospheric sounding system ever deployed in space. The system is capable of measuring the atmospheric temperature in the troposphere with radiosonde accuracies of 1 K over 1 km-thick layers under both clear and cloudy conditions, while the accuracy of the derived moisture profiles will exceed that obtained by radiosondes. It is imperative that the scientific community is prepared to take full advantage of next-generation satellite data that will become available within the next decade. The purpose of this paper is to describe a procedure designed to optimally assimilate AIRS data at high spatial resolution over both land and ocean. The assimilation system used in this study is the Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory used extensively around the globe. Results will focus on quality control issues associated with AIRS, optimal assimilation strategies, and the impact of the AIRS data on subsequent numerical forecasts at 12 km produced by the next generation Weather Research and Forecast (WRF) model.

  1. GOES imager visible-to-infrared channel registration using star observations

    NASA Astrophysics Data System (ADS)

    Chu, Donald; Baucom, Jeanette G.; Baltimore, Perry; Bremer, James C.

    2003-11-01

    Due to optical misalignment, visible and infrared channels of the Geostationary Operational Environmental Satellite (GOES) I-M Imager may not be properly registered. This "co-registration" error is currently estimated by comparing groups of visible and infrared observation residuals from the GOES Orbit and Attitude Tracking System (OATS). To make the channel-to-channel comparison more direct, it was proposed to compare individual observations rather than groups of observations. This has already been done for landmarks but not for stars. Stars would help determine nighttime co-registration when visible landmarks are not available. Although most stars in the GOES catalog are not detectable in the shortwave infrared channel, many are. Because stars drift west-to-east across the detectors and because of their high observation frequency, stars provide good east-west co-registration information. Due to the large detector fields-of-view, stars do not provide much information about north-south co-registration.

  2. Air Flow Detection in Crude Oil by Infrared Light

    PubMed Central

    Dutra, Guilherme; Martelli, Cicero; Da Silva, Marco José; Patyk, Rodolfo L.; Morales, Rigoberto E. M.

    2017-01-01

    In this paper, we used infrared light in the range of 8–12 μm to develop and test an optical imaging system to detect air bubbles flowing in oil. The system basically comprises a broadband light source and a 31 × 32 thermopile array to generate images. To analyze the effects related to light absorption, reflection, and refraction on air-oil boundaries, a numerical model was developed and the predominance of the refraction instead of the absorption in bubbles with diameters below a certain critical value was observed. The IR region of the electromagnetic spectrum has both optical and thermic behavior. To understand the limits of each effect on the oil flow imaging, a study of the influence of temperature variation on the petroleum optical detection was performed. The developed optical imaging system allowed the detection of air flow in static oil and in oil-air two-phase flow. With the presented system, it was possible to achieve images through up to 12 mm of oil volumes, but this may be enhanced by the use of optimized IR sources and detectors. PMID:28587185

  3. Air Flow Detection in Crude Oil by Infrared Light.

    PubMed

    Dutra, Guilherme; Martelli, Cicero; Da Silva, Marco José; Patyk, Rodolfo L; Morales, Rigoberto E M

    2017-06-03

    In this paper, we used infrared light in the range of 8-12 μm to develop and test an optical imaging system to detect air bubbles flowing in oil. The system basically comprises a broadband light source and a 31 × 32 thermopile array to generate images. To analyze the effects related to light absorption, reflection, and refraction on air-oil boundaries, a numerical model was developed and the predominance of the refraction instead of the absorption in bubbles with diameters below a certain critical value was observed. The IR region of the electromagnetic spectrum has both optical and thermic behavior. To understand the limits of each effect on the oil flow imaging, a study of the influence of temperature variation on the petroleum optical detection was performed. The developed optical imaging system allowed the detection of air flow in static oil and in oil-air two-phase flow. With the presented system, it was possible to achieve images through up to 12 mm of oil volumes, but this may be enhanced by the use of optimized IR sources and detectors.

  4. AIRS FPA applied to the MIRIADS: powerful infrared systems applications

    NASA Astrophysics Data System (ADS)

    Caulfield, John T.; McCarley, Paul L.; Baxter, Christopher R.; Massie, Mark A.

    2001-10-01

    Raytheon's Infrared Operations (RIO) has invented and developed a new type of focal plane array with 'Image Processing on-the-chip' named the Adaptive IR Sensor (AIRS). The AIRS FPA is based upon the human retina in that it performs signal processing near the photoreceptors. The AIRS FPA has been reduced to practice and adaptively removes detector and optic temperature drift and 1/f induced fixed pattern noise. This 3rd-generation multi-mode IRFPA, also called a Smart FPA, is a 256 X 256-array format capable of operation in four modes: (1) Direct Injection (DI), (2) Adaptive Non-uniformity Correction (NUC), (3) Motion/Edge Detection, and (4) Subframe Averaging. Nova Research has developed a Modular IR Application Development System (MIRIADS) which is a compact single board camera system that is highly integrated with the dewar assembly. The MIRIADS system coupled with the AIRS Smart FPA results in a very high performance wide field of view IR Sensor and processing system with integrated in one of the smallest packages to date.

  5. Tropospheric infrared mapping spectrometers (TIMS) for air quality measurements

    NASA Astrophysics Data System (ADS)

    Kumer, John B.; Mergenthaler, John L.; Roche, Aidan E.; Rairden, Richard L.; Chatfield, Robert B.

    2006-08-01

    We are currently developing grating mapping spectrometers (GMS) with very high spectral resolution, very low noise, and very wide field of view. These also would be very compact facilitating deployment in either a leo or geo application. The measurement set could be very comprehensive, addressing air quality, climate change and meteorology, or subsets of these. For this presentation we'll focus on potential applications of these GMS for air quality measurements of the species ozone O3, formaldehyde HCHO and carbon monoxide CO. We will discuss these applications at various levels of complexity and the commensurate value for application to understanding and forecasting air quality. At lowest complexity we would utilize a single GMS operating in the solar reflective infrared region for column measurements of O3 and HCHO. A more complex approach would utilize a second and/or third GMS for thermal emissive O3 measurements that provide improved vertical resolution, and for CO profile. Our major emphasis is the lowest tropospheric air layer 0-2 km. For realistic models of these GMS we'll present retrieval performance as predicted by a linear error analysis. In a polar leo orbit the most complex approach could provide twice daily global mapping with some footprints as small as 1.6 km at nadir. We'll present results from an in house lab demonstration GMS. This demo is a predecessor to an advanced design that we are currently developing with support of the NASA ESTO Instrument Incubator Program (IIP).

  6. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896...

  7. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896...

  8. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896...

  9. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896...

  10. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896...

  11. Global and Regional Seasonal Variability of Mid-Tropospheric CO2 as Measured by the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.; Nguyen, Hai

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the Earth Observing System (EOS) Aqua Spacecraft, launched on May 4, 2002 into a near polar sun-synchronous orbit. AIRS has 2378 infrared channels ranging from 3.7 ?m to 15.4 ?m and a 13.5 km footprint at nadir. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2, CO, SO2, O3 and CH4. AIRS CO2 climatologies have been shown to be useful for identifying anomalies associated with geophysical events such as El Nino-Southern Oscillation or Madden-Julian oscillation. In this study, monthly representations of mid-tropospheric CO2 are constructed from 10 years of AIRS Version 5 monthly Level 3 data. We compare the AIRS mid-tropospheric CO2 representations to ground-based measurements from the Scripps and National Oceanic and Atmospheric Administration Climate Modeling and Diagnostics Laboratory (NOAA CMDL) ground networks to better understand the phase lag of the CO2 seasonal cycle between the surface and middle troposphere. Results show only a small phase lag in the tropics that grows to approximately two months in the northern latitudes.

  12. Global and Regional Seasonal Variability of Mid-Tropospheric CO2 as Measured by the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.; Nguyen, Hai

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the Earth Observing System (EOS) Aqua Spacecraft, launched on May 4, 2002 into a near polar sun-synchronous orbit. AIRS has 2378 infrared channels ranging from 3.7 ?m to 15.4 ?m and a 13.5 km footprint at nadir. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2, CO, SO2, O3 and CH4. AIRS CO2 climatologies have been shown to be useful for identifying anomalies associated with geophysical events such as El Nino-Southern Oscillation or Madden-Julian oscillation. In this study, monthly representations of mid-tropospheric CO2 are constructed from 10 years of AIRS Version 5 monthly Level 3 data. We compare the AIRS mid-tropospheric CO2 representations to ground-based measurements from the Scripps and National Oceanic and Atmospheric Administration Climate Modeling and Diagnostics Laboratory (NOAA CMDL) ground networks to better understand the phase lag of the CO2 seasonal cycle between the surface and middle troposphere. Results show only a small phase lag in the tropics that grows to approximately two months in the northern latitudes.

  13. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    this combination image, the AIRS infrared data reveals the temperature of the atmosphere around the storm, but doesn't tell us about the wind direction or relative intensity. The directional vectors of the SeaWinds data set show how the air is circulating around the storm.

    Scatterometers measure surface wind speed and direction by bouncing microwave pulses off the ocean's surface. The SeaWinds instruments measure the backscattered radar energy from wind-generated ocean waves. By making multiple measurements from different looks at the same location, we can infer the vector wind averaged over each 25 km resolution cell. The primary mission objective of the SeaWinds and QuikSCAT scatterometers is to obtain long-term, global coverage of the ocean vector winds for oceanographic and climate research. While not specifically designed for detailed mapping and tracking of hurricanes, both instruments have been found to be useful resources for operational forecasters.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  14. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    this combination image, the AIRS infrared data reveals the temperature of the atmosphere around the storm, but doesn't tell us about the wind direction or relative intensity. The directional vectors of the SeaWinds data set show how the air is circulating around the storm.

    Scatterometers measure surface wind speed and direction by bouncing microwave pulses off the ocean's surface. The SeaWinds instruments measure the backscattered radar energy from wind-generated ocean waves. By making multiple measurements from different looks at the same location, we can infer the vector wind averaged over each 25 km resolution cell. The primary mission objective of the SeaWinds and QuikSCAT scatterometers is to obtain long-term, global coverage of the ocean vector winds for oceanographic and climate research. While not specifically designed for detailed mapping and tracking of hurricanes, both instruments have been found to be useful resources for operational forecasters.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  15. Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind,Joel

    2009-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. AIRS is a grating spectrometer with a number of linear arrays of detectors with each detector sensitive to outgoing radiation in a characteristic frequency v(sub i) with a spectral band pass delta v(sub i) of roughly v(sub i) /1200. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(exp -1) (15.38 gm) - 2665 cm(exp -1)' (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometer (longwave) CO2 band, and the 4.3 micrometer (shortwave) CO, absorption band. There are also two atmospheric window regions, the 12 micrometerm - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. One reason for this was concerns about the effects, during the day, of reflected sunlight and non-Local Thermodynamic Equilibrium (non-LTE) on the observed radiances in the shortwave portion of the spectrum. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses the longwave channels to determine cloud cleared radiances R(sub i) for all channels, and uses R(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used by the AIRS Science Team in preparation for the AIRS Version 6 Retrieval Algorithm. This paper describes how the effects on the radiances of solar radiation reflected by clouds and the Earth's surface, and also of non-LTE, are accounted for in the analysis of the data. Results are presented for both

  16. Observation of the water cycle from space with the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Chahine, M. T.; Waliser, D. E.; Fetzer, E. J.; Olsen, E. T.

    2007-12-01

    AIRS is one of six instruments on board the Aqua satellite, part of NASA's Earth Observing System launched in a sun synchronous near polar orbit on May 4, 2002. AIRS and its partner microwave instrument, AMSU A, provide high quality data facilitating studies of the global water and energy cycles, climate variation and trends, and the response of the climate system to increased greenhouse gases. The exceptional stability of the AIRS instrument provides a climate record of thermal infrared radiance spectra spanning the 3.74 15.4 mm spectral band with 2378 channels at a nominal resolution of 1/1200. (Chahine et al, in BAMS, July 2006) Accurate knowledge of the vertical distribution of water vapor in the atmosphere is critically important to the determination of the warming the Earth will experience as a result of anthropogenic forcing. Comparison of the AIRS specific humidity product to state of the art climate models has shown most models exhibit a pattern of drier than observed (by 10 25%) in the tropics below 800 hPa and moister than observed (by 25 100%) between 300 and 600 hPa in the extra tropics (Pierce et al, GRL 2006). The AIRS water vapor measurements also reveal tropospheric moisture perturbations that are much larger than those depicted in previous NCAR/NCEP reanalysis and ECMWF analysis datasets, both of which have been widely used as observations to validate models. This suggests that the impact of convection induced downdrafts on the atmospheric boundary layer is significantly underestimated in both ECMWF and NCEP reanalysis (Fu et al., GRL 2006). AIRS data have led to the discovery of significant differences in the lower troposphere moisture and temperature fields during the spatial temporal evolution of the Madden Julian Oscillation (MJO). The anomalous lower troposphere temperature structure is observed in detail by AIRS for the Indian and western Pacific Oceans, while it remains much less well defined in the NCEP temperature fields (Tian et al

  17. Dynamics of premixed hydrogen/air flames in mesoscale channels

    SciTech Connect

    Pizza, Gianmarco; Frouzakis, Christos E.; Boulouchos, Konstantinos; Mantzaras, John; Tomboulides, Ananias G.

    2008-10-15

    Direct numerical simulation with detailed chemistry and transport is used to study the stabilization and dynamics of lean ({phi}=0.5) premixed hydrogen/air atmospheric pressure flames in mesoscale planar channels. Channel heights of h=2, 4, and 7 mm, and inflow velocities in the range 0.3{<=}U{sub IN}{<=}1100cm/ s are investigated. Six different burning modes are identified: mild combustion, ignition/extinction, closed steady symmetric flames, open steady symmetric flames, oscillating and, finally, asymmetric flames. Chaotic behavior of cellular flame structures is observed for certain values of U{sub IN}. Stability maps delineating the regions of the different flame types are finally constructed. (author)

  18. Throughput of the Composite Infrared Spectrometer (CIRS) Mid Infrared (MIR) Channel for the Cassini Mission to Saturn

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.; Losch, Patricia; Stewart, Kenneth P.; Jennings, Donald; Martino, Anthony J.

    1998-01-01

    The Composite Infrared Spectrometer (CIRS) of the Cassini mission to Saturn has two interferometers covering the far infrared and mid infrared wavelength region. The instrument was aligned at ambient temperature, but operates at 170 Kelvin and has challenging interferometric alignment tolerances. Cryogenic alignment tests of the instrument indicate that it should suffer minimal degradation due to the cooldown from ambient to operational temperature. System level tests performed by the calibration team indicated a lower than expected signal level on the MIR channel, while providing ambiguous optical throughput data. Therefore it became imperative to develop a metric that could be used to determine the instrument performance at both the instrument and system levels, at ambient and cryogenic temperature. Modulation efficiency and throughput measurements were performed and new analytical models developed to evaluate the status of the instrument. Empirical and analytical data were eventually reconciled and deviations from the design values explained.

  19. Spectrally resolved infrared radiances from AIRS observation and GCM simulation

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Ramaswamy, V.

    2007-12-01

    Global multi-year spectrally resolved infrared radiances observed by the Atmospheric Infrared Sound (AIRS) satellite instrument and simulated from the General Circulation Models (GCMs) of the Geophysical Fluid Dynamics Lab (GFDL) are processed to obtain long-term global and regional means as well as the associated spatial and temporal variability. The accumulated radiance data comprise a host of phenomena that are still largely unrecognized but reveal important physical processes. For instance, the correlation between the radiances and the Sea Surface Temperatures (SSTs) discloses the roles of water vapor in both upper (via its v2 band) and lower (via the continuum in the window region) troposphere, and that of clouds regarding the so called "super greenhouse effect" in Tropics. A comparison between observed and simulated radiances demonstrates that radiance affords a stricter and more insightful metric than the broadband flux. A seemingly good agreement of OLR flux may arise from cancellation of errors of opposite signs in different spectral regions; radiance biases are indicative of physical causes because the radiances at each frequency are sensitive to factor(s) at different levels. Model validation at the radiance level thus provides a complementary and integrative perspective to that obtained using meteorological variables. It is demonstrated that the radiance discrepancies between the GFDL model and the observation are consistent with the model biases in temperature, water vapor and clouds.

  20. Two-channel interferometric detection for the compensation of phase fluctuation noise in nonlinear infrared microscopy

    NASA Astrophysics Data System (ADS)

    Lee, E. S.; Lee, S. W.; Park, J. H.; Lee, J. Y.

    2013-01-01

    We demonstrate an interferometric implementation of nonlinear optical infrared microscopy in which a probe beam interrogates the refractive index change of samples that is induced by molecular vibrational absorption of an infrared pump beam. To compensate for the phase noise caused by the ambient airflow and external vibration, we configure two coupled Mach-Zehnder interferometers sharing a single microscope setup in the sample arm. Proper control over the phase between the two interference channels allows two simultaneous quadrature mode outputs. The validity of our method is proven by imaging polystyrene bead aggregates and comparing the images with the conventional single-channel results.

  1. Two-photon vibrational excitation of air by long-wave infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Peñano, J.; Johnson, L. A.; Hafizi, B.; Wahlstrand, J. K.; Milchberg, H. M.

    2016-08-01

    Ultrashort long-wave infrared (LWIR) laser pulses can resonantly excite vibrations in N2 and O2 through a two-photon transition. The absorptive vibrational component of the ultrafast optical nonlinearity grows in time, starting smaller than but quickly surpassing the electronic, rotational, and vibrational refractive components. The growth of the vibrational component results in a novel mechanism of third-harmonic generation, providing an additional two-photon excitation channel, fundamental + third harmonic. The original and emergent two-photon excitations drive the resonance exactly out of phase, causing spatial decay of the absorptive vibrational nonlinearity. This nearly eliminates two-photon vibrational absorption. Here we present simulations and analytical calculations demonstrating how these processes modify the ultrafast optical nonlinearity in air. The results reveal nonlinear optical phenomena unique to the LWIR regime of ultrashort pulse propagation in the atmosphere.

  2. A high-speed four-channel infrared pyrometer

    SciTech Connect

    Boboridis, K.; Obst, A. W.

    2002-01-01

    A high-speed, four-wavelength pyrometer has been developed for dynamic temperature measurements on samples that are heated by shock compression. The pyrometer uses a pair of off-axis parabolic mirrors to collect radiance emitted from a target of 1 mm in diameter. A single optical fiber delivers the collected radiant flux to the detector housing. Three dichroic beam splitters are used to spectrally split the light into four beams that are then focused onto an equal number of LN2-cooled InSb photodetectors. Broad bandwidth interference filters that are nominally centered at 1.8, 2.4, 3.4, and 5.0 {micro}m define the wavelength ranges of the four channels. The blackbody-temperature threshold of the pyrometer is at about 400 K. The signals are recorded at intervals as short as 20 ns using a four-channel digital oscilloscope. Procedures for calibration and temperature measurements are described.

  3. Hurricane Ivan as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS

    NASA Image and Video Library

    2004-09-15

    Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday. These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama. This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red. http://photojournal.jpl.nasa.gov/catalog/PIA00431

  4. Spectral reflectance from plant canopies and optimum spectral channels in the near infrared

    NASA Technical Reports Server (NTRS)

    Allen, W. A.; Gausman, H. W.; Wiegand, C. L.

    1970-01-01

    Theoretical and experimental aspects of the interaction of light with a typical plant canopy are considered. Both theoretical and experimental results are used to establish optimum electromagnetic wavelength channels for remote sensing in agriculture. The spectral range considered includes half of the visible and much of the near-infrared regions.

  5. Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Microwave 89Ghz imageFigure 2: Visible/near infrared sensor

    Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday.

    These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama.

    This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple

  6. Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Microwave 89Ghz imageFigure 2: Visible/near infrared sensor

    Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday.

    These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama.

    This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple

  7. Development of Level 3 (gridded) products for the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Granger, Stephanie L.; Leroy, Stephen S.; Manning, Evan M.; Fetzer, Eric J.; Oliphant, Robert B.; Braverman, Amy; Lee, Sung-Yung; Lambrigtsen, Bjom H.

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) sounding system is a suite of infrared and microwave instruments flown as part of NASA's Earth Observing System (EOS) onboard the Aqua platform. The AIRS dataset provides a daily, global view of Earth processes at a finer vertical resolution than ever before. However, analysis of the AIRS data is a daunting task given the sheer volume and complexity of the data. The volume of data produced by the EOS project is unprecedented; the AIRS project alone will produce many terabytes of data over the lifetime of the mission. This paper describes development of AIRS Level 3 data products that will help to alleviate problems of access and usability.

  8. Air temperature profile and air/sea temperature difference measurements by infrared and microwave scanning radiometers

    NASA Astrophysics Data System (ADS)

    Cimini, D.; Shaw, J. A.; Westwater, E. R.; Han, Y.; Irisov, V.; Leuski, V.; Churnside, J. H.

    2003-06-01

    A system of two scanning radiometers has been developed by the National Oceanic and Atmospheric Administration/Environmental Technology Laboratory and deployed on the NOAA R/V Ronald H. Brown during the Nauru99 cruise in the tropical western Pacific in June and July 1999. The system is composed of a high-quality temperature sensor and two independent, vertically scanning radiometers, measuring atmospheric and oceanic emission in the microwave (MW), and infrared (IR) regions. Both radiometers measure emission from a uniformly mixed atmospheric gas: oxygen for MW (60 GHz) and carbon dioxide for IR (14.2 μm). The high atmospheric absorption at these frequencies allows one calibration point from the horizontal atmospheric view using the in situ temperature sensor measurements as a reference. The signal at all other scan angles is scaled relative to that at the horizontal, resulting in a differential technique that is independent of calibration offset. This technique provides continuous and accurate estimates of boundary layer air temperature profile and air/sea temperature difference. The main advantage of this technique is that the water skin temperature can be measured at different optical depths without disturbing the skin layer (magnitude order of microns). We first compare radiometric data collected during the experiment with simulations obtained by atmospheric and oceanic radiative transfer models. We then use statistical inversion techniques to estimate air temperature profiles from upward looking measurements, based on an a priori data set of about 1500 ship-based radiosonde observations. For the "well-posed" problem of air/sea temperature difference estimation, we apply a physical retrieval algorithm to the downward looking measurements, accounting for air attenuation and sea surface roughness. Then we show retrieval results and evaluate the achieved accuracy. Finally, we compare radiometric estimates with in situ measurements, discussing similarities and

  9. Causality arguments behind closed-form description of air dispersion in the mid-infrared

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.

    2017-04-01

    We show that a closed-form Sellmeier-equation description of the refractive index of atmospheric air can be extended to the mid- and long-wavelength infrared spectral ranges, where the optical response of air is dominated by molecular rovibrational modes. When written in the form of a Sellmeier-type equation, the formula of air refractivity is shown to be instrumental for the analysis of group-velocity dispersion of atmospheric air, helping identify the regions of broadband anomalous dispersion, where long-distance transmission and soliton pulse compression of high-power mid- and long-wavelength infrared field waveforms are possible.

  10. InGaN Light-Emitting Diode with a Nanoporous/Air-Channel Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Ren-Hao; Lin, Chia-Feng; Yang, Chung-Chieh; Fan, Feng-Hsu; Huang, Yu-Chieh; Tseng, Wang-Po; Cheng, Po-Fu; Wu, Kaun-Chun; Wang, Jing-Hao

    2013-01-01

    High-efficiency InGaN light-emitting diode (LED) with an air-channel structure and a nanoporous structure was fabricated. The air-channel structure was formed through an epitaxial regrowth process on a dry-etched undoped GaN nanorod structure. The GaN:Si nanoporous structure embedded in treated LED structures was fabricated through a photoelectrochemical wet etching process in an oxalic acid solution. Light output powers were enhanced 1.48- and 1.75-fold for the LEDs with an air-channel structure and with a nanoporous/air-channel structure, respectively, in comparison with that of a conventional LED structure. The air-channel structure and the nanoporous GaN:Si structure in the treated LED structures provided high-light-extraction structures.

  11. Limb Correction of Individual Infrared Channels Used in RGB Composite Products

    NASA Technical Reports Server (NTRS)

    Elmer, Nicholas J.; Berndt, Emily; Jedlovec, Gary J.; Lafontaine, Frank J.

    2015-01-01

    This study demonstrates that limb-cooling can be removed from infrared imagery using latitudinally and seasonally dependent limb correction coefficients, which account for an increasing optical path length as scan angle increases. Furthermore, limb-corrected RGB composites provide multiple advantages over uncorrected RGB composites, including increased confidence in the interpretation of RGB features, improved situation awareness for operational forecasters, seamless transition between overlaid RGB composites, easy comparison of RGB products from different sensors, and the availability of high quality proxy products for the GOES-R era, as demonstrated by the case examples presented in Section 3. This limb correction methodology can also be applied to additional infrared channels used to create other RGB products, including those created from other satellite sensors, such as Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS).

  12. Retrieving Land Surface Temperature from Hyperspectral Thermal Infrared Data Using a Multi-Channel Method

    PubMed Central

    Zhong, Xinke; Huo, Xing; Ren, Chao; Labed, Jelila; Li, Zhao-Liang

    2016-01-01

    Land Surface Temperature (LST) is a key parameter in climate systems. The methods for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric profile data or require thousands of continuous channels. We aim to retrieve LST for natural land surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking Land Surface Emissivity (LSE) properly into consideration. In the adapted method, LST can be retrieved by a linear function of 36 brightness temperatures at Top of Atmosphere (TOA) using channels where LSE has high values. We evaluated the adapted method using simulation data at nadir and satellite data near nadir. The Root Mean Square Error (RMSE) of the LST retrieved from the simulation data is 0.90 K. Compared with an LST product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat, the error in the LST retrieved from the Infared Atmospheric Sounding Interferometer (IASI) is approximately 1.6 K. The adapted method can be used for the near-real-time production of an LST product and to provide the physical method to simultaneously retrieve atmospheric profiles, LST, and LSE with a first-guess LST value. The limitations of the adapted method are that it requires the minimum LSE in the spectral interval of 800–950 cm−1 larger than 0.95 and it has not been extended for off-nadir measurements. PMID:27187408

  13. Retrieving Land Surface Temperature from Hyperspectral Thermal Infrared Data Using a Multi-Channel Method.

    PubMed

    Zhong, Xinke; Huo, Xing; Ren, Chao; Labed, Jelila; Li, Zhao-Liang

    2016-05-13

    Land Surface Temperature (LST) is a key parameter in climate systems. The methods for retrieving LST from hyperspectral thermal infrared data either require accurate atmospheric profile data or require thousands of continuous channels. We aim to retrieve LST for natural land surfaces from hyperspectral thermal infrared data using an adapted multi-channel method taking Land Surface Emissivity (LSE) properly into consideration. In the adapted method, LST can be retrieved by a linear function of 36 brightness temperatures at Top of Atmosphere (TOA) using channels where LSE has high values. We evaluated the adapted method using simulation data at nadir and satellite data near nadir. The Root Mean Square Error (RMSE) of the LST retrieved from the simulation data is 0.90 K. Compared with an LST product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat, the error in the LST retrieved from the Infared Atmospheric Sounding Interferometer (IASI) is approximately 1.6 K. The adapted method can be used for the near-real-time production of an LST product and to provide the physical method to simultaneously retrieve atmospheric profiles, LST, and LSE with a first-guess LST value. The limitations of the adapted method are that it requires the minimum LSE in the spectral interval of 800-950 cm(-1) larger than 0.95 and it has not been extended for off-nadir measurements.

  14. Influence of porous media, airflow rate, and air channel spacing on benzene NAPL removal during air sparging

    SciTech Connect

    Rogers, S.W.; Ong, S.K.

    2000-03-01

    To study the effects of porous media type, airflow rate, and air channel spacing on NAPL removal, air sparging of a benzene NAPL was performed in a lab-scale reactor with two isolated vertical air channels on either side of the NAPL. Experimental conditions included three discrete air channel distances, three types of saturated porous media, and five airflow rates. Benzene NAPL removal efficiency was shown to increase from 7.5% to 16.2% with increasing porous media mean particle size over the 168 h of operation. Initial change in the airflow rate had an effect on contaminant removal rate, but further change in the airflow rate had little effect. Benzene NAPL removal efficiency was shown to decrease with increasing channel spacing, but the mere presence of air channels was shown to suppress lateral contaminant migration. Benzene removal efficiency was shown to be highly correlated with the mean particle diameter, the square root of the uniformity coefficient, and the inverse of the square of the distance between the NAPL and the air channel.

  15. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  16. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  17. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) - Total Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning.

    This movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms.

    This movie shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft

  18. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) - Total Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning.

    This movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms.

    This movie shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft

  19. Operational testing and applications of the AIRS FPA with infrared fisheye optics

    NASA Astrophysics Data System (ADS)

    Baxter, Christopher R.; Massie, Mark A.; Bartolac, Thomas J.

    2003-01-01

    Nova's development of the "Modular Infrared Imaging Applications Development System" (MIRIADS) produced a longwave infrared (LWIR) camera system that operated the "Adaptive Infrared Sensor" (AIRS) focal plane device produced by the Raytheon Infrared Operations (RIO) organization. A novel system architecture permitted the integration of an infrared fisheye lens system produced by Optics 1, Inc., which permitted a complete hemispherical field of view to be imaged onto the AIRS FPA. This paper will describe applications for this system as an extremely wide field-of-view IR sensor (early warning detection, fire detection, etc.), and will present test imagery collected with the system. This technology advancement has been the result of the coordinated effort of a variety of companies and government agencies. This presentation will highlight significant contributions of individuals and will indicate the effectiveness of the Small Business Innovative Research (SBIR) program in helping to advance this nation's technology base.

  20. An experimental investigation on mist formation from moist air cooled in a narrow rectangular channel

    NASA Astrophysics Data System (ADS)

    Koyama, Shigeru; Yara, Tomoyasu; Yasuhara, Kaoru

    Recently, air quality in the air-conditioned space is one of the most important concerns for end users Mist formation from the heat exchanger in air-conditioners is one of the major problems in this regard. This paper deals with experimental investigation of mist formation from moist air cooled in a rectangular channel. The influence of relative humidity, inlet air temperature, inlet air velocity and channel width on mist formation formed on two parallel copper plates without special treatment in the channel is investigated. Two kinds of copper plates with hydrophobic coating and contaminated with oil-smoke are also tested to clarify the influence of surface conditions in the channel. Experimental results show that the air velocity is the most influential parameter, which is followed by the inlet air temperature for copper plates without special treatment. It is also found that the ΔT (temperature difference between inlet air and copper plates in the channel) required for mist formation is the lowest for the copper plates contaminated with oil smoke and the highest with that of hydrophobic coating.

  1. Self-Channeling of High-Power Long-Wave Infrared Pulses in Atomic Gases

    NASA Astrophysics Data System (ADS)

    Schuh, K.; Kolesik, M.; Wright, E. M.; Moloney, J. V.; Koch, S. W.

    2017-02-01

    We simulate and elucidate the self-channeling of high-power 10 μ m infrared pulses in atomic gases. The major new result is that the peak intensity can remain remarkably stable over many Rayleigh ranges. This arises from the balance between the self-focusing, diffraction, and defocusing caused by the excitation induced dephasing due to many-body Coulomb effects that enhance the low-intensity plasma densities. This new paradigm removes the Rayleigh range limit for sources in the 8 - 12 μ m atmospheric transmission window and enables transport of individual multi-TW pulses over multiple kilometer ranges.

  2. Self-Channeling of High-Power Long-Wave Infrared Pulses in Atomic Gases.

    PubMed

    Schuh, K; Kolesik, M; Wright, E M; Moloney, J V; Koch, S W

    2017-02-10

    We simulate and elucidate the self-channeling of high-power 10  μm infrared pulses in atomic gases. The major new result is that the peak intensity can remain remarkably stable over many Rayleigh ranges. This arises from the balance between the self-focusing, diffraction, and defocusing caused by the excitation induced dephasing due to many-body Coulomb effects that enhance the low-intensity plasma densities. This new paradigm removes the Rayleigh range limit for sources in the 8-12  μm atmospheric transmission window and enables transport of individual multi-TW pulses over multiple kilometer ranges.

  3. Effect of an entrained air bubble on the acoustics of an ink channel.

    PubMed

    Jeurissen, Roger; de Jong, Jos; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2008-05-01

    Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the pressure buildup necessary for the droplet formation. The channel acoustics and the air bubble dynamics are modeled. For good agreement with the experimental data it is crucial to include the confined geometry into the model: The air bubble acts back on the acoustic field in the channel and thus on its own dynamics. This two-way coupling limits further bubble growth and thus determines the saturation size of the bubble.

  4. Inter-Comparison of Suomi NPP CrIS Radiances with AIRS and IASI toward Infrared Hyperspectral Benchmark Radiance Measurements

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Chen, Y.; Jin, X.; Tremblay, D. A.

    2013-12-01

    The Cross-track Infrared Sounder (CrIS) on the newly-launched Suomi National Polar-orbiting Partnership (SNPP) and future Joint Polar Satellite System (JPSS) is a Fourier transform spectrometer that provides soundings of the atmosphere with 1305 spectral channels, over 3 wavelength ranges: LWIR (9.14 - 15.38 μm); MWIR (5.71 - 8.26 μm); and SWIR (3.92 - 4.64 μm). The SNPP CrIS, combined with the existed Atmospheric Infrared Sounder (AIRS) on NASA Aqua and Infrared Atmospheric Sounding Interferometer (IASI) on Metop-A and -B, will accumulate decades of hyperspectral spectral infrared measurements with high accuracy, which have potentials for climate monitoring and model assessments. In this presentation, we will 1) evaluate radiance consistency among AIRS, IASI, and CrIS, and 2) thus demonstrate that the CrIS SDR data from SNPP and JPSS can serve as a long-term reference benchmark for inter-calibration and climate-related study just like AIRS and IASI. In the first part of presentation, we will brief major postlaunch calibration and validation activities for SNPP CrIS performed by the NOAA STAR CrIS sensor data record (SDR) team, including the calibration parameter updates, instrument stability monitoring, and data processing quality assurance. Comprehensive assessments of the radiometric, spectral, geometric calibration of CrIS SDR will be presented. In addition, the preparation of CrIS SDR re-processing toward consistent Climate Data Records (CDRs) will be discussed. The purpose of this part is to provide a comprehensive overview of CrIS SDR data quality to the user community. In the second part, we will compare CrIS hyperspectral radiance measurements with the AIRS and IASI on Metop-A and -B to examine spectral and radiometric consistence and differences among three hyperspectral IR sounders. The SNPP CrIS, combined with AIRS and IASI, provide the first-ever inter-calibration opportunity because three hyperspectral IR sounders can observe the Earth and

  5. Development of 200-channel mapping system for tissue oxygenation measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Niwayama, Masatsugu; Kohata, Daisuke; Shao, Jun; Kudo, Nobuki; Hamaoka, Takatumi; Katsumura, Toshihito; Yamamoto, Katsuyuki

    2000-07-01

    Near-infrared spectroscopy (NIRS) is a very useful technique for noninvasive measurement of tissue oxygenation. Among various methods of NIRS, continuous wave near-infrared spectroscopy (CW- NIRS) is especially suitable for real-time measurement and for practical use. CW-NIRS has recently been applied in vivo reflectance imaging of muscle oxygenation and brain activity. However, conventional mapping systems do not have a sufficient mapping area at present. Moreover, they do not enable quantitative measurement of tissue oxygenation because conventional NIRS is based on the inappropriate assumption that tissue is homogeneous. In this study, we developed a 200-channel mapping system that enables measurement of changes in oxygenation and blood volume and that covers a wider area (30 cm x 20 cm) than do conventional systems. The spatial resolution (source- detector separation) of this system is 15 mm. As for the effcts of tissue inhomogeneity on muscle oxygenation measurement, subcutaneous adipose tissue greatly reduces measurement sensitivity. Therefore, we also used a correction method for influence of the subcutaneous fat layer so that we could obtain quantitative changes in concentrations of oxy- and deoxy- hemoglobin. We conducted exercise tests and measured the changed in hemoglobin concentration in the thigh using the new system. The working muscles in the exercises could be imaged, and the heterogeneity of the muscles was shown. These results demonstrated the new 200-channel mapping system enables observation of the distribution of muscle metabolism and localization of muscle function.

  6. Mapping anomalous dispersion of air with ultrashort mid-infrared pulses.

    PubMed

    Mitrofanov, A V; Voronin, A A; Sidorov-Biryukov, D A; Rozhko, M V; Stepanov, E A; Fedotov, A B; Shumakova, V; Ališauskas, S; Pugžlys, A; Baltuška, A; Zheltikov, A M

    2017-05-18

    We present experimental studies of long-distance transmission of ultrashort mid-infrared laser pulses through atmospheric air, probing air dispersion in the 3.6-4.2-μm wavelength range. Atmospheric air is still highly transparent to electromagnetic radiation in this spectral region, making it interesting for long-distance signal transmission. However, unlike most of the high-transmission regions in gas media, the group-velocity dispersion, as we show in this work, is anomalous at these wavelengths due to the nearby asymmetric-stretch rovibrational band of atmospheric carbon dioxide. The spectrograms of ultrashort mid-infrared laser pulses transmitted over a distance of 60 m in our experiments provide a map of air dispersion in this wavelength range, revealing clear signatures of anomalous dispersion, with anomalous group delays as long as 1.8 ps detected across the bandwidth covered by 80-fs laser pulses.

  7. Air monitoring with a coherent infrared differential absorption lidar

    SciTech Connect

    Richter, P.I.; Peczeli, I.; Boeroecz, S.; Herndon, R.C.

    1995-12-31

    A coherent infrared differential absorption lidar was developed that is capable of fast remote detection of several atmospheric molecular pollutants. Typical detectable components are ammonia, phosgene, acetone, toluene, hydrogen cyanide, benzene etc. Enhanced operation of the lidar system was demonstrated using autodyne detection scheme with appropriate selection of the laser sources. This allowed keeping mass (250 kg) and power consumption (1,5 kW) of the system low. At the same time by signal fluctuation optimization sensitivities in the column content rage of 3{center_dot}10{sup 1}--10{sup 3} ppm{center_dot}m for ranges up to 2,5 km could be achieved.

  8. Thermal performance evaluation of MSFC hot air collectors with various flow channel depth

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used and the results obtained during the evaluation test program on the MSFC air collector with flow channel depth of 3 in., 2 in., and 1 in., under simulated conditions are presented. The MSFC hot air collector consists of a single glass cover with a nonselective coating absorber plate and uses air as the heat transfer medium. The absorber panel consists of a thin flat sheet of aluminum.

  9. Tropical Storm Beryl as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS

    NASA Image and Video Library

    2006-07-20

    This is an AIRS infrared image of Tropical Storm Beryl in the western Atlantic, from the NASA Aqua satellite on July 20, 2006, 1:30 am local time. The image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions.

  10. [Influence factor for prediction of air-dry density of Eucalyptus pellita by near infrared spectroscopy].

    PubMed

    Zhao, Rong-Jun; Huo, Xiao-Mei; Shangguan, Wei-Wei; Wang, Yu-Rong

    2011-11-01

    Near infrared spectroscopy(NIR)technique was applied to compare the influence factors of Eucalyptus pellita's air-dry density. Air-dry density of eucalypt wood was tested by direct measurement After collecting the near infrared reflectance spectra of samples in different section and with different thickness, moisture content and roughness, the NIR spectra were preprocessed with the second-derivative and the regression models were built in certain spectra. The calibration models were established using 50-140 samples with the partial least squares method and validated with external validation method. The results showed that the predicted results were influenced by sample's section, thickness, roughness and moisture content. The best near infrared spectroscopy prediction model was built under the condition of transverse section, 2-5 mm thickness, 12% moisture content and meticulous roughness of wood.

  11. Research on measurement-device-independent quantum key distribution based on an air-water channel

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-yuan; Zhou, Xue-jun; Xu, Hua-bin; Cheng, Kang

    2016-11-01

    A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel's asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

  12. Improving the Air Force Infrared Stellar Calibration Network with High Spectral Resolution Data from the Infrared Space Observatory

    NASA Astrophysics Data System (ADS)

    Kraemer, K. E.; Engelke, C. W.; Price, S. D.

    2004-12-01

    We present preliminary results of a project to improve the spectral resolution of the Air Force Infrared Stellar Calibration Network by incorporating data from the Infrared Space Observatory (ISO). This network and its deriviatives were created by Cohen and colleagues to support infrared calibration for government and civilian ground- and space-based observatories, such as the Infrared Telescope Facility, Gemini, and the Maui Optical Site. The reduced 2.4 to 45 μ m spectra from the ISO Short Wavelength Spectrometer (SWS) are up to 100 times higher spectral resolution than the current network data. Appropriately substituting these spectra for the standard stars will improve the accuracy of the calibration network, particularly in spectral regions where the atmosphere limits ground-based data, and permit more accurate calibration of very narrow spectral bandpasses. The initial effort has photometrically calibrated the SWS spectra for the 9 stellar or secondary standards with composites. The model atmosphere spectrum for α Cen has been replaced by SWS data; the model spectra for α CMa and α Lyr have been retained in order to preserve the common calibration pedigree with the original Cohen et al. network (although see Price et al. 2004, AJ, 128, 889). Where available, high quality photometry from the Midcourse Space Experiment (MSX) are used, supplemented by photometry from the Diffuse Infrared Background Experment (DIRBE) and the photometry used by Cohen et al. used to create the original composite. The next steps are to 1) replace the 10-15 tertiary standard stars with template spectra with measured spectra for the cases in which the SWS observations have sufficiently high signal-to-noise ratios (this will double the number of secondary standards); 2) develop a set of high spectral resolution infrared templates based on the SWS observations for each MK spectral class of the secondary standards with which to upgrade the entire network; 3) create new templates for

  13. Drying of chilli in a combined infrared and hot air rotary dryer.

    PubMed

    Mihindukulasuriya, Suramya D F; Jayasuriya, Hemantha P W

    2015-08-01

    The investigation of an economical and efficient drying method for chilli is beneficial because it could provide a means of overcoming the drawbacks of traditional drying methods: high operating power and long drying time, which result in a decrease in the quality of the chilli. This study involved the design and development of a combined infrared and hot air laboratory-scale rotary dryer, which consists of three operating modes: hot air, infrared, and combined infrared and hot air. Drying experiments were conducted at five different temperatures (50, 55, 60, 65, and 70 °C). The drying behavior produced with the three operating modes was evaluated. The best mode was determined based on the parameters for evaluating the quality of chilli, the power consumption, and the retention time. The results indicate that the optimal overall drying performance for chilli was achieved at 70, 65, 50 °C drying temperatures in hot air, combined, and IR mode, respectively. A positive correlation was observed between retention time and power consumption with the hot air and the combined modes, while a negative correlation was identified in the IR mode.

  14. Visible and near-infrared channel calibration of the GOES-6 VISSR using high-altitude aircraft measurements

    NASA Technical Reports Server (NTRS)

    Smith, Gilbert R.; Levin, Robert H.; Koyanagi, Robert S.; Wrigley, Robert C.

    1989-01-01

    Present and future visible and near-infrared wavelength sensors mounted on operational satellites do not have on-board absolute calibration devices. One means of establishing an in-orbit calibration for a satellite sensor is to make simultaneous measurements of a bright, relatively uniform scene along the satellite view vector from a calibrated instrument on board a high altitude aircraft. Aircraft data were recorded over White Sands, New Mexico, and the coincident aircraft and orbiting satellite data is compared for the visible and near-infrared wavelength channel of the GOES-6 Visible Infrared Spin-Scan Radiometer.

  15. Multi-channel far-infrared HL-2A interferometer-polarimetera)

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Deng, Z. C.; Li, Y. G.; Yi, J.

    2012-10-01

    An HL-2A interferometer is upgraded to a multi-channel interferometer/polarimeter, which includes four chords for the interferometer and four chords for the polarimeter. The far-infrared lasers (at λ = 432.5 μm and 30 mW power) are used to probe plasmas horizontally in the midplane of HL-2A. A conventional heterodyne technique is used for the interferometer. Two counter-rotating circularly polarized waves are used to measure the Faraday rotation effect. A fast-phase comparator with temporal resolution of 1 μs and phase resolution 0.1° is developed. Further, the distortion of the polarization caused by the beam-splitters and the other optical components is also investigated.

  16. Multi-channel far-infrared HL-2A interferometer-polarimeter.

    PubMed

    Zhou, Y; Deng, Z C; Li, Y G; Yi, J

    2012-10-01

    An HL-2A interferometer is upgraded to a multi-channel interferometer∕polarimeter, which includes four chords for the interferometer and four chords for the polarimeter. The far-infrared lasers (at λ = 432.5 μm and 30 mW power) are used to probe plasmas horizontally in the midplane of HL-2A. A conventional heterodyne technique is used for the interferometer. Two counter-rotating circularly polarized waves are used to measure the Faraday rotation effect. A fast-phase comparator with temporal resolution of 1 μs and phase resolution 0.1° is developed. Further, the distortion of the polarization caused by the beam-splitters and the other optical components is also investigated.

  17. Intraoperative 16-Channel Electroencephalography and Bilateral Near Infrared Spectroscopy Monitorization in Aortic Surgery.

    PubMed

    Demir, Aslı; Aydınlı, Bahar; Ünal, Ertekin Utku; Bindal, Mustafa; Koçulu, Rabia; Sarıtaş, Ahmet; Karadeniz, Ümit

    2015-08-01

    Transient neurologic dysfunction is common after aortic surgery. Major causes of postoperative complications followed by cardiac surgery are due to hypoperfusion states such as selective cerebral perfusion, embolic debris during cardiopulmonary bypass and ulcerated plaque emboli originated from carotid arteries. Neurologic complications prolong periods of intensive care unit and hospital stay, worsens quality of life and unfortunately they are an important cause of morbidity. Anaesthesia during a carotid and aortic surgery constitutes of providing adequate brain perfusion pressure, attenuating cerebral metabolism by anaesthetic agents and monitoring the cerebral metabolic supply and demand relationship during the intraoperative period. We present a monitoring approach with an intraoperative 16-channel electroencephalography and bilateral near infrared spectroscopy during redo aneurysm of the sinus of Valsalva surgery.

  18. Intraoperative 16-Channel Electroencephalography and Bilateral Near Infrared Spectroscopy Monitorization in Aortic Surgery

    PubMed Central

    Demir, Aslı; Aydınlı, Bahar; Ünal, Ertekin Utku; Bindal, Mustafa; Koçulu, Rabia; Sarıtaş, Ahmet; Karadeniz, Ümit

    2015-01-01

    Transient neurologic dysfunction is common after aortic surgery. Major causes of postoperative complications followed by cardiac surgery are due to hypoperfusion states such as selective cerebral perfusion, embolic debris during cardiopulmonary bypass and ulcerated plaque emboli originated from carotid arteries. Neurologic complications prolong periods of intensive care unit and hospital stay, worsens quality of life and unfortunately they are an important cause of morbidity. Anaesthesia during a carotid and aortic surgery constitutes of providing adequate brain perfusion pressure, attenuating cerebral metabolism by anaesthetic agents and monitoring the cerebral metabolic supply and demand relationship during the intraoperative period. We present a monitoring approach with an intraoperative 16-channel electroencephalography and bilateral near infrared spectroscopy during redo aneurysm of the sinus of Valsalva surgery. PMID:27366510

  19. Modelling an infrared Man Portable Air Defence System

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard P.; Richardson, Mark A.; Brian, Butters; Roy, Walmsley

    2010-09-01

    The global proliferation of shoulder launched IR Man Portable Air Defence Systems (ManPADS) has resulted in the existence of a serious threat to both civilian and military aircraft from terrorist attack. Some of the older generations of ManPADS can be defeated with modern countermeasures but even the most sophisticated protection still has vulnerabilities to the latest family of ManPADS. This paper describes the work undertaken by the authors to model a second generation ManPAD, based on the Russian SA-14, and assess the vulnerabilities of aircraft both with and without flare countermeasures from these systems. The conclusions are the results of over 11,000 simulated firings against targets of varying aspects, velocities and altitudes.

  20. Terminal air-to-ground missile guidance by infrared seeker

    NASA Astrophysics Data System (ADS)

    Christy, Stephane; Mazar, Bruno; Horaud, Radu

    1997-06-01

    In this paper, we describe a new method for terminal air-to- ground missile guidance based on IR seeker. The aim is to hit a building which has been previously selected in a 3D model of the scene. The proposed algorithm is divided in two steps: acquisition and tracking steps. Acquisition consists in estimating the location of the target in the first image and to reestimate the missile position. The second step is the tracking of the target along the sequence of images by predicting the target location in each image from the previous one. A supervisor module is in charge of verifying the correctness of the tracking, by doing some reacquisitions in background and ensure the coherence between reacquisitions in background and ensure the coherence between reacquisitions and tracking. All computations are real-time compatible.

  1. 10-channel far-infrared polarimeter for the tokamak à configuration variable

    NASA Astrophysics Data System (ADS)

    Blanchard, P.; Behn, R.; Weisen, H.; Zhuchkova, A.

    2006-10-01

    A new far-infrared polarimeter diagnostic for the tokamak à configuration variable (TCV) is under construction at CRPP. It uses two FIR lasers at 432.5μm, optically pumped by a 120W continuous wave CO2 laser. The two FIR cavities will be detuned such that the combination of the beams, using a method proposed by Dodel and Kunz [Infrared Phys. 18, 773 (1978)], produces a single beam with a linear polarization rotating at the difference frequency (set to 750kHz). For measurements across the minor radius of TCV, this beam will be split into ten beams, each equipped with a Schottky barrier diode as detector. Faraday rotation angles will be measured by coherent detection. In order to optimize the sensitivity of the polarimeter for the parameter range of interest [ne(0)<3×1019m-3], we have chosen to keep it separate from the existing 14-channel interferometer operating at 214μm. This also leads to substantial simplification of the design and signal processing. The design of the system as well as its expected sensitivity are presented and discussed. The required accuracy to measure profiles of current density and safety factor for typical operating scenarios with internal transport barriers on TCV (including cases with reversed magnetic shear) is assessed by numerical simulations.

  2. A New TH-CDMA Scheme for Dispersive Infrared Channel and Its Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Hamdi, Mazda; Nasiri-Kenari, Masoumeh

    2011-04-01

    Infrared indoor wireless communications using nondirected links are subject to severe multipath distortion which causes intersymbol interference (ISI). To lessen multipath distortion effect and thereby to improve the system performance, in this paper, we consider a new time-hopping based multiple access scheme for this channel, in which one pulse is transmitted in each bit interval. The position of the pulse is determined based on the output of a low rate error correcting code along with the user's dedicated PN code. We evaluate the multiple access performance of the system for correlation receiver considering background noise, dark current, and thermal noise. We compare the performance of our proposed multiple access scheme with those of the previously introduced code division multiple access schemes for infrared communications, like CDMA and Frame Time Hopping (FTH). Our results show that, for the same bandwidth and bit rate, the proposed system substantially excels the other methods in term of bit error rate, or equivalently the number of the users supported at a fixed bit error rate.

  3. 10-channel far-infrared polarimeter for the tokamak a configuration variable

    SciTech Connect

    Blanchard, P.; Behn, R.; Weisen, H.; Zhuchkova, A.

    2006-10-15

    A new far-infrared polarimeter diagnostic for the tokamak a configuration variable (TCV) is under construction at CRPP. It uses two FIR lasers at 432.5 {mu}m, optically pumped by a 120 W continuous wave CO{sub 2} laser. The two FIR cavities will be detuned such that the combination of the beams, using a method proposed by Dodel and Kunz [Infrared Phys. 18, 773 (1978)], produces a single beam with a linear polarization rotating at the difference frequency (set to 750 kHz). For measurements across the minor radius of TCV, this beam will be split into ten beams, each equipped with a Schottky barrier diode as detector. Faraday rotation angles will be measured by coherent detection. In order to optimize the sensitivity of the polarimeter for the parameter range of interest [n{sub e}(0)<3x10{sup 19} m{sup -3}], we have chosen to keep it separate from the existing 14-channel interferometer operating at 214 {mu}m. This also leads to substantial simplification of the design and signal processing. The design of the system as well as its expected sensitivity are presented and discussed. The required accuracy to measure profiles of current density and safety factor for typical operating scenarios with internal transport barriers on TCV (including cases with reversed magnetic shear) is assessed by numerical simulations.

  4. Hurricane Frances as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS and SeaWinds Scatterometer

    NASA Image and Video Library

    2004-08-30

    This image shows Hurricane Frances in August 2004 as captured by instruments onboard two different NASA satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central "eye." The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA00435

  5. Groundwater cleanup by in-situ sparging. IX. Air channeling model for nonaqueous phase liquid removal

    SciTech Connect

    Wilson, D.J.; Norris, R.D.; Clarke, A.N.

    1996-04-01

    A mathematical model is developed to simulate the removal of dissolved and nonaqueous phase liquid (NAPL) volatile organic compounds (VOCs) from contaminated aquifers by sparging. The model assumes that the sparging air moves through the aquifer in persistent channels and that NAPL must dissolve and move to these channels by diffusion and dispersion processes. The dependence of the model results on model parameters is explored, and practical implications for sparging well operation are discussed.

  6. Five-Channel Infrared Laser Absorption Spectrometer for Combustion Product Monitoring Aboard Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.

    2014-01-01

    Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.

  7. 700 nm Zwitterionic Near-Infrared Fluorophores for Dual-Channel Image-Guided Surgery

    PubMed Central

    Hyun, Hoon; Henary, Maged; Gao, Tielong; Narayana, Lakshminarayana; Owens, Eric A.; Lee, Jeong Heon; Park, GwangLi; Wada, Hideyuki; Ashitate, Yoshitomo; Frangioni, John V.; Choi, Hak Soo

    2015-01-01

    Purpose To develop a family of 700 nm zwitterionic pentamethine indocyanine near-infrared fluorophores that would permit dual-channel image-guided surgery. Procedures Three complementary synthetic schemes were used to produce novel zwitterionic chemical structures. Physicochemical, optical, biodistribution, and clearance properties were compared to Cy5.5, a conventional pentamethine indocyanine now used for biomedical imaging. Results ZW700-1a, ZW700-1b, and ZW700-1c were synthesized, purified, and analyzed extensively in vitro and in vivo. All molecules had extinction coefficients ≥ 199,000 M−1cm−1, emission ≥ 660 nm, and stability ≥ 99% after 24 h in warm serum. In mice, rats, and pigs, ≥ 80% of the injected dose was completely eliminated from the body via renal clearance within 4 h. Either alone or conjugated to a tumor targeting ligand, ZW700-1a permitted dual-channel, high SBR, and simultaneous imaging with 800 nm NIR fluorophores using the FLARE® imaging system. Conclusions Novel 700 nm zwitterionic NIR fluorophores enable dual-NIR image-guided surgery. PMID:26084246

  8. Five-Channel Infrared Laser Absorption Spectrometer for Combustion Product Monitoring Aboard Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.

    2014-01-01

    Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.

  9. A mid-infrared methane detection device based on dual-channel lock-in amplifier

    NASA Astrophysics Data System (ADS)

    Zheng, Ling-jiao; Zheng, Kai-yuan; Zheng, Chuan-tao; Zheng, Yue; Chen, Mei-mei; Wang, Yi-ding

    2015-07-01

    A portable dual-channel digital/analogue hybrid lock-in amplifier (LIA) is developed, and its amplitude detection error is less than 10% when the signal-to-noise ratio (SNR) is larger than -12 dB. Then, a differential mid-infrared methane (CH4) detection device is experimentally demonstrated based on a wideband incandescence wire-source and a multi-pass spherical reflector. The experiments are carried out to obtain the sensing performance of the device. With the absorption length of only ˜4.8 cm, the limit of detection (LoD) is about 71.43 mg/m3, and the detection range is from 0 mg/m3 to 5.00×104 mg/m3. As the concentration gets larger than 714.30 mg/m3, the relative detection error falls into the range of -5%-+5%. Two seven-hour-measurements are done on the CH4 samples with concentrations of 1.43×103 mg/m3 and 4.29×103 mg/m3, respectively, and the results show that the maximum relative error is less than 5%. Because of the cost effective incandescence wire-source, the small-size and inexpensive dual-channel LIA, and the small-size absorption pool and reflector, the developed device shows potential applications of CH4 detection in coal mine production and environmental protection.

  10. CfAIR2: Near-infrared Light Curves of 94 Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Wood-Vasey, W. M.; Marion, G. H.; Challis, Peter; Mandel, Kaisey S.; Bloom, Joshua S.; Modjaz, Maryam; Narayan, Gautham; Hicken, Malcolm; Foley, Ryan J.; Klein, Christopher R.; Starr, Dan L.; Morgan, Adam; Rest, Armin; Blake, Cullen H.; Miller, Adam A.; Falco, Emilio E.; Wyatt, William F.; Mink, Jessica; Skrutskie, Michael F.; Kirshner, Robert P.

    2015-09-01

    CfAIR2 is a large, homogeneously reduced set of near-infrared (NIR) light curves (LCs) for Type Ia supernovae (SNe Ia) obtained with the 1.3 m Peters Automated InfraRed Imaging TELescope. This data set includes 4637 measurements of 94 SNe Ia and 4 additional SNe Iax observed from 2005 to 2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes {{JHK}}s photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z ˜ 0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the LCs begin before the time of maximum, and the coverage typically contains ˜13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for SN cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the SN cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.

  11. Task Dependent Prefrontal Dysfunction in Persons with Asperger's Disorder Investigated with Multi-Channel Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Iwanami, Akira; Okajima, Yuka; Ota, Haruhisa; Tani, Masayuki; Yamada, Takashi; Hashimoro, Ryuichiro; Kanai, Chieko; Watanabe, Hiromi; Yamasue, Hidenori; Kawakubo, Yuki; Kato, Nobumasa

    2011-01-01

    Dysfunction of the prefrontal cortex has been previously reported in individuals with Asperger's disorder. In the present study, we used multi-channel near-infrared spectroscopy (NIRS) to detect changes in the oxygenated hemoglobin concentration ([oxy-Hb]) during two verbal fluency tasks. The subjects were 20 individuals with Asperger's disorder…

  12. Task Dependent Prefrontal Dysfunction in Persons with Asperger's Disorder Investigated with Multi-Channel Near-Infrared Spectroscopy

    ERIC Educational Resources Information Center

    Iwanami, Akira; Okajima, Yuka; Ota, Haruhisa; Tani, Masayuki; Yamada, Takashi; Hashimoro, Ryuichiro; Kanai, Chieko; Watanabe, Hiromi; Yamasue, Hidenori; Kawakubo, Yuki; Kato, Nobumasa

    2011-01-01

    Dysfunction of the prefrontal cortex has been previously reported in individuals with Asperger's disorder. In the present study, we used multi-channel near-infrared spectroscopy (NIRS) to detect changes in the oxygenated hemoglobin concentration ([oxy-Hb]) during two verbal fluency tasks. The subjects were 20 individuals with Asperger's disorder…

  13. An Experimental Investigation of Skin Friction on Smooth Surfaces Supporting Air Bearing Channels.

    DTIC Science & Technology

    1986-07-01

    EXPERIMENTAL INVESTIGATION OF SKIN FRICTION ON SMOOTH SURFACES SUPPORTING AIR BEARING CHANNELS ETUDE EXPERIMENTALE DU FROTTEMENT PELLICULAIRE SUR DES SURFACES...LISSES PORTEUSES DE CANAUX ANTI- FROTTEMENT by/par M. Khalid National Aeronautical Establishment AERONAUTICAL NOTE OTTAWA NAE-AN-39 JULY 1986 NRC NO...installant sur la surface des canaux qui agissent comme des valiers d’air. Les mesures ont &t prises A l’aide d’une balance de mesure du frottement

  14. Near-infrared conical emission from 800 nm filament in air

    NASA Astrophysics Data System (ADS)

    Shipilo, D. E.; Pushkarev, D. V.; Panov, N. A.; Uryupina, D. S.; Andreeva, V. A.; Volkov, R. V.; Balakin, A. V.; Shkurinov, A. P.; Babushkin, I.; Morgner, U.; Kosareva, O. G.; Savel’ev, A. B.

    2017-03-01

    We used a single shot imaging technique to register frequency-angular distribution at different positions along the filament of 55 fs 800 nm pulse focused with the numerical aperture of about 1/600 into air. We have revealed that the phenomena accompanying filamentation develop successively in the propagation direction. The conical emission in the visible comes first. Later in the propagation the conical emission in the infrared appears and develops down to 900 nm at least. Multiple robust light bullets become the secondary sources of the conical waves on the infrared side of the spectrum. The overall scenario of the nonlinear phenomena successive appearance in air is for the first time unified in one experiment in atmospheric gases and simulated with the carrier wave resolved in agreement with the experiment.

  15. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley; Stano, Geoffrey; Jedlovec, Gary

    2011-01-01

    The Short-term Prediction Research and Transition (SPoRT) is a project to transition those NASA observations and research capabilities to the weather forecasting community to improve the short-term regional forecasts. This poster reviews the work to demonstrate the value to these forecasts of profiles from the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite with particular assistance in predicting thunderstorm forecasts by the profiles of the pre-convective environment.

  16. Improved Impact of Atmospheric Infrared Sounder (AIRS) Radiance Assimilation in Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Chou, Shih-Hung; Jedlovec, Gary

    2012-01-01

    Improvements to global and regional numerical weather prediction (NWP) have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) that mimics the analysis methodology, domain, and observational datasets for the regional North American Mesoscale (NAM) model run at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) are run to examine the impact of each type of AIRS data set. The first configuration will assimilate the AIRS radiance data along with other conventional and satellite data using techniques implemented within the operational system; the second configuration will assimilate AIRS retrieved profiles instead of AIRS radiances in the same manner. Preliminary results of this study will be presented and focus on the analysis impact of the radiances and profiles for selected cases.

  17. Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Huang, Qing; Liu, Peng; Guo, Sha-Sha; Zhang, Lian; Zhou, Yu-Fan; Wang, Xue-Lin

    2013-07-01

    Fused quartz is a key material in fabrication of integrated devices, which transmits extends from ultraviolet to infrared. We report the fabrication of planar and channel waveguides in fused quartz using multi-energy C ion at energies of (5 + 5.5 + 6) MeV and fluences of (1 + 1 + 1.5) × 1015 ions/cm2. The guiding modes at the wavelength of 633 nm (He-Ne laser) and 1539 nm (diode laser) were detected using the prism-coupling method, and the modes were stable after annealing in air. The refractive index profiles of planar and channel waveguides at the wavelength of 633 nm and 1539 nm were typical "well + barrier" distributions, which were reconstructed using the reflectivity calculation method (RCM) software and intensity calculation method (ICM), respectively. For comparison to the experimental results, the finite difference beam propagation method (FD-BPM) was used to simulate the guiding modes of the waveguides. We measured the near-field intensity distributions for the visible (633 nm) and near-infrared (1300 nm, 1539 nm and 1620 nm) wavelength regions, suggesting that the modes can be effective transmission in the wavelength range for optical fiber communications.

  18. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence

    PubMed Central

    Lu, Xin; Chen, Shi-You; Ma, Jing-Long; Hou, Lei; Liao, Guo-Qian; Wang, Jin-Guang; Han, Yu-Jing; Liu, Xiao-Long; Teng, Hao; Han, Hai-Nian; Li, Yu-Tong; Chen, Li-Ming; Wei, Zhi-Yi; Zhang, Jie

    2015-01-01

    A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60–80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions. PMID:26493279

  19. Bubble absorption by an air-filled helically-supported capillary channel

    NASA Astrophysics Data System (ADS)

    Beheshtipour, Negar; Thiessen, David

    2016-11-01

    Gas-liquid phase separation under microgravity conditions where buoyancy is not active represents a challenge for two-phase liquid-continuous space systems. Similar challenges are present in micro-scale electrochemical systems on Earth that generate gas bubbles in geometries where surface tension prevails over gravity. A possible ground-based application would be the removal of carbon dioxide bubbles from large aspect ratio channels in a direct-methanol fuel cell that could otherwise occlude the channel. In this study we use a 3-mm diameter stretched stainless-steel spring coated with a superhydrophobic layer to create a helically-supported capillary channel. Such a channel that is submerged in water and filled with air while vented to the atmosphere was found to absorb a stream of 2.5-mm diameter air bubbles at a rate of at least 36 bubbles/s. An optical detector and high-speed imaging system have been used to study bubble absorption dynamics. A significant finding is that the initial attachment of the bubble to the channel that involves the rupture of a thin film of water happens in less than 1 ms. The rapid rupture of the water film separating the bubble from the channel might be attributed to the roughness of the hydrophobic coating.

  20. [On-orbit radiometric calibration accuracy of FY-3A MERSI thermal infrared channel].

    PubMed

    Xu, Na; Hu, Xiu-qing; Chen, Lin; Zhang, Yong; Hu, Ju-yang; Sun, Ling

    2014-12-01

    Accurate satellite radiance measurements are significant for data assimilations and quantitative retrieval applications. In the present paper, radiometric calibration accuracy of FungYun-3A (FY-3A) Medium Resolution Spectral Imager (MERSI) thermal infrared (TIR) channel was evaluated based on simultaneous nadir observation (SNO) intercalibration method. Hyperspectral and high-quality measurements of METOP-A/IASI were used as reference. Assessment uncertainty from intercalibration method was also investigated by examining the relation between BT bias against four main collocation factors, i. e. observation time difference, view geometric difference related to zenith angles and azimuth angles, and scene spatial homogeneity. It was indicated that the BT bias is evenly distributed across the collocation variables with no significant linear relationship in MERSI IR channel. Among the four collocation factors, the scene spatial homogeneity may be the most important factor with the uncertainty less than 2% of BT bias. Statistical analysis of monitoring biases during one and a half years indicates that the brightness temperature measured by MERSI is much warmer than that of IASI. The annual mean bias (MERSI-IASI) in 2012 is (3.18±0.34) K. Monthly averaged BT biases show a little seasonal variation character, and fluctuation range is less than 0.8 K. To further verify the reliability, our evaluation result was also compared with the synchronous experiment results at Dunhuang and Qinghai Lake sites, which showed excellent agreement. Preliminary analysis indicates that there are two reasons leading to the warm bias. One is the overestimation of blackbody emissivity, and the other is probably the incorrect spectral respond function which has shifted to window spectral. Considering the variation character of BT biases, SRF error seems to be the dominant factor.

  1. Interaction between soluble and membrane-embedded potassium channel peptides monitored by Fourier transform infrared spectroscopy.

    PubMed

    Abbott, Geoffrey W; Ramesh, Bala; Srai, Surjit K

    2012-01-01

    Recent studies have explored the utility of Fourier transform infrared spectroscopy (FTIR) in dynamic monitoring of soluble protein-protein interactions. Here, we investigated the applicability of FTIR to detect interaction between synthetic soluble and phospholipid-embedded peptides corresponding to, respectively, a voltage-gated potassium (Kv) channel inactivation domain (ID) and S4-S6 of the Shaker Kv channel (KV1; including the S4-S5 linker "pre-inactivation" ID binding site). KV1 was predominantly α-helical at 30°C when incorporated into dimyristoyl-l-α-phosphatidylcholine (DMPC) bilayers. Cooling to induce a shift in DMPC from liquid crystalline to gel phase reversibly decreased KV1 helicity, and was previously shown to partially extrude a synthetic S4 peptide. While no interaction was detected in liquid crystalline DMPC, upon cooling to induce the DMPC gel phase a reversible amide I peak (1633 cm(-1)) consistent with novel hydrogen bond formation was detected. This spectral shift was not observed for KV1 in the absence of ID (or vice versa), nor when the non-inactivating mutant V7E ID was applied to KV1 under similar conditions. Alteration of salt or redox conditions affected KV1-ID hydrogen bonding in a manner suggesting electrostatic KV1-ID interaction favored by a hairpin conformation for the ID and requiring extrusion of one or more KV1 domains from DMPC, consistent with ID binding to S4-S5. These findings support the utility of FTIR in detecting reversible interactions between soluble and membrane-embedded proteins, with lipid state-sensitivity of the conformation of the latter facilitating control of the interaction.

  2. Interaction between Soluble and Membrane-Embedded Potassium Channel Peptides Monitored by Fourier Transform Infrared Spectroscopy

    PubMed Central

    Abbott, Geoffrey W.; Ramesh, Bala; Srai, Surjit K.

    2012-01-01

    Recent studies have explored the utility of Fourier transform infrared spectroscopy (FTIR) in dynamic monitoring of soluble protein-protein interactions. Here, we investigated the applicability of FTIR to detect interaction between synthetic soluble and phospholipid-embedded peptides corresponding to, respectively, a voltage-gated potassium (Kv) channel inactivation domain (ID) and S4–S6 of the Shaker Kv channel (KV1; including the S4–S5 linker “pre-inactivation” ID binding site). KV1 was predominantly α-helical at 30°C when incorporated into dimyristoyl-l-α-phosphatidylcholine (DMPC) bilayers. Cooling to induce a shift in DMPC from liquid crystalline to gel phase reversibly decreased KV1 helicity, and was previously shown to partially extrude a synthetic S4 peptide. While no interaction was detected in liquid crystalline DMPC, upon cooling to induce the DMPC gel phase a reversible amide I peak (1633 cm−1) consistent with novel hydrogen bond formation was detected. This spectral shift was not observed for KV1 in the absence of ID (or vice versa), nor when the non-inactivating mutant V7E ID was applied to KV1 under similar conditions. Alteration of salt or redox conditions affected KV1-ID hydrogen bonding in a manner suggesting electrostatic KV1-ID interaction favored by a hairpin conformation for the ID and requiring extrusion of one or more KV1 domains from DMPC, consistent with ID binding to S4–S5. These findings support the utility of FTIR in detecting reversible interactions between soluble and membrane-embedded proteins, with lipid state-sensitivity of the conformation of the latter facilitating control of the interaction. PMID:23145073

  3. Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying.

    PubMed

    Venkitasamy, Chandrasekar; Brandl, Maria T; Wang, Bini; McHugh, Tara H; Zhang, Ruihong; Pan, Zhongli

    2017-04-04

    Pistachio nuts have been associated with outbreaks of foodborne disease and the industry has been impacted by numerous product recalls due to contamination with Salmonella enterica. The current hot air drying of pistachios has low energy efficiency and drying rates, and also does not guarantee the microbial safety of products. In the study described herein, dehulled and water-sorted pistachios with a moisture content (MC) of 38.14% (wet basis) were dried in a sequential infrared and hot air (SIRHA) drier to <9% MC. The decontamination efficacy was assessed by inoculating pistachios with Enterococcus faecium, a surrogate of Salmonella enterica used for quality control in the almond industry. Drying with IR alone saved 105min (34.4%) of drying time compared with hot air drying. SIRHA drying of pistachios for 2h with infrared (IR) heat followed by tempering at a product temperature of 70°C for 2h and then by hot air drying shortened the drying time by 40min (9.1%) compared with drying by hot air only. This SIRHA method also reduced the E. faecium cell population by 6.1-logCFU/g kernel and 5.41-logCFU/g shell of pistachios. The free fatty acid contents of SIRHA dried pistachios were on par with that of hot air dried samples. Despite significant differences in peroxide values (PV) of pistachio kernels dried with the SIRHA method compared with hot air drying at 70°C, the PV were within the permissible limit of 5Meq/kg for edible oils. Our findings demonstrate the efficacy of SIRHA drying in achieving simultaneous drying and decontamination of pistachios. Published by Elsevier B.V.

  4. How short is short? Optimum source–detector distance for short-separation channels in functional near-infrared spectroscopy

    PubMed Central

    Brigadoi, Sabrina; Cooper, Robert J.

    2015-01-01

    Abstract. In recent years, it has been demonstrated that using functional near-infrared spectroscopy (fNIRS) channels with short separations to explicitly sample extra-cerebral tissues can provide a significant improvement in the accuracy and reliability of fNIRS measurements. The aim of these short-separation channels is to measure the same superficial hemodynamics observed by standard fNIRS channels while also being insensitive to the brain. We use Monte Carlo simulations of photon transport in anatomically informed multilayer models to determine the optimum source–detector distance for short-separation channels in adult and newborn populations. We present a look-up plot that provides (for an acceptable value of short-separation channel brain sensitivity relative to standard channel brain sensitivity) the optimum short-separation distance. Though values vary across the scalp, when the acceptable ratio of the short-separation channel brain sensitivity to standard channel brain sensitivity is set at 5%, the optimum short-separation distance is 8.4 mm in the typical adult and 2.15 mm in the term-age infant. PMID:26158009

  5. How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy.

    PubMed

    Brigadoi, Sabrina; Cooper, Robert J

    2015-04-01

    In recent years, it has been demonstrated that using functional near-infrared spectroscopy (fNIRS) channels with short separations to explicitly sample extra-cerebral tissues can provide a significant improvement in the accuracy and reliability of fNIRS measurements. The aim of these short-separation channels is to measure the same superficial hemodynamics observed by standard fNIRS channels while also being insensitive to the brain. We use Monte Carlo simulations of photon transport in anatomically informed multilayer models to determine the optimum source-detector distance for short-separation channels in adult and newborn populations. We present a look-up plot that provides (for an acceptable value of short-separation channel brain sensitivity relative to standard channel brain sensitivity) the optimum short-separation distance. Though values vary across the scalp, when the acceptable ratio of the short-separation channel brain sensitivity to standard channel brain sensitivity is set at 5%, the optimum short-separation distance is 8.4 mm in the typical adult and 2.15 mm in the term-age infant.

  6. Prefrontal activation during two Japanese Stroop tasks revealed with multi-channel near-infrared spectroscopy.

    PubMed

    Watanabe, Yukina; Sumitani, Satsuki; Hosokawa, Mai; Ohmori, Tetsuro

    2015-01-01

    The Stroop task is sometimes used in psychiatric research to elicit prefrontal activity, which presumably reflects cognitive functioning. Although there are two Stroop tasks (Kana script and Kanji script) in Japan, it is unclear whether these tasks elicit the same hemoglobin changes. Moreover, it is unclear whether psychological conditions or characteristics influence hemoglobin changes in the Japanese Stroop task. The aim of this study was to clarify whether hemoglobin changes elicited by the two Japanese Stroop tasks accurately reflected cognitive functioning. Hemoglobin changes were measured with multi-channel near-infrared spectroscopy (NIRS) in 100 healthy Japanese participants performing two Japanese Stroop tasks. The Beck-Depression Inventory (BDI), State-Trait-Anxiety Inventory (STAI), and Maudsley Obsessive Compulsive Inventory (MOCI) were administered to participants to identify psychological conditions or personality characteristics. Compared with the Kanji task, the Kana task produced a greater Stroop effect and a larger increase in oxyhemoglobin (oxy-Hb) concentration. Moreover there were no significant correlations between oxy-Hb concentration and BDI, STAI-trait, STAI-state, or MOCI scores. Therefore we found that a participant's psychological conditions or characteristics did not influence the hemodynamic changes during either task. These data suggest the Kana Stroop task is more useful than the Kanji Stroop task for NIRS studies in psychiatric research.

  7. Detection of trace materials with Fourier transform infrared spectroscopy using a multi-channel detector.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2006-01-01

    FTIR spectroscopy is one of the most powerful methods for material characterization. However, the sensitivity of this analytical tool is often very limited especially for materials with weak infrared absorption or when spectral bands of the targeted trace material overlap with the spectral bands of major components. Fortunately, for heterogeneous samples, there is an opportunity to improve the sensitivity of detection by using an imaging approach. This paper explores the opportunity of enhancing the sensitivity of FTIR spectroscopy to detect trace amounts of materials using the FTIR imaging approach based on a focal plane array (FPA) detector. Model sample tablets of ibuprofen in hydroxypropyl methylcellulose (HPMC) have been used to exemplify the detection limits of FTIR spectroscopy using: (a) a conventional mercury cadmium telluride (MCT) detector and (b) a FPA detector. The sensitivity level was compared and it has been found that for this particular set of samples, the lowest concentration of ibuprofen in HPMC that can be detected using attenuated total reflection (ATR) measuring mode with the single element MCT detector was 0.35 wt% while using the FPA detector, the presence of drug has been detected in a sample that contains as little as 0.075 wt% of drug. The application of using this enhanced sensitivity offered by the multi-channel detector to probe trace amounts of drug particles left on the surface of a finger after handling a small amount of the drug has also been demonstrated. These results have broad implications for forensic, biomedical and pharmaceutical research.

  8. The temperature fields measurement of air in the car cabin by infrared camera

    NASA Astrophysics Data System (ADS)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  9. A Heuristic Approach to Determining Cargo Flow and Scheduling for Air Mobility Command’s Channel Cargo System

    DTIC Science & Technology

    1994-03-01

    COMMAND’S CHANNEL CARGO SYSTEM THESIS Presented to the Faculty of the Graduate School of Engineering of the Air Force Institute of Technology Air...can take up to four days to complete. This two-phase process has also been used for other 4 applications , such as special studies of proposed...modifications to the channel system (Del Rosario, 1993:6). 1.3 Previoe AFiT Research The Air Force Institute of Technology (AFMIT has conducted several research

  10. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts

    PubMed Central

    Siciliano, Ilenia; Dal Bello, Barbara; Zeppa, Giuseppe; Spadaro, Davide; Gullino, Maria Lodovica

    2017-01-01

    Aflatoxins are a group of secondary metabolites produced by members of Aspergillus Section Flavi that are dangerous to humans and animals. Nuts can be potentially contaminated with aflatoxins, often over the legal threshold. Food processes, including roasting, may have different effects on mycotoxins, and high temperatures have proven to be very effective in the reduction of mycotoxins. In this work, two different roasting methods—traditional static hot air roasting and infra-red rays roasting—were applied and compared for the detoxification of hazelnuts from Italy and Turkey. At the temperature of 140 °C for 40 min of exposure, detoxification was effective for both roasting techniques. Residual aflatoxins after infra-red rays treatments were lower compared to static hot air roasting. On Italian hazelnuts, residual aflatoxins were lower than 5%, while for Turkish hazelnuts they were lower than 15% after 40 min of exposure to an infra-red rays roaster. After roasting, the perisperm was detached from the nuts and analyzed for aflatoxin contents. Residual aflatoxins in the perisperm ranged from 80% up to 100%. After roasting, the lipid profile and the nutritional quality of hazelnuts were not affected. Fatty acid methyl esters analyses showed a similar composition for Italian and Turkish hazelnuts. PMID:28230792

  11. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts.

    PubMed

    Siciliano, Ilenia; Dal Bello, Barbara; Zeppa, Giuseppe; Spadaro, Davide; Gullino, Maria Lodovica

    2017-02-21

    Aflatoxins are a group of secondary metabolites produced by members of Aspergillus Section Flavi that are dangerous to humans and animals. Nuts can be potentially contaminated with aflatoxins, often over the legal threshold. Food processes, including roasting, may have different effects on mycotoxins, and high temperatures have proven to be very effective in the reduction of mycotoxins. In this work, two different roasting methods-traditional static hot air roasting and infra-red rays roasting-were applied and compared for the detoxification of hazelnuts from Italy and Turkey. At the temperature of 140 °C for 40 min of exposure, detoxification was effective for both roasting techniques. Residual aflatoxins after infra-red rays treatments were lower compared to static hot air roasting. On Italian hazelnuts, residual aflatoxins were lower than 5%, while for Turkish hazelnuts they were lower than 15% after 40 min of exposure to an infra-red rays roaster. After roasting, the perisperm was detached from the nuts and analyzed for aflatoxin contents. Residual aflatoxins in the perisperm ranged from 80% up to 100%. After roasting, the lipid profile and the nutritional quality of hazelnuts were not affected. Fatty acid methyl esters analyses showed a similar composition for Italian and Turkish hazelnuts.

  12. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS

  13. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS

  14. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  15. Validation of the Atmospheric Infrared Sounder (AIRS) over the Antarctic Plateau: Low Radiance, Low Humidity, and Thin Clouds

    NASA Technical Reports Server (NTRS)

    Tobin, David C.

    2005-01-01

    The main goal of the project has been to use specialized measurements collected at the Antarctic Plateau to provide validation of the Atmospheric InfraRed Sounder (AIRS) spectral radiances and some AIRS Level 2 products. As proposed, efforts conducted at the University of Wisconsin are focused on providing technical information, data, and software in support of the validation studies.

  16. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  17. Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.

  18. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  19. Comparison of the AIRS, IASI, and CrIS 900 cm-1 channel for Dome Concordia

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Elliott, Denis; Manning, Evan

    2016-09-01

    We compare AIRS, IASI-A and CrIS under the cold conditions encountered in the daily overpasses of Dome Concordia, located on a high plateau in Antarctica, between May 2012 and March 2016. The mean brightness temperature at DomeC for the 900 cm-1 atmospheric window channel is 218K, but it varies seasonally from 185K to 255K. Averaged over all simultaneous overpass data AIRS is 26+/-13 mK warmer than IASI-A, AIRS is 116+/-7 mK colder than CrIS. This is excellent agreement and consistent with SNO analysis in the literature. However, we find that differences for both AIRS/IASI-A and AIRS/CrIS are temperature dependent. AIRS is 120 mK colder at 200K, but 150 mK warmer at 230K than IASI-A. AIRS is 120 mK colder at 200K, 50mK colder at 230K than CrIS. Differences and scene temperature sensitivity of this magnitude have also been reported by other investigators. A scene temperature dependence bias can create a sampling bias which need to be taken into account when comparing data from current instruments, and even more so when analyzing data from vintage instruments with respect to climate change.

  20. Optical Alignment and Diffraction Analysis for AIRES: An Airborne Infrared Echelle Spectrometer

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; Fonda, Mark (Technical Monitor)

    2002-01-01

    The optical design is presented for a long-slit grating spectrometer known as AIRES (Airborne InfraRed Echelle Spectrometer). The instrument employs two gratings in series: a small order sorter and a large steeply blazed echelle. The optical path includes four pupil and four field stops, including two narrow slits. A detailed diffraction analysis is performed using GLAD by Applied Optics Research to evaluate critical trade-offs between optical throughput, spectral resolution, and system weight and volume. The effects of slit width, slit length, oversizing the second slit relative to the first, on- vs off-axis throughput, and clipping at the pupil stops and other optical elements are discussed.

  1. Air Force electronic warfare evaluation simulator (AFEWES) infrared test and evaluation capabilities

    NASA Astrophysics Data System (ADS)

    Shepherd, Seth D.

    2003-09-01

    The Air Force Electronic Warfare Evaluation Simulator (AFEWES) Infrared Countermeasures (IRCM) test facility currently has the ability to simulate a complete IRCM test environment, including IR missiles in flight, aircraft in flight, and various IR countermeasures including maneuvers, point-source flares and lamp- and LASER-based jammer systems. The simulations of IR missiles in flight include missile seeker hardware mounted on a six degree-of-freedom flight simulation table. This paper will focus on recent developments and upgrades to the AFEWES IR capability.

  2. Flight tests of a clear-air turbulence alerting system. [infrared radiometers

    NASA Technical Reports Server (NTRS)

    Kurkowski, R. L.; Kuhn, P. M.; Stearns, L. P.

    1981-01-01

    The detection of clear-air turbulence (CAT) ahead of an aircraft in real-time by an infrared (IR) radiometer is discussed. It is noted that the alter time and reliability depend on the band-pass of the IR filter used and on the altitude of the aircraft. Results of flights tests indicate that a bandpass of 20 to 40 microns appears optimal for altering the aircraft crew to CAT at times before encounter of 2 to 9 min. Alert time increases with altitude, as the atmospheric absorption determining the horizontal weighting is reduced.

  3. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  4. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  5. Extended plasma channels created by UV laser in air and their application to control electric discharges

    SciTech Connect

    Zvorykin, V. D. Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-15

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×10{sup 11}–1.5×10{sup 13} and 3×10{sup 6}–3×10{sup 11} W/cm{sup 2}, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 10{sup 9}–10{sup 17} cm{sup −3}, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  6. Infrared pulse characterization using four-wave mixing inside a few cycle pulse filament in air

    SciTech Connect

    Marceau, Claude Thomas, Steven; Kassimi, Yacine; Gingras, Guillaume; Witzel, Bernd

    2014-02-03

    We demonstrate a four-wave mixing (FWM) technique to measure near- and mid-infrared (IR) laser pulse shapes in time domain. Few cycle 800 nm laser pulses were synchronized with the IR pulse and focused colinearly to generate a plasma filament in air. Second harmonic radiation around 400 nm was generated through FWM, with a yield proportional to the IR pulse intensity. Excellent signal to noise ratio was observed from 2.1 μm to 18 μm. With proper phase stabilization of the IR beam, this technique is a promising step toward direct electric field sensing of near-IR pulses in air.

  7. Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.

  8. Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.

  9. Evaluation of portable near infrared spectrophotometer to stage maturity in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Gonadal maturity of channel catfish varies within the same cohort of fish. Female channel catfish with superior maturity need to be identified and staged for higher success to induce spawn wit ovulating hormones to produce channel x blue hybrid catfish fry in hatcheries. Maturation is not synchron...

  10. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  11. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  12. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.

    PubMed

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  13. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  14. Instrumentation for Infrared Astronomy in the Collections of the National Air and Space Museum, Smithsonian Institution

    NASA Astrophysics Data System (ADS)

    DeVorkin, David H.

    2017-01-01

    The National Air and Space Museum of the Smithsonian Institution is responsible for preserving the material heritage of modern astronomical history. We place emphasis on American accomplishments, on both airborne and spaceborne instrumentation, and on ground based instrumentation that stimulated and supported spaceborne efforts. At present the astronomical collection includes over 600 objects, of which approximately 40 relate to the history of infrared astronomy. This poster will provide a simple listing of our holdings in infrared and far-infrared astronomy, and will highlight particularly significant early objects, like Cashman and Ektron cells, Leighton and Neugebauer's Caltech 2.2 micron survey telescope, Low's Lear Jet Bolometer, Harwit's first Aerobee IR payload and Fazio's balloon-borne observatory. Elements from more recent missions will also be included, such as instruments from KAO, an IRAS focal plane instrument, FIRAS from COBE, the payload from Boomerang and Woody and Richards' balloonsonde payload. The poster author will invite AAS members to comment on these holdings, provide short stories of their experiences building and using them, and suggest candidates for possible collection.

  15. 980-nm infrared laser modulation of sodium channel kinetics in a neuron cell linearly mediated by photothermal effect

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Liu, Jia; Liang, Shanshan; Sun, Changsen

    2014-10-01

    Photothermal effect (PE) plays a major role in the near-infrared laser interaction with biological tissue. But, quite few interactions can be quantitatively depicted. Here, a two-step model is proposed to describe a 980-nm infrared laser interaction with neuron cell in vitro. First, the laser-induced temperature rises in the cell surrounding area were measured by using an open pipette method and also calculated by solving the heat conduction equation. Second, we recorded the modifications on sodium (Na) channel current in neuron cells directly by using a patch clamp to synchronize the 980-nm laser irradiation and obtained how the electrophysiological function of neuron cells respond to the temperature rise. Then, the activation time constants, τm, were extracted by fitting the sodium currents with the Hodgkin-Huxley model. The infrared laser modulation effect on sodium currents kinetics was examined by taking a ratio between the time constants with and without the laser irradiations. The analysis revealed that the averaged ratio at a specific laser exposure could be well related to the temperature properties of the Na channel protein. These results proved that the modulation of sodium current kinetics of a neuron cell in vitro by 980-nm laser with different-irradiation levels was linearly mediated corresponding to the laser-induced PE.

  16. Calibration of the Visible and Near-Infrared Channels of the Advanced Very High Resolution Radiometer (AVHRR) After Launch

    NASA Technical Reports Server (NTRS)

    Rao, C. R. Nagaraja; Chen, Jianhua

    1993-01-01

    The relative degradation in time of the visible(channel 1: approx.0.58-0.6 microns) and near-infrared(channel 2: approx. O.72-1.1 microns) channels of the Advanced Very High Resolution Radiometer(AVHRR), onboard the NOAA Polar-orbiting Operational Environmental Satellites(POES), has been determined, using the southeastern Libyan desert(21-23 deg N latitude; 28- 29 deg E longitude) as a time-invariant calibration target. A statistical procedure was used on the reflectance data for the two channels from the B3 data of the International Satellite Cloud Climatology Project(ISCCP) to obtain the degradation rates for the AVERRs on NOAA-7, -9, and -11 spacecraft. The degradation rates per year for channels 1 and 2 are respectively: 3.6% and 4.3%(NOAA-7); 5.9% and 3.5%(NOAA-9); and 1.2% and 2.0%(NOAA-11). The use of the degradation rates thus determined, in conjunction with 'absolute' calibrations obtained from congruent aircraft and satellite measurements, in the development of correction algorithms is illustrated with the AVHRR on the NOAA-9 spacecraft.

  17. Laser prepulse induced plasma channel formation in air and relativistic self focusing of an intense short pulse

    SciTech Connect

    Kumar, Ashok; Dahiya, Deepak; Sharma, A. K.

    2011-02-15

    An analytical formalism is developed and particle-in-cell simulations are carried out to study plasma channel formation in air by a two pulse technique and subsequent relativistic self focusing of the third intense laser through it. The first prepulse causes tunnel ionization of air. The second pulse heats the plasma electrons and establishes a prolonged channel. The third pulse focuses under the combined effect of density nonuniformity of the channel and relativistic mass nonlinearity. A channel with 20% density variation over the spot size of the third pulse is seen to strongly influence relativistic self focusing at normalized laser amplitude {approx}0.4-1. In deeper plasma channels, self focusing is less sensitive to laser amplitude variation. These results are reproduced in particle-in-cell simulations. The present treatment is valid for millimeter range plasma channels.

  18. Evaporative cooling of air in an adiabatic channel with partially wetted zones

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Gorbachev, M. V.; Khafaji, H. Q.

    2016-03-01

    The paper deals with the numerical study of heat and mass transfer in the process of direct evaporation air cooling in the laminar flow of forced convection in a channel between two parallel insulated plates with alternating wet and dry zones along the length. The system of Navier-Stokes equations and equations of energy and steam diffusion are being solved in two-dimensional approximation. At the channel inlet, all thermal gas-dynamic parameters are constant over the cross section, and the channel walls are adiabatic. The studies were carried out with varying number of dry zones ( n = 0-16), their relative length ( s/l = 0-1) and Reynolds number Re = 50-1000 in the flow of dry air (φ0 = 0) with a constant temperature at the inlet (T 0 = 30 °C). The main attention is paid to optimization analysis of evaporation cell characteristics. It is shown that an increase in the number of alternating steps leads to an increase in the parameters of thermal and humid efficiency. With an increase in Re number and a decrease in the extent of wet areas, the efficiency parameter reduces.

  19. An investigation of channel flow with a smooth air-water interface

    NASA Astrophysics Data System (ADS)

    Madad, Reza; Elsnab, John; Chin, Cheng; Klewicki, Joseph; Marusic, Ivan

    2015-06-01

    Experiments and numerical simulation are used to investigate fully developed laminar and turbulent channel flow with an air-water interface as the lower boundary condition. Laser Doppler velocimetry measurements of streamwise and wall-normal velocity components are made over a range of Reynolds number based upon channel height and bulk velocity from 1100 to 4300, which encompasses the laminar, transitional and low Reynolds numbers turbulent regimes. The results show that the airflow statistics near the stationary wall are not significantly altered by the air-water moving interface and reflect those found in channel flows. The mean statistics on the water interface side largely exhibit results similar to simulated Poiseuille-Couette flow (PCF) with a solid moving wall. For second-order statistics, however, the simulation and experimental results show some discrepancies near the moving water surface, suggesting that a full two-phase simulation is required. A momentum and energy transport tubes analysis is investigated for laminar and turbulent PCFs. This analysis builds upon the classical notion of a streamtube and indicates that part of the energy from the pressure gradient is transported towards the stationary wall and is dissipated as heat inside the energy tubes, while the remainder is transmitted to the moving wall. For the experiments, the airflow energy is transmitted towards the water to overcome the drag force and drive the water forward; therefore, the amount of energy transferred to the water is higher than the energy transferred to a solid moving wall.

  20. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  1. Development of a 2-Channel Embedded Infrared Fiber-Optic Temperature Sensor Using Silver Halide Optical Fibers

    PubMed Central

    Yoo, Wook Jae; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jinsoo; Han, Ki-Tek; Park, Jang-Yeon; Park, Byung Gi; Lee, Bongsoo

    2011-01-01

    A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments. PMID:22163711

  2. Development of a 2-channel embedded infrared fiber-optic temperature sensor using silver halide optical fibers.

    PubMed

    Yoo, Wook Jae; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jinsoo; Han, Ki-Tek; Park, Jang-Yeon; Park, Byung Gi; Lee, Bongsoo

    2011-01-01

    A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments.

  3. Channels

    NASA Image and Video Library

    2014-04-29

    Two channels are visible in this image from NASA 2001 Mars Odyssey spacecraft . The smaller one near the bottom did not carve as deeply as the larger channel at the top. The channel near the top of the image is near the origin of Mamers Valles.

  4. Optimal Performance Monitoring of Hybrid Mid-Infrared Wavelength MIMO Free Space Optical and RF Wireless Networks in Fading Channels

    NASA Astrophysics Data System (ADS)

    Schmidt, Barnet Michael

    gamma-gamma optical channel and radio fading channels in determining the joint hybrid channel outage capacity provides the best performance estimate under any given set of operating conditions. It is shown that, unlike traditional physical layer performance monitoring techniques, the objective function based upon the outage capacity of the hybrid channel at any combination of OSNR and SIR, is able to predict channel degradation and failure well in advance of the actual outage. An outage in the information-theoretic definition occurs when the offered load exceeds the outage capacity under the current conditions of OSNR and SIR. The optical channel is operated at the "long" mid-infrared wavelength of 10000 nm. which provides improved resistance to scattering compared to shorter wavelengths such as 1550 nm.

  5. Infrared Cloudy Radiative Transfer Validation Using Coincident AIRS and MODIS Observations

    NASA Astrophysics Data System (ADS)

    Fishbein, E.; Schreier, M. M.; Wilson, R. C.; Yue, Q.; Kahn, B. H.

    2016-12-01

    Modeling observed cloudy radiances of satellite-based infrared sounders is challenging because of scene heterogeneity. Comparisons of observed and calculated AIRS radiances are conditioned against cloud statistics from the MODIS cloud products to characterize the accuracy of the radiative transfer and its dependence of scene complexity. Radiances are calculated with the SARTA fast radiative transfer algorithm using atmospheric temperature, water vapor and ozone profiles from the ECMWF operational forecast, but cloud fields from the ECMWF forecasts, and AIRS L2 and MODIS L2 observational products. The error arising from differences in cloud representations and their translations to input to the radiative transfer models is discussed in the first half of the presentation, while the latter half deals with the treatment of scene heterogeneity and the error this adds to the modeled radiances. Calculated radiances smoothed over an AIRS footprint from high spatial atmospheric states are compared with radiances from smoothed states and observed radiances. The goal of this study is to quantify the improvement in cloudy radiative transfer modeling when external information about scene complexity is applied.

  6. Air-stable few-layer black phosphorus phototransistor for near-infrared detection

    NASA Astrophysics Data System (ADS)

    Na, Junhong; Park, Kichul; Kim, Jin Tae; Choi, Won Kook; Song, Yong-Won

    2017-02-01

    We have demonstrated a few-layer black phosphorus (BP) phototransistor of stable operation in ambient air environment and at near-infrared light (λ = 1550 nm). The air-stable electronic and optoelectronic properties of the few-layer BP phototransistor have been achieved by a proper Al2O3 passivation. The optical identification method and qualitative and quantitative electrical characterizations of the few-layer BP phototransistor in dark state confirmed that the device performance was robust in ambient air, to further chemical treatments, and storage of more than six months. In addition, the low-frequency noise characterizations had revealed that the noise spectral density related to the sensitivity of phototransistor was reduced. Owing to the suppression of interaction between few-layer BP and adsorbates arising from the Al2O3 passivation, a fast rise time of the few-layer BP phototransistor, less than 100 μs, had been observed, demonstrating the intrinsic photoresponse properties of few-layer BP. The low dark current of ˜4 nA at the operation bias and the reasonable responsivity of ˜6 mA W-1 were obtained under the condition lacking adsorbates interactions. Internally, the dark current and responsivity level was tunable by changing the operation bias. Our results are close to the intrinsic properties of the few-layer BP phototransistor, implying that it can be a building block of functioned few-layer BP photodetectors.

  7. Air-stable few-layer black phosphorus phototransistor for near-infrared detection.

    PubMed

    Na, Junhong; Park, Kichul; Kim, Jin Tae; Choi, Won Kook; Song, Yong-Won

    2017-02-24

    We have demonstrated a few-layer black phosphorus (BP) phototransistor of stable operation in ambient air environment and at near-infrared light (λ = 1550 nm). The air-stable electronic and optoelectronic properties of the few-layer BP phototransistor have been achieved by a proper Al2O3 passivation. The optical identification method and qualitative and quantitative electrical characterizations of the few-layer BP phototransistor in dark state confirmed that the device performance was robust in ambient air, to further chemical treatments, and storage of more than six months. In addition, the low-frequency noise characterizations had revealed that the noise spectral density related to the sensitivity of phototransistor was reduced. Owing to the suppression of interaction between few-layer BP and adsorbates arising from the Al2O3 passivation, a fast rise time of the few-layer BP phototransistor, less than 100 μs, had been observed, demonstrating the intrinsic photoresponse properties of few-layer BP. The low dark current of ∼4 nA at the operation bias and the reasonable responsivity of ∼6 mA W(-1) were obtained under the condition lacking adsorbates interactions. Internally, the dark current and responsivity level was tunable by changing the operation bias. Our results are close to the intrinsic properties of the few-layer BP phototransistor, implying that it can be a building block of functioned few-layer BP photodetectors.

  8. Near-infrared Laser-induced Temperature Elevation in Optically-trapped Aqueous Droplets in Air.

    PubMed

    Ishizaka, Shoji; Ma, Jiang; Fujiwara, Terufumi; Yamauchi, Kunihiro; Kitamura, Noboru

    2016-01-01

    Near-infrared laser-induced temperature elevation in single aqueous ammonium sulfate droplets levitated in air were evaluated by means of laser trapping and Raman spectroscopy. Since the vapor pressure in an aqueous solution droplet should be thermodynamically in equilibrium with that of water in air, the equilibrium size of the droplet varies sensitively through evaporation/condensation of water in accordance with the temperature change of the droplet. In this study, we demonstrated that the changes in the size of an optically levitated aqueous ammonium sulfate droplet were induced by irradiation of a 1064-nm laser beam as a heat source under an optical microscope. Temperature elevation in the droplet was evaluated successfully by means of Raman spectroscopy, and the values determined were shown to be in good agreement with those by the theoretical calculations based on the absorption coefficient of water at 1064-nm and the thermal conductivity of air. To the best of our knowledge, this is the first experimental demonstration showing that the absorption coefficient evaluated from changes in the size of optically-trapped aqueous droplets is consistent with that of pure water.

  9. Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing

    PubMed Central

    Re, Rebecca; Contini, Davide; Turola, Massimo; Spinelli, Lorenzo; Zucchelli, Lucia; Caffini, Matteo; Cubeddu, Rinaldo; Torricelli, Alessandro

    2013-01-01

    We have designed a compact dual wavelength (687 nm, 826 nm) multi-channel (16 sources, 8 detectors) medical device for muscle and brain imaging based on time domain functional near infrared spectroscopy. The system employs the wavelength space multiplexing approach to reduce wavelength cross-talk and increase signal-to-noise ratio. System performances have been tested on homogeneous and heterogeneous tissue phantoms following specifically designed protocols for photon migration instruments. Preliminary in vivo measurements have been performed to validate the instrument capability to monitor hemodynamic parameters changes in the arm muscle during arterial occlusion and in the adult head during a motor task experiment. PMID:24156079

  10. Mid-infrared laser emission from Cr:ZnS channel waveguide fabricated by femtosecond laser helical writing

    PubMed Central

    Peng, Ya-Pei; Zou, Xiao; Bai, Zhengyuan; Leng, Yuxin; Jiang, Benxue; Jiang, Xiongwei; Zhang, Long

    2015-01-01

    The operation of a mid-infrared laser at 2244 nm in a Cr:ZnS polycrystalline channel waveguide fabricated using direct femtosecond laser writing with a helical movement technique is demonstrated. A maximum power output of 78 mW and an optical-to-optical slope efficiency of 8.6% are achieved. The compact waveguide structure with 2 mm length was obtained through direct femtosecond laser writing, which was moved on a helical trajectory along the laser medium axis and parallel to the writing direction. PMID:26692268

  11. A 12-channel, real-time near-infrared spectroscopy instrument for brain-computer interface applications.

    PubMed

    Soraghan, C; Matthews, F; Markham, C; Pearlmutter, B A; O'Neill, R; Ward, T E

    2008-01-01

    A continuous wave near-infrared spectroscopy (NIRS) instrument for brain-computer interface (BCI) applications is presented. In the literature, experiments have been carried out on subjects with such motor degenerative diseases as amyotrophic lateral sclerosis, which have demonstrated the suitability of NIRS to access intentional functional activity, which could be used in a BCI as a communication aid. Specifically, a real-time, multiple channel NIRS tool is needed to realise access to even a few different mental states, for reasonable baud rates. The 12-channel instrument described here has a spatial resolution of 30 mm, employing a flexible software demodulation scheme. Temporal resolution of approximately 100 ms is maintained since typical topographic imaging is not needed, since we are only interested in exploiting the vascular response for BCI control. A simple experiment demonstrates the ability of the system to report on haemodynamics during single trial mental arithmetic tasks. Multiple trial averaging is not required.

  12. Low loss optical channel waveguides for the infrared range using niobium based hybrid sol-gel material

    NASA Astrophysics Data System (ADS)

    Gorin, A.; Copperwhite, R.; Boothman, C.; O'Sullivan, M.; McDonagh, C.; Oubaha, M.

    2011-04-01

    In this work, we report the fabrication of single-mode Nb2O5 based hybrid sol-gel channel waveguides. Nb2O5 based hybrid sol-gel material has been deposited by spin-coating on silicon substrate and channel waveguides have been fabricated by a UV direct laser writing process. Optical guided modes have been observed to confirm single-mode conditions and optical propagation loss measurements have been performed using the cut-back technique. Optical propagation losses were measured to be 0.8 dB/cm and 2.4 dB/cm at 1.31 μm and 1.55 μm respectively. These experimental results demonstrate low loss optical waveguiding within the infrared range and are very promising in view of material choice for the development of integrated optical devices for telecommunication.

  13. Optical and radiometric models of the NOMAD instrument part II: the infrared channels - SO and LNO.

    PubMed

    Thomas, I R; Vandaele, A C; Robert, S; Neefs, E; Drummond, R; Daerden, F; Delanoye, S; Ristic, B; Berkenbosch, S; Clairquin, R; Maes, J; Bonnewijn, S; Depiesse, C; Mahieux, A; Trompet, L; Neary, L; Willame, Y; Wilque, V; Nevejans, D; Aballea, L; Moelans, W; De Vos, L; Lesschaeve, S; Van Vooren, N; Lopez-Moreno, J-J; Patel, M R; Bellucci, G

    2016-02-22

    NOMAD is a suite of three spectrometers that will be launched in 2016 as part of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument contains three channels that cover the IR and UV spectral ranges and can perform solar occultation, nadir and limb observations, to detect and map a wide variety of Martian atmospheric gases and trace species. Part I of this work described the models of the UVIS channel; in this second part, we present the optical models representing the two IR channels, SO (Solar Occultation) and LNO (Limb, Nadir and Occultation), and use them to determine signal to noise ratios (SNRs) for many expected observational cases. In solar occultation mode, both the SO and LNO channel exhibit very high SNRs >5000. SNRs of around 100 were found for the LNO channel in nadir mode, depending on the atmospheric conditions, Martian surface properties, and observation geometry.

  14. Short-channel functional near-infrared spectroscopy regressions improve when source-detector separation is reduced.

    PubMed

    Goodwin, James R; Gaudet, Chantel R; Berger, Andrew J

    2014-07-01

    In functional near-infrared spectroscopy (fNIRS) of human cerebral hemodynamics, dedicated surface-sensitive recording channels are useful for regressing out background hemodynamics and isolating activation-specific responses. A wide variety of source-detector separations have been utilized for this purpose. Here, we report a direct comparison of regression performance between two extremes of the reported range, 13 and 6 mm. Measurements of visual stimulation response (flickering radial checkerboard) were obtained from nine adults using a standard commercial source-detector grid with 13-mm diagonals, into which three extra detector fibers were placed to provide 6-mm channels at certain locations. When the NIRS recordings (17 total trials) were processed, the contrast-to-noise ratio was significantly higher with 6-mm regression channels than with 13 mm. The advantage could be due in part to the undesired sensing of brain activity by the 13-mm channels. We suggest that shorter distances be considered for optimal removal of superficial hemodynamics in NIRS signals from the adult brain.

  15. Short-channel functional near-infrared spectroscopy regressions improve when source-detector separation is reduced

    PubMed Central

    Goodwin, James R.; Gaudet, Chantel R.; Berger, Andrew J.

    2014-01-01

    Abstract. In functional near-infrared spectroscopy (fNIRS) of human cerebral hemodynamics, dedicated surface-sensitive recording channels are useful for regressing out background hemodynamics and isolating activation-specific responses. A wide variety of source-detector separations have been utilized for this purpose. Here, we report a direct comparison of regression performance between two extremes of the reported range, 13 and 6 mm. Measurements of visual stimulation response (flickering radial checkerboard) were obtained from nine adults using a standard commercial source-detector grid with 13-mm diagonals, into which three extra detector fibers were placed to provide 6-mm channels at certain locations. When the NIRS recordings (17 total trials) were processed, the contrast-to-noise ratio was significantly higher with 6-mm regression channels than with 13 mm. The advantage could be due in part to the undesired sensing of brain activity by the 13-mm channels. We suggest that shorter distances be considered for optimal removal of superficial hemodynamics in NIRS signals from the adult brain. PMID:26157972

  16. Two-channel telemeter for use in a 3-inch spin air gun

    NASA Astrophysics Data System (ADS)

    Allen, F.

    1981-06-01

    A special two-channel telemeter-projectile system designed and built for use in a 3-in. spin air gun is described. The system allows batteries to be tested at a far lower cost than field testing. The telemeter projectile is unusually gun rugged an reusable in a simulated artillery environment. Test-battery current and voltage is continuously monitored by subcarrier oscillators. The fuze simulator contains logic components for controlling the battery land program, rather than using steady-state loads for the full flight. This telemeter system has potential applications in remote voltage monitoring over long periods of time.

  17. Characterizing spatial variability of air pollution from vehicle traffic around the Houston Ship Channel area

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Craft, Elena; Zhang, Kai

    2017-07-01

    Mobile emissions are a major source of urban air pollution and have been associated with a variety of adverse health outcomes. The Houston Ship Channel area is the home of a large number of diesel-powered vehicles emitting fine particulate matter (PM2.5; ≤2.5 μm in aerodynamic diameter) and nitrogen oxides (NOx). However, the spatial variability of traffic-related air pollutants in the Houston Ship Channel area has rarely been investigated. The objective of this study is to characterize spatial variability of PM2.5 and NOx concentrations attributable to on-road traffic in the Houston Ship Channel area in the year of 2011. We extracted the road network from the Texas Department of Transportation Road Inventory, and calculated emission rates using the Motor Vehicle Emission Simulator version 2014a (MOVES2014a). These parameters and preprocessed meteorological parameters were entered into a Research LINE-source Dispersion Model (RLINE) to conduct a simulation. Receptors were placed at 50 m resolution within 300 m to major roads and at 150 m resolution in the rest of the area. Our findings include that traffic-related PM2.5 were mainly emitted from trucks, while traffic-related NOx were emitted from both trucks and cars. The traffic contributed 0.90 μg/m3 PM2.5 and 29.23 μg/m3 NOx to the annual average mass concentrations of on-road air pollution, and the concentrations of the two pollutants decreased by nearly 40% within 500 m distance to major roads. The pollution level of traffic-related PM2.5 and NOx was higher in winter than those in the other three seasons. The Houston Ship Channel has earlier morning peak hours and relative late afternoon hours, which indicates the influence of goods movement from port activity. The varied near-road gradients illustrate that proximities to major roads are not an accurate surrogate of traffic-related air pollution.

  18. [Near infrared spectroscopy (NIRS) in a neurocritical patient with an air embolisism and pneumocephalus].

    PubMed

    Rodríguez Díaz-Regañón, I; Benatar-Haserfaty, J; Perez, J C

    2015-02-01

    The pneumocephalus is commonly encountered after neurosurgical procedures. The collections are usually small with benign behavior, and they respond to a conservative therapy. However, there is a high percentage of cases that may behave like a space-occupying lesion. A high index of suspicion is necessary to make the diagnosis and prompt treatment of these cases. Monitoring Near infra-red spectrometry (NIRS) monitoring could help to complete the diagnosis and treatment in these cases. A venous air embolism is a common complication in neurosurgical procedures that are performed in a sitting position, where this monitoring has also been shown to be useful. In the case presented, NIRS monitoring, along with clinical and analytical data, was used for the diagnosis of the two complications. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect

    Mulac, W.A.; McCreary, J.R. ); Schmalz, H. Thermal Surveys, Inc., Rockford, IL )

    1992-01-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  20. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect

    Mulac, W.A.; McCreary, J.R.; Schmalz, H. |

    1992-11-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  1. Air Force Electronic Warfare Evaluation Simulator (AFEWES) infrared test and evaluation capabilities

    NASA Astrophysics Data System (ADS)

    Jackson, Hank D., II; Shepherd, Seth D.

    2004-08-01

    The Air Force Electronic Warfare Evaluation Simulator (AFEWES) Infrared Countermeasures (IRCM) test facility currently has the ability to simulate a complete IRCM test environment, including IR missiles in flight, aircraft in flight, and various IR countermeasures including maneuvers, point-source flares and lamp- and LASER-based jammer systems. The simulations of IR missiles in flight include missile seeker hardware mounted on a six degree-of-freedom flight simulation table. This paper will focus on recent developments and upgrades to the AFEWES IR capability. In particular, current developments in IR scene generation/projection and efforts to optically combining the IR image produced by a resistive array with existing foreground lamp sources.

  2. Air Force electronic warfare evaluation simulator (AFEWES) infrared test and evaluation capabilities

    NASA Astrophysics Data System (ADS)

    Jackson, Hank D., II; Blair, Tommy L.; Ensor, Bruce A.; Deyo, Charles R.; Longbottom, Jeff A.; White, Jason C.

    2005-05-01

    The Air Force Electronic Warfare Evaluation Simulator (AFEWES) Infrared Countermeasures (IRCM) test facility currently has the ability to simulate a complete IRCM test environment, including IR missiles in flight, aircraft in flight, and various IR countermeasures including maneuvers, point-source flares, and lamp- and LASER-based jammer systems. The simulations of IR missiles in flight include missile seeker hardware mounted on a six degree-of-freedom flight simulation table. This paper will focus on recent developments and upgrades to the AFEWES IR capability. In particular, current developments in IR scene generation/projection and efforts to optically combining the IR image produced by a resistive array with existing foreground lamp sources.

  3. Air Force Electronic Warfare Evaluation Simulator (AFEWES) infrared test and evaluation capabilities

    NASA Astrophysics Data System (ADS)

    Jackson, Hank D., II; Blair, Tommy L.; Ensor, Bruce A.

    2007-04-01

    The Air Force Electronic Warfare Evaluation Simulator (AFEWES) Infrared Countermeasures (IRCM) test facility currently has the ability to simulate a complete IRCM test environment, including IR missiles in flight, aircraft in flight, and various IR countermeasures including maneuvers, point-source flares and lamp- and LASER-based jammer systems. The simulations of IR missiles in flight include missile seeker hardware mounted on a six degree-of-freedom flight simulation table. This paper will focus on recent developments and upgrades to the AFEWES IR capability. In particular, current developments in IR scene generation/projection and efforts to optically combining the IR image produced by a resistive array with existing foreground lamp sources.

  4. Air Force electronic warfare evaluation simulator (AFEWES) infrared test and evaluation capabilities

    NASA Astrophysics Data System (ADS)

    Shepherd, Seth D.

    2001-08-01

    The Air Force Electronic Warfare Evaluation Simulator Infrared Countermeasures (IRCM) lab currently has the ability to simulate a complete IRCM test environment, including IR missiles in flight, aircraft in flight, and various IR countermeasures including maneuvers, LASERs, flares, and lamp-based jammer systems. The simulations of IR missiles in flight include real missile seeker hardware mounted in a six degree-of-freedom flight simulation table. The simulations of aircraft signatures and IR countermeasures are accomplished by using eight xenon arc lamps, located in 9' X 3' cylindrical housings, in the presentation foreground. A mirror system keeps the high intensity IR sources in the missile field of view. Range closure is simulated in the background by zooming in on the scene and in the foreground by separating and controlling the irises of the arc lamp sources for proper spatial and intensity characteristics. All relative motion and range closure is controlled by missile flyout software and aircraft flight-profile software models.

  5. Air Force electronic warfare evaluation simulator (AFEWES) infrared test and evaluation capabilities

    NASA Astrophysics Data System (ADS)

    Jackson, Hank D., II; Grauvogel, Nathanael L.; Blair, Tommy L.; Ensor, Bruce A.

    2006-05-01

    The Air Force Electronic Warfare Evaluation Simulator (AFEWES) infrared countermeasures (IRCM) test facility currently has the ability to simulate a complete IRCM test environment, including IR missiles in flight, aircraft in flight, and various IR countermeasures including maneuvers, point-source flares, and lamp- and LASER-based jammer systems. The simulations of IR missiles in flight include missile seeker hardware mounted on a six degree-of-freedom flight simulation table. This paper will focus on recent developments and upgrades to the AFEWES IR capability. In particular, current developments in IR scene generation/projection and efforts to optically combine the IR image produced by a resistive array with existing foreground lamp sources.

  6. [Investigation on remote measurement of air pollution by a method of infrared passive scanning imaging].

    PubMed

    Jiao, Yang; Xu, Liang; Gao, Min-Guang; Feng, Ming-Chun; Jin, Ling; Tong, Jing-Jing; Li, Sheng

    2012-07-01

    Passive remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection of air pollution. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the distribution of a cloud is essential. Therefore, an imaging passive remote sensing system comprising an interferometer, a data acquisition and processing software, scan system, a video system, and a personal computer has been developed. The remote sensing of SF6 was done. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and algorithm of radiation transfer, and a false color image is displayed. The results were visualized by a video image, overlaid by false color concentration distribution image. The system has a high selectivity, and allows visualization and quantification of pollutant clouds.

  7. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect

    Mulac, W.A.; McCreary, J.R.; Schmalz, H.

    1994-03-01

    Active, safe real-time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods has been developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a nontoxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principal advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principal limitation is the necessity of high tracer gas concentration to obtain strong visualizations.

  8. Comparison of Methane Data Products from the TES and AIRS Infrared Sounders

    NASA Astrophysics Data System (ADS)

    Pagano, T. J.; Pagano, T. S.; Worden, J. R.

    2015-12-01

    Methane is the second most powerful greenhouse gas with a highly positive radiative forcing of 0.48 W/m2 (IPCC 2013). Global concentrations of methane have been steadily increasing since 2007 (Bruhwiler 2014), raising concerns about methane's impact on the future global climate. For about the last decade, the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura spacecraft has been detecting several trace gas species in the troposphere including methane. The goal of this study is to compare TES methane retrievals to that of the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua spacecraft so that scientific investigations may be transferred from TES to AIRS. The two instruments fly in the afternoon constellation (A-Train), providing numerous coincident measurements for comparison. In addition, they also have a similar spectral range, (3.3 to 15.4 µm) for TES (Beer, 2006) and (3.7 to 15.4 µm) for AIRS (Chahine, 2006), making both instruments sensitive to the mid and upper troposphere. This makes them ideal candidates to compare methane data products. However, because AIRS spectral resolution is lower than that of the TES, there may be a difference in vertical sensitivity. In addition, the retrieval techniques and error characteristics are different for the two data sets. The current state of validation for these data products will be presented. To identify conditions in which the data sets agree and dis agree, we present global maps of methane concentrations from monthly level 3 (L3) data products. We also investigate the temporal stability between the two datasets by comparing global zonal averages derived from L3 over the last decade. Finally, we compare L2 retrieval profiles from representative granules in the tropical, mid-latitude and northern latitudes.

  9. Swallowable capsule with air channel for improved image-guided cancer detection in the esophagus

    NASA Astrophysics Data System (ADS)

    Seibel, Eric J.; Melville, C. David; Lung, Jonathan K. C.; Babchanik, Alexander P.; Lee, Cameron M.; Johnston, Richard S.; Dominitz, Jason A.

    2009-02-01

    A new type of endoscope has been developed and tested in the human esophagus, a tethered-capsule endoscope (TCE) that requires no sedation for oral ingestion and esophageal inspection. The TCE uses scanned red, green, and blue laser light to image the upper digestive tract using a swallowable capsule of 6.4mm in diameter and 18mm in length on a 1.4mm diameter tether. The TCE has been modified for image-guided interventions in the lower esophagus, specifically for more effective detection and measurement of the extent of Barrett's esophagus, a precursor to esophageal cancer. Three modifications have been tested in vivo: (1) weighting the capsule so it is negatively buoyant in water, (2) increasing the frame rate of 500-line images to 30 Hz (video rate), and (3) adding a 1.0mm inner diameter working channel alongside the tether for distending the lower esophagus with air pressure during endoscopy. All three modifications proved effective for more clearly visualizing the lower esophagus in the first few human subjects. The air channel was especially useful because it did not change tolerability in the first subject for unsedated endoscopy and the air easily removed bubbles obscuring tissue from the field of view. The air provided a non-invasive intervention by stimulating the mechanosensor of the lower esophageal sphincter at the precise time that the TCE was positioned for most informative imaging. All three TCE modifications proved successful for improved visualization of esophageal pathology, such as suspected Barrett's esophagus, without the use of sedation.

  10. Feasibility of using frequency offset on very high frequency air/ground voice channels

    NASA Astrophysics Data System (ADS)

    Badinelli, Martin; Cushman, Arthur; Randazzo, Philip

    1990-03-01

    In some large Federal Aviation Administration (FAA) air traffic control sectors, the controller manually switches between multiple ground transmitters to communicate with aircraft at opposite ends of the sector. This puts an additional burden on the controller. Aeronautical Radio, Inc. (ARINC) uses a frequency offset system which produces five frequencies from one channel assignment. ARINC provides this service to commercial air carriers who use receivers designed to ARINC specifications. These receivers are capable of eliminating the audio heterodyne generated by the offsetting process. The commercial air carriers use this system for airline business. The testing performed at the FAA Technical Center to evaluate this system as a means of controlling the air traffic in large sectors is described. The tests indicate that a frequency offset system cannot be used with general aviation aircraft receivers because many cannot filter out the audio heterodyne. Use of frequency offset may be possible in high altitude sectors where commercial aviation receivers, which meet ARINC specifications, are used if some additional concerns are resolved.

  11. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture

  12. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  13. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2001-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  14. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2000-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  15. Exhaled air analysis using wideband wave number tuning range infrared laser photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Penkova, Olga V.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2017-01-01

    The infrared laser photoacoustic spectroscopy (LPAS) and the pattern-recognition-based approach for noninvasive express diagnostics of pulmonary diseases on the basis of absorption spectra analysis of the patient's exhaled air are presented. The study involved lung cancer patients (N=9), patients with chronic obstructive pulmonary disease (N=12), and a control group of healthy, nonsmoking volunteers (N=11). The analysis of the measured absorption spectra was based at first on reduction of the dimension of the feature space using principal component analysis; thereafter, the dichotomous classification was carried out using the support vector machine. The gas chromatography-mass spectrometry method (GC-MS) was used as the reference. The estimated mean value of the sensitivity of exhaled air sample analysis by the LPAS in dichotomous classification was not less than 90% and specificity was not less than 69%; the analogous results of analysis by GC-MS were 68% and 60%, respectively. Also, the approach to differential diagnostics based on the set of SVM classifiers usage is presented.

  16. 78 FR 17094 - Safety Zone; 2013 Naval Air Station Key West Air Spectacular, Boca Chica Channel; Boca Chica, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; 2013 Naval Air Station Key West Air... in Boca Chica, Florida, during the 2013 Naval Air Station Key West Air Spectacular. The safety zone is necessary to provide for the safety of life on navigable waters during the air show and air...

  17. Paleo-channel deposition of natural uranium at a US Air Force landfill

    SciTech Connect

    Young, Carl; Weismann, Joseph; Caputo, Daniel

    2007-07-01

    Available in abstract form only. Full text of publication follows: The US Air Force sought to identify the source of radionuclides that were detected in groundwater surrounding a closed solid waste landfill at the former Lowry Air Force Base in Denver, Colorado, USA. Gross alpha, gross beta, and uranium levels in groundwater were thought to exceed US drinking water standards and down-gradient concentrations exceeded up-gradient concentrations. Our study has concluded that the elevated radionuclide concentrations are due to naturally-occurring uranium in the regional watershed and that the uranium is being released from paleo-channel sediments beneath the site. Groundwater samples were collected from monitor wells, surface water and sediments over four consecutive quarters. A list of 23 radionuclides was developed for analysis based on historical landfill records. Concentrations of major ions and metals and standard geochemical parameters were analyzed. The only radionuclide found to be above regulatory standards was uranium. A search of regional records shows that uranium is abundant in the upstream drainage basin. Analysis of uranium isotopic ratios shows that the uranium has not been processed for enrichment nor is it depleted uranium. There is however slight enrichment in the U-234:U- 238 activity ratio, which is consistent with uranium that has undergone aqueous transport. Comparison of up-gradient versus down-gradient uranium concentrations in groundwater confirms that higher uranium concentrations are found in the down-gradient wells. The US drinking water standard of 30 {mu}g/L for uranium was exceeded in some of the up-gradient wells and in most of the down-gradient wells. Several lines of evidence indicate that natural uranium occurring in streams has been preferentially deposited in paleo-channel sediments beneath the site, and that the paleo-channel deposits are causing the increased uranium concentrations in down-gradient groundwater compared to up

  18. An experimental study of heat transfer enhancement in an air channel with broken multi type V-baffles

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Kumar, Raj; Maithani, Rajesh; Chauhan, Ranchan; Kumar, Sushil; Nadda, Rahul

    2017-07-01

    This work aims at studying the effect of broken multi type V-baffles on heat transfer, pressure drop, and thermal hydraulic performance characteristics in an air channel is experimentally investigated. The air channel had aspect ratio of 10.0 and the Reynolds number (Re) based upon the mass flow rate of air (m a ) at entrance of the channel varied from 3000 to 8000. The discrete baffle distance (D d /L v ) varied from 0.27 to 0.77, relative baffle gap width (G w /H B ) varied from 0.50 to 1.5, relative baffle height (H B /H D ) varied from 0.25 to 1.0, relative baffle pitch (P B /H B ) varied from 8.0 to 12, relative baffle width (W D /H D ) varied from 1.0 to 6.0, and flow attack angle (α a )varied from 30° to 70°. It has been found that performance of broken multi type V-baffles air channel is better than the performance of smooth surface air channel for the range of geometrical parameters investigated. Experimental results observed that maximum enhancement in overall thermal performance have been found at Dd/Lv value of 0.67, Gw/HB value of 1.0, HB/HD value of 0.50, P B /H B value of 10, and αavalue of 60°.

  19. Linear Support Tensor Machine With LSK Channels: Pedestrian Detection in Thermal Infrared Images.

    PubMed

    Biswas, Sujoy Kumar; Milanfar, Peyman

    2017-09-01

    Pedestrian detection in thermal infrared images poses unique challenges because of the low resolution and noisy nature of the image. Here, we propose a mid-level attribute in the form of the multidimensional template, or tensor, using local steering kernel (LSK) as low-level descriptors for detecting pedestrians in far infrared images. LSK is specifically designed to deal with intrinsic image noise and pixel level uncertainty by capturing local image geometry succinctly instead of collecting local orientation statistics (e.g., histograms in histogram of oriented gradients). In order to learn the LSK tensor, we introduce a new image similarity kernel following the popular maximum margin framework of support vector machines facilitating a relatively short and simple training phase for building a rigid pedestrian detector. Tensor representation has several advantages, and indeed, LSK templates allow exact acceleration of the sluggish but de facto sliding window-based detection methodology with multichannel discrete Fourier transform, facilitating very fast and efficient pedestrian localization. The experimental studies on publicly available thermal infrared images justify our proposals and model assumptions. In addition, the proposed work also involves the release of our in-house annotations of pedestrians in more than 17 000 frames of OSU color thermal database for the purpose of sharing with the research community.

  20. Linear Support Tensor Machine With LSK Channels: Pedestrian Detection in Thermal Infrared Images

    NASA Astrophysics Data System (ADS)

    Biswas, Sujoy Kumar; Milanfar, Peyman

    2017-09-01

    Pedestrian detection in thermal infrared images poses unique challenges because of the low resolution and noisy nature of the image. Here we propose a mid-level attribute in the form of multidimensional template, or tensor, using Local Steering Kernel (LSK) as low-level descriptors for detecting pedestrians in far infrared images. LSK is specifically designed to deal with intrinsic image noise and pixel level uncertainty by capturing local image geometry succinctly instead of collecting local orientation statistics (e.g., histograms in HOG). Our second contribution is the introduction of a new image similarity kernel in the popular maximum margin framework of support vector machines that results in a relatively short and simple training phase for building a rigid pedestrian detector. Our third contribution is to replace the sluggish but de facto sliding window based detection methodology with multichannel discrete Fourier transform, facilitating very fast and efficient pedestrian localization. The experimental studies on publicly available thermal infrared images justify our proposals and model assumptions. In addition, the proposed work also involves the release of our in-house annotations of pedestrians in more than 17000 frames of OSU Color Thermal database for the purpose of sharing with the research community.

  1. Hurricane Isabel, AIRS Infrared and SeaWinds Scatterometer Data Combined

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    These two images show Hurricane Isabel as viewed by AIRS and each of the two SeaWinds scatterometers on the ADEOS-2 and QuikScat satellites, all JPL-managed experiments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction.

    Figure 1 shows Isabel on September 13, 2003, when it was a Category 5 storm threatening the Caribbean and southern United States. At the time Isabel was the strongest Atlantic storm since hurricane Mitch killed thousands in central America in 1997. The red vectors in the image show Isabel's surface winds as measured by SeaWinds on ADEOS-2, and the background colors show the temperature of clouds and surface, as viewed in the infrared by AIRS. The hurricane's powerful swirling winds are apparent. These winds circle the hurricane's eye, seen as the red dot near the middle top of the image. Light blue areas shows adjacent cold clouds tops associated with strong thunderstorms embedded within the storm.

    Figure 2 shows Isabel as it approached landfall on the outer banks of North Carolina on September 18. The hurricane weakened in the five days since the earlier image was observed, as indicated by a less clearly defined eye. Nevertheless, it was still a powerful storm. The winds blowing onshore north of the eye knocked over trees, blew roofs off buildings, and drove large waves that breached the coastal barrier islands in many places. Water, transportation and power are still not fully restored to many of the areas in the image. The winds apparently blowing away from the eye of the storm are an artifact of one of the hurricane's other destructive phenomena: rain. The darkest blue clouds observed by AIRS show the most intense thunderstorms, and hence the heaviest rains. Hard rain fools the the SeaWinds on Quik

  2. Performance of greenhouse gas profiling by infrared-laser and microwave occultation in cloudy air

    NASA Astrophysics Data System (ADS)

    Proschek, V.; Kirchengast, G.; Emde, C.; Schweitzer, S.

    2012-12-01

    ACCURATE is a proposed future satellite mission enabling simultaneous measurements of greenhouse gases (GHGs), wind and thermodynamic variables from Low Earth Orbit (LEO). The measurement principle is a combination of LEO-LEO infrared-laser occultation (LIO) and microwave occultation (LMO), the LMIO method, where the LIO signals are very sensitive to clouds. The GHG retrieval will therefore be strongly influenced by clouds in parts of the troposphere. The IR-laser signals, at wavelengths within 2--2.5μ m, are chosen to measure six GHGs (H2O, CO2, CH4, N2O, O3, CO; incl.~key isotopes 13CO2, C18OO, HDO). The LMO signals enable to co-measure the thermodynamic variables. In this presentation we introduce the algorithm to retrieve GHG profiles under cloudy-air conditions by using quasi-realistic forward simulations, including also influence of Rayleigh scattering, scintillations and aerosols. Data from CALIPSO--Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations--with highest vertical resolution of about 60 m and horizontal resolution of about 330 m were used for simulation of clouds. The IR-laser signals consist for each GHG of a GHG-sensitive and a close-by reference signal. The key process, ``differencing'' of these two signals, removes the atmospheric ``broadband'' effects, resulting in a pure GHG transmission profile. Very thin ice clouds, like sub-visible cirrus, are fairly transparent to the IR-laser signals, thicker and liquid water clouds block the signals. The reference signal is used to produce a cloud layering profile from zero to blocking clouds and is smoothed in a preprocess to suppress scintillations. Sufficiently small gaps, of width <2 km in the cloud layering profile, are found to enable a decent retrieval of entire GHG profiles over the UTLS under broken cloudiness and are therefore bridged by interpolation. Otherwise in case of essentially continuous cloudiness the profiles are found to terminate at cloud top level. The accuracy of

  3. Experimental and numerical analysis of air flow in a dead-end channel

    NASA Astrophysics Data System (ADS)

    Branny, M.; Jaszczur, M.; Wodziak, W.; Szmyd, J.

    2016-09-01

    This study summarises the results of experimental testing and numerical simulations of airflow in a laboratory model of a blind channel aired by a forced ventilation system. The aim of the investigation is qualitative and quantitative verification of computer modelling data. The components of the velocity vector are measured using Particle Image Velocimetry. Two turbulence models, the standard k-ε model and the Reynolds Stress Model, were used in a numerical calculation. A comparison of the magnitude of the velocity vector and the kinetic energy of turbulence obtained by the experimental methods and numerical calculations shows that in qualitative terms, the predicted velocity field correlates well with the measurement data. The mean relative error between the results of the calculations and measurements for the magnitude of the velocity vector and the kinetic energy of turbulence is about 29% for the Reynolds Stress Model and 33% for the standard k-ε model.

  4. Development, set-up and first results for a one-channel near-infrared spectroscopy system.

    PubMed

    Bauernfeind, Günther; Leeb, Robert; Wriessnegger, Selina Christin; Pfurtscheller, Gert

    2008-02-01

    Abstract Near-infrared spectroscopy (NIRS) is a non-invasive optical technique that can be used to assess functional activity in the human brain. This work describes the set-up of a one-channel NIRS system designed for use as an optical brain-computer interface (BCI) and reports on first measurements of deoxyhemoglobin (Hb) and oxyhemoglobin (HbO(2)) changes during mental arithmetic tasks. We found relatively stable and reproducible hemodynamic responses in a group of 13 healthy subjects. Unexpected observations of a decrease in HbO(2) and increase in Hb concentrations measured over the prefrontal cortex were in contrast to the typical hemodynamic responses (increase in HbO(2), decrease in Hb) during cortical activation previously reported.

  5. Determination of nitrogen dioxide in ambient air employing diffuse reflectance Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verma, Santosh Kumar; Deb, Manas Kanti; Verma, Devsharan

    2008-10-01

    This paper presents the development of a simple and precise analytical method for the determination of nitrogen dioxide in ambient air. In this method nitrogen dioxide is determined in the form of nitrite. The determination of nitrogen dioxide needs no reagents except for a solution of sodium hydroxide mixed with sodium arsenite (NaOH-Na 2As 2O 3) which is used as an absorbing reagent for trapping the nitrogen dioxide from the atmosphere in the form of nitrite, i.e., a prior analysis step. The determination of submicrogram levels of nitrogen dioxide is based on the selection of a strong and sharp quantitative analytical peak at 1380 cm - 1 using diffuse reflectance infrared spectroscopy (DRS-FTIR). The limit of detection (LOD) and the limit of quantification of the method are found to be 0.008 μg g - 1 NO 2- and 0.05 μg g - 1 NO 2-, respectively. The precision in terms of standard deviation and relative standard deviation value at a level of 2 μg NO 2- / 0.1 g KBr for n = 10 is found to be 0.036 μg NO 2- and 1.8%, respectively. The relative standard deviation ( n = 10) for the determination of nitrogen dioxide in ambient air was observed to be in the range 2.6-3.8%. The method proposed is time-saving and eliminates the slow and cumbersome steps of pH maintenance of the reaction mixture and color formation of the EPA recommended spectrophotometric and other methods for quantitative determination of nitrogen dioxide.

  6. Hurricane Frances as Observed by NASA Spaceborne Atmospheric Infrared Sounder AIRS - Total Water Vapor Time Series

    NASA Image and Video Library

    2004-08-30

    Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004, as seen by the Atmospheric Infrared Sounding System AIRS on NASA Aqua. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning. This frame from a movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms. The movie (see PIA00433) shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic. http://photojournal.jpl.nasa.gov/catalog/PIA00433

  7. Air-Stable n-channel Diketopyrrolopyrrole-Diketopyrrolopyrrole Oligomers for High Performance Ambipolar Organic Transistors.

    PubMed

    Mukhopadhyay, Tushita; Puttaraju, Boregowda; Senanayak, Satyaprasad P; Sadhanala, Aditya; Friend, Richard; Faber, Hendrik A; Anthopoulos, Thomas D; Salzner, Ulrike; Meyer, Andreas; Patil, Satish

    2016-09-28

    n-channel organic semiconductors are prone to oxidation upon exposed to ambient conditions. Herein, we report design and synthesis of diketopyrrolopyrrole (DPP)-based oligomers for ambipolar organic thin-film transistors (OFETs) with excellent air and bias stability at ambient conditions. The cyclic voltammetry measurements reveal exceptional electrochemical stability during the redox cycle of oligomers. Structural properties including aggregation, crystallinity, and morphology in thin film were investigated by UV-visible spectroscopy, atomic force microscopy (AFM), thin-film X-ray diffraction (XRD), and grazing incidence small-angle X-ray scattering (GISAXS) measurements. AFM reveals morphological changes induced by different processing conditions whereas GISAXS measurements show an increase in the population of face-on oriented crystallites in films subjected to a combination of solvent and thermal treatments. These measurements also highlight the significance of chalcogen atom from sulfur to selenium on the photophysical, optical, electronic, and solid-state properties of DPP-DPP oligomers. Charge carrier mobilities of the oligomers were investigated by fabricating top-gate bottom-contact (TG-BC) thin-film transistors by annealing the thin films under various conditions. Combined solvent and thermal annealing of DPP-DPP oligomer thin films results in consistent electron mobilities as high as ∼0.2 cm(2) V(-1) s(-1) with an on/off ratio exceeding 10(4). Field-effect behavior was retained for up to ∼4 weeks, which illustrates remarkable air and bias stability. This work paves the way toward the development of n-channel DPP-DPP-based oligomers exhibiting retention of field-effect behavior with superior stability at ambient conditions.

  8. Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: a validation and inter-comparison study

    NASA Astrophysics Data System (ADS)

    Masiello, G.; Serio, C.; Venafra, S.; Liuzzi, G.; Göttsche, F.; Trigo, I. F.; Watts, P.

    2015-04-01

    A Kalman filter based approach for the physical retrieval of surface temperature and emissivity from SEVIRI (Spinning Enhanced Visible and Infrared Imager) infrared observations has been developed and validated against in situ and satellite observations. Validation for land has been provided based on in situ observations from the two permanent stations Evora and Gobabeb operated by Karlsruhe Institute of Technology (KIT) within the framework of EUMETSAT's Satellite Application Facility on Land Surface Analysis (LSA-SAF). Sea surface retrievals have been intercompared on a broad spatial scale with equivalent satellite products (MODIS or Moderate Resolution Imaging Spectroradiometer and AVHRR or Advanced Very High Resolution Radiometer) and ECMWF (European Centre for Medium Range Weather Forecasts) analyses. Results show that for surface temperature the algorithm yields an accuracy of ≈ ± 1.5 °C in case of land and ≈ ± 1.0 °C in case of sea surface. Comparisons with polar satellite instruments over the sea surface show nearly zero temperature bias. Over the land surface the retrieved emissivity follows the seasonal vegetation cycle and allows to identify desert sand regions because of strong reststrahlen bands of Quartz in the SEVIRI channel at 8.7 μm. Considering the two validation stations, we have that emissivity retrieved in SEVIRI channel 10.8 μm over the gravel plains of the Namib desert is in excellent agreement with in situ observations. Over Evora, the seasonal variation of emissivity with vegetation is successfully retrieved and yields emissivity values for green and dry vegetation that are in good agreement with spectral library data. The algorithm has been applied to the SEVIRI full disk and emissivity maps on that global scale have been physically retrieved for the first time.

  9. Kalman filter physical retrieval of surface emissivity and temperature from SEVIRI infrared channels: a validation and intercomparison study

    NASA Astrophysics Data System (ADS)

    Masiello, G.; Serio, C.; Venafra, S.; Liuzzi, G.; Göttsche, F.; Trigo, I. F.; Watts, P.

    2015-07-01

    A Kalman filter-based approach for the physical retrieval of surface temperature and emissivity from SEVIRI (Spinning Enhanced Visible and Infrared Imager) infrared observations has been developed and validated against in situ and satellite observations. Validation for land has been provided based on in situ observations from the two permanent stations at Evora and Gobabeb operated by Karlsruhe Institute of Technology (KIT) within the framework of EUMETSAT's Satellite Application Facility on Land Surface Analysis (LSA SAF). Sea surface retrievals have been intercompared on a broad spatial scale with equivalent satellite products (MODIS, Moderate Resolution Imaging Spectroradiometer, and AVHRR, Advanced Very High Resolution Radiometer) and ECMWF (European Centre for Medium-Range Weather Forecasts) analyses. For surface temperature, the Kalman filter yields a root mean square accuracy of ≍ ±1.5 °C for the two land sites considered and ≍ ±1.0 °C for the sea. Comparisons with polar satellite instruments over the sea surface show nearly zero temperature bias. Over the land surface the retrieved emissivity follows the seasonal vegetation cycle and permits identification of desert sand regions using the SEVIRI channel at 8.7 μm due to the strong quartz reststrahlen bands around 8-9 μm. Considering the two validation stations, we have found that emissivity retrieved in SEVIRI channel 10.8 μm over the gravel plains of the Namibian desert is in excellent agreement with in situ observations. Over Evora, the seasonal variation of emissivity with vegetation is successfully retrieved and yields emissivity values for green and dry vegetation that are in good agreement with spectral library data. The algorithm has been applied to the SEVIRI full disk, and emissivity maps on that global scale have been physically retrieved for the first time.

  10. Combined Dust Detection Algorithm by Using MODIS Infrared Channels over East Asia

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Jaehwa; Lee, Sukjo; Kim, Jeong Soo; Chang, Lim Seok; Ou, Steve

    2014-01-01

    A new dust detection algorithm is developed by combining the results of multiple dust detectionmethods using IR channels onboard the MODerate resolution Imaging Spectroradiometer (MODIS). Brightness Temperature Difference (BTD) between two wavelength channels has been used widely in previous dust detection methods. However, BTDmethods have limitations in identifying the offset values of the BTDto discriminate clear-sky areas. The current algorithm overcomes the disadvantages of previous dust detection methods by considering the Brightness Temperature Ratio (BTR) values of the dual wavelength channels with 30-day composite, the optical properties of the dust particles, the variability of surface properties, and the cloud contamination. Therefore, the current algorithm shows improvements in detecting the dust loaded region over land during daytime. Finally, the confidence index of the current dust algorithm is shown in 10 × 10 pixels of the MODIS observations. From January to June, 2006, the results of the current algorithm are within 64 to 81% of those found using the fine mode fraction (FMF) and aerosol index (AI) from the MODIS and Ozone Monitoring Instrument (OMI). The agreement between the results of the current algorithm and the OMI AI over the non-polluted land also ranges from 60 to 67% to avoid errors due to the anthropogenic aerosol. In addition, the developed algorithm shows statistically significant results at four AErosol RObotic NETwork (AERONET) sites in East Asia.

  11. A 16-channel avalanche photodiode detector array for visible and near-infrared flow cytometry

    NASA Astrophysics Data System (ADS)

    Lawrence, William G.; Stapels, Christopher; Farrell, Richard; Tario, Joseph D., Jr.; Podniesinski, Edward; Wallace, Paul K.; Christian, James F.

    2006-02-01

    We report on the development and application of a flow cytometer using a 16-channel avalanche photodiode (APD) linear detector array. The array is configured with a dispersive grating to simultaneously record emission over a broad wavelength range using the 16 APD channels of the linear APD array. The APD detector elements have a peak quantum efficiency of 80% near 900 nm and have at least 40% quantum efficiency over the 400-nm to 1000-nm wavelength range. The extended red sensitivity of the detector array facilitates the use of lower energy excitation sources and near IR emitting dyes which reduces the impact of autofluorescence in signal starved measurements. The wide wavelength sensitivity of the APD array permits the use of multiple excitation sources and many different fluorescent labels to maximize the number of independent parameters in a given experiment. We show the sensitivity and linearity measurements for a single APD detector. Initial results for the flow cytometer with the 16-element APD array and the 16-channel readout ASIC (application specific integrated circuit) are presented.

  12. Cold air outbreaks along a non-frozen sea channel: effects of wind on snow bands

    NASA Astrophysics Data System (ADS)

    Savijärvi, Hannu

    2015-08-01

    Wintertime cold air outbreaks along a non-frozen sea channel or a long lake can become destructive if the related bands of heavy snowfall hit onto land. The forcing for such bands is studied with a 2D numerical model set across an east-west sea channel at 60oN (`Gulf of Finland'), varying the basic geostrophic wind V g. Without any V g opposite coastal land breezes emerge with convergence. This results in a quasi-steady rising motion w max ~ 7.5 cm/s at 600 m in the middle of the gulf, which can force a snow band. During weak V g, the rising motion is reduced but least so for winds from 60o to 80o (~ENE), when modest alongshore bands could exist near the downstream (Estonian) coast. During V g of 4-6 m/s from any direction, the land breezes and rising motions are reduced more effectively, so snow bands are not expected during moderate basic flow. In contrast, during a strong V g of 20-25 m/s from 110o to 120o (~ESE) the land breeze perturbations are intense with w max up to 15-18 cm/s. The induced alongshore bands of heavy snowfall are located in these cases at the sea but quite close to the downstream (Finnish) coast. They can suddenly make a landfall if the basic wind turns clockwise.

  13. The roles of vibration analysis and infrared thermography in monitoring air-handling equipment

    NASA Astrophysics Data System (ADS)

    Wurzbach, Richard N.

    2003-04-01

    Industrial and commercial building equipment maintenance has not historically been targeted for implementation of PdM programs. The focus instead has been on manufacturing, aerospace and energy industries where production interruption has significant cost implications. As cost-effectiveness becomes more pervasive in corporate culture, even office space and labor activities housed in large facilities are being scrutinized for cost-cutting measures. When the maintenance costs for these facilities are reviewed, PdM can be considered for improving the reliability of the building temperature regulation, and reduction of maintenance repair costs. An optimized program to direct maintenance resources toward a cost effective and pro-active management of the facility can result in reduced operating budgets, and greater occupant satisfaction. A large majority of the significant rotating machinery in a large building environment are belt-driven air handling units. These machines are often poorly designed or utilized within the facility. As a result, the maintenance staff typically find themselves scrambling to replace belts and bearings, going from one failure to another. Instead of the reactive-mode maintenance, some progressive and critical institutions are adopting predictive and proactive technologies of infrared thermography and vibration analysis. Together, these technologies can be used to identify design and installation problems, that when corrected, significantly reduce maintenance and increase reliability. For critical building use, such as laboratories, research facilities, and other high value non-industrial settings, the cost-benefits of more reliable machinery can contribute significantly to the operational success.

  14. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model

  15. Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides.

    PubMed

    Lin, Pao Tai; Singh, Vivek; Hu, Juejun; Richardson, Kathleen; Musgraves, J David; Luzinov, Igor; Hensley, Joel; Kimerling, Lionel C; Agarwal, Anu

    2013-06-07

    Towards a future lab-on-a-chip spectrometer, we demonstrate a compact chip-scale air-clad silicon pedestal waveguide as a Mid-Infrared (Mid-IR) sensor capable of in situ monitoring of organic solvents. The sensor is a planar crystalline silicon waveguide, which is highly transparent, between λ = 1.3 and 6.5 μm, so that its operational spectral range covers most characteristic chemical absorption bands due to bonds such as C-H, N-H, O-H, C-C, N-O, C=O, and C≡N, as opposed to conventional UV, Vis, Near-IR sensors, which use weaker overtones of these fundamental bands. To extend light transmission beyond λ = 3.7 μm, a spectral region where a typical silicon dioxide under-clad is absorbing, we fabricate a unique air-clad silicon pedestal waveguide. The sensing mechanism of our Mid-IR waveguide sensor is based on evanescent wave absorption by functional groups of the surrounding chemical molecules, which selectively absorb specific wavelengths in the mid-IR, depending on the nature of their chemical bonds. From a measurement of the waveguide mode intensities, we demonstrate in situ identification of chemical compositions and concentrations of organic solvents. For instance, we show that when testing at λ = 3.55 μm, the Mid-IR sensor can distinguish hexane from the rest of the tested analytes (methanol, toluene, carbon tetrachloride, ethanol and acetone), since hexane has a strong absorption from the aliphatic C-H stretch at λ = 3.55 μm. Analogously, applying the same technique at λ = 3.3 μm, the Mid-IR sensor is able to determine the concentration of toluene dissolved in carbon tetrachloride, because toluene has a strong absorption at λ = 3.3 μm from the aromatic C-H stretch. With our demonstration of an air-clad silicon pedestal waveguide sensor, we move closer towards the ultimate goal of an ultra-compact portable spectrometer-on-a-chip.

  16. Paleo-channel deposits of natural uranium at a Former Air Force Landfill

    SciTech Connect

    Young, C.; Weismann, PGJ.; Nelson, CHPK.

    2007-07-01

    The US Air Force has sought to understand the provenance of radionuclides that were detected in monitor wells surrounding a closed solid-waste landfill at the former Lowry Air Force Base in Denver, Colorado. Groundwater concentrations of gross alpha, gross beta, and total uranium were thought to exceed regulatory standards. Down-gradient concentrations of these parameters exceeded up-gradient concentrations, suggesting that the landfill is leaching uranium to groundwater. Alternate hypotheses for the occurrence of the uranium included that either equipment containing refined uranium had been discarded or that uranium ore may have been disposed in the landfill, or that the uranium is naturally-occurring. Our study has concluded that the elevated radionuclide concentrations stem from naturally-occurring uranium in the regional watershed which has been preferentially deposited in paleo-channel sediments beneath the site. This study shows that a simple comparison of up-gradient versus down-gradient groundwater samples can be an inadequate method for determining whether heterogeneous geo-systems have been contaminated. It is important to understand the geologic depositional system, plus local geochemistry and how these factors impact contaminant transport. (authors)

  17. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images.

    PubMed

    Zhong, Xinke; Labed, Jelila; Zhou, Guoqing; Shao, Kun; Li, Zhao-Liang

    2015-06-08

    The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800-1200 cm(-1) and a spectral sampling frequency of 0.25 cm(-1). We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product.

  18. Developmental changes in frontal lobe function during a verbal fluency task: a multi-channel near-infrared spectroscopy study.

    PubMed

    Tando, Tomoko; Kaga, Yoshimi; Ishii, Sayaka; Aoyagi, Kakuro; Sano, Fumikazu; Kanemura, Hideaki; Sugita, Kanji; Aihara, Masao

    2014-11-01

    Near-infrared spectroscopy (NIRS) is commonly used to investigate continuous changes of brain activation and has excellent time resolution. Verbal fluency task (VFT) is widely used as a neuropsychological test of frontal lobe function. The aim of this study was to investigate normal developmental change in frontal lobe function during VFT performance using multi-channel NIRS, specifically focusing on oxygenation hemoglobin (oxyHb) changes. The subjects were 9 adults and 37 childrens who were all healthy right-handed volunteers. Children were divided into four age groups (group A, 6-8 years; group B, 9-11 years; group C, 12-14 years; group D, 15-18 years). The [oxyHb] changes were measured with 22 channels of NIRS during VFT. We defined the frontopolar region as the region of interest for analysis, and calculated the Z-score to compare the data between groups. The task performance changed with age. There were significant differences between group A and other groups. The Z-score of [oxyHb] also significantly increased with age, when comparing adults to groups A and B. The task performances decreased with time in all groups. In contrast, [oxyHb] only continued to increase in the adult group. The verbal retrieval functions begin to mature in early adolescence and continue to grow up to adulthood. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  19. A Multi-Channel Method for Retrieving Surface Temperature for High-Emissivity Surfaces from Hyperspectral Thermal Infrared Images

    PubMed Central

    Zhong, Xinke; Labed, Jelila; Zhou, Guoqing; Shao, Kun; Li, Zhao-Liang

    2015-01-01

    The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product. PMID:26061199

  20. Evaluation of the Impact of Atmospheric Infrared Sounder (AIRS) Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of 6 weeks of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  1. Validation of MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared channel with field measurements.

    PubMed

    Tang, Bo-Hui; Wu, Hua-; Li, Zhao-Liang; Nerry, Françoise

    2012-07-30

    This work addressed the validation of the MODIS-derived bidirectional reflectivity retrieval algorithm in mid-infrared (MIR) channel, proposed by Tang and Li [Int. J. Remote Sens. 29, 4907 (2008)], with ground-measured data, which were collected from a field campaign that took place in June 2004 at the ONERA (Office National d'Etudes et de Recherches Aérospatiales) center of Fauga-Mauzac, on the PIRRENE (Programme Interdisciplinaire de Recherche sur la Radiométrie en Environnement Extérieur) experiment site [Opt. Express 15, 12464 (2007)]. The leaving-surface spectral radiances measured by a BOMEM (MR250 Series) Fourier transform interferometer were used to calculate the ground brightness temperatures with the combination of the inversion of the Planck function and the spectral response functions of MODIS channels 22 and 23, and then to estimate the ground brightness temperature without the contribution of the solar direct beam and the bidirectional reflectivity by using Tang and Li's proposed algorithm. On the other hand, the simultaneously measured atmospheric profiles were used to obtain the atmospheric parameters and then to calculate the ground brightness temperature without the contribution of the solar direct beam, based on the atmospheric radiative transfer equation in the MIR region. Comparison of those two kinds of brightness temperature obtained by two different methods indicated that the Root Mean Square Error (RMSE) between the brightness temperatures estimated respectively using Tang and Li's algorithm and the atmospheric radiative transfer equation is 1.94 K. In addition, comparison of the hemispherical-directional reflectances derived by Tang and Li's algorithm with those obtained from the field measurements showed that the RMSE is 0.011, which indicates that Tang and Li's algorithm is feasible to retrieve the bidirectional reflectivity in MIR channel from MODIS data.

  2. Channels

    NASA Image and Video Library

    2015-11-20

    Today's VIS image shows a number of unnamed channels located on the northeastern margin of Terra Sabaea. Orbit Number: 61049 Latitude: 33.5036 Longitude: 58.6967 Instrument: VIS Captured: 2015-09-18 12:54 http://photojournal.jpl.nasa.gov/catalog/PIA20097

  3. Drying characteristics of whole Musa AA group ‘Kluai Leb Mu Nang’ using hot air and infrared vacuum

    NASA Astrophysics Data System (ADS)

    Kulketwong, C.; Thungsotanon, D.; Suwanpayak, N.

    2017-06-01

    Dried Musa AA group ‘Kluai Leb Mu Nang’ are the famous processing goods of Chumphon province, the south of Thailand. In this paper, we improved the qualities of whole Musa AA group ‘Kluai leb Mu Nang’ by using the hot air and infrared vacuum (HA and infrared vacuum) drying method which has two stages. The first stage of the method is the hot air (HA) and hot air-infrared (HAI) drying for rapidly reducing the moisture content and the drying times at atmospheric pressure, and the second stage, the moisture content, and color of the samples can be controlled by the HA and infrared vacuum drying. The experiment was evaluated by the terms of firmness, color change, moisture content, vacuum pressure and energy consumption at various temperatures. The results were found that the suitable temperature of the HAI and HA and infrared vacuum drying stages at 70°C and 55°C, respectively, while the suitable vacuum pressure in the second process was -0.4 bar. The samples were dried in a total of 28 hrs using 13.83 MJ/kg of specific energy consumption (stage 1 with 8.8 MJ/kg and stage 2 of 5.03 MJ/kg). The physical characteristics of the 21% (wb) of dried bananas can be measured the color change, L*=38.56, a*=16.47 and b*=16.3, was approximate the goods from the local market, whereas the firmness of them was more tender and shown a value of 849.56 kN/m3.

  4. Extension of radiative transfer code MOMO, matrix-operator model to the thermal infrared - Clear air validation by comparison to RTTOV and application to CALIPSO-IIR

    NASA Astrophysics Data System (ADS)

    Doppler, Lionel; Carbajal-Henken, Cintia; Pelon, Jacques; Ravetta, François; Fischer, Jürgen

    2014-09-01

    1-D radiative transfer code Matrix-Operator Model (MOMO), has been extended from [0.2-3.65 μm] the band to the whole [0.2-100 μm] spectrum. MOMO can now be used for the computation of a full range of radiation budgets (shortwave and longwave). This extension to the longwave part of the electromagnetic radiation required to consider radiative transfer processes that are features of the thermal infrared: the spectroscopy of the water vapor self- and foreign-continuum of absorption at 12 μm and the emission of radiation by gases, aerosol, clouds and surface. MOMO's spectroscopy module, Coefficient of Gas Absorption (CGASA), has been developed for computation of gas extinction coefficients, considering continua and spectral line absorptions. The spectral dependences of gas emission/absorption coefficients and of Planck's function are treated using a k-distribution. The emission of radiation is implemented in the adding-doubling process of the matrix operator method using Schwarzschild's approach in the radiative transfer equation (a pure absorbing/emitting medium, namely without scattering). Within the layer, the Planck-function is assumed to have an exponential dependence on the optical-depth. In this paper, validation tests are presented for clear air case studies: comparisons to the analytical solution of a monochromatic Schwarzschild's case without scattering show an error of less than 0.07% for a realistic atmosphere with an optical depth and a blackbody temperature that decrease linearly with altitude. Comparisons to radiative transfer code RTTOV are presented for simulations of top of atmosphere brightness temperature for channels of the space-borne instrument MODIS. Results show an agreement varying from 0.1 K to less than 1 K depending on the channel. Finally MOMO results are compared to CALIPSO Infrared Imager Radiometer (IIR) measurements for clear air cases. A good agreement was found between computed and observed radiance: biases are smaller than 0.5 K

  5. Infrared spectral investigation of the linseed oil polymerization in a corona discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Groza, A.; Surmeian, A.; Ganciu, M.; Popescu, I. I.

    2004-12-01

    In this paper we have demonstrated that the negative and positive corona discharge in air at atmospheric pressure is a convenient physical method for the initiation of the high-reaction-rate polymerization process of the linseed oil. The different stages of the polymerization process were investigated by infrared (IR) spectroscopy and the formation of the linseed oil polymer was evaluated by the presence of the C-O-C bands.

  6. Improved Surface and Tropospheric Temperatures Determined Using Only Shortwave Channels: The AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2011-01-01

    The Goddard DISC has generated products derived from AIRS/AMSU-A observations, starting from September 2002 when the AIRS instrument became stable, using the AIRS Science Team Version-5 retrieval algorithm. The AIRS Science Team Version-6 retrieval algorithm will be finalized in September 2011. This paper describes some of the significant improvements contained in the Version-6 retrieval algorithm, compared to that used in Version-5, with an emphasis on the improvement of atmospheric temperature profiles, ocean and land surface skin temperatures, and ocean and land surface spectral emissivities. AIRS contains 2378 spectral channels covering portions of the spectral region 650 cm(sup -1) (15.38 micrometers) - 2665 cm(sup -1) (3.752 micrometers). These spectral regions contain significant absorption features from two CO2 absorption bands, the 15 micrometers (longwave) CO2 band, and the 4.3 micrometers (shortwave) CO2 absorption band. There are also two atmospheric window regions, the 12 micrometer - 8 micrometer (longwave) window, and the 4.17 micrometer - 3.75 micrometer (shortwave) window. Historically, determination of surface and atmospheric temperatures from satellite observations was performed using primarily observations in the longwave window and CO2 absorption regions. According to cloud clearing theory, more accurate soundings of both surface skin and atmospheric temperatures can be obtained under partial cloud cover conditions if one uses observations in longwave channels to determine coefficients which generate cloud cleared radiances R(sup ^)(sub i) for all channels, and uses R(sup ^)(sub i) only from shortwave channels in the determination of surface and atmospheric temperatures. This procedure is now being used in the AIRS Version-6 Retrieval Algorithm. Results are presented for both daytime and nighttime conditions showing improved Version-6 surface and atmospheric soundings under partial cloud cover.

  7. Prefrontal cortex activation during story encoding/retrieval: a multi-channel functional near-infrared spectroscopy study

    PubMed Central

    Basso Moro, Sara; Cutini, Simone; Ursini, Maria Laura; Ferrari, Marco; Quaresima, Valentina

    2013-01-01

    Encoding, storage and retrieval constitute three fundamental stages in information processing and memory. They allow for the creation of new memory traces, the maintenance and the consolidation of these traces over time, and the access and recover of the stored information from short or long-term memory. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that measures concentration changes of oxygenated-hemoglobin (O2Hb) and deoxygenated-hemoglobin (HHb) in cortical microcirculation blood vessels by means of the characteristic absorption spectra of hemoglobin in the near-infrared range. In the present study, we monitored, using a 16-channel fNIRS system, the hemodynamic response during the encoding and retrieval processes (EP and RP, respectively) over the prefrontal cortex (PFC) of 13 healthy subjects (27.2 ± 2.6 years) while were performing the “Logical Memory Test” (LMT) of the Wechsler Memory Scale. A LMT-related PFC activation was expected; specifically, it was hypothesized a neural dissociation between EP and RP. The results showed a heterogeneous O2Hb/HHb response over the mapped area during the EP and the RP, with a O2Hb progressive and prominent increment in ventrolateral PFC (VLPFC) since the beginning of the EP. During the RP a broader activation, including the VLPFC, the dorsolateral PFC and the frontopolar cortex, was observed. This could be explained by the different contributions of the PFC regions in the EP and the RP. Considering the fNIRS applicability for the hemodynamic monitoring during the LMT performance, this study has demonstrated that fNIRS could be utilized as a valuable clinical diagnostic tool, and that it has the potential to be adopted in patients with cognitive disorders or slight working memory deficits. PMID:24427131

  8. Prefrontal cortex activation during story encoding/retrieval: a multi-channel functional near-infrared spectroscopy study.

    PubMed

    Basso Moro, Sara; Cutini, Simone; Ursini, Maria Laura; Ferrari, Marco; Quaresima, Valentina

    2013-01-01

    Encoding, storage and retrieval constitute three fundamental stages in information processing and memory. They allow for the creation of new memory traces, the maintenance and the consolidation of these traces over time, and the access and recover of the stored information from short or long-term memory. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that measures concentration changes of oxygenated-hemoglobin (O2Hb) and deoxygenated-hemoglobin (HHb) in cortical microcirculation blood vessels by means of the characteristic absorption spectra of hemoglobin in the near-infrared range. In the present study, we monitored, using a 16-channel fNIRS system, the hemodynamic response during the encoding and retrieval processes (EP and RP, respectively) over the prefrontal cortex (PFC) of 13 healthy subjects (27.2 ± 2.6 years) while were performing the "Logical Memory Test" (LMT) of the Wechsler Memory Scale. A LMT-related PFC activation was expected; specifically, it was hypothesized a neural dissociation between EP and RP. The results showed a heterogeneous O2Hb/HHb response over the mapped area during the EP and the RP, with a O2Hb progressive and prominent increment in ventrolateral PFC (VLPFC) since the beginning of the EP. During the RP a broader activation, including the VLPFC, the dorsolateral PFC and the frontopolar cortex, was observed. This could be explained by the different contributions of the PFC regions in the EP and the RP. Considering the fNIRS applicability for the hemodynamic monitoring during the LMT performance, this study has demonstrated that fNIRS could be utilized as a valuable clinical diagnostic tool, and that it has the potential to be adopted in patients with cognitive disorders or slight working memory deficits.

  9. Greenhouse gas profiling by infrared-laser and microwave occultation in cloudy air: Results from end-to-end simulations

    NASA Astrophysics Data System (ADS)

    Proschek, V.; Kirchengast, G.; Emde, C.; Schweitzer, S.

    2014-11-01

    The new mission concept of microwave and infrared-laser occultation between Low Earth Orbit satellites (LMIO) is capable to provide accurate, consistent, and long-term stable measurements of many essential climate variables. These include temperature, humidity, key greenhouse gases (GHGs) such as carbon dioxide and methane, and line of sight wind speed, all with focus on profiling the upper troposphere and lower stratosphere. The GHG retrieval performance from LMIO data was so far analyzed under clear-air conditions only, without clouds and scintillations from turbulence. Here we present and evaluate an algorithm, built into an already published clear-air algorithm, which copes with cloud and scintillation influences on the infrared-laser transmission profiles used for GHG retrieval. We find that very thin ice clouds fractionally extinct the infrared-laser signals, thicker but broken ice clouds block them over limited altitude ranges, and liquid water clouds generally block them so that their cloud top altitudes typically constitute the limit to tropospheric penetration of profiles. The advanced algorithm penetrates through broken cloudiness. It achieves this by producing a cloud flagging profile from cloud-perturbed infrared-laser signals, which then enables bridging of transmission profile gaps via interpolation. Evaluating the retrieval performance with quasi-realistic end-to-end simulations, including high-resolution cloud data and scintillations from turbulence, we find a small increase only of GHG retrieval RMS errors due to broken-cloud scenes and the profiles remain essentially unbiased as in clear air. These results are encouraging for future LMIO implementation, indicating that GHG profiles can be retrieved through broken cloudiness, maximizing upper troposphere coverage.

  10. Radiometric traceability diagnosis and bias correction for the Suomi NPP VIIRS long-wave infrared channels during blackbody unsteady states

    NASA Astrophysics Data System (ADS)

    Cao, Changyong; Wang, Wenhui; Blonski, Slawomir; Zhang, Bin

    2017-05-01

    The Suomi National Polar-orbiting Partnership Program (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Thermal Emissive Bands (TEBs) have been performing well since the data became available on 20 January 2012, and the Sensor Data Record data reached validated maturity on 18 March 2014. While overall the validation has shown that these channels have an estimated absolute uncertainty on the order of 0.1 K based on extensive comparisons, there is a remaining issue that persisted over the years. A calibration bias on the order of 0.1 K is introduced in channels such as M15 during the quarterly blackbody temperature warm-up/cooldown, and the bias is further amplified by the sea surface temperature (SST) retrieval algorithm up to 0.3 K in the global daily-averaged products which causes an apparent spike in the SST time series. Our investigation reveals that this bias is caused by a fundamental but flawed theoretical assumption in the VIIRS calibration equation, which states that the shape of the calibration curve is assumed unchanged from prelaunch to postlaunch without any constrains. While the assumption may work to account for long-term degradation, it has a shortcoming during the blackbody unsteady state. In this study, we present a diagnostic and correction method with a compensatory term (Ltrace) to reconcile the assumption such that it removes the calibration bias during the blackbody temperature changes. The methodology has been tested using historical data, and the results are very positive. The implementation has minimal impacts on the operational data processing system and is readily available for use in operations.

  11. Enhanced cooling in mono-crystalline ultra-thin silicon by embedded micro-air channels

    NASA Astrophysics Data System (ADS)

    Ghoneim, Mohamed T.; Fahad, Hossain M.; Hussain, Aftab M.; Rojas, Jhonathan P.; Torres Sevilla, Galo A.; Alfaraj, Nasir; Lizardo, Ernesto B.; Hussain, Muhammad M.

    2015-12-01

    In today's digital world, complementary metal oxide semiconductor (CMOS) technology enabled scaling of bulk mono-crystalline silicon (100) based electronics has resulted in their higher performance but with increased dynamic and off-state power consumption. Such trade-off has caused excessive heat generation which eventually drains the charge of battery in portable devices. The traditional solution utilizing off-chip fans and heat sinks used for heat management make the whole system bulky and less mobile. Here we show, an enhanced cooling phenomenon in ultra-thin (>10 μm) mono-crystalline (100) silicon (detached from bulk substrate) by utilizing deterministic pattern of porous network of vertical "through silicon" micro-air channels that offer remarkable heat and weight management for ultra-mobile electronics, in a cost effective way with 20× reduction in substrate weight and a 12% lower maximum temperature at sustained loads. We also show the effectiveness of this event in functional MOS field effect transistors (MOSFETs) with high-κ/metal gate stacks.

  12. Calibration of advanced very high resolution radiometer infrared channels: A new approach to nonlinear correction

    NASA Astrophysics Data System (ADS)

    Brown, James W.; Brown, Otis B.; Evans, Robert H.

    1993-10-01

    A detailed reanalysis of the calibration procedures for the National Oceanic and Atmospheric Administration (NOAA) advanced very high resolution radiometer (AVHRR) based on thermal-vacuum test data was performed as part of the National Air and Space Administration/NOAA AVHRR Pathfinder Project. This effort, a followup to work by Brown et al. (1985), was motivated by the finding that the AVHRR instruments on several NOAA platforms have been routinely operated outside the range of thermal-vacuum test results, and thus one could not interpolate nonlinear corrections directly from earlier methods. These new calibration procedures permit calculation of nonlinear temperature corrections for any AVHRR operating temperature based on a second-order polynomial regression with a total calibration accuracy relative to an external calibration standard of less than two digital counts (±0.2°C). Such an improvement is quite important to the absolute accuracy of surface thermal fields, which are derived from these data utilizing various multichannel atmospheric water vapor correction schemes. We find systematic differences in the newly derived nonlinear correction results and those reported previously by Weinreb et al. (1990) and the original reference material in the various addenda to NOAA NESS Technical Memorandum 107 (Lauritson et al., 1979). Calibration results for various AVHRR radiometers show instrument-similar corrections for each band. Radiometers on NOAA platforms 8-12 demonstrate similar nonlinearities.

  13. Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy.

    PubMed

    Ohta, Haruhisa; Yamagata, Bun; Tomioka, Hiroi; Takahashi, Taro; Yano, Madoka; Nakagome, Kazuyuki; Mimura, Masaru

    2008-01-01

    Panic disorder is a common and debilitating psychiatric disease; yet, the neurobiology of this disorder is not fully understood. Deficits in the prefrontal inhibitory control over hyperactivity of the anxiety-related neural circuit are implicated in the pathophysiological core of panic disorder. The aims of this study were to investigate whether panic disorder reveals frontal lobe dysfunction while performing the word fluency test by using multi-channel near-infrared spectroscopy and to compare the findings in panic disorder with those in major depressive disorder. Twenty-one patients with panic disorder, 17 patients with major depressive disorder, and 24 healthy control subjects participated in the study. Both patients with panic disorder and with major depressive disorder showed similarly attenuated increases in oxy-hemoglobin during the word fluency test in the bilateral frontal regions, when compared to healthy control participants. Hypofrontality in panic disorder and major depressive disorder was most prominent in the left medial inferior frontal lobe. This study clarified that hypofrontality in panic disorder is evident even with neutral stimuli of little emotional load.

  14. Simultaneous Assessment of Luminal Integrity and Vascular Perfusion of the Gastrointestinal Tract using Dual-Channel Near-Infrared Fluorescence

    PubMed Central

    Ashitate, Yoshitomo; Vooght, Carrie S.; Hutteman, Merlijn; Oketokoun, Rafiou; Choi, Hak Soo; Frangioni, John V.

    2011-01-01

    Anastomotic complications such as stenosis and leakage in the gastrointestinal (GI) tract can cause high patient morbidity and mortality. To identify the potential preconditions of these complications intraoperatively, we explored the use of two 700 nm near-infrared (NIR) fluorophores administered intraluminally: (1) chlorella, an over-the-counter herbal supplement containing high concentrations of chlorophyll and (2) methylene blue (MB). In parallel, we administered the 800 nm NIR fluorophore indocyanine green (ICG) intravenously to assess vascular function. Dual channel, real-time intraoperative imaging, and quantitation of the contrast-to-background ratio (CBR), were performed under normal conditions, or after anastomosis or leakage of the stomach and intestines in 35-kg Yorkshire pigs using the Fluorescence-Assisted Resection and Exploration (FLARE™) imaging system. Lumenal integrity could be assessed with relatively high sensitivity with either chlorella or MB, although chlorella provided significantly higher CBR. ICG angiography provided assessment of blood perfusion of normal, ischemic, and anastomotic areas of the GI tract. Used simultaneously, 700 nm (chlorella or MB) and 800 nm (ICG) NIR fluorescence permitted independent assessment of luminal integrity and vascular perfusion of the GI tract intraoperatively and in real time. This technology has the potential to identify critical complications, such as anastomotic leakage, intraoperatively, when correction is still possible. PMID:22954146

  15. Plasma channels during filamentation of a femtosecond laser pulse with wavefront astigmatism in air

    SciTech Connect

    Dergachev, A A; Kandidov, V P; Shlenov, S A; Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S; Shustikova, A P

    2014-12-31

    We have demonstrated experimentally and numerically the possibility of controlling parameters of plasma channels formed during filamentation of a femtosecond laser pulse by introducing astigmatism in the laser beam wavefront. It is found that weak astigmatism increases the length of the plasma channel in comparison with the case of aberration-free focusing and that strong astigmatism can cause splitting of the plasma channel into two channels located one after another on the filament axis. (interaction of laser radiation with matter. laser plasma)

  16. Computational fluid dynamics for modeling the turbulent natural convection in a double air-channel solar chimney system

    NASA Astrophysics Data System (ADS)

    Zavala-Guillén, I.; Xamán, J.; Álvarez, G.; Arce, J.; Hernández-Pérez, I.; Gijón-Rivera, M.

    2016-03-01

    This study reports the modeling of the turbulent natural convection in a double air-channel solar chimney (SC-DC) and its comparison with a single air-channel solar chimney (SC-C). Prediction of the mass flow and the thermal behavior of the SC-DC were obtained under three different climates of Mexico during one summer day. The climates correspond to: tropical savannah (Mérida), arid desert (Hermosillo) and temperate with warm summer (Mexico City). A code based on the Finite Volume Method was developed and a k-ω turbulence model has been used to model air turbulence in the solar chimney (SC). The code was validated against experimental data. The results indicate that during the day the SC-DC extracts about 50% more mass flow than the SC-C. When the SC-DC is located in Mérida, Hermosillo and Mexico City, the air-changes extracted along the day were 60, 63 and 52, respectively. The air temperature at the outlet of the chimney increased up to 33%, 38% and 61% with respect to the temperature it has at the inlet for Mérida, Hermosillo and Mexico City, respectively.

  17. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air.

    PubMed

    Fuji, Takao; Suzuki, Toshinori

    2007-11-15

    Generation of sub-two-cycle, microjoule pulses in the mid-infrared region is demonstrated. Fundamental and second-harmonic pulses of 25 fs Ti:sapphire amplifier output were focused into the air to produce extremely broadband mid-infrared pulses by four-wave difference-frequency generation through the filamentation. The full width at half-maximum of the spectral bandwidth reaches one octave (2.5-5.5 microm), which is sufficiently broad for sub-single-cycle pulse generation. The pulse width was estimated to be 13 fs, without any compressors, by cross-correlation frequency resolved optical gating. The output energy of more than a few microjoule is sufficient for spectroscopy.

  18. A radiance-based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Hook, Simon J.

    2012-10-01

    Land Surface Temperature (LST) has been identified by NASA and other international organizations as an important Earth System Data Record (ESDR). An ESDR is defined as a long-term, well calibrated and validated data set. Identifying uncertainties in LST products with coarse spatial resolutions (>10 km) such as those from hyperspectral infrared sounders is notoriously difficult due to the challenges of making reliable in situ measurements representative of the spatial scales of the output products. In this study we utilize a Radiance-based (R-based) LST method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) v5 LST product. The R-based method provides estimates of the true LST using a radiative closure simulation without the need for in situ measurements, and requires input air temperature, relative humidity profiles and emissivity data. The R-based method was employed at three validation sites over the Namib Desert, Gran Desierto, and Redwood National Park for all AIRS observations from 2002 to 2010. Results showed daytime LST root-mean square errors (RMSE) of 2-3 K at the Namib and Desierto sites, and 1.5 K at the Redwood site. Nighttime LST RMSEs at the two desert sites were a factor of two less when compared to daytime results. Positive daytime LST biases were found at each site due to an underestimation of the daytime AIRS v5 longwave spectral emissivity, while the reverse occurred at nighttime. In the AIRS v6 product (release 2012), LST biases and RMSEs will be reduced significantly due to improved methodologies for the surface retrieval and emissivity first guess.

  19. P.88 Regional Precipitation Forecast with Atmospheric Infrared Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2010-01-01

    Prudent assimulation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. In general, AIRS-enhanced analysis more closely resembles radiosondes than the CNTL; forecasts with AIRS profiles are generally closer to NAM analyses than CNTL for sensible weather parameters (not shown here). Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecases. Including AIRS profiles in assimilation process enhances the low-level instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  20. The effect of different inlet conditions of air in a rectangular channel on convection heat transfer: Turbulence flow

    SciTech Connect

    Kurtbas, Irfan

    2008-10-15

    Theoretical and empirical correlations for duct flow are given for hydrodynamically and thermally developed flow in most of previous studies. However, this is commonly not a realistic inlet configuration for heat exchanger, in which coolant flow generally turns through a serpentine shaped passage before entering heat sinks. Accordingly, an experimental investigation was carried out to determine average heat transfer coefficients in uniformly heated rectangular channel with 45 and 90 turned flow, and with wall mounted a baffle. The channel was heated through bottom side with the baffle. In present work, a detailed study was conducted for three different height of entry channel (named as the ratio of the height of entry channel to the height of test section (anti H{sub c}=h{sub c}/H)) by varying Reynolds number (Re{sub Dh}). Another variable parameter was the ratio of the baffle height to the channel height (anti H{sub b}=h{sub b}/H). Only one baffle was attached on the bottom (heating) surface. The experimental procedure was validated by comparing the data for the straight channel with no baffle. Reynolds number (Re{sub Dh}) was varied from 2800 to 30,000, so the flow was considered as only turbulent regime. All experiments were conduced with air accordingly; Prandtl number (Pr) was approximately fixed at 0.71. The results showed that average Nusselt number for {theta}=45 and {theta}=90 were 9% and 30% higher, respectively, than that of the straight channel without baffle. Likewise, the pressure drop increased up to 4.4 to 5.3 times compare to the straight channel. (author)

  1. Surface velocity divergence model of air/water interfacial gas transfer in open-channel flows

    NASA Astrophysics Data System (ADS)

    Sanjou, M.; Nezu, I.; Okamoto, T.

    2017-04-01

    Air/water interfacial gas transfer through a free surface plays a significant role in preserving and restoring water quality in creeks and rivers. However, direct measurements of the gas transfer velocity and reaeration coefficient are still difficult, and therefore a reliable prediction model needs to be developed. Varying systematically the bulk-mean velocity and water depth, laboratory flume experiments were conducted and we measured surface velocities and dissolved oxygen (DO) concentrations in open-channel flows to reveal the relationship between DO transfer velocity and surface divergence (SD). Horizontal particle image velocimetry measurements provide the time-variations of surface velocity divergence. Positive and negative regions of surface velocity divergence are transferred downstream in time, as occurs in boil phenomenon on natural river free-surfaces. The result implies that interfacial gas transfer is related to bottom-situated turbulence motion and vertical mass transfer. The original SD model focuses mainly on small-scale viscous motion, and this model strongly depends on the water depth. Therefore, we modify the SD model theoretically to accommodate the effects of the water depth on gas transfer, introducing a non-dimensional parameter that includes contributions of depth-scale large-vortex motion, such as secondary currents, to surface renewal events related to DO transport. The modified SD model proved effective and reasonable without any dependence on the bulk mean velocity and water depth, and has a larger coefficient of determination than the original SD model. Furthermore, modeling of friction velocity with the Reynolds number improves the practicality of a new formula that is expected to be used in studies of natural rivers.

  2. Heat transfer performance comparison of steam and air in gas turbine cooling channels with different rib angles

    NASA Astrophysics Data System (ADS)

    Shi, Xiaojun; Gao, Jianmin; Xu, Liang; Li, Fajin

    2013-11-01

    Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels ( W/ H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000-70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19-1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.

  3. Numerical modeling and simulation of hot air jet anti-icing system employing channels for enhanced heat transfer

    NASA Astrophysics Data System (ADS)

    Ahmed, Kamran Zaki

    Aircraft icing is a serious concern for the aviation community since it is one of the major causes of fatal aircraft accidents. Aircrafts use different anti-icing systems and one such system is the hot-air anti-icing system, which utilizes hot-air from the engine compressor bleed to heat critical aircraft surfaces and prevent ice formation. Numerous experimental and numerical studies have been performed to increase the efficiency of the hot-air jet based anti-icing systems. Most of the investigations have focused on either orifice design or the impingement region of target surface geometry. Since the impingement surface heat transfer drops off sharply past the stagnation region, investigators have studied the use of multiple jets to enhance surface heat transfer over a larger area. However, use of multiple jets is a further strain on engine resources. One way to conserve engine resources is to use single jet in conjunction with various geometric and physical mechanisms to enhance heat transfer. The current study focuses on enhancing heat transfer using a single jet and a channel. The study investigates the effect of channel's height, inlet location and Reynolds number on heat transfer characteristics in terms of average Nusselt number distribution along the impingement surface. The commercial CFD code, FLUENT, is used to simulate the different cases. Results indicate that the heat transfer depends strongly on height and width of channel, jet-to-target spacing, inlet angle and jet Reynolds number.

  4. Ratiometric and colorimetric near-infrared sensors for multi-channel detection of cyanide ion and their application to measure β-glucosidase

    NASA Astrophysics Data System (ADS)

    Xing, Panfei; Xu, Yongqian; Li, Hongjuan; Liu, Shuhui; Lu, Aiping; Sun, Shiguo

    2015-11-01

    A near-infrared sensor for cyanide ion (CN-) was developed via internal charge transfer (ICT). This sensor can selectively detect CN- either through dual-ratiometric fluorescence (logarithm of I414/I564 and I803/I564) or under various absorption (356 and 440 nm) and emission (414, 564 and 803 nm) channels. Especially, the proposed method can be employed to measure β-glucosidase by detecting CN- traces in commercial amygdalin samples.

  5. Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source

    PubMed Central

    Huang, Jinqing; Parobek, Alexander; Ganim, Ziad

    2016-01-01

    Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100 fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700 cm−1 with a 190 pJ pulse energy and 0.5% RMS stability. PMID:27805634

  6. Performance Expectations for Future Moderate Resolution Visible and Infrared Space Instruments Based on AIRS and MODIS In-Flight Experience

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Broberg, Steven E.; Aumann, Hartmut H.; Baron, Richard L.

    2004-01-01

    Lessons learned from the Atmospheric Infrared Sounder (AIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) projects highlight areas where further technology development is needed to address future land, ocean and atmospheric measurement needs. Although not established as requirements at this time, it is anticipated that scientists will expect improvements in the areas of spatial, spectral, radiometric, polarimetric, temporal and calibration performance for future sensors. This paper addresses each of these performance areas and provides lessons learned from MODIS and AIRS. We also present expectations in performance of the system based on information from NASA Instrument Incubator Program and industry reports. Tradeoffs are presented vs orbit altitude (LEO, ME0 and GEO) and provide a 'systems' perspective to future measurement concepts.

  7. The potential of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect organic emissions under the Clean Air Act

    SciTech Connect

    Demirgian, J.C.; Hammer, C.L.; Kroutil, R.T.

    1992-07-01

    The Clean Air Act of 1990 regulates the emission of 198 air toxics. Currently, there is no existing technology by which a regulatory agency can independently determine if a facility is in compliance. We have successfully tested the ability of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect chemical plumes released in the field. Additional laboratory releases demonstrated that FTIR spectroscopy can detect target analytes in mixtures containing components which have overlapping absorbances. The FTIR spectrometer was able to identify and quantify each component released with an average quantitative error of less than 20% using partial least squares (PLS) analysis and 40% using classical least squares analysis (CLS) when calibration files containing pure components and mixtures were used. Calibration files containing only pure analytes resulted in CLS outperforming PLS analyses.

  8. The potential of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect organic emissions under the Clean Air Act

    SciTech Connect

    Demirgian, J.C.; Hammer, C.L. ); Kroutil, R.T. )

    1992-01-01

    The Clean Air Act of 1990 regulates the emission of 198 air toxics. Currently, there is no existing technology by which a regulatory agency can independently determine if a facility is in compliance. We have successfully tested the ability of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect chemical plumes released in the field. Additional laboratory releases demonstrated that FTIR spectroscopy can detect target analytes in mixtures containing components which have overlapping absorbances. The FTIR spectrometer was able to identify and quantify each component released with an average quantitative error of less than 20% using partial least squares (PLS) analysis and 40% using classical least squares analysis (CLS) when calibration files containing pure components and mixtures were used. Calibration files containing only pure analytes resulted in CLS outperforming PLS analyses.

  9. P161 Improved Impact of Atmospheric Infrared Sounder (AIRS) Radiance Assimilation in Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley T.; Chou, Shih-Hung; Jedlovec, Gary J.

    2012-01-01

    For over 6 years, AIRS radiances have been assimilated operationally into National (e.g. Environmental Modeling Center (EMC)) and International (e.g. European Centre for Medium-Range Weather Forecasts (ECMWF)), operational centers; assimilated in the North American Mesoscale (NAM) since 2008. Due partly to data latency and operational constraints, hyperspectral radiance assimilation has had less impact on the Gridpoint Statistical Interpolation (GSI) system used in the NAM and GFS. Objective of this project is to use AIRS retrieved profiles as a proxy for the AIRS radiances in situations where AIRS radiances are unable to be assimilated in the current operational system by evaluating location and magnitude of analysis increments.

  10. Analysis of Co-located Ground- and Space-based Infrared Atmospheric Measurements: AERI, AIRS, CERES, MODIS

    NASA Astrophysics Data System (ADS)

    Lewis, P. E.; Anderson, G. P.; Chetwynd, J.; Roman, M.; Schaaf, C. B.; Turner, D. D.; Rutan, D. A.; Berk, A.; Shen, S. S.; Miller, D. P.; Kroutil, R.

    2008-12-01

    Sets of clear-sky, co-located, down-looking infrared data, from the NASA AQUA space-based Atmospheric Infrared Sounder (AIRS) and the Clouds and the Earth's Radiant Energy System (CERES), have been paired with the DOE Southern Great Plains (SGP) ground-based, up-looking Atmospheric Emitted Radiance Interferometer (AERI). Only 26 cases are included in this study, the 8% of the available 2005 AIRS acquisitions at SGP that were defined as cloud free. These data sets have then been simulated using the MODTRAN® 5 (MOD5) radiative transfer code with auxiliary 'truth' data as input. Since MOD5 is unaffiliated with any of the instruments, its use as a transfer agent among the instrument suites provides important algorithm validation. Of particular interest is the impact, if any, of the Ground Sampling Distance (GSD) of AIRS, CERES and MODIS (13, 26 and 0.5 km, respectively) vs. the soda-straw up-looking mode of AERI. The sensitivity of the larger GSDs on measurements of outgoing long wave radiation (OLR) is an important question for next-stage climate monitoring. In addition to the coincident SGP 'ground truth' data (vertical profile sondes and AERONET measurements) and MODIS products, the AURA Ozone Monitoring Instrument (OMI) has also augmented the available 'truth' input parameters. Initial calculations with MOD5 have replicated both the AERI and AIRS measurements to within 1% RMS. Preliminary calculations of the CERES long wave radiances suggest that differences will fall well within 3%. While these results are not sufficiently precise for specific instrument algorithms, they suggest some confidence in the generic use of MODTRAN® 5 as an integration tool for Climate Change studies.

  11. [A discriminant model of mental disorders based on wave form patterns obtained by multi-channel near-infrared spectroscopy].

    PubMed

    Sugimura, Yuji; Watanabe, Katsumi; Ogawa, Suguru; Kodama, Tokushi; Takeshita, Masatoshi; Noda, Takamasa; Ishimaru, Masahiko; Yoshida, Sumiko

    2014-02-01

    Multi-channel near-infrared spectroscopy (NIRS) was approved on 2009 as the first advanced medical care modality for use in the field of psychiatry in Japan. We performed NIRS for 185 outpatients in our hospital and 59 healthy subjects to measure hemoglobin concentration changes during verbal fluency tests trying to evaluate the relationships between the wave forms obtained by NIRS and mental disorders. We classified the prefrontal cortex oxy-hemoglobin wave forms obtained from the NIRS into 2 types and sub-classified into 5 wave patterns partly referenced previous papers a) Flat or increasing oxy-Hb form: (1) flat wave pattern, (2) early peak wave pattern, (3) late peak wave pattern during of the task and (4) reascending wave pattern after the task and b) decreasing oxy-Hb form: (5) Decrease wave pattern during the task. Focused on flat or increasing oxy-Hb form, the associations between these 4 wave patterns and psychiatric disorders were confirmed employing the Chi-square test. It was found that the flat wave pattern during the task and depression correlated with a sensitivity of 51.5% and specificity of 90.2%, the late peak wave pattern and bipolar disorder correlated with a sensitivity of 65.9% and specificity of 73.2%, and the re-ascending wave pattern after the task and schizophrenia correlated with a sensitivity of 58.9% and specificity of 94.6%. Our findings suggest that the discriminant model based on wave pattern has the potential to provide information supporting a diagnosis of mental disorder in the setting of clinical laboratory testing.

  12. Groundwater cleanup by in-situ sparging. XIII. Random air channels for sparing of dissolved and nonaqueous phase volatiles

    SciTech Connect

    Wilson, D.J.; Clarke, A.N.; Kaminski, K.M.; Chang, E.Y.

    1997-12-01

    A mathematical model is developed to simulate the sparging of dissolved volatile organic compounds (VOCs) and nonaqueous phase liquid (NAPL) from contaminated aquifers. The sparging air moves through the aquifer in persistent, random channels, to which VOC must move by diffusion/dispersion to be removed. The dependence of the rate of remediation on the various model parameters is investigated and some practical conclusions are reached regarding the operation of air sparging wells for aquifer remediation. VOCs of low water solubility (such as alkanes) and present as NAPL are found to be removed by air sparging much more slowly than VOCs of higher water solubility (such as benzene, toluene, ethylbenzene and xylenes) and present as NAPL, due to the very small maximum concentration gradients which can be maintained around droplets of the former. These small concentration gradients result in very slow rates of NAPL solution.

  13. Burning of the Supersonic Propane-Air Mixture in the Aerodynamic Channel With the Stagnant Zone

    DTIC Science & Technology

    2007-11-02

    V.Chernikov, V.Shibkov, O.Surkont. Mechanisms of transversal electric discharge sustention in supersonic air and propane-air flows. -American Institute of Aeronautics and Astronautics, AIAA Paper, 2003, No.03-0872, p. 1 -6 .

  14. Performance assessment of future thermal infrared geostationary instruments to monitor air quality

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Dauphin, P.; Dufour, G.; Eremenko, M.; Cuesta, J.; Coman, A.; Forêt, G.; Beekmann, M.; Gaubert, B.; Flaud, J.-M.

    2012-04-01

    Air quality (AQ) has a recognized onerous impact on human health and the environment, and then on society. It is more and more clear that constantly and efficiently monitoring AQ from space is a valuable step forward towards a more thorough comprehension of pollution processes that can have a relevant impact on the biosphere. In recent years, important progresses in this field have been made, e.g., reliable observations of several pollutants have been obtained, proving the feasibility of monitoring atmospheric composition from space. In this sense, low Earth orbit (LEO) thermal infrared (TIR) space-borne instruments are widely regarded as a useful tool to observe targeted AQ parameters like tropospheric ozone concentrations [1]. However, limitations remain with the current observation systems in particular to observe ozone in the lowermost troposphere (LmT) with a spatial and temporal resolution relevant for monitoring pollution processes at the regional scale. Indeed, LEO instruments are not well adapted to monitor small scale and short term phenomena, owing to their unsatisfactory revisit time. From this point of view, a more satisfactory concept might be based on geostationary (GEO) platforms. Current and planned GEO missions are mainly tailored on meteorological parameters retrieval and do not have sufficient spectral resolutions and signal to noise ratios (SNR) to infer information on trace gases in the LmT. New satellite missions are currently proposed that can partly overcome these limitations. Here we present a group of simulation exercises and sensitivity analyses to set-up future TIR GEO missions adapted to monitor and forecast AQ over Europe, and to evaluate their technical requirements. At this aim, we have developed a general simulator to produce pseudo-observations for different platform/instrument configurations. The core of this simulator is the KOPRA radiative transfer model, including the KOPRAfit inversion module [2]. Note that to assess the

  15. Global Daily Atmospheric State Profiles from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Chahine, Moustafa T.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 (micro)m to 15.4 (micro)m and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles, clouds, dust and trace gas amounts for CO2, CO, SO2, O3 and CH4.[1] AIRS data are used for weather forecasting and studies of global climate change. The AIRS is a 'facility' instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations.

  16. Hurricane Isabel, AIRS Infrared and SeaWinds Scatterometer Data Combined

    NASA Image and Video Library

    2003-09-20

    These two images show Hurricane Isabel as viewed by AIRS and SeaWinds scatterometers on NASA ADEOS-2 and QuikScat satellites in September, 2003. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction. http://photojournal.jpl.nasa.gov/catalog/PIA00429

  17. Operational readiness for the Atmospheric Infrared Sounder (AIRS) on the earth observing system aqua spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, T.; Aumann, H.; Chahine, M.; Karnik, A.; Goodson, G.; Schindler, R.; Elliot, D. A.; Hofstadter, M.

    2001-01-01

    This paper describes the AIRS science objectives, the instrument design and operation, the in-flight operational scenario, and the calibration plan. All aspects of the program are addressed here to demonstrate that the AIRS program is ready to transition to the flight segment of the program.

  18. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  19. Profiling Wind and Greenhouse Gases by Infrared-laser Occultation: Algorithm and Results from Simulations in Windy Air

    NASA Astrophysics Data System (ADS)

    Plach, Andreas; Proschek, Veronika; Kirchengast, Gottfried

    2014-05-01

    We employ the Low Earth Orbit (LEO-LEO) microwave and infrared-laser occultation (LMIO) method to derive a full set of thermodynamic state variables from microwave signals and climate benchmark profiling of greenhouse gases (GHGs) and line-of-sight (l.o.s.) wind using infrared-laser signals. The focus lies on the upper troposphere/lower stratosphere region (UTLS - 5 km to 35 km). The GHG retrieval errors are generally smaller than 1% to 3% r.m.s., at a vertical resolution of about 1 km. In this study we focus on the infrared-laser part of LMIO, where we introduce a new, advanced wind retrieval algorithm to derive accurate l.o.s. wind profiles. The wind retrieval uses the reasonable assumption of the wind blowing along spherical shells (horizontal winds) and therefore the l.o.s. wind speed can be retrieved by using an Abel integral transform. A 'delta-differential transmission' principle is applied to two thoroughly selected infrared-laser signals placed at the wings of the highly symmetric C18OO absorption line (nominally ±0.004 cm-1 from the line center near 4767 cm-1) plus a related 'off-line' reference signal. The delta-differential transmission obtained by differencing these signals is clear from atmospheric broadband effects and is proportional to the wind-induced Doppler shift; it serves as the integrand of the Abel transform. The Doppler frequency shift calculated along with the wind retrieval is in turn also used in the GHG retrieval to correct the frequency of GHG-sensitive infrared-laser signals for the wind-induced Doppler shift, which enables improved GHG estimation. This step therefore provides the capability to correct potential wind-induced residual errors of the GHG retrieval in case of strong winds. We performed end-to-end simulations to test the performance of the new retrieval in windy air. The simulations used realistic atmospheric conditions (thermodynamic state variables and wind profiles) from an analysis field of the European Centre for

  20. Detection of Air and Water-Filled Subsurface Defects in GFRP Composite Bridge Decks Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Halabe, Udaya B.; Roy, M.; Klinkhachorn, P.; GangaRao, Hota V. S.

    2006-03-01

    Any discontinuity within a structural component influences the transmission of thermal energy through its thickness, which leads to differences in surface temperatures just above the defective and defect-free areas. The variation in the surface temperatures are recorded using a digital infrared camera and the thermal images (thermograms) are analyzed to locate the presence of subsurface defects such as debonds and delaminations within the structure. While past studies focused on detection of air-filled subsurface defects (debonds and delaminations) in fiber reinforced polymer (GFRP) composite bridge decks using infrared thermography, this paper includes the detection of fully and partially water-filled defects as well. Simulated water-filled defects were embedded within the flange-to-flange junction of adjacent GFRP bridge deck modules to create delaminations. The deck specimens were then tested before and after the application of a 3/8″ (9.5 mm) thick polymer concrete wearing surface. It was found that water-filled delaminations as small as 2″ × 2″ × 1/16″ (51 mm × 51 mm × 1.6 mm) could be detected in case of specimens without wearing surface, but this was not possible after application of the wearing surface. The heating source considered included heater and solar radiation. Use of cooling sources such as cold water and liquid carbon dioxide were also explored. These results helped establish the limits of detection for fully and partially water-filled delaminations using Infrared Thermograpy. Additional studies included the detection of debond between 2″ (51mm) thick asphalt overlay and the underlying composite deck and it was found that air-filled debonds as small as 4″ × 4″ × 1/16″ (102 mm × 102 mm × 1.6 mm) could be detected using heater as well as solar radiation as heat sources.

  1. Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Hatfield, M. C.; Webley, P.; Saiet, E., II

    2014-12-01

    Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs) Numerous scientific and logistical applications exist in Alaska and other arctic regions requiring analysis of expansive, remote areas in the near infrared (NIR) and thermal infrared (TIR) bands. These include characterization of wild land fire plumes and volcanic ejecta, detailed mapping of lava flows, and inspection of lengthy segments of critical infrastructure, such as the Alaska pipeline and railroad system. Obtaining timely, repeatable, calibrated measurements of these extensive features and infrastructure networks requires localized, taskable assets such as UAVs. The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) provides practical solutions to these problem sets by pairing various IR sensors with a combination of fixed-wing and multi-rotor air vehicles. Fixed-wing assets, such as the Insitu ScanEagle, offer long reach and extended duration capabilities to quickly access remote locations and provide enduring surveillance of the target of interest. Rotary-wing assets, such as the Aeryon Scout or the ACUASI-built Ptarmigan hexcopter, provide a precision capability for detailed horizontal mapping or vertical stratification of atmospheric phenomena. When included with other ground capabilities, we will show how they can assist in decision support and hazard assessment as well as giving those in emergency management a new ability to increase knowledge of the event at hand while reducing the risk to all involved. Here, in this presentation, we illustrate how UAV's can provide the ideal tool to map and analyze the hazardous events and critical infrastructure under extreme environmental conditions.

  2. Ability of near infrared spectroscopy to monitor air-dry density distribution and variation of wood

    Treesearch

    Brian K. Via; Chi-Leung So; Todd F. Shupe; Michael Stine; Leslie H. Groom

    2005-01-01

    Process control of wood density with near infrared spectroscopy (NIR) would be useful for pulp mills that need to maximize pulp yield without compromising paper strength properties. If models developed from the absorbance at wavelengths in the NIR region could provide density histograms, fiber supply personnel could monitor chip density variation as the chips enter the...

  3. The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels

    SciTech Connect

    Saisorn, Sira; Wongwises, Somchai

    2010-05-15

    Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

  4. Distribution of air-water mixtures in parallel vertical channels as an effect of the header geometry

    SciTech Connect

    Marchitto, Annalisa; Fossa, Marco; Guglielmini, Giovanni

    2009-07-15

    Uneven phase distribution in heat exchangers is a cause of severe reductions in thermal performances of refrigeration equipment. To date, no general design rules are available to avoid phase separation in manifolds with several outlet channels, and even predicting the phase and mass distribution in parallel channels is a demanding task. In the present paper, measurements of two-phase air-water distributions are reported with reference to a horizontal header supplying 16 vertical upward channels. The effects of the operating conditions, the header geometry and the inlet port nozzle were investigated in the ranges of liquid and gas superficial velocities of 0.2-1.2 and 1.5-16.5 m/s, respectively. Among the fitting devices used, the insertion of a co-axial, multi-hole distributor inside the header confirmed the possibility of greatly improving the liquid and gas flow distribution by the proper selection of position, diameter and number of the flow openings between the supplying distributor and the system of parallel channels connected to the header. (author)

  5. 3-Dimensional numerical study of cooling performance of a heat sink with air-water flow through mini-channel

    NASA Astrophysics Data System (ADS)

    Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan

    2016-07-01

    The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.

  6. Retrieving water surface temperature from archive LANDSAT thermal infrared data: Application of the mono-channel atmospheric correction algorithm over two freshwater reservoirs

    NASA Astrophysics Data System (ADS)

    Simon, R. N.; Tormos, T.; Danis, P.-A.

    2014-08-01

    Water surface temperature is a key element in characterizing the thermodynamics of waterbodies, and for irregularly-shaped inland reservoirs, LANDSAT thermal infrared images are the best alternative yet for the retrieval of this parameter. However, images must be corrected mainly for atmospheric effects in order to be fully exploitable. The objective of this study is to validate the mono-channel correction algorithm for single-band thermal infrared LANDSAT data as put forward by Jiménez-Muñoz et al. (2009). Two freshwater reservoirs in continental France were selected as study sites, and best use was made of all accessible image and field data. Results obtained are satisfactory and in accordance with the literature: r2 values are above 0.90 and root-mean-square error values are comprised between 1 and 2 °C. Moreover, paired Wilcoxon signed rank tests showed a highly significant difference between field and uncorrected image data, a very highly significant difference between uncorrected and corrected image data, and no significant difference between field and corrected image data. The mono-channel algorithm is hence recommended for correcting archive LANDSAT single-band thermal infrared data for inland waterbody monitoring and study.

  7. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Retrieved Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle M.; Zavodsky, T.; Jedloved, Gary J.

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One operational forecast challenge is forecasting convective weather in data-void regions such as large bodies of water (e.g. Gulf of Mexico). To address this forecast challenge, SPoRT produces a twice-daily three-dimensional analysis that blends a model first-guess from the Advanced Research Weather Research and Forecasting (WRF-ARW) model with retrieved profiles from the Atmospheric Infrared Sounder (AIRS) -- a hyperspectral sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. AIRS profiles are unique in that they give a three dimensional view of the atmosphere that is not available through the current rawinsonde network. AIRS has two overpass swaths across North America each day, one valid in the 0700-0900 UTC timeframe and the other in the 1900-2100 UTC timeframe. This is helpful because the rawinsonde network only has data from 0000 UTC and 1200 UTC at specific land-based locations. Comparing the AIRS analysis product with control analyses that include no AIRS data demonstrates the value of the retrieved profiles to situational awareness for the pre-convective (and convective) environment. In an attempt to verify that the AIRS analysis was a good representation of the vertical structure of the atmosphere, both the AIRS and control analyses are compared to a Rapid Update Cycle (RUC) analysis used by operational forecasters. Using guidance from operational forecasters, convective available potential energy (CAPE) was determined to be a vital variable in making convective forecasts and is used herein to demonstrate the utility of the AIRS profiles in changing the vertical

  8. Infrared remote sensing of cometary parent volatiles from the ground, air, and space

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Disanti, Michael A.; Hoban, Susan; Reuter, Dennis C.

    1991-01-01

    A balanced view of the present generation of infrared instruments for cometary compositional studies is presented. Ground-based instruments are compared with airborne and spaceborne capabilities. An attempt to give examples of the unique science achievable with each is made, and particular emphasis is on the unique aspects of a dedicated Cometary Composition Telescope in earth orbit for investigating the chemical and structural heterogeneity of the cometary nucleus.

  9. Groundwater cleanup by in-situ sparging. X. Air channeling model for biosparging of nonaqueous phase liquid

    SciTech Connect

    Wilson, D.J.; Norris, R.D.; Clarke, A.N.

    1996-06-01

    A column model is developed to simulate the removal and biodegradation of dissolved and nonaqueous phase liquid (NAPL) volatile organic compounds (VOCs) from contaminated aquifers by biosparging. The model assumes that the injected air moves through the aquifer in persistent channels and that NAPL must dissolve and move to these channels by diffusion and dispersion. The dependence of model results on several of the parameters of the model is investigated, and suggestions for optimizing biosparging system operations are made. The removal of NAPL VOCs of quite low solubility (such as alkanes) from smear zones below the water is modeled, and is found to be an extremely slow process. Drawing down the water table to below the smear zone by pumping is suggested as a possible solution.

  10. Post-filamentation propagation of high-power laser pulses in air in the regime of narrowly focused light channels

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Zemlyanov, A. A.; Ionin, A. A.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.

    2016-11-01

    We report the results of experimental and theoretical studies of the post-filamentation stage of nonlinear propagation of high-power pulsed radiation from a Ti : sapphire laser in air. We have for the first time obtained the experimental dependences of the angular divergence of specific spatially localised high-intensity light structures that are observed in the beam after its multiple filamentation (post-filamentation of channels) when varying the initial focusing of laser radiation and its energy. It is found that the angular divergence of the post-filamentation channels decreases with increasing pulse energy and reducing beam numerical aperture. The experimental dependences are qualitatively interpreted based on the diffraction model of the Bessel - Gaussian beam.

  11. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors

    NASA Astrophysics Data System (ADS)

    da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2013-11-01

    Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3-5.4 mmol m-3 enabling a calculated limit of detection (LOD) at 0.14 mmol m-3 (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated.

  12. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors.

    PubMed

    da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2013-11-11

    Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3-5.4 mmol m⁻³ enabling a calculated limit of detection (LOD) at 0.14 mmol m⁻³ (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated.

  13. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors

    PubMed Central

    da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2013-01-01

    Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3–5.4 mmol m−3 enabling a calculated limit of detection (LOD) at 0.14 mmol m−3 (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated. PMID:24213678

  14. Continuous multichannel monitoring of cave air carbon dioxide using a pumped non-dispersive infrared analyser

    NASA Astrophysics Data System (ADS)

    Mattey, D.

    2012-04-01

    The concentration of CO2 in cave air is one of the main controls on the rate of degassing of dripwater and on the kinetics of calcite precipitation forming speleothem deposits. Measurements of cave air CO2reveal great complexity in the spatial distribution among interconnected cave chambers and temporal changes on synoptic to seasonal time scales. The rock of Gibraltar hosts a large number of caves distributed over a 300 meter range in altitude and monthly sampling and analysis of air and water combined with continuous logging of temperature, humidity and drip discharge rates since 2004 reveals the importance of density-driven seasonal ventilation which drives large-scale advection of CO2-rich air though the cave systems. Since 2008 we have deployed automatic CO2 monitoring systems that regularly sample cave air from up to 8 locations distributed laterally and vertically in St Michaels Cave located near the top of the rock at 275m asl and Ragged Staff Cave located in the heart of the rock near sea level. The logging system is controlled by a Campbell Scientific CR1000 programmable datalogger which controls an 8 port manifold connected to sampling lines leading to different parts of the cave over a distance of up to 250 meters. The manifold is pumped at a rate of 5l per minute drawing air through 6mm or 8mm id polythene tubing via a 1m Nafion loop to reduce humidity to local ambient conditions. The outlet of the primary pump leads to an open split which is sampled by a second low flow pump which delivers air at 100ml/minute to a Licor 820 CO2 analyser. The software selects the port to be sampled, flushes the line for 2 minutes and CO2 analysed as a set of 5 measurements averaged over 10 second intervals. The system then switches to the next port and when complete shuts down to conserve power after using 20 watts over a 30 minute period of analysis. In the absence of local mains power (eg from the show cave lighting system) two 12v car batteries will power the system

  15. Application of tunable infrared lasers for diagnosis of diseases by analysis of expired lung air

    NASA Astrophysics Data System (ADS)

    Chugunov, A. V.; Novoderezhkin, Vladimir I.; Panchenko, Vladislav Y.; Solomatin, Vladimir S.; Krasnikov, Victor V.; Razumikhina, T. B.

    1994-06-01

    The using of laser spectroscopy methods are proposed for diagnosis of diabetes through the measurements of acetone concentration in respiratory air. Detection of acetone concentration was performed with laser spectrometer operating in the 3 microns spectral range. Minimal detectable concentrations were found. Acetone components in expired lung air of diabetics (for adult as well as juvenile patients) are detectable by absorption spectra measurements in single pass 1m-length cell. Digital smoothing and other methods were used to improve signal to noise ratio.

  16. Improved method for calibrating the visible and near-infrared channels of the National Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer.

    PubMed

    Che, N; Price, J C

    1993-12-20

    Two procedures are used to establish calibration of the visible and near-infrared channels of the National Oceanic and Atmospheric Administration-11 (NOAA-II) Advanced Very High Resolution Radiometer (AVHRR). The first procedure for visible spectra, uses satellite data, ground measurements of atmospheric conditions during satellite overpass, and historical surface reflectance values at White Sands Missile Range (WSMR) in New Mexico. The second procedure, for the near-infrared, uses knowledge of the reflective properties at the WSMR and of a low-reflectance area, as determined from the first method, that yields satellite-gain values without a requirement for ground measurements of atmospheric conditions. The accuracy of gain values is estimated at ±7% for the two methods. The WSMR combines accessibility, a wide range of surface reflectances, and generally good observing conditions, making it a desirable location for satellite calibration.

  17. Open-air, broad-bandwidth trace gas sensing with a mid-infrared optical frequency comb

    NASA Astrophysics Data System (ADS)

    Nugent-Glandorf, Lora; Giorgetta, Fabrizio R.; Diddams, Scott A.

    2015-05-01

    A mid-infrared frequency comb is produced via an optical parametric oscillator pumped by an amplified 100 MHz Yb:fiber mode-locked laser. We use this source to make measurements of the concentration of the atmospherically relevant species of CH4 and H2O over a bandwidth of 100 nm centered at 3.25 μm. Multiple absorption lines for each species are detected with millisecond acquisition time using a virtual-image phased array spectrometer. The measured wavelength-dependent absorption profile is compared to and fitted by a model, yielding quantitative values of the atmospheric concentration of both CH4 and H2O in a controlled indoor environment, as well as over a 26-m open-air outdoor path.

  18. Drying and decontamination of pistachios with sequential infrared drying, tempering and hot air drying

    USDA-ARS?s Scientific Manuscript database

    The pistachio industry is in need of improved drying technology as the current hot air drying has low energy efficiency and drying rate and high labor cost and also does not produce safe products against microbial contamination. In the current study, dehulled and water- sorted pistachios with a mois...

  19. The Atmospheric Infrared Sounder (AIRS) on Aqua: instrument stability and data products for climate observations

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, M.; Aumann, H.; Strow, L.; Broberg, S.; Gaiser, S.

    2003-01-01

    30th International Symposium on Remote Sensing of the Environment (ISRSE) NASA Honolulu, Hawaii, USAThis paper discusses the stability of the AIRS instrument as measured pre-flight and in-orbit. In order differentiate instrument related changes with true changes in climate observations, the instrument stability must be demonstrated.

  20. Particle size and compositional retrievals of the Chaiten volcanic ash from spaceborne, high spectral resolution infrared AIRS and IASI measurements

    NASA Astrophysics Data System (ADS)

    Prata, F.; Gangale, G.; Clarisse, L.

    2008-12-01

    The eruption of Chaiten volcano in early May 2008 produced copious amounts of ash and little SO2 gas. The ash clouds could be detected very well by several satellite instruments, but was unusual in that true- colour daytime MODIS satellite imagery showed the ash to be quite light in colour and difficult to distinguish from ordinary meteorological clouds. High spectral resolution infrared spectrometer and interferometer measurements from AIRS and IASI were analysed to investigate the spectral signature of the Chaiten ash clouds and compare these with ash clouds from other volcanoes, which generally appear much darker in visible imagery. It was found that the Chaiten ash had a distinctive spectral signature between 800 to 1200 wavenumbers and that this correlated very well with the signature expected from rhyolitic ash. A radiative transfer code and an ash microphysical model were used to retrieve the mean particle size of fine ash in the Chaiten clouds and best fits were found for rhyolitic particles with small (less than 2 micron) radii. These results suggest that infrared spectra may be used to retrieve both compositional and particle size information in ash clouds. Based on the spectral signatures found for these ash clouds, a new ash detection algorithm was designed and found to have improved sensitivity to thin (low opacity) ash clouds and low sensitivity to surface effects. The new algorithm offers the possibility of tracking ash clouds for longer periods of time and over greater distances. Results from both the AIRS and IASI measurements are presented for the May ash clouds from Chaitén volcano and compared with the signatures of ash clouds from andesitic volcanic clouds and quartz dominated windblown dust.

  1. Air core Bragg fibers for delivery of near-infrared laser radiation

    NASA Astrophysics Data System (ADS)

    Jelínek, Michal; Frank, Milan; Kubeček, Václav; Matějec, Vlastimil; Kašík, Ivan; Podrazký, Ondřej

    2014-12-01

    Optical fibers designed for high power laser radiation delivery represent important tools in medicine, solar systems, or industry. For such purposes several different types of glass optical fibers such as silica, sapphire, or chalcogenide ones as well as hollow-glass fibers, photonic crystal fibers and Bragg fibers have been investigated. Air-core Bragg fibers or photonic crystal fibers offer us the possibility of light transmission in a low dispersive material - air having a high damage threshold and small non-linear coefficient. However, preforms for drawing Bragg fibers can be fabricated by MCVD method similarly as preforms of standard silica fibers. In this paper we present fundamental characteristics of laboratory-designed and fabricated Bragg fibers with air cores intended for delivery of laser radiation at a wavelength range from 0.9 to 1.5 μm. Bragg fibers with different air core diameters of 5, 45 and 73 mm were prepared. The fiber core was surrounded by three pairs of circular Bragg layers. Each pair was composed of one layer with a high and one layer with a low refractive index with a contrast up to 0.03. Several laser sources emitting at 0.975, 1.06, and 1.55 μm were used as radiation sources. Attenuation coefficients, overall transmissions, bending losses, and spatial profiles of output beams from fibers were determined at these wavelengths. The lowest attenuation coefficient of 70 dB/km was determined for the 45 μm and 73 mm air-core fiber when radiation from a laser was launched into the fibers by using optical lenses. However, multimodal transmission has been observed in such condition. It has also been found that bending losses of such fibers are negligible for bending diameters higher than 15 mm.

  2. Calibration of the visible and near-infrared channels of the LANDSAT-5 Thematic Mapper using high-altitude aircraft measurements

    NASA Technical Reports Server (NTRS)

    Smith, G. R.; Levin, R. H.; Knoll, J. S.; Koyanagi, R. S.; Wrigley, R. C.

    1990-01-01

    Visible near-infrared sensors mounted on operational satellites now in use do not have on-board full aperture absolute calibration devices. One means of establishing an in-orbit calibration for a satellite sensor is to make simultaneous measurements of a bright, uniform scene along the satellite view vector from a calibrated instrument on board a high altitude aircraft. In the work reported here, aircraft data were recorded over White Sands, New Mexico at satellite overpass time for the LANDSAT-5 Thematic Mapper (TM). A comparison of the coincident aircraft and orbiting satellite data showed the radiometric gain for TM channel 1 had degraded 4.7 percent by August 28, 1985; gains for TM channels 2 and 3 were within 1 percent of prelaunch values.

  3. The Atmospheric Infrared Sounder (AIRS) on the NASA Aqua Spacecraft: A General Remote Sensing Tool for Understanding Atmospheric Structure, Dynamics and Composition

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Fetzer, Eric J.

    2010-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. Early in the mission, the AIRS instrument demonstrated its value to the weather forecasting community with better than 6 hours of improvement on the 5 day forecast. Now with over eight years of consistent and stable data from AIRS, scientists are able to examine processes governing weather and climate and look at seasonal and interannual trends from the AIRSdata with high statistical confidence. Naturally, long-term climate trends require a longer data set, but indications are that the Aqua spacecraft and the AIRS instrument should last beyond 2018. This paper briefly describes the AIRS data products and presents some of the most significant findings involving the use of AIRS data in the areas of weather forecast improvement, climate processes and model validation, cloud and polar processes, and atmospheric composition (chemistry and dust).

  4. A multi-aperture spectrometer design for the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Robert; Hatch, Marcus

    1990-01-01

    The baseline multiaperture echelle spectrometer for the Atmospheric IR Sounder (AIRS) is described in terms of design and applications. The functional requirements for the optical design are set forth including the 1-K measurement goal, the 3.4-15.4 spectral bandpass, and the full global coverage twice daily. The multiaperture spectrometer is compared to the cross-dispersed spectrometer, and the multiaperture model is found to permit specific adjustments to the signal-to-noise ratio. The optical design of the spectrometer is described in terms of the focal-plane constraints, the multiaperture pupil-imaging relay, the spectrometer collimator, and the grating format and efficiency. The multiaperture design is found to have a good spectral-response function, and a 1.2 percent signal change is noted for a 95-percent unpolarized scene. The AIRS instrument is illustrated in its deployment configuration and is concluded to be capable of fulfilling the performance requirements.

  5. Transient simulation of the combustion of fuel-lean hydrogen/air mixtures in platinum-coated channels

    NASA Astrophysics Data System (ADS)

    Michelon, Nicola; Mantzaras, John; Canu, Paolo

    2015-07-01

    The start-up of platinum-coated, hydrogen-fuelled planar channels with heights of 1 mm is investigated numerically using 2-D transient simulations with detailed hetero-/homogeneous chemistry, heat conduction in the solid wall and surface radiation heat transfer. Simulations encompass pressures of 1 and 5 bar and fuel-lean H2/air equivalence ratios of 0.10 to 0.28. Catalytic ignition is inhibited by rising pressure and increasing hydrogen concentration. However, at temperatures above the catalytic ignition temperature Tign, the dependencies of the heterogeneous reactivity reverse, showing a positive order ∼1.5 with respect to hydrogen concentration and an overall positive pressure order of ∼0.97. Despite the longer catalytic ignition times for the larger equivalence ratios, the times required to reach steady state are shorter at larger stoichiometries due to their enhanced catalytic reactivity at T > Tign and the resulting higher exothermicity. Following catalytic ignition, the wall temperatures eventually attain superadiabatic values due to the diffusional imbalance of hydrogen. Homogeneous chemistry considerably moderates the superadiabatic surface temperatures at 5 bar, as the gaseous combustion zone extends parallel to the channel wall and thus shields the catalyst surface from the hydrogen-rich channel core. Furthermore, gas-phase chemistry reduces the steady-state times and substantially increases the hydrogen conversion.

  6. Evaluation of the Fourier transform infrared (FTIR) spectrophotometer for analysis of trichloroethylene (TCE) in the presence of freon-113 in carbon disulfide eluates of charcoal air sampling tubes

    SciTech Connect

    Xiao, H.K.; Levine, S.P.; Kinnes, G.; Almaguer, D. )

    1990-07-01

    Results obtained using Fourier transform infrared spectrophotometry (FTIR) for the analysis of samples of carbon disulfide (CS2) eluates containing trichloroethylene (TCE) and freon from charcoal air sampling tubes were evaluated by comparison with results obtained when using gas chromatography (GC). The FTIR yielded accurate results without regard to the presence of freon.

  7. Evaluation of the Fourier transform infrared (FTIR) spectrophotometer for analysis of trichloroethylene (TCE) in the presence of Freon-113 in carbon disulfide eluates of charcoal air sampling tubes.

    PubMed

    Xiao, H K; Levine, S P; Kinnes, G; Almaguer, D

    1990-07-01

    Results obtained using Fourier transform infrared spectrophotometry (FTIR) for the analysis of samples of carbon disulfide (CS2) eluates containing trichloroethylene (TCE) and Freon from charcoal air sampling tubes were evaluated by comparison with results obtained when using gas chromatography (GC). The FTIR yielded accurate results without regard to the presence of Freon.

  8. In-situ measurements of volatile toxic organics in indoor air using long-path Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Green, Martina; Seiber, James N.; Biermann, Heinz W.

    1993-03-01

    A Fourier transform infrared (FTIR) spectrometer interfaced to a 2.5 m base path, open multi- pass cell was used to monitor indoor air in post-fumigation dwellings. The residual chemicals studied were the fumigant, methyl bromide and its odor additive, chloropicrin (Cl3CNO2). Indoor measurements with a time resolution of 15 minutes were performed for two houses of different age. Our results indicate that the newer dwelling, which contained insulation materials, appeared to retain substantial amounts of the fumigant. The highest concentration measured for methyl bromide was 24 ppm, close to five times the allowed TLV (Threshold Limit Value) of 5 ppm. For chloropicrin, we also observed a surprising level of close to 0.4 ppm, four times the TLV of 0.1 ppm. It was noted that the concentrations were very susceptible to any air movement such as that due to door opening. Analyses utilizing the conventional adsorption-desorption/GC technique were performed simultaneously by the Worker Health and Safety Branch of the California EPA. Although the vast difference in time resolution of the two methods precludes direct comparison of the data, averaging our measurements over the same integration time indicated that the FTIR methods gives significantly higher values than those obtained by the conventional method, especially when the pollutant concentrations are low.

  9. Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation.

    PubMed

    Phan, Phong; Highton, David; Lai, Jonathan; Smith, Martin; Elwell, Clare; Tachtsidis, Ilias

    2016-11-01

    We present a multi-channel, multi-distance broadband near-infrared spectroscopy (NIRS) system with the capability of measuring changes in haemoglobin concentrations (Δ[HbO2], Δ[HHb]), oxidation state of cytochrome-c-oxidase (Δ[oxCCO]) and tissue oxygen saturation (TOI) in the adult human brain. The main components of the instrument are two customized spectrographs and two light sources. Each spectrograph is lens-based to improve light throughput, has a grating enhanced to optimise reflection in the near-infrared (NIR) spectral region and uses a front illuminated cooled CCD camera (-70° C) with a square chip dimension of 12.3 x 12.3 mm (512 x 512 pixels). Each light source uses a 50W halogen bulb with a gold plated mirror to increase the intensity of the NIR light. Each light source was connected to a custom-built bifurcated fibre bundle to create two source fibre bundles (3.2 mm diameter each). Each spectrograph received light input from another custom-built fibre bundle comprised of six individual bundles (one with 0.6 mm diameter and the other five with 1.5 mm diameter). All fibre bundles were fixed on a 3D printed optode holder (two light sources x two fibre bundles each = four probes; and two spectrographs x six fibre bundles each = 12 probes) that allowed 24 multi-distance channels across the forehead (six channels at 20 mm, three channels at 30 mm and 15 channels at 35 mm) and six TOI measurements. We demonstrated the use of the system in a cohort of nine healthy adult volunteers during prefrontal cortex functional activation using the Stroop task. We have observed functional responses identified as significant increase in Δ[HbO2], decrease in Δ[HHb] and increase in Δ[oxCCO] in five channels (out of 12), that overlay the left and right dorsolateral prefrontal cortices. There was no observable TOI functional response and we have shown small variations in TOI across different sites within the same subject and within the same site across subjects.

  10. Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation

    PubMed Central

    Phan, Phong; Highton, David; Lai, Jonathan; Smith, Martin; Elwell, Clare; Tachtsidis, Ilias

    2016-01-01

    We present a multi-channel, multi-distance broadband near-infrared spectroscopy (NIRS) system with the capability of measuring changes in haemoglobin concentrations (Δ[HbO2], Δ[HHb]), oxidation state of cytochrome-c-oxidase (Δ[oxCCO]) and tissue oxygen saturation (TOI) in the adult human brain. The main components of the instrument are two customized spectrographs and two light sources. Each spectrograph is lens-based to improve light throughput, has a grating enhanced to optimise reflection in the near-infrared (NIR) spectral region and uses a front illuminated cooled CCD camera (−70° C) with a square chip dimension of 12.3 x 12.3 mm (512 x 512 pixels). Each light source uses a 50W halogen bulb with a gold plated mirror to increase the intensity of the NIR light. Each light source was connected to a custom-built bifurcated fibre bundle to create two source fibre bundles (3.2 mm diameter each). Each spectrograph received light input from another custom-built fibre bundle comprised of six individual bundles (one with 0.6 mm diameter and the other five with 1.5 mm diameter). All fibre bundles were fixed on a 3D printed optode holder (two light sources x two fibre bundles each = four probes; and two spectrographs x six fibre bundles each = 12 probes) that allowed 24 multi-distance channels across the forehead (six channels at 20 mm, three channels at 30 mm and 15 channels at 35 mm) and six TOI measurements. We demonstrated the use of the system in a cohort of nine healthy adult volunteers during prefrontal cortex functional activation using the Stroop task. We have observed functional responses identified as significant increase in Δ[HbO2], decrease in Δ[HHb] and increase in Δ[oxCCO] in five channels (out of 12), that overlay the left and right dorsolateral prefrontal cortices. There was no observable TOI functional response and we have shown small variations in TOI across different sites within the same subject and within the same site across subjects. PMID

  11. Association of autism tendency and hemodynamic changes in the prefrontal cortex during facial expression stimuli measured by multi-channel near-infrared spectroscopy.

    PubMed

    Hosokawa, Mai; Nakadoi, Yoshihiro; Watanabe, Yukina; Sumitani, Satsuki; Ohmori, Tetsuro

    2015-03-01

    The aim of this study is to examine the hemodynamic changes induced by the cognitive process of facial expression by using multi-channel near-infrared spectroscopy in healthy subjects with varying degrees of autism tendency. Subjects were 38 volunteers, 20 men and 18 women. Autism tendency was measured by the Autism Spectrum Quotient. The hemodynamic changes in the prefrontal cortex were measured by 24-channel near-infrared spectroscopy system, while subjects were asked to judge their own emotional response to standardized pictures of eight kinds of facial expressions on a computer screen. There were significant negative correlations between Autism Spectrum Quotient scores and accuracy of fearful expression recognition as well as increases in the concentration of oxygenated hemoglobin in response to four kinds of emotional faces (fear, contempt, sadness and disgust). Our findings suggest that the greater tendency to autism that subjects have, the more difficulty they have in recognizing a fearful expression and the less hemodynamic change in the prefrontal cortex they show in response to negative facial expressions. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  12. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaodan; Yang, Yibiao; Chen, Zhihui; Wang, Yuncai; Fei, Hongming; Deng, Xiao

    2017-02-01

    By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic LiF/GaSb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range. Project supported by the National Natural Science Foundation of China (Nos. 61575138, 61307069, 51205273), and the Top Young Academic Leaders and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

  13. Air-Photograph Based Estimates of Channel Widening within the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Echterling, C.; Conway, J.; Graves, J.; Lauer, J. W.

    2010-12-01

    The Minnesota River is a major tributary of the Mississippi River that has experienced a roughly two-fold increase in mean April-November discharge over the past century. Because the Minnesota River supplies the majority of sediment to the Mississippi at the confluence, sediment sources within the basin, and in particular within the Le Sueur River sub-basin, have recently been the subject of several detailed sediment budget studies. One of the potential sediment sources is associated with channel widening. In the present study, we focus on channel widening as a potential source of sediment in the Minnesota, Little Cobb, Maple, Blue Earth, Le Sueur, Redwood, Cottonwood, and Watonwan Rivers, Minnesota. Using aerial photographs, changes in channel bankfull width were measured over the period from 1937 to 2009. Historic photographs were georeferenced to recent high-resolution imagery using a minimum of ten ground control points and a second order polynomial transformation in ArcGIS 9.3. Water surface width and the width between vegetation lines (which we take to be equivalent to the bankfull width) were determined by hand for representative reaches of a minimum of ten meander bends along each river. We chose to digitize by hand to avoid computer misclassification associated with the highly variable color spectra in the historic photographs and because this allowed us to visually interpolate the bank line where scattered overhanging vegetation partially obscured the banks. In general, bankfull width has increased steadily by between 20 and 50 percent over the period of photographic record. However, because our basic method focuses only on the vegetation line, it is possible in principle that the observed changes in width are primarily related to ecological change (i.e. to a change in the elevation at which vegetation colonizes the banks) and not directly to an increase in channel volume (and hence to a net export of sediment from these reaches). To determine whether the

  14. Water complexes of important air pollutants: geometries, complexation energies, concentrations, infrared spectra, and intrinsic reactivity.

    PubMed

    Galano, Annia; Narciso-Lopez, Marcela; Francisco-Marquez, Misaela

    2010-05-13

    Water complexes involving methanol, ethanol, formaldehyde, formic acid, acetone, ammonia, acetylene, ethylene, chloroethene, trichloroethene, 1,1,1-trichloroethane, hydroxyl radical, and hydroperoxyl radical have been studied. Enthalpies, entropies, and Gibbs free energies of association have been estimated, as well as the concentrations of the complexes under lower-troposphere conditions. The influence of the relative air humidity on the complexation processes has been analyzed. The association processes yielding water complexes of methanol, ethanol, formic acid, ammonia, acetone, hydroxyl radical, and hydroperoxyl radical were found to be more exothermic than that of the water dimer. General trends for the reactivity of the studied water complexes, compared to those of the corresponding free species, are proposed based on global reactivity indexes. The previously reported increased reactivity of the (*)OOH self-reaction, when there is water present, has been explained. The IR spectra of the complexes have been analyzed and compared with those of the free species.

  15. A fusion algorithm for infrared and visible images based on adaptive dual-channel unit-linking PCNN in NSCT domain

    NASA Astrophysics Data System (ADS)

    Xiang, Tianzhu; Yan, Li; Gao, Rongrong

    2015-03-01

    In this paper, a novel fusion algorithm based on the adaptive dual-channel unit-linking pulse coupled neural network (PCNN) for infrared and visible images fusion in nonsubsampled contourlet transform (NSCT) domain is proposed. The flexible multi-resolution and directional expansion for images of NSCT are associated with global coupling and pulse synchronization characteristic of dual-PCNN. Compared with other dual-PCNN models, the proposed model possesses fewer parameters and is not difficult to implement adaptive, which is more suitable for image fusion. Firstly, the source images were multi-scale and multi-directional decomposed by NSCT. Then, to make dual-channel PCNN adaptive, the average gradient of each pixel was presented as the linking strength, and the time matrix was presented to determine the iteration number adaptively. In this fusion scheme, a novel sum modified-Laplacian of low-frequency subband and a modified spatial frequency of high-frequency subband were input to motivate the adaptive dual-channel unit-linking PCNN, respectively. Experimental results demonstrate that the proposed algorithm can significantly improve image fusion performance, accomplish notable target information and high contrast, simultaneously preserve rich details information, and excel other typical current methods in both objective evaluation criteria and visual effect.

  16. A multi-channel, low velocity, hot film anemometry system for measuring air flows in buildings

    SciTech Connect

    Guire, J.L.

    1987-01-01

    A complete analytical and experimental development of a multichannel anemometry system is presented. The system consists of an array of low velocity sensors (0.0 m/s to 1.0 m/s), a constant current power supply, and the required data acquisition equipment. The velocity sensors can be scanned simultaneously yielding absolute air velocities and absolute ambient air temperatures at each of the probe positions in the array. One of the key results that this system can produce is the relationship between boundary layer flow and pressure driven flow through a large irregular aperture, such as a doorway, which up until now has been difficult to accomplish with regard to cost and experimental error incurred. 7 refs., 57 figs.

  17. Dynamics of the microstructure of current channels and the generation of high-energy electrons in nanosecond discharges in air

    SciTech Connect

    Karelin, V. I.; Trenkin, A. A. Fedoseev, I. G.

    2015-12-15

    The results of the three-dimensional numerical simulation of the dynamics of the microstructure of high-voltage nanosecond discharges in air at atmospheric pressure are presented. It is established that the fast (at a time of ≈10 ns) broadening and significant decrease in the gas concentration in the microchannels occur as a result of the ohmic heating of microchannels with the diameter of 1–30 μm. It was shown that the broadening of microchannels in a nanosecond diffusive discharge provides an increase in the ratio of the electric field strength to the gas concentration in microchannels to values sufficient for the generation highenergy electron beams and X-ray bremsstrahlung in them. Features of the dynamics of the system of microchannels and its effect on the efficiency of the generation of high-energy electrons in discharges developing in the microstructuring regime of the current channels are considered.

  18. Ion-channel aligned gas-blocking membrane for lithium-air batteries.

    PubMed

    Choi, Wonsung; Kim, Mokwon; Park, Jung Ock; Kim, Joon-Hee; Choi, Kyunghwan; Kim, Yong Su; Kim, Tae Young; Ogata, Ken; Im, Dongmin; Doo, Seok-Gwang; Hwang, Yunil

    2017-09-20

    Lithium-metal-based batteries, owing to the extremely high specific energy, have been attracting intense interests as post-Li-ion batteries. However, their main drawback is that consumption/de-activation of lithium metal can be accelerated when O2 or S used in the cathode crosses over to the metal, reducing the lifetime of the batteries. In use of ceramic solid state electrolyte (SSE) separator, despite the capability of gas blocking, thick and heavy plates (~0.3 mm) are necessitated to compensate its mechanical fragility, which ruin the high specific energy of the batteries. Here, we demonstrate fabrication of a new membrane made of micron-sized SSE particles as Li-ion channels embedded in polymer matrix, which enable both high Li-ion conduction and gas-impermeability. Bimodal surface-modification was used to control the energy of the particle/polymer interface, which consequently allowed channel formation via a simple one-step solution process. The practical cell with the new membrane provides a cell-specific energy of over 500 Wh kg(-1), which is the highest values ever reported.

  19. Heat transfer and fluid dynamics of air-water two-phase flow in micro-channels

    SciTech Connect

    Kaji, Masuo; Sawai, Toru; Kagi, Yosuke; Ueda, Tadanobu

    2010-05-15

    Heat transfer, pressure drop, and void fraction were simultaneously measured for upward heated air-water non-boiling two-phase flow in 0.51 mm ID tube to investigate thermo-hydro dynamic characteristics of two-phase flow in micro-channels. At low liquid superficial velocity j{sub l} frictional pressure drop agreed with Mishima-Hibiki's correlation, whereas agreed with Chisholm-Laird's correlation at relatively high j{sub l}. Void fraction was lower than the homogeneous model and conventional empirical correlations. To interpret the decrease of void fraction with decrease of tube diameter, a relation among the void fraction, pressure gradient and tube diameter was derived. Heat transfer coefficient fairly agreed with the data for 1.03 and 2.01 mm ID tubes when j{sub l} was relatively high. But it became lower than that for larger diameter tubes when j{sub l} was low. Analogy between heat transfer and frictional pressure drop was proved to hold roughly for the two-phase flow in micro-channel. But satisfactory relation was not obtained under the condition of low liquid superficial velocity. (author)

  20. Air Force electronic warfare evaluation simulator (AFEWES) infrared test and evaluation capabilities

    NASA Astrophysics Data System (ADS)

    Shepherd, Seth D.

    2002-07-01

    The Air Force Electronic Warfare Evaluation Simulator IR Countermeasures test facility currently has the ability to simulate a complete IRCM test environment, including IR missiles in flight, aircraft in flight, and various IR countermeasures including maneuvers, LASERs, flares and lamp-based jammer systems. The simulations of IR missiles in flight include real missile seeker hardware mounted in a six degree-of-freedom flight simulation table. The simulations of aircraft signatures and IR countermeasures are accomplished by using up to eight xenon arc lamps, located in 9 inch X 3 inch cylindrical housings, in the presentation foreground. A mirror system keeps the high intensity IR sources in the missile field of view. Range closure is simulated in the background by zooming in on the scene and int eh foreground by separating and controlling the irises of the arc lamp sources for property spatial and intensity characteristics. Al relative motion and range closure is controlled by missile flyout software and aircraft flight-profile software models.

  1. Low-Timing-Jitter Near-Infrared Single-Photon-Sensitive 16-Channel Intensified-Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Lu, Wei; Yang, Guangning; Sun, Xiaoli; Sykora, Derek; Jurkovic, Mike; Aebi, Verle; Costello, Ken; Burns, Richard

    2011-01-01

    We developed a 16-channel InGaAsP photocathode intensified-photodiode (IPD) detector with 78 ps (1-sigma) timing-jitter, less than 500 ps FWHM impulse response, greater than 15% quantum efficiency at 1064 nm wavelength with 131 kcps dark counts at 15 C.

  2. EVALUATION OF A PORTABLE FOURIER TRANSFORM INFRARED GAS ANALYZER FOR MEASUREMENTS OF AIR TOXICS IN POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    A portable Fourier transform infrared gas analyzer with a photoacoustic detector performed reliably during pollution prevention research at two industrial facilities. It exhibited good agreement (within approximately 6%) with other analytical instruments (dispersive infrared and ...

  3. EVALUATION OF A PORTABLE FOURIER TRANSFORM INFRARED GAS ANALYZER FOR MEASUREMENTS OF AIR TOXICS IN POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    A portable Fourier transform infrared gas analyzer with a photoacoustic detector performed reliably during pollution prevention research at two industrial facilities. It exhibited good agreement (within approximately 6%) with other analytical instruments (dispersive infrared and ...

  4. Investigation of the temperature field in a turbulent air flow in the channels with structured packing

    NASA Astrophysics Data System (ADS)

    Perepelitsa, B. V.

    2007-12-01

    Temperature distribution and intensity of temperature pulsations in the airflow in a complex heat exchanger of “Frenkel packing” type were studied experimentally. Measurements were carried out at the airflow between two corrugated plates with triangular embossing, directed at 90° relative to each other. The temperature in the flow was measured by a special thermocouple probe. The hot junction of the thermocouple did not exceed 10 μm. The effect of contact points and Reynolds number on static characteristics of temperature in a turbulent airflow is analysed. The main attention is paid to temperature distribution in an elementary cell. According to the studies, there is a considerable difference between temperature distributions in the flow at the back and front sides of the channel.

  5. Indium phosphide all air-gap Fabry-Pérot filters for near-infrared spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Ullah, A.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2016-08-01

    Food quality can be characterized by noninvasive techniques such as spectroscopy in the Near Infrared wavelength range. For example, 930 -1450 nm wavelength range can be used to detect diseases and differentiate between meat samples. Miniaturization of such NIR spectrometers is useful for quick and mobile characterization of food samples. Spectrometers can be miniaturized, without compromising the spectral resolution, using Fabry-Pérot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. The most commonly used mirrors in the design of FP filters are Distributed Bragg Reflections (DBRs) consisting of alternating high and low refractive index material pairs, due to their high reflectivity compared to metal mirrors. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer detector. Therefore, a bandpass filter is usually required to restrict wavelengths outside the stopband of the FP DBRs. Such bandpass filters are difficult to design and implement. Alternatively, high index contrast materials must be can be used to broaden the stopband width of the FP DBRs. In this work, Indium phosphide all air-gap filters are proposed in conjunction with InGaAs based detectors. The designed filter has a wide stopband covering the entire InGaAs detector sensitivity range. The filter can be tuned in the 950-1450 nm with single mode operation. The designed filter can hence be used for noninvasive meat quality control.

  6. Countermeasure effectiveness against a man-portable air-defense system containing a two-color spinscan infrared seeker

    NASA Astrophysics Data System (ADS)

    Jackman, James; Richardson, Mark; Butters, Brian; Walmsley, Roy

    2011-12-01

    Man-portable air-defense (MANPAD) systems have developed sophisticated counter-countermeasures (CCM) to try and defeat any expendable countermeasure that is deployed by an aircraft. One of these is a seeker that is able to detect in two different parts of the electromagnetic spectrum. Termed two-color, the seeker can compare the emissions from the target and a countermeasure in different wavebands and reject the countermeasure. In this paper we describe the modeling process of a two-color infrared seeker using COUNTERSIM, a missile engagement and countermeasure software simulation tool. First, the simulations model a MANPAD with a two-color CCM which is fired against a fast jet model and a transport aircraft model releasing reactive countermeasures. This is then compared to when the aircraft releases countermeasures throughout an engagement up to the hit point to investigate the optimum flare firing time. The results show that the release time of expendable decoys as a countermeasure against a MANPAD with a two-color CCM is critical.

  7. Low-latitude variability of ice cloud properties and cloud thermodynamic phase observed by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Yue, Q.; Davis, S. M.; Fetzer, E. J.; Schreier, M. M.; Tian, B.; Wong, S.

    2016-12-01

    We will quantify the time and space dependence of ice cloud effective radius (CER), optical thickness (COT), cloud top temperature (CTT), effective cloud fraction (ECF), and cloud thermodynamic phase (ice, liquid, or unknown) with the Version 6 Atmospheric Infrared Sounder (AIRS) satellite observational data set from September 2002 until present. We show that cloud frequency, CTT, COT, and ECF have substantially different responses to ENSO variations. Large-scale changes in ice CER are also observed with a several micron tropics-wide increase during the 2015-2016 El Niño and similar decreases during the La Niña phase. We show that the ice CER variations reflect fundamental changes in the spatial distributions and relative frequencies of different ice cloud types. Lastly, the high spatial and temporal resolution variability of the cloud fields are explored and we show that these data capture a multitude of convectively coupled tropical waves such as Kelvin, westward and eastward intertio-gravity, equatorial Rossby, and mixed Rossby-gravity waves.

  8. Modelling a man-portable air-defence (MANPAD) system with a conical scan two-colour infrared (IR) seeker

    NASA Astrophysics Data System (ADS)

    Jackman, James; Richardson, Mark; Butters, Brian; Walmsley, Roy

    2011-11-01

    The use of flares of flares against 1st and 2nd generation man-portable air-defence (MANPAD) systems proved to be very effective. This naturally led to the development of counter-countermeasures (CCM) that could be incorporated into the MANPADs infrared (IR) seeker. One possible CCM is two-colour where the seeker detects in two separate IR bands. It is designed to exploit the different spectral characteristics of the target and flare. In this paper we describe the modelling process of a two-colour conical scan (conscan) IR seeker using CounterSim, a missile engagement and countermeasure simulation software tool developed by Chemring Countermeasures Ltd. It starts by explaining the signal processing needed to be able to reject the flare and track the target. The MANPAD model is then used in an engagement with a fast jet model and a transport aircraft model. Flares are first deployed reactively then released throughout an engagement to investigate the effect of flare release time and the viability of pre-emptive countermeasures.

  9. Performance Characterization of a Prototype Ultra-Short Channel Monolith Catalytic Reactor for Air Quality Control Applications

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Roychoudhury, S.; Tatara, J. D.

    2005-01-01

    Contaminated air and process gases, whether in a crewed spacecraft cabin atmosphere, the working volume of a microgravity science or ground-based laboratory experiment facility, or the exhaust from an automobile, are pervasive problems that ultimately effect human health, performance, and well-being. The need for highly-effective, economical decontamination processes spans a wide range of terrestrial and space flight applications. Adsorption processes are used widely for process gas decontamination. Most industrial packed bed adsorption processes use activated carbon because it is cheap and highly effective. Once saturated, however, the adsorbent is a concentrated source of contaminants. Industrial applications either dump or regenerate the activated carbon. Regeneration may be accomplished in-situ or at an off-site location. In either case, concentrated contaminated waste streams must be handled appropriately to minimize environmental impact. As economic and regulatory forces drive toward minimizing waste and environmental impact, thermal catalytic oxidation is becoming more attractive. Through novel reactor and catalyst design, more complete contaminant destruction and greater resistance to poisoning can achieved leading to less waste handling, process down-time, and maintenance. Performance of a prototype thermal catalytic reactor, based on ultra-short channel monolith (USCM) catalyst substrate design, under a variety of process flow and contaminant loading conditions is discussed. The experimental results are evaluated against present and future air quality control and process gas purification processes used on board crewed spacecraft.

  10. Performance Characterization of a Prototype Ultra-Short Channel Monolith Catalytic Reactor for Air Quality Control Applications

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Roychoudhury, S.; Tatara, J. D.

    2005-01-01

    Contaminated air and process gases, whether in a crewed spacecraft cabin atmosphere, the working volume of a microgravity science or ground-based laboratory experiment facility, or the exhaust from an automobile, are pervasive problems that ultimately effect human health, performance, and well-being. The need for highly-effective, economical decontamination processes spans a wide range of terrestrial and space flight applications. Adsorption processes are used widely for process gas decontamination. Most industrial packed bed adsorption processes use activated carbon because it is cheap and highly effective. Once saturated, however, the adsorbent is a concentrated source of contaminants. Industrial applications either dump or regenerate the activated carbon. Regeneration may be accomplished in-situ or at an off-site location. In either case, concentrated contaminated waste streams must be handled appropriately to minimize environmental impact. As economic and regulatory forces drive toward minimizing waste and environmental impact, thermal catalytic oxidation is becoming more attractive. Through novel reactor and catalyst design, more complete contaminant destruction and greater resistance to poisoning can achieved leading to less waste handling, process down-time, and maintenance. Performance of a prototype thermal catalytic reactor, based on ultra-short channel monolith (USCM) catalyst substrate design, under a variety of process flow and contaminant loading conditions is discussed. The experimental results are evaluated against present and future air quality control and process gas purification processes used on board crewed spacecraft.

  11. Air-stable solution-processed n-channel organic thin film transistors with polymerenhanced morphology

    DOE PAGES

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; ...

    2015-05-04

    N,N0-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN2 film is much lower than the value of PDIF-CN2 single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PaMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN2 thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PaMS or PMMA polymers, the morphologymore » of the PDIF-CN2 polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm2/V s has been achieved from OTFTs based on the PDIF-CN2 film with the pre-deposition of PaMS polymer.« less

  12. Air-stable solution-processed n-channel organic thin film transistors with polymerenhanced morphology

    SciTech Connect

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Chen, Jihua; Li, Dawen

    2015-05-04

    N,N0-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN2 film is much lower than the value of PDIF-CN2 single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PaMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN2 thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PaMS or PMMA polymers, the morphology of the PDIF-CN2 polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm2/V s has been achieved from OTFTs based on the PDIF-CN2 film with the pre-deposition of PaMS polymer.

  13. Association between Fish Consumption and Prefrontal Function during a Cognitive Task in Male Japanese Workers: A Multi-Channel Near-Infrared Spectroscopy Study.

    PubMed

    Pu, Shenghong; Nakagome, Kazuyuki; Yamada, Takeshi; Matsumura, Hiroshi; Yokoyama, Katsutoshi; Kaneko, Koichi; Kurosawa, Yoichi

    2014-01-01

    The purpose of this study was to examine the relationship between fish consumption and prefrontal function during a cognitive task in male Japanese workers. The study included 208 male workers who underwent medical health examinations 3 months after a change in their work assignment. We measured the hemoglobin concentration changes in the prefrontal region during working memory tasks using 52-channel near-infrared spectroscopy. The frequency of fish consumption was calculated on the basis of the subjects' self-reported customary intake frequency over the previous 3 months. A significant positive relationship was observed between fish consumption and left dorsolateral prefrontal function during a working memory task. To our knowledge, this is the first study to report an association between fish consumption and functional cortical activity with an ample sample size, suggesting that fish consumption modulates functional activity in the left dorsolateral prefrontal cortex.

  14. Association between Fish Consumption and Prefrontal Function during a Cognitive Task in Male Japanese Workers: A Multi-Channel Near-Infrared Spectroscopy Study

    PubMed Central

    Pu, Shenghong; Nakagome, Kazuyuki; Yamada, Takeshi; Matsumura, Hiroshi; Yokoyama, Katsutoshi; Kaneko, Koichi; Kurosawa, Yoichi

    2015-01-01

    The purpose of this study was to examine the relationship between fish consumption and prefrontal function during a cognitive task in male Japanese workers. The study included 208 male workers who underwent medical health examinations 3 months after a change in their work assignment. We measured the hemoglobin concentration changes in the prefrontal region during working memory tasks using 52-channel near-infrared spectroscopy. The frequency of fish consumption was calculated on the basis of the subjects’ self-reported customary intake frequency over the previous 3 months. A significant positive relationship was observed between fish consumption and left dorsolateral prefrontal function during a working memory task. To our knowledge, this is the first study to report an association between fish consumption and functional cortical activity with an ample sample size, suggesting that fish consumption modulates functional activity in the left dorsolateral prefrontal cortex. PMID:25919586

  15. Association between subjective well-being and prefrontal function during a cognitive task in schizophrenia: a multi-channel near-infrared spectroscopy study.

    PubMed

    Pu, Shenghong; Nakagome, Kazuyuki; Yamada, Takeshi; Yokoyama, Katsutoshi; Itakura, Megumi; Satake, Takahiro; Ishida, Hisahito; Nagata, Izumi; Kaneko, Koichi

    2013-09-01

    The purpose of this study was to examine the relationship between subjective well-being and prefrontal function during a cognitive task in schizophrenia. Twenty-four patients with clinically stable schizophrenia participated in the study. We measured the change in hemoglobin concentration in the prefrontal region during a verbal fluency task (VFT) by using 52-channel near-infrared spectroscopy (NIRS). The subjective well-being of participants was assessed using the Subjective Well-being under Neuroleptic drug treatment Short form (SWNS). A significant positive relationship was observed between the SWNS score and frontopolar, left ventrolateral, and bilateral dorsolateral prefrontal function during the VFT. These results suggest that the frontopolar and left ventrolateral and bilateral dorsolateral prefrontal cortical regions are associated with the subjective well-being of clinically stable patients with schizophrenia and that NIRS may be an efficient medical tool for monitoring these characteristics.

  16. Infrared Stark and Zeeman spectroscopy of OH-CO: The entrance channel complex along the OH + CO → trans-HOCO reaction pathway

    NASA Astrophysics Data System (ADS)

    Brice, Joseph T.; Liang, Tao; Raston, Paul L.; McCoy, Anne B.; Douberly, Gary E.

    2016-09-01

    Sequential capture of OH and CO by superfluid helium droplets leads exclusively to the formation of the linear, entrance-channel complex, OH-CO. This species is characterized by infrared laser Stark and Zeeman spectroscopy via measurements of the fundamental OH stretching vibration. Experimental dipole moments are in disagreement with ab initio calculations at the equilibrium geometry, indicating large-amplitude motion on the ground state potential energy surface. Vibrational averaging along the hydroxyl bending coordinate recovers 80% of the observed deviation from the equilibrium dipole moment. Inhomogeneous line broadening in the zero-field spectrum is modeled with an effective Hamiltonian approach that aims to account for the anisotropic molecule-helium interaction potential that arises as the OH-CO complex is displaced from the center of the droplet.

  17. Optimizing parameters of GTU cycle and design values of air-gas channel in a gas turbine with cooled nozzle and rotor blades

    NASA Astrophysics Data System (ADS)

    Kler, A. M.; Zakharov, Yu. B.

    2012-09-01

    The authors have formulated the problem of joint optimization of pressure and temperature of combustion products before gas turbine, profiles of nozzle and rotor blades of gas turbine, and cooling air flow rates through nozzle and rotor blades. The article offers an original approach to optimization of profiles of gas turbine blades where the optimized profiles are presented as linear combinations of preliminarily formed basic profiles. The given examples relate to optimization of the gas turbine unit on the criterion of power efficiency at preliminary heat removal from air flows supplied for the air-gas channel cooling and without such removal.

  18. Application of infrared radiometers for airborne detection of clear air turbulence and low level wind shear, airborne infrared low level wind shear detection test

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.

    1985-01-01

    The feasibility of infrared optical techniques for the advance detection and avoidance of low level wind shear (LLWS) or low altitude wind shear hazardous to aircraft operations was investigated. A primary feasibility research effort was conducted with infrared detectors and instrumentation aboard the NASA Ames Research Center Learjet. The main field effort was flown on the NASA-Ames Dryden B57B aircraft. The original approach visualized a forward-looking, infrared transmitting (KRS-5) window through which signals would reach the detector. The present concept of a one inch diameter light pipe with a 45 deg angled mirror enables a much simpler installation virtually anywhere on the aircraft coupled with the possibility of horizontal scanning via rotation of the forward directed mirror. Present infrared detectors and filters would certainly permit ranging and horizontal scanning in a variety of methods. CRT display technology could provide a contoured picture with possible shear intensity levels from the infrared detection system on the weather radar or a small adjunct display. This procedure shoud be further developed and pilot evaluated in a light aircraft such as a Cessna 207 or equivalent.

  19. Cooling channels design analysis with chaotic laminar trajectory for closed cathode air-cooled PEM fuel cells using non-reacting numerical approach

    NASA Astrophysics Data System (ADS)

    N, W. Mohamed W. A.

    2015-09-01

    The thermal management of Polymer Electrolyte Membrane (PEM) fuel cells contributes directly to the overall power output of the system. For a closed cathode PEM fuel cell design, the use of air as a cooling agent is a non-conventional method due to the large heat load involved, but it offers a great advantage for minimizing the system size. Geometrical aspects of the cooling channels have been identified as the basic parameter for improved cooling performance. Numerical investigation using STAR-CCM computational fluid dynamics platform was applied for non-reacting cooling effectiveness study of various channel geometries for fuel cell application. The aspect ratio of channels and the flow trajectory are the parametric variations. A single cooling plate domain was selected with an applied heat flux of 2400 W/m2 while the cooling air are simulated at Reynolds number of 400 that corresponds to normal air flow velocities using standard 6W fans. Three channel designs of similar number of channels (20 channels) are presented here to analyze the effects of having chaotic laminar flow trajectory compared to the usual straight path trajectory. The total heat transfer between the cooling channel walls and coolant were translated into temperature distribution, maximum temperature gradient, average plate temperature and overall cooling effectiveness analyses. The numerical analysis shows that the chaotic flow promotes a 5% to 10% improvement in cooling effectiveness, depending on the single-axis or multi-axis flow paths applied. Plate temperature uniformity is also more realizable using the chaotic flow designs.

  20. The relationship between positive and negative automatic thought and activity in the prefrontal and temporal cortices: a multi-channel near-infrared spectroscopy (NIRS) study.

    PubMed

    Koseki, Shunsuke; Noda, Takamasa; Yokoyama, Satoshi; Kunisato, Yoshihiko; Ito, Daisuke; Suyama, Haruna; Matsuda, Taro; Sugimura, Yuji; Ishihara, Naoko; Shimizu, Yu; Nakazawa, Kanako; Yoshida, Sumiko; Arima, Kunimasa; Suzuki, Shin-ichi

    2013-10-01

    Recently, neurobiological studies of the cognitive model of depression have become vastly more important, and a growing number of such studies are being reported. However, the relationship between the proportion of positive and negative automatic thought and activity in the prefrontal and temporal cortices has not yet been explored. We examined the relationship between brain activity and the proportion of positive and negative automatic thought in patients with major depressive disorder (MDD), using multi-channel near-infrared spectroscopy (NIRS). We recruited 75 individuals with MDD (36 females; mean age=39.23 ± 12.49). They completed the Hamilton Rating Scale for Depression, Automatic Thoughts Questionnaire-Revised, Japanese version of the National Adult Reading Test, and the State-Trait Anxiety Inventory. Brain activation was measured by 52-channel NIRS. We found that activation in the vicinity of the right superior temporal gyrus is related to a deviation to negative of the proportion of positive and negative thoughts in individuals with MDD. Left dorsolateral prefrontal cortex activity was higher in the group with comparatively frequent positive thought. Our participants were patients taking antidepressant medication, which is known to influence brain activity. Second, the poor spatial resolution of NIRS increases the difficulty of identifying the measurement position. We found that activation of the prefrontal and temporal cortices is related to the proportion of automatic thoughts in the cognitive model of depression. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Qualification of a Multi-Channel Infrared Laser Absorption Spectrometer for Monitoring CO, HCl, HCN, HF, and CO2 Aboard Manned Spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Meyer, Marit E.; Kulis, Michael J.; Berger, Gordon M.

    2015-01-01

    Monitoring of specific combustion products can provide early-warning detection of accidental fires aboard manned spacecraft and also identify the source and severity of combustion events. Furthermore, quantitative in situ measurements are important for gauging levels of exposure to hazardous gases, particularly on long-duration missions where analysis of returned samples becomes impractical. Absorption spectroscopy using tunable laser sources in the 2 to 5 micrometer wavelength range enables accurate, unambiguous detection of CO, HCl, HCN, HF, and CO2, which are produced in varying amounts through the heating of electrical components and packaging materials commonly used aboard spacecraft. Here, we report on calibration and testing of a five-channel laser absorption spectrometer designed to accurately monitor ambient gas-phase concentrations of these five compounds, with low-level detection limits based on the Spacecraft Maximum Allowable Concentrations. The instrument employs a two-pass absorption cell with a total optical pathlength of 50 cm and a dedicated infrared semiconductor laser source for each target gas. We present results from testing the five-channel sensor in the presence of trace concentrations of the target compounds that were introduced using both gas sources and oxidative pyrolysis (non-flaming combustion) of solid material mixtures.

  2. Radiative parameters for multi-channel visible and near-infrared emission transitions of Sm3+ in heavy-metal-silicate glasses

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhai, Bin; Zhao, Xin; Wang, Zhiqiang; Lin, Hai

    2013-05-01

    Multi-channel visible and near-infrared (NIR) emission transitions originating from 4G5/2 emitting state of Sm3+ in cadmium-aluminum-silicate (CAS) glasses with maximum-phonon-energy of ˜980 cm-1 have been investigated. Based on the measured absorption spectrum, the Judd-Ofelt parameters Ωt (t=2, 4, 6) are derived to be 2.87×10-20, 3.34×10-20 and 1.86×10-20 cm2, respectively. From the evaluated Judd-Ofelt parameters, the radiative parameters such as spontaneous emission probabilities (Arad), branching ratios (β), and radiative lifetime (τrad) are obtained from the 4G5/2 excited level to different lower energy levels. The efficient visible and NIR transition emissions have been observed in the Sm3+ doped CAS glasses, and the maximum stimulated emission cross-sections (σe-max) corresponding to emission peaks are calculated and demonstrated to lay in the same order of magnitude. The quantum efficiency of 4G5/2 level of Sm3+ has been derived to be 60%. Investigations on multi-channel radiative transition emissions originated from 4G5/2 level of Sm3+ in CAS glasses expose its potential applications in tunable laser, medical light source and NIR optoelectronic devices.

  3. Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin E1.

    PubMed Central

    Rath, P; Bousché, O; Merrill, A R; Cramer, W A; Rothschild, K J

    1991-01-01

    The structure of the membrane bound state of the 178-residue thermolytic COOH-terminal channel forming peptide of colicin E1 was studied by polarized Fourier transform infrared (FTIR) spectroscopy. This fragment was reconstituted into DMPC liposomes at varying peptide/lipid ratios ranging from 1/25-1/500. The amide I band frequency of the protein indicated a dominant alpha-helical secondary structure with limited beta- and random structures. The amide I and II frequencies are at 1,656 and 1,546 cm-1, close to the frequency of the amide I and II bands of rhodopsin, bacteriorhodopsin and other alpha-helical proteins. Polarized FTIR of oriented membranes revealed that the alpha-helices have an average orientation less than the magic angle, 54.6 degrees, relative to the membrane normal. Almost all of the peptide groups in the membrane-bound channel protein undergo rapid hydrogen/deuterium (H/D) exchange. These results are contrasted to the alpha-helical membrane proteins, bacteriorhodopsin, and rhodopsin. PMID:1710937

  4. Organization of T-shaped facial amphiphiles at the air/water interface studied by infrared reflection absorption spectroscopy.

    PubMed

    Schwieger, Christian; Chen, Bin; Tschierske, Carsten; Kressler, Jörg; Blume, Alfred

    2012-10-11

    We studied the behavior of monolayers at the air/water interface of T-shaped facial amphiphiles which show liquid-crystalline mesophases in the bulk. The compounds are composed of a rigid p-terphenyl core (TP) with two terminal hydrophobic ether linked alkyl chains of equal length and one facial hydrophilic tri(ethylene oxide) chain with a carboxylic acid end group. Due to their amphiphilic nature they form stable Langmuir films at the air/water interface. Depending on the alkyl chain length they show markedly different compression isotherms. We used infrared reflection absorption spectroscopy (IRRAS) to study the changes in molecular organization of the TP films upon compression. We could retrieve information on layer thickness, alkyl chain crystallization, and the orientation of the TP cores within the films. Films of TPs with long (16 carbon atoms: TP 16/3) and short (10 carbon atoms: TP 10/3) alkyl chains were compared. Compression of TP 16/3 leads to crystallization of the terminal alkyl chains, whereas the alkyl chains of TP 10/3 stay fluid over the complete compression range. TP 10/3 shows an extended plateau in the compression isotherm which is due to a layering transition. The mechanism of this layering transition is discussed. Special attention was paid to the question of whether a so-called roll-over collapse occurs during compression. From the beginning to the end of the plateau, the layer thickness is increased from 15 to 38 Å and the orientation of the TP cores changes from parallel to the water surface to isotropic. We conclude that the plateau in the compression isotherm reflects the transition of a TP monolayer to a TP multilayer. The monolayer consists of a sublayer of well-organized TP cores underneath a sublayer of fluid alkyl chains whereas the multilayer consists of a well oriented bottom layer and a disordered top layer. Our findings do not support the model of a roll-over collapse. This study demonstrates how the IRRA band intensity of OH

  5. An Experimental Investigation of the Flow of Air in a Flat Broadening Channel

    NASA Technical Reports Server (NTRS)

    Vedernikoff, A. N.

    1944-01-01

    The wide use of diffusers, in various fields of technology, has resulted in several experimental projects to study the action and design of diffusers. Most of the projects dealt with steam (steam turbine nozzles). But diffusers have other applications - that is, ventilators, smoke ducts, air coolers, refrigeration, drying, and so forth. At present there is another application for diffusers in wind-tunnel design. Because of higher requirements and increased power of such installations more attention must be paid to the correctness of work and the decrease in losses due to every section of the tunnel. A diffuser, being one of the component parts of a tunnel , can in the event of faulty construction introduce considerable losses. Therefore, in the design of the new CAHI wind tunnel, it was suggested that an experimental study of diffusers be made, with a view to applying the results to wind tunnels. The experiments conducted by K. K. Baulin in the laboratories of CAHI upon models of diffusers of different cross sections, lengths, and angles of divergence, were a valuable source of experimental data. They were of no help, however, in reaching any conclusion regarding the optimum shape because of the complexity and diversity of the factors which all appeared simultaneously, thereby precluding the.study of the effects of any one factor separately. On the suggestion of the director of the CAHI,Prof. B. N. Ureff, it was decided to experiment on a two-dimensional diffuser model and determine the effect, of the angle of divergence. The author is acquainted with two experimental projects of like nature: the first was conducted with water, the other with air. The first of these works, although containing a wealth of experimental data, does not indicate the nature of flow or its relation to the angle of divergence. The second work is limited to four angles - that is, 12 deg, 24 deg, 45 deg, 90 deg. The study of this diffuser did not supply any information about the effect of

  6. Synthesis and infrared characterization of Br-HBr and Br-DBr entrance channel complexes in solid parahydrogen.

    PubMed

    Kettwich, Sharon C; Pinelo, Laura F; Anderson, David T

    2008-09-28

    We report high resolution vibrational spectra in the HBr (2560 cm(-1)) and DBr (1840 cm(-1)) stretching regions for Br-HBr and Br-DBr entrance channel complexes isolated in solid parahydrogen (pH2). The Br-HBr complexes are generated by synthesizing solid pH2 crystals doped with trace amounts of HBr/Br2 mixtures followed by 355 nm in situ photodissociation of Br2 to form Br atoms. After photolysis is complete, the solid is warmed from 2 to 4.3 K resulting in the irreversible formation of Br-HBr complexes. The large 36.63 cm(-1) HBr monomer-to-complex induced vibrational shift to lower energy measured in these studies is consistent with the linear Br-HBr hydrogen bonded structure predicted from theory. The 0.02 cm(-1) Br-HBr absorption linewidths indicate a 1 ns vibrational excited state lifetime for these entrance channel complexes in solid pH2.

  7. Dual-telescope multi-channel thermal-infrared radiometer for outer planet fly-by missions

    NASA Astrophysics Data System (ADS)

    Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane; Irwin, Patrick; Jennings, Donald E.; Kessler, Ernst; Lakew, Brook; Loeffler, Mark; Mellon, Michael; Nicoletti, Anthony; Nixon, Conor A.; Putzig, Nathaniel; Quilligan, Gerard; Rathbun, Julie; Segura, Marcia; Spencer, John; Spitale, Joseph; West, Garrett

    2016-11-01

    The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 μm, in five spectral pass bands, for outer planet fly-by missions is described. The dual-telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field-of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.

  8. Dual-Telescope Multi-Channel Thermal-Infrared Radiometer for Outer Planet Fly-By Missions

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane; hide

    2016-01-01

    The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 microns, in five spectral pass bands, for outer planet fly-by missions is described. The dual- telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field- of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.

  9. Dual-Telescope Multi-Channel Thermal-Infrared Radiometer for Outer Planet Fly-By Missions

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Amato, Michael; Bowles, Neil; Calcutt, Simon; Hewagama, Tilak; Howard, Joseph; Howett, Carly; Hsieh, Wen-Ting; Hurford, Terry; Hurley, Jane; Jennings, Donald E.; Lakew, Brook; Loeffler, Mark; Nicoletti, Anthony; Nixon, Conor A.; Quilligan, Gerard; West, Garrett

    2016-01-01

    The design of a versatile dual-telescope thermal-infrared radiometer spanning the spectral wavelength range 8-200 microns, in five spectral pass bands, for outer planet fly-by missions is described. The dual- telescope design switches between a narrow-field-of-view and a wide-field-of-view to provide optimal spatial resolution images within a range of spacecraft encounters to the target. The switchable dual-field- of-view system uses an optical configuration based on the axial rotation of a source-select mirror along the optical axis. The optical design, spectral performance, radiometric accuracy, and retrieval estimates of the instrument are discussed. This is followed by an assessment of the surface coverage performance at various spatial resolutions by using the planned NASA Europa Mission 13-F7 fly-by trajectories as a case study.

  10. Comparison of the Fourier transform infrared (FTIR) spectrophotometer and the Miniature Infrared Analyzer (MIRAN) for the determination of trichloroethylene (TCE) in the presence of Freon-113 in workplace air.

    PubMed

    Xiao, H K; Levine, S P; D'Arcy, J B; Kinnes, G; Almaguer, D

    1990-07-01

    Results obtained using the Fourier transform infrared spectrophotometer (FTIR) and the Miniature Infrared Analyzer (MIRAN) for samples of workplace air containing trichloroethylene (TCE) were evaluated through comparison with results obtained when using a gas chromatography (GC). The effects of instrument resolution, relative humidity, and sample storage stability were studied. Relative humidity was found to have no effect on the performance of the FTIR over the range studied. The effect of changing resolution is complex but is explained. The linear range of the FTIR is more than adequate for the concentrations encountered in the samples reported in this study. Interference from Freon caused the TCE values to be high when the MIRAN was operated in the single-wavelength mode.

  11. Comparison of the Fourier transform infrared (FTIR) spectrophotometer and the Miniature Infrared Analyzer (MIRAN) for the determination of trichloroethylene (TCE) in the presence of Freon-113 in workplace air

    SciTech Connect

    Xiao, H.K.; Levine, S.P.; D'Arcy, J.B.; Kinnes, G.; Almaguer, D. )

    1990-07-01

    Results obtained using the Fourier transform infrared spectrophotometer (FTIR) and the Miniature Infrared Analyzer (MIRAN) for samples of workplace air containing trichloroethylene (TCE) were evaluated through comparison with results obtained when using a gas chromatography (GC). The effects of instrument resolution, relative humidity, and sample storage stability were studied. Relative humidity was found to have no effect on the performance of the FTIR over the range studied. The effect of changing resolution is complex but is explained. The linear range of the FTIR is more than adequate for the concentrations encountered in the samples reported in this study. Interference from Freon caused the TCE values to be high when the MIRAN was operated in the single-wavelength mode.

  12. Ambient formic acid in southern California air: A comparison of two methods, Fourier transform infrared spectroscopy and alkaline trap-liquid chromatography with UV detection

    SciTech Connect

    Grosjean, D. ); Tuazon, E.C. ); Fujita, E. )

    1990-01-01

    Formic acid is an ubiquitous component of urban smog. Sources of formic acid in urban air include direct emissions from vehicles and in situ reaction of ozone with olefins. Ambient levels of formic acid in southern California air were first measured some 15 years ago by Hanst et al. using long-path Fourier transform infrared spectroscopy (FTIR). All subsequent studies of formic acid in the Los Angeles area have involved the use of two methods, either FTIR or collection on alkaline traps followed by gas chromatography, ion chromatography, or liquid chromatography analysis with UV detection, ATLC-UV. The Carbon Species Methods Comparison Study (CSMCS), a multilaboratory air quality study carried out in August 1986 at a southern California smog receptor site, provided an opportunity for direct field comparison of the FTIR and alkaline trap methods. The results of the comparison are presented in this brief report.

  13. Assimilation of IASI and AIRS Data: Information Content and Quality Control

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) and Atmospheric Infrared Sounder (AIRS) instruments have two orders of magnitude more channels that the current operational infrared sounder (High Resolution Infra-Red Sounder (HIRS)). This data volume presents a technological challenge for using the data in a data assimilation system. Data reduction will be a necessary for assimilation. It is important to understand the information content of the radiance measurements for data reduction purposes. In this talk, I will discuss issues relating to information content and quality control for assimilation of the AIRS and IASI data.

  14. Assimilation of IASI and AIRS Data: Information Content and Quality Control

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) and Atmospheric Infrared Sounder (AIRS) instruments have two orders of magnitude more channels that the current operational infrared sounder (High Resolution Infra-Red Sounder (HIRS)). This data volume presents a technological challenge for using the data in a data assimilation system. Data reduction will be a necessary for assimilation. It is important to understand the information content of the radiance measurements for data reduction purposes. In this talk, I will discuss issues relating to information content and quality control for assimilation of the AIRS and IASI data.

  15. Detecting Climate Signatures with High Spectral Resolution Infrared Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Deslover, D. H.; Tobin, D.; Knuteson, R. O.; Revercomb, H. E.

    2013-12-01

    Upwelling atmospheric infrared radiances can be accurately monitored from high spectral resolution satellite observations. The high spectral resolution nature of these measurements affords the ability to track various climate relevant parameters such as window channels sensitive to surface temperature and clouds, channels with higher sensitivity to trace gases including CO2, CH4, SO2, HNO3, as well as channels sensitive only to upper tropospheric or lower stratospheric temperature. NASA's Atmospheric Infrared Sounder (AIRS) provides a data record that extends from its 2002 launch to the present. The Infrared Atmospheric Sounding Interferometer (IASI) onboard Metop- (A launched in 2006, B in 2012), as well as the Joint Polar Satellite System (JPSS) Cross-track Infrared Sounder (CrIS) launched in 2011, complement this data record. Future infrared sounders with similar capabilities will augment these measurements into the distant future. We have created a global data set from the aforementioned satellite observations. Our analysis yields a channel dependent approach that can be further constrained in terms of diurnal, seasonal and geographic limits, with measurement accuracies of better than a few tenths of degree Kelvin. In this study, we have applied this concept to obtain a better understanding of long-term stratospheric temperature trends. We will present a survey of temperature trends for spectral channels that were chosen to be sensitive to stratospheric emission. Results will be shown for tropical, mid-latitude and polar stratospheric observations.

  16. Low-level water vapor fields from the VISSR atmospheric sounder (VAS) split window channels at 11 and 12 microns. [visible infrared spin scan radiometer

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L.; Robinson, W.

    1982-01-01

    A series of high-resolution water vapor fields were derived from the 11 and 12 micron channels of the VISSR Atmospheric Sounder (VAS) on GOES-5. The low-level tropospheric moisture content was separated from the surface and atmospheric radiances by using the differential adsorption across the 'split window' along with the average air temperature from imbedded radiosondes. Fields of precipitable water are presented in a time sequence of five false color images taken over the United States at 3-hour intervals. Vivid subsynoptic and mesoscale patterns evolve at 15 km horizontal resolution over the 12-hour observing period. Convective cloud formations develop from several areas of enhanced low-level water vapor, especially where the vertical water vapor gradient relatively strong. Independent verification at radiosonde sites indicates fairly good absolute accuracy, and the spatial and temporal continuity of the water vapor features indicates very good relative accuracy. Residual errors are dominated by radiometer noise and unresolved clouds.

  17. Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Torricelli, Alessandro; Quaresima, Valentina; Pifferi, Antonio; Biscotti, Giovanni; Spinelli, Lorenzo; Taroni, Paola; Ferrari, Marco; Cubeddu, Rinaldo

    2004-03-01

    A compact and fast multi-channel time-resolved near-infrared spectroscopy system for tissue oximetry was developed. It employs semiconductor laser and fibre optics for delivery of optical signals. Photons are collected by eight 1 mm fibres and detected by a multianode photomultiplier. A time-correlated single photon counting board is used for the parallel acquisition of time-resolved reflectance curves. Estimate of the reduced scattering coefficient is achieved by fitting with a standard model of diffusion theory, while the modified Lambert-Beer law is used to assess the absorption coefficient. In vivo measurements were performed on five healthy volunteers to monitor spatial changes in calf muscle (medial and lateral gastrocnemius; MG, LG) oxygen saturation (SmO2) and total haemoglobin concentration (tHb) during dynamic plantar flexion exercise performed at 50% of the maximal voluntary contraction. At rest SmO2 was 73.0 ± 0.9 and 70.5 ± 1.7% in MG and LG, respectively (P = 0.045). At the end of the exercise, SmO2 decreased (69.1 ± 1.8 and 63.8 ± 2.1% in MG and LG, respectively; P < 0.01). The LG desaturation was greater than the MG desaturation (P < 0.02). These results strengthen the role of time-resolved near-infrared spectroscopy as a powerful tool for investigating the spatial and temporal features of muscle SmO2 and tHb.

  18. Functional connectivity during phonemic and semantic verbal fluency test: a multi-channel near infrared spectroscopy study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Jung; Sun, Chia-Wei; Chou, Po-Han; Chuang, Ching-Cheng

    2016-03-01

    Verbal fluency tests (VFT) are widely used neuropsychological tests of frontal lobe and have been frequently used in various functional brain mapping studies. There are two versions of VFT based on the type of cue: the letter fluency task (LFT) and the category fluency task (CFT). However, the fundamental aspect of the brain connectivity across spatial regions of the fronto-temporal regions during the VFTs has not been elucidated to date. In this study we hypothesized that different cortical functional connectivity over bilateral fronto-temporal regions can be observed by means of multi-channel fNIRS in the LFT and the CFT respectively. Our results from fNIRS (ETG-4000) showed different patterns of brain functional connectivity consistent with these different cognitive requirements. We demonstrate more brain functional connectivity over frontal and temporal regions during LFT than CFT, and this was in line with previous brain activity studies using fNIRS demonstrating increased frontal and temporal region activation during LFT and CFT and more pronounced frontal activation by the LFT.

  19. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy.

    PubMed

    Chen, Qian; Wang, Chao; Zhan, Zhixiong; He, Weiwei; Cheng, Zhenping; Li, Youyong; Liu, Zhuang

    2014-09-01

    Development of theranostic agent for imaging-guided photothermal therapy has been of great interest in the field of nanomedicine. However, if fluorescent imaging and photothermal ablation are conducted with the same wavelength of light, the requirements of the agent's quantum yield (QY) for imaging and therapy are controversial. In this work, our synthesized near-infrared dye, IR825, is bound with human serum albumin (HSA), forming a HSA-IR825 complex with greatly enhanced fluorescence under 600 nm excitation by as much as 100 folds compared to that of free IR825, together with a rather high absorbance but low fluorescence QY at 808 nm. Since high QY that is required for fluorescence imaging would result in reduced photothermal conversion efficiency, the unique optical behavior of HSA-IR825 enables imaging and photothermal therapy at separated wavelengths both with optimized performances. We thus use HSA-IR825 for imaging-guided photothermal therapy in an animal tumor model. As revealed by in vivo fluorescence imaging, HSA-IR825 upon intravenous injection shows high tumor uptake likely owing to the enhanced permeability and retention effect, together with low levels of retentions in other organs. While HSA is an abundant protein in human serum, IR825 is able to be excreted by renal excretion as evidenced by high-performance liquid chromatography (HPLC). In vivo tumor treatment experiment is finally carried out with HSA-IR825, achieving 100% of tumor ablation in mice using a rather low dose of IR825. Our work presents a safe, simple, yet imageable photothermal nanoprobe, promising for future clinical translation in cancer treatment.

  20. Automatic detection of a prefrontal cortical response to emotionally rated music using multi-channel near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Moghimi, Saba; Kushki, Azadeh; Power, Sarah; Guerguerian, Anne Marie; Chau, Tom

    2012-04-01

    Emotional responses can be induced by external sensory stimuli. For severely disabled nonverbal individuals who have no means of communication, the decoding of emotion may offer insight into an individual’s state of mind and his/her response to events taking place in the surrounding environment. Near-infrared spectroscopy (NIRS) provides an opportunity for bed-side monitoring of emotions via measurement of hemodynamic activity in the prefrontal cortex, a brain region known to be involved in emotion processing. In this paper, prefrontal cortex activity of ten able-bodied participants was monitored using NIRS as they listened to 78 music excerpts with different emotional content and a control acoustic stimuli consisting of the Brown noise. The participants rated their emotional state after listening to each excerpt along the dimensions of valence (positive versus negative) and arousal (intense versus neutral). These ratings were used to label the NIRS trial data. Using a linear discriminant analysis-based classifier and a two-dimensional time-domain feature set, trials with positive and negative emotions were discriminated with an average accuracy of 71.94% ± 8.19%. Trials with audible Brown noise representing a neutral response were differentiated from high arousal trials with an average accuracy of 71.93% ± 9.09% using a two-dimensional feature set. In nine out of the ten participants, response to the neutral Brown noise was differentiated from high arousal trials with accuracies exceeding chance level, and positive versus negative emotional differentiation accuracies exceeded the chance level in seven out of the ten participants. These results illustrate that NIRS recordings of the prefrontal cortex during presentation of music with emotional content can be automatically decoded in terms of both valence and arousal encouraging future investigation of NIRS-based emotion detection in individuals with severe disabilities.

  1. Automatic detection of a prefrontal cortical response to emotionally rated music using multi-channel near-infrared spectroscopy.

    PubMed

    Moghimi, Saba; Kushki, Azadeh; Power, Sarah; Guerguerian, Anne Marie; Chau, Tom

    2012-04-01

    Emotional responses can be induced by external sensory stimuli. For severely disabled nonverbal individuals who have no means of communication, the decoding of emotion may offer insight into an individual's state of mind and his/her response to events taking place in the surrounding environment. Near-infrared spectroscopy (NIRS) provides an opportunity for bed-side monitoring of emotions via measurement of hemodynamic activity in the prefrontal cortex, a brain region known to be involved in emotion processing. In this paper, prefrontal cortex activity of ten able-bodied participants was monitored using NIRS as they listened to 78 music excerpts with different emotional content and a control acoustic stimuli consisting of the Brown noise. The participants rated their emotional state after listening to each excerpt along the dimensions of valence (positive versus negative) and arousal (intense versus neutral). These ratings were used to label the NIRS trial data. Using a linear discriminant analysis-based classifier and a two-dimensional time-domain feature set, trials with positive and negative emotions were discriminated with an average accuracy of 71.94% ± 8.19%. Trials with audible Brown noise representing a neutral response were differentiated from high arousal trials with an average accuracy of 71.93% ± 9.09% using a two-dimensional feature set. In nine out of the ten participants, response to the neutral Brown noise was differentiated from high arousal trials with accuracies exceeding chance level, and positive versus negative emotional differentiation accuracies exceeded the chance level in seven out of the ten participants. These results illustrate that NIRS recordings of the prefrontal cortex during presentation of music with emotional content can be automatically decoded in terms of both valence and arousal encouraging future investigation of NIRS-based emotion detection in individuals with severe disabilities.

  2. Four Years of Absolutely Calibrated Hyperspectral Data from the Atmospheric Infrared Sounder (AIRS) on the Eos Aqua

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Broberg, Steve; Elliott, Denis; Gregorich, Dave

    2006-01-01

    This viewgraph presentation reviews four years of absolute calibration of hyperspectral data from the AIRS instrument located on the EOS AQUA spacecraft. The following topics are discussed: 1) A quick overview of AIRS; 2) What absolute calibration accuracy and stability are required for climate applications?; 3) Validating of radiance accuracy and stability: Results from four years of AIRS data; and 4) Conclusions.

  3. Investigation of verbal and visual working memory by multi-channel time-resolved functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Contini, D.; Caffini, M.; Re, R.; Zucchelli, L.; Spinelli, L.; Basso Moro, S.; Bisconti, S.; Ferrari, M.; Quaresima, V.; Cutini, S.; Torricelli, A.

    2013-03-01

    Working memory (WM) is fundamental for a number of cognitive processes, such as comprehension, reasoning and learning. WM allows the short-term maintenance and manipulation of the information selected by attentional processes. The goal of this study was to examine by time-resolved fNIRS neural correlates of the verbal and visual WM during forward and backward digit span (DF and DB, respectively) tasks, and symbol span (SS) task. A neural dissociation was hypothesised between the maintenance and manipulation processes. In particular, a dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) recruitment was expected during the DB task, whilst a lateralised involvement of Brodmann Area (BA) 10 was expected during the execution of the DF task. Thirteen subjects were monitored by a multi-channel, dual-wavelength (690 and 829 nm) time-resolved fNIRS system during 3 minutes long DF and DB tasks and 4 minutes long SS task. The participants' mean memory span was calculated for each task: DF: 6.46+/-1.05 digits; DB: 5.62+/-1.26 digits; SS: 4.69+/-1.32 symbols. No correlation was found between the span level and the heart rate data (measured by pulse oximeter). As expected, DB elicited a broad activated area, in the bilateral VLPFC and the right DLPFC, whereas a more localised activation was observed over the right hemisphere during either DF (BA 10) or SS (BA 10 and 44). The robust involvement of the DLPFC during DB, compared to DF, is compatible with previous findings and with the key role of the central executive subserving in manipulating processes.

  4. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Channeling of microwave radiation in a double line containing a plasma filament produced by intense femtosecond laser pulses in air

    NASA Astrophysics Data System (ADS)

    Bogatov, N. A.; Kuznetsov, A. I.; Smirnov, A. I.; Stepanov, A. N.

    2009-10-01

    The channeling of microwave radiation is demonstrated experimentally in a double line in which a plasma filament produced in air by intense femtosecond laser pulses serves as one of the conductors. It is shown that during the propagation of microwave radiation in this line, ultrashort pulses are formed, their duration monotonically decreasing with increasing the propagation length (down to the value comparable with the microwave field period). These effects can be used for diagnostics of plasma in a filament.

  5. Characterizing prefrontal cortical activity during inhibition task in methamphetamine-associated psychosis versus schizophrenia: a multi-channel near-infrared spectroscopy study.

    PubMed

    Okada, Naohiro; Takahashi, Katsuyoshi; Nishimura, Yukika; Koike, Shinsuke; Ishii-Takahashi, Ayaka; Sakakibara, Eisuke; Satomura, Yoshihiro; Kinoshita, Akihide; Takizawa, Ryu; Kawasaki, Shingo; Nakakita, Mayumi; Ohtani, Toshiyuki; Okazaki, Yuji; Kasai, Kiyoto

    2016-03-01

    Methamphetamine abuse and dependence, frequently accompanied by schizophrenia-like psychotic symptoms [methamphetamine-associated psychosis (MAP)], is a serious public health problem worldwide. Few studies, however, have characterized brain dysfunction associated with MAP, nor investigated similarities and differences in brain dysfunction between MAP and schizophrenia. We compared prefrontal cortical activity associated with stop-signal inhibitory task in 21 patients with MAP, 14 patients with schizophrenia and 21 age- and gender-matched healthy controls using a 52-channel near-infrared spectroscopy (NIRS) system. Both the MAP and the schizophrenia groups showed significantly reduced activation in the bilateral ventrolateral prefrontal cortex compared with controls; however, only the MAP group showed reduced activation in the frontopolar prefrontal cortex. The MAP group demonstrated significant positive correlations between task performance and hemodynamic responses in the bilateral ventrolateral, polar and left dorsolateral regions of the prefrontal cortex. The MAP and schizophrenia groups demonstrated a significant difference in the relationship of impulsivity to hemodynamic changes in the bilateral premotor cortex. These findings characterize similarities and differences in prefrontal cortical dysfunction between psychosis associated with methamphetamine and schizophrenia. The reduced hemodynamic changes in the bilateral ventrolateral prefrontal cortex suggest a common underlying pathophysiology of MAP and schizophrenia, whereas those in the frontopolar prefrontal cortex point to an impaired state that is either inherent or caused specifically by methamphetamine use. © 2015 Society for the Study of Addiction.

  6. AIRS Retrieved Temperature Isotherms over Southern Europe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    AIRS Retrieved Temperature Isotherms over Southern Europe viewed from the west, September 8, 2002. The isotherms in this map made from AIRS data show regions of the same temperature in the atmosphere.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  7. Chemical, mechanical and sensory monitoring of hot air- and infrared-roasted hazelnuts (Corylus avellana L.) during nine months of storage.

    PubMed

    Belviso, Simona; Dal Bello, Barbara; Giacosa, Simone; Bertolino, Marta; Ghirardello, Daniela; Giordano, Manuela; Rolle, Luca; Gerbi, Vincenzo; Zeppa, Giuseppe

    2017-02-15

    Roasted hazelnuts can be consumed as whole nuts, or as an ingredient in the confectionary and bakery industries and are highly appreciated for their typical taste, aroma and crunchy texture. In this work, two hazelnut types (TGT, Ordu) from two harvests were roasted using two different systems (hot air, infrared) at different time/temperature combinations, and the evolution of oxidative stability, the total phenolic content (TPC), the antioxidant capacity, the mechanical and acoustic properties and the sensory perception were determined during storage. The results showed that the oxidative stability was increased by roasting hazelnuts at 120°C for 40min with hot air system. Similar overall trends were not found for the TPC, the antioxidant capacity and the mechanical-acoustic properties. However, for the maintenance of high antioxidant activity, a storage time of 6months at 4°C is recommended. The two roasting systems gave hazelnuts with significant sensory differences only at high roasting temperature.

  8. Atmospheric infrared sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip, W.; Staelin, David, H.

    1995-01-01

    This report summarizes the activities of two Atmospheric Infrared Sounder (AIRS) team members during the first half of 1995. Changes to the microwave first-guess algorithm have separated processing of Advanced Microwave Sounding Unit A (AMSU-A) from AMSU-B data so that the different spatial resolutions of the two instruments may eventually be considered. Two-layer cloud simulation data was processed with this algorithm. The retrieved water vapor column densities and liquid water are compared. The information content of AIRS data was applied to AMSU temperature profile retrievals in clear and cloudy atmospheres. The significance of this study for AIRS/AMSU processing lies in the improvement attributable to spatial averaging and in the good results obtained with a very simple algorithm when all of the channels are used. Uncertainty about the availability of either a Microwave Humidity Sensor (MHS) or AMSU-B for EOS has motivated consideration of possible low-cost alternative designs for a microwave humidity sensor. One possible configuration would have two local oscillators (compared to three for MHS) at 118.75 and 183.31 GHz. Retrieval performances of the two instruments were compared in a memorandum titled 'Comparative Analysis of Alternative MHS Configurations', which is attached.

  9. Conditions for the use of infrared camera diagnostics in energy auditing of the objects exposed to open air space at isothermal sky

    NASA Astrophysics Data System (ADS)

    Kruczek, Tadeusz

    2015-03-01

    Convective and radiation heat transfer take place between various objects placed in open air space and their surroundings. These phenomena bring about heat losses from pipelines, building walls, roofs and other objects. One of the main tasks in energy auditing is the reduction of excessive heat losses. In the case of a low sky temperature, the radiation heat exchange is very intensive and the temperature of the top part of the horizontal pipelines or walls is lower than the temperature of their bottom parts. Quite often this temperature is also lower than the temperature of the surrounding atmospheric air. In the case of overhead heat pipelines placed in open air space, it is the ground and sky that constitute the surroundings. The aforementioned elements of surroundings usually have different values of temperature. Thus, these circumstances bring about difficulties during infrared inspections because only one ambient temperature which represents radiation of all surrounding elements must be known during the thermovision measurements. This work is aimed at the development of a method for determination of an equivalent ambient temperature representing the thermal radiation of the surrounding elements of the object under consideration placed in open air space, which could be applied at a fairly uniform temperature of the sky during the thermovision measurements as well as for the calculation of radiative heat losses.

  10. Airborne Multiangle SpectroPolarimeteric Imager (AirMSPI): Calibration and Comparison with Collocated Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Data

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Diner, D. J.; Bruegge, C. J.; Rheingans, B. E.; Garay, M. J.; Daugherty, B. J.; Chipman, R. A.; Davis, A.

    2014-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is a pushbroom multiangle spectropolarimetric camera with spectral bands near 355, 380, 445, 470, 555, 660, 865, and 935 nm. Flying on NASAs's high-altitude ER-2 aircraft since 2010, AirMSPI uses dual photoelastic modulator (PEM)-based technology to provide accurate measurements of the Stokes linear polarization parameters Q and U in the 470, 660, and 865 nm bands, providing unique observing capabilities for aerosol, cloud, and surface studies. We describe the methodologies used for radiometric and polarimetric calibration and characterization of the AirMSPI instrument, which make use of a combination of laboratory and vicarious techniques. A 1.65 m integrating sphere and overflights of Ivanpah Playa, NV are used for radiometric calibration. Radiometric cross-comparisons with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), also flying on the ER-2, are used to validate the radiometric scale. For polarimetric calibration, a well-calibrated Polarization State Generator is used to provide known polarimetric inputs. A high-extinction rotating wiregrid polarizer is used to derive polarimetric calibration coefficients for each pixel, and the results are then validated using partially polarized light generated using tilted glass plates. Examples of collocated multiangular, polarimetric imagery from AirMSPI and hyperspectral imagery from AVIRIS will be shown, presenting new opportunities for atmosphere and surface remote sensing.

  11. Entropically mediated polyolefin blend segregation at buried sapphire and air interfaces investigated by infrared-visible sum frequency generation vibrational spectroscopy.

    PubMed

    Kweskin, S J; Komvopoulos, K; Somorjai, G A

    2005-12-15

    The segregation behavior of binary polymer blends at hydrophilic solid sapphire and air interfaces was investigated by infrared-visible sum frequency generation (SFG) vibrational spectroscopy. SFG spectra were collected from a bulk miscible blend consisting of identical molecular weight (approximately 54,000) and similar surface free energy (29-35 dyn/cm) components of atactic polypropylene (aPP) and aspecific poly(ethylene-co-propylene) rubber (aEPR). Characteristic CH resonances of the blend were contrasted with those of the individual components at both buried (sapphire/polymer) and free (air/polymer) interfaces. Preferential segregation of the aPP component was observed after annealing at both air/polymer and sapphire/polymer interfaces. SFG spectra revealed ordering of the polymer backbone segments with the methylene (CH2) groups perpendicular to the surface at the sapphire interface and the methyl (CH3) groups upright at the air interface. The SFG results indicate that the surface composition can be determined from the peak intensities that are characteristic of each component and that conformational entropy played a likely role in surface segregation. aPP occupied a smaller free volume at the surface because of a statistically smaller segment length (aPP is more flexible and has a shorter length). In addition, the high density of the ordered CH3 side branches enhanced the surface activity by allowing the long-chain backbone segments of aPP to order at the surface.

  12. Collaborative Testing of Methods to Measure Air Pollutants, II. The Non-Dispersive Infrared Method for Carbon Monoxide

    ERIC Educational Resources Information Center

    McKee, Herbert C.; And Others

    1973-01-01

    The Methods Standardization Branch of the Environmental Protection Agency, National Environmental Research Center, has undertaken a program to standardize methods used in measuring air pollutants covered by the national primary and secondary air quality standards. This paper presents the results of a collective test of the method specified for…

  13. Collaborative Testing of Methods to Measure Air Pollutants, II. The Non-Dispersive Infrared Method for Carbon Monoxide

    ERIC Educational Resources Information Center

    McKee, Herbert C.; And Others

    1973-01-01

    The Methods Standardization Branch of the Environmental Protection Agency, National Environmental Research Center, has undertaken a program to standardize methods used in measuring air pollutants covered by the national primary and secondary air quality standards. This paper presents the results of a collective test of the method specified for…

  14. Infrared Spectroscopy of ((CH{_3}){_3}N){_n}-H^{+}-H{_2}O (n=1-3): Structures and Dissociation Channels of Protonated Mixed Clusters around a Magic Number

    NASA Astrophysics Data System (ADS)

    Shishido, Ryunosuke; Fujii, Asuka; Kuo, Jer-Lai

    2013-06-01

    The magic number behavior of ((CH{_3}){_3}N){_n}-H^{+}-H{_2}O clusters at n = 3 is investigated by applying infrared spectroscopy to the clusters of n = 1-3. Structures of these clusters are determined in conjunction with density functional theory calculations. Dissociation channels upon infrared excitation are also measured, and their correlation with the cluster structures is examined. It is demonstrated that the magic number cluster has a closed-shell structure, in which the water moiety is surrounded by three (CH{_3}){_3}N molecules. Large rearrangement of the cluster structures of n = 2 and 3 before dissociation, which has been suggested in the mass spectrometric study, is confirmed on the basis of the structure determination by infrared spectroscopy. R. Shishido, J. -L. Kuo and A. Fujii J. Phys. Chem. A {116}, 6740, 2012. S. Wei, W. B. Tzeng, R. G. Keesee and A. W. Castleman, Jr. J. Am. Chem. Soc. {113}, 1960, 1991.

  15. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-07-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  16. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-11-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  17. Thermal infrared image analysis of a quiescent cone on Piton de la Fournaise volcano: Evidence of convective air flow within an unconsolidated soil

    NASA Astrophysics Data System (ADS)

    Antoine, R.; Baratoux, D.; Rabinowicz, M.; Fontaine, F.; Bachèlery, P.; Staudacher, T.; Saracco, G.; Finizola, A.

    2009-06-01

    We report on the detection of air convection with infrared thermal images for two quasi-circular craters, 20 m and 40 m wide, forming the volcanically inactive cone of Formica Leo (Reunion Island). The thermal images have been acquired from an infrared camera at regular time intervals during a complete diurnal cycle. During the night and at dawn, we observe that the rims are warmer than the centers of the craters. The conductivity contrast of the highly porous soils filling the craters and their 30° slopes are unable to explain the systematic temperature drop from rim to centers. We suggest that this signal could be attributed to air convection with gas entering the highly permeable soil at the center of each crater, then flowing upslope along the bottom of the soil layer, before exiting it along the crater rims. To quantify this process, we present a two-dimensional numerical modelling of air convection in a sloped volcanic soil with a surface temperature evolving between day and night. This convection depends on a unique dimensionless equivalent Rayleigh number Raeq which is the product of the standard Rayleigh number with the volumetric heat capacity ratio of the air and the soil. The convective flow is unsteady: during some periods, the convective flow is entirely confined within the soil, and at other times air enters the crater at its center and exits it at the rim crests. When Raeq = 6000, a value likely compatible with the soil permeability and the geothermal heat flux, a very strong transient cold air plume occasionally develops along the center of the crater. The interval of time between two plumes only depends on the thermal fluctuations within the top boundary layer of the convective cell, and thus is not contrasted by the diurnal cycle. The detachment of a cold plume can occur at any time, after few days of quiescence, and lasts several hours. During the whole convective cycle, the rim to center temperature drop persists and has an amplitude and a

  18. Adrenergic regulation of ion transport across adult alveolar epithelial cells: effects on Cl- channel activation and transport function in cultures with an apical air interface.

    PubMed

    Jiang, X; Ingbar, D H; O'Grady, S M

    2001-06-01

    The effect of beta-adrenergic receptor stimulation on Cl- channel activation was investigated in alveolar epithelial cells grown in monolayer culture and in freshly isolated cells. Monolayers cultured under apical air interface conditions exhibited enhanced amiloride-sensitive Na+ transport compared to apical liquid interface monolayers. Amiloride or benzamil inhibited most (66%) of the basal short circuit current (Isc) with half-maximal inhibitory concentration (IC50) values of 0.62 microm and 0.09 microm respectively. Basolateral addition of terbutaline (2 microm) produced a rapid decrease in Isc followed by a slow recovery that exceeded the basal Isc. When Cl- was replaced with methanesulfonate in either intact monolayers or basolateral membrane permeabilized monolayers, the response to terbutaline (2 microm) was completely inhibited. No effect of terbutaline on amiloride-sensitive Na+ current was detected. beta-Adrenergic agonists and 8-chlorothiophenyl cyclic adenosine monophosphate (8-ctp cAMP) directly stimulated a Cl- channel in freshly isolated alveolar epithelial cells. The current was blocked by glibenclamide (100 microm) and had a reversal potential of -22 mV. No increase in amiloride-sensitve current was detected in response to terbutaline or 8-cpt cAMP stimulation. These data support the conclusion that beta-adrenergic agonists produce acute activation of apical Cl- channels and that monolayers maintained under apical air interface conditions exhibit increased Na+ absorption.

  19. Validation of the Radiometric Stability of the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Elliott, D.; Strow, L. L.

    2012-01-01

    It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO2, N2O and Ozone. The trend in (obs-calc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 micron CO2 sounding, 4 micron CO2 P-branch sounding, 4 micron CO2 R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 microns. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in

  20. The Role of Alternating Bilateral Stimulation in Establishing Positive Cognition in EMDR Therapy: A Multi-Channel Near-Infrared Spectroscopy Study.

    PubMed

    Amano, Tamaki; Toichi, Motomi

    2016-01-01

    Eye movement desensitisation and reprocessing (EMDR) is a standard method for treating post-traumatic stress disorder. EMDR treatment consists of desensitisation and resource development and installation (RDI) stages. Both protocols provide a positive alternating bilateral stimulation (BLS). The effect of desensitisation with BLS has been elucidated. However, a role for BLS in RDI remains unknown. Therefore, it is important to measure feelings as subjective data and physiological indicators as objective data to clarify the role of BLS in RDI. RDI was administered to 15 healthy volunteer subjects who experienced pleasant memories. Their oxygenated haemoglobin concentration ([oxy-Hb]), a sensitive index of brain activity, was measured from the prefrontal cortex (PFC) to the temporal cortex using multi-channel near-infrared spectroscopy during recall of a pleasant memory with or without BLS. The BLS used was alternating bilateral tactile stimulation with a vibration machine. The psychological evaluation suggested that RDI was successful. The results showed that, compared with non-BLS conditions, accessibility was increased and subjects were more relaxed under BLS conditions. A significant increase in [oxy-Hb] was detected in the right superior temporal sulcus (STS), and a decrease in the wide bilateral areas of the PFC was observed in response to BLS. The significant BLS-induced activation observed in the right STS, which is closely related to memory representation, suggests that BLS may help the recall of more representative pleasant memories. Furthermore, the significant reduction in the PFC, which is related to emotion regulation, suggests that BLS induces relaxation and comfortable feelings. These results indicate an important neural mechanism of RDI that emotional processing occurred rather than higher cognitive processing during this stage. Considering the neuroscientific evidence to date, BLS in RDI may enhance comfortable feelings about pleasant memories

  1. Evaluation of Pleasure-Displeasure Induced by Use of Lipsticks with Near-Infrared Spectroscopy (NIRS): Usefulness of 2-Channel NIRS in Neuromarketing.

    PubMed

    Tanida, M; Okabe, M; Tagai, K; Sakatani, K

    2017-01-01

    In order to examine whether near-infrared spectroscopy (NIRS) would be a useful neuromarketing tool, we employed NIRS to evaluate the difference of pleasure-displeasure in women, induced by the use of different types of lipsticks. The subjects used lipsticks A and B; A is softer than B. Concentration changes of oxy-Hb were measured in the bilateral prefrontal cortex (PFC) during use of lipsticks A and B. We evaluated the right and left dominancy of PFC activity by calculating the Laterality Index (LI) (LI = leftΔoxy-Hb - rightΔoxy-Hb); positive LI indicates left-dominant activity while negative LI indicate right-dominant activity. We found a significant interaction between the use of lipsticks A and B, using a two-way factorial analysis of variance [F(1,13) = 9.63, p < 0.01]; Δoxy-Hb in the left PFC was larger than that in the right PFC during the use of lipstick A, while Δoxy-Hb in the right PFC tended to be larger than that in the left PFC during the use of lipstick B (p < 0.1). The LI of lipstick A was larger than that of lipstick B (paired T-test, p = 0.0083). We suggest that lipstick A caused a more positive emotional response than lipstick B, since greater left than right frontal cortical activity is associated with positive affect. These results suggest that 2-channel NIRS may be a useful neuromarketing tool, since it allows objective assessment of pleasure-unpleasure.

  2. Infrared laser spectroscopy of CH{sub 3}...HF in helium nanodroplets: The exit-channel complex of the F+CH{sub 4} reaction

    SciTech Connect

    Merritt, J.M.; Rudic, S.; Miller, R.E.

    2006-02-28

    High-resolution infrared laser spectroscopy is used to study the CH{sub 3}...HF and CD{sub 3}...HF radical complexes, corresponding to the exit-channel complex in the F+CH{sub 4}{yields}HF+CH{sub 3} reaction. The complexes are formed in helium nanodroplets by sequential pickup of a methyl radical and a HF molecule. The rotationally resolved spectra presented here correspond to the fundamental v=1(leftarrow)0 H-F vibrational band, the analysis of which reveals a complex with C{sub 3v} symmetry. The vibrational band origin for the CH{sub 3}...HF complex (3797.00 cm{sup -1}) is significantly redshifted from that of the HF monomer (3959.19 cm{sup -1}), consistent with the hydrogen-bonded structure predicted by theory [E. Ya. Misochko et al., J. Am. Chem. Soc. 117, 11997 (1995)] and suggested by previous matrix isolation experiments [M. E. Jacox, Chem. Phys. 42, 133 (1979)]. The permanent electric dipole moment of this complex is experimentally determined by Stark spectroscopy to be 2.4{+-}0.3 D. The wide amplitude zero-point bending motion of this complex is revealed by the vibrational dependence of the A rotational constant. A sixfold reduction in the line broadening associated with the H-F vibrational mode is observed in going from CH{sub 3}...HF to CD{sub 3}...HF. The results suggest that fast relaxation in the former case results from near-resonant intermolecular vibration-vibration (V-V) energy transfer. Ab initio calculations are also reported (at the MP2 level) for the various stationary points on the F+CH{sub 4} surface, including geometry optimizations and vibrational frequency calculations for CH{sub 3}...HF.

  3. The Role of Alternating Bilateral Stimulation in Establishing Positive Cognition in EMDR Therapy: A Multi-Channel Near-Infrared Spectroscopy Study

    PubMed Central

    Amano, Tamaki; Toichi, Motomi

    2016-01-01

    Eye movement desensitisation and reprocessing (EMDR) is a standard method for treating post-traumatic stress disorder. EMDR treatment consists of desensitisation and resource development and installation (RDI) stages. Both protocols provide a positive alternating bilateral stimulation (BLS). The effect of desensitisation with BLS has been elucidated. However, a role for BLS in RDI remains unknown. Therefore, it is important to measure feelings as subjective data and physiological indicators as objective data to clarify the role of BLS in RDI. RDI was administered to 15 healthy volunteer subjects who experienced pleasant memories. Their oxygenated haemoglobin concentration ([oxy-Hb]), a sensitive index of brain activity, was measured from the prefrontal cortex (PFC) to the temporal cortex using multi-channel near-infrared spectroscopy during recall of a pleasant memory with or without BLS. The BLS used was alternating bilateral tactile stimulation with a vibration machine. The psychological evaluation suggested that RDI was successful. The results showed that, compared with non-BLS conditions, accessibility was increased and subjects were more relaxed under BLS conditions. A significant increase in [oxy-Hb] was detected in the right superior temporal sulcus (STS), and a decrease in the wide bilateral areas of the PFC was observed in response to BLS. The significant BLS-induced activation observed in the right STS, which is closely related to memory representation, suggests that BLS may help the recall of more representative pleasant memories. Furthermore, the significant reduction in the PFC, which is related to emotion regulation, suggests that BLS induces relaxation and comfortable feelings. These results indicate an important neural mechanism of RDI that emotional processing occurred rather than higher cognitive processing during this stage. Considering the neuroscientific evidence to date, BLS in RDI may enhance comfortable feelings about pleasant memories

  4. Impact of AIRS radiance in the NCUM 4D-VAR assimilation system

    NASA Astrophysics Data System (ADS)

    Srinivas, Desamsetti; Indira Rani, S.; Mallick, Swapan; George, John P.; Sharma, Priti

    2016-04-01

    The hyperspectral radiances from Atmospheric InfraRed Sounder (AIRS), on board NASA-AQUA satellite, have been processed through the Observation Processing System (OPS) and assimilated in the Variational Assimilation (VAR) System of NCMRWF Unified Model (NCUM). Numerical experiments are conducted in order to study the impact of the AIRS radiance in the NCUM analysis and forecast system. NCMRWF receives AIRS radiance from EUMETCAST through MOSDAC. AIRS is a grating spectrometer having 2378 channels covering the thermal infrared spectrum between 3 and 15 μm. Out of 2378 channels, 324 channels are selected for assimilation according to the peaking of weighting function and meteorological importance. According to the surface type and day-night conditions, some of the channels are not assimilated in the VAR. Observation Simulation Experiments (OSEs) are conducted for a period of 15 days to see the impact of AIRS radiances in NCUM. Statistical parameters like bias and RMSE are calculated to see the real impact of AIRS radiances in the assimilation system. Assimilation of AIRS in the NCUM system reduced the bias and RMSE in the radiances from instruments onboard other satellites. The impact of AIRS is clearly seen in the hyperspectral radiances like IASI and CrIS and also in infrared (HIRS) and microwave (AMSU, ATMS, etc.) sensors.

  5. MODTRAN5 analysis of clear-sky, co-located space- and ground-based infrared atmospheric measurements: AERI, AIRS, CERES, MODIS

    NASA Astrophysics Data System (ADS)

    Lewis, Paul E.; Anderson, Gail P.; Shen, Sylvia S.; Chetwynd, James; Roman, Miguel, III; Schaaf, Crystal; Turner, David D.; Rutan, David A.; Berk, Alexander; Miller, David P.; Kroutil, Robert

    2009-05-01

    A set of 26 clear-sky, co-located, infrared data from NASA's space-based, downward looking Atmospheric Infrared Sounder (AIRS)1 and its Clouds and the Earth's Radiant Energy System (CERES)2 have been paired with the DOE's Southern Great Plains (SGP)3 ground-based, upward looking Atmospheric Emitted Radiance Interferometer (AERI)4. These data sets have then been simulated using the MODTRAN®55 (MOD5) radiative transfer code with standard auxiliary 'truth' data as input. Of particular interest is the impact, if any, of the large Ground Sampling Distance (GSD) of AIRS and CERES (minimum radii of approximately 13 and 26 km, respectively) vs. the soda-straw up-looking mode of AERI. The smaller Moderate Resolution Imaging Spectroradiometer (MODIS)6 GSD (<1 km) provides estimated distributions of land-type and albedo within the larger footprints. The SGP's coincident vertical profile sondes and Aeronet7 retrievals, along with other satellite data [Ozone Monitoring Instrument (OMI)8] constrain the surface type, column ozone and aerosol optical depth that existed during the measurement events. Initial MOD5 calculations, using these ancillary data as input, have replicated the AERI and AIRS measurements to within an average difference of ~1% over their entire spectral range. Using MODIS visible albedo9 retrievals to extend the albedo into the long wave (LW) only slightly improved the statistical comparison between the CERES and MOD5 broadband LW radiances agreement, from 3% to ~1.5%, while increasing the variance. While these results are not sufficient for specific instrument inversion algorithms, they suggest some confidence in the generic use of MODTRAN®5 to help integrate and spectrally extend assorted data sets for sensitivity studies of Climate Change, where the estimated required sensitivity is <1%.

  6. A Simple Drought Product and Indicator Derived from Temperature and Relative Humidity Observed by the Atmospheric InfraRed Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Granger, S. L.; Behrangi, A.

    2015-12-01

    In the United States, drought results in agricultural losses, impacts to industry, power and energy production, natural resources, municipal water supplies and human health making it one of the costliest natural hazards in the nation. Monitoring drought is therefore critical to help local governments, resource managers, and other groups make effective decisions, yet there is no single definition of drought, and because of the complex nature of drought there is no universal best drought indicator. Remote sensing applications in drought monitoring are advantageous due to the large spatial and temporal frequency of observations, leading to a better understanding of the spatial extent of drought and its duration, and in detecting the onset of drought and its intensity. NASA Earth Observing System (EOS)-era data have potential for monitoring and assessing drought and many are already used either directly or indirectly for drought monitoring. Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) observations from the Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor are widely used for agricultural and environmental plant-stress monitoring via the USDM, the VegDRI project and FEWSNet. However there remain underutilized sources of information from NASA satellite observations that may have promise for characterizing and understanding meteorological drought. Once such sensor is NASA's Advanced Infra-Red Sounder (AIRS) aboard the Aqua satellite. AIRS and it's sister sensor the Advanced Microwave Sounding Unit (AMSU) that together provide meteorological information of high relevance to meteorological drought, e.g., profiles of water vapor, surface air temperature, and precipitation. Recent work undertaken to develop simple indicators of drought based on temperature and relative humidity from the AIRS suite of instruments is promising. Although there are more sophisticated indicators developed through the application of a variety of

  7. Mock-up tests on the combustion of hydrogen air mixture in the vertical tube simulating the CNS channel of the CARR

    NASA Astrophysics Data System (ADS)

    Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Xu, Jian

    2007-01-01

    A two-phase thermo-siphon loop for removing nuclear heating and maintaining the stable liquid level in the moderator cell was adopted for the cold neutron source (CNS) of the China advanced research reactor (CARR). The moderator is liquid hydrogen. The two-phase thermo-siphon loop consists of the crescent-shape moderator cell, the moderator transfer tube, and the condenser. The hydrogen is supplied from the buffer tank to the condenser. The main feature of the loop is that the moderator cell is covered by the helium sub-cooling system. The cold helium gas from the helium refrigerator is firstly introduced into the helium sub-cooling system and then flows up through the tube covering the moderator transfer tube into the condenser. The main part of this system is installed in the CNS vertical channel made of aluminum alloy 6061 T6 (Al-6061-T6) of 6 mm in thickness, 270 mm in outer diameter and about 6 m in height. For confirming the safety of the CNS channel, the combustion tests using a tube compatible with the CNS channel were carried out using the hydrogen-air mixture under which air is introduced into the tube at 1 atmosphere, and then hydrogen gas is supplied from the gas cylinder up to the test pressures. And maximum test pressure is 0.14 MPa G. This condition is involved with the maximum design basis accident of the CARR-CNS. The peak pressure due to combustion was 1.09 MPa, and the design pressure of the CNS channel is 3 MPa. The safety of the CNS was thus verified even if the maximum design basis accident occurs. The pressure and stress distributions along the axial direction and the displacement of the tube were also measured.

  8. Treatment planning dosimetric parameters for 192Ir seed at short distances: effects of air channels and neighboring seeds based on Monte Carlo study.

    PubMed

    Patel, Neil S; Chiu-Tsao, Sou-Tung; Shih, J Allen; Ho, Yunsil; Tsao, Hung-Sheng; Harrison, Louis B

    2004-06-01

    The dose distributions around two different arrangements of a single radioactive 192Ir seed in water, (1) with air channels at the ends, and (2) surrounded by two nonactive ("dummy") seeds on both longitudinal ends, were calculated using MCNP4C Monte Carlo simulations at distances up to 1 cm. The contributions from beta particles and electrons emitted by 192Ir were included in the calculations. The effects of (a) the air channels at the seed ends and (b) the interference effect of the dummy seeds on the dose distribution were quantified and compared. It was found that the dummy seeds do not cause significant dose reduction for radial distances beyond 0.05 cm from the seed center. It is decided to report the dose rate values and the dosimetric parameters in TG43 format for a single seed with air channels for use in treatment planning computer systems. The dose rate constant (at 1 cm) of 192Ir seed, lambda, is 1.108 cGyU(-1) h(-1). The values of radial dose function, g(r), are within 1% from the TG43 recommended polynomial fit, except for distances within 0.08 cm. The anisotropy function, F(r, theta), attains large values near the seed ends and shallow angles (up to 8), as well as many values greater than 2 at the 20 degrees polar angle. Treatment planning systems involving intravascular brachytherapy do not compromise the accuracy for dosimetry of multiple seed trains by summing single seed values in water.

  9. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, encapsulation of the Space Infrared Telescope Facility (SIRTF) is complete. The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, encapsulation of the Space Infrared Telescope Facility (SIRTF) is complete. The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  10. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  11. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up and moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  12. KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, tightens the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, tightens the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  13. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is nearly erect for its move into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  14. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is moved into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  15. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket waits to be lifted up into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  16. KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, place the lower panels of the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - A worker at Hangar A&E, Cape Canaveral Air Force Station, place the lower panels of the canister around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  17. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is raised off the transporter before lifting and moving it into the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  18. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  19. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  20. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  1. KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, place the middle row of panels to encapsulate the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, place the middle row of panels to encapsulate the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  2. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket is lifted up the mobile service tower. In the background is pad 17-A. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  3. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the first stage of a Delta II rocket arrives at the pad. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  4. KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-18

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, prepare the first stage of a Delta II rocket for its lift up the mobile service tower. The rocket is being erected to launch the Space InfraRed Telescope Facility (SIRTF). Consisting of an 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  5. KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-08-07

    KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  6. Impact assessment of additional predictors to the retrieval of atmospheric profiles from infrared radiances

    NASA Astrophysics Data System (ADS)

    Jiang, Deming; Dong, Chaohua; Huo, Ruili; Cai, Ronghui

    2008-12-01

    Impacts of additional predictors on inverting atmospheric infrared radiance for temperature and humidity profiles are investigated using Atmospheric Infrared Sounder (AIRS) real measurements and empirical orthogonal function expansion method (EOF). These predictors are microwave channels, latitude, topography, surface altitude, surface temperature, and surface air pressure. The results suggest that microwave channels can remarkably help the improvement of the accuracy of retrieved profiles at lower troposphere (below 800hPa) and have little effect on that above 800hPa. With dataset classified by latitude, better retrievals are obtained. The root mean square errors (RMSE) of retrieved temperature at complicated terrain are significantly greater than that at plat area. For humidity retrievals it was found that RMSE exhibit weak sensitivity to topography. By combined use of infrared measurements and additional predictors, great improvements have achieved in the retrieval of atmospheric temperature and humidity profiles at lower troposphere.

  7. Source fingerprint monitoring of air pollutants from petrochemical industry and the determination of their annual emission flux using open path Fourier transform infrared spectroscopy

    SciTech Connect

    Yih-Shiaw Huang; Shih-Yi Chang; Tai-Ly Tso

    1996-12-31

    Toxic air pollutants were investigated in several petrochemical industrial park in Taiwan using a movable open-path Fourier-transform infrared spectroscopy (FTIR). The results show the qualitative and quantitative analysis of emission gases from plants, and also provide the emission rates of various compounds. More than twenty compounds under usual operation were found from these industrial park. The concentration variation with time could be correlated exactly with the distances from the emission source along the wind direction. This means that by changing the measuring points the source of emission could be unambiguously identified. The point, area and line source (PAL) plume dispersion model has been applied to estimate the emission rate of either a point or an area source. The local atmospheric stability was determined by releasing an SF{sub 6} tracer. The origin of errors came mainly from the uncertainty of the source configuration and the variation of the meteorological condition. Through continuous measurement using a portable open-path Fourier transform infrared (POP-FTIR) spectrometer, the maximum value of the emission rate and the annual amount of emission could be derived. The emission rate of the measured toxic gases was derived by the model technique, and the results show that the emission amount is on the order of ten to hundred tons per year.

  8. Infrared spectroscopy analysis of mixed DPPC/fibrinogen layer behavior at the air/liquid interface under a continuous compression-expansion condition.

    PubMed

    Yin, Chia-Lin; Chang, Chien-Hsiang

    2006-07-18

    The mixed layer behavior of dipalmitoyl phosphatidylcholine (DPPC) with fibrinogen at continuously compressed-expanded air/liquid interfaces was analyzed in situ by infrared reflection-absorption spectroscopy (IRRAS). The reflectance-absorbance (RA) intensities and/or wavenumbers of nu(a)-CH2 and amide I bands for a mixed DPPC/fibrinogen layer at the interface were obtained directly by an infrared spectrometer with a monolayer/grazing angle accessory and a removable Langmuir trough. The nu(a)-CH2 RA intensity-area hysteresis curves of a DPPC monolayer indicate a significant loss of free DPPC molecules at the interface during the first compression stage, which is also supported by the corresponding nu(a)-CH2 wavenumber-area hysteresis curves. For a mixed DPPC/fibrinogen layer at the interface, the amide I RA intensity-area hysteresis curves suggest that the fibrinogen molecules were expelled from the interface upon compression, apparently because of the presence of insoluble DPPC molecules. The squeeze-out of fibrinogen evidently removed a pronounced amount of DPPC from the interface, as judged from the corresponding nu(a)-CH2 intensity and wavenumber data. Moreover, significant adsorption of fibrinogen was found during the subsequent interface expansion stage. With the in situ IRRAS analysis of the mixed layer behavior at the interface, the induced loss of DPPC by fibrinogen expulsion from the compressed interface and the dominant adsorption of fibrinogen to the expanded interface were clearly demonstrated.

  9. Direct measurements of HONO and NO2 by tunable infrared differential absorption spectroscopy; Results from two field campaigns sampling aircraft exhaust and ambient urban air

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Santoni, G.; Herndon, S. C.; Wood, E. C.; Miake-Lye, R. C.; Munger, J. W.; Wofsy, S. C.; Zahniser, M. S.; McManus, J. B.; Nelson, D. D.

    2009-12-01

    Nitrous acid (HONO) is an important source of hydroxyl radicals (OH), the main oxidizing agent in the atmosphere. However, gaseous HONO has historically proven difficult to measure accurately and to date there is no standard technique. We describe a new instrument capable of high-frequency measurements of HONO and nitrogen dioxide (NO2) mixing ratios by tunable infrared differential absorption spectrometry. Mid-infrared light from two continuous-wave mode quantum cascade lasers traverse a 210 m path through a multi-pass astigmatic cell at reduced pressures for the direct detection of HONO (1660 cm-1) and NO2 (1604 cm-1). We achieve an absorbance precision less than 3×10-6 Hz-1 in one second, which translates to detection limits (S/N=3) of 300 and 30 ppt for HONO and NO2, respectively, in one second. Both lasers and the detector are thermoelectrically cooled, facilitating long-term unattended measurements. We also report preliminary results from two field campaigns; the Alternative Aviation Fuels Experiment (AAFEX) and the Study of Houston Air Radical Precursors (SHARP). At AAFEX, HONO emission ratios relative to CO2 and NOy observed in commercial aircraft exhaust are larger than in most other combustion sources and likely to play a significant role in regional HOx chemistry. Preliminary analysis from the SHARP campaign shows good agreement in HONO and NO2 levels between various measurement techniques.

  10. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    SciTech Connect

    Saisorn, Sira; Wongwises, Somchai

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  11. Investigations of the spatial and temporal resolution of retrievals of atmospheric carbon dioxide from the Atmospheric InfraRed Sounder (AIRS).

    NASA Astrophysics Data System (ADS)

    Maddy, Eric Sean

    As the dominant anthropogenic greenhouse gas, carbon dioxide (CO 2), represents an important component of climate change (IPCC 2007). Owing to burning of fossil fuels and deforestation, atmospheric CO2 concentrations have increased over 110 parts-per-million by volume (ppmv) from 270 ppmv to 380 ppmv since the dawn of the Industrial Revolution. Understanding of the spatial distribution of the sources and sinks of atmospheric CO 2 is necessary not only to predict the future atmospheric abundances but also their effect on future climate. Although designed for deriving high precision temperature and moisture profiles, NASA's Atmospheric InfraRed Sounder (AIRS) IR measurements include broad vertical sensitivity (between 3 and 10 km) to atmospheric CO2 variations. Coupled with AIRS' broad swath pattern and a technique referred to as "cloud-clearing" these measurements enable daily global spatial coverage. Nevertheless, AIRS' ability to determine the spatial distribution of carbon dioxide (CO2) is strongly dependent on its ability to separate the radiative effects of CO2 from temperature not to mention measurement uncertainties due to clouds and other geophysical variables such as moisture and ozone. This research presents a thorough investigation into the temporal and spatial scales that the AIRS can separate temperature (and other geophysical variables) from CO2. Through our detailed understanding of the way satellites view the Earth's atmosphere, we have developed an algorithm capable of retrieving global middle-to-upper tropospheric CO2 concentrations in all-weather conditions with total uncertainties ranging between 1 to 2 ppmv. From a radiative perspective, roughly equivalent to 30 mK to 60 mK, 1 to 2 ppmv, is an awesome feat for a space-borne sensor. Necessary for the remarkable performance of this algorithm, we developed methodologies capable of separating the radiative effect of CO2 variability from temperature, improved the fast rapid transmittance algorithm

  12. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.

    PubMed

    Kang, Yang Jun; Ha, Young-Ran; Lee, Sang-Joon

    2016-01-07

    Red blood cell (RBC) deformability has been considered a potential biomarker for monitoring pathological disorders. High throughput and detection of subpopulations in RBCs are essential in the measurement of RBC deformability. In this paper, we propose a new method to measure RBC deformability by evaluating temporal variations in the average velocity of blood flow and image intensity of successively clogged RBCs in the microfluidic channel array for specific time durations. In addition, to effectively detect differences in subpopulations of RBCs, an air compliance effect is employed by adding an air cavity into a disposable syringe. The syringe was equally filled with a blood sample (V(blood) = 0.3 mL, hematocrit = 50%) and air (V(air) = 0.3 mL). Owing to the air compliance effect, blood flow in the microfluidic device behaved transiently depending on the fluidic resistance in the microfluidic device. Based on the transient behaviors of blood flows, the deformability of RBCs is quantified by evaluating three representative parameters, namely, minimum value of the average velocity of blood flow, clogging index, and delivered blood volume. The proposed method was applied to measure the deformability of blood samples consisting of homogeneous RBCs fixed with four different concentrations of glutaraldehyde solution (0%-0.23%). The proposed method was also employed to evaluate the deformability of blood samples partially mixed with normal RBCs and hardened RBCs. Thereafter, the deformability of RBCs infected by human malaria parasite Plasmodium falciparum was measured. As a result, the three parameters significantly varied, depending on the degree of deformability. In addition, the deformability measurement of blood samples was successfully completed in a short time (∼10 min). Therefore, the proposed method has significant potential in deformability measurement of blood samples containing hematological diseases with high throughput and precise detection of

  13. Safety Design and Mock-Up Tests on the Combustion of Hydrogen-Air Mixture in the Vertical CNS Channel of the CARR-CNS

    SciTech Connect

    Qingfeng Yu; Quanke Feng

    2006-07-01

    A two-phase thermo-siphon loop is applied to the Cold Neutron Source (CNS) of China Advanced Research Reactor (CARR). The moderator is liquid hydrogen. The two-phase thermo-siphon consists of the crescent-shape moderator cell, the moderator transfer tube, and the condenser. The hydrogen is supplied from the buffer tank to the condenser. The most characteristic point is that the cold helium gas is introduced into the helium sub-cooling system covering the moderator cell and then flows up through the tube covering the moderator transfer tube into the condenser. The helium sub-cooling system also reduces the void fraction of the liquid hydrogen and takes a role of the helium barrier for preventing air from intruding into the hydrogen system. We call the two-phase thermo-siphon the hydrogen cold system. The main part of this system is installed in the CNS channel made of 6061 aluminum alloy (6061A) of 6 mm in thickness, 270 mm in outer diameter and about 6 m in height. For confirming the safety of the CNS, the combustion tests were carried out using the hydrogen-air mixture under the conditions in which air is introduced into the tube at 1 atmosphere, and then hydrogen gas is supplied from the gas cylinder up to the test pressures. And maximum test pressure is 0.140 MPa Gauge (G). This condition includes the design accident of the CNS. The peak pressure due to combustion is 1.09 MPa, and the design strength of the CNS channel is 3 MPa. The safety of the CNS was thus verified even if the design basis accident occurs. The pressure distribution, the stress, and the displacement of the tube were also measured. (authors)

  14. Evaluation of gas chromatography/matrix isolation infrared spectrometry for the determination of semivolatile organic compounds in air-sample extracts

    SciTech Connect

    Childers, J.W.; Wilson, N.K.; Barbour, R.K.

    1992-01-01

    The capabilities of gas chromatography/matrix isolation-infrared (GC/MI-IR) spectrometry for determination of semivolatile organic compounds (SVOCs) in air sample extracts were evaluated. Systematic experiments, using xylene isomers as test compounds, were conducted to determine the repeatability of the steps involved in GC/MI-IR measurements and to identify parameters that affect the precision in quantitation. The repeatability of MI-IR net absorbance measurements for single and replicate depositions was determined. The MI-IR net absorbance was nonlinear at concentrations higher than 52.1 ng/microliters, probably due to an increase in the sample spot size relative to the IR beam focus or a decrease in the matrix-to-solute ratio to less than acceptable matrix isolation conditions. The method detection limit for xylene isomers was between 1 and 2 ng/microliters injected on-column for routine measurements. Extensive signal averaging was required to obtain spectra at concentrations less than 1 ng/microliters. The method was tested by determining target SVOCs in ambient air sample extracts. The MI-IR quantitative results were compared to those from the system's flame ionization detector(FID). The FID response exhibited a high bias when unknown compounds coeluted with target analytes. The ability of GC/MI-IR to quantify target compounds in the presence of interferents and to discriminate between coeluting isomers is demonstrated.

  15. Inter-Satellite Calibration Linkages for the Visible and Near-Infrared Channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9, and -11 Spacecraft. Revised

    NASA Technical Reports Server (NTRS)

    NagarajaRao, C. R.; Chen, J.

    1996-01-01

    The post-launch degradation of the visible (channel 1: 0.58- 068 microns) and near-infrared (channel 2: approx. 0.72 - l.l microns) channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-7, -9, and -11 Polar-orbiting Operational Environmental Satellites (POES) was estimated using the south-eastern part of the Libyan Desert as a radiometrically stable calibration target. The relative annual degradation rates, in per cent, for the two channels are, respectively: 3.6 and 4.3 (NOAA-7); 5.9 and 3.5 (NOAA-9); and 1.2 and 2.0 (NOAA-11). Using the relative degradation rates thus determined, in conjunction with absolute calibrations based on congruent path aircraft/satellite radiance measurements over White Sands, New Mexico (USA), the variation in time of the absolute gain or slope of the AVHRR on NOAA-9 was evaluated. Inter-satellite calibration linkages were established, using the AVHRR on NOAA-9 as a normalization standard. Formulae for the calculation of calibrated radiances and albedos (AVHRR usage), based on these interlinkages, are given for the three AVHRRs.

  16. Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Mandelis, Andreas; Melnikov, Alexander; Michaelian, Kirk; Huan, Huiting; Haisch, Christoph

    2016-07-01

    Air pollutants have adverse effects on the Earth's climate system. There is an urgent need for cost-effective devices capable of recognizing and detecting various ambient pollutants. An FTIR photoacoustic spectroscopy (FTIR-PAS) method based on a commercial FTIR spectrometer developed for air contamination monitoring will be presented. A resonant T-cell was determined to be the most appropriate resonator in view of the low-frequency requirement and space limitations in the sample compartment. Step-scan FTIR-PAS theory for regular cylinder resonator has been described as a reference for prediction of T-cell vibration principles. Both simulated amplitude and phase responses of the T-cell show good agreement with measurement data Carbon dioxide IR absorption spectra were used to demonstrate the capacity of the FTIR-PAS method to detect ambient pollutants. The theoretical detection limit for carbon dioxide was found to be 4 ppmv. A linear response to carbon dioxide concentration was found in the range from 2500 ppmv to 5000 ppmv. The results indicate that it is possible to use step-scan FTIR-PAS with a T-cell as a quantitative method for analysis of ambient contaminants.

  17. Using an extractive Fourier transform infrared spectrometer for improving cleanroom air quality in a semiconductor manufacturing plant.

    PubMed

    Li, Shou-Nan; Chang, Chin-Ta; Shih, Hui-Ya; Tang, Andy; Li, Alen; Chen, Yin-Yung

    2003-01-01

    A mobile extractive Fourier transform infrared (FTIR) spectrometer was successfully used to locate, identify, and quantify the "odor" sources inside the cleanroom of a semiconductor manufacturing plant. It was found that ozone (O(3)) gas with a peak concentration of 120 ppm was unexpectedly releasing from a headspace of a drain for transporting used ozonized water and that silicon tetrafluoride (SiF(4)) with a peak concentration of 3 ppm was off-gassed from silicon wafers after dry-etching processing. When the sources of the odors was pinpointed by the FTIR, engineering control measures were applied. For O(3) control, a water-sealed pipeline was added to prevent the O(3) gas (emitting from the ozonized water) from entering the mixing unit. A ventilation system also was applied to the mixing unit in case of O(3) release. For SiF(4) mitigation, before the wafer-out chamber was opened, N(2) gas with a flow rate of 150 L/min was used for 100 sec to purge the wafer-out chamber, and a vacuum system was simultaneously activated to pump away the purging N(2). The effectiveness of the control measures was assured by using the FTIR. In addition, the FTIR was used to monitor the potential hazardous gas emissions during preventative maintenance of the semiconductor manufacturing equipment.

  18. Covert Channels within IRC

    DTIC Science & Technology

    2011-03-24

    Distribution ~NA maintain primary management responsibility and Statement "A" - unclassifed, unlimited distribution ? authority to release all...AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED... DISTRIBUTION UNLIMITED. AFIT/GCE/ENG/11-04 COVERT CHANNELS WITHIN IRC Wayne C. Henry, BSCE Captain, USAF Approved

  19. Optimal frequency selection of multi-channel O2-band different absorption barometric radar for air pressure measurements

    NASA Astrophysics Data System (ADS)

    Lin, Bing; Min, Qilong

    2017-02-01

    Through theoretical analysis, optimal selection of frequencies for O2 differential absorption radar systems on air pressure field measurements is achieved. The required differential absorption optical depth between a radar frequency pair is 0.5. With this required value and other considerations on water vapor absorption and the contamination of radio wave transmission, frequency pairs of present considered radar system are obtained. Significant impacts on general design of differential absorption remote sensing systems are expected from current results.

  20. Effects of picosecond terawatt UV laser beam filamentation and a repetitive pulse train on creation of prolonged plasma channels in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Shutov, A. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.

    2013-08-01

    Amplitude-modulated UV laser pulse of up to 30 J energy was produced at hybrid Ti:Sapphire/KrF GARPUN-MTW laser facility when a preliminary amplified train of short pulses was injected into unstable resonator cavity of the main e-beam-pumped KrF amplifier. The combined radiation consisted of regeneratively amplified picosecond pulses with subTW peak power overlapped with 100-ns pulse of a free-running lasing. The advantages of combined radiation for production of long-lived prolonged plasma channels in air and HV discharge triggering were demonstrated: photocurrent sustained by modulated pulse is two orders of magnitude higher and HV breakdown distance is twice longer than for a smooth UV pulse. It was found that in contrast to IR radiation multiple filamentation of high-power UV laser beam does not produce extended nonlinear focusing of UV radiation.

  1. Improving AIRS Radiance Spectra in High Contrast Scenes Using MODIS

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Manning, Evan M.; Elliott, Denis A.; Broberg, Steven E.

    2015-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in 2378 channels ranging in wavelength from 3.7-15.4 microns with spectral resolution of better than 1200, and spatial resolution of 13.5 km with global daily coverage. The AIRS is designed to measure temperature and water vapor profiles for improvement in weather forecast accuracy and improved understanding of climate processes. As with most instruments, the AIRS Point Spread Functions (PSFs) are not the same for all detectors. When viewing a non-uniform scene, this causes a significant radiometric error in some channels that is scene dependent and cannot be removed without knowledge of the underlying scene. The magnitude of the error depends on the combination of non-uniformity of the AIRS spatial response for a given channel and the non-uniformity of the scene, but is typically only noticeable in about 1% of the scenes and about 10% of the channels. The current solution is to avoid those channels when performing geophysical retrievals. In this effort we use data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument to provide information on the scene uniformity that is used to correct the AIRS data. For the vast majority of channels and footprints the technique works extremely well when compared to a Principal Component (PC) reconstruction of the AIRS channels. In some cases where the scene has high inhomogeneity in an irregular pattern, and in some channels, the method can actually degrade the spectrum. Most of the degraded channels appear to be slightly affected by random noise introduced in the process, but those with larger degradation may be affected by alignment errors in the AIRS relative to MODIS or uncertainties in the PSF. Despite these errors, the methodology shows the ability to correct AIRS radiances in non-uniform scenes under some of the worst case conditions and improves the ability to

  2. Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dual-channel near-infrared fluorescence imaging.

    PubMed

    Tanaka, Eiichi; Chen, Frederick Y; Flaumenhaft, Robert; Graham, Gwenda J; Laurence, Rita G; Frangioni, John V

    2009-07-01

    We have developed an image-guided surgical system based on invisible near-infrared fluorescent light. Presently, the only clinically available near-infrared fluorophore is indocyanine green, which fluoresces at approximately 800 nm and is used for coronary angiography. Our objective was to determine whether methylene blue, already US Food and Drug Administration approved for other indications, has useful near-infrared fluorescence properties for image-guided cardiac surgery. The optical properties of methylene blue were measured after dissolution in 100% serum. Biodistribution and clearance were quantified in organs and tissue after intravenous bolus injection of 2 mg/kg methylene blue in 3 rats. Coronary arteriography and cardiac perfusion were imaged in real time after intravenous bolus injection of 1 mg/kg methylene blue in 5 pigs with coronary obstructions. Coronary angiography and acute thrombi were assessed by using 800-nm fluorophores, indocyanine green, and IR-786-labeled platelets, respectively. The peak absorbance and emission of methylene blue as a near-infrared fluorophore occur at 667 nm and 686 nm, respectively. After intravenous injection, methylene blue provides highly sensitive coronary angiography. A lipophilic cation, methylene blue is extracted rapidly into tissue, with myocardium displaying unusually high uptake. Methylene blue permits real-time visualization and quantitative assessment of myocardial perfusion. Because of absent spectral overlap, use of 2 independent fluorophores in our imaging system permits simultaneous quantification of perfusion, venous drainage, and/or intravascular thrombi. Methylene blue is an effective near-infrared fluorophore that provides direct visualization of coronary arteriography and cardiac perfusion. In conjunction with approximately 800-nm near-infrared fluorophores, important functional assessments during cardiac surgery are also possible.

  3. Infrared Heaters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  4. Athermalized channeled spectropolarimeter enhancement.

    SciTech Connect

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  5. Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology

    SciTech Connect

    He, Zhengran; Shaik, Shoieb; Bi, Sheng; Li, Dawen; Chen, Jihua

    2015-05-04

    N,N′-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN{sub 2}) is an n-type semiconductor exhibiting high electron mobility and excellent air stability. However, the reported electron mobility based on spin-coated PDIF-CN{sub 2} film is much lower than the value of PDIF-CN{sub 2} single crystals made from vapor phase deposition, indicating significant room for mobility enhancement. In this study, various insulating polymers, including poly(vinyl alcohol), poly(methyl methacrylate) (PMMA), and poly(alpha-methylstyrene) (PαMS), are pre-coated on silicon substrate aiming to enhance the morphology of the PDIF-CN{sub 2} thin film, thereby improving the charge transport and air stability. Atomic force microscopy images reveal that with the pre-deposition of PαMS or PMMA polymers, the morphology of the PDIF-CN{sub 2} polycrystalline films is optimized in semiconducting crystal connectivity, domain size, and surface roughness, which leads to significant improvement of organic thin-film transistor (OTFT) performance. Particularly, an electron mobility of up to 0.55 cm{sup 2}/V s has been achieved from OTFTs based on the PDIF-CN{sub 2} film with the pre-deposition of PαMS polymer.

  6. Merged infrared catalogue

    NASA Technical Reports Server (NTRS)

    Schmitz, M.; Brown, L. W.; Mead, J. M.; Nagy, T. A.

    1978-01-01

    A compilation of equatorial coordinates, spectral types, magnitudes, and fluxes from five catalogues of infrared observations is presented. This first edition of the Merged Infrared Catalogue contains 11,201 oservations from the Two-Micron Sky Survey, Observations of Infrared Radiation from Cool Stars, the Air Force Geophysics Laboratory four Color Infrared Sky Survey and its Supplemental Catalog, and from Catalog of 10 micron Celestial Objects (HALL). This compilation is a by-product of a computerized infrared data base under development at Goddard Space Flight Center; the objective is to maintain a complete and current record of all infrared observations from 1 micron m to 1000 micron m of nonsolar system objects. These observations are being placed into a standardized system.

  7. Body composition in Mexican adults by air displacement plethysmography (ADP) with the BOD-POD and deuterium oxide dilution using infrared spectroscopy (IRS-DOD).

    PubMed

    Macías, Nayeli; Calderón de la Barca, Ana María; Bolaños, Adriana V; Alemán, Heliodoro; Esparza, Julián; Valencia, Mauro E

    2002-09-01

    Thirty four subjects (13 men and 21 women), 24 to 70 years old from northern Mexico, were measured for body density by air displacement plethysmography (ADP) with the BOD-POD, and for total body water by deuterium oxide dilution and infrared spectroscopy (IRS-DOD). Subjects were given a 30 g dose of deuterium oxide. Saliva samples were filtered, sublimated, and deuterium was measured using a Miran 1 FF, IRS. Linear regression of the fat mass (FM) derived from both methods showed that the intercept (0.071) was not different from zero (p = .96) and the slope was 0.96 (p < .0001) demonstrating the techniques to be equivalent. Further, mean FM was 26.7 +/- 12.4 and 25.6 +/- 12.4 kg, for IRS-DOD and ADP techniques, respectively (p = .08). Precision analysis by the model R2 showed that 92.3% of the variability was explained (SEM = 3.4 kg). Bland-Altman analysis showed no significant bias (r = 0.017; p = .93). Mean difference between methods was -1.08 (CI: -2.3 to + 0.13) kg FM.

  8. Step-scan T cell-based differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) for detection of ambient air contaminants

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Melnikov, Alexander

    2016-10-01

    A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) using a commercial FTIR spectrometer was developed theoretically and experimentally for air contaminant monitoring. The configuration comprises two identical, small-size and low-resonance-frequency T cells satisfying the conflicting requirements of low chopping frequency and limited space in the sample compartment. Carbon dioxide (CO2) IR absorption spectra were used to demonstrate the capability of the DFTIR-PAS method to detect ambient pollutants. A linear amplitude response to CO2 concentrations from 100 to 10,000 ppmv was observed, leading to a theoretical detection limit of 2 ppmv. The differential mode was able to suppress the coherent noise, thereby imparting the DFTIR-PAS method with a better signal-to-noise ratio and lower theoretical detection limit than the single mode. The results indicate that it is possible to use step-scan DFTIR-PAS with T cells as a quantitative method for high sensitivity analysis of ambient contaminants.

  9. Modelling a man-portable air-defence (MANPAD) system with a rosette scan two-colour infrared (IR) and ultraviolet (UV) seeker

    NASA Astrophysics Data System (ADS)

    Kumar, Devinder; Smith, Leon; Richardson, Mark A.; Ayling, Richard; Barlow, Nick

    2014-10-01

    The Ultraviolet (UV) band of the electromagnetic (EM) spectrum has the potential to be used as the host medium for the operation of guided weapons. Unlike in the Infrared (IR), a target propelled by an air breathing jet engine produces no detectable radiation in the UV band, and is opaque to the background UV produced by the Sun. Successful engineering of spectral airborne IR countermeasures (CM) against existing two colour IR seekers has encouraged missile counter-countermeasure (CCM) designers to utilise the silhouette signature of an aircraft in the UV as a means of distinguishing between a true target and a flare CM. In this paper we describe the modelling process of a dual band IR and UV rosette scan seeker using CounterSim, a missile engagement and countermeasure simulation software package developed by Chemring Countermeasures Ltd. Results are shown from various simulated engagements of the dual band MANPAD with a C-130 Hercules modelled by Chemring Countermeasures. These results have been used to estimate the aircrafts' vulnerability to this MANPAD threat. A discussion on possible future optical countermeasures against dual band IR-UV seekers is given in conclusion to the simulation results.

  10. [Characteristics of single event-related cerebral hemodynamics during verbal task in emotionally charged state measured by multi-channel near-infrared spectroscopy (NIRS) in patients with schizophrenia: comparison with healthy subjects].

    PubMed

    Shoji, Yoshihisa; Morita, Kiichiro; Mori, Keiichiro; Yamamoto, Hiroko; Fujiki, Ryo; Ishii, Youhei; Uchimura, Naohisa

    2013-01-01

    Neared infrared spectroscopy (NIRS) is one of the recently developed methodologies which can measure cerebral blood volumes to determine the blood hemoglobin (Hb) concentration simultaneously at multiple points with marked time resolution. Monitoring the changes in the Hb concentration yields site-specific readings on blood flow and, thus, on neural activities. The aim of this study was to examine the characteristics of a single event-related oxyhemoglobin concentration [oxy-Hb] changes in patients with schizophrenia using multi-channel NIRS during a word generation task, Japanese 'Shiritori', and single-word generation task in an emotionally charged state induced by three facial expressions of "crying", "neutral", and "smiling" babies' photographs. Thirty-four patients with schizophrenia and 34 age-matched healthy controls participated in the present study after giving consent. In healthy controls, [oxy-Hb] changes when viewing the "crying" baby's photograph were significantly larger than when viewing the "smiling" baby's photograph. On the other hand, in patients with schizophrenia, [oxy-Hb] changes when viewing the "smiling" baby's photograph were significantly larger than when viewing the "crying" baby's photograph. These results suggest that cautions/execution functions in patients with schizophrenia during the single event word "Shiritori" task measured by multi-channel NIRS were impaired. It was also suggested that, in patients with schizophrenia, the affective reaction influenced by each photograph may be different from healthy controls (mismatch). Multi-channel NIRS can be a useful tool for research and clinical purposes in psychiatry.

  11. Source attribution and quantification of benzene event emissions in a Houston ship channel community based on real-time mobile monitoring of ambient air.

    PubMed

    Olaguer, Eduardo P; Erickson, Matthew H; Wijesinghe, Asanga; Neish, Bradley S

    2016-02-01

    A mobile laboratory equipped with a proton transfer reaction mass spectrometer (PTR-MS) operated in Galena Park, Texas, near the Houston Ship Channel during the Benzene and other Toxics Exposure Study (BEE-TEX). The mobile laboratory measured transient peaks of benzene of up to 37 ppbv in the afternoon and evening of February 19, 2015. Plume reconstruction and source attribution were performed using the four-dimensional (4D) variational data assimilation technique and a three-dimensional (3D) micro-scale forward and adjoint air quality model based on mobile PTR-MS data and nearby stationary wind measurements at the Galena Park Continuous Air Monitoring Station (CAMS). The results of inverse modeling indicate that significant pipeline emissions of benzene may at least partly explain the ambient concentration peaks observed in Galena Park during BEE-TEX. Total pipeline emissions of benzene inferred within the 16-km(2) model domain exceeded point source emissions by roughly a factor of 2 during the observational episode. Besides pipeline leaks, the model also inferred significant benzene emissions from marine, railcar, and tank truck loading/unloading facilities, consistent with the presence of a tanker and barges in the Kinder Morgan port terminal during the afternoon and evening of February 19. Total domain emissions of benzene exceeded corresponding 2011 National Emissions Inventory (NEI) estimates by a factor of 2-6. Port operations involving petrochemicals may significantly increase emissions of air toxics from the transfer and storage of materials. Pipeline leaks, in particular, can lead to sporadic emissions greater than in emission inventories, resulting in higher ambient concentrations than are sampled by the existing monitoring network. The use of updated methods for ambient monitoring and source attribution in real time should be encouraged as an alternative to expanding the conventional monitoring network.

  12. An Emerging ESDR: Multi-Platform Hyperspectral Infrared Radiances fromEOS-AIRS, S-NPP/JPSS CrIS, and METOP IASI

    NASA Astrophysics Data System (ADS)

    Strow, L. L.; Desouza-Machado, S. G.; Motteler, H.; Hepplewhite, C. L.

    2014-12-01

    Space-based measurements of high-spectral resolution infrared (IR) radiances of the earth began in Sept. 2002 with the NASA EOS-AQUA AIRS instrument. The CrIS instrument on NASA's Suomi-NPP platform supplements this record in the 1:30 polar orbit, starting in 2012, and may continue for 15 years under the NOAA/NASA JPSS Program. The first of three IASI hyperspectral sounders on EUMETSAT's METOP platforms (9:30 orbit) started operation in July 2007, followed by the 2nd IASI on METOP-2 in early 2013. Development of a follow-on instrument (IASI-NG) for post METOP-3 is well underway. These instruments are sensitive to the atmospheric temperature and humidity profile, surface temperature and emissivity, and minor gases (CO2, O3, CO, CH4, N2O, CFCs, HNO3, etc.) They also have high sensitivity to clouds, especially long-wave cloud radiative forcing. The National Research Council has recommended the development of a hyperspectral IR radiance climate data set as a climate benchmark. We present here evidence that supports the use of the existing hyperspectral sounders for generation of these ESDRs and eventually CDRs. The large spatial and temporal overlap between these sensors has provided a rich data-set for inter-calibration studies that are used to characterize the accuracy of a combined ESDR radiance product. We will discuss the stability of each instrument, and inter-calibration differences (with error estimates). In addition, we have developed robust, non-statistical approaches for converting the AIRS spectral radiances into equivalent CrIS radiances, a key step in development of a long-term consistent radiance record. Finally, several examples of robust decadal changes in the earth's atmosphere using AIRS will be discussed and compared to ERA and MERRA re-analysis products (temperature, water vapor, cloud forcing). Finally, we will review the challenges involved in creating an ESDR from 3 different instruments and institutions/countries.

  13. n-Channel Organic Semiconductors Derived from Air-Stable Four-Coordinate Boron Complexes of Substituted Thienylthiazoles.

    PubMed

    Hecht, Reinhard; Kade, Juliane; Schmidt, David; Nowak-Król, Agnieszka

    2017-08-25

    Three acceptor-π-bridge-acceptor (A-π-A) molecules derived from 2-(3-boryl-2-thienyl)thiazole have been synthesized and thoroughly characterized. Incorporation of a B-N unit into thienylthiazole and attachment of suitable acceptor moieties allowed to obtain ambient-stable A-π-A molecules with low-lying LUMO levels. Their potential for applications in organic electronics was tested in vacuum-deposited organic thin film transistors (OTFT). The OTFT device based on boryl-thienylthiazole and 1,1-dicyanomethylene-3-indanone (DCIND) acceptor moieties showed an electron mobility of ≈1.4×10(-2)  cm(2)  V(-1)  s(-1) in air, which is the highest electron mobility reported to date for organoboron small molecules. Conversely, the device employing the malononitrile (MAL) derivative as an active layer did not show any charge transport behavior. As suggested by single crystal X-ray analysis of indandione (IND) and MAL derivatives, the enhanced mobility of IND (and DCIND) in comparison to the MAL molecule can be attributed to the effective two-dimensional π-stacking in the solid state imparted by the acceptor moieties with an extended π-surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. AIRS First Light Data: Eastern Mediterranean, June 14, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Four images of the Mediterranean obtained concurrently on June 14, 2002 from the three instruments that make up the Atmospheric Infrared Sounder experiment system aboard NASA's Aqua spacecraft. The system features thousands of individual channels that observe Earth in the visible, infrared and microwave spectral regions. Each channel has a unique sensitivity to temperature, moisture, surface conditions and clouds.

    This visible light image from the AIRS instrument shows a band of white clouds extending from the Adriatic Sea over Greece to the Black Sea.

    The AIRS image (figure 1) at 900 cm-1 (11 micrometers) measures actual surface or cloud top temperatures. In it, land and ocean boundaries are well defined, with land appearing as warmer (darker red) than the ocean. The band of cold high cumulus clouds appears blue, with the darkest blue most likely a large thunderstorm.

    The 150 gigahertz channel from the Humidity Sounder for Brazil instrument (figure 2) is sensitive to moisture, ice particles and precipitation. The dry land temperature is comparable to the 11 micrometer temperatures, but over ocean this channel measures the temperature of moisture in the mid troposphere. The cold, blue areas off Sicily and in the Aegean Sea represent unusually dry areas over the ocean. There, clouds appear as green filaments--likely areas of precipitation.

    The 31.4 gigahertz channel from the Advanced Microwave Sounding Unit instrument (figure 3) is not affected by clouds.

    NASA's Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua spacecraft, began sending high quality data on June 12, 2002. This 'first light' data is exceeding the expectations of scientists, confirming that the AIRS experiment is well on its way to meeting its goals of improving weather forecasting, establishing the connection between severe weather and

  15. Turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air-bubbles clustered near the wall

    NASA Astrophysics Data System (ADS)

    Lakehal, D.; Métrailler, D.; Reboux, S.

    2017-06-01

    This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which

  16. Cris-atms Retrievals Using an AIRS Science Team Version 6-like Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2014-01-01

    CrIS is the infrared high spectral resolution atmospheric sounder launched on Suomi-NPP in 2011. CrISATMS comprise the IRMW Sounding Suite on Suomi-NPP. CrIS is functionally equivalent to AIRS, the high spectral resolution IR sounder launched on EOS Aqua in 2002 and ATMS is functionally equivalent to AMSU on EOS Aqua. CrIS is an interferometer and AIRS is a grating spectrometer. Spectral coverage, spectral resolution, and channel noise of CrIS is similar to AIRS. CrIS spectral sampling is roughly twice as coarse as AIRSAIRS has 2378 channels between 650 cm-1 and 2665 cm-1. CrIS has 1305 channels between 650 cm-1 and 2550 cm-1. Spatial resolution of CrIS is comparable to AIRS.

  17. Spatio-temporal dynamics of biogeochemical processes and air-sea CO2 fluxes in the Western English Channel based on two years of FerryBox deployment

    NASA Astrophysics Data System (ADS)

    Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.

    2014-12-01

    From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured sea surface temperature (SST), sea surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to air-sea CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. Air-sea CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of air-sea CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal

  18. NASA GES DISC DAAC Data Holdings for AIRS/Aqua

    NASA Astrophysics Data System (ADS)

    Cho, S.; Phelps, C. S.; Sharma, A. K.; Qin, J.

    2002-12-01

    The Atmospheric Infrared Sounder (AIRS) is a high-resolution infrared sounder on the Earth Observing System polar-orbiting platform, EOS Aqua, which was successfully launched on May 4, 2002. AIRS is closely coupled with two microwave instruments, the Advanced Microwave Sounding Unit (AMSU-A) and the Humidity Sounder for Brazil (HSB). The data products from AIRS/AMSU-A/HSB are archived and distributed at the Distributed Active Archive Center (DAAC) located at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). AIRS has 2,378 channels measuring in the infrared range 3.74-15.4 μm and four channels measuring in the visible/near-infrared range 0.4-1.1 μm. AMSU-A is a temperature sounder that primarily provides atmospheric information in the presence of clouds, which is used to correct the AIRS infrared measurements for the effects of the clouds. Likewise, HSB provides information on snow/ice cover, precipitation, and the coarse distribution of moisture in the troposphere. Combined with simultaneous measurements from AIRS, the calibrated brightness temperature from AMSU-A and HSB is used to initialize the atmospheric moisture profile required for the retrieval of the final AIRS geophysical products. The data product suite includes level 1B combined, geolocated and calibrated radiances and will include level 2 final retrievals of surface skin temperature, surface albedo, integrated precipitable water, radiative fluxes, various cloud properties and trace gases (ozone, methane, carbon dioxide, and carbon monoxide). Furthermore, AIRS/AMSU-A/HSB will obtain atmospheric temperature profiles with an accuracy of 1K for every 1 km layer in the troposphere (1K for every 4 km layer in stratosphere) and humidity profiles with an accuracy 20% in 2 km layers from the surface up through the troposphere. Global coverage is obtained twice daily (day and night) on a 1:30 p.m. sun-synchronous orbit from a 705-km altitude. For processing convenience, the data

  19. Ultra-large number of transmission channels in space division multiplexing using few-mode multi-core fiber with optimized air-hole-assisted double-cladding structure.

    PubMed

    Watanabe, Tatsuhiko; Kokubun, Yasuo

    2014-04-07

    The ultimate number of transmission channels in a fiber for the space division multiplexing (SDM) is shown by designing an air-hole-assisted double-cladding few-mode multi-core fiber. The propagation characteristics such as the dispersion and the mode field diameter are almost equalized for all cores owing to the double cladding structure, and the crosstalk between adjacent cores is extremely suppressed by the heterogeneous arrangement of cores and the air holes surrounding the cores. Optimizing the structure of the air-hole-assisted double-cladding, ultra dense core arrangements, e.g. 129 cores in a core accommodated area with 200 μm diameter, can be realized with low crosstalk of less than -34.3 dB at 100km transmission. In this design, each core supports 3 modes i.e. LP(01), LP(11a), and LP(11b) as the transmission channels, so that the number of transmission channels can be 3-hold greater than the number of cores. Therefore, 387 transmission channels can be realized.

  20. Measurements of CO2 exchanges at the air-sediment interface during emersion: an annual budget of primary production in the Bay of Somme (Eastern English Channel, France)

    NASA Astrophysics Data System (ADS)

    Spilmont, N.; Migné, A.; Davoult, D.

    2003-04-01

    A survey of benthic primary production during periods of emersion was performed in a muddy-sand station of the Bay of Somme (Eastern English Channel, France), a megatidal estuary. Primary production and respiration were estimated by in situ measurements of carbon dioxide fluxes using infra-red analysis. Using photosynthesis versus irradiance (P-I) curves (construted in February, April, July, August and October) and an estimation for P-I parameters variations along the year, two annual budgets of gross primary production were calculated. The first one was calculated using a theoretical irradiance varying only with the period of the year and the second one using irradiance measured along the year (every minute), including natural variations due to cloudiness. For each calculation, daily potential primary production was calculated as a function of irradiance (theoretical or measured) for the period of superimposition of day and emersion The budget under natural irradiance is a quarter lower (9.58 mol.C.m-2.yr-1 vs 12.83 mol.C.m-2.yr-1 with theoretical irradiance). The fornightly variability due to the superimposition of the tidal and day/night cycles is most of the time overshadowed by the effect of variability in light intensity under natural conditions. The annual community respiration being estimated to 13.42 mol.C.m-2.yr-1, the calculation of net community production led to an heterotrophic or a balanced annual budget (-3.84 mol.C.m-2.yr-1 with measured irradiance and -0.59 mol.C.m-2.yr-1 with theoretical irradiance).

  1. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system.

    PubMed

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  2. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    SciTech Connect

    Zboray, Robert; Dangendorf, Volker; Bromberger, Benjamin; Tittelmeier, Kai; Mor, Ilan

    2015-07-15

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  3. AIRS Data Distribution at NASA GES DISC DAAC

    NASA Astrophysics Data System (ADS)

    Qin, J. C.; Cho, S.; Li, J. Y.; Phelps, C.

    2003-04-01

    The Atmospheric Infrared Sounder (AIRS) data product suite is now available at the Distributed Active Archive Center (DAAC) located at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) in Greenbelt, Maryland, USA. The Atmospheric Dynamics Data Support Team (atmdyn-dst@daac.gsfc.nasa.gov) is providing user services to help with understanding, accessing and utilizing AIRS data. These services include assistance with product ordering and distribution, access to online technical documentation and HDF-EOS format information, development of online data analysis tools, data mining, and educational resources. The AIRS data is available via the DAAC Search and Order interface (http://daac.gsfc.nasa.gov/data/), the EOS Data Gateway (http://eos.nasa.gov/imswelcome/) or the EOS Core System Datapool (ftp://g0dps01u.ecs.nasa.gov/). The AIRS data support website is located at http://daac.gsfc.nasa.gov/atmodyn/airs/. AIRS data products are a combination of AIRS, Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder for Brazil (HSB) measurements. Global coverage by the instruments is obtained twice daily (day and night) and the data along the orbit is processed into 6-minute granules. AIRS alone has 2,378 channels measuring in the infrared range 3.74-15.4 mm and four channels measuring in the visible/near-infrared range 0.4-1.1mm. A web-based AIRS data subsetter is among the tools available to perform channel subsetting for geolocated calibrated radiances (Level 1B) as well as variable subsetting for atmospheric final retrievals (Level 2). Also useful is AIRS QuickLook, a data visualization application which allows users to view AIRS Level 1B data online for a specific channel prior to ordering or downloading data. Global map is also provided along with image to show geographic coverage of the granule and flight direction of the Aqua spacecraft. AIRS Level 1B data was released in March 2003 and Level 2 products are available May 2003.

  4. Comparison of temporal properties of auditory single units in response to cochlear infrared laser stimulation recorded with multi-channel and single tungsten electrodes

    NASA Astrophysics Data System (ADS)

    Tan, Xiaodong; Xia, Nan; Young, Hunter; Richter, Claus-Peter

    2015-02-01

    Auditory prostheses may benefit from Infrared Neural Stimulation (INS) because optical stimulation allows for spatially selective activation of neuron populations. Selective activation of neurons in the cochlear spiral ganglion can be determined in the central nucleus of the inferior colliculus (ICC) because the tonotopic organization of frequencies in the cochlea is maintained throughout the auditory pathway. The activation profile of INS is well represented in the ICC by multichannel electrodes (MCEs). To characterize single unit properties in response to INS, however, single tungsten electrodes (STEs) should be used because of its better signal-to-noise ratio. In this study, we compared the temporal properties of ICC single units recorded with MCEs and STEs in order to characterize the response properties of single auditory neurons in response to INS in guinea pigs. The length along the cochlea stimulated with infrared radiation corresponded to a frequency range of about 0.6 octaves, similar to that recorded with STEs. The temporal properties of single units recorded with MCEs showed higher maximum rates, shorter latencies, and higher firing efficiencies compared to those recorded with STEs. When the preset amplitude threshold for triggering MCE recordings was raised to twice over the noise level, the temporal properties of the single units became similar to those obtained with STEs. Undistinguishable neural activities from multiple sources in MCE recordings could be responsible for the response property difference between MCEs and STEs. Thus, caution should be taken in single unit recordings with MCEs.

  5. The SPIRIT airborne instrument: a three-channel infrared absorption spectrometer with quantum cascade lasers for in situ atmospheric trace-gas measurements

    NASA Astrophysics Data System (ADS)

    Catoire, Valéry; Robert, Claude; Chartier, Michel; Jacquet, Patrick; Guimbaud, Christophe; Krysztofiak, Gisèle

    2017-09-01

    An infrared absorption spectrometer called SPIRIT (SPectromètre Infra-Rouge In situ Toute altitude) has been developed for airborne measurements of trace gases in the troposphere. At least three different trace gases can be measured simultaneously every 1.6 s using the coupling of a single Robert multipass optical cell with three Quantum Cascade Lasers (QCLs), easily interchangeable to select species depending on the scientific objectives. Absorptions of the mid-infrared radiations by the species in the cell at reduced pressure (<40 hPa), with path lengths adjustable up to 167.78 m, are quantified using an HgCdTe photodetector cooled by Stirling cycle. The performances of the instrument are assessed: a linearity with a coefficient of determination R 2 > 0.979 for the instrument response is found for CO, CH4, and NO2 volume mixing ratios under typical tropospheric conditions. In-flight comparisons with calibrated gas mixtures allow to show no instrumental drift correlated with atmospheric pressure and temperature changes (when vertical profiling) and to estimate the overall uncertainties in the measurements of CO, CH4, and NO2 to be 0.9, 22, and 0.5 ppbv, respectively. In-flight precision (1 σ) for these species at 1.6 s sampling is 0.3, 5, and 0.3 ppbv, respectively.

  6. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  7. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  8. A Solution-Processable Liquid-Crystalline Semiconductor for Low-Temperature-Annealed Air-Stable N-Channel Field-Effect Transistors.

    PubMed

    Ozdemir, Resul; Choi, Donghee; Ozdemir, Mehmet; Kim, Hyekyoung; Kostakoğlu, Sinem Tuncel; Erkartal, Mustafa; Kim, Hyungsug; Kim, Choongik; Usta, Hakan

    2017-04-05

    A new solution-processable and air-stable liquid-crystalline n-channel organic semiconductor (2,2'-(2,8-bis(5-(2-octyldodecyl)thiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile, α,ω-2OD-TIFDMT) with donor-acceptor-donor (D-A-D) π conjugation has been designed, synthesized, and fully characterized. The new semiconductor exhibits a low LUMO energy (-4.19 eV) and a narrow optical bandgap (1.35 eV). The typical pseudo-focal-conic fan-shaped texture of a hexagonal columnar liquid-crystalline (LC) phase was observed over a wide temperature range. The spin-coated semiconductor thin films show the formation of large (≈0.5-1 μm) and highly crystalline platelike grains with edge-on molecular orientations. Low-temperature-annealed (50 °C) top-contact/bottom-gate OFETs have provided good electron mobility values as high as 0.11 cm(2)  (V s)(-1) and high Ion /Ioff ratios of 10(7) to 10(8) with excellent ambient stability. This indicates an enhancement of two orders of magnitude (100×) when compared with the β-substituted parent semiconductor, β-DD-TIFDMT (2,2'-(2,8-bis(3-dodecylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile). The current rational alkyl-chain engineering route offers great advantages for D-A-D π-core coplanarity in addition to maintaining good solubility in organic solvents, and leads to favorable optoelectronic/physicochemical characteristics. These remarkable findings demonstrate that α,ω-2OD-TIFDMT is a promising semiconductor material for the development of n-channel OFETs on flexible plastic substrates and LC-state annealing of the columnar liquid crystals can lower the electron mobility for transistor-type charge transport. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra

    NASA Technical Reports Server (NTRS)

    McMillian, W. Wallace; Strow, L. Larrabee; Revercomb, H.; Knuteson, R.; Thompson, A.

    2003-01-01

    This final report summarizes all research activities and publications undertaken as part of NASA Atmospheric Chemistry and Modeling Analysis Program (ACMAP) Grant NAG-1-2022, 'A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra'. Major project accomplishments include: (1) analysis of more than 300,000 AERI spectra from the ARM SGP site yielding a 5-year (1998-2002) timeseries of CO retrievals from the Lamont, OK AERI; (2) development of a prototype CO profile retrieval algorithm for AERI spectra; (3) validation and publication of the first CO retrievals from the Scanning High-resolution Interferometer Sounder (SHIS); and (4) development of a prototype AERI tropospheric O3 retrieval algorithm. Compilation and publication of the 5-year Lamont, OK timeseries is underway including a new collaboration with scientists at the Lawrence Berkeley National Laboratory. Public access to this data will be provided upon article submission. A comprehensive CO analysis of the archive of HIS spectra of remains as the only originally proposed activity with little progress. The greatest challenge faced in this project was motivating the University of Wisconsin Co-Investigators to deliver their archived HIS and AERIOO data along with the requisite temperature and water vapor profiles in a timely manner. Part of the supplied HIS dataset from ASHOE may be analyzed as part of a Master s Thesis under a separate project. Our success with the SAFARI 2000 SHIS CO analysis demonstrates the utility of such aircraft remote sensing data given the proper support from the instrument investigators. In addition to the PI and Co-I s, personnel involved in this CO climatology project include one Post Doctoral Fellow, one Research Scientist, two graduate students, and two undergraduate students. A total of fifteen presentations regarding research related to this

  10. Simulations of transit spectra of Hot Jupiters in the wavelength range of the CARMENES infrared channel (0.96-1.7μm)

    NASA Astrophysics Data System (ADS)

    Sanchez-Lopez, A.; Lopez-Puertas, M.; Funke, B.; Amado, P. J.; Lara, L. M.; Salz, M.

    2017-03-01

    Transmission spectroscopy in the primary transit of an exoplanet has proven to be very useful for obtaining information of exoplanet atmospheres from both ground-based facilities and space telescopes. The Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrographs (CARMENES) instrument has started being operative in early 2016 and here, we explore its capabilities for extracting information about Hot Jupiter atmospheres taking advantage of its ultra-stability, wide spectral interval (0.52 ‑ 1.7 μm), and high spectral resolution (R = 82000). We present some preliminary results of our simulations of the primary transit transmission spectra of HD 189733b in the 1 ‑ 1.7 μm m spectral range where several molecules, such as water vapour, carbon monoxide, carbon dioxide and methane, have strong ro-vibrational bands. Sensitivity studies are presented for the range of expected concentrations of these species, as well as for the expected range of temperature profiles. Our simulations have been performed using the line-by-line Karlsruhe Optimized and Precise Radiative Transfer Algorithm (KOPRA) adapted for exo-atmospheres.

  11. Infrared Presensitization Photography.

    DTIC Science & Technology

    1984-09-01

    RD-R146 968 INFRARED PREtENSITIZATION PHOTOGRAPHYMU AIR FORCE 1/~WEAPONS LAB KIRTLAND RFB NM J M GERRY SEP 847 RRFWL-TR-84-92 UNCLASSIFIED F/G 14/5... Results ........................................... 144 Discussion ............................................ 149 j8. CONCLUSIONS AND DISCUSSION...62 3.13. Characteristic curve (specular) for 5369 ................ 62 3.14. Results from Naor’s test

  12. Infrared drying of strawberry.

    PubMed

    Adak, Nafiye; Heybeli, Nursel; Ertekin, Can

    2017-03-15

    The effects of different drying conditions, such as infrared power, drying air temperature and velocity, on quality of strawberry were evaluated. Drying time decreased with increased infrared power, air temperature and velocity. An increase in power from 100W to 300W, temperature from 60 to 80°C and velocity from 1.0m.s(-1) to 2.0m.s(-1) decreased fruit color quality index. For total phenol and anthocyanin content, 300W, 60°C, and 1.0m.s(-1) were superior to the other experimental conditions. The drying processes increased N, P and K and decreased Ca, Mg, Fe, Mn, Zn and Cu contents. The optimal conditions to preserve nutrients in infrared drying of strawberry were 200W, 100°C and 1.5m.s(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  14. Method for leveling the signal-to-noise ratio in multichannel functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamada, Toru; Umeyama, Shinji; Kamoshida, Atsushi

    2017-02-01

    The difference in signal-to-noise ratio (SNR) within functional near-infrared spectroscopic (fNIRS)-measurement channels makes it difficult to compare the significance of the signal amplitude in an individual channel against the baseline or against signals in other channels. The difference in SNR mainly originates from the difference in light loss due to the hair coverage or the optode-scalp contact. During the initial calibration of most commercial fNIRS equipment, the detected signals in different channels are differently amplified such that the system effectively utilizes a dynamic range for measurement. While different amplification rates among the channels realize almost equal signal intensities, they also differently amplify the detection noises. This results in different apparent noises in the fNIRS signals between channels. In order to level the SNRs in all the measurement channels, the system needs to equalize the light intensities received by the detectors instead of changing the signal amplification rates. To realize this novel procedure for leveling the SNR among the channels, we developed an fNIRS system equipped with an optical attenuator at each source and detector. A systematic procedure for modulating the attenuators to level SNR over all channels was mathematically formulated, and the procedure was examined using an optical phantom with a surface covered with air.

  15. Photodissociation of gaseous CH{sub 3}COSH at 248 nm by time-resolved Fourier-transform infrared emission spectroscopy: Observation of three dissociation channels

    SciTech Connect

    Hu, En-Lan; Tsai, Po-Yu; Fan, He; Lin, King-Chuen

    2013-01-07

    Upon one-photon excitation at 248 nm, gaseous CH{sub 3}C(O)SH is dissociated following three pathways with the products of (1) OCS + CH{sub 4}, (2) CH{sub 3}SH + CO, and (3) CH{sub 2}CO + H{sub 2}S that are detected using time-resolved Fourier-transform infrared emission spectroscopy. The excited state {sup 1}(n{sub O}, {pi}{sup *}{sub CO}) has a radiative lifetime of 249 {+-} 11 ns long enough to allow for Ar collisions that induce internal conversion and enhance the fragment yields. The rate constant of collision-induced internal conversion is estimated to be 1.1 Multiplication-Sign 10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1}. Among the primary dissociation products, a fraction of the CH{sub 2}CO moiety may undergo further decomposition to CH{sub 2}+ CO, of which CH{sub 2} is confirmed by reaction with O{sub 2} producing CO{sub 2}, CO, OH, and H{sub 2}CO. Such a secondary decomposition was not observed previously in the Ar matrix-isolated experiments. The high-resolution spectra of CO are analyzed to determine the ro-vibrational energy deposition of 8.7 {+-} 0.7 kcal/mol, while the remaining primary products with smaller rotational constants are recognized but cannot be spectrally resolved. The CO fragment detected is mainly ascribed to the primary production. A prior distribution method is applied to predict the vibrational distribution of CO that is consistent with the experimental findings.

  16. Real-Time Assessment of Cardiac Perfusion, Coronary Angiography, and Acute Intravascular Thrombi Using Dual-Channel Near-Infrared Fluorescence Imaging

    PubMed Central

    Tanaka, Eiichi; Chen, Frederick Y.; Flaumenhaft, Robert; Graham, Gwenda J.; Laurence, Rita G.; Frangioni, John V.

    2009-01-01

    Objectives We have developed an image-guided surgery system based on invisible near-infrared (NIR) fluorescent light. Presently, the only clinically-available NIR fluorophore is indocyanine green (ICG), which fluoresces at ≈ 800 nm and is used for coronary angiography. Our objective was to determine if methylene blue (MB), already FDA-approved for other indications, has useful NIR fluorescence properties for image-guided cardiac surgery. Methods The optical properties of MB were measured after dissolution in 100% serum. Biodistribution and clearance were quantified in organs and tissues after intravenous bolus injection of 2 mg/kg MB in N = 3 rats. Coronary arteriography and cardiac perfusion were imaged in real-time after intravenous bolus injection of 1 mg/kg MB in N = 5 pigs with coronary obstructions. Coronary angiography and acute thrombi were assessed using 800 nm fluorophores, ICG and IR-786-labeled platelets, respectively. Results The peak absorbance and emission of MB as a NIR fluorophore occur at 667 nm and 686 nm, respectively. After intravenous injection, MB provides highly sensitive coronary angiography. A lipophilic cation, MB is extracted rapidly into tissue, with myocardium displaying unusually high uptake. MB permits real-time visualization and quantitative assessment of myocardial perfusion. Because of absent spectral overlap, use of two independent fluorophores on our imaging system permits simultaneous quantification of perfusion, venous drainage and/or intravascular thrombi. Conclusions MB is an effective NIR fluorophore that provides direct visualization of coronary arteriography and cardiac perfusion. In conjunction with ≈ 800 nm NIR fluorophores, important functional assessments during cardiac surgery are also possible. PMID:19577070

  17. SPECIES: a multi-channel infrared laser spectrometer with optical-feedback cavity-enhanced absorption for in-situ balloon-borne and airborne measurements

    NASA Astrophysics Data System (ADS)

    Jacquet, Patrick; Catoire, Valery; Chartier, Michel; Robert, Claude; Krysztofiak, Gisele; Huret, Nathalie; Romanini, Daniele

    2017-04-01

    Over the last decades, thanks to significant technological advances in measurement techniques, our understanding of the chemistry and dynamics of the upper troposphere and stratosphere has progressed significantly. However some key questions remain unsolved and new ones arise in the climate change context. The full recovery of the ozone layer in a period of halogens decrease and N2O increase (and the delay of this recovery), the impact of the climate change on the stratosphere and the role of this one as a feedback are very uncertain. To address these challenges, one needs instruments able to measure a wide variety of trace gases simultaneously with a wide vertical range, combined to chemical and dynamical modelling at different scales. LPC2E and LIPHY laboratories are developing a new balloon-borne and airborne instrument: SPECIES (SPECtromètre Infrarouge à lasErs in Situ). Based on the Optical Feedback Cavity Enhanced Spectroscopy (OF-CEAS) technique combined with mid-infrared quantum or interband cascade lasers (QCLs or ICLs), this instrument will offer unprecedented performances in terms of vertical extent of the measurements, from ground to the middle stratosphere, and number of molecular species simultaneously measured with sub-ppb detection limits (e.g. O3, N2O, HNO3, NH3, H2O2, HCl, HOCl,CF2O, CH4, CH2O, CO, CO2, OCS, SO2). Due to high frequency measurement (>0.5 Hz) it shall offer very high spatial resolution (a few meters).

  18. Infrared Sky Surveys

    NASA Astrophysics Data System (ADS)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  19. Molecular Basis of Infrared Detection by Snakes

    PubMed Central

    Gracheva, Elena O.; Ingolia, Nicolas T.; Kelly, Yvonne M.; Cordero-Morales, Julio F.; Hollopeter, Gunther; Chesler, Alexander T.; Sánchez, Elda E.; Perez, John C.; Weissman, Jonathan S.; Julius, David

    2010-01-01

    Snakes possess a unique sensory system for detecting infrared radiation, enabling them to generate a ‘thermal image’ of predators or prey. Infrared signals are initially received by the pit organ, a highly specialized facial structure that is innervated by nerve fibers of the somatosensory system. How this organ detects and transduces infrared signals into nerve impulses is not known. Here we use an unbiased transcriptional profiling approach to identify TRPA1 channels as infrared receptors on sensory nerve fibers that innervate the pit organ. TRPA1 orthologues from pit bearing snakes (vipers, pythons, and boas) are the most heat sensitive vertebrate ion channels thus far identified, consistent with their role as primary transducers of infrared stimuli. Thus, snakes detect infrared signals through a mechanism involving radiant heating of the pit organ, rather than photochemical transduction. These findings illustrate the broad evolutionary tuning of TRP channels as thermosensors in the vertebrate nervous system. PMID:20228791

  20. Sulfur Dioxide Plume from Mt. Etna Eruption 2002 as Detected with AIRS Data

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Mt. Etna, a volcano on the island of Sicily, erupted on October 26, 2002. Preliminary analysis of data taken by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on October 28 shows the instrument can provide an excellent means to study the evolution and structure of the sulfur dioxide plume emitted from volcanoes. These data also demonstrate that AIRS can be used to obtain the total mass of sulfur dioxide injected into the atmosphere during a volcanic event, information that may help us to better understand these dangerous natural occurrences in the future.

    The image clearly shows the sulfur dioxide plume. This image was created by comparing data taken at two different frequencies, or channels, and creating one image that highlights the differences between these two channels. Both channels are sensitive to water vapor, but one of the channels is also sensitive to sulfur dioxide. By subtracting out the common water vapor signal in both channels, the sulfur dioxide feature remains and shows up as an enhancement in the difference image.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  1. Sulfur Dioxide Plume from Mt. Etna Eruption 2002 as Detected with AIRS Data

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Mt. Etna, a volcano on the island of Sicily, erupted on October 26, 2002. Preliminary analysis of data taken by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on October 28 shows the instrument can provide an excellent means to study the evolution and structure of the sulfur dioxide plume emitted from volcanoes. These data also demonstrate that AIRS can be used to obtain the total mass of sulfur dioxide injected into the atmosphere during a volcanic event, information that may help us to better understand these dangerous natural occurrences in the future.

    The image clearly shows the sulfur dioxide plume. This image was created by comparing data taken at two different frequencies, or channels, and creating one image that highlights the differences between these two channels. Both channels are sensitive to water vapor, but one of the channels is also sensitive to sulfur dioxide. By subtracting out the common water vapor signal in both channels, the sulfur dioxide feature remains and shows up as an enhancement in the difference image.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  2. Cortical activation changes and sub-threshold affective symptoms are associated with social functioning in a non-clinical population: A multi-channel near-infrared spectroscopy study.

    PubMed

    Fujimaki, Koichiro; Takemoto, Hidenori; Morinobu, Shigeru

    2016-02-28

    Few studies have examined the relationship between social function and brain activation in non-clinical populations. The aim of the present study was to assess this relationship and examine the underlying cortical mechanisms in a non-clinical population. Eighty healthy volunteers performed a serial arithmetic task according to the Uchida-Kraepelin performance test while hemoglobin concentration changes were assessed on the surface of the prefrontal cortex (PFC) using 32-channel near-infrared spectroscopy. Participants were also assessed for quality of life (QOL) using the Short-Form 36-item Questionnaire (SF-36), for affective symptoms using the Zung Self-rating Depression Scale (SDS), for apathy using the Apathy Scale, for feelings of stress using the Stress Arousal Checklist (SACL), and for task performance using the number of answers in a serial arithmetic task. Activity in the frontopolar PFC displayed a significant positive correlation with social functioning on the SF-36. SDS and SACL scores correlated negatively with social functioning. Furthermore, in multiple regression analysis, social functioning was predicted by activity of the frontopolar PFC and SDS scores. These results suggest that the association between changes in cortical activation and sub-threshold affective symptoms may objectively identify individuals with QOL on social functioning.

  3. Structure and predissociation of the 3psigma(u)D (3)Sigma(u) (+) Rydberg state of N(2): first extreme-ultraviolet and new near-infrared observations, with coupled-channels analysis.

    PubMed

    Lewis, B R; Baldwin, K G H; Heays, A N; Gibson, S T; Sprengers, J P; Ubachs, W; Fujitake, M

    2008-11-28

    The 3psigma(u)D (3)Sigma(u) (+) Rydberg state of N(2) is studied experimentally using two high-resolution spectroscopic techniques. First, the forbidden D (3)Sigma(u) (+)-X (1)Sigma(g) (+) transition is observed for the first time via the (0,0) band of (14)N(2) and the (1,0) band of (15)N(2), using 1 extreme-ultraviolet +1 ultraviolet two-photon-ionization laser spectroscopy. Second, the Rydberg-Rydberg transition D (3)Sigma(u) (+)-E (3)Sigma(g) (+) is studied using near-infrared diode-laser photoabsorption spectroscopy, thus extending the previous measurements of Kanamori et al. [J. Chem. Phys. 95, 80 (1991)], to higher transition energies, and thereby revealing the (2,2) and (3,3) bands. The combined results show that the D(v=0-3) levels exhibit rapidly increasing rotational predissociation as v increases, spanning nearly four orders of magnitude. The D-state level structure and rotational predissociation signature are explained by means of a coupled-channels model which considers the electrostatically coupled (3)Pi(u) Rydberg-valence manifold, together with a pure-precession L-uncoupling rotational interaction between the 3psigma(u)D (3)Sigma(u) (+) and 3ppi(u)G (3)Pi(u) Rydberg p-complex components.

  4. Infrared source test

    SciTech Connect

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  5. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  6. Evaluation of Vertically Resolved Water Winds from AIRS using Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Dobkowski, Edwin C.; Gregorich, David T.

    2005-01-01

    The knowledge of wind velocity as a function of altitude is key to weather forecast improvements. The ability of hyperspectral sounders in principle to measure vertically resolved water winds, which has long been recognized, has been tested with Atmospheric Infrared Sounder (AIRS) data. AIRS retrievals of total column water above 300 mb have been correlated with the radiosonde upper-tropospheric wind velocity and moisture data. The excellent correlation is illustrated with results obtained from hurricane Katrina and from the western United States. AIRS is a hyperspectral infrared sounder in low Earth orbit. It was launched in May 2002. We illustrate the use of AIRS data for the measurement of upper tropospheric water by using the 2387/cm CO2 R-branch channel and the 1551/cm water vapor channel. The 2387/cm channel measures the temperature at 300 mb totally independent of water vapor. The weighting function of the 1551/cm channel peaks at 300 mb only under moist conditions; the peak shifts downward (higher temperature) for less water and upward (lower temperature) for more water. The difference between the brightness temperatures bt2387 and bt1551 cancels the local several degree weather related variability of the temperature and measures the component due to the water vapor at 300 mb.

  7. Evaluation of Vertically Resolved Water Winds from AIRS using Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Dobkowski, Edwin C.; Gregorich, David T.

    2005-01-01

    The knowledge of wind velocity as a function of altitude is key to weather forecast improvements. The ability of hyperspectral sounders in principle to measure vertically resolved water winds, which has long been recognized, has been tested with Atmospheric Infrared Sounder (AIRS) data. AIRS retrievals of total column water above 300 mb have been correlated with the radiosonde upper-tropospheric wind velocity and moisture data. The excellent correlation is illustrated with results obtained from hurricane Katrina and from the western United States. AIRS is a hyperspectral infrared sounder in low Earth orbit. It was launched in May 2002. We illustrate the use of AIRS data for the measurement of upper tropospheric water by using the 2387/cm CO2 R-branch channel and the 1551/cm water vapor channel. The 2387/cm channel measures the temperature at 300 mb totally independent of water vapor. The weighting function of the 1551/cm channel peaks at 300 mb only under moist conditions; the peak shifts downward (higher temperature) for less water and upward (lower temperature) for more water. The difference between the brightness temperatures bt2387 and bt1551 cancels the local several degree weather related variability of the temperature and measures the component due to the water vapor at 300 mb.

  8. The TIROS-N high resolution infrared radiation sounder

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1979-01-01

    The high-resolution infrared radiation sounder (HIRS/2) was developed and flown on the Television and Infrared Observation Satellite, N Series (TIROS-N) as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow spectral channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel, and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic performance of the instrument in test is described. Early orbital information from the TIROS-N launched on October 13, 1978 are given and some observations on system quality are made.

  9. Modeling of optical wireless scattering communication channels over broad spectra.

    PubMed

    Liu, Weihao; Zou, Difan; Xu, Zhengyuan

    2015-03-01

    The air molecules and suspended aerosols help to build non-line-of-sight (NLOS) optical scattering communication links using carriers from near infrared to visible light and ultraviolet bands. This paper proposes channel models over such broad spectra. Wavelength dependent Rayleigh and Mie scattering and absorption coefficients of particles are analytically obtained first. They are applied to the ray tracing based Monte Carlo method, which models the photon scattering angle from the scatterer and propagation distance between two consecutive scatterers. Communication link path loss is studied under different operation conditions, including visibility, particle density, wavelength, and communication range. It is observed that optimum communication performances exist across the wavelength under specific atmospheric conditions. Infrared, visible light and ultraviolet bands show their respective features as conditions vary.

  10. Shelf-life of infrared dry-roasted almonds

    USDA-ARS?s Scientific Manuscript database

    Infrared heating was recently used to develop a more efficient roasting technology than traditional hot air roasting. Therefore, in this study, we evaluated the shelf-life of almonds roasted with three different approaches, namely infrared [IR], sequential infrared and hot air [SIRHA], and regular h...

  11. Experimental investigation of the effect of variously-shaped ribs on local heat transfer on the outer wall of the turning portion of a U-channel inside solar air heater

    NASA Astrophysics Data System (ADS)

    Salameh, Tareq; Alami, Abdul Hai; Sunden, Bengt

    2016-03-01

    In the present work, an experimental investigation of convective heat transfer and pressure drop was carried out for the turning portion of a U-channel where the outer wall was equipped with ribs. The shape of the ribs was varied. The investigation aims to give guidelines for improving the thermo-hydraulic performance of a solar air heater at the turning portion of a U-channel. Both the U-channel and the ribs were made in acrylic material to allow optical access for measuring the surface temperature by using a high-resolution technique based on narrow band thermochromic liquid crystals (TLC R35C5 W) and a CCD camera placed to face the turning portion of the U-channel. The uncertainties were estimated to 5 and 7 % for the Nusselt number and friction factor, respectively. The pressure drop was approximately the same for all the considered shapes of the ribs while the dimpled rib case gave the highest heat transfer coefficient while the grooved rib presented the highest performance index.

  12. A primary study on finding hot groundwater using infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Qiao, Y.; Wu, Q.

    Hot groundwater is a kind of valuable natural resources to be explored utilized. Shanxi Province, located in the eastern Loess Plateau of China, is rich in geothermal resources, most of which was found in irrigation well drilling or geological survey. Basic study is weak. Now new developed Remote Sensing technique provides geothermal study with an advanced way. Air-RS information of thermal infrared and dada from thermal channel of Meteorological Landset AVHRR has been used widely. A thermal infrared channel (TM6) was installed in the U. S. second Landset, Its resolving power of space is as high as 120 m, 10 times more t an one ofh AVHRR. A Landset earth recourses launched by China and Brazil (CBERS-1) in 1999, including a spectrum of thermal infrared. It is paid a great interested and attention to survey geothermal resources using thermal infrared. This article is a brief introduction of finding hot groundwater with on the bases of differences of thermal radiation of objects reflected by thermal infrared in the Landset, and treated with HIS colors changes. This study provides an advanced way widely used to exploit hot groundwater and to promote the development of tourism and geothermal medical in China.

  13. AIRS/AMSU-A/HSB Data On-demand Subsetting and Visualization Services at NASA GES DISC DAAC

    NASA Astrophysics Data System (ADS)

    Li, J.; Cho, S.; Sun, D.; Qin, J.; Sharma, A. K.

    2002-12-01

    The Atmospheric Infrared Sounder (AIRS) is a high-resolution infrared sounder closely coupled with AMSU-A (Advanced Microwave Sounding Unit-A) and HSB (Humidity Sounder for Brazil) on EOS Aqua spacecraft launched on May 4, 2002. The data products from AIRS/AMSU-A/HSB will be archived and distributed at the Goddard Distributed Active Archive Center (GDAAC) located in the NASA Goddard Earth Sciences Data and Information Services Center (GES DAAC). The ADDST is developing tools to read, visualize, analyze and reformat AIRS/AMSU-A/HSB data. The web-based AIRS on-the-fly/on-demand subsetter will be available to perform channel/variable subsetting and restructuring for Level1B (Calibrated Radiances) and Level2 (Atmospheric Retrievals) data products. One can narrow down criteria to subset data files with desired channels and variables and then download the subsetted file. AIRS QuickLook allows users to view AIRS/HSB/AMSU Level-1B data online for a specific channel prior to ordering or downloading data. Global map is also provided along with image to show geographic coverage of the granule and flight direction of the spacecraft. The Atmospheric Dynamics Data Support Team (ADDST) at the GES DISC/DAAC is providing various services to assist users in understanding, accessing, and using AIRS data product. Information on AIRS data and data analysis tools can be found at AIRS data support informational web site (http://daac.gsfc.nasa.gov/atmodyn/airs/ ) that provides access to various technical online documents, such as, readmes, user's guides, instrument guides, images from AIRS/AMSU-A/HSB data, product search and ordering interfaces, HDF-EOS format information, format conversion software, online data analysis tools, other AIRS related web links and more. Other data support services provided by the ADDST are assist with data mining, helpdesk for user questions on data and information, data ordering, and educational resources.

  14. Spectral Cloud-Filtering of AIRS Data: Non-Polar Ocean

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Barron, Diana

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) is a grating array spectrometer which covers the thermal infrared spectral range between 640 and 1700/cm. In order to retain the maximum radiometric accuracy of the AIRS data, the effects of cloud contamination have to be minimized. We discuss cloud filtering which uses the high spectral resolution of AIRS to identify about 100,000 of 500,000 non-polar ocean spectra per day as relatively "cloud-free". Based on the comparison of surface channels with the NCEP provided global real time sst (rtg.sst), AIRS surface sensitive channels have a cold bias ranging from O.5K during the day to 0.8K during the night. Day and night spatial coherence tests show that the cold bias is due to cloud contamination. During the day the cloud contamination is due to a 2-3% broken cloud cover at the 1-2 km altitude, characteristic of low stratus clouds. The cloud-contamination effects surface sensitive channels only. Cloud contamination can be reduced to 0.2K by combining the spectral filter with a spatial coherence threshold, but the yield drops to 16,000 spectra per day. AIRS was launched in May 2002 on the Earth Observing System (EOS) Aqua satellite. Since September 2002 it has returned 4 million spectra of the globe each day.

  15. The structure of oleamide films at the aluminum/oil interface and aluminum/air interface studied by Sum Frequency Generation (SFG) vibrational spectroscopy and Reflection Absorption Infrared Spectroscopy (RAIRS).

    PubMed

    Casford, Michael T L; Davies, Paul B

    2009-08-01

    The structure of oleamide (cis-9-octadecenamide) films on aluminum has been investigated by sum frequency generation vibrational spectroscopy (SFG) and reflection absorption infrared spectroscopy (RAIRS). Three different film deposition strategies were investigated: (i) films formed by equilibrium adsorption from oleamide solutions in oil, (ii) Langmuir-Blodgett films cast at 1 and 25 mN m(-1), (iii) thick spin-cast films. Both L-B and spin-cast films were examined in air and under oil. The adsorbate formed in the 1 mN m(-1) film in air showed little orientational order. For this film, the spectroscopic results and the ellipsometric thickness point to a relatively conformationally disordered monolayer that is oriented principally in the plane of the interface. Direct adsorption to the metal interface from oil results in SFG spectra of oleamide that are comparable to those observed for the 1 mN m(-1) L-B film in air. In contrast, SFG and RAIRS results for the 25 mN m(-1) film in air and SFG spectra of the spin-cast film in air both show strong conformational ordering and orientational alignment normal to the interface. The 25 mN m(-1) film has an ellipsometric thickness almost twice that of the 1 mN m(-1) L-B film. Taken in combination with the spectroscopic results, this is indicative of a well packed monolayer in air in which the hydrocarbon chain is in an essentially defect-free extended conformation with the methyl terminus oriented away from the surface. A similar structure is also deduced for the surface of the spin-cast film in air. Upon immersion of the 25 mN m(-1) L-B film in oil the SFG spectra show that this film rapidly adopts a relatively disordered structure similar to that seen for the 1 mN m(-1) L-B film in air. Immersion of the spin-cast film in oil results in the gradual disordering of the amide film over a period of several days until the observed spectra become essentially identical to those observed for direct adsorption of oleamide from oil.

  16. Near-real time infrared observations of acidic sulfates in /open quotes/clean/close quotes/ air at Mauna Loa, Hawaii

    SciTech Connect

    Johnson, S.A.; Kumar, R.

    1988-01-01

    Sulfuric acid and its partially or completely neutralized salts with ammonia are believed to result from the oxidation of sulfur dioxide in cloud water and in other heterogeneous media present in the atmosphere. Due to the natural abundance of ammonia and the ubiquitous presence of sulfur in the atmosphere, (NH/sub 4/)/sub 2/SO/sub 4/ is commonly the dominant chemical species in the ambient aerosol. The amounts of ammonium sulfates are expected to be very low in areas far removed from anthropogenic emissions of sulfur dioxide. The chemical composition of submicrometer aerosol particles was determined at the Mauna Loa Observatory (MLO) on Mauna Loa in Hawaii during an eight-day period in August 1986. The MLO site was selected for this measurement because it is the only ground-based aerosol observatory in the remote Pacific Ocean that allows extended sampling of aerosols in the free troposphere. Measurements were made using an attenuated total internal reflection (ATR) impactor system. The impactor collects size-fractionated submicrometer particles for analysis by ATR infrared spectroscopy. The collected samples were analyzed using an on-site Perkin Elmer dispersive infrared spectrophotometer. Infrared absorption spectra (4000 to 250 cm/sup /minus/1/) of the samples were obtained within minutes after the ATR substrates were removed from the impactor. Absorbances were measured for sulfate, nitrate, and ammonium. Acidic sulfate showed infrared absorbances at 600 cm/sup /minus/1/ and 1210 cm/sup /minus/1/ in addition. Results showed that ammonium sulfate was the dominant chemical species in the submicrometer particles. Over half of the nearly 40 samples collected showed an acidic sulfate component. Consecutive samples were found to change from completely neutralized ammonium sulfate to acidic ammonium sulfates in a two-hour time interval. 5 refs., 1 tab.

  17. Average Tropical Relative Humidity from AIRS, Dec-Feb 2002-2005

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The average tropospheric relative humidity from AIRS for the four December-February periods during 2002 through 2005.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  18. Average Tropical Relative Humidity from AIRS, Dec-Feb 2002-2005

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The average tropospheric relative humidity from AIRS for the four December-February periods during 2002 through 2005.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  19. [The progress in retrieving land surface temperature based on thermal infrared and microwave remote sensing technologies].

    PubMed

    Zhang, Jia-Hua; Li, Xin; Yao, Feng-Mei; Li, Xian-Hua

    2009-08-01

    Land surface temperature (LST) is an important parameter in the study on the exchange of substance and energy between land surface and air for the land surface physics process at regional and global scales. Many applications of satellites remotely sensed data must provide exact and quantificational LST, such as drought, high temperature, forest fire, earthquake, hydrology and the vegetation monitor, and the models of global circulation and regional climate also need LST as input parameter. Therefore, the retrieval of LST using remote sensing technology becomes one of the key tasks in quantificational remote sensing study. Normally, in the spectrum bands, the thermal infrared (TIR, 3-15 microm) and microwave bands (1 mm-1 m) are important for retrieval of the LST. In the present paper, firstly, several methods for estimating the LST on the basis of thermal infrared (TIR) remote sensing were synthetically reviewed, i. e., the LST measured with an ground-base infrared thermometer, the LST retrieval from mono-window algorithm (MWA), single-channel algorithm (SCA), split-window techniques (SWT) and multi-channels algorithm(MCA), single-channel & multi-angle algorithm and multi-channels algorithm & multi-angle algorithm, and retrieval method of land surface component temperature using thermal infrared remotely sensed satellite observation. Secondly, the study status of land surface emissivity (epsilon) was presented. Thirdly, in order to retrieve LST for all weather conditions, microwave remotely sensed data, instead of thermal infrared data, have been developed recently, and the LST retrieval method from passive microwave remotely sensed data was also introduced. Finally, the main merits and shortcomings of different kinds of LST retrieval methods were discussed, respectively.

  20. Calculation of gas temperature at the outlet of the combustion chamber and in the air-gas channel of a gas-turbine unit by data of acceptance tests in accordance with ISO

    NASA Astrophysics Data System (ADS)

    Kostyuk, A. G.; Karpunin, A. P.

    2016-01-01

    This article describes a high accuracy method enabling performance of the calculation of real values of the initial temperature of a gas turbine unit (GTU), i.e., the gas temperature at the outlet of the combustion chamber, in a situation where manufacturers do not disclose this information. The features of the definition of the initial temperature of the GTU according to ISO standards were analyzed. It is noted that the true temperatures for high-temperature GTUs is significantly higher than values determined according to ISO standards. A computational procedure for the determination of gas temperatures in the air-gas channel of the gas turbine and cooling air consumptions over blade rims is proposed. As starting equations, the heat balance equation and the flow mixing equation for the combustion chamber are assumed. Results of acceptance GTU tests according to ISO standards and statistical dependencies of required cooling air consumptions on the gas temperature and the blade metal are also used for calculations. An example of the calculation is given for one of the units. Using a developed computer program, the temperatures in the air-gas channel of certain GTUs are calculated, taking into account their design features. These calculations are performed on the previously published procedure for the detailed calculation of the cooled gas turbine subject to additional losses arising because of the presence of the cooling system. The accuracy of calculations by the computer program is confirmed by conducting verification calculations for the GTU of the Mitsubishi Comp. and comparing results with published data of the company. Calculation data for temperatures were compared with the experimental data and the characteristics of the GTU, and the error of the proposed method is estimated.

  1. Near infrared leaf reflectance modeling

    NASA Technical Reports Server (NTRS)

    Parrish, J. B.

    1985-01-01

    Near infrared leaf reflectance modeling using Fresnel's equation (Kumar and Silva, 1973) and Snell's Law successfully approximated the spectral curve for a 0.25-mm turgid oak leaf lying on a Halon background. Calculations were made for ten interfaces, air-wax, wax-cellulose, cellulose-water, cellulose-air, air-water, and their inverses. A water path of 0.5 mm yielded acceptable results, and it was found that assignment of more weight to those interfaces involving air versus water or cellulose, and less to those involving wax, decreased the standard deviation of the error for all wavelengths. Data suggest that the air-cell interface is not the only important contributor to the overall reflectance of a leaf. Results also argue against the assertion that the near infrared plateau is a function of cell structure within the leaf.

  2. Wakefield Generation in Plasma Channels

    NASA Astrophysics Data System (ADS)

    Volfbeyn, P.; Leemans, W. P.; Brussaard, G. J. H.; Esarey, E.; Wurtele, J. S.

    1999-11-01

    Laser wakefield generation in plasma channels is experimentally studied. Plasma channels, produced using the ignitor-heater method [1] in hydrogen and nitrogen, have been used to guide intense (> 5 x 10^17 W/cm^2), short (<70 fs) infrared (800 nm) laser pulses. Laser pulses injected into these channels produce a plasma wake with a phase velocity close to the speed of light. The transverse density profile of the channel determines the properties of the laser mode as well as of the plasma wave mode. The longitudinally integrated properties of the channel are measured with a Mach-Zehnder interferometer using 400 nm radiation. The probe and reference beam are combined directly on a CCD camera to pro