Science.gov

Sample records for airs infrared sounder

  1. Status of the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Miller, Christopher R.

    1996-12-01

    The Atmospheric Infrared Sounder (AIRS) is being developed for the NASA Earth Observing System (EOS) program with a scheduled launch on the first post meridian platform in the year 2000. AIRS is designed to provide both new and more accurate data about the atmosphere, land, and oceans for application to climate studies and weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer layers in the troposphere and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on very sensitive passive infrared remote sensing using a precisely calibrated, high resolution grating spectrometer operating in the 3.7 micrometers to 15.4 micrometers region. The instrument concept uses passively cooled multi-aperture eschelle array spectrometer approach in combination with advanced state-of-the-art focal plane and cryogenic refrigerator technology to achieve unparalleled performance capability in a practical long life configuration. AIRS is a key component of NASA's global change research program, and is expected to play an important role in the converged National Polar Orbiting Environmental Satellite System, now under study. This paper provides a brief description of the AIRS instrument design and focuses on the current development status of hardware currently being fabricated for the engineering model. In particular, the paper will address the status and expected performance of the AIRS focal plane assembly, the cryocooler, and components of the optical spectrometer.

  2. Alternative cloud clearing methodologies for the atmospheric infrared sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Barnet, C. D.; Goldberg, M.; King, Thomas; Nalli, Nicholas; Wolf, Walter; Zhou, Lihang; Wei, Jennifer

    2005-08-01

    Traditional cloud clearing methods utilize a clear estimate of the atmosphere inferred from a microwave sounder to extrapolate cloud cleared radiances (CCR's) from a spatial interpolation of multiple cloudy infrared footprints. Unfortunately, sounders have low information content in the lower atmosphere due to broad weighting functions, interference from surface radiance and the microwave radiances can also suffer from uncorrected side-lobe contamination. Therefore, scenes with low altitude clouds can produce errant CCR's that, in-turn, produce errant sounding products. Radiances computed from the corrupted products can agree with the measurements within the error budget making detection and removal of the errant scenes impractical; typically, a large volume of high quality retrievals are rejected in order to remove a few errant scenes. In this paper we compare and contrast the yield and accuracy of the traditional approach with alternative methods of obtaining CCR's. The goal of this research is three-fold: (1) to have a viable approach if the microwave instruments fail on the EOS-AQUA platform; (2) to improve the accuracy and reliability of infrared products derived from CCR's; and (3) to investigate infrared approaches for geosynchronous platforms where microwave sounding is difficult. The methods discussed are (a) use of assimilation products, (b) use of a statistical regression trained on cloudy radiances, (c) an infrared multi-spectral approach exploiting the non-linearity of the Planck function, and (d) use of clear MODIS measurements in the AIRS sub-pixel space. These approaches can be used independently of the microwave measurements; however, they also enhance the traditional approach in the context of quality control, increased spatial resolution, and increased information content.

  3. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  4. Development and test of the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Morse, Paul G.; Bates, Jerry C.; Miller, Christopher R.; Chahine, Moustafa T.; O'Callaghan, Fred; Aumann, Hartmut H.; Karnik, Avinash R.

    1999-12-01

    The Atmospheric Infrared Sounder (AIRS) has been developed for the NASA Earth Observing System (EOS) program for a scheduled launch on the EOS PM-1 spacecraft in December 2000. AIRS, working in concert with complementary microwave instrumentation on EOS PM-1 is designed to provide both new and more accurate data about the atmosphere, land and oceans for application to NASA climate studies and NOAA and DOD weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer (km) layers in the troposphere, humidity profiles to 10% accuracy and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on passive IR remote sensing using a precisely calibrated, high spectral resolution grating spectrometer operating in the 3.7 - 15.4 micrometer region. The instrument concept uses a passively cooled multi- aperture echelle array spectrometer approach in combination with advanced state of the art focal plane and cryogenic refrigerator technology to achieve unparalleled performance capability in a practical long life configuration. The AIRS instrument, which has been under development since 1991, has been fully integrated and has completed successfully a comprehensive performance verification program. Performance verification included thermal vacuum testing, environmental qualification and a full range of spatial, spectral and radiometric calibrations, which have demonstrated outstanding spectrometric performance. This paper provides a brief overview of the AIRS mission and instrument design along with key results from the test program.

  5. Regional Assimilation of NASA Atmospheric Infrared Sounder (AIRS) Data

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Lapenta, William; Jediovec, Gary J.; McCarty, William; Mecikalski, John R.

    2004-01-01

    The NASA Short-term Prediction Research and Transition (SPORT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NW S forecast operations and decision-making. The Atmospheric Infrared Sounder (AIRS), is expected to advance climate research and weather prediction into the 21 st century. It is one of six instruments onboard Aqua, a satellite that is part of NASA s Earth Observing System. AIRS, along with two partner microwave sounding instruments, represents the most advanced atmospheric sounding system ever deployed in space. The system is capable of measuring the atmospheric temperature in the troposphere with radiosonde accuracies of 1 K over 1 km-thick layers under both clear and cloudy conditions, while the accuracy of the derived moisture profiles will exceed that obtained by radiosondes. It is imperative that the scientific community is prepared to take full advantage of next-generation satellite data that will become available within the next decade. The purpose of this paper is to describe a procedure designed to optimally assimilate AIRS data at high spatial resolution over both land and ocean. The assimilation system used in this study is the Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory used extensively around the globe. Results will focus on quality control issues associated with AIRS, optimal assimilation strategies, and the impact of the AIRS data on subsequent numerical forecasts at 12 km produced by the next generation Weather Research and Forecast (WRF) model.

  6. Atmospheric infrared sounder on AIRS with emphasis on level 2 products

    NASA Technical Reports Server (NTRS)

    Lee, Sung-Yung; Fetzer, Eric; Granger, Stephanie; Hearty, Thomas; Lambrigtsen, Bjorn; Manning, Evan M.; Olsen, Edward; Pagano, Thomas

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched aboard EOS Aqua in May of 2002. AIRS is a grating spectrometer with almost 2400 channels covering the 3.74 to 15.40 micron spectral region with a nominal spectral resolution ((nu)/(delta)(nu)) of 1200, with some gaps. In addition, AIRS has 4 channels in the NIR/VIS region. The AIRS operates in conjunction with the microwave sounders Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder of Brazil (HSB). The microwave sounders are mainly used for cloud clearing of IR radiances, or to remove the effect of cloud on the IR radiances.

  7. Development of Level 3 (gridded) products for the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Granger, Stephanie L.; Leroy, Stephen S.; Manning, Evan M.; Fetzer, Eric J.; Oliphant, Robert B.; Braverman, Amy; Lee, Sung-Yung; Lambrigtsen, Bjom H.

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) sounding system is a suite of infrared and microwave instruments flown as part of NASA's Earth Observing System (EOS) onboard the Aqua platform. The AIRS dataset provides a daily, global view of Earth processes at a finer vertical resolution than ever before. However, analysis of the AIRS data is a daunting task given the sheer volume and complexity of the data. The volume of data produced by the EOS project is unprecedented; the AIRS project alone will produce many terabytes of data over the lifetime of the mission. This paper describes development of AIRS Level 3 data products that will help to alleviate problems of access and usability.

  8. Level 1B products from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, H. H.; Overoye, Ken

    2003-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched May 4, 2002 on the EOS Aqua Spacecraft. A discussion is given of the objectives of the AIRS experiment, including requirements on the data products. We summarize the instrument characteristics, including sensitivity, noise, and spectral response, and preflight calibration results leading to the estimate of the calibration accuracy. The Level 1B calibration algorithm is presented as well as the results of in-flight stability and sensitivity measurements.

  9. Version 5 product improvements from the atmospheric infrared sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Chahine, Moustafa T.; Manning, Evan; Friedman, Steve; Broberg, Steven E.; Licata, Stephen J.; Elliott, Denis A.; Irion, Fredrick W.; Kahn, Brian H.; Fishbein, Evan; Olsen, Edward; Granger, Stephanie; Susskind, Joel; Keita, Fricky; Blaisdell, John; Strow, Larrabee; DeSouza-Machado, Sergio; Barnet, Chris

    2006-12-01

    The AIRS instrument was launched in May 2002 into a polar sun-synchronous orbit onboard the EOS Aqua Spacecraft. Since then we have released three versions of the AIRS data product to the scientific community. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts. The first version of software, Version 2.0 was available to scientists shortly after launch with Version 3.0 released to the public in June 2003. Like all AIRS product releases, all products are accessible to the public in order to have the best user feedback on issues that appear in the data. Fortunately the products have had exceptional accuracy and stability. This paper presents the improvement between AIRS Version 4.0 and Version 5.0 products and shows examples of the new products available in Version 5.0.

  10. Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.

  11. Atmospheric infrared sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip, W.; Staelin, David, H.

    1995-01-01

    This report summarizes the activities of two Atmospheric Infrared Sounder (AIRS) team members during the first half of 1995. Changes to the microwave first-guess algorithm have separated processing of Advanced Microwave Sounding Unit A (AMSU-A) from AMSU-B data so that the different spatial resolutions of the two instruments may eventually be considered. Two-layer cloud simulation data was processed with this algorithm. The retrieved water vapor column densities and liquid water are compared. The information content of AIRS data was applied to AMSU temperature profile retrievals in clear and cloudy atmospheres. The significance of this study for AIRS/AMSU processing lies in the improvement attributable to spatial averaging and in the good results obtained with a very simple algorithm when all of the channels are used. Uncertainty about the availability of either a Microwave Humidity Sensor (MHS) or AMSU-B for EOS has motivated consideration of possible low-cost alternative designs for a microwave humidity sensor. One possible configuration would have two local oscillators (compared to three for MHS) at 118.75 and 183.31 GHz. Retrieval performances of the two instruments were compared in a memorandum titled 'Comparative Analysis of Alternative MHS Configurations', which is attached.

  12. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  13. Characteristics of Water Vapor Under Partially Cloudy Conditions: Observations by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Fishbein, E.

    2003-12-01

    The variability and quality of tropical water vapor derived from the Atmospheric Infrared Sounder (AIRS) are characterized. Profiles of water vapor, temperature and surface characteristics (states) are derived from coincident Advance Microwave Sounding Unit (AMSU) and 3x3 sets of AIRS footprints. States are obtained under partially cloudy conditions by estimating the radiances emitted from the clear portions of the AIRS footprints. This procedure, referred to as cloud clearing, amplifies the measurement noise, and the amplification increases with cloud amount and uniformity. Cumulus and stratus cloud amount are related to the water vapor saturation, and noise amplification and water vapor amount may be partially correlated. The correlations between the uncertainty of retrieved water vapor, cloudiness and noise amplification are characterized. Retrieved water vapor is generally good when the amplification is less than three. Water vapor profiles are compared with correlative data, such as radiosondes and numerical weather center analyses and are in relatively good agreement in the lower troposphere

  14. Validation of the Atmospheric Infrared Sounder (AIRS) over the Antarctic Plateau: Low Radiance, Low Humidity, and Thin Clouds

    NASA Technical Reports Server (NTRS)

    Tobin, David C.

    2005-01-01

    The main goal of the project has been to use specialized measurements collected at the Antarctic Plateau to provide validation of the Atmospheric InfraRed Sounder (AIRS) spectral radiances and some AIRS Level 2 products. As proposed, efforts conducted at the University of Wisconsin are focused on providing technical information, data, and software in support of the validation studies.

  15. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  16. Development and test of the Atmospheric Infrared Sounder (AIRS) for the NASA Earth Observing System (EOS)

    NASA Astrophysics Data System (ADS)

    Morse, Paul G.; Bates, Jerry C.; Miller, Christopher R.; Chahine, Moustafa T.; O'Callaghan, Fred; Aumann, Hartmut H.; Karnik, Avinash R.

    1999-12-01

    The Atmospheric Infrared Sounder (AIRS) has been developed for the NASA Earth Observing System (EOS) program for a scheduled launch on the EOS PM-1 spacecraft in December 2000. AIRS, working in concert with complementary microwave instrumentation on EOS PM-1, is designed to provide both new and more accurate data about the atmosphere, land and oceans for application to climate studies and weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer (km) layers in the troposphere, humidity profiles to 10% accuracy and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on passive IR remote sensing using a precisely calibrated grating spectrometer operating in the 3.7 - 15.4 micrometer region. The instrument concept uses a passively cooled array spectrometer approach in combination with advanced state of the art focal plan and cryogenic refrigerator technology to achieve high performance in a practical long life configuration. The AIRS instrument has successfully completed a comprehensive performance verification program conducted at the Lockheed Martin IR Imaging Systems (LMIRIS) AIRS Test and Calibration Facility (ATCF), which was specially designed for precise spectroradiometric testing of space instrumentation. This paper provides a brief overview of the AIRS mission and instrument design, ATCF test capabilities, along with key results.

  17. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  18. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  19. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    this combination image, the AIRS infrared data reveals the temperature of the atmosphere around the storm, but doesn't tell us about the wind direction or relative intensity. The directional vectors of the SeaWinds data set show how the air is circulating around the storm.

    Scatterometers measure surface wind speed and direction by bouncing microwave pulses off the ocean's surface. The SeaWinds instruments measure the backscattered radar energy from wind-generated ocean waves. By making multiple measurements from different looks at the same location, we can infer the vector wind averaged over each 25 km resolution cell. The primary mission objective of the SeaWinds and QuikSCAT scatterometers is to obtain long-term, global coverage of the ocean vector winds for oceanographic and climate research. While not specifically designed for detailed mapping and tracking of hurricanes, both instruments have been found to be useful resources for operational forecasters.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  20. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS

  1. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  2. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  3. Hurricane Alex as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Carolina, traveling northeast at 6 mph.

    [figure removed for brevity, see original site] August 1, 2004, 1:30am ET Daylight snapshot from AIRS visible/near-infrared. At the time AIRS made this observation, Alex was still a tropical depression and just getting organized.

    Movies Slice down the atmosphere with the AIRS infrared sensor.

    [figure removed for brevity, see original site] August 3, 2004, 1:30am ET Alex becomes the first hurricane of the 2004 North Atlantic season with sustained winds at 75 mph.

    [figure removed for brevity, see original site] August 2, 2004, 1:30pm ET Alex is located about 120 miles southeast of Charleston, South Carolina. Alex has now begun to move to the northeast and a general northeastward track is expected the next couple of days with a gradual acceleration in forward speed as it begins to interact with stronger upper level winds.

    [figure removed for brevity, see original site] August 2, 2004, 1:30am ET Alex now has sustained winds of 35 knots.

    [figure removed for brevity, see original site] August 1, 2004, 1:30pm ET Alex is tropical depression and beginning to get organized.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  4. Comparison of Methane Data Products from the TES and AIRS Infrared Sounders

    NASA Astrophysics Data System (ADS)

    Pagano, T. J.; Pagano, T. S.; Worden, J. R.

    2015-12-01

    Methane is the second most powerful greenhouse gas with a highly positive radiative forcing of 0.48 W/m2 (IPCC 2013). Global concentrations of methane have been steadily increasing since 2007 (Bruhwiler 2014), raising concerns about methane's impact on the future global climate. For about the last decade, the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura spacecraft has been detecting several trace gas species in the troposphere including methane. The goal of this study is to compare TES methane retrievals to that of the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua spacecraft so that scientific investigations may be transferred from TES to AIRS. The two instruments fly in the afternoon constellation (A-Train), providing numerous coincident measurements for comparison. In addition, they also have a similar spectral range, (3.3 to 15.4 µm) for TES (Beer, 2006) and (3.7 to 15.4 µm) for AIRS (Chahine, 2006), making both instruments sensitive to the mid and upper troposphere. This makes them ideal candidates to compare methane data products. However, because AIRS spectral resolution is lower than that of the TES, there may be a difference in vertical sensitivity. In addition, the retrieval techniques and error characteristics are different for the two data sets. The current state of validation for these data products will be presented. To identify conditions in which the data sets agree and dis agree, we present global maps of methane concentrations from monthly level 3 (L3) data products. We also investigate the temporal stability between the two datasets by comparing global zonal averages derived from L3 over the last decade. Finally, we compare L2 retrieval profiles from representative granules in the tropical, mid-latitude and northern latitudes.

  5. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  6. Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  7. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model

  8. Evaluation of the Impact of Atmospheric Infrared Sounder (AIRS) Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of 6 weeks of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  9. Global and Regional Seasonal Variability of Mid-Tropospheric CO2 as Measured by the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.; Nguyen, Hai

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the Earth Observing System (EOS) Aqua Spacecraft, launched on May 4, 2002 into a near polar sun-synchronous orbit. AIRS has 2378 infrared channels ranging from 3.7 ?m to 15.4 ?m and a 13.5 km footprint at nadir. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2, CO, SO2, O3 and CH4. AIRS CO2 climatologies have been shown to be useful for identifying anomalies associated with geophysical events such as El Nino-Southern Oscillation or Madden-Julian oscillation. In this study, monthly representations of mid-tropospheric CO2 are constructed from 10 years of AIRS Version 5 monthly Level 3 data. We compare the AIRS mid-tropospheric CO2 representations to ground-based measurements from the Scripps and National Oceanic and Atmospheric Administration Climate Modeling and Diagnostics Laboratory (NOAA CMDL) ground networks to better understand the phase lag of the CO2 seasonal cycle between the surface and middle troposphere. Results show only a small phase lag in the tropics that grows to approximately two months in the northern latitudes.

  10. Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip W.; Staelin, David H.

    1994-01-01

    The microwave 'first-guess' algorithm was run on the cloudy test simulations. Eight datasets were considered in the cloudy test, comprising approximately 360 retrievals, of which one failed to converge. Retrievals were done on the AMSU-A grid. Examination of the true profiles (provided for the A, C and D tracks) showed numerous cases of very pronounced temperature inversion layers in the troposphere which the retrieval does not have enough vertical resolution to reproduce. A typical example with an inversion layer near 700 mbar is shown in Figure 1. The inversion layers also exhibit strong vertical gradients of water vapor which are not resolved in the retrieval. (Water vapor volume density is given in g/sq cm per layer. Layer thickness is 20 mb from 200 to 400 mb, and 25 mb from 400 to 1,000 mb.) The retrievals do reproduce the overall smoothed shape of the profiles, and therefore as a first guess should be within the range of linear methods for IR retrievals using AIRS.

  11. Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Microwave 89Ghz imageFigure 2: Visible/near infrared sensor

    Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday.

    These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama.

    This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple

  12. P.88 Regional Precipitation Forecast with Atmospheric Infrared Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2010-01-01

    Prudent assimulation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. In general, AIRS-enhanced analysis more closely resembles radiosondes than the CNTL; forecasts with AIRS profiles are generally closer to NAM analyses than CNTL for sensible weather parameters (not shown here). Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecases. Including AIRS profiles in assimilation process enhances the low-level instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  13. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Retrieved Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle M.; Zavodsky, T.; Jedloved, Gary J.

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One operational forecast challenge is forecasting convective weather in data-void regions such as large bodies of water (e.g. Gulf of Mexico). To address this forecast challenge, SPoRT produces a twice-daily three-dimensional analysis that blends a model first-guess from the Advanced Research Weather Research and Forecasting (WRF-ARW) model with retrieved profiles from the Atmospheric Infrared Sounder (AIRS) -- a hyperspectral sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. AIRS profiles are unique in that they give a three dimensional view of the atmosphere that is not available through the current rawinsonde network. AIRS has two overpass swaths across North America each day, one valid in the 0700-0900 UTC timeframe and the other in the 1900-2100 UTC timeframe. This is helpful because the rawinsonde network only has data from 0000 UTC and 1200 UTC at specific land-based locations. Comparing the AIRS analysis product with control analyses that include no AIRS data demonstrates the value of the retrieved profiles to situational awareness for the pre-convective (and convective) environment. In an attempt to verify that the AIRS analysis was a good representation of the vertical structure of the atmosphere, both the AIRS and control analyses are compared to a Rapid Update Cycle (RUC) analysis used by operational forecasters. Using guidance from operational forecasters, convective available potential energy (CAPE) was determined to be a vital variable in making convective forecasts and is used herein to demonstrate the utility of the AIRS profiles in changing the vertical

  14. On Cirrus Cloud Fields Measured by the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Eldering, Annmarie; Liou, Kuo Nan

    2006-01-01

    A viewgraph presentation showing trends in clouds measured by the Atmospheric Infrared Sounder (AIRS) is given. The topics include: 1) Trends in clouds measured by AIRS: Are they reasonable? 2) Single and multilayered cloud trends; 3) Retrievals of thin cirrus D(sub e) and tau: Single-layered cloud only; 4) Relationships between ECF, D(sub e), tau, and T(sub CLD); and 5) MODIS vs. AIRS retrievals.

  15. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  16. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Schoeberl, M. R.; Gordley, L. L.; McHugh, M. J.; Thompson, A. M.; Burrows, J. P.; Zeng, N.; Marshall, B. T.; Fish, C. S.; Spackman, J. R.; Kim, J.; Park, R.; Warner, J. X.; Bhartia, P. K.; Kollonige, D. E.

    2012-12-01

    Climate change and air quality are the most pressing environmental issues of the 21st century - for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  17. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    NASA Astrophysics Data System (ADS)

    Spackman, Ryan; Dickerson, Russell; Schoeberl, Mark; Bloom, Hal; Gordley, Larry; McHugh, Martin; Thompson, Anne; Burrows, John; Zeng, Ning; Marshall, Tom; Fish, Chad; Kim, Jhoon; Park, Rokjin; Warner, Juying; Bhartia, Pawan; Kollonige, Debra

    2013-04-01

    Climate change and air quality are the most pressing environmental issues of the 21st century for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  18. Remote Sensing of Atmospheric Climate Parameters from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Aumann, Hartmut H.; Tian, Baijun; Lee, Sung-Yung; Olsen, Ed; Lambrigtsen, Bjorn; Fetzer, Eric; Irion, F. W.; McMillan, Wallace; Strow, Larrabee; Fu, Xiouhua; Barnet, Chris; Goldberg, Mitch; Susskind, Joel; Blaisdell, John

    2006-01-01

    This paper presents the standard and research products from Atmospheric Infrared Sounder (AIRS) and their current accuracies as demonstrated through validation efforts. It also summarizes ongoing research using AIRS data for weather prediction and improving climate models.

  19. The geostationary remote infrared pollution sounder (GRIPS)

    NASA Astrophysics Data System (ADS)

    Bloom, H.; Dickerson, Russell; Schoeberl, M.; Gordley, L. L.; Marshall, B. T.; McHugh, M.; Spackman, R.; Fish, C.; Kim, J.

    2012-11-01

    Climate change and air quality are the most pressing environmental issues of the 21st century. Despite decades of research, the sources and sinks of key greenhouse gases remain highly uncertain [IPCC, 2007] making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and nitrous oxide (N2O) with unprecedented precision to reduce substantially this uncertainty. The GRIPS instrument uses gas filter correlation radiometry (GFCR) to detect reflected and thermal IR radiation from geostationary orbit. GRIPS is designed to haves sensitivity down to the Earth's surface at ~8 km nadir resolution. GRIPS can also resolve CO2, CO, and CH4 anomalies in the planetary boundary layer and the free troposphere to quantify lofting, diurnal variations and long-range transport. With repeated measurements throughout the day GRIPS can maximize the number of cloud free measurements determining biogenic and anthropogenic sources, sinks, and fluxes. Finally, the GFCR technique is, to first order, insensitive to aerosols interference. GRIPS is highly complementary to the Orbiting Carbon Observatory, OCO-2, and other existing and planned missions.

  20. Global Daily Atmospheric State Profiles from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Chahine, Moustafa T.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 (micro)m to 15.4 (micro)m and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles, clouds, dust and trace gas amounts for CO2, CO, SO2, O3 and CH4.[1] AIRS data are used for weather forecasting and studies of global climate change. The AIRS is a 'facility' instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations.

  1. Geophysical Information from Advanced Sounder Infrared Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2012-01-01

    Advanced satellite sensors are tasked with improving global observations of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Satisfying this type of improvement for inferred geophysical information from these observations requires optimal usage of data from current systems as well as enhancements to future sensors. This presentation addresses the information content present in infrared spectral radiance from advanced atmospheric sounders with an emphasis on knowledge of thermodynamic state and trace species. Results of trade-off studies conducted to evaluate the impact of spectral resolution, spectral coverage, instrument noise, and a priori knowledge on remote sensing system information content will be discussed. A focus is placed on information achievable from the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua satellite in orbit since 2002, the Infrared Atmospheric Sounding Interferometer (IASI) aboard MetOp-A since 2006, and the Cross-track Infrared Sounder (CrIS) instrument aboard the NPP and JPSS series of satellites which began 28 October 2011.

  2. A Simple Drought Product and Indicator Derived from Temperature and Relative Humidity Observed by the Atmospheric InfraRed Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Granger, S. L.; Behrangi, A.

    2015-12-01

    In the United States, drought results in agricultural losses, impacts to industry, power and energy production, natural resources, municipal water supplies and human health making it one of the costliest natural hazards in the nation. Monitoring drought is therefore critical to help local governments, resource managers, and other groups make effective decisions, yet there is no single definition of drought, and because of the complex nature of drought there is no universal best drought indicator. Remote sensing applications in drought monitoring are advantageous due to the large spatial and temporal frequency of observations, leading to a better understanding of the spatial extent of drought and its duration, and in detecting the onset of drought and its intensity. NASA Earth Observing System (EOS)-era data have potential for monitoring and assessing drought and many are already used either directly or indirectly for drought monitoring. Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) observations from the Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor are widely used for agricultural and environmental plant-stress monitoring via the USDM, the VegDRI project and FEWSNet. However there remain underutilized sources of information from NASA satellite observations that may have promise for characterizing and understanding meteorological drought. Once such sensor is NASA's Advanced Infra-Red Sounder (AIRS) aboard the Aqua satellite. AIRS and it's sister sensor the Advanced Microwave Sounding Unit (AMSU) that together provide meteorological information of high relevance to meteorological drought, e.g., profiles of water vapor, surface air temperature, and precipitation. Recent work undertaken to develop simple indicators of drought based on temperature and relative humidity from the AIRS suite of instruments is promising. Although there are more sophisticated indicators developed through the application of a variety of

  3. Channel alignment and radiometry in hyperspectral atmospheric infrared sounders

    NASA Technical Reports Server (NTRS)

    Elliott, Denis A.; Aumanna, H. H.; Pagano, Thomas S.; Overoye, Kenneth R.; Schindler, Rudolf A.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyper-spectral infrared sounder which covers the 3.7 to 15,4 micron region with 2378 spectral channels. The AIRS instrument specification called for spatial co-registration of all channels to better than 2% of the field of view. Pre-launch testing confirmed that this requirement was met, since the standard deviations in the centroids was about 1% of the 13.5 km IFOV in scan and 3% in track. Detailed analysis of global AIRS data show that the typical scene gradient in 10 micron window channels is about I .3K/km rms. The way these gradients, which are predominantly caused by clouds, manifest themselves in the data depends on the details of the instrument design and the way the spectral channels are used in the data analysis, AIRS temperature and moisture retrievals use 328 of the 2378 channels from 17 independent arrays. As a result, the effect of the boresight misalignment averages to zero mean. Any increase in the effective noise is less than 0.2K. Also, there is no discernable performance degradation of products at the 45 km spatial resolution in the presence of partially cloudy scenes with up to 80% cloudiness. Single pixel radiometric differences between channels with boresight alignment differences can be appreciable and can affect scientific investigations on a single 15km footprint scale, particularly near coastlines, thunderstorms and surface emissivity inhomogeneities.

  4. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    PubMed

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS. PMID:25322240

  5. Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Goldberg, Mitchell D.; Schmit, Timothy J.; Lim, Agnes H. N.; Li, Zhenglong; Han, Hyojin; Li, Jinlong; Ackerman, Steve A.

    2015-06-01

    Generally, only clear-infrared spectral radiances (not affected by clouds) are assimilated in weather analysis systems. This is due to difficulties in modeling cloudy radiances as well as in observing their vertical structure from space. To take full advantage of the thermodynamic information in advanced infrared (IR) sounder observations requires assimilating radiances from cloud-contaminated regions. An optimal imager/sounder cloud-clearing technique has been developed by the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison. This technique can be used to retrieve clear column radiances through combining collocated multiband imager IR clear radiances and the sounder cloudy radiances; no background information is needed in this method. The imager/sounder cloud-clearing technique is similar to that of the microwave/IR cloud clearing in the derivation of the clear-sky equivalent radiances. However, it retains the original IR sounder resolution, which is critical for regional numerical weather prediction applications. In this study, we have investigated the assimilation of cloud-cleared IR sounder radiances using Atmospheric Infrared Sounder (AIRS)/Moderate Resolution Imaging Spectroradiometer for three hurricanes, Sandy (2012), Irene (2011), and Ike (2008). Results show that assimilating additional cloud-cleared AIRS radiances reduces the 48 and 72 h temperature forecast root-mean-square error by 0.1-0.3 K between 300 and 850 hPa. Substantial improvement in reducing track forecasts errors in the range of 10 km to 50 km was achieved.

  6. Toward the characterization of upper tropospheric clouds using Atmospheric Infrared Sounder and Microwave Limb Sounder observations

    NASA Astrophysics Data System (ADS)

    Kahn, Brian H.; Eldering, Annmarie; Braverman, Amy J.; Fetzer, Eric J.; Jiang, Jonathan H.; Fishbein, Evan; Wu, Dong L.

    2007-03-01

    We estimate the accuracy of cloud top altitude (Z) retrievals from the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) observing suite (ZA) on board the Earth Observing System Aqua platform. We compare ZA with coincident measurements of Z derived from the micropulse lidar and millimeter wave cloud radar at the Atmospheric Radiation Measurement (ARM) program sites of Nauru and Manus islands (ZARM) and the inferred Z from vertically resolved Microwave Limb Sounder (MLS) ice water content (IWC) retrievals. The mean difference in ZA minus ZARM plus or minus one standard deviation ranges from -2.2 to 1.6 km ± 1.0 to 4.2 km for all cases of AIRS effective cloud fraction (fA) > 0.15 at Manus Island using the cloud radar only. The range of mean values results from using different approaches to determine ZARM, day/night differences, and the magnitude of fA; the variation about the mean decreases for increasing values of fA. Analysis of ZARM from the micropulse lidar at Nauru Island for cases restricted to 0.05 ≤ fA ≤ 0.15 indicates a statistically significant improvement in ZA - ZARM over the cloud radar-derived values at Manus Island. In these cases the ZA - ZARM difference is -1.1 to 2.1 km ± 3.0 to 4.5 km. These results imply that the operational ZA is quantitatively useful for constraining cirrus altitude despite the nominal 45 km horizontal resolution. Mean differences of cloud top pressure (PCLD) inferred from coincident AIRS and MLS ice water content (IWC) retrievals depend upon the method of defining AIRS PCLD (as with the ARM comparisons) over the MLS spatial scale, the peak altitude and maximum value of MLS IWC, and fA. AIRS and MLS yield similar vertical frequency distributions when comparisons are limited to fA > 0.1 and IWC > 1.0 mg m-3. Therefore the agreement depends upon the opacity of the cloud, with decreased agreement for optically tenuous clouds. Further, the mean difference and standard deviation of AIRS and MLS

  7. Cross-track infrared sounder FPA performance

    NASA Astrophysics Data System (ADS)

    D'Souza, Arvind I.; Dawson, Larry C.; Marsh, Stacy; Willis, Richard W.; Wijewarnasuriya, Priyalal S.; DeWames, Roger E.; Arias, Jose M.; Bajaj, Jagmohan; Hildebrandt, Gernot; Moore, Fergus E.

    2001-10-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Cross-track Infrared Sounder (CrIS) is an interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR ((λc approximately 5 μm at 98K), MWIR (λc approximately 9 μm at 98K) LWIR (λc approximately 16 μm at 81K) Focal Plane Array (FPA) modules. A critical CrIS design selection was the use of photovoltaic (PV) detectors in all three spectral bands. PV detectors have the important benefits of high sensitivity and linearity. Each FPA modules consists of nine large (1000 μm diameter) photovoltaic detectors with accompanying cold preamplifiers. This paper describes the performance for all the modules forming the CrIS Detector Preamplifier Module (DPM). Molecular Beam Epitaxy (MBE) is used to grow the appropriate bandgap n-type Hg1-xCdxTe on lattice matched CdZnTe. SWIR, MWIR and LWIR 1000 μm diameter detectors have been manufactured using the Lateral Collection Diode (LCD) architecture. Custom pre-amplifiers have been designed to interface with the large SWIR, MWIR and LWIR detectors. The operating temperature is above 78K, permitting the use of passive radiators in spacecraft to cool the detectors. Recently fabricated 1000 micrometers diameter photovoltaic detectors have the measured performance parameters listed in the Table below. Expected D* performance from the detector/pre-amplifier models are also listed in the table. The D* values are calculated at the CrIS program peak wavelength specified for each spectral band.

  8. Advanced infrared sounder subpixel cloud detection with imagers and its impact on radiance assimilation in NWP

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Li, Jinlong; Li, Zhenglong; Schmit, Timothy J.; Bai, Wenguang

    2014-03-01

    Accurate cloud detection is very important for infrared (IR) radiance assimilation; improved cloud detection could reduce cloud contamination and hence improve the assimilation. Although operational numerical weather prediction (NWP) centers are using IR sounder radiance data for cloud detection, collocated high spatial resolution imager data could help sounder subpixel cloud detection and characterization. IR sounder radiances with improved cloud detection using Atmospheric Infrared Sounder (AIRS)/Moderate Resolution Imaging Spectroradiometer (MODIS) were assimilated for Hurricane Sandy (2012). Forecast experiments were run with Weather Research and Forecasting (WRF) as the forecast model and the Three-Dimensional Variational Assimilation (3DVAR)-based Gridpoint Statistical Interpolation (GSI) as the analysis system. Results indicate that forecasts of both hurricane track and intensity are substantially improved when the collocated high spatial resolution MODIS cloud mask is used for AIRS subpixel cloud detection for assimilating radiances. This methodology can be applied to process Crosstrack Infrared Sounder (CRIS)/Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPOESS Preparatory Project (NPP)/Joint Polar Satellite System (JPSS) and Infrared Atmospheric Sounding Interferometer (IASI)/Advanced Very High Resolution Radiometer (AVHRR) onboard the Metop series for improved radiance assimilation in NWP.

  9. How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.

  10. The Atmospheric Infrared Sounder version 6 cloud products

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M.; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter (De), and ice cloud optical thickness (τ) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of τ are found in the storm tracks and near convection in the tropics, while De is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of τ is significantly larger than for the total cloud fraction, ice cloud frequency, and De, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  11. The Atmospheric Infrared Sounder Version 6 cloud products

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M.; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2013-06-01

    The Version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field of view (FOV) resolution. Significant improvements in cloud height assignment over Version 5 are shown with pixel-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter (De), and ice cloud optical thickness (τ) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for January 2007 are presented. The largest values of τ are found in the storm tracks and near convection in the Tropics, while De is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal cycle of τ is significantly larger than for the total cloud fraction, ice cloud frequency, and De, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over the diurnal and annual cycles, and captures variability within the mesoscale and synoptic scales at all latitudes.

  12. The Atmospheric Infrared Sounder Version 6 Cloud Products

    NASA Technical Reports Server (NTRS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  13. The TIROS-N high resolution infrared radiation sounder

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1979-01-01

    The high-resolution infrared radiation sounder (HIRS/2) was developed and flown on the Television and Infrared Observation Satellite, N Series (TIROS-N) as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow spectral channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel, and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic performance of the instrument in test is described. Early orbital information from the TIROS-N launched on October 13, 1978 are given and some observations on system quality are made.

  14. Validation of the Radiometric Stability of the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Elliott, D.; Strow, L. L.

    2012-01-01

    It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO2, N2O and Ozone. The trend in (obs-calc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 micron CO2 sounding, 4 micron CO2 P-branch sounding, 4 micron CO2 R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 microns. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in

  15. Validation of the radiometric stability of the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Elliott, D.; Strow, L. L.

    2012-09-01

    It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO2 , N2O and Ozone. The trend in (obscalc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 um CO2 sounding, 4 um CO2 P-branch sounding, 4um CO2 R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 μm. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in particular for

  16. Small particle cirrus observed by the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Eldering, A.; Fishbein, E. F.

    2003-04-01

    The high-resolution spectra of the Atmospheric Infrared Sounder (AIRS) have provided an opportunity to globally observe small particle-dominated cirrus clouds. The shape of the radiance spectra in the atmospheric windows is uniquely influenced by small ice crystals with an effective radius (reff) of a few 10s of microns and smaller. In some rare instances, minima in the AIRS brightness temperature (BT) spectra between 800 to 850 cm-1 are seen, consistent with the existence of ice particles with an reff smaller than 3 microns. Much more frequent occurences of small ice particle clouds with reff larger than 3 microns are observed through the large 998 to 811 cm-1 BT differences without minima. The small particle events are occasionally found in orographic cirrus clouds, in and around cumulonimbus towers, and in cirrus bands far removed from convection and orography. Several cases spanning the variety of small particle-dominated cirrus events will be presented. AIRS, located on the EOS-Aqua platform, is a high-resolution grating spectrometer that scans at angles 49.5 degrees on either side of nadir view, at both visible and infrared wavelengths. The surface footprint is 13.5 km at the nadir view, and coverage in the infrared is in three bandpasses (649-1136, 1265-1629, and 2169-2674 cm-1). Comparisons of observed spectra are made with simulated spectra generated by a plane-parallel scattering radiative transfer model using ice particle shapes and sizes calculated by the T-matrix method. These comparisons yield information on small particle cirrus cloud reff and optical depth. Aumann, H.H., and R.J. Pagano, Atmospheric Infrared Sounder on the Earth Observing System. Opt. Eng. 33, 776-784, 1994. Mishchenko, M.I., and L.D. Travis, Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309-324, 1998. Moncet, J.L., and S.A. Clough

  17. Global dust infrared aerosol properties retrieved using hyperspectral sounders

    NASA Astrophysics Data System (ADS)

    Capelle, Virginie; Chédin, alain; Pondrom, Marc; Pierangelo, Clémence; Armante, Raymond; Crevoisier, Cyril; Crépeau, Laurent; Scott, Noëlle

    2015-04-01

    Observations from infrared hyperspectral sounders, here IASI and AIRS, are interpreted in terms of dust aerosol properties (AOD and mean altitude). The method is based on a "Look-Up-Table" (LUT) approach, where all radiative transfer computation is performed once for all and "off-line", for a large selection of atmospheric situations, of observing conditions, of surface characteristics (in particular the surface emissivity and temperature), and different aerosol refractive index models. The inversion scheme follows two main steps: first, determination of the observed atmospheric thermodynamic situation, second, simultaneous retrieval of the 10µm coarse-mode AOD and of the mean altitude. The method is here applied over sea and over land, at daily scale daytime and nighttime, and at the satellite pixel resolution (12 km at nadir). The geographical study area studied includes the northern tropics from west Atlantic to the Arabian peninsula and Indian ocean, and the Mediterranean basin, all of them characterized by strong, regular dust events. A special focus is given to the hourly variation of aerosol properties within a day. In this context, both IASI overpasses are processed, providing two measurements at 9:30AM and 9:30PM (equator local time) each day. First results obtained from AIRS observations, made at 1:30 AM and PM, open the way to the analysis of the aerosol diurnal cycle. For the AOD, comparisons are made with AERONET ground-based data , when available, in order to 1) evaluate our results, and 2) show the importance of a better knowledge of the aerosol diurnal cycle, especially close to the sources. Mean aerosol layer altitude obtained from IASI is compared at local scale with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP/CALIPSO) aerosol altitude.

  18. Requirements for a Moderate-Resolution Infrared Imaging Sounder (MIRIS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Gerber, Andrew J.; Kuai, Le; Gontijo, I.; DeLeon, Berta; Susskind, Joel; Iredell, Lena; Bajpai, Shyam

    2013-01-01

    The high cost of imaging and sounding from space warrants exploration of new methods for obtaining the required information, including changing the spectral band sets, employing new technologies and merging instruments. In some cases we must consider relaxation of the current capability. In others, we expect higher performance. In general our goal is to meet the VIIRS and CrIS requirements while providing the enhanced next generation capabilities: 1) Hyperspectral Imaging in the Vis/NIR bands, 2) High Spatial Resolution Sounding in the Infrared bands. The former will improve the accuracy of ocean color products, aerosols and water vapor, surface vegetation and geology. The latter will enable the high-impact achieved by the current suite of hyperspectral infrared sounders to be achieved by the next generation high resolution forecast models. We examine the spectral, spatial and radiometric requirements for a next generation system and technologies that can be applied from the available inventory within government and industry. A two-band grating spectrometer instrument called the Moderate-resolution Infrared Imaging Sounder (MIRIS) is conceived that, when used with the planned NASA PACE Ocean Color Instrument (OCI) will meet the vast majority of CrIS and VIIRS requirements in the all bands and provide the next generation capabilities desired. MIRIS resource requirements are modest and the Technology Readiness Level is high leading to the expectation that the cost and risk of MIRIS will be reasonable.

  19. The Atmospheric Infrared Sounder on the Earth Observing System - In-orbit spectral calibration

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1991-01-01

    The Atmospheric Infrared Sounder (AIRS) is a facility instrument on the Earth Observing System (EOS). The ability of AIRS to provide accurate temperature and moisture soundings with high vertical resolution depends critically on a very accurate spectral calibration. The routine in-orbit spectral calibration is accomplished with a Fabry-Perot plate with a fixed spacing of 360 microns. This paper discusses design, Signal-to-Noise, and temperature and alignment stability constraints which have to be met to achieve the required spectral calibration accuracy.

  20. Determination of cloud parameters from infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H.-Y. M.

    1984-01-01

    The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.

  1. Theoretical computation of trace gases retrieval random error from measurements of high spectral resolution infrared sounder

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Smith, William L.; Woolf, Harold M.; Theriault, J. M.

    1991-01-01

    The purpose of this paper is to demonstrate the trace gas profiling capabilities of future passive high spectral resolution (1 cm(exp -1) or better) infrared (600 to 2700 cm(exp -1)) satellite tropospheric sounders. These sounders, such as the grating spectrometer, Atmospheric InfRared Sounders (AIRS) (Chahine et al., 1990) and the interferometer, GOES High Resolution Interferometer Sounder (GHIS), (Smith et al., 1991) can provide these unique infrared spectra which enable us to conduct this analysis. In this calculation only the total random retrieval error component is presented. The systematic error components contributed by the forward and inverse model error are not considered (subject of further studies). The total random errors, which are composed of null space error (vertical resolution component error) and measurement error (instrument noise component error), are computed by assuming one wavenumber spectral resolution with wavenumber span from 1100 cm(exp -1) to 2300 cm(exp -1) (the band 600 cm(exp -1) to 1100 cm(exp -1) is not used since there is no major absorption of our three gases here) and measurement noise of 0.25 degree at reference temperature of 260 degree K. Temperature, water vapor, ozone and mixing ratio profiles of nitrous oxide, carbon monoxide and methane are taken from 1976 US Standard Atmosphere conditions (a FASCODE model). Covariance matrices of the gases are 'subjectively' generated by assuming 50 percent standard deviation of gaussian perturbation with respect to their US Standard model profiles. Minimum information and maximum likelihood retrieval solutions are used.

  2. Assimilation of hyperspectral infrared sounder radiances under cloudy skies in a regional NWP model

    NASA Astrophysics Data System (ADS)

    Wang, Pei

    Satellite measurements are an important source of global observations in support of numerical weather prediction (NWP). The assimilation of satellite radiances under clear skies has greatly improved NWP forecast scores. Since most of the data assimilation models are used for the clear radiances assimilation, an important step for satellite radiances assimilation is the clear location detection. Good clear detection could effectively remove the cloud contamination and keep the clear observations for assimilation. In this dissertation, a new detection method uses collocated high spatial resolution imager data onboard the same platform as the satellite sounders to help IR sounders subpixel cloud detection, such as the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS), the Crosstrack Infrared Sounder (CrIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). The MODIS cloud mask provides a level of confidence for the observed skies to help AIRS Field-of-View (FOVs) cloud detection. By reducing the cloud contamination, a cold bias in the temperature field and a wet bias in the moisture field are corrected for the atmospheric analysis fields. These less cloud affected analysis fields further improve hurricane track and intensity forecast. The availability of satellite observations that can be assimilated in the model is limited if only the clear radiances are assimilation. An effective way to use the thermodynamic information under partially cloudy regions is to assimilate the "cloud-cleared" radiances (CCRs); CCRs are also called clear equivalent radiances. Because the CCRs are the equivalent clear radiances from the partially cloudy FOVs, they can be directly assimilated into the current data assimilation models without modifications. The AIRS CCRs are assimilated and compared with the AIRS using stand-alone cloud detection and collocated cloud detection. The assimilation of AIRS cloud-cleared radiances directly affects

  3. The Expected Impacts of NPOESS Microwave and Infrared Sounder Radiances on Operational Numerical Weather Prediction and Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.

    2009-12-01

    The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for

  4. Three Years of Atmospheric Infrared Sounder Radiometric Calibration Validation using Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Broberg, Steve; Elliott, Denis; Gaiser, Steve; Gregorich, Dave

    2006-01-01

    This paper evaluates the absolute accuracy and stability of the radiometric calibration of the Atmospheric Infrared Sounder (AIRS) by analyzing the difference between the brightness temperatures measured at 2616 cm(exp -1) and those calculated at the top of the atmosphere (TOA), using the Real-Time Global Sea Surface Temperature (RTGSST) for cloud-free night tropical oceans between +/- 30 degrees latitude. The TOA correction is based on radiative transfer. The analysis of the first 3 years of AIRS radiances verifies the absolute calibration at 2616 cm(exp -1) to better than 200 mK, with better than 16 mK/yr stability. The AIRS radiometric calibration uses an internal full aperture wedge blackbody with the National Institute of Standards and Technology (NIST) traceable prelaunch calibration coefficients. The calibration coefficients have been unchanged since launch. The analysis uses very tight cloud filtering, which selects about 7000 cloud-free tropical ocean spectra per day, about 0.5% of the data. The absolute accuracy and stability of the radiometry demonstrated at 2616 cm(sup -1) are direct consequences of the implementation of AIRS as a thermally controlled, cooled grating-array spectrometer and meticulous attention to details. Comparable radiometric performance is inferred from the AIRS design for all 2378 channels. AIRS performance sets the benchmark for what can be achieved with a state-of-the-art hyperspectral radiometer from polar orbit and what is expected from future hyperspectral sounders. AIRS was launched into a 705 km altitude polar orbit on NASA's Earth Observation System (EOS) Aqua spacecraft on 4 May 2002. AIRS covers the 3.7-15.4 micron region of the thermal infrared spectrum with a spectral resolution of nu/Delta nu = 1200 and has returned 3.7 million spectra of the upwelling radiance each day since the start of routine data gathering in September 2002.

  5. Infrared atmospheric sounder interferometer radiometric noise assessment from spectral residuals.

    PubMed

    Serio, Carmine; Standfuss, Carsten; Masiello, Guido; Liuzzi, Giuliano; Dufour, Emmanuel; Tournier, Bernard; Stuhlmann, Rolf; Tjemkes, Stephen; Antonelli, Paolo

    2015-07-01

    The problem of characterizing and estimating the radiometric noise of satellite high spectral resolution infrared spectrometers from Earth views is addressed in this paper. A methodology has been devised which is based on the common concept of spectral residuals (Observations-Calculations) obtained after spectral radiance inversion for atmospheric and surface parameters. An in-depth analytical assessment of the statistical covariance matrix of the spectral residuals has been performed which is based on the optimal estimation theory. It has been mathematically demonstrated that the use of spectral residuals to assess instrument noise leads to an effective estimator, which is largely independent of possible departures of the observational covariance matrix from the true covariances. Application to the Infrared Atmospheric Sounder Interferometer has been considered. It is shown that Earth-view-derived observation errors agree with blackbody in-flight calibration. The spectral residuals approach also proved to be effective in characterizing noise features due to mechanical microvibrations of the beam splitter of the IASI instrument.

  6. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  7. Application of Infrared Hyperspectral Sounder Data to Climate Research: Interannual Variability and climate trend evaluation.

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Gregorich, D. T.

    2007-12-01

    Satellite measurements of the spectrally resolved upwelling infrared radiances have a unique role in the observation of climate and climate change: They give direct insight into the way the Earth Climate System responds to periodic and long term changes in forcing with changes in surface and atmospheric temperatures and changes in large scale atmospheric circulation patterns. The Atmospheric Infrared Sounder (AIRS), the first in a series of hyper-spectral polar orbiting sounders, was launch on the EOS Aqua into a 1:30 pm polar orbit at 705 km altitude in May 2002, with an anticipated lifetime of 12 years. The Infrared Atmospheric Sounding Interferometer (IASI) was launched in October 2006 into a 9:30 AM orbit, to be followed by the Crosstrack InfraRed Sounder (CRIS) in a 2 PM orbit in 2010. The AIRS radiometric stability since 2002 has been verified at the better than 0.01 K/year level. We report on observations of the oceans between 30S and 30N. The 0.05 K/year trend in co2 sensitive channels due to the 2 ppmv/year increase in the co2 column abundance is readily detectable and statistically reliable. The AIRS data show very consistent seasonal modulations of key surface, cloud, water vapor and atmospheric temperatures. After removing the seasonal variation, the anomaly shows interannual rms variability in the monthly means larger than 0.1 K. The rms variability in the monthly means in the mid- tropospheric temperature with peak excursions as large as 0.6 K are observed by the AIRS 2388 cm-1 channel and AMSU channel 5 at 57 GHz. The interannual variability is not obviously correlated with the Multivariate Enso Index (MEI). This variability places limits on the length of time required to measure global warming trends at the 0.1 K/decade level. These limits exceed the expected 12 year lifetime of AIRS and need to be taken into account in the design of space missions and instruments to measure climate change.

  8. Note on the Effect of Horizontal Gradients for Nadir-Viewing Microwave and Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Poli, P.

    2004-01-01

    Passive microwave and infrared nadir sounders such as the Advanced Microwave Sounding Unit A (AMSU-A) and the Atmospheric InfraRed Sounder (AIRS), both flying on NASA s EOS Aqua satellite, provide information about vertical temperature and humidity structure that is used in data assimilation systems for numerical weather prediction and climate applications. These instruments scan cross track so that at the satellite swath edges, the satellite zenith angles can reach approx. 60 deg. The emission path through the atmosphere as observed by the satellite is therefore slanted with respect to the satellite footprint s zenith. Although radiative transfer codes currently in use at operational centers use the appropriate satellite zenith angle to compute brightness temperature, the input atmospheric fields are those from the vertical profile above the center of the satellite footprint. If horizontal gradients are present in the atmospheric fields, the use of a vertical atmospheric profile may produce an error. This note attempts to quantify the effects of horizontal gradients on AIRS and AMSU-A channels by computing brightness temperatures with accurate slanted atmospheric profiles. We use slanted temperature, water vapor, and ozone fields from data assimilation systems. We compare the calculated slanted and vertical brightness temperatures with AIRS and AMSU-A observations. We show that the effects of horizontal gradients on these sounders are generally small and below instrument noise. However, there are cases where the effects are greater than the instrument noise and may produce erroneous increments in an assimilation system. The majority of the affected channels have weighting functions that peak in the upper troposphere (water vapor sensitive channels) and above (temperature sensitive channels) and are unlikely t o significantly impact tropospheric numerical weather prediction. However, the errors could be significant for other applications such as stratospheric

  9. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  10. Seven Years of Observations of Mid-Tropospheric CO2 from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Olsen, Edward T.

    2010-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 um spectral region with spectral resolution of better than 1200. The AIRS was designed to measure temperature and water vapor profiles and cloud properties for improvement in weather forecast and improved parameterization of climate processes. Currently the AIRS Level 1B Radiance Products are assimilated by NWP centers and have shown considerable forecast improvement. Scientists have also demonstrated accurate retrievals of minor gases from AIRS including Carbon Monoxide, Methane, and Ozone. The excellent sensitivity and stability of the AIRS instrument has recently allowed the AIRS team to successfully retrieve Carbon Dioxide (CO2) concentrations in the mid-troposphere (8-10 km) with a horizontal resolution of 100 km and accuracy of 1-2 ppm. The AIRS retrieves over 15,000 measurements per day and can achieve full global coverage in 30 days. The AIRS CO2 accuracy has been validated against a variety of aircraft measurements in the mid-troposphere and upward looking interferometers. Findings from the AIRS data include higher than expected variability in the mid-troposphere, the presence of a belt of CO2 in the southern hemisphere, and numerous observations of atmospheric circulation including the effects of El Nino/La Nina on the CO2 concentrations in the mid-troposphere. The full mid-tropospheric AIRS CO2 data set is now available at the NASA GES/DISC for almost eight years since AIRS has been operational.

  11. Monthly Representations of Mid-Tropospheric Carbon Dioxide from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.; Chahine, Moustafa T.; Ruzmaikin, Alexander; Nguyen, Hai; Jiang, Xun

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Earth Observing System Aqua spacecraft was launched in May of 2002 and acquires hyperspectral infrared spectra used to generate a wide range of atmospheric products including temperature, water vapor, and trace gas species including carbon dioxide. Here we present monthly representations of global concentrations of mid-tropospheric carbon dioxide produced from 8 years of data obtained by AIRS between the years of 2003 and 2010. We define them as "representations" rather than "climatologies" to reflect that the files are produced over a relatively short time period and represent summaries of the Level 3 data. Finally, they have not yet been independently validated. The representations have a horizontal resolution of 2.0 deg x 2.5 deg (Latitude x Longitude) and faithfully reproduce the original 8 years of monthly L3 CO2 concentrations with a standard deviation of 1.48 ppm and less than 2% outliers. The representations are intended for use in studies of the global general circulation of CO2 and identification of anomalies in CO2 typically associated with atmospheric transport. The seasonal variability and trend found in the AIRS CO2 data are discussed.

  12. The atmopheric infrared sounder data products for weather prediction and climate studies

    NASA Astrophysics Data System (ADS)

    Pagano, T.; Chahine, M.; Aumann, H.; Lambrigtsen, B.; Fetzer, E.; Olsen, E.; Fishbein, E.; Thompson, C.; Lee, S. Y.

    The Atmospheric Infrared Sounder (AIRS) is a space based remote sensing instrument on the Earth Observing System Aqua Spacecraft. Aqua was launched in May of 2002 in a 1:30 pm equatorial crossing daytime ascending orbit. AIRS measures 2378 channels in the infrared from 3.7 um to 15.4 um and 4 channels in the Vis/NIR. The high number of infrared channels allows measurement of a wide range of data products useful for weather forecasting and climate studies. A major objective of the AIRS Project is to provide data products useful for improving weather forecasts. Current forecast models are very accurate and to improve upon these requires accuracies in products never achieved before. AIRS product requirements for improved forecasts include temperature profiles to 1K/km, humidity accuracies to 15%, sea surface temperature to 0.5K, and land surface temperature to 1K. Weather centers have not traditionally assimilated geophysical products, so the AIRS data products include a "Cloud Cleared Radiance" (CCR) product. The CCR products need to be accurate to 1K across the spectrum. The AIRS project has achieved the majority of the above requirements. Many of these parameters used for weather are also candidates for climate studies. The most fundamental product proposed to be used for climate studies are the AIRS calibrated radiances. It is from this product that all other products can be derived. However, with 2378 channels, each AIRS granule (file) is approximately 150 Mb in size making long term and global trending using the radiance products cumbersome. Several of the level 2 products are also candidates for climate studies including temperature layers and water vapor layers . To make climate studies easier for the user, the AIRS project has developed Level 3 products which include spatially and/or temporally aggregated AIRS data Level 2 products of various types. All AIRS Products that are currently available to the public can be obtained from the GSFC DAAC at http

  13. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Knuteson, Robert O.; Lesht, Barry M.; Strow, L. Larrabee; Hannon, Scott E.; Feltz, Wayne F.; Moy, Leslie A.; Fetzer, Eric J.; Cress, Ted S.

    2006-05-01

    The Atmospheric Infrared Sounder (AIRS) is the first of a new generation of advanced satellite-based atmospheric sounders with the capability of obtaining high-vertical resolution profiles of temperature and water vapor. The high-accuracy retrieval goals of AIRS (e.g., 1 K RMS in 1 km layers below 100 mbar for air temperature, 10% RMS in 2 km layers below 100 mbar for water vapor concentration), combined with the large temporal and spatial variability of the atmosphere and difficulties in making accurate measurements of the atmospheric state, necessitate careful and detailed validation using well-characterized ground-based sites. As part of ongoing AIRS Science Team efforts and a collaborative effort between the NASA Earth Observing System (EOS) project and the Department of Energy Atmospheric Radiation Measurement (ARM) program, data from various ARM and other observations are used to create best estimates of the atmospheric state at the Aqua overpass times. The resulting validation data set is an ensemble of temperature and water vapor profiles created from radiosondes launched at the approximate Aqua overpass times, interpolated to the exact overpass time using time continuous ground-based profiles, adjusted to account for spatial gradients within the Advanced Microwave Sounding Unit (AMSU) footprints, and supplemented with limited cloud observations. Estimates of the spectral surface infrared emissivity and local skin temperatures are also constructed. Relying on the developed ARM infrastructure and previous and ongoing characterization studies of the ARM measurements, the data set provides a good combination of statistics and accuracy which is essential for assessment of the advanced sounder products. Combined with the collocated AIRS observations, the products are being used to study observed minus calculated AIRS spectra, aimed at evaluation of the AIRS forward radiative transfer model, AIRS observed radiances, and temperature and water vapor profile

  14. Analysis of SO II point source emissions using NASA atmospheric infrared sounder data

    NASA Astrophysics Data System (ADS)

    Shen, Sylvia S.; Miller, David P.; Lewis, Paul E.

    2007-04-01

    Determining the extent to which large power plant emission sources interacting with atmospheric constituents affect the environment could play a significant role in future U.S. energy production policy. The effects on the environment caused by the interaction between power plant emissions and atmospheric constituents has not been investigated in depth due to the lack of calibrated spectral data on a suitable temporal and spatial scale. The availability of NASA's space-based Atmospheric Infrared Sounder (AIRS) data makes it possible to explore, and begin the first steps toward establishing, a correlation between known emission sources and environmental indicators. An exploratory study was conducted in which a time series of 26 cloud-free AIRS data containing two coal-fired power plants in northern New Mexico were selected, acquired, and analyzed for SO II emissions. A generic forward modeling process was also developed to derive an estimate of the expected AIRS pixel radiance containing the SO II emissions from the two power plants based on published combustion analysis data for coal and available power plant documentation. Analysis of the AIRS NEΔR calculated in this study and subsequent comparison with the radiance values for SO II calculated from the forward model provided essential information regarding the suitability and risk in the use of a modified AIRS configuration for monitoring anthropogenic point source emissions. The results of this study along with its conclusions and recommendations in conjunction with additional research collaboration in several specific topics will provide guidance for the development of the next generation infrared spectrometer system that NASA is considering building for environmental monitoring.

  15. The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals

    NASA Astrophysics Data System (ADS)

    Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung

    2007-05-01

    The consistency of cloud top temperature (TC) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an "effective scene brightness temperature" (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences (ΔTb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of ΔTb,e are for high and opaque clouds, with increasing scatter in ΔTb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in ΔTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-μm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of ΔTb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than ΔTb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.

  16. The Radiative Consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung

    2007-01-01

    The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.

  17. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  18. The Geostationary Remote Infrared Pollution Sounder (GRIPS): measurement of the carbon gases from space

    NASA Astrophysics Data System (ADS)

    Schoeberl, M.; Dickerson, R.; Marshall, B. T.; McHugh, M.; Fish, C.; Bloom, H.

    2013-09-01

    Climate change and air quality are the most pressing environmental issues of the 21st century. Despite decades of research, the sources and sinks of key greenhouse gases remain highly uncertain [IPCC1] making quantitative predictions of atmospheric composition and their impacts. The Geostationary Remote Infrared Pollution Sounder (GRIPS) is a multi-purpose instrument designed to reduce uncertainty associated with atmospheric radiative forcing. GRIPS will measure will measure greenhouse gases and aerosols - two of the most important elements in the earth's radiation budget. GRIPS will observe carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), - the carbon gases, nitrous oxide (N2O), water vapor and aerosols with unprecedented precision through the atmosphere. The GRIPS instrument uses gas filter correlation radiometry (GFCR) to detect reflected and thermal IR radiation to detect the gases and the reflected solar radiation in the visible and short-wave infrared bands for aerosols. GRIPS is designed to have sensitivity down to the Earth's surface at ~2-8km nadir resolution. GRIPS can resolve CO2, CO, and CH4 anomalies in the planetary boundary layer and the free troposphere to quantify lofting, diurnal variations and longrange transport. With repeated measurements throughout the day GRIPS can maximize the number of cloud free measurements determining biogenic and anthropogenic sources, sinks, and fluxes. GRIPS is highly complementary to the Orbiting Carbon Observatory, OCO-2, the geostationary Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Advanced Baseline Imager (ABI) and other existing and planned missions.

  19. Performance of the HIRS/2 instrument on TIROS-N. [High Resolution Infrared Radiation Sounder

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1980-01-01

    The High Resolution Infrared Radiation Sounder (HIRS/2) was developed and flown on the TIROS-N satellite as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow radiation channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7 K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic features, operating characteristics and performance of the instrument in test are described. Early orbital information from the TIROS-N launched on October 13, 1978 is given and some observations on system quality are made.

  20. Preflight assessment of the cross-track infrared sounder (CrIS) performance

    NASA Astrophysics Data System (ADS)

    Zavyalov, Vladimir V.; Fish, Chad S.; Bingham, Gail E.; Esplin, Mark; Greenman, Mark; Scott, Deron; Han, Yong

    2011-11-01

    The Cross-track Infrared Sounder (CrIS) is a part of the Crosstrack Infrared and Microwave Sounding Suite (CrIMSS) that will be used to produce accurate temperature, water vapor, and pressure profiles on the NPOESS Preparatory Project (NPP) and upcoming Joint Polar Satellite System (JPSS) operational missions. The NPP CrIS flight model has completed sensor qualification, characterization, and calibration and is now integrated with the NPP spacecraft in preparation for the launch. This paper reviews the CrIS performance during thermal vacuum tests, including the spacecraft integration test, and provides a comparison to the AIRS and IASI heritage sensors that it builds upon. The CrIS system consists of the instrument itself and ground-based scientific algorithms. The data reported in this paper was processed with the latest version of the CrIS science sensor data record (SDR) algorithm and thus reflects the performance of the CrIS SDR system. This paper includes the key test results for Noise Equivalent Differential Noise (NEdN), Radiometric Performance, and Spectral Accuracy. The CrIS sensor performance is outstanding and will meet the mission needs for the NPP /JPSS mission. NEdN is one of the key performance tests for the CrIS sensor. The overall NEdN performance for the CrIS in the LWIR, MWIR and SWIR spectral bands is excellent and is comparable or exceeds NEdN performance of AIRS and IASI. Also discussed is the Principal Component Analysis (PCA) approach developed to estimate contribution of random and spectrally correlated noise components to the total NEDN.

  1. Nighttime Cirrus Detection using Atmospheric Infrared Sounder Window Channels and Total Column Water Vapor

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; DeSouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-01-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 (micro)m infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/ near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 (micro)m window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of

  2. Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor

    NASA Astrophysics Data System (ADS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; Desouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-04-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 μm infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 μm window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of the

  3. The Arctic is becoming warmer and wetter as revealed by the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Boisvert, L. N.; Stroeve, J. C.

    2015-06-01

    Over the past decade, the Arctic has seen unprecedented declines in the summer sea ice area, leading to larger and longer exposed open water areas. The Atmospheric Infrared Sounder is a useful yet underutilized tool to study corresponding atmospheric changes and their feedbacks between 2003 and 2013. Most pronounced warming occurs between November and April, with skin and air temperatures increasing on average 2.5 K and 1.5 K over the Arctic Ocean. In response to sea ice loss, evaporation rates (i.e., moisture flux) increased between August and October by 1.5 × 10-3 g m-2 s-1 (3.8 W m-2 latent heat flux energy), increasing the water vapor feedback and cloud cover. Although most trends are positive over the Arctic Ocean, there is considerable interannual variability. Increasing specific humidity in May and corresponding downward moisture fluxes cause earlier melt onset; warming skin temperatures and radiative responses to increased water vapor and cloud cover in autumn delay freeze-up.

  4. Validation of the Atmospheric Infrared Sounder Water Vapor Retrievals Using Global Positioning System: Case Study in South Korea

    NASA Astrophysics Data System (ADS)

    Won, Jihye; Park, Kwan-Dong; Kim, Dusik; Ha, Jihyun

    2011-12-01

    The atmospheric infrared sounder (AIRS) sensor loaded on the Aqua satellite observes the global vertical structure of atmosphere and enables verification of the water vapor distribution over the entire area of South Korea. In this study, we performed a comparative analysis of the accuracy of the total precipitable water (TPW) provided as the AIRS level 2 standard retrieval product by Jet Propulsion Laboratory (JPL) over the South Korean area using the global positioning system (GPS) TPW data. The analysis TPW for the period of one year in 2008 showed that the accuracy of the data produced by the combination of the Advanced Microwave Sounding Unit sensor with the AIRS sensor to correct the effect of clouds (AIRS-X) was higher than that of the AIRS IR-only data (AIRS-I). The annual means of the root mean square error with reference to the GPS data were 5.2 kg/m2 and 4.3 kg/m2 for AIRS-I and AIRS-X, respectively. The accuracy of AIRS-X was higher in summer than in winter while measurement values of AIRS-I and AIRS-X were lower than those of GPS TPW to some extent.

  5. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  6. Lessons from 18 Years of Hyperspectral Infrared Sounder Data

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Manning, E. M.; Strow, L. L.

    2013-01-01

    By the end of 2013 NASA and EUMETSAT will have accumulated more than 11 years of AIRS, 6 years of IASI and one year of CrIS data. All three instruments were nominally specified to support the NWC for short term weather forecasting with a five year lifetime, but continue to exceed the accuracy requirement needed for weather forecasting alone. This allows use of their data for a much broader range of applications, including the calibration of broad-band instruments in space and climate research. We illustrate calibration aspects with examples from AIRS, IASI and CrIS using spatially uniform clear conditions, simultaneous nadir overpasses and random nadir samples. The differences between AIRS, IASI and CrIS for the purpose of weather forecasting are small and we expect that the excellent forecast impact demonstrated by the combination of AIRS and IASI will be continued by the combination of CrIS and IASI. Clear data are useful for calibration, but contain no climate signal. The analysis of random nadir samples from AIRS and CrIS identifies larger biases for observation of extreme conditions, represented by 1% and 99%tile data than for non-extreme observations. This is relevant for climate analysis. Resolution of these differences require further work, since they can complicate the continuation of trends established by AIRS with CrIS data, at least for extrema. The unequaled stability of the AIRS data allows us to evaluate trends using random nadir sampled data. We see an increasing frequency in severe storms over land, a decreasing frequency over ocean. The 11 years of AIRS data are too short to tell if these trends are significant from a climate change viewpoint, or if they are parts of multi-decadal oscillations.

  7. Feasibility of stratosphere temperature sounding with the Multi-Order Etalon Sounder (MOES) in the infrared

    SciTech Connect

    Wang, J.; Hays, P.B.; Moncet, J.L.

    1994-12-31

    Instruments with very high spectral resolution are needed to sound stratospheric temperatures from satellite. Maximizing the contributions of the stratosphere to the upwelling radiance measured by a particular channel can be achieved by using high spectral resolution channels positioned at strong carbon dioxide (CO{sub 2}) line centers. In this paper, the techniques of stratospheric temperature sounding from satellite are briefly reviewed. The feasibility of high resolution stratospheric temperature sounding with the Multi-Order Etalon Sounder (MOES), a high resolution Fabry-Perot array spectrometer, is discussed. The simulation studies indicate that stratospheric temperatures can be derived with a root-mean-square (RMS) error of about 2--3 K with MOES. A scenario to add MOES to the next generation High Resolution Infrared Sounder (HIRS/3) currently under development with minimal cost is suggested. With its compact size and ruggedness, MOES is an ideal candidate as the stratospheric temperature sounding unit for small environmental satellite platforms.

  8. Case study of the March 24, 1976 Elton, Louisiana tornado using satellite infrared imagery, Doppler sounder, rawinsonde, and radar observations

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1983-01-01

    The Elton, Louisiana tornado on March 24, 1976 has been studied using GOES digital infrared data for the growth and collapse of the cloud top, the temperature-height relationship and air mass instability from rawinsonde data, gravity waves from Doppler sounder records, and radar summaries from storm activity during the three-hour time period immediately preceding the touchdown of the tornado. In this case, the overshooting turret collapsed 30 minutes before the tornado touchdown as the eastward moving cloud reached Elton, Louisiana. Results show that the gravity waves were excited by the enhanced convection of the storm penetrating through the tropopause in the 2.5 hour time period before the tornado touched down.

  9. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  10. Temporal and zonal variability and of mid-tropospheric carbon dioxide from the Atmospheric Infrared Sounder compared to surface measurements

    NASA Astrophysics Data System (ADS)

    Pagano, T. S.; Olsen, E. T.; Nguyen, H. M.; Jiang, X.

    2012-12-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 um spectral region with spectral resolution of better than 1200, and spatial resolution of 13.5 km with global daily coverage. The AIRS was designed to measure temperature and water vapor profiles for improvement in weather forecast and improved parameterization of climate processes. Currently the AIRS Level 1B Radiance Products are assimilated by NWP centers worldwide and have shown considerable forecast improvement. AIRS L1 and L2 products are widely used for studying critical climate processes related to water vapor feedback, atmospheric transport and cloud properties. AIRS trace gas products include ozone profiles, carbon monoxide, and the first global maps of mid-tropospheric carbon dioxide. The global daily coverage of AIRS allows scientists to follow the transport of these gases to aid in validation of chemical/weather transport models. AIRS mid-tropospheric carbon dioxide has a peak sensitivity of about 450 mb and a width of about 500 mb. This broad mid-tropospheric sensitivity is useful for identifying global circulation patterns including ENSO (Jiang et al., 2010) and MJO (Li et al., 2010). Climatologies were developed that represent averages of AIRS Monthly L3 CO2 data detrended and averaged over the individual months for 12 maps on 2.0 x 2.5 degree grid scale (Pagano, 2011). The climatologies show a persistent low in the CO2 in the South Atlantic due to a constant downward flux from the Walker Circulation. The significantly reduced noise level in the climatologies also reveal that the horizontal variability in the AIRS CO2 measurements is not entirely driven by global circulation, but also the underlying global vegetation cycle. Further investigation into the seasonal behavior of the zonal averages of AIRS CO2, AIRS mid-troposphere and surface temperature data, MODIS derived GPP, and other ground

  11. NPOESS Preparatory Project Validation Program for the Cross-track Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Barnet, C.; Gu, D.; Nalli, N. R.

    2009-12-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Program, in partnership with National Aeronautical Space Administration (NASA), will launch the NPOESS Preparatory Project (NPP), a risk reduction and data continuity mission, prior to the first operational NPOESS launch. The NPOESS Program, in partnership with Northrop Grumman Aerospace Systems, will execute the NPP Calibration and Validation (Cal/Val) program to ensure the data products comply with the requirements of the sponsoring agencies. The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are two of the instruments that make up the suite of sensors on NPP. Together, CrIS and ATMS will produce three Environmental Data Records (EDRs) including the Atmospheric Vertical Temperature Profile (AVTP), Atmospheric Vertical Moisture Profile (AVMP), and the Atmospheric Vertical Pressure Profile (AVPP). The AVTP and the AVMP are both NPOESS Key Performance Parameters (KPPs). The validation plans establish science and user community leadership and participation, and demonstrated, cost-effective Cal/Val approaches. This presentation will provide an overview of the collaborative data, techniques, and schedule for the validation of the NPP CrIS and ATMS environmental data products.

  12. A Network of Direct Broadcast Antenna Systems to Provide Real-Time Infrared and Microwave Sounder Data for Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Gumley, L.

    2013-12-01

    The Space Science and Engineering Center at the University of Wisconsin-Madison is creating a network of direct broadcast satellite data reception stations to acquire and process infrared and microwave sounder data in real-time from polar orbiting meteorological satellites and deliver the resulting products to NOAA with low latency for assimilation in NCEP numerical weather prediction models. The network will include 4 antenna sites that will be operated directly by SSEC, including Madison WI, Honolulu HI, Miami FL, and Mayaguez PR. The network will also include partner antenna sites not directly controlled by SSEC, including Corvallis OR, Monterey CA, Suitland MD, Fairbanks AK, and Guam. All of the antenna sites will have a combined X/L-band reception system capable of receiving data via direct broadcast from polar orbiting satellites including Suomi NPP and JPSS-1, Metop-A/B, POES,Terra, and Aqua. Each site will collect raw data from these satellites locally, process it to Level 1 (SDR) and Level 2 (EDR) products, and transmit the products back to SSEC for delivery to NOAA/NCEP. The primary purpose of the antenna systems is to provide real-time infrared and microwave sounder data from Metop and Suomi-NPP to NOAA to support data assimilation for NOAA/NCEP operational numerical weather prediction models. At present, NOAA/NCEP use of advanced infrared (CrIS, IASI, AIRS) and microwave (ATMS, AMSU) sounder data over North America in NWP data assimilation is limited because of the latency of the products in relation to the cutoff times for assimilation runs. This network will deliver infrared and microwave sounder data to NCEP with the lowest latency possible, via the reception and processing of data received via direct broadcast. CIMSS/SSEC is managing the procurement and installation of the antenna systems at the two new sites, and will operate the stations remotely. NOAA will establish the reception priorities (Metop and SNPP will be at the highest priority) and

  13. Suomi NPP/JPSS Cross-track Infrared Sounder (CrIS): Calibration Validation With The Aircraft Based Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Tobin, D.; Knuteson, R. O.; Best, F. A.; Adler, D. A.; Pettersen, C.; Garcia, R. K.; Gero, P.

    2013-12-01

    To better accommodate climate change monitoring and improved weather forecasting, there is an established need for higher accuracy and more refined error characterization of radiance measurements from space and the corresponding geophysical products. This need has led to emphasizing direct tests of on-orbit performance, referred to as validation. Currently, validation typically involves (1) collecting high quality reference data from airborne and/or ground-based instruments during the satellite overpass, and (2) a detailed comparison between the satellite-based radiance measurements and the corresponding high quality reference data. Additionally, for future missions technology advancements at the University of Wisconsin Space Science and Engineering Center (UW-SSEC) have led to the development of an on-orbit absolute radiance reference utilizing miniature phase change cells to provide direct on-orbit traceability to International Standards (SI). The detailed comparison between the satellite-based radiance measurements and the corresponding measurements made from a high-altitude aircraft must account for instrument noise and scene variations, as well as differences in instrument observation altitudes, view angles, spatial footprints, and spectral response. Most importantly, for the calibration validation process to be both accurate and repeatable the reference data instrument must be extremely well characterized and understood, carefully maintained, and accurately calibrated, with traceability to absolute standards. The Scanning High-resolution Interferometer Sounder (S-HIS) meets and exceeds these requirements and has proven to do so on multiple airborne platforms, each with significantly different instrument operating environments. The Cross-track Infrared Sounder (CrIS) on Suomi NPP, launched 28 October 2011, is designed to give scientists more refined information about Earth's atmosphere and improve weather forecasts and our understanding of climate. CrIS is an

  14. SI traceable algorithm for characterizing hyperspectral infrared sounder CrIS noise.

    PubMed

    Chen, Yong; Weng, Fuzhong; Han, Yong

    2015-09-10

    The Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer and provides the sensor data record (SDR) that can be used to retrieve atmospheric temperature and water vapor profiles and can also be directly assimilated in numerical weather prediction models. The noise equivalent differential radiance (NEdN) is part of CrIS SDR products and represents the amount of random noise in the interferometer data. It is a crucial parameter that affects the accuracy of retrieval and satellite radiance assimilation. In this study, we used the international system of units (SI) traceable method Allan deviation to estimate the CrIS NEdN because the internal calibration target (ICT) radiance was slowly varying with time. Compared to the current standard deviation method, this study shows that the NEdN calculated from Allan deviation is converged to a stable value when a number of samples or the average window size is set to 510. Thus, Allan deviation can result in CrIS NEdN SI traceable noise. An optimal averaging window size is 30 if the NEdN is calculated from the standard deviation. PMID:26368960

  15. Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: the atmospheric infrared sounder science team version-6 retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena

    2014-01-01

    The atmospheric infrared sounder (AIRS) science team version-6 AIRS/advanced microwave sounding unit (AMSU) retrieval algorithm is now operational at the Goddard Data and Information Services Center (DISC). AIRS version-6 level-2 products are generated near real time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. Some of the significant improvements in retrieval methodology contained in the version-6 retrieval algorithm compared to that previously used in version-5 are described. In particular, the AIRS science team made major improvements with regard to the algorithms used to (1) derive surface skin temperature and surface spectral emissivity; (2) generate the initial state used to start the cloud clearing and retrieval procedures; and (3) derive error estimates and use them for quality control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, version-6 also operates in an AIRS only (AO) mode, which produces results almost as good as those of the full AIRS/AMSU mode. The improvements of some AIRS version-6 and version-6 AO products compared to those obtained using version-5 are also demonstrated.

  16. Comparison of OLR Data Sets from AIRS, CERES and MERRA 2

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Susskind, Joel; Iredell, Lena; Loeb, Norman; Lim, Young-Kwon

    2015-01-01

    Organizers of the NASA Sounder Science Team Meeting would like to post the presentations to a the JPL Atmospheric Infrared Sounder (AIRS) publicly-available website. The meeting was held in Greenbelt, Maryland, October 13-16, 2015.

  17. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances.

    PubMed

    Masiello, Guido; Serio, Carmine

    2013-04-10

    The problem of simultaneous physical retrieval of surface emissivity, skin temperature, and temperature, water-vapor, and ozone atmospheric profiles from high-spectral-resolution observations in the infrared is formulated according to an inverse problem with multiple regularization parameters. A methodology has been set up, which seeks an effective solution to the inverse problem in a generalized L-curve criterion framework. The a priori information for the surface emissivity is obtained on the basis of laboratory data alone, and that for the atmospheric parameters by climatology or weather forecasts. To ensure that we deal with a problem of fewer unknowns than observations, the dimensionality of the emissivity is reduced through expansion in Fourier series. The main objective of this study is to demonstrate the simultaneous retrieval of emissivity, skin temperature, and atmospheric parameters with a two-dimensional L-curve criterion. The procedure has been demonstrated with spectra observed from the infrared atmospheric sounder interferometer, flying onboard the European Meteorological Operational satellite. To check the quality and reliability of the methodology, we have used spectra recorded over regions characterized by known or stable emissivity. These include sea surface, for which effective emissivity models are known, and arid lands (Sahara and Namib Deserts) that are known to exhibit the characteristic spectral signature of quartz-rich sand.

  18. Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.

    PubMed

    Wang, Likun; Chen, Yong; Han, Yong

    2016-09-01

    Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation. PMID:27607289

  19. Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.

    PubMed

    Wang, Likun; Chen, Yong; Han, Yong

    2016-09-01

    Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.

  20. Space View Issues for Hyperspectral Sounders

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Aumann, Hartmut H.; Broberg, Steven E.

    2013-01-01

    The expectation for climate quality measurements from hyperspectral sounders is absolute calibration accuracy at the 100 mK level and stability at the < 40 mK/decade level. The Atmospheric InfraRed Sounder (AIRS)1, Cross-track Infrared Sounder (CrIS), and Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral sounders currently in orbit have been shown to agree well over most of their brightness temperature range. Some larger discrepancies are seen, however, at the coldest scene temperatures, such as those seen in Antarctic winter and deep convective clouds. A key limiting factor for the calibrated scene radiance accuracy for cold scenes is how well the effective radiance of the cold space view pertains to the scene views. The space view signal is composed of external sources and instrument thermal emission at about 270 K from the scan mirror, external baffles, etc. Any difference in any of these contributions between space views and scene views will impact the absolute calibration accuracy, and the impact can be critical for cold scenes. Any change over time in these will show up as an apparent trend in calibrated radiances. We use AIRS data to investigate the validity of the space view assumption in view of the 100 mK accuracy and 40 mK/decade trend expectations. We show that the space views used for the cold calibration point for AIRS v5 Level-1B products meet these standards except under special circumstances and that AIRS v6 Level-1B products will meet them under all circumstances. This analysis also shows the value of having multiple distinct space views to give operational redundancy and analytic data, and that reaching climate quality requires continuing monitoring of aging instruments and adjustment of calibration.

  1. Detection of Earth-rotation Doppler shift from Suomi National Polar-Orbiting Partnership Cross-Track Infrared Sounder.

    PubMed

    Chen, Yong; Han, Yong; Weng, Fuzhong

    2013-09-01

    The Cross-Track Infrared Sounder (CrIS) on the Suomi National Polar-Orbiting Partnership Satellite is a Fourier transform spectrometer and provides a total of 1305 channels for sounding the atmosphere. Quantifying the CrIS spectral accuracy, which is directly related to radiometric accuracy, is crucial for improving its data assimilation in numerical weather prediction. In this study, a cross-correlation method is used for detecting the effect of Earth-rotation Doppler shift (ERDS) on CrIS observations. Based on a theoretical calculation, the ERDS can be as large as about 1.3 parts in 10(6) (ppm) near Earth's equator and at the satellite scan edge for a field of regard (FOR) of 1 or 30. The CrIS observations exhibit a relative Doppler shift as large as 2.6 ppm for a FOR pair of 1 and 30 near the equator. The variation of the ERDS with latitude and scan position detected from CrIS observations is similar to that derived theoretically, which indicates that the spectral stability of the CrIS instrument is very high. To accurately calibrate CrIS spectral accuracy, the ERDS effect should be removed. Since the ERDS is easily predictable, the Doppler shift is correctable in the CrIS spectra.

  2. Improved Spatial Distribution and Trends of Clouds Observed with the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Hearty, T. J.; Susskind, J.; Blaisdell, J.; Kahn, B.; Fishbein, E.; Oliphant, R.

    2008-12-01

    Clouds are an important component of the Earth's radiation budget. Depending on their height and type they can either cool or warm the Earth's surface and atmosphere. Therefore it is important to have an accurate determination of cloud properties and where they are located to understand how Earth's climate is changing. The CO2 climatology used in the AIRS Version 5 retrieval algorithm assumes the CO2 abundance increases linearly with time but it neglects seasonal and spatial variations. Although a simple linearly varying CO2 climatology can remove spurious year-to-year trends it can cause spurious seasonal and spatial variations. We show that an improved CO2 climatology improves the retrieved AIRS cloud height and fraction. We also estimate the uncertainty in the AIRS Version 5 cloud parameters due to the simple CO2 climatology.

  3. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  4. An Anomaly Correlation Skill Score for the Evaluation of the Performance of Hyperspectral Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Manning, Evan; Barnet, Chris; Maddy, Eric; Blackwell, William

    2009-01-01

    With the availability of very accurate forecasts, the metric of accuracy alone for the evaluation of the performance of a retrieval system can produce misleading results. A useful characterization of the quality of a retrieval system and its potential to contribute to an improved weather forecast is its skill, which we define as the ability to make retrievals of geophysical parameters which are closer to the truth than the six hour forecast, when the truth differs significantly from the forecast. We illustrate retrieval skill using one day of AMSU and AIRS data with three different retrieval algorithms, which result in retrievals for more than 90% of the potential retrievals under clear and cloudy conditions. Two of the three algorithms have better than 1 K rms "RAOB quality" accuracy on the troposphere, but only one has skill between 900 and 100 mb. AIRS was launched on the EOS Aqua spacecraft in May 2002 into a 705 km polar sun-synchronous orbit with accurately maintained 1:30 PM ascending node. Essentially uninterrupted data are freely available since September 2002.

  5. Infrared sounding of the trade-wind boundary layer: AIRS and the RICO experiment

    NASA Astrophysics Data System (ADS)

    Martins, João P. A.; Teixeira, João; Soares, Pedro M. M.; Miranda, Pedro M. A.; Kahn, Brian H.; Dang, Van T.; Irion, Frederick W.; Fetzer, Eric J.; Fishbein, Evan

    2010-12-01

    The new generation of remote sensors on board NASA's A-Train constellation offers the possibility of observing the atmospheric boundary layer in different regimes, with or without clouds. In this study we use data from the Atmospheric InfraRed Sounder (AIRS) and of the Rain In Cumulus over the Ocean (RICO) campaign, to verify the accuracy and precision of the AIRS Version 5 Level 2 support product. This AIRS product has an improved vertical sampling that is necessary for the estimation of boundary layer properties. Good agreement is found between AIRS and RICO data, in a regime of oceanic shallow cumulus that is known to be difficult to analyze with other remote sensing data, and also shows a low sensitivity to cloud or land fraction. This suggests that AIRS data may be used for global boundary layer studies to support parameterization development in regions of difficult in-situ observation.

  6. Ammonia Measurements by the NASA Tropospheric Emission Spectrometer (TES) and the NPP Suomi Cross-Track Infrared Sounder (CrIS)

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, K. E.; Shephard, M. W.; Henze, D. K.; Zhu, J.; Pinder, R. W.; Bash, J. O.; Walker, J. T.; Luo, M.

    2013-12-01

    models of the ammonia bi-directional exchange at the surface and we will show some preliminary ammonia retrievals from the Cross-track Infrared Sounder (CrIS) currently flying on the NASA NPP Suomi satellite.

  7. Full Spectral Resolution Data Generation from the Cross-track Infrared Sounder on S-NPP at NOAA and its Use to Investigate Uncertainty in Methane Absorption Band Near 7.66 µm

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Peischl, J.; Ryerson, T. B.; Sasakawa, M.; Han, Y.; Chen, Y.; Wang, L.; Tremblay, D.; Jin, X.; Zhou, L.; Liu, Q.; Weng, F.; Machida, T.

    2015-12-01

    The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer for atmospheric sounding. CrIS on S-NPP started to provide measurements in 1305 channels in its normal mode since its launch on November 2011 to December 4, 2014, and after that it was switched to the full spectral resolution (FSR) mode, in which the spectral resolutions are 0.625 cm-1 in all the MWIR (1210-1750 cm-1), SWIR (2155-2550 cm-1) and the LWIR bands (650-1095 cm-1) with a total of 2211 channels. While the NOAA operational Sensor Data Record (SDR) processing (IDPS) continues to produce the normal resolution SDRs by truncating full spectrum RDR data, NOAA STAR started to process the FSR SDRs data since December 4, 2014 to present, and the data is being delivered through NOAA STAR website (ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/). The current FSR processing algorithm was developed on basis of the CrIS Algorithm Development Library (ADL), and is the baseline of J-1 CrIS SDR algorithm. One major benefit to use the FSR data is to improve the retrieval of atmospheric trace gases, such as CH4, CO and CO2 . From our previous studies to retrieve CH4 using Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI), it was found the uncertainty in the CH4 absorption band is up to 1-2%. So, in this study we computed the radiance using the community radiative transfer model (CRTM) and line-by-line model, with the inputs of "truth" of atmospheric temperature and moisture profiles from ECMWF model (and/or RAOB sounding) and CH4 profiles from in-situ aircraft measurements, then convoluted with the response function of CrIS. The difference between the simultaed radiance and the collocated CrIS FSR data is used to exam the uncertainty in these strong absorption channels.Through the improved fitting to the transmittance in these channels, it is expected to improve the retrieval of CH4 using CrIS on S

  8. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  9. Climate Change and Sounder Radiometric Stability

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Manning, Evan

    2009-01-01

    Satellite instrument radiometric stability is critical for climate studies. The Atmospheric Infrared Sounder (AIRS) radiances are of sufficient stability and accuracy to serve as a climate data record as evidenced by comparisons with the global network of buoys. In this paper we examine the sensitivity of derived geophysical products to potential instrument radiometric stability issues due to diurnal, orbital and seasonal variations. Our method is to perturb the AIRS radiances and examine the impact to retrieved parameters. Results show that instability in retrieved temperature products will be on the same order of the brightness temperature error in the radiances and follow the same time dependences. AIRS excellent stability makes it ideal for examining impacts of instabilities of future systems on geophysical parameter performance.

  10. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    This report describes progress during the second year of our research program on Infrared Signature Masking by Air Plasmas at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Our previous annual report described spectral measurements and modeling of the radiation emitted between 3.2 and 5.5 microns by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3100 K. One of our goals was to examine the spectral emission of secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million Of CO2, which is the natural CO2 concentration in atmospheric air at room temperature, and a small amount of water vapor with an estimated mole fraction of 3.8 x 10(exp -4). As can be seen from Figure 1, it was found that the measured spectrum exhibited intense spectral features due to the fundamental rovibrational bands of NO at 4.9 - 5.5 microns and the V(3) band of CO2 (antisymmetric stretch) at 4.2-4.8 microns. These observations confirmed the well-known fact that infrared signatures between 4.15 - 5.5 microns can be masked by radiative emission in the interceptor's bow-shock. Figure I also suggested that the range 3.2 - 4.15 microns did not contain any significant emission features (lines or continuum) that could mask IR signatures. However, the signal-to-noise level, close to one in that range, precluded definite conclusions. Thus, in an effort to further investigate the spectral emission in the range of interest to signature masking problem, new measurements were made with a higher signal-to-noise ratio and an extended wavelength range.

  11. Low-level water vapor fields from the VISSR atmospheric sounder (VAS) split window channels at 11 and 12 microns. [visible infrared spin scan radiometer

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L.; Robinson, W.

    1982-01-01

    A series of high-resolution water vapor fields were derived from the 11 and 12 micron channels of the VISSR Atmospheric Sounder (VAS) on GOES-5. The low-level tropospheric moisture content was separated from the surface and atmospheric radiances by using the differential adsorption across the 'split window' along with the average air temperature from imbedded radiosondes. Fields of precipitable water are presented in a time sequence of five false color images taken over the United States at 3-hour intervals. Vivid subsynoptic and mesoscale patterns evolve at 15 km horizontal resolution over the 12-hour observing period. Convective cloud formations develop from several areas of enhanced low-level water vapor, especially where the vertical water vapor gradient relatively strong. Independent verification at radiosonde sites indicates fairly good absolute accuracy, and the spatial and temporal continuity of the water vapor features indicates very good relative accuracy. Residual errors are dominated by radiometer noise and unresolved clouds.

  12. Intercalibration of infrared channels of polar-orbiting IRAS/FY-3A with AIRS/Aqua data.

    PubMed

    Jiang, Geng-Ming

    2010-02-15

    This work intercalibrated the infrared window channels 8 (12.47 microm), 9 (11.11 microm) and 19 (3.98 microm) of the InfraRed Atmospheric Sounder (IRAS) aboard the Chinese second generation polar-orbiting meteorological satellite FengYun 3A (FY-3A) with high spectral resolution data acquired by the Atmospheric InfraRed Sounder (AIRS) aboard Aqua. A North Pole study area was selected according to the IRAS and AIRS' viewing geometry. The IRAS/FY-3A L1 data and AIRS/Aqua 1B Infrared geolocated and calibrated radiances (AIRIBRAD) in July of 2008 were used in this work. A sub-pixel registration method was developed and applied to the IRAS and AIRS images to improve the intercalibration accuracy. The co-located measurement pairs were picked out with absolute Viewing Zenith Angle differences less than 5 degrees (|Delta VZA|<5 degrees), absolute Viewing Azimuth Angle differences less than 90 degrees (|Delta VAA|<90 degrees) and absolute time differences less than 15 min (|Delta T|<15'). The results reveal that the convolved AIRS/Aqua measurements are highly linearly related to the IRAS/FY-3A measurements with correlation coefficients greater than 0.93, and calibration discrepancies exist between IRAS and AIRS channels indeed. When the brightness temperatures in IRAS/FY-3A channels change from 230.0 K to 310.0 K, the AIRS-IRAS temperature adjustment linearly varies from -3.3 K to 1.7 K for IRAS/FY-3A channel 8, from -2.9 K to 2.6 K for IRAS/FY-3A channel 9, and from -5.3 K to 1.1 K for IRAS/FY-3A channel 19.

  13. Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991

    NASA Technical Reports Server (NTRS)

    Prins, Elain M.; Menzel, W. Paul

    1994-01-01

    Previous work demonstrated the ability to manually detect subpixel fire activity in selected areas of the selva and cerrado regions in South America with shortwave and longwave infrared data available from the Geostationary Operational Environmental Satellite (GOES) visible infrared spin scan radiometer atmospheric sounder (VAS). This paper presents the GOES VAS automated biomass-burning algorithm (ABBA) which was developed to determine basin-wide trends in fire activity in South America utilizing the GOES VAS archive. Comparisons between the manual and automated techniques revealed that overall, the ABBA proved to be more consistent in identifying fires and better suited for trend analysis. The automated algorithm was applied daily to a study area extending from 5 deg S to 15 deg S and from 45 deg W to 70 deg W for 2 weeks at the peak of the burning seasons in South America in 1983, 1988, 1989, and 1991 in an effort to measure the areal extent of burning in South American during the past decade and to provide additional insight into the diurnal signature in satellite detection of biomass-burning activities. The expansion of the regions of burning are readily detected in a comparison of these 4 years. From 1983 to 1991 the amount of burning detected by the GOES VAS ABBA during these 2-week periods nearly doubled in the selva and mixed regions and tripled in the cerrado. Diurnal analyses confirmed earlier results indicating that the optimum time to monitor biomass burning is around 1530 UTC.

  14. Assessment of error propagation in ultraspectral sounder data via JPEG2000 compression and turbo coding

    NASA Astrophysics Data System (ADS)

    Olsen, Donald P.; Wang, Charles C.; Sklar, Dean; Huang, Bormin; Ahuja, Alok

    2005-08-01

    Research has been undertaken to examine the robustness of JPEG2000 when corrupted by transmission bit errors in a satellite data stream. Contemporary and future ultraspectral sounders such as Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder (CrIS), Infrared Atmospheric Sounding Interferometer (IASI), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), and Hyperspectral Environmental Suite (HES) generate a large volume of three-dimensional data. Hence, compression of ultraspectral sounder data will facilitate data transmission and archiving. There is a need for lossless or near-lossless compression of ultraspectral sounder data to avoid potential retrieval degradation of geophysical parameters due to lossy compression. This paper investigates the simulated error propagation in AIRS ultraspectral sounder data with advanced source and channel coding in a satellite data stream. The source coding is done via JPEG2000, the latest International Organization for Standardization (ISO)/International Telecommunication Union (ITU) standard for image compression. After JPEG2000 compression the AIRS ultraspectral sounder data is then error correction encoded using a rate 0.954 turbo product code (TPC) for channel error control. Experimental results of error patterns on both channel and source decoding are presented. The error propagation effects are curbed via the block-based protection mechanism in the JPEG2000 codec as well as memory characteristics of the forward error correction (FEC) scheme to contain decoding errors within received blocks. A single nonheader bit error in a source code block tends to contaminate the bits until the end of the source code block before the inverse discrete wavelet transform (IDWT), and those erroneous bits propagate even further after the IDWT. Furthermore, a single header bit error may result in the corruption of almost the entire decompressed granule. JPEG2000 appears vulnerable to bit errors in a noisy channel of

  15. Retrieval of atmospheric temperature and moisture vertical profiles from satellite Advanced Infrared Sounder radiances with a new regularization parameter selecting method

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wu, Chunqiang; Li, Jun

    2016-06-01

    Considering the characteristics of nonlinear problems, a new method based on the L-curve method and including the concept of entropy was designed to select the regularization parameter in the one-dimensional variational analysis-based sounding retrieval method. In the first iteration, this method uses an empirical regularization parameter derived by minimizing the entropy of variables. During subsequent iterations, it uses the L-curve method to select the regularization parameter in the vicinity of the regularization parameter selected in the last iteration. The new method was employed to select the regularization parameter in retrieving atmospheric temperature and moisture profiles from Atmospheric Infrared Sounder radiance measurements selected from the first day of each month in 2008. The results show that compared with the original L-curve method, the new method yields 5.5% and 2.5% improvements on temperature and relative humidity profiles, respectively. Compared with the discrepancy principle method, the improvements on temperature and relative humidity profiles are 1.6% and 2.0%, respectively.

  16. Use of Atmospheric Infrared Sounder clear-sky and cloud-cleared radiances in the Weather Research and Forecasting 3DVAR assimilation system for mesoscale weather predictions over the Indian region

    NASA Astrophysics Data System (ADS)

    Singh, Randhir; Kishtawal, C. M.; Pal, P. K.

    2011-11-01

    A set of assimilation experiments is conducted with the Three-Dimensional Variational (3DVAR) data assimilation system associated with the Weather Research and Forecasting (WRF) model. The purpose of the investigation is to assess the impact on forecast skill in response to assimilation of the Atmospheric Infrared Sounder (AIRS) clear-sky and cloud-cleared radiances over the Indian region. This is the first study that makes use of cloud-cleared radiances in the WRF system. Two sets of thirty-one 72 h forecasts are performed, all initialized at 00:00 UTC each day throughout the month of July 2010, to compare the model performance consequent to assimilation of clear-sky versus cloud-cleared radiances. A rigorous validation is produced against National Centers for Environmental Prediction analyzed wind, temperature, and moisture. In addition, the precipitation forecast skill is assessed against Tropical Rainfall Measuring Mission observations. The results show improvement in forecast skill consequent to the assimilation of cloud-cleared radiances (CCR). The implications of using CCR for operational weather forecasting appear to be significant. Since only a small fraction of AIRS channels are cloud-free, information obtained in cloudy regions, which is meteorologically very significant, is lost when assimilating only clear-sky radiances (CSR). On the contrary, assimilation of CCR allows a larger yield, which leads to improved model performance. The assimilation of CCR resulted in significantly improved rainfall prediction compared to that obtained from the use of CSR. The finding of this study clearly shows the advantage of CCR available from clear-sky as well as from partly cloudy regions as compared to CSR, which are available only in clear-sky regions.

  17. Impact of Measurement System Characteristics on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.

    2011-01-01

    Advanced satellite sensors are tasked with improving global observations of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such an improvement in geophysical information inferred from these observations requires optimal usage of data from current systems as well as instrument system enhancements for future sensors. This presentation addresses results of tradeoff studies evaluating the impact of spectral resolution, spectral coverage, instrument noise, and a priori knowledge on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species information obtainable from advanced atmospheric sounders. Particular attention will be devoted toward information achievable from the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua satellite in orbit since 2002, the Infrared Atmospheric Sounding Interferometer (IASI) aboard MetOp-A since 2006, and the Cross-track Infrared Sounder (CrIS) instrument to fly aboard the NPP and JPSS series of satellites expected to begin in late 2011. While all of these systems cover nearly the same infrared spectral extent, they have very different number of channels, instrument line shapes, coverage continuity, and instrument noise. AIRS is a grating spectrometer having 2378 discrete spectral channels ranging from about 0.4 to 2.2/cm resolution; IASI is a Michelson interferometer with 8461 uniformly-spaced spectral channels of 0.5/cm (apodized) resolution; and CrIS is a Michelson interferometer having 1305 spectral channels of 0.625, 1.250, and 2.50/cm (unapodized) spectral resolution, respectively, over its three continuous but non-overlapping bands. Results of tradeoff studies showing information content sensitivity to assumed measurement system characteristics will be presented.

  18. Calibrated infrared ground/air radiometric spectrometer

    NASA Astrophysics Data System (ADS)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  19. Sensitivity of thermal infrared sounders to the chemical and micro-physical properties of UTLS secondary sulphate aerosols

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Legras, B.

    2015-08-01

    Monitoring upper tropospheric-lower stratospheric (UTLS) secondary sulphate aerosols and their chemical and micro-physical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact to the UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealized UTLS sulphate aerosol layers. The extinction properties of sulphuric acid/water droplets, for different sulphuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indexes taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealized aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulphate and bi-sulphate ions and the undissociated sulphuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulphuric acid mixing ratio, and effective number concentration and radius, as well as the role of interferring parameters like the ozone, sulphur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile

  20. Performance Expectations for Future Moderate Resolution Visible and Infrared Space Instruments Based on AIRS and MODIS In-Flight Experience

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Broberg, Steven E.; Aumann, Hartmut H.; Baron, Richard L.

    2004-01-01

    Lessons learned from the Atmospheric Infrared Sounder (AIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) projects highlight areas where further technology development is needed to address future land, ocean and atmospheric measurement needs. Although not established as requirements at this time, it is anticipated that scientists will expect improvements in the areas of spatial, spectral, radiometric, polarimetric, temporal and calibration performance for future sensors. This paper addresses each of these performance areas and provides lessons learned from MODIS and AIRS. We also present expectations in performance of the system based on information from NASA Instrument Incubator Program and industry reports. Tradeoffs are presented vs orbit altitude (LEO, ME0 and GEO) and provide a 'systems' perspective to future measurement concepts.

  1. Verification of mesoscale objective analyses of VAS and rawinsode data using the March 1982 AVE/VAS special network data. [Atmospheric Variability Experiment/Visible-infrared spin-scan radiometer Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Doyle, James D.; Warner, Thomas T.

    1988-01-01

    Various combinations of VAS (Visible and Infrared Spin Scan Radiometer Atmospheric Sounder) data, conventional rawinsonde data, and gridded data from the National Weather Service's (NWS) global analysis, were used in successive-correction and variational objective-analysis procedures. Analyses are produced for 0000 GMT 7 March 1982, when the VAS sounding distribution was not greatly limited by the existence of cloud cover. The successive-correction (SC) Procedure was used with VAS data alone, rawinsonde data alone, and both VAS and rawinsonde data. Variational techniques were applied in three ways. Each of these techniques was discussed.

  2. [Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder].

    PubMed

    Ma, Peng-fei; Chen, Liang-fu; Zou, Ming-min; Zhang, Ying; Tao, Ming-hui; Wang, Zi-leng; Su, Lin

    2015-12-01

    Ozone is a particularly critical trace gas in the Earth's atmosphere, since this molecule plays a key role in the photochemical reactions and climate change. The TIR measurements can capture the variability of ozone and are weakly sensitive to the lowermost tropospheric ozone content but can provide accurate measurements of tropospheric ozone and higher vertical resolution ozone profiles, with the additional advantage that measurements are also possible during the night. Because of the influence of atmospheric temperature, the ozone profile retrieval accuracy is severely limited. This paper analyze and discuss the ozone absorption spectra and weighting function sensitivity of temperature and its influence on ozone profile retrieval in detail. First, we simulate the change of atmospheric transmittance and radiance by importing 1 K temperature uncertainty, using line-by-line radiative transfer mode under 6 different atmosphere modes. The results show that the transmittance change ratio for 1 K temperature variation was consistent with the transmittance change ratio for 5%-6% change of ozone density variation in all layers of the profile. Then, we calculate the change of weighting function by a temperature error of 1 K, using the Community Radiative Transfer Model (CRTM) for the Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite and calculate the corresponding change of retrieval result. The results demonstrate that CrIS is sensitive to Ozone in the middle to upper stratosphere, with the peak vertical sensitivity between 10-100 hPa and the change of weighting function for 1 K temperature variation was consistent with 6% change in the ozone profile. Finally, the paper retrieves ozone profiles from the CrIS radiances with a nonlinear Newton iteration method and use the eigenvector regression algorithm to construct the a priori state. In order to resolve the problem of temperature uncertainty and get high accuracy

  3. Infrared Photography as an Air Pollution Surveillance Instrument

    ERIC Educational Resources Information Center

    Casalinuovo, Anthony F.; Sawan, Alan

    1976-01-01

    The purpose of this study was to determine the practicality of infrared photographic analysis to air pollution agencies, by the detection of plant damage from pollutants before they are visually identifiable. Results showed that photomicrographic imaging using infrared radiation should be considered a viable surveillance tool in similiar…

  4. AIRS Level 2 Status

    NASA Technical Reports Server (NTRS)

    Lee, Sung-Yung; Manning, Evan; Olsen, Edward

    2003-01-01

    The Atmospheric Infrared Sounder (AIRS) is a facility instrument onboard EOS Aqua. Major level 2 products are highlighted including temperature profile; water vapor profile; surface skin temperature and other surface parameters; and, cloud friction and top cloud pressure. Level 2 files and data availability are discussed.

  5. Infrared Remote Sensing Through Clouds With the AIRS-AMSU-HSB Sounding System on Aqua: An Update

    NASA Astrophysics Data System (ADS)

    Eldering, A.; Lee, S.; Fetzer, E. J.; Fishbein, E. F.; Chen, L. L.; Olsen, E. T.; Irion, F. W.; Chahine, M. T.; Pagano, T. S.; Aumann, H. H.; Lambrigtsen, B. H.

    2004-05-01

    The Atmospheric Infrared Sounder (AIRS) experiment on NASA's Earth Observing System Aqua spacecraft is a combination of infrared and microwave instruments designed for remote sensing of the atmosphere in the presence of clouds. The instruments and associated ground-based processing system have been in near full-time operation since September 2002, and have generated over 300,000 retrievals daily. The primary retrieved products are daily global fields of surface temperature, cloud height and fraction, and height-resolved humidity, temperature and minor gases. These observations are relevant to altitudes from the surface to the upper stratosphere. Central to the AIRS retrieval process is cloud-cleared radiance --the emission from the cloud-free part of a scene-- generated from a combination of infrared and microwave observations. We present instantaneous and time-averaged observations of cloud-cleared radiances, cloud properties, temperature, humidity and minor gases. We describe progress toward the central objectives of uncertainties of 1 K / km for atmospheric temperature profiles, 5% for total precipitable water vapor, 20% for relative humidity profiles, 0.5 C for sea surface temperatures, and 1.0 K for land surface temperatures. Some examples of how these observations are being used to answer important outstanding questions in the atmospheric sciences are also described.

  6. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    Detailed measurements and modeling of the spectral emission of an atmospheric pressure air plasma at temperatures up to -3400 K have been made. The cold gas injected in the plasma torch contained an estimated mole fraction of water vapor of approximately 4.5 x 10(exp -3) and an estimated carbon dioxide mole fraction of approximately 3.3 x 10(exp -4). Under these conditions, the minimum level of air plasma emission is found to be between 3.9 and 4.15 microns. Outside this narrow region, significant spectral emission is detected that can be attributed to the fundamental and overtone bands of NO and OH, and to the v(sub 3) and the (v(sub 1)+v(sub 3)) bands Of CO2. Special attention was paid to the effects of ambient air absorption in the optical path between the plasma and the detector. Excellent quantitative agreement is obtained between the measured and simulated spectra, which are both on absolute intensity scales, thus lending confidence in the radiation models incorporated into NEQAIR2-IR over the course of this research program.

  7. Investigation of Infra-red and Nonequilibrium Air Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, Christophe O.

    1994-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University. This program was intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Prior to this work, the radiative emission of air plasmas in the infrared had been the object of few experimental investigations, and although several infrared systems were already modeled in radiation codes such as NEQAIR, measurements were required to validate numerical predictions and indicate whether all transitions of importance were accounted for in the model. The program was further motivated by the fact that 9 excited states (A, B, C, D, B', F, H, and H') of NO radiate in the infrared, especially between 1 and 1.5 microns where at least 9 transitions involving can be observed. Because these IR transitions are relatively well separated from each other, excited NO states concentrations can be easily measured, thus providing essential information on excited-state chemistry for use in optical diagnostics or in electronic excitation model validation. Detailed comparisons between measured and simulated spectra are presented.

  8. Technology Development for a Hyperspectral Microwave Atmospheric Sounder (HyMAS)

    NASA Technical Reports Server (NTRS)

    Blackwell, W.; Galbraith, C.; Hilliard, L.; Racette, P.; Thompson, E.

    2014-01-01

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term hyperspectral microwave is used to indicate an all-weather sounding instrument that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earths atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions.

  9. Hurricane Debby - An illustration of the complementary nature of VAS soundings and cloud and water vapor motion winds. [Visible Infrared Spin Scan Radiometer Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Le Marshall, J. F.; Smith, W. L.; Callan, G. M.

    1985-01-01

    The utility of VISSR Atmospheric Sounder (VAS) temperature and moisture soundings and cloud and water vapor motion winds in defining a storm and its surroundings at subsynoptic scales has been examined using a numerical analysis and prognosis system. It is shown that the VAS temperature and moisture data, which specify temperature and moisture well in cloud-free areas, are complemented by cloud and water vapor motion data generated in the cloudy areas. The cloud and water vapor 'winds' provide thermal gradient information for interpolating the soundings across cloudy regions. The loss of analysis integrity due to the reduction of VAS sounding density in the cloudy regions associated with synoptic activity is ameliorated by using cloud and water vapor motion winds. The improvement in numerical forecasts resulting from the addition of these data to the numerical analysis is recorded.

  10. The GEISA system in 1996: towards an operational tool for the second generation vertical sounders radiance simulation.

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Scott, N. A.; Chedin, A.; Bonnet, B.; Barbe, A.; Tyuterev, V. G.; Champion, J. P.; Winnewisser, M.; Brown, L. R.; Gamache, R.; Golovko, V. F.; Chursin, A. A.

    1998-05-01

    Since their creation, in 1974, the GEISA (Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information) database system (more than 730,000 entries between 0 and 22,656 cm-1, corresponding to 40 molecules and 86 isotopic species, in its 1992 edition) and the associated software have been widely used for forward atmospheric radiative transfer modelling, with the maximum reliability, tractability and efficiency. For the upcoming high spectral resolution sounders like IASI (Infrared Atmospheric Sounding Interferometer) and AIRS (Atmospheric InfraRed Sounder), more complete and accurate laboratory measurements of spectroscopic parameters, presently included in the databases, are required, and more sophisticated theoretical radiative transfer modelling should be developed. Consequently, it is intended to elaborate the GEISA database as an interactive tool, named GEISA/IASI, designed for providing spectroscopic information tailored to the IASI sounding radiative transfer modelling.

  11. Cloud properties and bulk microphysical properties of semi-transparent cirrus from IR Sounders

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Feofilov, Artem; Armante, Raymond; Guignard, Anthony

    2013-04-01

    Satellite observations provide a continuous survey of the atmosphere over the whole globe. IR sounders have been observing our planet since 1979. The spectral resolution has improved from TIROS-N Operational Vertical Sounders (TOVS) to the Atmospheric InfraRed Sounder (AIRS), and to the InfraRed Atmospheric Sounding Interferometer (IASI); resolution within the CO2 absorption band makes these passive sounders most sensitive to semi-transparent cirrus (about 30% of all clouds), day and night. The LMD cloud property retrieval method developed for TOVS, has been adapted to the second generation of IR sounders like AIRS and, recently, IASI. It is based on a weighted χ2 method using different channels within the 15 micron CO2 absorption band. Once the cloud physical properties (cloud pressure and IR emissivity) are retrieved, cirrus bulk microphysical properties (De and IWP) are determined from spectral emissivity differences between 8 and 12 μm. The emissivities are determined using the retrieved cloud pressure and are then compared to those simulated by the radiative transfer model. For IASI, we use the latest version of the radiative transfer model 4A (http://4aop.noveltis.com), which has been coupled with the DISORT algorithm to take into account multiple scattering of ice crystals. The code incorporates single scattering properties of column-like or aggregate-like ice crystals provided by MetOffice (Baran et al. (2001); Baran and Francis (2004)). The synergy of AIRS and two active instruments of the A-Train (lidar and radar of the CALIPSO and CloudSat missions), which provide accurate information on vertical cloud structure, allowed the evaluation of cloud properties retrieved by the weighted χ2 method. We present first results for cloud properties obtained with IASI/ Metop-A and compare them with those of AIRS and other cloud climatologies having participated in the GEWEX cloud assessment. The combination of IASI observations at 9:30 AM and 9:30 PM complement

  12. How Strong is the Case for Geostationary Hyperspectral Sounders?

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, D. B.; Liu, Z.; Jensen, S.; Housley, E.

    2014-12-01

    The NASA GIFTS program designed and constructed a flight-ready hyperspectral infrared sounder for geostationary orbit. Efforts are now underway to launch a constellation of similar instruments. Salient characteristics included 4 km spatial resolution at nadir and 0.6 cm-1 spectral resolution in two infrared bands. Observing system experiments have demonstrated the success of assimilated hyperspectral infrared radiances from IASI and AIRS in improving weather forecast skill. These results provide circumstantial evidence that additional observations at higher spatial and temporal resolution would likely improve forecast skill further. However, there is only limited work investigating the magnitude of this skill improvement in the literature. Here we present a systematic program to quantify the additional skill of a constellation of geostationary hyperspectral sounders through observing system simulation experiments (OSSEs) using the WRF model and the WRFDA data assimilation system. The OSSEs will focus first on high-impact events, such as the forecast for Typhoon Haiyun, but will also address quotidian synoptic forecast skill. The focus will be on short-term forecast skill (<24 hours lead time), in accord with WRF's mesoscale design, and with the view that high time frequency observations are likely to make the biggest impact on the skill of short-range forecasts. The experiments will use as their starting point the full existing observational suite, so that additionality can be addressed, but will also consider contingencies, such as the loss of particular elements of the existing system, as well as the degree to which a stand-alone system of hyperspectral sounds would be able to successfully initialize a regional forecast model. A variety of settings, tropical and extratropical, marine and continental will be considered.

  13. Infrared Laser System for Extended Area Monitoring of Air Pollution

    NASA Technical Reports Server (NTRS)

    Snowman, L. R.; Gillmeister, R. J.

    1971-01-01

    An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.

  14. Investigation of infra-red and nonequilibrium air radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.

    1995-01-01

    This report describes progress on the first year of a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this date, the radiative emission of air plasmas in the infrared has been the object of few experimental investigations, and although several infrared systems are already modeled in radiation codes such as NEQAIR, measurements are required to validate numerical predictions and indicate whether all transitions of importance are accounted for. The present program is motivated by the fact that 9 excited states (A, B, C, D, B', F, H, and H') of NO radiate in the infrared, especially between 1 and 1.5 microns where at least 9 transitions involving can be observed. Because these IR transitions are relatively well separated from each other, excited NO states concentrations can be easily measured, thus providing essential information on excited-state chemistry for use in optical diagnostics or in electronic excitation model validation. Developing accurate collisional-radiative models for these excited NO states is of importance as the UV-VUV transitions of NO (beta, gamma, epsilon, beta prime, gamma prime) produce a major, if not dominant, fraction of the radiation emitted by air plasmas. During the first year of the program, research has focused on the spectral range 1.0 to 1.5 microns, as detailed in Section 2 of this report. The measurements, conducted in a 50 kW radio-frequency inductively coupled plasma torch operating on air at atmospheric pressure, extend previous shock tube investigations by Wray to a wider spectral range (1.0 to 1.5 microns vs 0.9 to 1.2 microns) and higher temperatures (7600 K in the plasma torch versus 6700 K in the shock-tube). These higher temperatures in the present experiment have made it possible to

  15. Apollo lunar sounder experiment

    USGS Publications Warehouse

    Phillips, R.J.; Adams, G.F.; Brown, W.E., Jr.; Eggleton, R.E.; Jackson, P.; Jordan, R.; Linlor, W.I.; Peeples, W.J.; Porcello, L.J.; Ryu, J.; Schaber, G.; Sill, W.R.; Thompson, T.W.; Ward, S.H.; Zelenka, J.S.

    1973-01-01

    The scientific objectives of the Apollo lunar sounder experiment (ALSE) are (1) mapping of subsurface electrical conductivity structure to infer geological structure, (2) surface profiling to determine lunar topographic variations, (3) surface imaging, and (4) measuring galactic electromagnetic radiation in the lunar environment. The ALSE was a three-frequency, wide-band, coherent radar system operated from lunar orbit during the Apollo 17 mission.

  16. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  17. Community Radiative Transfer Model Applications - A Study of the Retrieval of Trace Gases in the Atmosphere from Cross-track Infrared Sounder (CrIS) Data of a Full-spectral Resolution

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Nalli, N. R.; Tan, C.; Zhang, K.; Iturbide, F.; Wilson, M.; Zhou, L.

    2015-12-01

    The Community Radiative Transfer Model (CRTM) [3] operationally supports satellite radiance assimilation for weather forecasting, sensor data verification, and the retrievals of satellite products. The CRTM has been applied to UV and visible sensors, infrared and microwave sensors. The paper will demonstrate the applications of the CRTM, in particular radiative transfer in the retrieva algorithm. The NOAA Unique CrIS/ATMS Processing System (NUCAPS) operationally generates vertical profiles of atmospheric temperature (AVTP) and moisture (AVMP) from Suomi NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) measurements. Current operational CrIS data have reduced spectral resolution: 1.25 cm-1 for a middle wave band and 2.5 cm-1 for a short-wave wave band [1]. The reduced spectral data largely degraded the retrieval accuracy of trace gases. CrIS full spectral data are also available now which have single spectral resolution of 0.625 cm-1 for all of the three bands: long-wave band, middle wave band, and short-wave band. The CrIS full-spectral resolution data is critical to the retrieval of trace gases such as O3, CO [2], CO2, and CH4. In this paper, we use the Community Radiative Transfer Model (CRTM) to study the impact of the CrIS spectral resolution on the retrieval accuracy of trace gases. The newly released CRTM version 2.2.1 can simulates Hamming-apodized CrIS radiance of a full-spectral resolution. We developed a small utility that can convert the CRTM simulated radiance to un-apodized radiance. The latter has better spectral information which can be helpful to the retrievals of the trace gases. The retrievals will be validated using both NWP model data as well as the data collected during AEROSE expeditions [4]. We will also discuss the sensitivity on trace gases between apodized and un-apodized radiances. References[1] Gambacorta, A., et al.(2013), IEEE Lett., 11(9), doi:10.1109/LGRS.2014.230364, 1639-1643. [2] Han, Y., et

  18. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    NASA Technical Reports Server (NTRS)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  19. Simulating satellite infrared sounding retrievals in support of Observing System Simulation Experiments (OSSEs)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Mathews, William; Irion, Frederick W.; Sturm, Erick J.

    2014-09-01

    A new set of Observing System Simulation Experiments (OSSEs) are underway to assess the impact of higher spatial and temporal resolution sounding on hurricane forecast accuracy. To support these studies, we have developed an OSSE retrieval simulation system. The system uses a simulated satellite orbit track to provide sample locations and footprint area of the infrared sounder configuration to be simulated over the region of interest. The data to be sampled are an OSSE nature run developed by the NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) and the University of Miami (UM). The nature run is sampled at the sounder locations and integrated over the sounder footprint area. The resulting averaged profiles are smoothed vertically with simulated averaging kernels for the Atmospheric Infrared Sounder (AIRS) using a linear retrieval simulation to produce calculated temperature and water vapor profiles. With reasonable fidelity, the sampled and smoothed profiles simulate the retrievals we can expect from a sounder like AIRS for the orbit and sampling configurations under test. Three instruments were simulated corresponding to the AIRS 45×45km footprint in LEO, a hypothetical sounder at 2×2km footprint in LEO, and a hypothetical GEO sounder at 5×5km regional and 10km × 10km full disk footprint sizes. RMS error relative to the nature run is calculated to demonstrate the error characteristics of the simulation system. The simulated retrievals as a result of this effort are currently being assessed by NOAA AOML in an OSSE study to determine the impact of advanced hyperspectral infrared sounders on hurricane forecast improvement.

  20. AIRS CO2 Retrievals Using the Method of Vanishing Partial Derivatives (VPD)

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa; Yung, Yuk; Li, Qinbin; Olsen, Ed; Chen, Luke; Krakauer, Nir

    2006-01-01

    This document consists of presentation slides that review the work being done with observations from the Atmospheric Infrared Sounder (AIRS) using the concept of Vanishing Partial Derivatives. The infrared region is where several minor gases such as CO2, O3, CO, CH4 and SO2 are radiatively active.

  1. Comparing Water Vapor Trends Derived From Infrared and Microwave Radiometry

    NASA Astrophysics Data System (ADS)

    Fishbein, E.; Lambrigtsen, B.; Fetzer, E.

    2005-12-01

    The Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder. (ATMS) are the primary instruments on NPOESS and NPP for measuring profiles of atmospheric temperature and humidity but have the observations have different error characteristics. CrIS is an infrared radiometer using 6 micron thermal radiances to infer humidity while ATMS uses 183 GHz radiances. CrIS has good vertical resolution and but lose sensitivity with cloudiness while ATMS has poorer vertical resolution but is insensitive to nonprecipitating clouds. The error characteristics of humidity are complicated by the interaction of the errors from the two instruments propagating through a highly nonlinear combined CrIS and ATMS retrieval and are highly state dependent because cloudiness is correlated with relative humidity by dynamical processes involving uplift such as cumulus convection and baroclinic instability. We assess how these error sources impact climate trend analysis using data from the sounders on NASA's Aqua satellite. The Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounder-A (AMSU-A) and the Humidity Sounder for Brazil (HSB) fly on the Aqua satellite and have similar capabilities to CrIS and ATMS. We have produced humidity profiles from the AIRS/AMSU/HSB radiances using the AIRS unified retrieval system in four modes of different combinations of instruments: 1) all three instruments, 2) AIRS and AMSU, 3) AMSU and HSB and 4) AIRS alone. These correspond to the 1) CrIS and ATMS operating together using cloud clearing, 2) CrIS and ATMS operating in together but without the microwave humidity profiling channels, 3) ATMS alone and 4) CrIS alone using hole hunting. Trend analysis of zonal means from the four datasets is compared and mapped products are used to illustrate how measurement capabilities affect the derived trends.

  2. Spectral Resolution and Coverage Impact on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.

    2010-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS

  3. The Vertical Structure of Water Vapor in Mid-latitude as Seen by AIRS, AMSU and ECMWF

    NASA Astrophysics Data System (ADS)

    Fishbein, E.; Fetzer, E.; Hearty, T.; Kahn, B.

    2006-12-01

    The vertical structure of water vapor in mid-latitudes is controlled by Rossby wave activity, especially vertical transport in frontal systems. We compare the vertical structure of water vapor across frontal systems as measured by the Atmospheric Infrared Sounder (AIRS) and the Microwave Humidity Sounder for Brazil (HSB) with fields predicted by the European Center for Medium Range Forecasting (ECMWF) global system and relate these differences to modeling, vertical resolution and sampling errors.

  4. A Microwave Pressure Sounder

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.

    1978-01-01

    An instrument to measure atmospheric pressure at the earth's surface from an orbiting satellite would be a valuable addition to the expanding inventory of remote sensors. The subject of this report is such an instrument - the Microwave Pressure Sounder (MPS). It is shown that global-ocean coverage is attainable with sufficient accuracy, resolution and observational frequency for meteorological, oceanographic and climate research applications. Surface pressure can be deduced from a measurement of the absorption by an atmospheric column at a frequency in the wing of the oxygen band centered on 60 GHz. An active multifrequency instrument is needed to make this measurement with sufficient accuracy. The selection of optimum operating frequencies is based upon accepted models of surface reflection, oxygen, water vapor and cloud absorption. Numerical simulation using a range of real atmospheres defined by radiosonde observations were used to validate the frequency selection procedure. Analyses are presented of alternative system configurations that define the balance between accuracy and achievable resolution.

  5. Lessons Learned from AIRS: Improved Determination of Surface and Atmospheric Temperatures Using Only Shortwave AIRS Channels

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2011-01-01

    This slide presentation reviews the use of shortwave channels available to the Atmospheric Infrared Sounder (AIRS) to improve the determination of surface and atmospheric temperatures. The AIRS instrument is compared with the Infrared Atmospheric Sounding Interferometer (IASI) on-board the MetOp-A satellite. The objectives of the AIRS/AMSU were to (1) provide real time observations to improve numerical weather prediction via data assimilation, (2) Provide observations to measure and explain interannual variability and trends and (3) Use of AIRS product error estimates allows for QC optimized for each application. Successive versions in the AIRS retrieval methodology have shown significant improvement.

  6. Air quality monitoring based on Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Yan; Wang, Rui

    2006-09-01

    The use of optical techniques to identify and quantify atmospheric pollutants has been focused within the past two decades. Fourier Transform Infrared (FTIR) spectroscopy has proven to be a powerful tool for multi-component analysis of air quality monitoring. The technique has been used for gaseous samples by extractive sampling as well as in the open-path configuration. The present contribution has described the application of FTIR to analyze gaseous pollutants in ambient air in detail. The study for the detection limits of the interested gas, the design of the multipass White mirror system, and the experimental results are described. The White cell is employed to increase the absorbance relative to noise in the absorbance spectrum by increasing the path length without proportional loss of signal. A classical least squares (CLS) fit is used to match the scaled standards or previously measured absorption profiles to those of the observed spectrum in the specified spectral analysis regions for simultaneous quantification of the compounds of interest, plus several other ambient air constituents. The regions were chosen carefully to provide optimum detection of the compounds of interest with minimum interference by other compounds. Specially, spectrum subtraction and differential absorption concepts are introduced into FTIR data analysis. The optimal window for CO, S0 II, NO II, NO and CO II would be the region at 2250-2020 cm -1, 1230-1070 cm -1, 2940-2840 cm -1, 1965-1775 cm -1, and around 668.24 cm -1 respectively. Deviations from traditional measured results for all approaches are in 10%.

  7. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  8. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Brendt. Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2014-01-01

    Tropopause folds are identified by warm, dry, high-potential vorticity, ozone-rich air and are one explanation for damaging non-convective wind events. Could improved model representation of stratospheric air and associated tropopause folding improve non-convective wind forecasts and high wind warnings? The goal of this study is to assess the impact of assimilating Hyperspectral Infrared (IR) profiles on forecasting stratospheric air, tropopause folds, and associated non-convective winds: (1) AIRS: Atmospheric Infrared Sounder (2) IASI: Infrared Atmospheric Sounding Interferometer (3) CrIMSS: Cross-track Infrared and Microwave Sounding Suite

  9. Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, G.; Lin, T.

    2013-12-01

    Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the

  10. Regional Data Assimilation of AIRS Profiles and Radiances at the SPoRT Center

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Chou, Shih-hung; Jedlovec, Gary

    2009-01-01

    This slide presentation reviews the Short Term Prediction Research and Transition (SPoRT) Center's mission to improve short-term weather prediction at the regional and local scale. It includes information on the cold bias in Weather Research and Forcasting (WRF), troposphere recordings from the Atmospheric Infrared Sounder (AIRS), and vertical resolution of analysis grid.

  11. AIRS Level 2 Data Products

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto

    2003-01-01

    The Atmospheric InfraRed Sounder (AIRS) Standard Retrieval Product consists of retrieved cloud and surface properties; profiles of retrieved temperature, water vapor, and ozone; and a flag indicating the presence of cloud ice or water. They contain quality assessment flags in addition to retrieved quantities and are generated for all locations where atmospheric soundings are taken. An AIRS granule consists of 6 minutes of data. This corresponds to approximately 1/15 of an orbit but exactly 45 scan lines of AMSU-A data or 135 scan lines of AIRS and HSB data.

  12. A cold air outbreak over the Norwegian Sea observed with the Tiros-N Operational Vertical Sounder (TOVS) and the Special Sensor Microwave/Imager (SSM/I)

    NASA Technical Reports Server (NTRS)

    Claud, Chantal; Katsaros, Kristina B.; Petty, Grant W.; Chedin, Alain; Scott, Noelle A.

    1992-01-01

    Until recently, the scarcity of meteorological observations over polar areas has limited studies of high latitude weather systems, but now data from polar orbiting satellites offer a new opportunity to observe and describe these systems. TOVS data were used successfully for delineating synoptic and subsynoptic systems since they provide the vertical temperature structure of the atmosphere: SSM/I observations have proved valuable for analyzing storms through water vapor and rain determinations. These positive results prompted us to analyze simultaneous TOVS and SSM/I observations obtained during a cold air outbreak over the Norwegian Sea. After a description of the instruments and the retrieval schemes, the mutually supporting information from these two independent instruments is discussed. Implications for the monitoring of polar lows are presented.

  13. A cold air outbreak over the Norwegian Sea observed with the Tiros-N Operational Vertical Sounder (TOVS) and the Special Sensor Microwave/Imager (SSM/I)

    NASA Technical Reports Server (NTRS)

    Claud, Chantal; Katsaros, Kristina B.; Petty, Grant W.; Chedin, Alain; Scott, Noelle A.

    1992-01-01

    Until recently, the scarcity of meteorological observations over polar areas has limited studies of high-latitude weather systems, but now data from polar orbiting satellites offer a new opportunity to observe and describe these systems. TOVS data have been used successfully for delineating synoptic and subsynoptic systems, since they provide the vertical temperature structure of the atmosphere; SSM/I observations have proved valuable for analyzing storms through water vapor and rain determinations. These positive results prompted simultaneous analysis of TOVS and SSM/I observations obtained during a cold air outbreak over the Norwegian Sea. After a description of the instruments and the retrieval schemes, the mutually supporting information from these two independent instruments is discussed. Implications for the monitoring of polar lows are presented.

  14. AIRS Detection of Dust: Global Map for July 2003

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The averaged brightness temperature differences between the 961 and 1231 cm-1 AIRS channels for July 2003, reveal long range transport of Sahara Dust across the Atlantic.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  15. Moisture correspondence between lower and upper troposphere over oceans using AIRS observations

    NASA Technical Reports Server (NTRS)

    Ye, Hengchun; Fetzer, E. J.; Granger, S.; Lee, S. -Y.; Olsen, E. T.; Lambridgtsen, B. H.; Chen, L.

    2006-01-01

    The Atmospheric Infrared Sounder (AIRS) mounted on Aqua space craft measures vertical profiles of air temperature and humidity using both microwaves and infrared irradiance. The AIRS' level III data that provide gridded values of 1(sup o) latitude by 1(sup o) longitude for the highest temporal resolution of twice per day became available recently (Granger et al. 2005). This level III data were derived from the level II Version 4.0 AIRS retrieval algorithm. This study uses this level III AIRS moisture profile data to reveal geographical correspondences of atmospheric moisture content between the lower and upper troposphere.

  16. Candidate future atmospheric sounder for the converged U.S. meteorological system

    NASA Astrophysics Data System (ADS)

    Morse, Paul G.; Miller, Christopher R.; Chahine, Moustafa T.; O'Callaghan, Fred; Aumann, Hartmut H.; Karnik, Avinash R.

    1995-09-01

    The atmospheric infrared sounder (AIRS) is being developed for the NASA Earth Observing System (EOS) program with a scheduled launch on the first post meridian (PM) platform in the year 2000. AIRS is designed to provide both new and more accurate data about the atmosphere, land, and oceans for applications to climate studies and weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1K in 1 kilometer (km) layers in the troposphere and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on very sensitive passive IR remote sensing using a precisely calibrated, high spectral resolution grating spectrometer operating in the 3.7 micrometers to 15.4 micrometers region. The instrument concept utilizes a passively cooled multiaperture echelle array spectrometer approach in combination with advanced state of the art focal plane and cryogenic refrigerator technology to achieve unparalleled performance capability in a practical long life configuration. AIRS is a key component of NASA's Global Change Research Program and is expected to play an important role in fulfilling the needs of the converged National Polar- Orbiting Operating Environment Satellite System (NPOESS) now under study. This paper provides a brief overview of the mission followed by a description of the instrument design and current development status.

  17. Assimilation of the Microwave Limb Sounder Radiances

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Read, W.; Livesey, N.; Wagner, P.; Nguyen. H.; Pawson, S.

    2012-01-01

    It has been shown that the assimilation of limb-sounder data can significantly improve the representation of ozone in NASA's GEOS Data Assimilation Systems (GEOS-DAS), particularly in the stratosphere. The studies conducted so far utilized retrieved data from the MIPAS, POAM, ILAS and EOS Microwave Limb Sounder (EOS MLS) instruments. Direct assimilation of the radiance data can be seen as the natural next step to those studies. The motivation behind working with radiances is twofold. First, retrieval algorithms use a priori data which are either climatological or are obtained from previous analyses. This introduces additional uncertainty and, in some cases, may lead to "self-contamination"- when the a priori is taken from the same assimilation system in which subsequently ingests the retrieved observations. Second, radiances can be available in near real time thus providing an opportunity for operational assimilation, which could help improve the use of infrared radiance instruments from operational satellite instruments. In this presentation we summarize our ongoing work on an implementation of the assimilation of EOS MLS radiances into the GEOS-5 DAS. This work focuses on assimilation of band 7 brightness temperatures which are sensitive to ozone. Our implementation uses the MLS Callable Forward Model developed by the MLS team at NASA JPL as the observation operator. We will describe our approach and recent results which are not yet final. In particular, we will demonstrate that this approach has a potential to improve the vertical structure of ozone in the lower tropical stratosphere as compared with the retrieved MLS product. We will discuss the computational efficiency of this implementation.

  18. Spatiotemporal Evaluation of Nocturnal Cold Air Drainage Over a Simple Slope Using Thermal Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Ikani, V.; Chokmani, K.; Fathollahi, L.; Granberg, H.; Fournier, R.

    2016-06-01

    Measurements of climatic processes such as cold air drainage flows are problematic over mountainous areas. Observation of cold air drainage is not available in the existing observation network and it requires a special methodology. The main objective of this study was to characterize the cold air drainage over regions with a slope. A high resolution infrared camera, a meteorological station and Digital Elevation Model (DEM) were used. The specific objective was to derive nocturnal cold air drainage velocity over the slope. To address these objectives, a number of infrared measurement campaigns were conducted during calm and clear sky conditions over an agricultural zone (blackcurrant farm) in Canada. Using thermal infrared images, the nocturnal surface temperature gradient were computed in hourly basis. The largest gradient magnitudes were found between 17h -20h. The cooling rates at basin area were two times higher in comparison to the magnitudes observed within slope area. The image analysis illustrated this considerable temperature gradient of the basin may be partly due to transport of cold air drainage into the basin from the slope. The results show that thermal imagery can be used to characterize and understand the microclimate related to the occurrence of radiation frost in the agricultural field. This study provided the opportunity to track the cold air drainage flow and pooling of cold air in low lying areas. The infrared analysis demonstrated that nocturnal drainage flow displayed continuous variation in terms of space and time in response to microscale slope heterogeneities. In addition, the analysis highlighted the periodic aspect for cold air drainage flow.

  19. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  20. Next Generation Grating Spectrometer Sounders for LEO and GEO

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2011-01-01

    AIRS and MODIS are widely used for weather, climate, composition, carbon cycle, cross-calibration, and applications. The community asking for new capability in the 2020 timeframe, capabilities desired: (1) Hyperspectral UV to LWIR, High Spatial ?1km IFOV (2) Maximize Synergies of Solar Reflected and IR. Synergies with OCO-2. We expect more users and applications of next gen LEO IR Sounder than GEO. These include: weather, climate, GHG monitoring, aviation, disaster response. There is a new direction for imagers and sounders: (1) Separate Vis/NIR/SWIR from MWIR/LWIR instruments reduces technology risk and complexity. (2) Expect Costs to be lower than CrIS & VIIRS Some additional ideas to reduce costs include: (1) minimum set of requirements (2) mini-grating spectrometers. supports constellation for higher revisit (3) new technology to reduce instrument size (large format fpa's) (4) hosted payloads

  1. GEO/SAMS - The Geostationary Synthetic Aperture Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.

    2008-01-01

    The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. (Similar systems are also operated by other nations.) The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which makes it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions. Such satellite observations have had a significant impact on weather forecasting accuracy, especially in regions where in situ observations are sparse. In contrast, the GOES satellites have only been equipped with IR sounders, since it has not been feasible to build a large enough antenna to achieve sufficient spatial resolution for a MW sounder in GEO. As a result, GOES soundings can only be obtained in cloud free areas and in the less important upper atmosphere, above the cloud tops. This has hindered the effective use of GOES data in numerical weather prediction. Full sounding capabilities with the GOES system is highly desirable because of the advantageous spatial and temporal coverage that is possible from GEO. While POES satellites provide coverage in relatively narrow swaths, and with a revisit time of 12-24 hours or more, GOES satellites can provide continuous hemispheric coverage, making it possible to monitor highly dynamic phenomena such as hurricanes.

  2. Infrared Spectral Radiance Intercomparisons With Satellite and Aircraft Sensors

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-01-01

    Measurement system validation is critical for advanced satellite sounders to reach their full potential of improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. Experimental field campaigns, focusing on satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the validation task. Airborne FTS systems can enable an independent, SI-traceable measurement system validation by directly measuring the same level-1 parameters spatially and temporally coincident with the satellite sensor of interest. Continuation of aircraft under-flights for multiple satellites during multiple field campaigns enables long-term monitoring of system performance and inter-satellite cross-validation. The NASA / NPOESS Airborne Sounder Testbed - Interferometer (NAST-I) has been a significant contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This presentation gives an overview of benefits achieved using airborne sensors such as NAST-I utilizing examples from recent field campaigns. The methodology implemented is not only beneficial to new sensors such as the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi NPP and future JPSS satellites but also of significant benefit to sensors of longer flight heritage such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on the AQUA and METOP-A platforms, respectively, to ensure data quality continuity important for climate and other applications. Infrared spectral radiance inter-comparisons are discussed with a particular focus on usage of NAST-I data for enabling inter-platform cross-validation.

  3. The 2003 edition of geisa: a spectroscopic database system for the second generation vertical sounders radiance simulation

    NASA Astrophysics Data System (ADS)

    Jacquinet-Husson, N.; Lmd Team

    The GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer accessible database system, in its former 1997 and 2001 versions, has been updated in 2003 (GEISA-03). It is developed by the ARA (Atmospheric Radiation Analysis) group at LMD (Laboratoire de Météorologie Dynamique, France) since 1974. This early effort implemented the so-called `` line-by-line and layer-by-layer '' approach for forward radiative transfer modelling action. The GEISA 2003 system comprises three databases with their associated management softwares: a database of spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located in a spectral range from the microwave to the limit of the visible. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. a database of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. a database of refractive indices of basic atmospheric aerosol components. Illustrations will be given of GEISA-03, data archiving method, contents, management softwares and Web access facilities at: http://ara.lmd.polytechnique.fr The performance of instruments like AIRS (Atmospheric Infrared Sounder; http://www-airs.jpl.nasa.gov) in the USA, and IASI (Infrared Atmospheric Sounding Interferometer; http://smsc.cnes.fr/IASI/index.htm) in Europe, which have a better vertical resolution and accuracy, compared to the presently existing satellite infrared vertical sounders, is directly related to the quality of the spectroscopic parameters of the optically active gases, since these are essential input in the forward models used to simulate recorded radiance spectra. For these upcoming atmospheric sounders, the so-called GEISA/IASI sub-database system has been elaborated

  4. Average Tropical Relative Humidity from AIRS, Dec-Feb 2002-2005

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The average tropospheric relative humidity from AIRS for the four December-February periods during 2002 through 2005.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  5. Robust near-infrared light bullet in 800-nm femtosecond light filaments in air

    NASA Astrophysics Data System (ADS)

    Panov, Nikolay A.; Shipilo, Daniil E.; Andreeva, Vera A.; Uryupina, Daria S.; Savel'ev, Andrei B.; Kosareva, Olga G.; Chin, See Leang

    2015-09-01

    Systematic numerical study of near-infrared radiation formed during filamentation in air revealed the formation of robust light bullet first registered in the experiment (Chen et al. in Appl Phys B 91:219, 2008). The near-infrared light bullet propagates along the filament axis with the divergence <1 mrad and the quasi-constant duration of ~30 fs. The central wavelength of the bullet gradually increases from 860 to 900 nm during the propagation. The results of our numerical simulation are in agreement with the experiments (Chen et al. in Appl Phys B 91:219, 2008; Uryupina et al. in Appl Phys B 110:123, 2013).

  6. CfAIR2: Near-infrared Light Curves of 94 Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Wood-Vasey, W. M.; Marion, G. H.; Challis, Peter; Mandel, Kaisey S.; Bloom, Joshua S.; Modjaz, Maryam; Narayan, Gautham; Hicken, Malcolm; Foley, Ryan J.; Klein, Christopher R.; Starr, Dan L.; Morgan, Adam; Rest, Armin; Blake, Cullen H.; Miller, Adam A.; Falco, Emilio E.; Wyatt, William F.; Mink, Jessica; Skrutskie, Michael F.; Kirshner, Robert P.

    2015-09-01

    CfAIR2 is a large, homogeneously reduced set of near-infrared (NIR) light curves (LCs) for Type Ia supernovae (SNe Ia) obtained with the 1.3 m Peters Automated InfraRed Imaging TELescope. This data set includes 4637 measurements of 94 SNe Ia and 4 additional SNe Iax observed from 2005 to 2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes {{JHK}}s photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z ˜ 0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the LCs begin before the time of maximum, and the coverage typically contains ˜13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for SN cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the SN cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.

  7. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to

  8. AIRS Retrieval Validation During the EAQUATE

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Cuomo, Vincenzo; Taylor, Jonathan P.; Barnet, Christopher D.; DiGirolamo, Paolo; Pappalardo, Gelsomina; Larar, Allen M.; Liu, Xu; Newman, Stuart M.

    2006-01-01

    Atmospheric and surface thermodynamic parameters retrieved with advanced hyperspectral remote sensors of Earth observing satellites are critical for weather prediction and scientific research. The retrieval algorithms and retrieved parameters from satellite sounders must be validated to demonstrate the capability and accuracy of both observation and data processing systems. The European AQUA Thermodynamic Experiment (EAQUATE) was conducted mainly for validation of the Atmospheric InfraRed Sounder (AIRS) on the AQUA satellite, but also for assessment of validation systems of both ground-based and aircraft-based instruments which will be used for other satellite systems such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) from the NPOESS Preparatory Project and the following NPOESS series of satellites. Detailed inter-comparisons were conducted and presented using different retrieval methodologies: measurements from airborne ultraspectral Fourier transform spectrometers, aircraft in-situ instruments, dedicated dropsondes and radiosondes, and ground based Raman Lidar, as well as from the European Center for Medium range Weather Forecasting (ECMWF) modeled thermal structures. The results of this study not only illustrate the quality of the measurements and retrieval products but also demonstrate the capability of these validation systems which are put in place to validate current and future hyperspectral sounding instruments and their scientific products.

  9. AIRS radiometric calibration validation for climate research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.; Elliott, Denis; Gaiser, Steve; Gregorich, Dave; Broberg, Steve

    2005-01-01

    Climate research using data from satellite based radiometers makes extreme demands on the traceability and stability of the radiometric calibration. The selection of a cooled grating array spectrometer for the Atmospheric Infrared Sounder, AIRS, is key, but does not ensured that AIRS data will be of climate quality. Additional design features, plus additional pre-launch testing, and extensive on-orbit calibration subsystem monitoring beyond what would suffice for application of the data to weather forecasting were required to ensure the radiometric data quality required for climate research. Validation that climate data quality are being generated makes use of the sea surface skin temperatures (SST and (obs-calc).

  10. The validation of AIRS retrievals

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Olsen, Edward T.; Chen, Luke L.; Hagan, Denise E.; Fishbein, Evan; McMillin, Larry; Zhou, Jiang; McMillan, Wallace W.

    2003-01-01

    The initial validation of Atmospheric Infrared Sounder (SIRS) experiment retrievals were completed in August 2003 as part of public release of version 3.0 data. The associated analyses are reported at http://daac.gsfc.nasa.gov/atmodyn/airs/, where data may be accessed. Here we describe some of those analyses, with an emphasis on cloud cleared radiances, atmospheric temperature profiles, sea surface temperature, total water vapor and atmospheric water vapor profiles. The results are applicable over ocean in the latitude band +/-40 degrees.

  11. Multiorder etalon sounder (MOES) development and test for balloon experiment

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Wnag, Jinxue; Wu, Jian

    1993-01-01

    The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES

  12. The temperature fields measurement of air in the car cabin by infrared camera

    NASA Astrophysics Data System (ADS)

    Pešek, M.

    2013-04-01

    The article deals with the temperature fields measurement of air using the Jenoptic Variocam infrared camera inside the car Škoda Octavia Combi II. The temperature fields with the use of auxiliary material with a high emissivity value were visualized. The measurements through the viewing window with a high transmissivity value were performed. The viewing windows on the side car door were placed. In the rear car area, the temperature fields of air on the spacious sheet of auxiliary material were visualized which is a suitable method for 2D airstreams. In the front car area, the temperature fields in the air were measured with the use of the measuring net which is suitable for 3D airstreams measuring.

  13. NASA GES DISC DAAC Data Holdings for AIRS/Aqua

    NASA Astrophysics Data System (ADS)

    Cho, S.; Phelps, C. S.; Sharma, A. K.; Qin, J.

    2002-12-01

    The Atmospheric Infrared Sounder (AIRS) is a high-resolution infrared sounder on the Earth Observing System polar-orbiting platform, EOS Aqua, which was successfully launched on May 4, 2002. AIRS is closely coupled with two microwave instruments, the Advanced Microwave Sounding Unit (AMSU-A) and the Humidity Sounder for Brazil (HSB). The data products from AIRS/AMSU-A/HSB are archived and distributed at the Distributed Active Archive Center (DAAC) located at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). AIRS has 2,378 channels measuring in the infrared range 3.74-15.4 μm and four channels measuring in the visible/near-infrared range 0.4-1.1 μm. AMSU-A is a temperature sounder that primarily provides atmospheric information in the presence of clouds, which is used to correct the AIRS infrared measurements for the effects of the clouds. Likewise, HSB provides information on snow/ice cover, precipitation, and the coarse distribution of moisture in the troposphere. Combined with simultaneous measurements from AIRS, the calibrated brightness temperature from AMSU-A and HSB is used to initialize the atmospheric moisture profile required for the retrieval of the final AIRS geophysical products. The data product suite includes level 1B combined, geolocated and calibrated radiances and will include level 2 final retrievals of surface skin temperature, surface albedo, integrated precipitable water, radiative fluxes, various cloud properties and trace gases (ozone, methane, carbon dioxide, and carbon monoxide). Furthermore, AIRS/AMSU-A/HSB will obtain atmospheric temperature profiles with an accuracy of 1K for every 1 km layer in the troposphere (1K for every 4 km layer in stratosphere) and humidity profiles with an accuracy 20% in 2 km layers from the surface up through the troposphere. Global coverage is obtained twice daily (day and night) on a 1:30 p.m. sun-synchronous orbit from a 705-km altitude. For processing convenience, the data

  14. AIRS Sea Surface Temperature and Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Chen, L. L.

    2015-12-01

    Atmospheric Infrared Sounder (AIRS) has been providing necessary measurements for long term atmospheric and surface processes aboard NASA' s Aqua polar orbiter since May 2002. Here, we use time series of AIRS sea surface temperature (SST) anomalies to show the time evolution of Pacific Decadal Oscillation (PDO) in the Gulf of Alaska (lon:-144.5, lat:54.5) from 2003 to 2014. PDO is connected to the first mode of North Pacific SST variability and is tele-connected to ENSO in the tropics. Further analysis of AIRS data can provide clarification of Pacific climate variability.

  15. Cris-atms Retrievals Using an AIRS Science Team Version 6-like Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2014-01-01

    CrIS is the infrared high spectral resolution atmospheric sounder launched on Suomi-NPP in 2011. CrISATMS comprise the IRMW Sounding Suite on Suomi-NPP. CrIS is functionally equivalent to AIRS, the high spectral resolution IR sounder launched on EOS Aqua in 2002 and ATMS is functionally equivalent to AMSU on EOS Aqua. CrIS is an interferometer and AIRS is a grating spectrometer. Spectral coverage, spectral resolution, and channel noise of CrIS is similar to AIRS. CrIS spectral sampling is roughly twice as coarse as AIRSAIRS has 2378 channels between 650 cm-1 and 2665 cm-1. CrIS has 1305 channels between 650 cm-1 and 2550 cm-1. Spatial resolution of CrIS is comparable to AIRS.

  16. AIRS First Light Data: Eastern Mediterranean, June 14, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Four images of the Mediterranean obtained concurrently on June 14, 2002 from the three instruments that make up the Atmospheric Infrared Sounder experiment system aboard NASA's Aqua spacecraft. The system features thousands of individual channels that observe Earth in the visible, infrared and microwave spectral regions. Each channel has a unique sensitivity to temperature, moisture, surface conditions and clouds.

    This visible light image from the AIRS instrument shows a band of white clouds extending from the Adriatic Sea over Greece to the Black Sea.

    The AIRS image (figure 1) at 900 cm-1 (11 micrometers) measures actual surface or cloud top temperatures. In it, land and ocean boundaries are well defined, with land appearing as warmer (darker red) than the ocean. The band of cold high cumulus clouds appears blue, with the darkest blue most likely a large thunderstorm.

    The 150 gigahertz channel from the Humidity Sounder for Brazil instrument (figure 2) is sensitive to moisture, ice particles and precipitation. The dry land temperature is comparable to the 11 micrometer temperatures, but over ocean this channel measures the temperature of moisture in the mid troposphere. The cold, blue areas off Sicily and in the Aegean Sea represent unusually dry areas over the ocean. There, clouds appear as green filaments--likely areas of precipitation.

    The 31.4 gigahertz channel from the Advanced Microwave Sounding Unit instrument (figure 3) is not affected by clouds.

    NASA's Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua spacecraft, began sending high quality data on June 12, 2002. This 'first light' data is exceeding the expectations of scientists, confirming that the AIRS experiment is well on its way to meeting its goals of improving weather forecasting, establishing the connection between severe weather and

  17. Topside sounders as mobile ionospheric heaters

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    2006-01-01

    There is evidence that satellite-borne RF sounders can act as mobile ionospheric heaters in addition to performing topside sounding. The main objective of topside sounding is to use sounder-generated electromagnetic (em) waves to obtain ionospheric topside vertical electron-density (N(sub e) profiles. These profiles are obtained from mathematical inversions of the frequency vs. delay-time ionospheric reflection traces. In addition to these em reflection traces, a number of narrowband intense signals are observed starting at zero delay times after the transmitted pulses. Some of these signals, termed plasma resonances, appear at characteristic frequencies of the ambient medium such as at the electron cyclotron frequency f(sub ce), the harmonics nf(sub ce), the electron plasma frequency f(sub pe) and the upper-hybrid frequency f(sub uh), where (f(sub uh))(exp 2) = (f(sub ce))(exp 2) + (f(sub pe))(exp 2) . These signals have been attributed to the oblique echoes of sounder-generated electrostatic (es) waves. These resonances provide accurate in situ f(sub pe) and f(sub ce) values which, in turn, lead to accurate N(sub e) and [B] values where B is the ambient magnetic field. Resonances are also observed between the nf(sub ce) harmonics both above and below f(sub uh). The former, known as the Qn plasma resonances, are mainly attributed to the matching of the wave group velocity of sounder-generated (Bernstein-mode) es waves to the satellite velocity. The frequency spectrum of these waves in the magnetosphere can be used to detect non-Maxwellian electron velocity-distributions. In addition, these resonances also exhibit components that appear to be the result of plasma emissions stimulated by the sounder pulses. The plasma resonances observed between the nf(sub ce) harmonics and below f(sub uh), known as the Dn plasma resonances, are entirely attributed to such sounder-stimulated plasma emissions. There are other sounder-stimulated plasma phenomena that also fall into

  18. Semiautomatic nondispersive infrared analyzer apparatus for CO/sub 2/ air sample analyses

    SciTech Connect

    Komhyr, W.D.; Waterman, L.S.; Taylor, W.R.

    1983-02-20

    A semiautomatic nondispersive infrared analyzer apparatus has been developed for analysis of up to 50 CO/sub 2/ air samples per day. The samples are collected in 500-ml glass flasks and are transferred to the analyzer with a novel, free-floating piston pump. Sample and calibration gas transfer operations are controlled by a microprocessor, and data are recorded, analyzed, and output by a Hewlett-Packard 9845A/S desktop computer. The apparatus is described, including operating and test modes, and performance characteristics determined from 2 years of operation are given. 7 references, 5 figures, 5 tables.

  19. Optical Alignment and Diffraction Analysis for AIRES: An Airborne Infrared Echelle Spectrometer

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; Fonda, Mark (Technical Monitor)

    2002-01-01

    The optical design is presented for a long-slit grating spectrometer known as AIRES (Airborne InfraRed Echelle Spectrometer). The instrument employs two gratings in series: a small order sorter and a large steeply blazed echelle. The optical path includes four pupil and four field stops, including two narrow slits. A detailed diffraction analysis is performed using GLAD by Applied Optics Research to evaluate critical trade-offs between optical throughput, spectral resolution, and system weight and volume. The effects of slit width, slit length, oversizing the second slit relative to the first, on- vs off-axis throughput, and clipping at the pupil stops and other optical elements are discussed.

  20. Typhoon Saomai as seen by AIRS

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    This is an infrared image of Typhoon Saomai from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on August 10, 2006. This AIRS image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the typhoon. The infrared signal does not penetrate through clouds. Where there are no clouds the AIRS instrument reads the infrared signal from the surface of the Earth, revealing warmer temperatures (red).

    Figure 1 is created from microwave radiation emitted by Earth's atmosphere and received by the instrument. It shows where the heaviest rainfall is taking place (in blue) in the storm. Blue areas outside of the storm where there are either some clouds or no clouds, indicate where the sea surface shines through.

    In figure 3, Typhoon Saomai is captured by the visible light/near-infrared sensor on the AIRS instrument.

    At the time the data were taken from which these images were made, the Typhoon Saomai was nearly on-shore in China with winds of 130mph, and the storm has a well developed eye.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract

  1. Evaluation of data thinning strategies for climate applications using the first four years of AIRS hyperspectral data

    NASA Astrophysics Data System (ADS)

    Aumann, Hartmut H.; Fishbein, Evan; Gohlke, Jan

    2007-09-01

    The application of infrared hyper-spectral sounder data to climate research requires the global analysis of multi-decadal time series of various atmosphere, surface or cloud related parameters. The data used in this analysis has to meet stringent global and scene independent absolute accuracy and stability requirements, it also has to be spatially and radiometrically unbiased, manageable in size and self-contained. Self-contained means that the data set contains not only a globally unbiased sample of the state of the Earth Climate system as seen in the infrared, it has to contain enough data to contrast clear with average (cloudy) data and to allow an independent assessment of the radiometric and spectral accuracy and stability of the data. We illustrate this with data from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounder Interferometer (IASI) data. AIRS and IASI were designed with fairly similar functional requirements. AIRS was launched on the EOS Aqua spacecraft in May 2002 into a 705 km polar sun-synchronous orbit with accurately maintained 1:30 PM ascending node. Essentially un-interrupted data are available since September 2002. Since October 2006 IASI is in a 9:30 AM polar orbit at 815 km altitude on the MetOp2 satellite, with data available since May 2007.

  2. Infrared pulse characterization using four-wave mixing inside a few cycle pulse filament in air

    SciTech Connect

    Marceau, Claude Thomas, Steven; Kassimi, Yacine; Gingras, Guillaume; Witzel, Bernd

    2014-02-03

    We demonstrate a four-wave mixing (FWM) technique to measure near- and mid-infrared (IR) laser pulse shapes in time domain. Few cycle 800 nm laser pulses were synchronized with the IR pulse and focused colinearly to generate a plasma filament in air. Second harmonic radiation around 400 nm was generated through FWM, with a yield proportional to the IR pulse intensity. Excellent signal to noise ratio was observed from 2.1 μm to 18 μm. With proper phase stabilization of the IR beam, this technique is a promising step toward direct electric field sensing of near-IR pulses in air.

  3. Optimal Estimation Retrievals of CO2 from AIRS spectra

    NASA Astrophysics Data System (ADS)

    Irion, F. W.; Kulawik, S. S.; Kahn, B. H.; Worden, J.; Bowman, K. W.; Fishbein, E.

    2009-12-01

    Since September 2002, the Atmospheric Infrared Sounder (AIRS) on the EOS-Aqua platform has globally observed atmospheric profile information from nadir viewing of infrared emittance. Selecting cloud-free spectra over ocean, we apply an optimal estimation algorithm, similar to that used for the Tropospheric Emission Spectrometer (TES), to simultaneously retrieve profiles of CO2, water vapor, ozone, temperature and ocean skin temperature. Preliminary results and validation over the Western Pacific are presented, showing good correlation with seasonal variation and long-term increase of CO2 as determined by in-situ aircraft measurements.

  4. Applications Using AIRS Data

    NASA Astrophysics Data System (ADS)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Olsen, E. T.; Teixeira, J.; Licata, S. J.; Hall, J. R.; Thompson, C. K.

    2015-12-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With a 12-year data record and daily, global observations in near real-time, AIRS data can play a role in applications that fall under many of the NASA Applied Sciences focus areas. For vector-borne disease, research is underway using AIRS near surface retrievals to assess outbreak risk, mosquito incubation periods and epidemic potential for dengue fever, malaria, and West Nile virus. For drought applications, AIRS temperature and humidity data are being used in the development of new drought indicators and improvement in the understanding of drought development. For volcanic hazards, new algorithms using AIRS data are in development to improve the reporting of sulfur dioxide concentration, the burden and height of volcanic ash and dust, all of which pose a safety threat to aircraft. In addition, anomaly maps of many of AIRS standard products are being produced to help highlight "hot spots" and illustrate trends. To distribute it's applications imagery, AIRS is leveraging existing NASA data frameworks and organizations to facilitate archiving, distribution and participation in the BEDI. This poster will communicate the status of the applications effort for the AIRS Project and provide examples of new maps designed to best communicate the AIRS data.

  5. Mechanical Description of the Mars Climate Sounder Instrument

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  6. Cloudy Sounding and Cloud-Top Height Retrieval From AIRS Alone Single Field-of-View Radiance Measurements

    NASA Technical Reports Server (NTRS)

    Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping

    2007-01-01

    High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.

  7. Evaluation of Vertically Resolved Water Winds from AIRS using Hurricane Katrina

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Dobkowski, Edwin C.; Gregorich, David T.

    2005-01-01

    The knowledge of wind velocity as a function of altitude is key to weather forecast improvements. The ability of hyperspectral sounders in principle to measure vertically resolved water winds, which has long been recognized, has been tested with Atmospheric Infrared Sounder (AIRS) data. AIRS retrievals of total column water above 300 mb have been correlated with the radiosonde upper-tropospheric wind velocity and moisture data. The excellent correlation is illustrated with results obtained from hurricane Katrina and from the western United States. AIRS is a hyperspectral infrared sounder in low Earth orbit. It was launched in May 2002. We illustrate the use of AIRS data for the measurement of upper tropospheric water by using the 2387/cm CO2 R-branch channel and the 1551/cm water vapor channel. The 2387/cm channel measures the temperature at 300 mb totally independent of water vapor. The weighting function of the 1551/cm channel peaks at 300 mb only under moist conditions; the peak shifts downward (higher temperature) for less water and upward (lower temperature) for more water. The difference between the brightness temperatures bt2387 and bt1551 cancels the local several degree weather related variability of the temperature and measures the component due to the water vapor at 300 mb.

  8. AIRS Maps from Space Processing Software

    NASA Technical Reports Server (NTRS)

    Thompson, Charles K.; Licata, Stephen J.

    2012-01-01

    This software package processes Atmospheric Infrared Sounder (AIRS) Level 2 swath standard product geophysical parameters, and generates global, colorized, annotated maps. It automatically generates daily and multi-day averaged colorized and annotated maps of various AIRS Level 2 swath geophysical parameters. It also generates AIRS input data sets for Eyes on Earth, Puffer-sphere, and Magic Planet. This program is tailored to AIRS Level 2 data products. It re-projects data into 1/4-degree grids that can be combined and averaged for any number of days. The software scales and colorizes global grids utilizing AIRS-specific color tables, and annotates images with title and color bar. This software can be tailored for use with other swath data products for the purposes of visualization.

  9. Near-infrared Laser-induced Temperature Elevation in Optically-trapped Aqueous Droplets in Air.

    PubMed

    Ishizaka, Shoji; Ma, Jiang; Fujiwara, Terufumi; Yamauchi, Kunihiro; Kitamura, Noboru

    2016-01-01

    Near-infrared laser-induced temperature elevation in single aqueous ammonium sulfate droplets levitated in air were evaluated by means of laser trapping and Raman spectroscopy. Since the vapor pressure in an aqueous solution droplet should be thermodynamically in equilibrium with that of water in air, the equilibrium size of the droplet varies sensitively through evaporation/condensation of water in accordance with the temperature change of the droplet. In this study, we demonstrated that the changes in the size of an optically levitated aqueous ammonium sulfate droplet were induced by irradiation of a 1064-nm laser beam as a heat source under an optical microscope. Temperature elevation in the droplet was evaluated successfully by means of Raman spectroscopy, and the values determined were shown to be in good agreement with those by the theoretical calculations based on the absorption coefficient of water at 1064-nm and the thermal conductivity of air. To the best of our knowledge, this is the first experimental demonstration showing that the absorption coefficient evaluated from changes in the size of optically-trapped aqueous droplets is consistent with that of pure water. PMID:27063715

  10. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    NASA Technical Reports Server (NTRS)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  11. Lessons Learned from Previous Space-Borne Sounders as a Guide to Future Sounder Development

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Deshpande, Manohar D.; Farrell,William M.; Fung, Shing F.; Osherovich, Vladimir A.; Pfaff, Rovert E.; Rowland, Douglas E.; Adrian, Mark L.

    2008-01-01

    Space-borne radio sounding is considered to be the gold standard for electron-density (N(sub e)) measurements compared to other techniques even under low-density conditions, such as N(sub e) < 1/cu cm, when other techniques are known to experience difficulties. These reliable measurements are not restricted to in-situ N(sub e) determinations since a spaceborne sounder can provide vertical N(sub e) profiles (N(sub e)(h)) from the spacecraft altitude to the altitude of maximum N(sub e). Near-conjunction studies involving the International Satellites for Ionospheric Studies (ISIS) satellites in the topside ionosphere and Dynamics Explorer 2 (DE 2) near the altitude of the F-region peak density have verified that, even at the greatest distance from the sounder, the ISIS-derived N(sub e)(h) profiles agree with the DE-2 Langmuir-probe measurements to within about 30% over a density range of more than two decades. Space-borne sounders can also provide N(sub e) profiles along the magnetic-field B, by inverting echoes that are ducted along field-aligned irregularities (FAI), and can provide information about the terrain beneath the satellite by examining surface reflections in the frequency range above the ionospheric penetration frequency. Many nations have launched rocket and satellite radio sounders in geospace over more than 4 decades and there have been sounders on space-probes and in orbit around other planets. Here we will summarize some of the lessons learned from these accomplishments by analyzing data from radio sounders on the Alouette and ISIS satellites and the OEDIPUS and other rockets in the terrestrial ionosphere, the IMAGE satellite in the terrestrial magnetosphere, the Ulysses space probe in Jupiter's 10 plasma torus and the MARSIS satellite in orbit around Mars. The emphasis will be on information deduced concerning (1) fundamental plasma processes and gradients in N, and B in the vicinity of the sounders from sounder-stimulated plasma resonances and

  12. [Investigation on remote measurement of air pollution by a method of infrared passive scanning imaging].

    PubMed

    Jiao, Yang; Xu, Liang; Gao, Min-Guang; Feng, Ming-Chun; Jin, Ling; Tong, Jing-Jing; Li, Sheng

    2012-07-01

    Passive remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection of air pollution. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the distribution of a cloud is essential. Therefore, an imaging passive remote sensing system comprising an interferometer, a data acquisition and processing software, scan system, a video system, and a personal computer has been developed. The remote sensing of SF6 was done. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and algorithm of radiation transfer, and a false color image is displayed. The results were visualized by a video image, overlaid by false color concentration distribution image. The system has a high selectivity, and allows visualization and quantification of pollutant clouds.

  13. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect

    Mulac, W.A.; McCreary, J.R. ); Schmalz, H. Thermal Surveys, Inc., Rockford, IL )

    1992-01-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  14. A new method for infrared imaging of air currents in and around critical hazard fume hoods

    SciTech Connect

    Mulac, W.A.; McCreary, J.R.; Schmalz, H. |

    1992-11-01

    A real time method of measuring and recording the efficacy of vapor containment in and around critical hazard fume hoods is being developed. An infrared camera whose response is restricted to a spectral range that overlaps a strong absorption band in a non-toxic gas is used to render real-time video images of the presence and flow of the gas. The gas, nitrous oxide, is ejected in a continuous stream in and around fume hoods that are to be certified capable of containing hazardous fumes. The principle advantage is that various scenarios of air flow displacement in and outside the hood can be easily investigated; the principle limitation is the necessity of high tracer gas concentration to obtain strong visualizations. We hope that this technique can be found to be an effective and safe method to test hoods in locations that were built before present regulations were promulgated.

  15. [Near infrared spectroscopy (NIRS) in a neurocritical patient with an air embolisism and pneumocephalus].

    PubMed

    Rodríguez Díaz-Regañón, I; Benatar-Haserfaty, J; Perez, J C

    2015-02-01

    The pneumocephalus is commonly encountered after neurosurgical procedures. The collections are usually small with benign behavior, and they respond to a conservative therapy. However, there is a high percentage of cases that may behave like a space-occupying lesion. A high index of suspicion is necessary to make the diagnosis and prompt treatment of these cases. Monitoring Near infra-red spectrometry (NIRS) monitoring could help to complete the diagnosis and treatment in these cases. A venous air embolism is a common complication in neurosurgical procedures that are performed in a sitting position, where this monitoring has also been shown to be useful. In the case presented, NIRS monitoring, along with clinical and analytical data, was used for the diagnosis of the two complications.

  16. Two-photon vibrational excitation of air by long-wave infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Peñano, J.; Johnson, L. A.; Hafizi, B.; Wahlstrand, J. K.; Milchberg, H. M.

    2016-08-01

    Ultrashort long-wave infrared (LWIR) laser pulses can resonantly excite vibrations in N2 and O2 through a two-photon transition. The absorptive vibrational component of the ultrafast optical nonlinearity grows in time, starting smaller than but quickly surpassing the electronic, rotational, and vibrational refractive components. The growth of the vibrational component results in a novel mechanism of third-harmonic generation, providing an additional two-photon excitation channel, fundamental + third harmonic. The original and emergent two-photon excitations drive the resonance exactly out of phase, causing spatial decay of the absorptive vibrational nonlinearity. This nearly eliminates two-photon vibrational absorption. Here we present simulations and analytical calculations demonstrating how these processes modify the ultrafast optical nonlinearity in air. The results reveal nonlinear optical phenomena unique to the LWIR regime of ultrashort pulse propagation in the atmosphere.

  17. Advanced Remote-Sensing Imaging Emission Spectrometer (ARIES): AIRS Spectral Resolution with MODIS Spatial Resolution

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Aumann, Hartmut H.; OCallaghan, Fred

    2006-01-01

    The Advanced Remote-sensing Imaging Emission Spectrometer (ARIES) will measure a wide range of earth quantities fundamental to the study of global climate change. It will build upon the success of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) instruments currently flying on the EOS Aqua Spacecraft. Both instruments are facility instruments for NASA providing data to thousands of scientists investigating land, ocean and atmospheric Earth System processes. ARIES will meet all the requirements of AIRS and MODIS in a single compact instrument, while providing the next-generation capability of improved spatial resolution for AIRS and improved spectral resolution for MODIS.

  18. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  19. A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra

    NASA Technical Reports Server (NTRS)

    McMillian, W. Wallace; Strow, L. Larrabee; Revercomb, H.; Knuteson, R.; Thompson, A.

    2003-01-01

    This final report summarizes all research activities and publications undertaken as part of NASA Atmospheric Chemistry and Modeling Analysis Program (ACMAP) Grant NAG-1-2022, 'A Climatology of Tropospheric CO over the Central and Southeastern United States and the Southwestern Pacific Ocean Derived from Space, Air, and Ground-based Infrared Interferometer Spectra'. Major project accomplishments include: (1) analysis of more than 300,000 AERI spectra from the ARM SGP site yielding a 5-year (1998-2002) timeseries of CO retrievals from the Lamont, OK AERI; (2) development of a prototype CO profile retrieval algorithm for AERI spectra; (3) validation and publication of the first CO retrievals from the Scanning High-resolution Interferometer Sounder (SHIS); and (4) development of a prototype AERI tropospheric O3 retrieval algorithm. Compilation and publication of the 5-year Lamont, OK timeseries is underway including a new collaboration with scientists at the Lawrence Berkeley National Laboratory. Public access to this data will be provided upon article submission. A comprehensive CO analysis of the archive of HIS spectra of remains as the only originally proposed activity with little progress. The greatest challenge faced in this project was motivating the University of Wisconsin Co-Investigators to deliver their archived HIS and AERIOO data along with the requisite temperature and water vapor profiles in a timely manner. Part of the supplied HIS dataset from ASHOE may be analyzed as part of a Master s Thesis under a separate project. Our success with the SAFARI 2000 SHIS CO analysis demonstrates the utility of such aircraft remote sensing data given the proper support from the instrument investigators. In addition to the PI and Co-I s, personnel involved in this CO climatology project include one Post Doctoral Fellow, one Research Scientist, two graduate students, and two undergraduate students. A total of fifteen presentations regarding research related to this

  20. Rocket/Nimbus Sounder Comparison (RNSC)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The experimental results for radiance and temperature differences in the Wallops Island comparisons indicate that the differences between satellite and rocket systems are of the same order of magnitude as the differences among the various satellite and rocket sounders. The Arcasondes produced usable data to about 50 km, while the Datasondes require design modification. The SIRS and IRIS soundings provided usable data to 30 mb; extension of these soundings was also investigated.

  1. VAS demonstration: (VISSR Atmospheric Sounder) description

    NASA Technical Reports Server (NTRS)

    Montgomery, H. E.; Uccellini, L. W.

    1985-01-01

    The VAS Demonstration (VISSR Atmospheric Sounder) is a project designed to evaluate the VAS instrument as a remote sensor of the Earth's atmosphere and surface. This report describes the instrument and ground processing system, the instrument performance, the valiation as a temperature and moisture profiler compared with ground truth and other satellites, and assesses its performance as a valuable meteorological tool. The report also addresses the availability of data for scientific research.

  2. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  3. Electron density measurements in an atmospheric pressure air plasma by means of infrared heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Leipold, Frank; Stark, Robert H.; El-Habachi, Ahmed; Schoenbach, Karl H.

    2000-09-01

    An infrared heterodyne interferometer has been used to measure the spatial distribution of the electron density in direct current, atmospheric pressure discharges in air. Spatial resolution of the electron density in the high-pressure glow discharge with characteristic dimensions on the order of 100 µm required the use of a CO2 laser at a wavelength of 10.6 µm. For this wavelength and electron densities greater than 1011 cm-3 the index of refraction of the atmospheric air plasma is mainly determined by heavy particles rather than electrons. The electron contribution to the refractive index was separated from that of the heavy particles by taking the different relaxation times of the two particle species into account. With the discharge operated in a repetitive pulsed mode, the initial rapid change of the refractive index was assumed to be due to the increase in electron density, whereas the following slower rise is due to the decrease in gas density caused by gas heating. By reducing the time between pulses, direct current conditions were approached, and the electron density as well as the gas density, and gas temperature, respectively, were obtained through extrapolation. A computation inversion method was used to determine the radial distribution of the plasma parameters in the cylindrical discharge. For a direct-current filamentary discharge in air, at a current of 10 mA, the electron density was found to be 1013 cm-3 in the centre, decreasing to half of this value at a radial distance of 0.21 mm. Gaussian temperature profiles with σ = 1.1 mm and maximum values of 1000-2000 K in the centre were also obtained with, however, larger error margins than for electron densities.

  4. Performance status of the AIRS instrument thirteen years after launch

    NASA Astrophysics Data System (ADS)

    Elliott, Denis A.; Pagano, Thomas S.; Aumann, Hartmut H.; Broberg, Steven E.

    2015-09-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 μm to 15.4 μm and a 13.5 km footprint at nadir. AIRS is a "facility" instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2 , CO, SO2 , O3 and CH4. AIRS data are used for weather forecasting, climate process studies and validating climate models. The AIRS instrument has far exceeded its required design life of 5 years, with nearly 13 years of routine science operations that began on August 31, 2002. While the instrument has performed exceptionally well, with little sign of wear, the AIRS Project continues to monitor and maintain the health of AIRS, characterize its behavior and improve performance where possible. Radiometric stability has been monitored and trending shows better than 16 mK/year stability. Spectral calibration stability is better than 1 ppm/year. At this time we expect the AIRS to continue to perform well into the next decade. This paper contains updates to previous instrument status reports, with emphasis on the last three years.

  5. AIRS/AMSU-A/HSB Data On-demand Subsetting and Visualization Services at NASA GES DISC DAAC

    NASA Astrophysics Data System (ADS)

    Li, J.; Cho, S.; Sun, D.; Qin, J.; Sharma, A. K.

    2002-12-01

    The Atmospheric Infrared Sounder (AIRS) is a high-resolution infrared sounder closely coupled with AMSU-A (Advanced Microwave Sounding Unit-A) and HSB (Humidity Sounder for Brazil) on EOS Aqua spacecraft launched on May 4, 2002. The data products from AIRS/AMSU-A/HSB will be archived and distributed at the Goddard Distributed Active Archive Center (GDAAC) located in the NASA Goddard Earth Sciences Data and Information Services Center (GES DAAC). The ADDST is developing tools to read, visualize, analyze and reformat AIRS/AMSU-A/HSB data. The web-based AIRS on-the-fly/on-demand subsetter will be available to perform channel/variable subsetting and restructuring for Level1B (Calibrated Radiances) and Level2 (Atmospheric Retrievals) data products. One can narrow down criteria to subset data files with desired channels and variables and then download the subsetted file. AIRS QuickLook allows users to view AIRS/HSB/AMSU Level-1B data online for a specific channel prior to ordering or downloading data. Global map is also provided along with image to show geographic coverage of the granule and flight direction of the spacecraft. The Atmospheric Dynamics Data Support Team (ADDST) at the GES DISC/DAAC is providing various services to assist users in understanding, accessing, and using AIRS data product. Information on AIRS data and data analysis tools can be found at AIRS data support informational web site (http://daac.gsfc.nasa.gov/atmodyn/airs/ ) that provides access to various technical online documents, such as, readmes, user's guides, instrument guides, images from AIRS/AMSU-A/HSB data, product search and ordering interfaces, HDF-EOS format information, format conversion software, online data analysis tools, other AIRS related web links and more. Other data support services provided by the ADDST are assist with data mining, helpdesk for user questions on data and information, data ordering, and educational resources.

  6. Single-Footprint Retrievals from AIRS

    NASA Astrophysics Data System (ADS)

    Irion, F. W.; Fishbein, E.; Fu, D.; Hulley, G. C.; Kahn, B. H.; Schreier, M. M.; Yue, Q.; Wong, S.; Strow, L. L.; Desouza-Machado, S. G.; Kulawik, S. S.

    2014-12-01

    The Atmospheric Infrared Sounder, on the EOS-Aqua platform, retrieves temperature, water vapor and ozone profiles (among other constituents) in the thermal infrared, as well as cloud and aerosol information. The production version retrieves profiles using L2 cloud-cleared radiances, which are created using spectral data from adjacent scenes and data from the co-located AMSU microwave instrument. Current AIRS L2 profiles have a horizontal footprint of ~40 km at nadir. We present a new research retrieval using cloudy radiances directly from AIRS L1b radiances under an optimal estimation framework. Using co-located MODIS cloud results as a priori, and updated emissivitivies derived from a new database derived from ASTER and MODIS, this reduces the nadir footprint to 13.5 km. We present early L2 results from this effort and describe how this effort will be used to better understand the atmospheric water cycle.

  7. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  8. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    NASA Astrophysics Data System (ADS)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  9. The Stratospheric Wind Ingrared Limb Sounder: Investigation of atmospheric dynamics and transport from Eos

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.

    1992-01-01

    The Stratospheric Wind Infrared Limb Sounder (SWIRLS) is one of the instruments in the atmospheric sounder package to be flown by NASA on the Earth Observing System (EOS) B platform in the late 1990's. SWIRLS is designed to measure the horizontal vector wind field, atmospheric temperature, and the abundances and distributions of ozone and nitrous oxide in the middle atmosphere. These measurements will constitute a dynamical climatology of the stratosphere covering time scales ranging from diurnal to interannual. In addition, the SWIRLS investigation will quantify the physical mechanisms responsible for the structure and variations of stratospheric circulation and temperature fields, including the transport of species, particularly ozone, heat and momentum. Existing data sets lack the combination of accuracy, global and temporal coverage, spatial resoultion and simultaneity required to distinguish unambiguosly between the roles of dynamical and chemical processes in determining the current distribution of ozone and its evolution in the future. The measurement objectives, measurement approach, and instrumentation of SWIRLS is described.

  10. Hyperspectral Microwave Atmospheric Sounder (HyMAS) architecture and design accommodations

    NASA Astrophysics Data System (ADS)

    Hilliard, L.; Racette, P.; Blackwell, W.; Galbraith, C.; Thompson, E.

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term “ hyperspectral microwave” is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth's atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4 - 9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the s- an head

  11. Hyperspectral Microwave Atmospheric Sounder (HyMAS) Architecture and Design Accommodations

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik

    2013-01-01

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term "hyperspectral microwave" is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth s atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4-9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the scan head computer

  12. Exploiting hyperspectral sounders for volcanic ash remote sensing

    NASA Astrophysics Data System (ADS)

    Western, Luke; Watson, Matthew; Francis, Peter

    2016-04-01

    Assumptions are made when retrieving properties of volcanic ash clouds using passive infrared satellite remote sensing. Assumptions in the retrieval method lead to larger uncertainties in the retrieved volcanic ash cloud properties. It is a general desire to reduce these uncertainties by removing some of the assumptions that must be made. Hyperspectral sounders provide the spectral capabilities to explore many of the physical parameters that describe volcanic ash clouds - the question is, which parameters is it possible to retrieve? We show that using the Infrared Atmospheric Sounding Interferometer (IASI) it is possible to retrieve the mass column loading and cloud top pressure of a volcanic ash cloud, together with the effective radius and spread of the ash particle size distribution, as well as the cloud top pressure of any underlying water cloud using an optimal estimation technique. We discuss the capabilities and shortcomings of the method. The consideration of an underlying water cloud is of importance for improving retrievals, and we place a particular focus on how well the particle size distribution can be described. More specifically, we investigate the viability of using either a lognormal or a gamma distribution to describe the distribution of ash particles, and we show that it is possible to retrieve information about the spread of a lognormal distribution of particles, whereas it is not for a gamma distribution. Some preliminary conclusions on the size distribution of volcanic ash are presented.

  13. Hurricane Isabel, AIRS Infrared and SeaWinds Scatterometer Data Combined

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    These two images show Hurricane Isabel as viewed by AIRS and each of the two SeaWinds scatterometers on the ADEOS-2 and QuikScat satellites, all JPL-managed experiments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction.

    Figure 1 shows Isabel on September 13, 2003, when it was a Category 5 storm threatening the Caribbean and southern United States. At the time Isabel was the strongest Atlantic storm since hurricane Mitch killed thousands in central America in 1997. The red vectors in the image show Isabel's surface winds as measured by SeaWinds on ADEOS-2, and the background colors show the temperature of clouds and surface, as viewed in the infrared by AIRS. The hurricane's powerful swirling winds are apparent. These winds circle the hurricane's eye, seen as the red dot near the middle top of the image. Light blue areas shows adjacent cold clouds tops associated with strong thunderstorms embedded within the storm.

    Figure 2 shows Isabel as it approached landfall on the outer banks of North Carolina on September 18. The hurricane weakened in the five days since the earlier image was observed, as indicated by a less clearly defined eye. Nevertheless, it was still a powerful storm. The winds blowing onshore north of the eye knocked over trees, blew roofs off buildings, and drove large waves that breached the coastal barrier islands in many places. Water, transportation and power are still not fully restored to many of the areas in the image. The winds apparently blowing away from the eye of the storm are an artifact of one of the hurricane's other destructive phenomena: rain. The darkest blue clouds observed by AIRS show the most intense thunderstorms, and hence the heaviest rains. Hard rain fools the the SeaWinds on Quik

  14. Processing AIRS Scientific Data Through Level 3

    NASA Technical Reports Server (NTRS)

    Granger, Stephanie; Oliphant, Robert; Manning, Evan

    2010-01-01

    The Atmospheric Infra-Red Sounder (AIRS) Science Processing System (SPS) is a collection of computer programs, known as product generation executives (PGEs). The AIRS SPS PGEs are used for processing measurements received from the AIRS suite of infrared and microwave instruments orbiting the Earth onboard NASA's Aqua spacecraft. Early stages of the AIRS SPS development were described in a prior NASA Tech Briefs article: Initial Processing of Infrared Spectral Data (NPO-35243), Vol. 28, No. 11 (November 2004), page 39. In summary: Starting from Level 0 (representing raw AIRS data), the AIRS SPS PGEs and the data products they produce are identified by alphanumeric labels (1A, 1B, 2, and 3) representing successive stages or levels of processing. The previous NASA Tech Briefs article described processing through Level 2, the output of which comprises geo-located atmospheric data products such as temperature and humidity profiles among others. The AIRS Level 3 PGE samples selected information from the Level 2 standard products to produce a single global gridded product. One Level 3 product is generated for each day s collection of Level 2 data. In addition, daily Level 3 products are aggregated into two multiday products: an eight-day (half the orbital repeat cycle) product and monthly (calendar month) product.

  15. High Resolution Infrared Radiation Sounder/mod 2 (HIRS/2)

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1979-01-01

    The HIRS/2 is provided for the TIROS-N series of operational meteorological satellites. The instrument features 20 spectral channels, including visible (.7 micron), shortwave (3.7 to 4.6 micron), and longwave (6.7 to 15 micron). Radiance data aids determination of vertical temperature profiles, water vapor, and ozone distribution. System performance and test results are described.

  16. The roles of vibration analysis and infrared thermography in monitoring air-handling equipment

    NASA Astrophysics Data System (ADS)

    Wurzbach, Richard N.

    2003-04-01

    Industrial and commercial building equipment maintenance has not historically been targeted for implementation of PdM programs. The focus instead has been on manufacturing, aerospace and energy industries where production interruption has significant cost implications. As cost-effectiveness becomes more pervasive in corporate culture, even office space and labor activities housed in large facilities are being scrutinized for cost-cutting measures. When the maintenance costs for these facilities are reviewed, PdM can be considered for improving the reliability of the building temperature regulation, and reduction of maintenance repair costs. An optimized program to direct maintenance resources toward a cost effective and pro-active management of the facility can result in reduced operating budgets, and greater occupant satisfaction. A large majority of the significant rotating machinery in a large building environment are belt-driven air handling units. These machines are often poorly designed or utilized within the facility. As a result, the maintenance staff typically find themselves scrambling to replace belts and bearings, going from one failure to another. Instead of the reactive-mode maintenance, some progressive and critical institutions are adopting predictive and proactive technologies of infrared thermography and vibration analysis. Together, these technologies can be used to identify design and installation problems, that when corrected, significantly reduce maintenance and increase reliability. For critical building use, such as laboratories, research facilities, and other high value non-industrial settings, the cost-benefits of more reliable machinery can contribute significantly to the operational success.

  17. Study of air-induced paper discolorations by infrared spectroscopy, X-ray fluorescence, and scanning electron microscopy.

    PubMed

    Ferreira, Adriana; Figueira, Francisca; Pessanha, Sofia; Nielsen, Ingelise; Carvalho, Maria Luisa

    2010-02-01

    Air-induced paper discoloration is described as being different from other discoloration morphologies. It seems to be the result of prolonged exposure to air in a humid and polluted environment without appropriate protecting coverage. In this work, three folios from the same eighteenth century book, presenting three degrees of discoloration and opacity and subjected to different environmental conditions, were examined and compared. Samples were analyzed and compared by three different instrumental techniques, mid-infrared spectroscopy, X-ray fluorescence (XRF), and scanning electron microscopy (SEM). Chemical and physical changes were confirmed from the data collected by these techniques. The absence of the secondary amide band characteristic of proteins in the infrared spectra of the two discolored folios, accompanied by the appearance and increase of white mineral-like deposits visible in the SEM micrographs, support the idea that oxidation reactions occurred and that these two folios were subjected to more severe degradation hazard. PMID:20149275

  18. View to the south with the Two Sounder Antennas on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the south with the Two Sounder Antennas on the left - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  19. Topside sounder observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Benson, R. F.

    1978-01-01

    Large scale regions of depleted equatorial ionospheric plasma, called equatorial bubbles, are investigated using topside sounder data. The sounder's unique remote measuring capability enables the magnetic field-aligned nature of the bubbles to be investigated. A search of all available Alouette 2 and ISIS 1 ionograms during nighttime perigee passes near the magnetic equator has revealed a variety of echo signatures associated with bubbles. In addition to a sudden drop in electron density, these signatures usually include in situ spread F and ducted traces. The ducted traces have been used to determine the electron density distribution and to infer changes in ion composition along the magnetic field line within the duct associated with the bubble. In some cases it can be determined that the bubble is asymmetric with respect to the magnetic equator. Even though such features require 3 dimensional models for their explanation, the great field-aligned extent of the bubbles (relative to their cross section) suggests that current theories, which ignore variations along the magnetic field, are still applicable.

  20. Inter-Comparison of GOES-8 Imager and Sounder Skin Temperature Retrievals

    NASA Technical Reports Server (NTRS)

    Haines, Stephanie L.; Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Skin temperature (ST) retrievals derived from geostationary satellite observations have both high temporal and spatial resolutions and are therefore useful for applications such as assimilation into mesoscale forecast models, nowcasting, and diagnostic studies. Our retrieval method uses a Physical Split Window technique requiring at least two channels within the longwave infrared window. On current GOES satellites, including GOES-11, there are two Imager channels within the required spectral interval. However, beginning with the GOES-M satellite the 12-um channel will be removed, leaving only one longwave channel. The Sounder instrument will continue to have three channels within the longwave window, and therefore ST retrievals will be derived from Sounder measurements. This research compares retrievals from the two instruments and evaluates the effects of the spatial resolution and sensor calibration differences on the retrievals. Both Imager and Sounder retrievals are compared to ground-truth data to evaluate the overall accuracy of the technique. An analysis of GOES-8 and GOES-11 intercomparisons is also presented.

  1. AIRS Ozone Burden During Antarctic Winter: Time Series from 8/1/2005 to 9/30/2005

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of AIRS Ozone Burden During Antarctic Winter

    AIRS provides a daily global 3-dimensional view of Earth's ozone layer. Since AIRS observes in the thermal infrared spectral range, it also allows scientists to view from space the Antarctic ozone hole for the first time continuously during polar winter. This image sequence captures the intensification of the annual ozone hole in the Antarctic Polar Vortex.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  2. Microwave Limb Sounder/El Nino Watch - December, 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image shows differences in atmospheric water vapor relative to a normal (average) year in the Earth's upper troposphere about 10 kilometers (6 miles) above the surface. The measurements were taken by the Microwave Limb Sounder (MLS) instrument aboard NASA's Upper Atmosphere Research Satellite (UARS). These data, collected in late December 1997, show higher than normal levels of water vapor (red) over the central and eastern Pacific which indicates the presence of an El Nino condition. At the same time, the western Pacific (blue) is much drier than normal. The unusually moist air above the central and eastern Pacific is a consequence of the much warmer-than-normal ocean waters which occur during El Nino. Warmer water evaporates at a higher rate and the resulting warm moist air rises and forms tall cloud towers. In the tropics, the warm water and the resulting tall cloud towers typically produce large amounts of rain. These data show significant increases in the amount of atmospheric moisture off the coast of Peru and Ecuador since measurements were made in November 1997. The maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal and these high ocean temperatures are likely responsible for an increase in evaporation and the subsequent rise in humidity.

  3. A comparison of measured radiances from AIRS and HIRS across different cloud types

    NASA Astrophysics Data System (ADS)

    Schreier, M. M.; Kahn, B. H.; Staten, P.

    2015-12-01

    The observation of Earth's atmosphere with passive remote sensing instruments is ongoing for decades and resulting in a long-term global dataset. Two prominent examples are operational satellite platforms from the National Oceanic and Atmospheric Administration (NOAA) or research platforms like NASA's Earth Observing System (EOS). The observed spectral ranges of these observations are often similar among the different platforms, but have large differences when it comes to resolution, accuracy and quality control. Our approach is to combine different kinds of instruments at the pixel-scale to improve the characterization of infrared radiances. We focus on data from the High-resolution Infrared Radiation Sounder (HIRS) and compare the observations to radiances from the Atmospheric Infrared Sounder (AIRS) on Aqua. The high spectral resolution of AIRS is used to characterize and possibly recalibrate the observed radiances from HIRS. Our approach is unique in that we use additional information from other passive instruments on the same platforms including the Advanced Very High Resolution Radiometer (AVHRR) and the MODerate resolution Imaging Spectroradiometer (MODIS). We will present comparisons of radiances from HIRS and AIRS within different types of clouds that are determined from the imagers. In this way, we can analyze and select the most homogeneous conditions for radiance comparisons and a possible re-calibration of HIRS. We hope to achieve a cloud-type-dependent calibration and quality control for HIRS, which can be extrapolated into the past via inter-calibration of the different HIRS instruments beyond the time of AIRS.

  4. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Lyu, C.; Blackwell, W. J.; Leslie, V.; Baker, N.; Mo, T.; Sun, N.; Bi, L.; Anderson, K.; Landrum, M.; De Amici, G.; Gu, D.; Foo, A.; Ibrahim, W.; Robinson, K.

    2012-12-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi-NPOESS Preparatory Project (S-NPP) satellite and has just finished its first year on orbit. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface. Designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems), ATMS has 22 channels spanning 23—183 GHz, closely following the channel set of the MSU, AMSU-A1 and A2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately one quarter the volume, one half the mass, and one half the power of the three AMSUs. A summary description of the ATMS design will be presented. Post-launch calibration/validation activities include geolocation determination, radiometric calibration using the on-board warm targets and cold space views, simultaneous observations by microwave sounders on other satellites, comparison vs. pre-launch thermovacuum test performance; observations vs. atmospheric model predicted radiances, and comparisons of soundings vs. radiosondes. Brief descriptions of these

  5. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    NASA Technical Reports Server (NTRS)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  6. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  7. Sulfur Dioxide Plume from Mt. Etna Eruption 2002 as Detected with AIRS Data

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Mt. Etna, a volcano on the island of Sicily, erupted on October 26, 2002. Preliminary analysis of data taken by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on October 28 shows the instrument can provide an excellent means to study the evolution and structure of the sulfur dioxide plume emitted from volcanoes. These data also demonstrate that AIRS can be used to obtain the total mass of sulfur dioxide injected into the atmosphere during a volcanic event, information that may help us to better understand these dangerous natural occurrences in the future.

    The image clearly shows the sulfur dioxide plume. This image was created by comparing data taken at two different frequencies, or channels, and creating one image that highlights the differences between these two channels. Both channels are sensitive to water vapor, but one of the channels is also sensitive to sulfur dioxide. By subtracting out the common water vapor signal in both channels, the sulfur dioxide feature remains and shows up as an enhancement in the difference image.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  8. Error Consistency Analysis Scheme for Infrared Ultraspectral Sounding Retrieval Error Budget Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.

    2013-01-01

    Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).

  9. RAWS: The spaceborne radar wind sounder

    NASA Technical Reports Server (NTRS)

    Moore, Richard K.

    1991-01-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  10. Millimeter-Wave Atmospheric Sounder (MAS)

    NASA Technical Reports Server (NTRS)

    Hartmann, G. K.

    1988-01-01

    MAS is a remote sensing instrument for passive sounding (limb sounding) of the earth's atmosphere from the Space Shuttle. The main objective of the MAS is to study the composition and dynamic structure of the stratosphere, mesosphere, and lower thermosphere in the height range 20 to 100 km, the region known as the middle atmosphere. The MAS will be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission scheduled for late 1990. The Millimeter-Wave Atmospheric Sounder will provide, for the first time, information obtained simultaneously on the temperature and on ozone concentrations in the 20 to 90 km altitude region. The information will cover a large area of the globe, will have high accuracy and high vertical resolution, and will cover both day and night times. Additionally, data on the two important molecules, H2O and ClO, will also be provided.

  11. RAWS: The spaceborne radar wind sounder

    NASA Astrophysics Data System (ADS)

    Moore, Richard K.

    1991-09-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  12. Evaluation of the Impact of AIRS Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of a long-term series of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  13. Global Carbon Monoxide Products from Combined AIRS, TES and MLS Measurements on A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Warner, Juying X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attie, J. L.; El Amraoui, L.; Duncan, B.

    2014-01-01

    This study tests a novel methodology to add value to satellite data sets. This methodology, data fusion, is similar to data assimilation, except that the background modelbased field is replaced by a satellite data set, in this case AIRS (Atmospheric Infrared Sounder) carbon monoxide (CO) measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer) and MLS (Microwave Limb Sounder). We show that combining these data sets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere) region compared to each product individually. The combined AIRS-TES and AIRS-MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer) in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases) field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations) flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20-30% and above 20%, respectively) as compared with AIRS-only version 5 CO retrievals, and improved daily coverage compared with TES and MLS CO data.

  14. Feasibility study for Japanese Air Quality Mission from Geostationary Satellite: Infrared Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Sagi, K.; Kasai, Y.; Philippe, B.; Suzuki, K.; Kita, K.; Hayashida, S.; Imasu, R.; Akimoto, H.

    2009-12-01

    A Geostationary Earth Orbit (GEO) satellite is potentially able to monitor the regional distribution of pollution with good spatial and temporal resolution. The Japan Society of Atmospheric Chemistry (JSAC) and the Japanese Space Exploration Agency (JAXA) initiated a concept study for air quality measurements from a GEO satellite targeting the Asian region [1]. This work presents the results of sensitivity studies for a Thermal Infrared (TIR) (650-2300cm-1) candidate instrument. We performed a simulation study and error analysis to optimize the instrumental operating frequencies and spectral resolution. The scientific requirements, in terms of minimum precision (or error) values, are 10% for tropospheric O3 and CO and total column of HN3 and nighttime HNO2 and 25% for O3 and CO with separating 2 or 3 column in troposphere. Two atmospheric scenarios, one is Asian background, second is polluted case, were assumed for this study. The forward calculations and the retrieval error analysis were performed with the AMATERASU model [2] developed within the NICT-THz remote sensing project. Retrieval error analysis employed the Optimal Estimation Method [3]. The geometry is off-nadir observation on Tokyo from the geostationary satellite at equator. Fine spectral resolution will allow to observe boundary layer O3 and CO. We estimate the observation precision in the spectral resolution from 0.1cm-1 to 1cm-1 for 0-2km, 2-6km, and 6-12km. A spectral resolution of 0.3 cm-1 gives good sensitivity for all target molecules (e.g. tropospheric O3 can be detected separated 2 column with error 30%). A resolution of 0.6 cm-1 is sufficient to detect tropospheric column amount of O3 and CO (in the Asian background scenario), which is within the required precision and with acceptable instrumental SNR values of 100 for O3 and 30 for CO. However, with this resolution, the boundary layer ozone will be difficult to detect in the background abundance. In addition, a spectral resolution of 0.6 cm

  15. Short-term, seasonal and interannual variability of the vertical distribution of water vapor observed by AIRS

    NASA Technical Reports Server (NTRS)

    Olsen, E. T.; Granger, S. L.; Fetzer, E. J.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) consists of a suite of instruments on board the Aqua spacecraft which retrieve atmospheric parameters over the globe at radiosonde quality on a daily basis in non-precipitating fields of view with less than 80% cloud cover. Although quantitative global measurements of water vapor have been available since the 1980's, the vertical resolution of these measurements was very coarse. AIRS provides global coverage amounting to 324,000 precipitable water vapor profiles with spatial resolution at nadir of 45 km and a vertical resolution in the troposphere of 2 km.

  16. Characteristics of the GOES I-M Imager and Sounder

    NASA Technical Reports Server (NTRS)

    Ernst, Thomas J.; Koenig, Edward W.

    1990-01-01

    The design and the parameters of the improved thermal-imaging and sounding instruments (the Imager and the Sounder) that will be part of the instrument complements of the next-generation Geostationary Operational Environmental Satellite (GOES I-M) are discussed. The new design incorporates many features that enhance instrumental reliability over the previous GOES radiometric instruments, such as independently functioning Sounder and Imager, redundancy, and more reliable position sensors and lubrication methods. Tables are presented which list the instrument parameters of the GOES I-M Imager and Sounder and the performance characteristics of the two instruments.

  17. Characteristics of the GOES I-M imager and sounder

    NASA Technical Reports Server (NTRS)

    Koenig, Edward W.

    1989-01-01

    The key features and operational characteristics of the thermal imaging and sounding instruments included into the next-generation GOES spacecraft (GOES I-M) are described. The GOES Imager's censor module has five spectral channels, including an eigth-element visible channel, three IR channels, and a water-vapor channel. The GOES Sounder's detector and filter arrangement makes use of four spectral bands: long-wave, mid-wave, short-wave, and visible. Tables of the Imager and the Sounder sensing performance characteristics are presented together with diagrams of the Imager optic parts and the Imager and the Sounder field and scan patterns.

  18. Refractive Indices of Asian Dust in Mid-Infrared Region

    NASA Astrophysics Data System (ADS)

    Lee, K.; Park, J.

    2013-12-01

    Optical constants of Asian dust are determined based on mineral compositions of aerosols sampled at Seoul, Korea. Complex refractive index for labradorite (plagioclase) and orthoclase (K-feldspar), which are component minerals of Asian dust, are calculated from the dispersion theory using reflectance data of the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER). The optical constants of Asian dust are compared with those of other dust aerosols. Simulated brightness temperatures of satellite measurement using the present optical constants for a typical loading of Asian dust aerosols show spectral features of the Atmospheric Infrared Sounder (AIRS) data for an Asian dust storm. Measured and simulated spectral locations of the maximum brightness temperature are in good agreement. Simulated data show the negative slope in the region of 800-1000 cm-1. Brightness temperature of AIRS near 1233 cm-1 being lower than the maximum near 832 cm-1 can also be simulated using the optical constants of Asian dust.

  19. Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy

    SciTech Connect

    Scherer, J.J.; Aniolek, K.W.; Cernansky, N.P.; Rakestraw, D.J.

    1997-10-01

    Infrared cavity ringdown laser absorption spectroscopy (IR-CRLAS) is employed to determine absolute methyl radical concentrations in a 37.5 Torr laminar methane/air flame. IR-CRLAS rovibrational absorption spectra of the {nu}{sub 3} fundamental band system near 3200thinspcm{sup {minus}1} are combined with N{sub 2}-CARS temperature measurements to obtain methyl radical concentrations as a function of height above the burner surface. These data are compared with flame chemistry simulations under both stoichiometric and rich flame conditions. Issues regarding the applicability of IR-CRLAS for combustion studies are discussed, including the uncertainties present for the specific case of methyl radical. These IR-CRLAS measurements indicate the ability to monitor reactants, intermediates, and products within a narrow spectral window, and, to our knowledge, constitute the first infrared detection of a polyatomic radical in a flame. {copyright} {ital 1997 American Institute of Physics.}

  20. AIRS Storm Front Approaching California (animation)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Click on the image for the AIRS Storm Front Approaching California Animation

    NASA's Atmospheric Infrared Sounder instrument is able to peel back cloud cover to reveal 3-D structure of a storm's water vapor content, information that can be used to improve weather forecast models.

    In this animation the initial visible cloud image series shows a front moving toward the West Coast of the United States as a low pressure area moves into the Pacific Northwest. The 'Pineapple Express,' a stream of moisture that originates in the tropics South of Hawaii and usually crosses Mexico to enter New Mexico and Texas, has shifted Westward and is also visible moving into Baja California. The area preceding the front appears to be relatively clear in the visible images.

    As the view shifts from the visible to the infrared wavelengths which highlight water vapor, we see both cloud areas contain heavy burdens of moisture. The area which appears clear in the visible images is seen to contain water vapor near the coastline as well. The viewpoint then rotates so that we can see the vertical cross section of the fronts. The variability of the vertical extent of water vapor and the amount is now clearly visible. The storm moving in from the Gulf of Alaska is more heavily laden with water vapor than that moving in from the Southwest. The moisture is concentrated in the lower atmosphere. The colors indicate the amount of water vapor present. Blue areas denote low water vapor content; green areas are medium water vapor content; red areas signify high water vapor content. The vertical grid for the final frame ranges from 250 millibar pressure at the top to 1000 millibar pressure at the bottom. The top is about 10 km (6.2 miles) above the surface of the Earth.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in

  1. Investigating In-cloud Relative Humidity and Thin Cirrus in the Upper Tropical Atmosphere Using AIRS, CALIPSO, and MLS

    NASA Astrophysics Data System (ADS)

    Liang, C. K.; Kahn, B. H.; Eldering, A.; Fetzer, E. J.

    2007-12-01

    We investigate vertical and horizontal distributions of tropical oceanic thin cirrus optical and microphysical properties observed by the Atmospheric Infrared Sounder (AIRS). These properties are related to thermodynamic quantities, i.e., relative humidity with respect to ice (RHi), and cloud top temperature derived from the AIRS Level 2 operational soundings. Differences between all sky and in-cloud RHi are explored and possible mechanisms that explain these anomalies are discussed. Furthermore, we evaluate the hypothesis that many of the observed clouds are physically much thinner than the nominal resolution of AIRS, which may lead to dry biases of in-cloud RHi. To test this we exploit the co-located AIRS RHi and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) cloud thickness. Finally, we diagnose the ability of AIRS to measure water vapor in the Tropical Tropopause Layer (TTL) using co- located observations from the Microwave Limb Sounder (MLS). From this, a combined AIRS-MLS RHi product is used to investigate joint distributions of cirrus microphysical and optical properties, and RHi in the TTL.

  2. Intercomparison of Near Infrared SCIAMACHY and Thermal Infrared Nadir Vertical Column Densities

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; Gimeno-Garcia, Sebastian; Lichtenberg, Gunter; Hess, Michael

    2010-12-01

    Nadir infrared (IR) sounding can be used to derive information on trace gases relevant for climate and air quality. For vertical column density retrievals using SCIAMACHY near IR nadir observations, the BIRRA (Beer InfraRed Retrieval Algorithm) code has recently been implemented in the operational level 1 - 2 processor. For analysis of thermal IR nadir observations of AIRS, GOSAT, IASI, or TES, a closely related code CERVISA (Column EstimatoR Vertical Infrared Sounding of the Atmosphere) has been developed. Both codes share a large portion of modules, e.g., for line-by-line absorption and the nonlinear least squares solver. The essential difference is the part of the forward model devoted to radiative transfer through the atmosphere, i.e., Beer's law for the near IR versus Schwarzschild's equation for the thermal IR. For the ongoing validation of the BIRRA carbon monoxide CO and methane CH4 products inter-comparisons with thermal IR sounding data are performed. CERVISA retrieval results are compared both to the operational products of the IR sounder considered and to SCIAMACHY products retrieved with BIRRA.

  3. The potential of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect organic emissions under the Clean Air Act

    SciTech Connect

    Demirgian, J.C.; Hammer, C.L. ); Kroutil, R.T. )

    1992-01-01

    The Clean Air Act of 1990 regulates the emission of 198 air toxics. Currently, there is no existing technology by which a regulatory agency can independently determine if a facility is in compliance. We have successfully tested the ability of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect chemical plumes released in the field. Additional laboratory releases demonstrated that FTIR spectroscopy can detect target analytes in mixtures containing components which have overlapping absorbances. The FTIR spectrometer was able to identify and quantify each component released with an average quantitative error of less than 20% using partial least squares (PLS) analysis and 40% using classical least squares analysis (CLS) when calibration files containing pure components and mixtures were used. Calibration files containing only pure analytes resulted in CLS outperforming PLS analyses.

  4. The potential of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect organic emissions under the Clean Air Act

    SciTech Connect

    Demirgian, J.C.; Hammer, C.L.; Kroutil, R.T.

    1992-07-01

    The Clean Air Act of 1990 regulates the emission of 198 air toxics. Currently, there is no existing technology by which a regulatory agency can independently determine if a facility is in compliance. We have successfully tested the ability of passive-remote Fourier transform infrared (FTIR) spectroscopy to detect chemical plumes released in the field. Additional laboratory releases demonstrated that FTIR spectroscopy can detect target analytes in mixtures containing components which have overlapping absorbances. The FTIR spectrometer was able to identify and quantify each component released with an average quantitative error of less than 20% using partial least squares (PLS) analysis and 40% using classical least squares analysis (CLS) when calibration files containing pure components and mixtures were used. Calibration files containing only pure analytes resulted in CLS outperforming PLS analyses.

  5. Work of PZT ceramics sounder for sound source artificial larynx

    NASA Astrophysics Data System (ADS)

    Sugio, Yuuichi; Kanetake, Ryota; Tanaka, Akimitsu; Ooe, Katsutoshi

    2007-04-01

    We aim to develop the easy-to-use artificial larynx with high tone quality. We focus on using a PZT ceramics sounder as its sound source, because it is small size, low power consumption, and harmless to humans. But conventional PZT ceramics sounder have the problem that it cannot generate an enough sound in the low frequency range, thus they cannot be used for artificial larynx. Then, we aim to develop the PZT ceramics sounder which can generate enough volume in the low frequency range. If we can lower the resonance frequency of the sounder, it can generate low pitch sound easily. Therefore I created the new diaphragm with low resonance frequency. In addition, we could obtain the high amplitude by changing method of driving. This time, we report on the characteristic comparison of this new PZT ceramics sounder and conventional one. Furthermore, for this new one, we analyzed the best alignment of PZT ceramics and the shape of the diaphragm to obtain low resonance frequency and big amplitude. In fact we analyzed the optimization of the structure. The analysis is done by computer simulation of ANSYS and Laser Doppler Vibrometer. In the future, we will add intonation to the generated sound by input wave form which is developed concurrently, and implant the sounder inside of the body by the method of fixing metal to biomolecule which is done too. And so high tone quality and convenient artificial larynx will be completed.

  6. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  7. The Advanced Technology Microwave Sounder (ATMS): A New Operational Sensor Series

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, Cheng-H Joseph; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Mike; Landrum, Mike; DeAmici, Giovanni; Gu, Degui; Foo, Alex; Ibrahim, Wael; Robinson, Kris; Chidester, Lynn; Shiue, James

    2012-01-01

    ATMS is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface

  8. Planetary protection for Europa radar sounder antenna

    NASA Astrophysics Data System (ADS)

    Aaron, Kim M.; Moussessian, Alina; Newlin, Laura E.; Willis, Paul B.; Chen, Fei; Harcke, Leif J.; Chapin, Elaine; Jun, Insoo; Gim, Yonggyu; McEachen, Michael; Allen, Scotty; Kirchner, Donald; Blankenship, Donald

    2016-05-01

    The potential for habitability puts stringent requirements on planetary protection for a mission to Europa. A long-wavelength radar sounder with a large antenna is one of the proposed instruments for a future Europa mission. The size and construction of radar sounding antennas make the usual methods of meeting planetary protection requirements challenging. This paper discusses a viable planetary protection scheme for an antenna optimized for Europa radar sounding. The preferred methodology for this antenna is exposure to 100 kGy (10 Mrad) in water of gamma radiation using a Cobalt-60 source for both bulk and surface sterilization and exposure to vapor hydrogen peroxide for surface treatment for possible recontamination due to subsequent handling. For the boom-supported antenna design, selected tests were performed to confirm the suitability of these treatment methods. A portion of a coilable boom residual from an earlier mission was irradiated and its deployment repeatability confirmed with no degradation. Elasticity was measured of several fiberglass samples using a four-point bending test to confirm that there was no degradation due to radiation exposure. Vapor hydrogen peroxide treatment was applied to the silver-coated braid used as the antenna radiating element as it was the material most likely to be susceptible to oxidative attack under the treatment conditions. There was no discernable effect. These tests confirm that the radar sounding antenna for a Europa mission should be able tolerate the proposed sterilization methods.

  9. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  10. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first flight unit was launched a year ago in October, 2011 aboard the Suomi-National Polar-Orbiting Partnership (S-NPP) satellite, part of the new Joint Polar-Orbiting Satellite System (JPSS). Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction models; and A TMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet sounding requirements under cloudy sky conditions and provide key profile information near the surface. ATMS was designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems). It has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-AI/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately V. the volume, Y, the mass, and Y, the power of the three AMSUs. A description will be given of its performance from its first year of operation as determined by post-launch calibration activities. These activities include radiometric calibration using the on-board warm targets and cold space views, and geolocation determination. Example imagery and zooms of specific weather events will be shown. The second ATMS flight model is currently under construction and planned for launch on the "Jl" satellite of the JPSS program in

  11. Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Hatfield, M. C.; Webley, P.; Saiet, E., II

    2014-12-01

    Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs) Numerous scientific and logistical applications exist in Alaska and other arctic regions requiring analysis of expansive, remote areas in the near infrared (NIR) and thermal infrared (TIR) bands. These include characterization of wild land fire plumes and volcanic ejecta, detailed mapping of lava flows, and inspection of lengthy segments of critical infrastructure, such as the Alaska pipeline and railroad system. Obtaining timely, repeatable, calibrated measurements of these extensive features and infrastructure networks requires localized, taskable assets such as UAVs. The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) provides practical solutions to these problem sets by pairing various IR sensors with a combination of fixed-wing and multi-rotor air vehicles. Fixed-wing assets, such as the Insitu ScanEagle, offer long reach and extended duration capabilities to quickly access remote locations and provide enduring surveillance of the target of interest. Rotary-wing assets, such as the Aeryon Scout or the ACUASI-built Ptarmigan hexcopter, provide a precision capability for detailed horizontal mapping or vertical stratification of atmospheric phenomena. When included with other ground capabilities, we will show how they can assist in decision support and hazard assessment as well as giving those in emergency management a new ability to increase knowledge of the event at hand while reducing the risk to all involved. Here, in this presentation, we illustrate how UAV's can provide the ideal tool to map and analyze the hazardous events and critical infrastructure under extreme environmental conditions.

  12. Transition of AIRS Products to the National Weather Service

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2012-01-01

    Short-term Prediction Research and Transition Center (SPoRT) is a proven community leader for transitioning satellite products to operational end users and is working hard to bring data from Atmospheric Infrared Sounder (AIRS) to forecasters. SPoRT products using AIRS data are currently or will soon be evaluated at WFOs and National Centers (1) T and q profiles: HWT, Alaska WFOs, HRD/OPC, HMT (2) Ozone profiles: HPC/OPC (3) Carbon Monoxide: Southern and Western Region WFOs SPoRT is actively evaluating differences between V5 and V6 profiles for selected cases and will continue to provide feedback to the AIRS team as V6 development efforts conclude.

  13. Intercomparisons of AIRS Observations with MERRA Reanalysis and Climate Models

    NASA Astrophysics Data System (ADS)

    Hearty, T. J.; Vollmer, B.; Theobald, M.; Savtchenko, A. K.; Ding, F.; Esfandiari, A. E.; Ostrenga, D.; Bosilovich, M. G.; Fetzer, E.; Tian, B.; Fishbein, E.; Manning, E.; Yue, Q.

    2012-12-01

    We perform intercomparisons among AIRS (Atmospheric Infrared Sounder) observations, MERRA (Modern-Era Retrospective Analysis for Research and Applications) reanalysis, and CMIP5 models. One of the greatest challenges of using satellite observations from Low Earth Orbit (LEO) to evaluate climate models is to account for differences in the sampling. Climate models are sampled on a regular grid with equal increments in time and space while LEO satellite observations are not. Since AIRS is an infrared instrument its sampling is also affected by clouds. Version 6 of the AIRS processing algorithm will have improved accuracy and increased sampling over the Version 5 algorithm. We compare AIRS and MERRA data with identical sampling to assess how well the satellite observations and reanalysis Water Vapor, Temperature, and Clouds agree when they have the same sampling. Since Version 6 of the AIRS processing algorithms also have improved sampling we use MERRA sampled like AIRS to estimate the improvement in the sampling bias between AIRS Version 5 and Version 6 Results. While the uncertainties in the current generation of climate models are larger than the sampling uncertainties, as the models improve more careful intercomparisons will be necessary. Therefore we compare the differences between AIRS observations and CMIP5 Climate Models to assess the significance of the sampling uncertainties.

  14. Infrared remote sensing of cometary parent volatiles from the ground, air, and space

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Disanti, Michael A.; Hoban, Susan; Reuter, Dennis C.

    1991-01-01

    A balanced view of the present generation of infrared instruments for cometary compositional studies is presented. Ground-based instruments are compared with airborne and spaceborne capabilities. An attempt to give examples of the unique science achievable with each is made, and particular emphasis is on the unique aspects of a dedicated Cometary Composition Telescope in earth orbit for investigating the chemical and structural heterogeneity of the cometary nucleus.

  15. AIRS Map of Carbon Monoxide Draped on Globe: Time Series from 8/1/2005 to 9/30/2005

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of AIRS Map of Carbon Monoxide Draped on Globe

    Forest fires and agricultural burning create large amounts of carbon monoxide. AIRS provides daily global maps of carbon monoxide from space, allowing scientists to follow the global transport of this gas day-to-day. In this image sequence, carbon monoxide pollution from agricultural burning blooms repeatedly over the Amazonian basin. The gas is then transported across the Atlantic Ocean. Carbon monoxide pollution from fires in sub-Saharan Africa is also apparent.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  16. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors.

    PubMed

    da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2013-11-11

    Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3-5.4 mmol m⁻³ enabling a calculated limit of detection (LOD) at 0.14 mmol m⁻³ (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated.

  17. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors

    PubMed Central

    da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2013-01-01

    Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3–5.4 mmol m−3 enabling a calculated limit of detection (LOD) at 0.14 mmol m−3 (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated. PMID:24213678

  18. Latest developments of geostationary microwave sounder technologies for NOAA's mission

    NASA Astrophysics Data System (ADS)

    Bajpai, Shyam; Madden, Michael; Chu, Donald; Yapur, Martin

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) have been flying microwave sounders since 1975 on Polar Operational Environmental Satellites (POES). Microwave observations have made significant contributions to the understanding of the atmosphere and earth surface. This has helped in improving weather and storm tracking forecasts. However, NOAA's Geostationary Operational Environmental Satellites (GOES) have microwave requirements that can not be met due to the unavailability of proven technologies. Several studies of a Geostationary Microwave Sounder (GMS) have been conducted. Among those, are the Geostationary Microwave Sounder (GEM) that uses a mechanically steered solid dish antenna and the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) that utilizes a sparse aperture array. Both designs take advantage of the latest developments in sensor technology. NASA/Jet Propulsion Lab (JPL) has recently successfully built and tested a prototype ground-based GeoSTAR at 50 GHz frequency with promising test results. Current GOES IR Sounders are limited to cloud top observations. Therefore, a sounding suite of IR and Microwave should be able to provide observations under clear as well as cloudy conditions all the time. This paper presents the results of the Geostationary Microwave Sounder studies, user requirements, frequencies, technologies, limitations, and implementation strategies.

  19. AIRS Data Service at NASA Goddard Earth Sciences Data and Information Services (GES DISC) and Its Application to Climate Change Study

    NASA Technical Reports Server (NTRS)

    Won, Young-In; Vollimer, Bruce; Theobald, Mike; Hua, Xin-Min

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) instrument suite is designed to observe and characterize the entire atmospheric column from the surface to the top of the atmosphere in terms of surface emissivity and temperature, atmospheric temperature and humidity profiles, cloud amount and height, and the spectral outgoing infrared radiation on a global scale. The AIRS Data Support Team at the GES DISC provides data support to assist others in understanding, retrieving and extracting information from the AIRS/AMSU/HSB data products. Because a number of years has passed since its operation started, the amount of data has reached a certain level of maturity where we can address the climate change study utilizing AIRS data, In this presentation we will list various service we provide and to demonstrate how to utilize/apply the existing service to long-term and short-term variability study.

  20. Continuous multichannel monitoring of cave air carbon dioxide using a pumped non-dispersive infrared analyser

    NASA Astrophysics Data System (ADS)

    Mattey, D.

    2012-04-01

    The concentration of CO2 in cave air is one of the main controls on the rate of degassing of dripwater and on the kinetics of calcite precipitation forming speleothem deposits. Measurements of cave air CO2reveal great complexity in the spatial distribution among interconnected cave chambers and temporal changes on synoptic to seasonal time scales. The rock of Gibraltar hosts a large number of caves distributed over a 300 meter range in altitude and monthly sampling and analysis of air and water combined with continuous logging of temperature, humidity and drip discharge rates since 2004 reveals the importance of density-driven seasonal ventilation which drives large-scale advection of CO2-rich air though the cave systems. Since 2008 we have deployed automatic CO2 monitoring systems that regularly sample cave air from up to 8 locations distributed laterally and vertically in St Michaels Cave located near the top of the rock at 275m asl and Ragged Staff Cave located in the heart of the rock near sea level. The logging system is controlled by a Campbell Scientific CR1000 programmable datalogger which controls an 8 port manifold connected to sampling lines leading to different parts of the cave over a distance of up to 250 meters. The manifold is pumped at a rate of 5l per minute drawing air through 6mm or 8mm id polythene tubing via a 1m Nafion loop to reduce humidity to local ambient conditions. The outlet of the primary pump leads to an open split which is sampled by a second low flow pump which delivers air at 100ml/minute to a Licor 820 CO2 analyser. The software selects the port to be sampled, flushes the line for 2 minutes and CO2 analysed as a set of 5 measurements averaged over 10 second intervals. The system then switches to the next port and when complete shuts down to conserve power after using 20 watts over a 30 minute period of analysis. In the absence of local mains power (eg from the show cave lighting system) two 12v car batteries will power the system

  1. AIRS Data Distribution at NASA GES DISC DAAC

    NASA Astrophysics Data System (ADS)

    Qin, J. C.; Cho, S.; Li, J. Y.; Phelps, C.

    2003-04-01

    The Atmospheric Infrared Sounder (AIRS) data product suite is now available at the Distributed Active Archive Center (DAAC) located at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) in Greenbelt, Maryland, USA. The Atmospheric Dynamics Data Support Team (atmdyn-dst@daac.gsfc.nasa.gov) is providing user services to help with understanding, accessing and utilizing AIRS data. These services include assistance with product ordering and distribution, access to online technical documentation and HDF-EOS format information, development of online data analysis tools, data mining, and educational resources. The AIRS data is available via the DAAC Search and Order interface (http://daac.gsfc.nasa.gov/data/), the EOS Data Gateway (http://eos.nasa.gov/imswelcome/) or the EOS Core System Datapool (ftp://g0dps01u.ecs.nasa.gov/). The AIRS data support website is located at http://daac.gsfc.nasa.gov/atmodyn/airs/. AIRS data products are a combination of AIRS, Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder for Brazil (HSB) measurements. Global coverage by the instruments is obtained twice daily (day and night) and the data along the orbit is processed into 6-minute granules. AIRS alone has 2,378 channels measuring in the infrared range 3.74-15.4 mm and four channels measuring in the visible/near-infrared range 0.4-1.1mm. A web-based AIRS data subsetter is among the tools available to perform channel subsetting for geolocated calibrated radiances (Level 1B) as well as variable subsetting for atmospheric final retrievals (Level 2). Also useful is AIRS QuickLook, a data visualization application which allows users to view AIRS Level 1B data online for a specific channel prior to ordering or downloading data. Global map is also provided along with image to show geographic coverage of the granule and flight direction of the Aqua spacecraft. AIRS Level 1B data was released in March 2003 and Level 2 products are available May 2003.

  2. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Millán, L.; Wang, S.; Livesey, N.; Kinnison, D.; Sagawa, H.; Kasai, Y.

    2015-03-01

    This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new data set provides two daily zonal averages, one during daytime from 10 to 0.0032 hPa (using day-minus-night differences between 10 and 1 hPa to ameliorate systematic biases) and one during nighttime from 1 to 0.0032 hPa. The vertical resolution of this new data set varies from about 4 km at 10 hPa to around 14 km at 0.0032 hPa. A description of the methodology and an error analysis are presented. Comparisons against the Whole Atmosphere Community Climate Model (WACCM), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Far Infrared Spectrometer (FIRS-2) measurements, as well as photochemical simulations, demonstrate the robustness of the retrieval and indicate that the retrieval is sensitive enough to detect mesospheric HO2 layers during both day and night. This new data set is the first long-term HO2 stratospheric and mesospheric satellite record and it provides needed constraints to help resolve the O3 deficit problem and the "HOx dilemma".

  3. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Millán, L.; Wang, S.; Livesey, N.; Kinnison, D.; Sagawa, H.; Kasai, Y.

    2014-09-01

    This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new dataset provides two daily zonal averages, one during daytime and one during nighttime, with a varying vertical resolution from about 4 km at 10 hPa to around 14 km at 0.0032 hPa. A description of the methodology and an error analysis are presented. Comparisons against the Whole Atmosphere Community Climate Model (WACCM), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Far Infrared Spectrometer (FIRS-2) measurements, as well as, photochemical simulations demonstrate the robustness of the retrieval and indicate that the retrieval is sensitive enough to detect mesospheric HO2 layers during both day and night. This new dataset is the first long-term HO2 stratospheric and mesospheric satellite record and it provides needed constraints to help resolve the O3 deficit problem and the "HOx dilemma".

  4. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    NASA Astrophysics Data System (ADS)

    Hache, E.; Attié, J.-L.; Tourneur, C.; Ricaud, P.; Coret, L.; Lahoz, W. A.; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; Liu, X.; Chance, K.; Höpfner, M.; Spurr, R.; Natraj, V.; Kulawik, S.; Eldering, A.; Orphal, J.

    2014-02-01

    Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0-1 km column). We consider one week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to measure ozone concentration (1) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information. In a first approximation, we assume clear sky conditions neglecting the influence of aerosols and clouds. A number of statistical tests are used to assess the performance of the two GEO configurations. We consider land and sea pixels and whether differences between the two in the performance are significant. Results show that the GEO TIR+VIS configuration provides a better representation of the ozone field both for surface ozone and the 0-1 km ozone column during the daytime especially over land.

  5. The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality

    NASA Astrophysics Data System (ADS)

    Hache, E.; Attié, J.-L.; Tourneur, C.; Ricaud, P.; Coret, L.; Lahoz, W. A.; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; Liu, X.; Chance, K.; Höpfner, M.; Spurr, R.; Natraj, V.; Kulawik, S.; Eldering, A.; Orphal, J.

    2014-07-01

    Ozone is a tropospheric pollutant and plays a key role in determining the air quality that affects human wellbeing. In this study, we compare the capability of two hypothetical grating spectrometers onboard a geostationary (GEO) satellite to sense ozone in the lowermost troposphere (surface and the 0-1 km column). We consider 1 week during the Northern Hemisphere summer simulated by a chemical transport model, and use the two GEO instrument configurations to measure ozone concentration (1) in the thermal infrared (GEO TIR) and (2) in the thermal infrared and the visible (GEO TIR+VIS). These configurations are compared against each other, and also against an ozone reference state and a priori ozone information. In a first approximation, we assume clear sky conditions neglecting the influence of aerosols and clouds. A number of statistical tests are used to assess the performance of the two GEO configurations. We consider land and sea pixels and whether differences between the two in the performance are significant. Results show that the GEO TIR+VIS configuration provides a better representation of the ozone field both for surface ozone and the 0-1 km ozone column during the daytime especially over land.

  6. View to the northeast of the Sounder Antenna OvertheHorizon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  7. View to the eastnortheast of the Sounder Antenna OvertheHorizon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the east-northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  8. Atmospheric profile retrieval with AIRS data and validation at the ARM CART site

    NASA Astrophysics Data System (ADS)

    Wu, Xuebao; Li, Jun; Zhang, Wenjian; Wang, Fang

    2005-09-01

    The physical retrieval algorithm of atmospheric temperature and moisture distribution from the Atmospheric InfraRed Sounder (AIRS) radiances is presented. The retrieval algorithm is applied to AIRS clearsky radiance measurements. The algorithm employs a statistical retrieval followed by a subsequent nonlinear physical retrieval. The regression coefficients for the statistical retrieval are derived from a dataset of global radiosonde observations (RAOBs) comprising atmospheric temperature, moisture, and ozone profiles. Evaluation of the retrieved profiles is performed by a comparison with RAOBs from the Atmospheric Radiation Measurement (ARM) Program Cloud And Radiation Testbed (CART) in Oklahoma, U. S. A. Comparisons show that the physicallybased AIRS retrievals agree with the RAOBs from the ARM CART site with a Root Mean Square Error (RMSE) of 1 K on average for temperature profiles above 850 hPa, and approximately 10% on average for relative humidity profiles. With its improved spectral resolution, AIRS depicts more detailed structure than the current Geostationary Operational Environmental Satellite (GOES) sounder when comparing AIRS sounding retrievals with the operational GOES sounding products.

  9. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.; Eckermann, S. D.

    2012-01-01

    As the first gravity wave (GW) climatology study using nadir-viewing infrared sounders, 50 Atmospheric Infrared Sounder (AIRS) radiance channels are selected to estimate GW variances at pressure levels between 2-100 hPa. The GW variance for each scan in the cross-track direction is derived from radiance perturbations in the scan, independently of adjacent scans along the orbit. Since the scanning swaths are perpendicular to the satellite orbits, which are inclined meridionally at most latitudes, the zonal component of GW propagation can be inferred by differencing the variances derived between the westmost and the eastmost viewing angles. Consistent with previous GW studies using various satellite instruments, monthly mean AIRS variance shows large enhancements over meridionally oriented mountain ranges as well as some islands at winter hemisphere high latitudes. Enhanced wave activities are also found above tropical deep convective regions. GWs prefer to propagate westward above mountain ranges, and eastward above deep convection. AIRS 90 field-of-views (FOVs), ranging from +48 deg. to -48 deg. off nadir, can detect large-amplitude GWs with a phase velocity propagating preferentially at steep angles (e.g., those from orographic and convective sources). The annual cycle dominates the GW variances and the preferred propagation directions for all latitudes. Indication of a weak two-year variation in the tropics is found, which is presumably related to the Quasi-biennial oscillation (QBO). AIRS geometry makes its out-tracks capable of detecting GWs with vertical wavelengths substantially shorter than the thickness of instrument weighting functions. The novel discovery of AIRS capability of observing shallow inertia GWs will expand the potential of satellite GW remote sensing and provide further constraints on the GW drag parameterization schemes in the general circulation models (GCMs).

  10. Fourier transform infrared spectroscopy in environmental research: mobile remote sensing of air pollution

    NASA Astrophysics Data System (ADS)

    Haus, Rainer; Schaefer, Klaus; Mosebach, Herbert W.; Heland, Joerg

    1994-01-01

    Measurements with a mobile laboratory for FTIS remote sensing of pollution in ambient air and directed effluent streams (smokestacks and aircraft engines) are reported. The Double Pendulum Interferometer K300 and a multi-component radiative transfer analysis software were used to quantify the molecules CO, CO2, NO, NO2, N2O, SO2, HCl, H2O, CH4, NH3, HCHO and HC every 5 - 10 minutes in good agreement with in-situ sensors.

  11. The Effect of the Saharan Air Layer on the Formation of Hurricane Isabel (2003) Simulated with AIRS Data

    NASA Technical Reports Server (NTRS)

    Wu, iguang; Braun, Scott A.; Qu, John J.

    2006-01-01

    The crucial physics of how the atmosphere really accomplishes the tropical cyclogenesis process is still poorly understood. The presence of the Saharan Air Layer (SAL), an elevated mixed layer of warm and dry air that extends from Africa to the tropical Atlantic and contains a substantial amount of mineral dust, adds more complexity to the tropical cyclogenesis process in the Atlantic basin. The impact of the SAL on tropical cyclogenesis is still uncertain. Karyampudi and Carlson (1988) conclude that a strong SAL can potentially aid tropical cyclone development while Dunion and Velden (2004) argue that the SAL generally inhibits tropical cyclogenesis and intensification. Advancing our understanding of the physical mechanisms of tropical cyclogenesis and the associated roles of the SAL strongly depends on the improvement in the observations over the data-sparse ocean areas. After the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), and the microwave Humidity Sounder of Brazil (HSB) were launched with the NASA Aqua satellite in 2002, new data products retrieved from the AIRS suite became available for studying the effect of the warm, dry air mass associated with the SAL (referred to as the thermodynamic effect). The vertical profiles of the AIRS retrieved temperature and humidity provide an unprecedented opportunity to examine the thermodynamic effect of the SAL. The observational data can be analyzed and assimilated into numerical models, in which the model thermodynamic state is allowed to relax to the observed state from AIRS data. The objective of this study is to numerically demonstrate that the thermodynamic effect of the SAL on the formation of Hurricane Isabel (2003) can be largely simulated through nudging of the AIRS data.

  12. Toward a Merged Temperature and Water vapor Record from AIRS/AMSU and CrIMSS

    NASA Astrophysics Data System (ADS)

    Fetzer, E. J.; Manning, E. M.; Fishbein, E.; Lambrigtsen, B.; Pagano, T. S.

    2015-12-01

    The Atmospheric Infrared Sounder / Advanced Microwave Sounding Unit (AIRS/AMSU) suite on Aqua and the Cross-track Infrared and Microwave Sounding Suite (CrIMSS) on Suomi-NPP provide multi-year records of retrieved atmospheric temperature and water vapor. Similar spectral coverage, similar orbits, and a three-year record for comparison help simplify the merging of retrieved products from AIRS/AMSU and CrIMSS. Challenges include different satellite altitudes, differences in spectral response, regular but infrequent space/time overlaps that will alias natural variability, different retrieval algorithm approaches, and varying states of algorithm development. We describe first efforts to create a merged temperature and water vapor record based on currently available products from both observing systems.

  13. High-resolution air quality monitoring from space: a fast retrieval scheme for CO from hyperspectral infrared measurements

    NASA Astrophysics Data System (ADS)

    Smith, N.; Huang, H.-L.; Weisz, E.; Annegarn, H. J.; Pierce, R. B.

    2011-06-01

    The first results of the Fast Linear Inversion Trace gas System (FLITS) retrieval scheme are presented here for CO from IASI (Infrared Atmospheric Sounding Interferometer) measurements using RAQMS (Real time Air Quality Modelling System) as atmospheric background. FLITS is a simple linear inversion scheme with a stable performance that retrieves total column CO concentrations (molec cm-2) at single field-of-view (FOV) irrespective of cloud cover. A case study is presented here for a biomass burning plume over the Pacific on 29 March 2010. For each FOV a single tropospheric CO density, vertically integrated over 200-800 hPa, is retrieved with 12 channels in the spectral range 2050-2225 cm-1. Despite variations in cloud cover and temperature, the degrees of freedom for signal (DFS) of the solution ranges between 0.8 and 0.95. In addition, the retrieval error is at least half the background error of 10 %, with dominant contribution from uncertainty in the measurement and temperature. With its stability and processing speed, FLITS meet two of the key requirements for operational processing. We conclude that the linear combination of space-borne measurements with a chemical transport model in the FLITS retrieval scheme holds potential for real-time air quality monitoring and evaluation of pollutant transport at high spatial resolution.

  14. Microwave Limb Sounder/El Nino Watch - February thru December, 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This series of six images shows the movement of atmospheric water vapor over the Pacific Ocean during the formation of the 1997 El Nino condition. Higher than normal ocean water temperatures increase the rate of evaporation and the resulting warm moist air rises into the atmosphere altering global weather patterns. Data obtained by the Microwave Limb Sounder (MLS) on NASA's Upper Atmosphere Research Satellite (UARS), from late February 1997 to late December 1997, show the movement from the western Pacific to the eastern Pacific of high levels of water vapor (red) at 10 kilometers (6 miles) above the surface. Areas of unusually drier air (blue) appear over Indonesia. December 1997 data also show a rapid increase of water vapor off the coast of South America, the result of very high water temperatures in that region.

  15. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2006-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze Atmospheric InfraRed Sounder/Advanced Microwave Sounding Unit/Humidity Sounder Brazil (AIRS/AMSU/HSB) data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lower tropospheric temperature retrieved with 80 percent cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC (Distributed Active Archive Center) in April 2003 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  16. Evaluation of the Fourier transform infrared (FTIR) spectrophotometer for analysis of trichloroethylene (TCE) in the presence of freon-113 in carbon disulfide eluates of charcoal air sampling tubes

    SciTech Connect

    Xiao, H.K.; Levine, S.P.; Kinnes, G.; Almaguer, D. )

    1990-07-01

    Results obtained using Fourier transform infrared spectrophotometry (FTIR) for the analysis of samples of carbon disulfide (CS2) eluates containing trichloroethylene (TCE) and freon from charcoal air sampling tubes were evaluated by comparison with results obtained when using gas chromatography (GC). The FTIR yielded accurate results without regard to the presence of freon.

  17. The high resoultion dynamics limb sounder (HIRDLS): An instrument for the study of global change

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Barnett, J. J.

    1992-01-01

    Two groups, in the Unites States and the United Kingdom, proposed to further develop and use infrared limb scanning instruments in atmospheric studies from Earth Observing System (EOS). Subsequent review showed that the scientific objectives and basic measurement approaches were very similar, although there were differences in the proposed instrumentation. Their teams agreed to merge the two investigations into the High Resolution Dynamics Limb Sounder (HIRDLS). Under the resulting understanding, the two teams have combined, and will produce a single design to satisfy the scientific requirements of their investigations. The characteristics of limb scanning and earlier experiments are reviewed. The HIRDLS scientific objectives and requirements on the derived geophysical quantities are presented, and the way in which they drive the design of HIRDLS is indicated. A brief description of the HIRDLS instrument and a summary of HIRDLS capabilities follow.

  18. Operational calibration of Geostationary Operational Environmental Satellite-8 and-9 imagers and sounders.

    PubMed

    Weinreb, M; Jamieson, M; Fulton, N; Chen, Y; Johnson, J X; Bremer, J; Smith, C; Baucom, J

    1997-09-20

    We describe the operational in-orbit calibration of the Geostationary Operational Environmental Satellite (GOES)-8 and-9 imagers and sounders. In the infrared channels the calibration is based on observations of space and an onboard blackbody. The calibration equation expresses radiance as a quadratic in instrument output. To suppress noise in the blackbody sequences, we filter the calibration slopes. The calibration equation also accounts for an unwanted variation of the reflectances of the instruments' scan mirrors with east-west scan position, which was not discovered until the instruments were in orbit. The visible channels are not calibrated, but the observations are provided relative to the level of space and are normalized to minimize east-west striping in the images. Users receive scaled radiances in a GOES variable format (GVAR) data stream. We describe the procedure users can apply to transform GVAR counts into radiances, temperatures, and mode-A counts.

  19. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  20. Lessons Learned from the AIRS Pre-Flight Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Weiler, Margie

    2013-01-01

    The Atmospheric Infrared Sounder (AIRS) instrument flies on the NASA Aqua satellite and measures the upwelling hyperspectral earth radiance in the spectral range of 3.7-15.4 micron with a nominal ground resolution at nadir of 13.5 km. The AIRS spectra are achieved using a temperature controlled grating spectrometer and HgCdTe infrared linear arrays providing 2378 channels with a nominal spectral resolution of approximately 1200. The AIRS pre-flight tests that impact the radiometric calibration include a full system radiometric response (linearity), polarization response, and response vs scan angle (RVS). We re-derive the AIRS instrument radiometric calibration coefficients from the pre-flight polarization measurements, the response vs scan (RVS) angle tests as well as the linearity tests, and a recent lunar roll test that allowed the AIRS to view the moon. The data and method for deriving the coefficients is discussed in detail and the resulting values compared amongst the different tests. Finally, we examine the residual errors in the reconstruction of the external calibrator blackbody radiances and the efficacy of a new radiometric uncertainty model. Results show the radiometric calibration of AIRS to be excellent and the radiometric uncertainty model does a reasonable job of characterizing the errors.

  1. Results of the international ionospheric Doppler sounder network

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan; Chum, Jaroslav

    2016-07-01

    This paper summarizes main recent results reached by the Czech-lead international network of ionospheric Doppler sounders. The network consists of Doppler sounders in the western half of Czechia (5 measuring paths, 3 frequencies with central receivers in Prague), northern Taiwan (3 transmitters, two separated receivers, 1 frequency), and three similar systems (3 measuring paths with 1 receiver and 1 frequency) in Tucuman (north-western Argentina), Hermanus (the southernmost South Africa) and Luisville (northern South Africa). Three main areas of research have been (1) statistical properties of gravity waves, (2) ionospheric effects of earthquakes, and (3) low latitude/equatorial phenomena. Some results: (1) the theoretically expected dominance of gravity wave propagation against wind has been confirmed; (2) impact of the Tohoku 2001 M9.0 earthquake was registered in the ionosphere over the Czech Republic as long-period infrasound on the distance of about 9000 km from epicenter; analysis of ionospheric infrasound excited by the Nepal 2015 M7.8 earthquake observed by the Czech and Taiwan Doppler sounders showed that the intensity of ionospheric signal is significantly height dependent and that the Doppler shift depends not only on the advection (up and down motion) of the reflecting layer but also on the compression/rarefaction of the electron gas; (3) spread F structures observed by Doppler sounders in Tucuman and Taiwan (both under the crest of equatorial ionization anomaly) provide results consistent with S4 scintillation data and with previous optical, GPS and satellite measurements.

  2. Film handling procedures for Apollo 17 lunar sounder

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1972-01-01

    Film handling procedures for the Apollo 17 Lunar Sounder are itemized, including purchase of flight film, establishment of processing standards, transportation of flight films, flight film certification, application of pre- and post-sensitometry, film loading and downloading, film processing, titling, and duplication.

  3. Design and testing of hardware improvements of an acoustic sounder

    NASA Astrophysics Data System (ADS)

    Richards, W. L.

    1985-06-01

    The application of lasers in military communications and weapons systems accentuate the need for instruments capable of measuring the fine dynamic structure of the atmosphere. One of the most useful tools available for the probing of the atmosphere is the acoustic sounder. Commercial grade acoustic sounders, such as the Aeroviroment model number 300 cannot collect atmospheric data with the quality needed for laser propagation research. The usable range of the Aerovironment model 300 acoustic sounder is less than 500 meters. Many laser systems need atmospheric information at altitudes of 1 to 2 kilometers and higher. The objective of this thesis was to upgrade an existing acoustic sounder to increase the range and improve the quality of the receiver-processor. A serious deficiency of the Aerovironment model number 300 is the poor coupling of the acoustic transducer to the feedhorn. This thesis involved a complete redesign and experimental test of the transducer feedhorn using two different horn styles as well as making the horn removable and easily changeable.

  4. PREMIER - Instrument Development of the Millimetre-Wave Limb Sounder MWLS

    NASA Astrophysics Data System (ADS)

    Gerber, D.; Kerridge, B. J.; Siddans, R.; Reburn, W. J.; Matheson, D. N.; Oldfield, M.; Cox, G. M.; Rea, S.; Murtagh, D.; Urban, J.

    2009-04-01

    The PREMIER (Process Exploration through Measurements of Infrared and millimetre-wave Emitted Radiation) mission is one of 6 candidates for ESA's 7th Earth Explorer Core Mission (due for launch ~ 2016), for which Phase 0 Assessment Studies have recently been undertaken. The mission proposes to make detailed measurements in the mid/upper troposphere and lower stratosphere in order to quantify processes controlling atmospheric global composition in this height range of particular importance to climate. PREMIER would consist of an infrared limb-imaging spectrometer which would observe 3D fields of trace gases, alongside a millimetre-wave limb sounder which would enable observations in the presence of most cirrus clouds, and also provide complementary trace gases. In this presentation we report on instrument development of the millimetre-wave limb sounder MWLS during Phase 0 of the PREMIER mission proposal. The PREMIER MWLS is a Swedish lead instrument (aka STEAM-R) co-developed by the Swedish Space Cooperation SSC and Chalmers University of Technology. Retrieval simulations have been performed at RAL to asses the radiometric performance of the MWLS. Based on that information, the observing system has been defined as a progressively spaced feed horn array. Physical optics simulations have been performed at Astrium UK to define the antenna pattern at the main reflector, as well as the quasi-optical layout of the antenna arrays and beam-shaping components. Hardware development has been pushed forward at RAL at several fronts to provide novel components for the instrument, most notably a sub-harmonic image rejection mixer (SHIRM).

  5. Water complexes of important air pollutants: geometries, complexation energies, concentrations, infrared spectra, and intrinsic reactivity.

    PubMed

    Galano, Annia; Narciso-Lopez, Marcela; Francisco-Marquez, Misaela

    2010-05-13

    Water complexes involving methanol, ethanol, formaldehyde, formic acid, acetone, ammonia, acetylene, ethylene, chloroethene, trichloroethene, 1,1,1-trichloroethane, hydroxyl radical, and hydroperoxyl radical have been studied. Enthalpies, entropies, and Gibbs free energies of association have been estimated, as well as the concentrations of the complexes under lower-troposphere conditions. The influence of the relative air humidity on the complexation processes has been analyzed. The association processes yielding water complexes of methanol, ethanol, formic acid, ammonia, acetone, hydroxyl radical, and hydroperoxyl radical were found to be more exothermic than that of the water dimer. General trends for the reactivity of the studied water complexes, compared to those of the corresponding free species, are proposed based on global reactivity indexes. The previously reported increased reactivity of the (*)OOH self-reaction, when there is water present, has been explained. The IR spectra of the complexes have been analyzed and compared with those of the free species. PMID:20394451

  6. A Comprehensive Analysis of AIRS Near Surface Air Temperature and Water Vapor Over Land and Tropical Ocean

    NASA Astrophysics Data System (ADS)

    Dang, H. V. T.; Lambrigtsen, B.; Manning, E. M.; Fetzer, E. J.; Wong, S.; Teixeira, J.

    2015-12-01

    Version 6 (V6) of the Atmospheric Infrared Sounder's (AIRS) combined infrared and microwave (IR+MW) retrieval of near surface air temperature (NSAT) and water vapor (NSWV) is validated over the United States with the densely populated MESONET data. MESONET data is a collection of surface/near surface meteorological data from many federal and state agencies. The ones used for this analysis are measured from instruments maintained by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Interagency Remote Automatic Weather Stations (RAWS), resulting in a little more than four thousand locations throughout the US. Over the Tropical oceans, NSAT and NSWV are compared to a network of moored buoys from the Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON), and the Pilot Research Moored Array in the Tropical Atlantic (PIRATA). With the analysis of AIRS surface and near surface products over ocean, we glean information on how retrieval of NSAT and NSWV over land can be improved and why it needs some adjustments. We also compare AIRS initial guess of near surface products that are trained on fifty days of ECMWF along with AIRS calibrated radiances, to ECMWF analysis data. The comparison is done to show the differing characteristics of AIRS initial guesses from ECMWF.

  7. Quality control of AIRS total column ozone data within tropical cyclones

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Zou, Xiaolei

    2016-06-01

    The Atmospheric Infrared Sounder (AIRS) provides infrared radiance observations twice daily, which can be used to retrieve total column ozone with high spatial resolution. However, it was found that almost all of the ozone data within typhoons and hurricanes were flagged to be of bad quality by the AIRS original quality control (QC) scheme. This determination was based on the ratio of total precipitable water (TPW) error divided by TPW value, where TPW was an AIRS retrieval product. It was found that the difficulty in finding total column ozone data that could pass AIRS QC was related to the low TPWemployed in the AIRS QC algorithm. In this paper, a new two-step QC scheme for AIRS total column ozone is developed. A new ratio is defined which replaces the AIRS TPW with the zonal mean TPW retrieved from the Advanced Microwave Sounding Unit. The first QC step is to remove outliers when the new ratio exceeds 33%. Linear regression models between total column ozone and mean potential vorticity are subsequently developed with daily updates, which are required for future applications of the proposed total ozone QC algorithm to vortex initialization and assimilation of AIRS data. In the second QC step, observations that significantly deviate from the models are further removed using a biweighting algorithm. Numerical results for two typhoon cases and two hurricane cases show that a large amount of good quality AIRS total ozone data is kept within Tropical Cyclones after implementing the proposed QC algorithm.

  8. Microwave Limb Sounder Measurements Depicting the Relationship Between Nitrous Oxide Levels and

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Aura's Microwave Limb Sounder measures nitrous oxide, which is unaffected by stratospheric chemical processes. By studying changes in its levels, scientists can better understand how air is moving around and how ozone is affected by that air motion, allowing them to differentiate those changes from the ones caused by chemical ozone destruction. In these cross-sections of nitrous oxide (top) and ozone (bottom) data from Aura, changes in the levels of these two chemicals at various temperatures and latitudes are depicted over time. The white contour shows the approximate location of the polar vortex boundary.

    The left panel data were collected on January 23, 2005, near the beginning of chemical ozone destruction this winter. Virtually all chemical loss occurred before March 10 (center panel). Ozone destruction extended throughout the polar vortex from about 15-20 kilometers (9-13 miles), but occurred only in the outer part of the vortex from 20-25 kilometers (13-16 miles). The differences between the two days are depicted in the right panel. The largest observed difference is about a 1.2 parts per million by volume decrease in ozone. Plots of nitrous oxide show a decrease in the region in the outer part of the vortex where most ozone loss occurs, indicating that air from above (where nitrous oxide is lower) has moved into this region. This downward motion brings higher ozone into the region where chemical loss is occurring, thus partially masking the effects of chemical loss. Calculations using Microwave Limb Sounder data to separate dynamical and chemical effects indicate maximum chemical ozone loss of approximately 2 parts per million by volume (approximately 60 percent) in the outer part of the vortex near 18-21 kilometers (11-13 miles), and approximately 1.5 parts per million by volume when averaged throughout the whole vortex region.

  9. EVALUATION OF A PORTABLE FOURIER TRANSFORM INFRARED GAS ANALYZER FOR MEASUREMENTS OF AIR TOXICS IN POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    A portable Fourier transform infrared gas analyzer with a photoacoustic detector performed reliably during pollution prevention research at two industrial facilities. It exhibited good agreement (within approximately 6%) with other analytical instruments (dispersive infrared and ...

  10. Evaluating the Impact of AIRS Observations on Regional Forecasts at the SPoRT Center

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2011-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center collaborates with operational partners of different sizes and operational goals to improve forecasts using targeted projects and data sets. Modeling and DA activities focus on demonstrating utility of NASA data sets and capabilities within operational systems. SPoRT has successfully assimilated the Atmospheric Infrared Sounder (AIRS) radiance and profile data. A collaborative project is underway with the Joint Center for Satellite Data Assimilation (JCSDA) to use AIRS profiles to better understand the impact of AIRS radiances assimilated within Gridpoint Statistical Interpolation (GSI) in hopes of engaging the operational DA community in a reassessment of assimilation methodologies to more effectively assimilate hyperspectral radiances.

  11. Comparison of Upper Tropospheric Water Vapor from AIRS and Cryogenic Frostpoint Hygrometers

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Vomel, Holger

    2004-01-01

    Upper tropospheric water vapor (UTWV) from the Atmospheric Infrared Sounder (AIRS) experiment on NASA's Aqua spacecraft has the potential of addressing several important climate questions. The specified AIRS system measurement uncertainty for water vapor is 20 percent absolute averaged over 2 km layers. Cryogenic frostpoint hygrometers (CFH) are balloon-borne water vapor sensors responsive from the surface into the lower stratosphere. Several dozen coincident, collocated CFH profiles have been obtained for AlRS validation. The combination of CFH sensitivity and sample size offers a statistically compelling picture of AIRS UTWV measurement capability. We present a comparison between CFH observations and AlRS retrievals. We focus on the altitude range from the middle troposphere up to heights at the limits of AlRS sensitivity to water vapor, believed to be around 100-1 50 hPa.

  12. The design of passively athermalized narrow- and wide-field-of-view infrared objectives for the OBSERVER unmanned air vehicle

    NASA Astrophysics Data System (ADS)

    Simmons, Richard C.; Manning, Paul A.; Chamberlain, Trevor V.

    2004-12-01

    Some years ago QinetiQ introduced a short-range reconnaissance unmanned air vehicle (UAV), known as OBSERVER, which carried a visible three-camera sensor. To increase its versatility, a compatible infrared (IR) thermal imaging (TI) sensor was developed for the vehicle for operation in the 8-12mm waveband with a dual field of view function. The sensor incorporates a specially designed camera board, employing two IR lead scandium tantalate (PST) detectors based on UK un-cooled TI technology. Since no cooling engine is required for the detectors, the sensor module is very lightweight and hence well suited to its UAV application. So as to achieve the minimum possible payload for the vehicle, in addition to the lightweight detectors and electronics board, compact low mass optical solutions were devised for the camera objectives. These functioned at a relative aperture of f/1.0 and were designed to provide stable focus and imaging performance over a comparatively large temperature span (-10°C to + 50°C) to enable all weather operation. In order to achieve an athermalisation scheme devoid of elaborate electro-mechanical drives, thermally passive solutions were developed for the objectives in which the differing thermal characteristics of the components were designed to self-cancel optically. In this paper, the design and performance limitations of the optics are discussed and the procedure employed for establishing a thin lens pre-design for one of the objectives is described.

  13. Countermeasure effectiveness against a man-portable air-defense system containing a two-color spinscan infrared seeker

    NASA Astrophysics Data System (ADS)

    Jackman, James; Richardson, Mark; Butters, Brian; Walmsley, Roy

    2011-12-01

    Man-portable air-defense (MANPAD) systems have developed sophisticated counter-countermeasures (CCM) to try and defeat any expendable countermeasure that is deployed by an aircraft. One of these is a seeker that is able to detect in two different parts of the electromagnetic spectrum. Termed two-color, the seeker can compare the emissions from the target and a countermeasure in different wavebands and reject the countermeasure. In this paper we describe the modeling process of a two-color infrared seeker using COUNTERSIM, a missile engagement and countermeasure software simulation tool. First, the simulations model a MANPAD with a two-color CCM which is fired against a fast jet model and a transport aircraft model releasing reactive countermeasures. This is then compared to when the aircraft releases countermeasures throughout an engagement up to the hit point to investigate the optimum flare firing time. The results show that the release time of expendable decoys as a countermeasure against a MANPAD with a two-color CCM is critical.

  14. Indium phosphide all air-gap Fabry-Pérot filters for near-infrared spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Ullah, A.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2016-08-01

    Food quality can be characterized by noninvasive techniques such as spectroscopy in the Near Infrared wavelength range. For example, 930 -1450 nm wavelength range can be used to detect diseases and differentiate between meat samples. Miniaturization of such NIR spectrometers is useful for quick and mobile characterization of food samples. Spectrometers can be miniaturized, without compromising the spectral resolution, using Fabry-Pérot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. The most commonly used mirrors in the design of FP filters are Distributed Bragg Reflections (DBRs) consisting of alternating high and low refractive index material pairs, due to their high reflectivity compared to metal mirrors. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer detector. Therefore, a bandpass filter is usually required to restrict wavelengths outside the stopband of the FP DBRs. Such bandpass filters are difficult to design and implement. Alternatively, high index contrast materials must be can be used to broaden the stopband width of the FP DBRs. In this work, Indium phosphide all air-gap filters are proposed in conjunction with InGaAs based detectors. The designed filter has a wide stopband covering the entire InGaAs detector sensitivity range. The filter can be tuned in the 950-1450 nm with single mode operation. The designed filter can hence be used for noninvasive meat quality control.

  15. The DST group ionospheric sounder replacement for JORN

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Quinn, A. D.; Pederick, L. H.

    2016-06-01

    The Jindalee Over-the-horizon Radar Network (JORN) is an integral part of Australia's national defense capability. JORN uses a real-time ionospheric model as part of its operations. The primary source of data for this model is a set of 13 vertical-incidence sounders (VIS) scattered around the Australian coast and inland locations. These sounders are a mix of Lowell digisonde portable sounder (DPS)-1 and DPS-4. Both of these sounders, the DPS-1 in particular, are near the end of their maintainable life. A replacement for these aging sounders was required as part of the ongoing sustainment program for JORN. Over the last few years the High-Frequency Radar Branch (HFRB) of the Defence Science and Technology (DST) Group, Australian Department of Defence, has been developing its own sounders based on its successful radar hardware technology. The DST Group VIS solution known as PRIME (Portable Remote Ionospheric Monitoring Equipment) is a 100% duty cycle, continuous wave system that receives the returned ionospheric signal while it is still transmitting and operates the receiver in the near field of the transmitter. Of considerable importance to a successful VIS is the autoscaling software, which takes the ionogram data and produces an ionogram trace (group delay as a function of frequency), and from that produces a set of ionospheric parameters that represent the (bottomside) overhead electron density profile. HFRB has developed its own robust autoscaling software. The performance of DST Group's PRIME under a multitude of challenging ionospheric conditions has been studied. In December 2014, PRIME was trialed at a JORN VIS site collocated with the existing Lowell Digisonde DPS-1. This side-by-side testing determined that PRIME was fit for purpose. A summary of the results of this comparison and example PRIME output will be discussed. Note that this paper compares PRIME with the 25 year old Lowell Digisonde DPS-1, which is planned to be replaced. Our future plans include

  16. First continuous measurements of δ18O-CO2 in air with a Fourier transform infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Vardag, S. N.; Hammer, S.; Sabasch, M.; Griffith, D. W. T.; Levin, I.

    2015-02-01

    The continuous in situ measurement of δ18O in atmospheric CO2 opens a new door to differentiating between CO2 source and sink components with high temporal resolution. Continuous 13C-CO2 measurement systems have already been commercially available for some time, but until now, only few instruments have been able to provide a continuous measurement of the oxygen isotope ratio in CO2. Besides precise 13C/12C observations, the Fourier transform infrared (FTIR) spectrometer is also able to measure the 18O / 16O ratio in CO2, but the precision and accuracy of the measurements have not yet been evaluated. Here we present a first analysis of δ18O-CO2 (and δ13C-CO2) measurements with the FTIR analyser in Heidelberg. We used Allan deviation to determine the repeatability of δ18O-CO2 measurements and found that it decreases from 0.25‰ for 10 min averages to about 0.1‰ after 2 h and remains at that value up to 24 h. We evaluated the measurement precision over a 10-month period (intermediate measurement precision) using daily working gas measurements and found that our spectrometer measured δ18O-CO2 to better than 0.3‰ at a temporal resolution of less than 10 min. The compatibility of our FTIR-spectrometric measurements to isotope-ratio mass-spectrometric (IRMS) measurements was determined by comparing FTIR measurements of cylinder gases and ambient air with IRMS measurements of flask samples, filled with gases of the same cylinders or collected from the same ambient air intake. Two-sample t tests revealed that, at the 0.01 significance level, the FTIR and the IRMS measurements do not differ significantly from each other and are thus compatible. We describe two weekly episodes of ambient air measurements, one in winter and one in summer, and discuss what potential insights and new challenges combined highly resolved CO2, δ13C-CO2 and δ18O-CO2 records may provide in terms of better understanding regional scale continental carbon exchange processes.

  17. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  18. Application of infrared radiometers for airborne detection of clear air turbulence and low level wind shear, airborne infrared low level wind shear detection test

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.

    1985-01-01

    The feasibility of infrared optical techniques for the advance detection and avoidance of low level wind shear (LLWS) or low altitude wind shear hazardous to aircraft operations was investigated. A primary feasibility research effort was conducted with infrared detectors and instrumentation aboard the NASA Ames Research Center Learjet. The main field effort was flown on the NASA-Ames Dryden B57B aircraft. The original approach visualized a forward-looking, infrared transmitting (KRS-5) window through which signals would reach the detector. The present concept of a one inch diameter light pipe with a 45 deg angled mirror enables a much simpler installation virtually anywhere on the aircraft coupled with the possibility of horizontal scanning via rotation of the forward directed mirror. Present infrared detectors and filters would certainly permit ranging and horizontal scanning in a variety of methods. CRT display technology could provide a contoured picture with possible shear intensity levels from the infrared detection system on the weather radar or a small adjunct display. This procedure shoud be further developed and pilot evaluated in a light aircraft such as a Cessna 207 or equivalent.

  19. Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage - Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes

    NASA Astrophysics Data System (ADS)

    Wright, Corwin J.; Hindley, Neil P.; Moss, Andrew C.; Mitchell, Nicholas J.

    2016-03-01

    Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely used gravity-wave-resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (Microwave Limb Sounder, MLS-Aura; HIgh Resolution Dynamics Limb Sounder, HIRDLS; Sounding of the Atmosphere using Broadband Emission Radiometry, SABER), the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS-RO constellation, a ground-based meteor radar, the Advanced Infrared Sounder (AIRS) infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity-wave packets from the lower troposphere to the edge of the lower thermosphere ( ˜ 100 km). Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically > 0.80 between any instrument pair. Meteor radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other data sets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Evidence of wave dissipation is seen, and varies strongly with season. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal

  20. AIRS Data Subsetting Service at the Goddard Earth Sciences (GES) DISC/DAAC

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto A.; Qin, Jianchun; Li, Jason; Gerasimov, Irina; Savtchenko, Andrey

    2004-01-01

    The AIRS mission, as a combination of the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), brings climate research and weather prediction into 21st century. From NASA' Aqua spacecraft, the AIRS/AMSU/HSB instruments measure humidity, temperature, cloud properties and the amounts of greenhouse gases. The AIRS also reveals land and sea- surface temperatures. Measurements from these three instruments are analyzed . jointly to filter out the effects of clouds from the IR data in order to derive clear-column air-temperature profiles and surface temperatures with high vertical resolution and accuracy. Together, they constitute an advanced operational sounding data system that have contributed to improve global modeling efforts and numerical weather prediction; enhance studies of the global energy and water cycles, the effects of greenhouse gases, and atmosphere-surface interactions; and facilitate monitoring of climate variations and trends. The high data volume generated by the AIRS/AMSU/HSB instruments and the complexity of its data format (Hierarchical Data Format, HDF) are barriers to AIRS data use. Although many researchers are interested in only a fraction of the data they receive or request, they are forced to run their algorithms on a much larger data set to extract the information of interest. In order to better server its users, the GES DISC/DAAC, provider of long-term archives and distribution services as well science support for the AIRS/AMSU/HSB data products, has developed various tools for performing channels, variables, parameter, spatial and derived products subsetting, resampling and reformatting operations. This presentation mainly describes the web-enabled subsetting services currently available at the GES DISC/DAAC that provide subsetting functions for all the Level 1B and Level 2 data products from the AIRS/AMSU/HSB instruments.

  1. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.

  2. Submillimeter Wave Sounder for the Japanese Mars Mission (MELOS)

    NASA Astrophysics Data System (ADS)

    Kuroda, T.; Kasai, Y.; Sagawa, H.; Hartogh, P.; Murtagh, D. P.; Manabe, T.; Mendrok, J.; Nishibori, T.; Ochiai, S.; Aoyama, Y.

    2009-12-01

    The Submillimeter wave (SMM) sounder is proposed as an instrument onboard the meteorological orbiter of the next Japanese Mars exploration mission (MELOS). Characteristics of the SMM sounder are the observations of wind, temperature, CO, water vapor and its isotopes, minor radical species such as H2O2 and HO2. Many potential contributions to the Martian science are expected from the measurements: for example, the understanding of the Martian atmospheric circulation regime, the water cycle and variable hygropause, isotopic fractionation including HDO/H2O, photochemistry in the middle atmosphere, and thermophysical properties of the surface layer. By employing both limb and nadir observations from the elliptic orbit, the SMM sounder will achieve high vertical resolution in the wind, temperature and water vapor observations by pointing to several tangential heights in the limb observing geometry, as well as the horizontal mapping with temporal variation of minor molecules. Since the dust and ice cloud are almost transparent at submillimeter wavelengths, the SMM sounder can provide observational data without being affected by the dust distribution. The draft design of the instrument is dual frequency receivers of 500 and 600 or 800 GHz in order to observe at least two water vapor lines, including the ground state 110 - 101 transition at 556.9 GHz, with different line strengths. Combination of the observations of weak and strong opacity lines enables us to measure the H2O abundance in a wide range of the altitudes: from the surface to more than 100 km. This study will optimize the instrumental design by examining its scientific performance with the observation simulations. We also discuss the scientific significances of the planned observations in collaboration with the studies using general circulation models (GCMs) for the Martian atmosphere.

  3. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  4. The Apollo 17 Lunar Sounder. [lunar orbit coherent radar experiment

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Brown, W. E., Jr.; Jordan, R.; Adams, G. F.; Jackson, P.; Peeples, W. J.; Porcello, L. J.; Ryu, J.; Eggleton, R. E.; Schaber, G.

    1973-01-01

    The Apollo Lunar Sounder Experiment, a coherent radar operated from lunar orbit during the Apollo 17 mission, has scientific objectives of mapping lunar subsurface structure, surface profiling, surface imaging, and galactic noise measurement. Representative results from each of the four disciplines are presented. Subsurface reflections have been interpreted in both optically and digitally processed data. Images and profiles yield detailed selenomorphological information. The preliminary galactic noise results are consistent with earlier measurements by other workers.

  5. An antenna system for the microwave limb sounder

    NASA Technical Reports Server (NTRS)

    Gustincic, J. J.

    1976-01-01

    The results of an initial design study to determine a suitable antenna system for the Microwave Limb Sounder experiment are presented. The resulting antenna system consisting of a parabolic cylinder fed by a number of Gregorian subreflectors is described and estimates of achievable antenna beamwidths and beam efficiencies are made. A short analysis is presented which yields expressions for the subreflector coordinates which can be implemented into existing programs for future antenna design and evaluation.

  6. Sonic depth sounder for laboratory and field use

    USGS Publications Warehouse

    Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.

    1961-01-01

    The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.

  7. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.; Molthan, A. L.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  8. AIRS First Light Data: Northern Europe, July 20, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    These images, taken over northern Europe on July 20, 2002, depict a few of the different views of Earth and its atmosphere that are produced by the Atmospheric Infrared Sounder experiment system operating on NASA's Aqua spacecraft.

    The image in Figure 1 is from an infrared channel from the AIRS instrument that measures the surface temperature in clear areas and cloud top temperatures in cloudy areas. The image reveals very warm conditions in France and a storm off the east coast of the United Kingdom.

    The image in Figure 2 represents a microwave channel from the Advanced Microwave Sounding Unit instrument that sees through most clouds and observes surface conditions everywhere.

    The image in Figure 3 is a microwave channel from the Humidity Sounder for Brazil instrument that is very sensitive to humidity and does not see the surface at all, but instead reveals the structure of moisture streams in the troposphere.

    The infrared and microwave data from the AIRS experiment are integrated to retrieve a single set of temperature, moisture, and cloud values. These three channels represent only a small portion of the 2,400-channel multispectral experiment, whose primary objectives are to improve the accuracy of weather forecasts and to study climate change.

    The AIRS experiment system also takes pictures of the Earth at four visible and near-infrared wavelengths that can be combined into a color picture. This image shows a swirling low-pressure system over England, clear skies over much of France, and frontal systems in the North Atlantic. Because AIRS is sensitive to different wavelengths than your eye, the colors shown are different from what you would see. For example, plants appear very red to AIRS. There are also subtle color differences in the clouds that relate to their altitude and thickness (compare the white

  9. Retrieval of Tropopause with Hyperspectral Infrared Radiance Measurements

    NASA Astrophysics Data System (ADS)

    Liu, C.; Li, J.; Schmit, T. J.; Weisz, E.; Li, J.; Ackerman, S. A.

    2008-12-01

    Signatures of the global tropopause relate to mechanisms in dynamic meteorology, stratosphere-troposphere exchange (STE), and climate variability and change. The accurate atmospheric profiling from synergistic use of the Atmospheric Infrared Sounder (AIRS) and the Moderate-Resolution Image Spectroradiometer (MODIS) measurements onboard the NASA Earth Observing System's (EOS) Aqua satellite enables the monitoring of global atmospheric profile and cloud distribution. The thermal-based tropopause height is derived from the temperature profile which is retrieved from the synergistic algorithm using the definition promulgated by the World Meteorological Organization's (WMO) Commission for Aerology. The synergistic algorithm is able to provide the thermo-derived tropopause height at AIRS single-field-of-view (SFOV) spatial resolution (13.5 km at nadir view) with high accuracy with its greatly enhanced hyperspectral remote sensing capability. The derived tropopause heights from the synergistic algorithm are compared with ECMWF model reanalysis field, to demonstrate the advantage of combined MODIS and AIRS in spatial and vertical resolution. Tropopause folding is associated with jet streak location and is recognized as a key feature of atmospheric structure in midlatitudes. A case study on synoptic scale frontal system were also used for comparison; results show that tropopause signature from synergistic AIRS and MODIS retrievals have good agreement with RAOBs, which gives an option for tropopause studies.

  10. Sensitivity of Short-Term Weather Forecasts to Assimilated AIRS Data: Implications for NPOESS Applications

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; McCarty, Will; Chou, Shih-Hung; Jedlovec, Gary

    2009-01-01

    The Atmospheric Infrared Sounder (AIRS) is acting as a heritage and risk reduction instrument for the Cross-track lnfrared Sounder (CrIS) to be flown aboard the NPP and NPOESS satellites. The hyperspectral nature of AIRS and CrIS provides high-quality soundings that, along with their asynoptic observation time over North America, make them attractive sources to fill the spatial and temporal data voids in upper air temperature and moisture measurements for use in data assimilation and numerical weather prediction. Observations from AlRS can be assimilated either as direct radiances or retrieved thermodynamic profiles, and the Short-Term Prediction Research and Transition (SPORT) Center at NASA's Marshall Space Flight Center has used both data types to improve short-term (0-48h), regional forecasts. The purpose of this paper is to share SPORT'S experiences using AlRS radiances and retrieved profiles in regional data assimilation activities by showing that proper handling of issues-including cloud contamination and land emissivity characterization-are necessary to produce optimal analyses and forecasts.

  11. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Radiances from hyperspectral sounders such as the Atmospheric Infrared Sounder (AIRS) are routinely assimilated both globally and regionally in operational numerical weather prediction (NWP) systems using the Gridpoint Statistical Interpolation (GSI) data assimilation system. However, only thinned, cloud-free radiances from a 281-channel subset are used, so the overall percentage of these observations that are assimilated is somewhere on the order of 5%. Cloud checks are performed within GSI to determine which channels peak above cloud top; inaccuracies may lead to less assimilated radiances or introduction of biases from cloud-contaminated radiances.Relatively large footprint from AIRS may not optimally represent small-scale cloud features that might be better resolved by higher-resolution imagers like the Moderate Resolution Imaging Spectroradiometer (MODIS). Objective of this project is to "swap" the MODIS-derived cloud top pressure (CTP) for that designated by the AIRS-only quality control within GSI to test the hypothesis that better representation of cloud features will result in higher assimilated radiance yields and improved forecasts.

  12. A Module for Assimilating Hyperspectral Infrared Retrieved Profiles into the Gridpoint Statistical Interpolation System for Unique Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Srikishen, Jayanthi; Blankenship, Clay

    2015-01-01

    Hyperspectral infrared sounder radiance data are assimilated into operational modeling systems however the process is computationally expensive and only approximately 1% of available data are assimilated due to data thinning as well as the fact that radiances are restricted to cloud-free fields of view. In contrast, the number of hyperspectral infrared profiles assimilated is much higher since the retrieved profiles can be assimilated in some partly cloudy scenes due to profile coupling other data, such as microwave or neural networks, as first guesses to the retrieval process. As the operational data assimilation community attempts to assimilate cloud-affected radiances, it is possible that the use of retrieved profiles might offer an alternative methodology that is less complex and more computationally efficient to solve this problem. The NASA Short-term Prediction Research and Transition (SPoRT) Center has assimilated hyperspectral infrared retrieved profiles into Weather Research and Forecasting Model (WRF) simulations using the Gridpoint Statistical Interpolation (GSI) System. Early research at SPoRT demonstrated improved initial conditions when assimilating Atmospheric Infrared Sounder (AIRS) thermodynamic profiles into WRF (using WRF-Var and assigning more appropriate error weighting to the profiles) to improve regional analysis and heavy precipitation forecasts. Successful early work has led to more recent research utilizing WRF and GSI for applications including the assimilation of AIRS profiles to improve WRF forecasts of atmospheric rivers and assimilation of AIRS, Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI) profiles to improve model representation of tropopause folds and associated non-convective wind events. Although more hyperspectral infrared retrieved profiles can be assimilated into model forecasts, one disadvantage is the retrieved profiles have traditionally been assigned the

  13. Observations of convective cooling in the tropical tropopause layer in AIRS data

    NASA Astrophysics Data System (ADS)

    Kim, H.; Dessler, A. E.

    2004-11-01

    We investigate the impact of convection on the thermal structure of the Tropical Tropopause Layer (TTL). We use temperature profiles measured by the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite, and the time evolution of local convection determined by the National Centers for Environmental Protection/Aviation Weather Center (NCEP/AWS) half-hourly infrared global geostationary composite. The observations demonstrate that the TTL is cooled by convection, in agreement with previous observations and model simulations. By using a global data set, we are able to investigate the variations in this convective cooling by season and region. The estimated cooling rate during active convection is 7.5~9 K/day. While we cannot unambiguously identify the cause of this cooling, our analysis suggests that radiative cooling is likely not an explanation.

  14. Observational Sensitivity to Climate Variability using AIRS/Aqua and MERRA

    NASA Astrophysics Data System (ADS)

    Hearty, T. J.; Fetzer, E.; Tian, B.; Yung, Y. L.; Vollmer, B.; Savtchenko, A. K.; Smith, P. M.; Theobald, M.; Ostrenga, D.

    2011-12-01

    The El Nino Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) are two of the largest climate variabilities seen in AIRS observations of temperature, water vapor, and clouds. Numerous climate feedbacks are involved in these oscillations. We examine these oscillations using observations from the Atmospheric Infrared Sounder (AIRS) and the Modern Era Retrospective-Analysis for Research and Applications (MERRA). Since sampling can be an issue for infrared satellites in low earth orbit, we examine the MERRA data sampled at the AIRS space-time locations both with and without the AIRS quality control. We estimate the sampling bias of an AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate and examine the apparent differences in the ENSO and NAO based on the different sampling. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature and 10 percent in water vapor at higher latitudes. While these numbers are small they can be important for understanding climate variability.

  15. Intercomparison of stratospheric gravity wave observations with AIRS and IASI

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Alexander, M. Joan; Clerbaux, Cathy; Grimsdell, Alison W.; Meyer, Catrin I.; Rößler, Thomas; Tournier, Bernard

    2015-04-01

    Gravity waves are an important driver for the atmospheric circulation and have substantial impact on weather and climate. Satellite instruments offer excellent opportunities to study gravity waves on a global scale. This study focuses on observations from the Atmospheric Infrared Sounder (AIRS) onboard the National Aeronautics and Space Administration's Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI) onboard the European MetOp satellites. The main aim of this study is an intercomparison of stratospheric gravity wave observations of both instruments. In particular, we analyzed AIRS and IASI 4.3 μm brightness temperature measurements, which directly relate to stratospheric temperature. Three case studies showed that AIRS and IASI provide a clear and consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on a five-year period of measurements (2008 - 2012) showed similar spatial and temporal patterns of gravity wave activity. However, the statistical comparisons also revealed systematic differences of variances between AIRS and IASI that we attribute to the different spatial measurement characteristics of both instruments. We also found differences between day- and nighttime data that are partly due to the local time variations of the gravity wave sources. While AIRS has been used successfully in many previous gravity wave studies, IASI data are applied here for the first time for that purpose. Our study shows that gravity wave observations from different hyperspectral infrared sounders such as AIRS and IASI can be directly related to each other, if instrument-specific characteristics such as different noise levels and spatial resolution and sampling are carefully considered. The ability to combine observations from different satellites provides an opportunity to create a long-term record, which is an exciting prospect for future climatological studies of stratospheric gravity wave

  16. Near micron-sized cirrus cloud particles in high-resolution infrared spectra: An orographic case study

    NASA Astrophysics Data System (ADS)

    Kahn, Brian H.; Eldering, Annmarie; Clough, Shepard A.; Fetzer, Eric J.; Fishbein, Evan; Gunson, Michael R.; Lee, Sung-Yung; Lester, Peter F.; Realmuto, Vincent J.

    2003-04-01

    The high-resolution spectra of the Atmospheric Infrared Sounder (AIRS) provide a global view of small- particle-dominated cirrus clouds, and they exist over much larger spatial extents than seen in previous aircraft campaigns. As shown by simulations using a plane-parallel scattering radiative transfer (RT) model and realistic ice particle shapes, the shape of the radiance spectra in the atmospheric windows is uniquely influenced by small ice crystals. Minima in the brightness temperature (BT) spectra between 800 to 850 cm-1 are seen for ice particles smaller than 3 μm in the RT simulations and AIRS spectra. A case study of an orographic cirrus cloud observed on October 2, 2002, over the central Andes of South America is presented with spectral BT differences up to 63K between 998 and 811 cm-1.

  17. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    NASA Technical Reports Server (NTRS)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  18. Subminiature infrared detector translation stage

    NASA Astrophysics Data System (ADS)

    Bell, Alan D.

    1989-11-01

    This paper describes a precision subminiature three-axis translation stage used in the GOES Sounder to provide positional adjustment of 12 cooled infrared detectors. Four separate translation stages and detectors are packaged into a detector mechanism which has an overall size of 0.850 x 1.230 x 0.600 inches. Each translation stage is capable of + or - 0.015 inch motion in the X and Y axes and +0.050/-0.025 inch motion in the Z axis with a sensitivity of 0.0002 inches. The function of the detector translation stage allows real time detector signal peaking during Sounder alignment. The translation stage operates in a cryogenic environment under a 10 to the -6th torr vacuum.

  19. Subminiature infrared detector translation stage

    NASA Technical Reports Server (NTRS)

    Bell, Alan D.

    1989-01-01

    This paper describes a precision subminiature three-axis translation stage used in the GOES Sounder to provide positional adjustment of 12 cooled infrared detectors. Four separate translation stages and detectors are packaged into a detector mechanism which has an overall size of 0.850 x 1.230 x 0.600 inches. Each translation stage is capable of + or - 0.015 inch motion in the X and Y axes and +0.050/-0.025 inch motion in the Z axis with a sensitivity of 0.0002 inches. The function of the detector translation stage allows real time detector signal peaking during Sounder alignment. The translation stage operates in a cryogenic environment under a 10 to the -6th torr vacuum.

  20. Comparison of the Fourier transform infrared (FTIR) spectrophotometer and the Miniature Infrared Analyzer (MIRAN) for the determination of trichloroethylene (TCE) in the presence of Freon-113 in workplace air

    SciTech Connect

    Xiao, H.K.; Levine, S.P.; D'Arcy, J.B.; Kinnes, G.; Almaguer, D. )

    1990-07-01

    Results obtained using the Fourier transform infrared spectrophotometer (FTIR) and the Miniature Infrared Analyzer (MIRAN) for samples of workplace air containing trichloroethylene (TCE) were evaluated through comparison with results obtained when using a gas chromatography (GC). The effects of instrument resolution, relative humidity, and sample storage stability were studied. Relative humidity was found to have no effect on the performance of the FTIR over the range studied. The effect of changing resolution is complex but is explained. The linear range of the FTIR is more than adequate for the concentrations encountered in the samples reported in this study. Interference from Freon caused the TCE values to be high when the MIRAN was operated in the single-wavelength mode.

  1. Laser Sounder Technique for Remotely Measuring Atmospheric CO2 Concentrations

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Collatz, G. J.; Sun, X.; Riris, H.; Andrews, A. E.; Krainak, M.

    2001-12-01

    We describe progress in developing a lidar technique for the remote measurement of the tropospheric CO2 concentrations. Our goal is to demonstrate a technique and technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate remote sensing measurements of CO2 mixing ratio from aircraft and space appear difficult. Potential error sources include possible interferences from other trace gas species, the effects of clouds and aerosols in the path, and variability in dry air density caused by pressure or topographic changes. Some potential instrumental errors include frequency drifts in the transmitter and sensitivity drifts in the receiver. High signal-to-noise ratios are needed for estimates at the few ppm level. We are developing a laser sounder approach as a candidate for these measurements. It uses 3 laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter at 1064 nm in the same atmospheric path. It directs the co-aligned laser beams from the lidar toward nadir, and measures the energy of the laser backscatter from land and water surfaces. During each measurement period, the two narrow linewidth lasers are rapidly tuned on and off the selected CO2 and O2 absorption lines. The receiver records and averages the energies of the laser echoes. The column extinction and column densities of both CO2 and O2 are estimated via the differential absorption lidar technique. For the on-line wavelength, the side of the gas absorption line is used, which weights its measurements to 0-4 km in the troposphere. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line near 770 nm. Atmospheric baskscatter profiles are measured with the 1064 nm channel, which permits identifying and excluding measurements containing clouds or aerosols backscatter

  2. Ambient formic acid in southern California air: A comparison of two methods, Fourier transform infrared spectroscopy and alkaline trap-liquid chromatography with UV detection

    SciTech Connect

    Grosjean, D. ); Tuazon, E.C. ); Fujita, E. )

    1990-01-01

    Formic acid is an ubiquitous component of urban smog. Sources of formic acid in urban air include direct emissions from vehicles and in situ reaction of ozone with olefins. Ambient levels of formic acid in southern California air were first measured some 15 years ago by Hanst et al. using long-path Fourier transform infrared spectroscopy (FTIR). All subsequent studies of formic acid in the Los Angeles area have involved the use of two methods, either FTIR or collection on alkaline traps followed by gas chromatography, ion chromatography, or liquid chromatography analysis with UV detection, ATLC-UV. The Carbon Species Methods Comparison Study (CSMCS), a multilaboratory air quality study carried out in August 1986 at a southern California smog receptor site, provided an opportunity for direct field comparison of the FTIR and alkaline trap methods. The results of the comparison are presented in this brief report.

  3. Low Cost Upper Atmosphere Sounder (LOCUS)

    NASA Astrophysics Data System (ADS)

    Gerber, Daniel; Swinyard, Bruce M.; Ellison, Brian N.; Aylward, Alan D.; Aruliah, Anasuya; Plane, John M. C.; Feng, Wuhu; Saunders, Christopher; Friend, Jonathan; Bird, Rachel; Linfield, Edmund H.; Davies, A. Giles; Parkes, Steve

    2014-05-01

    The Mesosphere - Lower Thermosphere region (MLT) is often quoted as being the least well known region of the atmosphere, meaning that measurements of this altitude range are sparser than for the neighbouring layers. The reason for this apparent lack of observations can be traced back to a combination of two facts - A) the MLT is ill suited for in-situ sampling on a global scale because the residual air drag is prohibitive for suborbital vehicles (rockets are traditionally used to sample the MLT region, but they only provide snapshot measurements both geographically, as well as temporally), and B) Some of the most important trace gases in the MLT have spectral emission lines in the THz range, a frequency band which has only just become accessible to conventional remote sensing technologies (i.e. passive heterodyne detection) thanks to ongoing technology development, but which still poses massive - often prohibitive - demands on the complexity, weight and power consumption of satellite borne remote sensing detectors. To mitigate the substantial power requirements of a Local Oscillator (LO) able to pump a heterodyne receiver at THZ frequencies, we are suggesting the use of Quantum Cascade Laser diodes (QCL). Combining a QCL LO with a sub-harmonic Schottky mixer in an integrated receiver system would allow us to build a THz passive heterodyne detector for atmospheric remote sensing that is both very compact and power efficient, and could therefore be built and launched much more cheaply than competitive systems. Many of the technologies required for such an instrument already exist at technology readiness levels (TRL) of 3-5. A consortium of RAL Space, University College London (UCL), University of Leeds, Surrey Satellite Technology Ltd (SSTL) and STAR-Dundee have been awarded a grant through the ESA In Orbit Demonstration Programme (IOD) to start developing an integrated, sub-harmonic heterodyne receiver with a QCL LO up to a TRL that would allow IOD hopefully in the

  4. Aura Microwave Limb Sounder Animation Illustrating the Interaction Between Temperatures and

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This animation created from data from the Microwave Limb Sounder instrument on NASA's Aura spacecraft depicts the complex interaction of chemicals involved in the destruction of ozone during the 2005 Arctic winter. Red is high, blue/purple is low for all chemicals, and data are taken at an altitude of about 19 kilometers (12 miles). As temperatures dip, nitric acid levels drop, indicating the presence of polar stratospheric clouds, which destroy ozone. Levels of hydrogen chloride (the primary 'safe' form of chlorine) are shown dropping, while levels of chlorine monoxide (the primary 'dangerous' form of chlorine that destroys ozone) rise, and ozone is destroyed (ozone levels generally go down after about January 20).

    The animation also illustrates how air motions change ozone levels. Prior to about January 20, ozone levels increase as ozone is transported down from higher altitudes. After that, ozone decreases gradually, and appears to move around on the surface as horizontal air motions change the shape of the polar vortex and move air into and out of it. Since the highest ozone is mostly around the edge of the vortex, this can increase the ozone inside it.

  5. Retrieval of the Nitrous Oxide Profiles using the AIRS Data in China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Ma, P.; Tao, J.; Li, X.; Zhang, Y.; Wang, Z.; Li, S.; Xiong, X.

    2014-12-01

    As an important greenhouse gas and ozone-depleting substance, the 100-year global warming potential of Nitrous Oxide (N2O) is almost 300 times higher than that of carbon dioxide. However, there are still large uncertainties about the quantitative N2O emission and its feedback to climate change due to the coarse ground-based network. This approach attempts to retrieve the N2O profiles from the Atmospheric InfraRed Sounder (AIRS) data. First, the sensitivity of atmospheric temperature and humidity profiles and surface parameters between two spectral absorption bands were simulated by using the radiative transfer model. Second, the eigenvector regression algorithm is used to construct a priori state. Third, an optimal estimate method was developed based on the band selection of N2O. Finally, we compared our retrieved AIRS profiles with HIPPO data, and analyzed the seasonal and annual N2O distribution in China from 2004 to 2013.

  6. Profiling wind and greenhouse gases by infrared-laser occultation: results from end-to-end simulations in windy air

    NASA Astrophysics Data System (ADS)

    Plach, A.; Proschek, V.; Kirchengast, G.

    2015-07-01

    The new mission concept of microwave and infrared-laser occultation between low-Earth-orbit satellites (LMIO) is designed to provide accurate and long-term stable profiles of atmospheric thermodynamic variables, greenhouse gases (GHGs), and line-of-sight (l.o.s.) wind speed with focus on the upper troposphere and lower stratosphere (UTLS). While the unique quality of GHG retrievals enabled by LMIO over the UTLS has been recently demonstrated based on end-to-end simulations, the promise of l.o.s. wind retrieval, and of joint GHG and wind retrieval, has not yet been analyzed in any realistic simulation setting. Here we use a newly developed l.o.s. wind retrieval algorithm, which we embedded in an end-to-end simulation framework that also includes the retrieval of thermodynamic variables and GHGs, and analyze the performance of both stand-alone wind retrieval and joint wind and GHG retrieval. The wind algorithm utilizes LMIO laser signals placed on the inflection points at the wings of the highly symmetric C18OO absorption line near 4767 cm-1 and exploits transmission differences from a wind-induced Doppler shift. Based on realistic example cases for a diversity of atmospheric conditions, ranging from tropical to high-latitude winter, we find that the retrieved l.o.s. wind profiles are of high quality over the lower stratosphere under all conditions, i.e., unbiased and accurate to within about 2 m s-1 over about 15 to 35 km. The wind accuracy degrades into the upper troposphere due to the decreasing signal-to-noise ratio of the wind-induced differential transmission signals. The GHG retrieval in windy air is not vulnerable to wind speed uncertainties up to about 10 m s-1 but is found to benefit in the case of higher speeds from the integrated wind retrieval that enables correction of wind-induced Doppler shift of GHG signals. Overall both the l.o.s. wind and GHG retrieval results are strongly encouraging towards further development and implementation of a LMIO mission.

  7. Characterizing the errors in AIRS mid-tropospheric CO2 retrievals

    NASA Astrophysics Data System (ADS)

    Oda, T.; Baker, D. F.; Kawa, S. R.

    2014-12-01

    Mid- to upper-tropospheric carbon dioxide (CO2) has been retrieved since 2002 from thermal infrared channels of NASA's Atmospheric Infrared Sounder (AIRS) instrument. Unlike retrievals using near-IR data from the Japanese Greenhouse gas Observing SATellite (GOSAT) or NASA's Orbiting Carbon Observatory 2 (OCO2), the sensitivity of AIRS measurements does not peak near the surface; however, the AIRS tropospheric CO2 data cover nearly the entire globe across a decadal time period - they should provide a good constraint on long-term surface CO2 fluxes at broad spatial scales, in the absence of significant biases. In this study, we attempt to characterize the systematic and random errors in AIRS CO2 retrievals by comparing to CO2 fields generated by the PCTM transport model using CarbonTracker-optimized fluxes. We examine both the standard and support products of AIRS Version 5 Release Level 2 CO2, together with other parameters (e.g., cloud top pressure/temperature) retrieved using coincident microwave measurements from the Advanced Microwave Sounding Unit (AMSU). We formulate a bias correction for AIRS CO2 against these parameters, remove the bias, and use the bias-corrected data to solve for weekly flux corrections across 2009-2011 at a 3.0 x 3.75 deg resolution (lat/lon).

  8. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  9. Observation of severe weather activities by Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Hung, R. J.

    1975-01-01

    A three-dimensional, nine-element, high-frequency CW Doppler sounder array has been used to detect ionospheric disturbances during periods of severe weather, particularly during periods with severe thunderstorms and tornadoes. One typical disturbance recorded during a period of severe thunderstorm activity and one during a period of tornado activity have been chosen for analysis in this note. The observations indicate that wave-like disturbances possibly generated by the severe weather have wave periods in the range 2-8 min which place them in the infrasonic wave category.

  10. Observations of Gravity Waves with the UARS Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Waters, J. W.

    1996-01-01

    From Introduction: Observations (of gravity waves-GW) from radar, lidar, balloon and rocket yield good temporal and vertical resolutions usually at one geographical location while aircraft observations provide good horizontal resolution but for a short period of time. It is difficult in general for space-borne sensors to obtain the same resolutions, but observations of GWs at somewhat larger scales are feasible, for example using saturated radiances from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS)[Wu and Waters, 1996].

  11. ABOVE03, The 2003 AIRS BBAERI Ocean Validation Experiment: AIRS Validation and Aerosols

    NASA Astrophysics Data System (ADS)

    McMillan, W. W.; Hoff, R.; Strow, L. L.; Desouza-Machado, S.; Lightner, K.; McCourt, M. L.; Maddy, E.; Kolb, N.; McCann, K.; Comer, J.; Russo, F.; Rutledge, C. K.

    2003-12-01

    From May 28 to July 9, 2003, a complementary set of instruments was deployed to the United States Coast Guard (USCG) Chesapeake Light lighthouse platform to provide correlative measurements characterizing the atmosphere and sea surface over the ocean for validation of NASA's Atmospheric InfraRed Sounder (AIRS) onboard the Aqua satellite. Located 25 km due east of Virginia Beach, VA, Chesapeake Light offers a relatively convenient site for measurements over the ocean while being far enough offshore for water only AIRS fields of view. In addition to the UMBC Baltimore Bomem Atmospheric Emitted Radiance Interferometer (BBAERI), the UMBC Elastic Lidar Facility (ELF), and Vaisala RS-90 rawinsondes used during ABOVE02, we deployed in situ O3 and CO gas analyzers and during the first three weeks, flew 18 ozonesondes in collaboration with Dr. Mike Newchurch, UAH. A total of 140 Vaisala RS-90 radiosondes were launched covering 61 Aqua and 12 Terra overpasses. Preliminary comparisons of ABOVE03 data products to AIRS observations and retrievals will be presented. Particular attention will be paid to both AIRS and ground-based aerosol observations.

  12. Impact of the Assimilation of Hyperspectral Infrared Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.

  13. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  14. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  15. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  16. Use of MODIS Cloud Top Pressure to Improve Assimilation Yields of AIRS Radiances in GSI

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi

    2014-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA's Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Previously, it has been shown that cloud top designation associated with quality control procedures within the Gridpoint Statistical Interpolation (GSI) system used operationally by a number of Joint Center for Satellite Data Assimilation (JCSDA) partners may not provide the best representation of cloud top pressure (CTP). Because this designated CTP determines which channels are cloud-free and, thus, available for assimilation, ensuring the most accurate representation of this value is imperative to obtaining the greatest impact from satellite radiances. This paper examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing analysis increments and numerical forecasts generated using operational techniques with a research technique that swaps CTP from the Moderate-resolution Imaging Spectroradiometer (MODIS) for the value of CTP calculated from the radiances within GSI.

  17. The Behm Acoustic Sounder for Airplanes with Reference to Its Accuracy

    NASA Technical Reports Server (NTRS)

    Schreiber, Ernest

    1930-01-01

    Relative altimetry is of great importance for increasing the safety in aerial transportation, because it makes possible safe flying at night, by poor visibility, and when landing. Among the instruments of this type is the Behm sounder, which operates on an acoustic principle. Acoustic altimetry in general and the Behn sounder, in particular, are covered in this report.

  18. Infrared limb emission measurements of aerosol in the troposphere and stratosphere

    NASA Astrophysics Data System (ADS)

    Griessbach, Sabine; Hoffmann, Lars; Spang, Reinhold; von Hobe, Marc; Müller, Rolf; Riese, Martin

    2016-09-01

    Altitude-resolved aerosol detection in the upper troposphere and lower stratosphere (UTLS) is a challenging task for remote sensing instruments. Infrared limb emission measurements provide vertically resolved global measurements at day- and nighttime in the UTLS. For high-spectral-resolution infrared limb instruments we present here a new method to detect aerosol and separate between ice and non-ice particles. The method is based on an improved aerosol-cloud index that identifies infrared limb emission spectra affected by non-ice aerosol or ice clouds. For the discrimination between non-ice aerosol and ice clouds we employed brightness temperature difference correlations. The discrimination thresholds for this method were derived from radiative transfer simulations (including scattering) and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS)/Envisat measurements obtained in 2011. We demonstrate the value of this approach for observations of volcanic ash and sulfate aerosol originating from the Grímsvötn (Iceland, 64° N), Puyehue-Cordón Caulle (Chile, 40° S), and Nabro (Eritrea, 13° N) eruptions in May and June 2011 by comparing the MIPAS volcanic aerosol detections with Atmospheric Infrared Sounder (AIRS) volcanic ash and SO2 measurements.

  19. Terahertz sensor for air pollution monitoring from spacecraft

    NASA Astrophysics Data System (ADS)

    You, Rui; Guo, Aiyan

    2016-07-01

    Terahertz wave is a radio wave which wavelength between infrared and microwave, substantial is from 0.1-1mm that is 300-3000GHz(0.3-3THz). Compare to microwave and visible/infrared it is advantage of resolution and better penetration in atmosphere respectively, and because of wavelength is similar to scale of micro-particle of air pollution, the absorption coefficient due to the many relevant molecules have a maximum signature in the THz region, such as SO2、CH4、H2S、NH3、CO、O3 etc. of molecules of polluted atmosphere . This paper present a conceptional solution of THz sensor for air pollution sounder which using of large aperture antenna and FSS with 15 channels in 0.183-1.5THz region, each channel with 2MHz by extreme narrow band filter for detecting signature of polluted air. Analysis data show that 2Km spatial resolution at 700km altitude orbit. Sensitive is about 10-12W/Hz1/2 level at cryogenic temp.

  20. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  1. AIRS Data Support at NASA Goddard Earth Science DISC DAAC

    NASA Astrophysics Data System (ADS)

    Cho, S.; Qin, J.; Sharma, A.

    2002-05-01

    The Atmospheric Infrared Sounder (AIRS) is selected by NASA to fly on the second Earth Observing System (EOS) polar orbiting platform, EOS Aqua, which is launched in April 2002. AIRS, together with Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB), is designed to meet the requirements of the NASA Earth Science Enterprise climate research program and the NOAA operational weather forecasting The data products from the AIRS/AMSU/HSB will be archived and distributed at the Goddard Distributed Active Archive Center (GDAAC) located in the NASA Goddard Earth Sciences Data and Information Services Center (GES DAAC) in later 2002. This new dataset consists of radiances, geo-locations and atmospheric products, such as, temperature, humidity, cloud and ozone, providing measurements for temperature at an accuracy of 1 o C in layers 1 km thick and humidity with an accuracy of 20 % in layers 2 km thick in the troposphere. The data will be freely available via WWW interfaces, or an FTP containing subsetted and reformatted data products. The GES DISC DAAC Search and Order allows users to search for data by following particular paths down the hierarchy. This simple point-and- click navigational web interface shows temporal and spatial coverage, item size, description and browse images for AIRS data and one can customize search using spatial,temporal, attribute and parameter search. The EOS Data Gateway (EDG) is another user interface for searching and ordering the AIRS data together with other data products obtained from EOS instruments. The Atmospheric Dynamics Data Support Team (ADDST) at the GES DISC/DAAC will provide various services to assist users in understanding, accessing, and using AIRS data product. The ADDST has been developing tools to read, visualize and analyze the AIRS data, channel/parameter subsetting of AIRS HDF-EOS data products and supplying documentation and readme et al. Other services provided by the ADDST will contain assistance

  2. Chemical, mechanical and sensory monitoring of hot air- and infrared-roasted hazelnuts (Corylus avellana L.) during nine months of storage.

    PubMed

    Belviso, Simona; Dal Bello, Barbara; Giacosa, Simone; Bertolino, Marta; Ghirardello, Daniela; Giordano, Manuela; Rolle, Luca; Gerbi, Vincenzo; Zeppa, Giuseppe

    2017-02-15

    Roasted hazelnuts can be consumed as whole nuts, or as an ingredient in the confectionary and bakery industries and are highly appreciated for their typical taste, aroma and crunchy texture. In this work, two hazelnut types (TGT, Ordu) from two harvests were roasted using two different systems (hot air, infrared) at different time/temperature combinations, and the evolution of oxidative stability, the total phenolic content (TPC), the antioxidant capacity, the mechanical and acoustic properties and the sensory perception were determined during storage. The results showed that the oxidative stability was increased by roasting hazelnuts at 120°C for 40min with hot air system. Similar overall trends were not found for the TPC, the antioxidant capacity and the mechanical-acoustic properties. However, for the maintenance of high antioxidant activity, a storage time of 6months at 4°C is recommended. The two roasting systems gave hazelnuts with significant sensory differences only at high roasting temperature.

  3. Chemical, mechanical and sensory monitoring of hot air- and infrared-roasted hazelnuts (Corylus avellana L.) during nine months of storage.

    PubMed

    Belviso, Simona; Dal Bello, Barbara; Giacosa, Simone; Bertolino, Marta; Ghirardello, Daniela; Giordano, Manuela; Rolle, Luca; Gerbi, Vincenzo; Zeppa, Giuseppe

    2017-02-15

    Roasted hazelnuts can be consumed as whole nuts, or as an ingredient in the confectionary and bakery industries and are highly appreciated for their typical taste, aroma and crunchy texture. In this work, two hazelnut types (TGT, Ordu) from two harvests were roasted using two different systems (hot air, infrared) at different time/temperature combinations, and the evolution of oxidative stability, the total phenolic content (TPC), the antioxidant capacity, the mechanical and acoustic properties and the sensory perception were determined during storage. The results showed that the oxidative stability was increased by roasting hazelnuts at 120°C for 40min with hot air system. Similar overall trends were not found for the TPC, the antioxidant capacity and the mechanical-acoustic properties. However, for the maintenance of high antioxidant activity, a storage time of 6months at 4°C is recommended. The two roasting systems gave hazelnuts with significant sensory differences only at high roasting temperature. PMID:27664651

  4. The AIRS Applications Pipeline, from Identification to Visualization to Distribution

    NASA Astrophysics Data System (ADS)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Teixeira, J.

    2014-12-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. AIRS provides observations of temperature and water vapor along the atmospheric column and is sensitive to many atmospheric constituents in the mid-troposphere, including carbon monoxide, carbon dioxide and ozone. With a 12-year data record and daily, global observations in near real-time, we are finding that AIRS data can play a role in applications that fall under most of the NASA Applied Sciences focus areas. Currently in development are temperature inversion maps that can potentially correlate to respiratory health problems, dengue fever and West Nile virus outbreak prediction maps, maps that can be used to make assessments of air quality, and maps of volcanic ash burden. This poster will communicate the Project's approach and efforts to date of its applications pipeline, which includes identifying applications, utilizing science expertise, hiring outside experts to assist with development and dissemination, visualization along application themes, and leveraging existing NASA data frameworks and organizations to facilitate archiving and distribution. In addition, a new web-based browse tool being developed by the AIRS Project for easy access to application product imagery will also be described.

  5. Spectral Cloud-Filtering of AIRS Data: Non-Polar Ocean

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Barron, Diana

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) is a grating array spectrometer which covers the thermal infrared spectral range between 640 and 1700/cm. In order to retain the maximum radiometric accuracy of the AIRS data, the effects of cloud contamination have to be minimized. We discuss cloud filtering which uses the high spectral resolution of AIRS to identify about 100,000 of 500,000 non-polar ocean spectra per day as relatively "cloud-free". Based on the comparison of surface channels with the NCEP provided global real time sst (rtg.sst), AIRS surface sensitive channels have a cold bias ranging from O.5K during the day to 0.8K during the night. Day and night spatial coherence tests show that the cold bias is due to cloud contamination. During the day the cloud contamination is due to a 2-3% broken cloud cover at the 1-2 km altitude, characteristic of low stratus clouds. The cloud-contamination effects surface sensitive channels only. Cloud contamination can be reduced to 0.2K by combining the spectral filter with a spatial coherence threshold, but the yield drops to 16,000 spectra per day. AIRS was launched in May 2002 on the Earth Observing System (EOS) Aqua satellite. Since September 2002 it has returned 4 million spectra of the globe each day.

  6. Nimbus-7 Stratospheric and Mesospheric Sounder (SAMS) experiment data user's guide

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.; Rodgers, C. D.; Nutter, S. T.; Oslik, N.

    1989-01-01

    The Stratospheric and Mesospheric Sounder (SAMS) aboard Nimbus-7 observes infrared radiation from the atmospheric limb. Global upper atmosphere temperature profiles and vertical concentrations of H2O, NO, N2O, CH4 and CO2 are derived from these measurements. The status of all channels was carefully monitored. Temperature and composition were retrieved from the measurements by linearizing the direct equation about an a priori profile and using an optimum statistical estimator to find the most likely solution. The derived temperature and composition profiles are archived on two tape products whose file structure and record formats are described in detail. The gridded retrieved temperature tape (GRID-T) contains daily day and night average temperatures at 62 pressure levels in a 2.5 degree latitude by 10 degree longitude grid extending from 67.5 degrees N to 50 degrees S. The zonal mean methane and nitrous oxide composition tape (ZMT-G) contains zonal mean day and night average CH4 and N2O mixing ratios at 31 pressure levels for 2.5 degrees latitude zones extending from 67.5 degrees N to 50 degrees S.

  7. Collaborative Testing of Methods to Measure Air Pollutants, II. The Non-Dispersive Infrared Method for Carbon Monoxide

    ERIC Educational Resources Information Center

    McKee, Herbert C.; And Others

    1973-01-01

    The Methods Standardization Branch of the Environmental Protection Agency, National Environmental Research Center, has undertaken a program to standardize methods used in measuring air pollutants covered by the national primary and secondary air quality standards. This paper presents the results of a collective test of the method specified for…

  8. Surface Temperature variability from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Dang, V. T.; Aumann, H. H.

    2015-12-01

    To address the existence and possible causes of the climate hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014for the day and night conditions. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We compare the satellite data with the new surface data produced by Karl et al. (2015) who denies the reality of the climate hiatus. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The day-night difference is an indicator of the anthropogenic trend. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  9. Accurate, practical simulation of satellite infrared radiometer spectral data

    SciTech Connect

    Sullivan, T.J.

    1982-09-01

    This study's purpose is to determine whether a relatively simple random band model formulation of atmospheric radiation transfer in the infrared region can provide valid simulations of narrow interval satellite-borne infrared sounder system data. Detailed ozonesondes provide the pertinent atmospheric information and sets of calibrated satellite measurements provide the validation. High resolution line-by-line model calculations are included to complete the evaluation.

  10. Airborne Multiangle SpectroPolarimeteric Imager (AirMSPI): Calibration and Comparison with Collocated Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Data

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Diner, D. J.; Bruegge, C. J.; Rheingans, B. E.; Garay, M. J.; Daugherty, B. J.; Chipman, R. A.; Davis, A.

    2014-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is a pushbroom multiangle spectropolarimetric camera with spectral bands near 355, 380, 445, 470, 555, 660, 865, and 935 nm. Flying on NASAs's high-altitude ER-2 aircraft since 2010, AirMSPI uses dual photoelastic modulator (PEM)-based technology to provide accurate measurements of the Stokes linear polarization parameters Q and U in the 470, 660, and 865 nm bands, providing unique observing capabilities for aerosol, cloud, and surface studies. We describe the methodologies used for radiometric and polarimetric calibration and characterization of the AirMSPI instrument, which make use of a combination of laboratory and vicarious techniques. A 1.65 m integrating sphere and overflights of Ivanpah Playa, NV are used for radiometric calibration. Radiometric cross-comparisons with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), also flying on the ER-2, are used to validate the radiometric scale. For polarimetric calibration, a well-calibrated Polarization State Generator is used to provide known polarimetric inputs. A high-extinction rotating wiregrid polarizer is used to derive polarimetric calibration coefficients for each pixel, and the results are then validated using partially polarized light generated using tilted glass plates. Examples of collocated multiangular, polarimetric imagery from AirMSPI and hyperspectral imagery from AVIRIS will be shown, presenting new opportunities for atmosphere and surface remote sensing.

  11. Dynamic real-time monitoring of chloroform in an indoor swimming pool air using open-path Fourier transform infrared spectroscopy.

    PubMed

    Chen, M-J; Duh, J-M; Shie, R-H; Weng, J-H; Hsu, H-T

    2016-06-01

    This study used open-path Fourier transform infrared (OP-FTIR) spectroscopy to continuously assess the variation in chloroform concentrations in the air of an indoor swimming pool. Variables affecting the concentrations of chloroform in air were also monitored. The results showed that chloroform concentrations in air varied significantly during the time of operation of the swimming pool and that there were two peaks in chloroform concentration during the time of operation of the pool. The highest concentration was at 17:30, which is coincident with the time with the highest number of swimmers in the pool in a day. The swimmer load was one of the most important factors influencing the chloroform concentration in the air. When the number of swimmers surpassed 40, the concentrations of chloroform were on average 4.4 times higher than the concentration measured without swimmers in the pool. According to the results of this study, we suggest that those who swim regularly should avoid times with highest number of swimmers, in order to decrease the risk of exposure to high concentrations of chloroform. It is also recommended that an automatic mechanical ventilation system is installed to increase the ventilation rate during times of high swimmer load.

  12. Conditions for the use of infrared camera diagnostics in energy auditing of the objects exposed to open air space at isothermal sky

    NASA Astrophysics Data System (ADS)

    Kruczek, Tadeusz

    2015-03-01

    Convective and radiation heat transfer take place between various objects placed in open air space and their surroundings. These phenomena bring about heat losses from pipelines, building walls, roofs and other objects. One of the main tasks in energy auditing is the reduction of excessive heat losses. In the case of a low sky temperature, the radiation heat exchange is very intensive and the temperature of the top part of the horizontal pipelines or walls is lower than the temperature of their bottom parts. Quite often this temperature is also lower than the temperature of the surrounding atmospheric air. In the case of overhead heat pipelines placed in open air space, it is the ground and sky that constitute the surroundings. The aforementioned elements of surroundings usually have different values of temperature. Thus, these circumstances bring about difficulties during infrared inspections because only one ambient temperature which represents radiation of all surrounding elements must be known during the thermovision measurements. This work is aimed at the development of a method for determination of an equivalent ambient temperature representing the thermal radiation of the surrounding elements of the object under consideration placed in open air space, which could be applied at a fairly uniform temperature of the sky during the thermovision measurements as well as for the calculation of radiative heat losses.

  13. Geo-STAR: A Geostationary Microwave Sounder for the Future

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.

    2007-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a 'Decadal Survey' of NASA Earth Science activities1. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported

  14. GeoSTAR: a geostationary microwave sounder for the future

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B. H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.

    2007-09-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a "Decadal Survey" of NASA Earth Science activities. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported

  15. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  16. Apperception of Clouds in AIRS Data

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Smith, William L.

    2005-01-01

    Our capacity to simulate the radiative characteristics of the Earth system has advanced greatly over the past decade. However, new space based measurements show that idealized simulations might not adequately represent the complexity of nature. For example, AIRS simulated multi-layer cloud clearing research provides an excellent groundwork for early Atmospheric Infra-Red Sounder (AIRS) operational cloud clearing and atmospheric profile retrieval. However, it doesn't reflect the complicated reality of clouds over land and coastal areas. Thus far, operational AIRS/AMSU (Advanced Microwave Sounding Unit) cloud clearing is not only of low yield but also of unsatisfying quality. This is not an argument for avoiding this challenging task, rather a powerful argument for exploring other synergistic approaches, and for adapting these strategies toward improving both indirect and direct use of cloudy infrared sounding data. Ample evidence is shown in this paper that the indirect use of cloudy sounding data by way of cloud clearing is sub-optimal for data assimilation. Improvements are needed in quality control, retrieval yield, and overall cloud clearing retrieval performance. For example, cloud clearing over land, especially over the desert surface, has led to much degraded retrieval quality and often a very low yield of quality controlled cloud cleared radiances. If these indirect cloud cleared radiances are instead to be directly assimilated into NWP models, great caution must be used. Our limited and preliminary cloud clearing results from AIRS/AMSU (with the use of MODIS data) and an AIRS/MODIS synergistic approach have, however, shown that higher spatial resolution multispectral imagery data can provide much needed quality control of the AIRS/AMSU cloud clearing retrieval. When AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) are used synergistically, a higher spatial resolution over difficult terrain (especially desert areas) can be achieved and with a

  17. Residual Circulation in the Stratosphere and Lower Mesosphere as Diagnosed from Microwave Limb Sounder Data.

    NASA Astrophysics Data System (ADS)

    Eluszkiewicz, Janusz; Crisp, David; Zurek, Richard; Elson, Lee; Fishbein, Evan; Froidevaux, Lucien; Waters, Joe; Grainger, R. G.; Lambert, Alyn; Harwood, Robert; Peckham, Gordon

    1996-01-01

    Results for the residual circulation in the stratosphere and lower mesosphere between September 1991 and August 1994 are reported. This circulation is diagnosed by applying an accurate radiative transfer code to temperature, ozone, and water vapor measurements acquired by the Microwave Limb Sounder (MLS) onboard the Upper Atmosphere Research Satellite (UARS), augmented by climatological distributions of methane, nitrous oxide, nitrogen dioxide, surface albedo, and cloud cover. The sensitivity of the computed heating rates to the presence of Mt. Pinatubo aerosols is explored by utilizing aerosol properties derived from the measurements obtained by the Improved Stratospheric and Mesospheric Sounder instrument, also onboard UARS. The computed vertical velocities exhibit a Semiannual oscillation (SAO) around the tropical stratopause, with the region of downward velocities reaching maximum spatial extent in February and August. This behavior reflects the semiannual oscillation in temperature and ozone and mimics that seen in past studies of the October 1978-May 1979 period based on data from the Limb Infrared Monitor of the Stratosphere onboard the Nimbus 7 satellite. The SAO vertical velocities are stronger during the northern winter phase, as expected if planetary waves from the winter hemisphere are involved in driving the SAO. A possible quasi-biennial oscillation (QBO) signal extending from the middle into the upper stratosphere is also hinted at, with the equatorial vertical velocities in the region 10-1 hPa significantly smaller (or even negative) in 1993/94 than in 1992/93. Despite the short data record, the authors believe that this pattern reflects a QBO signal rather than a coincidental interannual variability, since the time-height section of vertical velocity at the equator resembles that of the zonal wind. Wintertime high-latitude descent rates are usually greater in the Northern Hemisphere, but they also exhibit significant variability there. In the three

  18. No widespread dust in the upper atmosphere of Mars from Mars Climate Sounder observations

    NASA Astrophysics Data System (ADS)

    Kleinboehl, Armin; Schofield, John T.; Kass, David M.; Abdou, Wedad A.; McCleese, Daniel J.

    2015-04-01

    The vertical distribution of dust in the Martian atmosphere has been a topic of discussion in the recent years. Measurements by limb sounding instruments like the Mars Climate Sounder (MCS) and the Thermal Emission Spectrometer (TES) indicate that atmospheric dust is not homogeneously distributed in the vertical but exhibits layering in the lower atmosphere. Recent retrievals from TES measurements also suggest a dust maximum higher in the atmosphere that predominantly occurs at 50-60 km altitude on the daytime hemisphere. We use new retrievals from MCS measurements to investigate this deduction. MCS is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and on-planet viewing geometries. From these radiance measurements, profiles of atmospheric temperature, dust and water ice are retrieved from the surface to ~80 km with a vertical resolution of ~5 km. Updates to the retrieval algorithm yield improved representations of aerosols above ~40 km altitude. With a few notable exceptions, retrieved dust extinctions in the upper atmosphere do not exceed 1e-5 km-1 at mid-infrared wavelengths, which is close to the limit of the MCS sensitivity. The sensitivity of an MCS limb measurement to aerosols at these altitudes is typically not limited by signal-to-noise but rather by the uncertainties in the representation of the instrument's vertical field-of-view, the far wings of which can provide radiance contributions from the lower atmosphere and the surface. Sensitivity studies suggest that low radiances measured at high altitudes are not caused by widespread dust but can be explained by these radiance contributions. Thus MCS measurements do not support the existence of widespread dust in the upper atmosphere of Mars.

  19. Stratospheric CH3CN from the UARS Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Livesey, Nathaniel J.; Waters, Joe W.; Khosravi, Rashid; Brasseur, Guy P.; Tyndall, Geoffrey S.; Read, William G.

    CH3CN in the stratosphere has been measured by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), providing the first global CH3CN dataset. The MLS observations are in broad agreement with past high and midlatitude observations of CH3CN, although concentrations are a little larger than previously observed. In the tropics, where CH3CN has not up to now been measured, a persistent ‘peak’ in the profiles is seen around 22 hPa, which may be evidence of a tropical stratospheric CH3CN source. Comparisons are made with the NCAR SOCRATES model, including runs having an artificial tropical stratospheric CH3CN source.

  20. Rapid formaldehyde monitoring in ambient air by means of mid-infrared cavity leak-out spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahnke, H.; von Basum, G.; Kleinermanns, K.; Hering, P.; Mürtz, M.

    We report the spectroscopic detection of formaldehyde in ambient air using cavity leak-out spectroscopy, a cw variant of cavity ring-down spectroscopy. This technique proved to be suitable for a real-time quantitative analysis of polluted air without any preprocessing of the air sample. Using a tunable CO-overtone sideband laser for the λ=3 μm spectral region and a ring-down cell with R=99.95% mirrors, we achieved a detection limit of 2 parts per billion formaldehyde in ambient air, corresponding to a minimum detectable absorption coefficient of 7×10-9/cm (sampling time: 2s). Calibration problems arising from the polarity of the molecule and due to HITRAN database uncertainties are discussed.

  1. Validation of AIRS Cloud Cleared Radiances Using MODIS and its Affect on QualityControl

    NASA Astrophysics Data System (ADS)

    Wilson, R. C.; Schreier, M. M.

    2015-12-01

    The Atmospheric Infrared Sounder (AIRS) was launched aboard the AQUA satellite to provide measurements of temperature, humidity, and various trace gases in support of climate research and weather prediction. Only clear sky measurements of the outgoing radiance are used in the AIRS physical retrieval of temperature, water vapor, and certain trace gases. To overcome cloud contamination the clear sky radiance is estimated using an iterative procedure that combines an initial estimate of the clear state from a neural network along with a three by three grid of AIRS measurements. The radiance error estimate, a component critical to the AIRS physical retrieval, must include contributions from all assumed parameters input to the forward model on top of instrument noise and amplification from cloud clearing. When the error estimate is too large the AIRS physical retrieval becomes over-constrained to the first guess profile. Therefore quantifying the cloud cleared error estimate is essential to an effective physical retrieval. We will validate the cloud-cleared radiances through the use of nearby clear ocean scenes and with comparisons to clear pixels from the Moderate Resolution Imaging Spectro-radiometer (MODIS). AIRS cloud cleared radiances are spectrally convolved to MODIS channels for this comparison. This analysis quantifies error due to cloud-clearing and demonstrates that clear MODIS pixels can be used with the standard AIRS quality control procedure to improve identification poor retrievals.

  2. Using Open and Interoperable Ways to Publish and Access LANCE AIRS Near-Real Time Data

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Lynnes, C.; Vollmer, B.; Savtchenko, A. K.; Yang, W.

    2011-12-01

    Atmospheric Infrared Sounder (AIRS) Near-Real Time (NRT) data from the Land Atmosphere Near real time Capability for EOS (LANCE) provide the information on the global and regional atmospheric state with very low latency. An open and interoperable platform is useful to facilitate access to and integration of LANCE AIRS NRT data. This paper discusses the use of open-source software components to build Web services for publishing and accessing AIRS NRT data in the context of Service Oriented Architecture (SOA). The AIRS NRT data have also been made available through an OPeNDAP server. OPeNDAP allows several open-source netCDF-based tools such as Integrated Data Viewer, Ferret and Panoply to directly display the Level 2 data over the network. To enable users to locate swath data files in the OPeNDAP server that lie within a certain geographical area, graphical "granule maps" are being added to show the outline of each file on a map of the Earth. The metadata of AIRS NRT data and services is then explored to implement information advertisement and discovery in catalogue systems. Datacasting, an RSS-based technology for accessing Earth Science data and information to facilitate the subscriptions to AIRS NRT data availability, filtering, downloading and viewing data, is also discussed. To provide an easy entry point to AIRS NRT data and services, a Web portal designed for customized data downloading and visualization is introduced.

  3. Impact of local and non-local sources of pollution on background US Ozone: synergy of a low-earth orbiting and geostationary sounder constellation

    NASA Astrophysics Data System (ADS)

    Bowman, K. W.; Lee, M.

    2015-12-01

    Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. A new generation of low-earth orbiting (LEO) sounders complimented by geostationary sounders over North America, Europe, and Asia providing a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we quantify the role synoptic scale transport of non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us distinguish emission trajectories from megacities, e.g. Beijing, or regions, e.g., western China, from natural trends on downwind ozone. We subsequently explore how a combination of LEO and GEO observations could help quantify the balance of local emissions against changes in distant sources . These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.

  4. Lidar measurements of the column CO2 mixing ratio made by NASA Goddard's CO2 Sounder during the NASA ASCENDS 2014 Airborne campaign.

    NASA Astrophysics Data System (ADS)

    Ramanathan, A. K.; Mao, J.; Abshire, J. B.; Kawa, S. R.

    2015-12-01

    Remote sensing measurements of CO2 from space can help improve our understanding of the carbon cycle and help constrain the global carbon budget. However, such measurements need to be sufficiently accurate to detect small (1 ppm) changes in the CO2 mixing ratio (XCO2) against a large background (~ 400 ppm). Satellite measurements of XCO2 using passive spectrometers, such as those from the Japanese GOSAT (Greenhouse gas Observing Satellite) and the NASA OCO-2 (Orbiting Carbon Observatory-2) are limited to daytime sunlit portions of the Earth and are susceptible to biases from clouds and aerosols. For this reason, NASA commissioned the formulation study of ASCENDS a space-based lidar mission. NASA Goddard Space Flight Center's CO2 Sounder lidar is one candidate approach for the ASCENDS mission. The NASA GSFC CO2 Sounder measures the CO2 mixing ratio using a pulsed multi-wavelength integrated path differential absorption (IPDA) approach. The CO2 Sounder has flown in the 2011, 2013 and 2014 ASCENDS airborne campaigns over the continental US, and has produced measurements in close agreement with in situ measurements of the CO2 column. In 2014, the CO2 Sounder upgraded its laser with a precision step-locked diode laser source to improve the lidar wavelength position accuracy. It also improved its optical receiver with a low-noise, high efficiency, HgCdTe avalanche photo diode detector. The combination of these two technologies enabled lidar XCO2 measurements with unprecedented accuracy. In this presentation, we show analysis from the ASCENDS 2014 field campaign, exploring: (1) Horizontal XCO2 gradients measured by the lidar, (2) Comparisons of lidar XCO2 measurements against the Parameterized Chemistry Transport Model (PCTM), and (3) Lidar column water vapor measurements using a HDO absorption line that occurs next to the CO2 absorption line. This can reduce the uncertainty in the dry air column used in XCO2 retrievals.

  5. Use of INSAT-3D sounder and imager radiances in the 4D-VAR data assimilation system and its implications in the analyses and forecasts

    NASA Astrophysics Data System (ADS)

    Indira Rani, S.; Taylor, Ruth; George, John P.; Rajagopal, E. N.

    2016-05-01

    INSAT-3D, the first Indian geostationary satellite with sounding capability, provides valuable information over India and the surrounding oceanic regions which are pivotal to Numerical Weather Prediction. In collaboration with UK Met Office, NCMRWF developed the assimilation capability of INSAT-3D Clear Sky Brightness Temperature (CSBT), both from the sounder and imager, in the 4D-Var assimilation system being used at NCMRWF. Out of the 18 sounder channels, radiances from 9 channels are selected for assimilation depending on relevance of the information in each channel. The first three high peaking channels, the CO2 absorption channels and the three water vapor channels (channel no. 10, 11, and 12) are assimilated both over land and Ocean, whereas the window channels (channel no. 6, 7, and 8) are assimilated only over the Ocean. Measured satellite radiances are compared with that from short range forecasts to monitor the data quality. This is based on the assumption that the observed satellite radiances are free from calibration errors and the short range forecast provided by NWP model is free from systematic errors. Innovations (Observation - Forecast) before and after the bias correction are indicative of how well the bias correction works. Since the biases vary with air-masses, time, scan angle and also due to instrument degradation, an accurate bias correction algorithm for the assimilation of INSAT-3D sounder radiance is important. This paper discusses the bias correction methods and other quality controls used for the selected INSAT-3D sounder channels and the impact of bias corrected radiance in the data assimilation system particularly over India and surrounding oceanic regions.

  6. Trace gas evolution in the lowermost stratosphere from Aura Microwave Limb Sounder measurements

    NASA Astrophysics Data System (ADS)

    Santee, M. L.; Manney, G. L.; Livesey, N. J.; Froidevaux, L.; Schwartz, M. J.; Read, W. G.

    2011-09-01

    Daily global measurements from NASA's Aura Microwave Limb Sounder (MLS) allow comprehensive investigation of interhemispheric and interannual variations in chemical and transport processes throughout the lowermost stratosphere (LMS). We analyze nearly seven years of MLS O3, HNO3, HCl and ClO measurements along with meteorological analyses to place chemical processing in and dispersal of processed air from the winter polar lowermost vortex and subvortex in a global context. The MLS data, the first simultaneous observations of HCl and ClO covering much of the LMS, reveal that chlorine activation is widespread in the Antarctic subvortex and can occur to a significant degree in the Arctic subvortex. Unusually low temperatures and strong, prolonged chlorine activation in the lowermost vortex and subvortex promoted large ozone losses there in the 2006 (and 2008) Antarctic and 2004/2005 Arctic winters, consistent with reported record low column ozone. Processed air dispersing from the decaying vortex in spring induces rapid changes in extravortex trace gas abundances. After vortex breakdown, the subtropical jet/tropopause becomes the major transport barrier in the LMS. Quasi-isentropic transport of tropical tropospheric air into the LMS, associated with the summer monsoon circulations, leads to decreases in extratropical O3, HNO3, and HCl in both hemispheres. Strong mixing in the summertime LMS homogenizes extratropical trace gas fields. MLS measurements in the tropics show signatures of monsoon-related cross-equatorial stratosphere-to-troposphere transport. Observed seasonal and interannual variations in trace gas abundances in the LMS are consistent with variations in the strength of transport barriers diagnosed from meteorological analyses.

  7. Inspection of non-CO2 greenhouse gases from emission sources and in ambient air by Fourier-transform-infrared-spectrometry: Measurements with FTIS-MAPS.

    PubMed

    Schäfer, K; Haus, R; Heland, J

    1994-05-01

    Infrared spectrometry is a versatile basis to analyse greenhouse gases in the atmosphere. A multicomponent air pollution software (MAPS) was developed for retrieval of gas concentrations from radiation emission as well as absorption measurements. Concentrations of CO, CH4, N2O, and H2O as well as CO2, NO, NO2, NH3, SO2, HCl, HCHO, and the temperature of warm gases are determined on-line. The analyses of greenhouse gases in gaseous emission sources and in ambient air are performed by a mobile remote sensing system using the double-pendulum interferometer K300 of the Munich company Kayser-Threde. Passive radiation measurements are performed to retrieve CO, N2O, and H2O as well as CO2, NO, SO2, and HCl concentrations in smoke stack effluents of thermal power plants and municipal incinerators and CO and H2O as well as CO2 and NO in exhausts of aircraft engines. Open-path radiation measurements are used to determine greenhouse gas concentrations at different ambient air conditions and greenhouse gas emission rates of diffusive sources as garbage deposits, open coal mining, stock farming together with additional compounds (e.g. NH3), and from road traffic together with HCHO. Some results of measurements are shown. A future task is the verification of emission cadastres by these inspection measurements.

  8. Space-time integrity of improved stratospheric and mesospheric sounder and microwave limb sounder temperature fields at Kelvin wave scales

    NASA Astrophysics Data System (ADS)

    Stone, E. M.; Stanford, J. L.; Ziemke, J. R.; Allen, D. R.; Taylor, F. W.; Rodgers, C. D.; Lawrence, B. N.; Fishbein, E. F.; Elson, L. S.; Waters, J. W.

    1995-07-01

    Space-time analyses, which are sensitive to details of retrieval and gridding processes not seen in zonal and time means, are used to investigate the integrity of version 8 gridded retrieved temperatures from the improved stratospheric and mesospheric sounder (ISAMS) on the upper atmosphere research satellite (UARS). This note presents results of such analyses applied to ISAMS tropical data. Comparisons are made with microwave limb sounder (MLS), also on UARS, temperatures. Prominent zonal wave number 1 features are observed with characteristics similar to those expected for Kelvin waves. Time versus longitude plots reveal quasi-regular eastward phase progression from November 1991 to mid-January 1992. The perturbations extend throughout the upper stratosphere and lower mesosphere (altitudes of 32-64 km), exhibiting peak-to-peak amplitudes of up to 2°-3° K and periods from ˜ 2 weeks in midstratosphere to ˜ 1 week at higher altitudes. Faster Kelvin waves with periods of 3-5 days are also found in the lower mesosphere. Height versus time plots reveal downward phase and upward group velocities, consistent with forcing from below. Vertical wavelengths are ˜ 20 km for the slower mode and about twice this scale for the faster 3 to 5-day mode. The features are trapped within ±10°-15° of the equator. Kelvin wave signatures in ISAMS and MLS temperatures are compared at 10 and 1 hPa. Good agreement is found, illustrating the internal consistency and ability of both ISAMS and MLS temperature grids to capture relatively small amplitude features with space-time scales of fast, zonally asymmetric equatorial modes.

  9. Low level water vapor fields from the VISSR Atmospheric Sounder (VAS) 'split window' channels

    NASA Technical Reports Server (NTRS)

    Robinson, W. D.; Chesters, D.; Uccellini, L. W.

    1983-01-01

    The use of the 11 and 12-micron IR-radiometer channels of the VISSR Atmosphere Sounder (VAS) on the GOES to detect water vapor in the lowest 300-400 mb of the troposphere is reported. An algorithm is developed to eliminate the background temperature, allowing the calculation of precipitable water (PW) over both land and water via a single-layer radiative model. This 'split-window' method is demonstrated in a case study, covering the US on July 13, 1981. PW values were calculated from five VAS images and compared with those from radiosonde data and surface measurements. It is shown that the VAS PW images have good resolution (15 km), reveal vivid, continuously evolving details, and differentiate deep, convection-supporting layers from shallow ones. PW ranged from 1.7 to 5.5 g/sq cm (+ or - 1.0 g/sq cm), in good agreement with other measurements. Since this method can detect mesoscale water-vapor fields in relatively clear air, it is considered of great potential value for numerical forecasting.

  10. Microwave Limb Sounder/El Nino Watch - Water Vapor Measurement, October, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image shows atmospheric water vapor in Earth's upper troposphere, about 10 kilometers (6 miles) above the surface, as measured by the Microwave Limb Sounder (MLS) instrument flying aboard the Upper Atmosphere Research Satellite. These data collected in early October 1997 indicate the presence of El Nino by showing a shift of humidity from west to east (blue and red areas) along the equatorial Pacific Ocean. El Nino is the term used when the warmest equatorial Pacific Ocean water is displaced toward the east. The areas of high atmospheric moisture correspond to areas of very warm ocean water. Warmer water evaporates at a higher rate and the resulting warm moist air then rises, forming tall cloud towers. In the tropics, the warm water and the resulting tall cloud towers typically produce large amounts of rain. The MLS instrument, developed at NASA's Jet Propulsion Laboratory, measures humidity at the top of these clouds, which are very moist. This rain is now occurring in the eastern Pacific Ocean and has left Indonesia (deep blue region) unusually dry, resulting in the current drought in that region. This image also shows moisture moving north into Mexico, an effect of several hurricanes spawned by the warm waters of El Nino.

  11. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Schreier, F.; Garcia, S. Gimeno; Milz, M.; Kottayil, A.; Höpfner, M.; von Clarmann, T.; Stiller, G.

    2013-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric sounding - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. Results of this intercomparison and a discussion of reasons of the observed differences are presented.

  12. Aura's Microwave Limb Sounder Estimates of Ozone Loss, 2004/2005 Arctic Winter

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These data maps from Aura's Microwave Limb Sounder depict levels of hydrogen chloride (top), chlorine monoxide (center), and ozone (bottom) at an altitude of approximately 19 kilometers (490,000 feet) on selected days during the 2004-05 Arctic winter. White contours demark the boundary of the winter polar vortex.

    The maps from December 23, 2004, illustrate vortex conditions shortly before significant chemical ozone destruction began. By January 23, 2005, chlorine is substantially converted from the 'safe' form of hydrogen chloride, which is depleted throughout the vortex, to the 'unsafe' form of chlorine monoxide, which is enhanced in the portions of the region that receive sunlight at that time of year. Ozone increased over the month as a result of dynamical effects, and chemical ozone destruction is just beginning at this time. A brief period of intense cold a few days later promotes further chlorine activation and consequent changes in hydrogen chloride and chlorine monoxide levels on January 27, 2005. Peak chlorine monoxide enhancement occurs in early February.

    By February 24, 2005, chlorine deactivation is well underway, with chlorine monoxide abundances dropping and hydrogen chloride abundances rising. Almost all chlorine monoxide has been quenched by March 10, 2005. The fact that hydrogen chloride has not fully rebounded to December abundances suggests that some of that chemical was recovered into another chlorine reservoir species.

    Ozone maps for January 27, 2005, through March 10, 2005, show indications of mixing of air from outside the polar vortex into it. Such occurrences throughout this winter, especially in late February and early March, complicate analyses, and detailed calculations are required to rigorously disentangle chemical and dynamical effects and accurately diagnose chemical ozone destruction.

    Based on various analyses of Microwave Limb Sounder data, we estimate that maximum local ozone loss of approximately 2 parts

  13. MJO-related intraseasonal variation of gravity waves in the Southern Hemisphere tropical stratosphere revealed by high-resolution AIRS observations

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Chikara; Sato, Kaoru; Alexander, M. Joan; Hoffmann, Lars

    2016-07-01

    The intraseasonal variability of gravity waves (GWs) in the austral summer middle stratosphere was examined using dedicated high-resolution temperature retrieval from the Atmospheric Infrared Sounder data. Composite maps were made of stratospheric GW temperature variances, large-scale zonal winds around the tropopause, and precipitation based on the real-time multivariate Madden-Julian Oscillation (MJO) index. Regional distributions of these quantities are synchronized with the MJO: The GW variances are larger for stronger precipitation and for more strongly westward wind around the tropopause at a given precipitation. These results suggest that the GWs observed by Atmospheric Infrared Sounder (AIRS) in the stratosphere originate from convection. Moreover, it is shown that the zonal wind around the tropopause likely controls the GW propagation into the stratosphere by a critical level filtering mechanism and/or the GW generation by an obstacle source effect. This means that the MJO can modulate the middle atmospheric circulation by regulating the GWs in two ways, namely, generation and propagation.

  14. Molecular recognition of 7-(2-octadecyloxycarbonylethyl)guanine to cytidine at the air/water interface and LB film studied by Fourier transform infrared spectroscopy.

    PubMed

    Miao, Wangen; Luo, Xuzhong; Liang, Yingqiu

    2003-03-15

    Monolayer behavior of a nucleolipid amphiphile, 7-(2-octadecyloxycarbonylethyl)guanine (ODCG), on aqueous cytidine solution was investigated by means of surface-molecular area (pi-A) isotherms. It indicates that molecular recognition by hydrogen bonding is present between ODCG monolayer and the cytidine in subphase. The Fourier transform infrared (FTIR) transmission spectroscopic result indicates that the cytidine molecules in the subphase can be transferred onto solid substrates by Langmuir-Blodgett (LB) technique as a result of the formation of Watson-Crick base-pairing at the air/water interface. Investigation by rotating polarized FTIR transmission also suggests that the headgroup recognition of this amphiphile to the dissolved cytidine influence the orientation of the tailchains.

  15. Direct measurements of HONO and NO2 by tunable infrared differential absorption spectroscopy; Results from two field campaigns sampling aircraft exhaust and ambient urban air

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Santoni, G.; Herndon, S. C.; Wood, E. C.; Miake-Lye, R. C.; Munger, J. W.; Wofsy, S. C.; Zahniser, M. S.; McManus, J. B.; Nelson, D. D.

    2009-12-01

    Nitrous acid (HONO) is an important source of hydroxyl radicals (OH), the main oxidizing agent in the atmosphere. However, gaseous HONO has historically proven difficult to measure accurately and to date there is no standard technique. We describe a new instrument capable of high-frequency measurements of HONO and nitrogen dioxide (NO2) mixing ratios by tunable infrared differential absorption spectrometry. Mid-infrared light from two continuous-wave mode quantum cascade lasers traverse a 210 m path through a multi-pass astigmatic cell at reduced pressures for the direct detection of HONO (1660 cm-1) and NO2 (1604 cm-1). We achieve an absorbance precision less than 3×10-6 Hz-1 in one second, which translates to detection limits (S/N=3) of 300 and 30 ppt for HONO and NO2, respectively, in one second. Both lasers and the detector are thermoelectrically cooled, facilitating long-term unattended measurements. We also report preliminary results from two field campaigns; the Alternative Aviation Fuels Experiment (AAFEX) and the Study of Houston Air Radical Precursors (SHARP). At AAFEX, HONO emission ratios relative to CO2 and NOy observed in commercial aircraft exhaust are larger than in most other combustion sources and likely to play a significant role in regional HOx chemistry. Preliminary analysis from the SHARP campaign shows good agreement in HONO and NO2 levels between various measurement techniques.

  16. Detection of a tropospheric ozone anomaly using a newly developed ozone retrieval algorithm for an up-looking infrared interferometer

    NASA Astrophysics Data System (ADS)

    Lightner, K. J.; McMillan, W. W.; McCann, K. J.; Hoff, R. M.; Newchurch, M. J.; Hintsa, E. J.; Barnet, C. D.

    2009-03-01

    On 2 June 2003, the Baltimore Bomem Atmospheric Emitted Radiance Interferometer (BBAERI) recorded an infrared spectral time series indicating the presence of a tropospheric ozone anomaly. The measurements were collected during an Atmospheric Infrared Sounder (AIRS) validation campaign called the 2003 AIRS BBAERI Ocean Validation Experiment (ABOVE03) conducted at the United States Coast Guard Chesapeake Light station located 14 miles due east of Virginia Beach, Virginia (36.91°N, 75.71°W). Ozone retrievals were performed with the Kurt Lightner Ozone BBAERI Retrieval (KLOBBER) algorithm, which retrieves tropospheric column ozone, surface to 300 mbar, from zenith-viewing atmospheric thermal emission spectra. KLOBBER is modeled after the AIRS retrieval algorithm consisting of a synthetic statistical regression followed by a physical retrieval. The physical retrieval is implemented using the k-Compressed Atmospheric Radiative Transfer Algorithm (kCARTA) to compute spectra. The time series of retrieved integrated ozone column on 2 June 2003 displays spikes of about 10 Dobson units, well above the error of the KLOBBER algorithm. Using instrumentation at Chesapeake Light, satellite imaging, trace gas retrievals from satellites, and Potential Vorticity (PV) computations, it was determined that these sudden increases in column ozone likely were caused by a combination of midtropospheric biomass burning products from forest fires in Siberia, Russia, and stratospheric intrusion by a tropopause fold occurring over central Canada and the midwestern United States.

  17. Recent microwave sounder observations from aircraft during the HS3 field campaign

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Brown, S. E.

    2014-12-01

    The High Altitude MMIC Sounding Radiometer (HAMSR) is a microwave sounder similar to but more capable and accurate than current satellite microwave sounders. Since 2010 it has operated on NASA's Global Hawk UAVs and has been participating in the multiyear Hurricane and Severe Storm Sentinel (HS3) hurricane campaign. We present recent results from HS3, including analysis of the thermodynamic and precipitation structure in and around tropical storm systems sampled during HS3. Copyright 2014 California Institute of Technology. Government sponsorship acknowledged.

  18. Satellite observation of atmospheric methane: intercomparison between AIRS and GOSAT TANSO-FTS retrievals

    NASA Astrophysics Data System (ADS)

    Zou, M.; Xiong, X.; Saitoh, N.; Warner, J.; Zhang, Y.; Chen, L.; Weng, F.

    2015-10-01

    Space-borne observations of atmospheric methane (CH4) have been made using the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite since August 2002 and the Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT) since April 2009. This study compared the GOSAT TANSO-FTS thermal infrared (TIR) version 1.0 CH4 product with the collocated AIRS version 6 CH4 product using data from 1 August 2010 to 30 June 2012, including the CH4 mixing ratios and the total column amounts. The results show that at 300-600 hPa, where both AIRS and GOSAT-TIR CH4 have peak sensitivities, they agree very well, but GOSAT-TIR retrievals tend to be higher than AIRS in layer 200-300 hPa. At 300 hPa the CH4 mixing ratio from GOSAT-TIR is, on average, 10.3 ± 31.8 ppbv higher than that from AIRS, and at 600 hPa GOSAT-TIR retrieved CH4 is -16.2 ± 25.7 ppbv lower than AIRS CH4. Comparison of the total column amount of CH4 shows that GOSAT-TIR agrees with AIRS to within 1 % in the mid-latitude regions of Southern Hemisphere and in tropics. In the mid to high latitudes in the Northern Hemisphere, GOSAT-TIR is ~ 1-2 % lower than AIRS, and in the high-latitude regions of Southern Hemisphere the difference of GOSAT from AIRS varies from -3 % in October to +2 % in July. The difference between AIRS and GOSAT TANSO-FTS retrievals is mainly due to the difference in retrieval algorithms and instruments itself, and the larger difference in the high latitude regions is associated with the low information content and small degree of freedoms of the retrieval. The degree of freedom of GOSAT-TIR retrievals is lower than that of AIRS also indicates that the constraint in GOSAT-TIR retrieval may be too strong. From the good correlation between AIRS and GOSAT-TIR retrievals and the seasonal variation they observed we are confident that the thermal infrared measurements from AIRS and GOSAT-TIR can provide

  19. Satellite observation of atmospheric methane: intercomparison between AIRS and GOSAT TANSO-FTS retrievals

    NASA Astrophysics Data System (ADS)

    Zou, Mingmin; Xiong, Xiaozhen; Saitoh, Naoko; Warner, Juying; Zhang, Ying; Chen, Liangfu; Weng, Fuzhong; Fan, Meng

    2016-08-01

    Space-borne observations of atmospheric methane (CH4) have been made using the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite since August 2002 and the Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT) since April 2009. This study compared the GOSAT TANSO-FTS thermal infrared (TIR) version 1.0 CH4 product with the collocated AIRS version 6 CH4 product using data from 1 August 2010 to 30 June 2012, including the CH4 mixing ratios and the total column amounts. The results show that at 300-600 hPa, where both AIRS and GOSAT-TIR CH4 have peak sensitivities, they agree very well, but GOSAT-TIR retrievals tend to be higher than AIRS in layer 200-300 hPa. At 300 hPa the CH4 mixing ratio from GOSAT-TIR is, on average, 10.3 ± 31.8 ppbv higher than that from AIRS, and at 600 hPa GOSAT-TIR retrieved CH4 is -16.2 ± 25.7 ppbv lower than AIRS CH4. Comparison of the total column amount of CH4 shows that GOSAT-TIR agrees with AIRS to within 1 % in the mid-latitude regions of the Southern Hemisphere and in the tropics. In the mid to high latitudes in the Northern Hemisphere, comparison shows that GOSAT-TIR is ˜ 1-2 % lower than AIRS, and in the high-latitude regions of the Southern Hemisphere the difference of GOSAT from AIRS varies from -3 % in October to +2 % in July. The difference between AIRS and GOSAT TANSO-FTS retrievals is mainly due to the difference in retrieval algorithms and instruments themselves, and the larger difference in the high-latitude regions is associated with the low information content and small degrees of freedom of the retrieval. The degrees of freedom of GOSAT-TIR retrievals are lower than that of AIRS, which also indicates that the constraint in GOSAT-TIR retrievals may be too strong. From the good correlation between AIRS and GOSAT-TIR retrievals and the seasonal variation they observed, we are confident that the thermal infrared

  20. Stratospheric gravity wave observations of AIRS and HIRDLS

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Hoffmann, Lars; Ern, Manfred; Trinh, Thai

    2016-04-01

    The Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite provides stratospheric temperature observations for a variety of scientific analyses. However, the horizontal resolution of the operational temperature retrievals is generally not sufficient for studies of gravity waves. The AIRS high-resolution retrieval discussed here provides stratospheric temperature profiles for each individual satellite footprint and therefore has nine times better horizontal sampling than the operational data. The retrieval configuration is optimized so that the results provide a trade-off between spatial resolution and retrieval noise that is considered optimal for gravity wave analysis. To validate the AIRS data we performed an intercomparison with stratospheric temperature measurements of the High Resolution Dynamics Limb Sounder (HIRDLS). Selected case studies of gravity wave events are analyzed. AIRS and HIRDLS utilize rather different measurement geometries (nadir and limb) and have different sensitivities to gravity wave horizontal and vertical wavelengths, as indicated by their observational filters. Nevertheless, the wave structures found in the stratosphere in AIRS and HIRDLS data are often in remarkably good agreement. The three-dimensional temperature fields from AIRS allow us to derive the horizontal orientation of the phase fronts, which is a limiting factor for gravity wave analyses based on limb measurements today. In addition, a statistical comparison focuses on temperature variances due to stratospheric gravity wave activity at 20-60 km altitude. The analysis covers monthly zonal averages and time series for the HIRDLS measurement time period (January 2005-March 2008). We found good agreement in the seasonal and latitudinal patterns of gravity wave activity. Time series of gravity wave variances show a strong annual cycle at high latitudes with maxima during wintertime and minima during summertime. Largest variability is found at 60°S during austral

  1. View-angle-dependent AIRS Cloudiness and Radiance Variance: Analysis and Interpretation

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.

    2013-01-01

    Upper tropospheric clouds play an important role in the global energy budget and hydrological cycle. Significant view-angle asymmetry has been observed in upper-level tropical clouds derived from eight years of Atmospheric Infrared Sounder (AIRS) 15 um radiances. Here, we find that the asymmetry also exists in the extra-tropics. It is larger during day than that during night, more prominent near elevated terrain, and closely associated with deep convection and wind shear. The cloud radiance variance, a proxy for cloud inhomogeneity, has consistent characteristics of the asymmetry to those in the AIRS cloudiness. The leading causes of the view-dependent cloudiness asymmetry are the local time difference and small-scale organized cloud structures. The local time difference (1-1.5 hr) of upper-level (UL) clouds between two AIRS outermost views can create parts of the observed asymmetry. On the other hand, small-scale tilted and banded structures of the UL clouds can induce about half of the observed view-angle dependent differences in the AIRS cloud radiances and their variances. This estimate is inferred from analogous study using Microwave Humidity Sounder (MHS) radiances observed during the period of time when there were simultaneous measurements at two different view-angles from NOAA-18 and -19 satellites. The existence of tilted cloud structures and asymmetric 15 um and 6.7 um cloud radiances implies that cloud statistics would be view-angle dependent, and should be taken into account in radiative transfer calculations, measurement uncertainty evaluations and cloud climatology investigations. In addition, the momentum forcing in the upper troposphere from tilted clouds is also likely asymmetric, which can affect atmospheric circulation anisotropically.

  2. Limits of Precipitation Detection from Microwave Radiometers and Sounders

    NASA Astrophysics Data System (ADS)

    Munchak, S. J.; Skofronick-Jackson, G.; Johnson, B. T.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission will unify and draw from numerous microwave conical scanning imaging radiometers and cross-track sounders, many of which already in operation, to provide near real-time precipitation estimates worldwide at 3-hour intervals. Some of these instruments were designed for primary purposes unrelated to precipitation remote sensing. Therefore it is worthwhile to evaluate the strengths and weaknesses of each set of channels with respect to precipitation detection to fully understand their role in the GPM constellation. The GPM radiometer algorithm will use an observationally-based Bayesian retrieval with common databases of precipitation profiles for all sensors. Since these databases are still under development and will not be truly complete until the GPM core satellite has completed at least one year of dual-frequency radar observations, a screening method based upon retrieval of non-precipitation parameters related to the surface and atmospheric state is used in this study. A cost function representing the departure of modeled radiances from their observed values plus the departure of surface and atmospheric parameters from the TELSEM emissivity atlas and MERRA reanalysis is used as an indicator of precipitation. Using this method, two datasets are used to evaluate precipitation detection: One year of matched AMSR-E and AMSU-B/MHS overpasses with CloudSat used as validation globally; and SSMIS overpasses over the United States using the National Mosaic and QPE (NMQ) as validation. The Heidke Skill Score (HSS) is used as a metric to evaluate detection skill over different surfaces, seasons, and across different sensors. Non-frozen oceans give the highest HSS for all sensors, followed by bare land and coasts, then snow-covered land and sea ice. Negligible skill is present over ice sheets. Sounders tend to have higher skill than imagers over complex surfaces (coast, snow, and sea ice), whereas imagers have higher skill

  3. GeoSTAR: a microwave sounder for geostationary applications

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B. H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.; Piepmeier, J. R.; Ruf, C. S.; Gross, S. M.; Musko, S.; Rogacki, S.

    2006-09-01

    The Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR, is a new concept for a microwave atmospheric sounder intended for geostationary satellites such as the GOES weather satellites operated by NOAA. A small but fully functional prototype has recently been developed at the Jet Propulsion Laboratory to demonstrate the feasibility of using aperture synthesis in lieu of the large solid parabolic dish antenna that is required with the conventional approach. Spatial resolution requirements dictate such a large aperture in GEO that the conventional approach has not been feasible, and it is only now, with the GeoSTAR approach, that a GEO microwave sounder can be contemplated. Others have proposed GEO microwave radiometers that would operate at sub-millimeter wavelengths to circumvent the large-aperture problem, but GeoSTAR is the only viable approach that can provide full sounding capabilities equal to or exceeding those of the AMSU systems now operating on LEO weather satellites and which have had tremendous impact on numerical weather forecasting. GeoSTAR will satisfy a number of important measurement objectives, many of them identified by NOAA as unmet needs in their GOES-R pre-planned product improvements (P3I) lists and others by NASA in their research roadmaps and as discussed in a white paper submitted to the NRC Decadal Survey. The performance of the prototype has been outstanding, and this proof of concept represents a major breakthrough in remote sensing capabilities. The GeoSTAR concept is now at a stage of development where an infusion into space systems can be initiated, either on a NASA sponsored research mission or on a NOAA sponsored operational mission. GeoSTAR is an ideal candidate for a joint "research to operations" mission, and that may be the most likely scenario. Additional GeoSTAR related technology development and other risk reduction activities are under way, and a GeoSTAR mission is feasible in the GOES-R/S time frame, 2012-2014.

  4. Validation of AIRS V6 Surface Temperature over Greenland with GCN and NOAA Stations

    NASA Technical Reports Server (NTRS)

    Lee, Jae N.; Hearty, Thomas; Cullather, Richard; Nowicki, Sophie; Susskind, Joel

    2016-01-01

    This work compares the temporal and spatial characteristics of the AIRSAMSU (Atmospheric Infrared Sounder Advanced Microwave Sounding Unit A) Version 6 and MODIS (Moderate resolution Imaging Spectroradiometer) Collection 5 derived surface temperatures over Greenland. To estimate uncertainties in space-based surface temperature measurements, we re-projected the MODIS Ice Surface Temperature (IST) to 0.5 by 0.5 degree spatial resolution. We also re-gridded AIRS Skin Temperature (Ts) into the same grid but classified with different cloud conditions and surface types. These co-located data sets make intercomparison between the two instruments relatively straightforward. Using this approach, the spatial comparison between the monthly mean AIRS Ts and MODIS IST is in good agreement with RMS 2K for May 2012. This approach also allows the detection of any long-term calibration drift and the careful examination of calibration consistency in the MODIS and AIRS temperature data record. The temporal correlations between temperature data are also compared with those from in-situ measurements from GC-Net (GCN) and NOAA stations. The coherent time series of surface temperature evident in the correlation between AIRS Ts and GCN temperatures suggest that at monthly time scales both observations capture the same climate signal over Greenland. It is also suggested that AIRS surface air temperature (Ta) can be used to estimate the boundary layer inversion.

  5. Data Assimilation of AIRS Water Vapor Profiles: Impact on Precipitation Forecasts for Atmospheric River Cases Affecting the Western of the United States

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Bradley; Jedlovec, Gary; Wick, Gary; Neiman, Paul

    2013-01-01

    Atmospheric rivers are transient, narrow regions in the atmosphere responsible for the transport of large amounts of water vapor. These phenomena can have a large impact on precipitation. In particular, they can be responsible for intense rain events on the western coast of North America during the winter season. This paper focuses on attempts to improve forecasts of heavy precipitation events in the Western US due to atmospheric rivers. Profiles of water vapor derived from from Atmospheric Infrared Sounder (AIRS) observations are combined with GFS forecasts by a three-dimensional variational data assimilation in the Gridpoint Statistical Interpolation (GSI). Weather Research and Forecasting (WRF) forecasts initialized from the combined field are compared to forecasts initialized from the GFS forecast only for 3 test cases in the winter of 2011. Results will be presented showing the impact of the AIRS profile data on water vapor and temperature fields, and on the resultant precipitation forecasts.

  6. Real-time Data Processing and Visualization for the Airborne Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Hoese, D.; Garcia, R. K.; Smith, W. L.; Weisz, E.; Tobin, D. C.; Best, F. A.; Knuteson, R. O.; Sullivan, D. V.; Barnes, C. M.; Van Gilst, D. P.

    2015-12-01

    The Hurricane and Severe Storm Sentinel (HS3) is a five-year NASA mission targeted to enhance the understanding of the formation and evolution of hurricanes in the Atlantic basin. Measurements were made from two NASA Global Hawk Unmanned Aircraft Systems (UAS) during the 2012 through 2014 hurricane seasons, with flights conducted from the NASA Wallops Flight Facility. The Global Hawk aircraft are capable of high altitude flights with durations of up to 30 hours, which allow extensive observations over distant storms, not typically possible with manned aircraft. The two NASA Global Hawks were equipped with instrument suites to study the storm environment, and inner core structure and processes, respectively. The Scanning High-resolution Interferometer Sounder (S-HIS), designed and built by the University of Wisconsin (UW) Space Science and Engineering Center (SSEC), measures emitted thermal radiation at high spectral resolution between 3.3 and 18 microns. The radiance measurements are used to obtain temperature and water vapor profiles of the Earth's atmosphere. The S-HIS spatial resolution is 2 km at nadir, across a 40 km ground swath from a nominal altitude of 20 kilometers. Since 1998, the S-HIS has participated in 33 field campaigns and has proven to be extremely dependable, effective, and highly accurate. It has flown on the NASA ER-2, DC-8, Proteus, WB-57, and Global Hawk airborne platforms. The UW S-HIS infrared sounder instrument is equipped with a real-time ground data processing system capable of delivering atmospheric profiles, radiance data, and engineering status to mission support scientists - all within less than one minute from the time of observation. This ground data processing system was assembled by a small team using existing software and proven practical techniques similar to a satellite ground system architecture. This summary outlines the design overview for the system and illustrates the data path, content, and outcomes.

  7. Supercontinuum emission and enhanced self-guiding of infrared femtosecond filaments sustained by third-harmonic generation in air

    SciTech Connect

    Berge, L.; Mejean, G.; Kasparian, J.; Yu, J.; Frey, S.; Salmon, E.; Wolf, J.P.

    2005-01-01

    The long-range propagation of two-colored femtosecond filaments produced by an infrared (IR) ultrashort pulse exciting third harmonics (TH) in the atmosphere is investigated, both theoretically and experimentally. First, it is shown that the coupling between the pump and TH components is responsible for a wide spectral broadening, extending from ultraviolet (UV) wavelengths (220 nm) to the mid-IR (4.5 {mu}m). Supercontinuum generation takes place continuously as the laser beam propagates, while TH emission occurs with a conversion efficiency as high as 0.5%. Second, the TH pulse is proven to stabilize the IR filament like a saturable quintic nonlinearity through four-wave mixing and cross-phase modulation. Third, the filamentation is accompanied by a conical emission of the beam, which becomes enlarged at UV wavelengths. These properties are revealed by numerical simulations and direct experimental observations performed from the Teramobile laser facility.

  8. Operational use of the AIRS Total Column Ozone Retrievals along with the RGB Airmass product as part of the GOES-R Proving Ground

    NASA Astrophysics Data System (ADS)

    Folmer, M. J.; Zavodsky, B. T.; Molthan, A.

    2012-12-01

    The Red, Green, Blue (RGB) Air Mass product has been demonstrated in the GOES-R Proving Ground as a possible decision aid. Forecasters have been trained on the usefulness of identifying stratospheric intrusions and potential vorticity (PV) anomalies that can lead to explosive cyclogenesis, genesis of mesoscale convective systems (MCSs), or the transition of tropical cyclones to extratropical cyclones. It has also been demonstrated to distinguish different air mass types from warm, low ozone air masses to cool, high ozone air masses and the various interactions with the PV anomalies. To assist the forecasters in understanding the stratospheric contribution to high impact weather systems, the Atmospheric Infrared Sounder (AIRS) Total Column Ozone Retrievals have been made available as an operational tool. These AIRS retrievals provide additional information on the amount of ozone that is associated with the red coloring seen in the RGB Air Mass product. This paper discusses how the AIRS retrievals can be used to quantify the red coloring in RGB Air Mass product. These retrievals can be used to diagnose the depth of the stratospheric intrusions associated with different types of weather systems and provide the forecasters with decision aid tools that can improve the quality of forecast products.

  9. Operational use of the AIRS Total Column Ozone Retrievals along with the RGB Airmass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, M.; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The Red, Green, Blue (RGB) Air Mass product has been demonstrated in the GOES ]R Proving Ground as a possible decision aid. Forecasters have been trained on the usefulness of identifying stratospheric intrusions and potential vorticity (PV) anomalies that can lead to explosive cyclogenesis, genesis of mesoscale convective systems (MCSs), or the transition of tropical cyclones to extratropical cyclones. It has also been demonstrated to distinguish different air mass types from warm, low ozone air masses to cool, high ozone air masses and the various interactions with the PV anomalies. To assist the forecasters in understanding the stratospheric contribution to high impact weather systems, the Atmospheric Infrared Sounder (AIRS) Total Column Ozone Retrievals have been made available as an operational tool. These AIRS retrievals provide additional information on the amount of ozone that is associated with the red coloring seen in the RGB Air Mass product. This paper discusses how the AIRS retrievals can be used to quantify the red coloring in RGB Air Mass product. These retrievals can be used to diagnose the depth of the stratospheric intrusions associated with different types of weather systems and provide the forecasters decision aid tools that can improve the quality of forecast products.

  10. Development and Application of Hyperspectral Infrared Ozone Retrieval Products for Operational Meteorology

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2015-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  11. No Widespread Dust in the Middle Atmosphere of Mars from Mars Climate Sounder Observations

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Schofield, J. T.; Kass, D. M.; Abdou, W. A.; McCleese, D. J.

    2015-12-01

    The vertical distribution of dust in the Martian atmosphere has been a topic of discussion in the recent years. Measurements by limb sounding instruments like the Mars Climate Sounder (MCS) and the Thermal Emission Spectrometer (TES) indicate that atmospheric dust is not homogeneously distributed in the vertical but exhibits layering in the lower atmosphere. Recent retrievals from TES measurements also suggest a dust maximum higher in the atmosphere that predominantly occurs at 50-60 km altitude on the daytime hemisphere. We use new retrievals from MCS measurements to investigate this deduction. MCS is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and on-planet viewing geometries. From these radiance measurements, profiles of atmospheric temperature, dust and water ice are retrieved from the surface to ~80 km altitude with a vertical resolution of ~5 km. Updates to the retrieval algorithm yield improved representations of aerosols above ~40 km altitude. The sensitivity of an MCS limb measurement to aerosols at these altitudes is typically not limited by signal-to-noise but rather by the uncertainties in the representation of the instrument's vertical field-of-view, the far wings of which can provide radiance contributions from the lower atmosphere and the surface. Sensitivity studies suggest that radiances attributed to dust in the middle atmosphere are a consequence of these far wing effects. Our results do not support the existence of widespread dust in the middle atmosphere of Mars inferred from earlier observations. The average dust extinction does not exceed 10-6 km-1 at 463 cm-1 above 50 km altitude in atmospheric conditions without large dust storms.

  12. Mars Climate Sounder observations in support of the Mars Science Laboratory Landing

    NASA Astrophysics Data System (ADS)

    Kass, D. M.; Vasavada, A. R.; Kleinboehl, A.; Schofield, J. T.; Mischna, M. A.; McCleese, D. J.

    2012-12-01

    The Mars Climate Sounder (MCS) is a 9-channel mid- and far infrared limb and on-planet viewing radiometer. Its limb radiance profile measurements are inverted to retrieve temperature, dust and ice extinction profiles. MCS is on the Mars Reconnaissance Orbiter (MRO) spacecraft, in a sun-synchronous polar orbit. As the Mars Science Laboratory (MSL) approached Mars and prepared to land on August 6th, MCS provided daily observations of the martian weather close to Gale crater, MSL's landing site. These were compared to the previous years of MCS observations that had already been used to validate the thermal structure and aerosol distributions in the mesoscale models that are used in MSL entry, descent, and landing (EDL) Monte Carlo simulations. The comparisons allowed the MSL team to optimize the lander's systems for the predicted weather during EDL. In addition, the MRO orbit provides MCS with global coverage of the martian atmosphere on a daily basis. Here we give an overview on the martian weather conditions prior to MSL landing. The weather was dominated by the activity along the southern seasonal polar cap edge supported/driven by a number baroclinic features associated with the southern winter polar vortex. Throughout the two months preceding EDL, the MCS observations were compared to the three previous Mars years where MCS observed the atmosphere at the mid-northern summer season (Ls 150) when EDL occurred. While several of the years are quite similar with a cold, cloudy aphelion season there is significant interannual variability. In addition, during this period, the atmosphere undergoes a number of seasonal transitions as the solsticial circulation realigns to the equinoctial circulation.

  13. Pioneer Venus Sounder Probe Neutral Gas Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.; Hodges, R. R., Jr.; Wright, W. W.; Blevins, V. A.; Duerksen, K. D.; Brooks, L. D.

    1980-01-01

    A neutral gas mass spectrometer was flown to Venus as part of the Pioneer Venus Multiprobe to measure the composition of its lower atmosphere. The instrument, mounted in the Sounder Probe, was activated after the probe entered the top of the atmosphere, and it obtained data during the descent from 62 km to the surface. Atmospheric gases were sampled through a pair of microleaks, the effluent from which was pumped by a combination of ion and getter pumping. A pneumatically operated valve, controlled by the ambient atmospheric pressure, maintained the ion source pressure at a nearly constant value during descent while the atmospheric pressure varied by three orders of magnitude. A single focusing magnetic sector field mass spectrometer with mass resolution sufficient to reasonably separate argon from C3H4 at 40 amu provided the mass analysis and relative abundance measurements. A microprocessor controlled the operation of the mass spectrometer through a highly efficient peak-tip stepping routine and data compression algorithm that effected a scan of the mass spectrum from 1 to 208 amu in 64 sec while requiring an information rate of only 40 bits/sec to return the data to earth. A subscale height altitude resolution was thus obtained. Weight, size, and power requirements were minimized to be consistent with interplanetary flight contraints.

  14. Scanning Mechanism of the FY-3 Microwave Humidity Sounder

    NASA Technical Reports Server (NTRS)

    Schmid, Manfred; Jing, Li; Hehr, Christian

    2010-01-01

    Astrium GmbH Germany, developed the scanning equipment for the instrument package of the MicroWave Humidity Sounder (MWHS) flying on the FY-3 meteorological satellite (FY means Feng Yun, Wind and Cloud) in a sun-synchronized orbit of 850-km altitude and at an inclination of 98.8 . The scanning mechanism rotates at variable velocity comprising several acceleration / deceleration phases during each revolution. The Scanning Mechanism contains two output shafts, each rotating a parabolic offset Antenna Reflector. The mechanism is operated in closed loop by means of redundant control electronics. MWHS is a sounding radiometer for measurement of global atmospheric water vapour profiles. An Engineering Qualification Model was developed and qualified and a first Flight Model was launched early 2008. The system is now working for more than two years successful in orbit. A second Flight Model of the Antenna Scanning Mechanism and of its associated control electronics was built and delivered to the customer for application on the follow-on spacecraft that will be launched by the end of 2010.

  15. Fluvial Morphodynamics: advancing understanding using Multibeam Echo Sounders (MBES)

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Best, J. L.

    2012-12-01

    Accurately and reliably determining riverbed morphology is key to understanding linkages between flow fields, sediment transport and bed roughness in a range of aquatic environments, including large fluvial channels. Modern shallow-water multibeam echo sounder (MBES) systems are now allowing us to acquire bathymetric data at unprecedented resolutions that are millimetric in precision and centimetric in accuracy. Such systems, and the morphological resolution they can supply, are capable of revealing the complex three-dimensional patterns in riverbed morphology that are facilitating a holistic examination of system morphodynamics, at the field scale, that was unimaginable just a few years ago. This paper presents a range of MBES acquired examples to demonstrate how the methodological developments in this technology are leading to advances in our substantive understanding of large river systems. This includes examples that show linkages across scales, and in particular the morphodynamics of superimposed bedforms and bars revealed by such high-resolution data, which have broad implications for a range of applications, including flood prediction, engineering design and reconstructing ancient sedimentary environments.

  16. Validation of UARS Microwave Limb Sounder ClO measurements

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Lungu, T. A.; Perun, V. S.; Stachnik, R. A.; Jarnot, R. F.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Burke, J. R.; Hardy, J. C.; Nakamura, L. L.; Ridenoure, B. P.; Shippony, Z.; Thurstans, R. P.; Avallone, L. M.; Toohey, D. W.; Dezafra, R. L.; Shindell, D. T.

    1996-04-01

    Validation of stratospheric ClO measurements by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is described. Credibility of the measurements is established by (1) the consistency of the measured ClO spectral emission line with the retrieved ClO profiles and (2) comparisons of ClO from MLS with that from correlative measurements by balloon-based, ground-based, and aircraft-based instruments. Values of "noise" (random), "scaling" (multiplicative), and "bias" (additive) uncertainties are determined for the Version 3 data, the first version publicly released, and known artifacts in these data are identified. Comparisons with correlative measurements indicate agreement to within the combined uncertainties expected for MLS and the other measurements being compared. It is concluded that MLS Version 3 ClO data, with proper consideration of the uncertainties and "quality" parameters produced with these data, can be used for scientific analyses at retrieval surfaces between 46 and 1 hPa (approximately 20-50 km in height). Future work is planned to correct known problems in the data and improve their quality.

  17. Coherent launch-site atmospheric wind sounder: theory and experiment.

    PubMed

    Hawley, J G; Targ, R; Henderson, S W; Hale, C P; Kavaya, M J; Moerder, D

    1993-08-20

    The coherent launch-site atmospheric wind sounder (CLAWS) is a lidar atmospheric wind sensor designed to measure the winds above space launch facilities to an altitude of 20 km. In our development studies, lidar sensor requirements are defined, a system to meet those requirements is defined and built, and the concept is evaluated, with recommendations for the most feasible and cost-effective lidar system for use as an input to a guidance and control system for missile or spacecraft launches. The ability of CLAWS to meet NASA goals for increased safety and launch/mission flexibility is evaluated in a field test program at Kennedy Space Center (KSC) in which we investigate maximum detection range, refractive turbulence, and aerosol backscattering efficiency. The Nd:YAG coherent lidar operating at 1.06 µm with 1-J energy per pulse is able to make real-time measurements of the three-dimensional wind field at KSC to an altitude of 26 km, in good agreement with our performance simulations. It also shows the height and thickness of the volcanic layer caused by the volcanic eruption of Mount Pinatubo in the Philippines.

  18. The Mars Climate Sounder In-Flight Positioning Anomaly

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; Kass, David

    2008-01-01

    The paper discusses the Mars Climate Sounder (MCS) instrument s in-flight positioning errors and presents background material about it. A short overview of the instrument s science objectives and data acquisition techniques is provided. The brief mechanical description familiarizes the reader with the MCS instrument. Several key items of the flight qualification program, which had a rigorous joint drive test program but some limitations in overall system testing, are discussed. Implications this might have had for the flight anomaly, which began after several months of flawless space operation, are mentioned. The detection, interpretation, and instrument response to the errors is discussed. The anomaly prompted engineering reviews, renewed ground, and some in-flight testing. A summary of these events, including a timeline, is included. Several items of concern were uncovered during the anomaly investigation, the root cause, however, was never found. The instrument is now used with two operational constraints that work around the anomaly. It continues science gathering at an only slightly diminished pace that will yield approximately 90% of the originally intended science.

  19. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  20. Validation of UARS Microwave Limb Sounder ClO Measurements

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Lungu, T. A.; Perun, V. S.; Stachnik, R. A.; Jarnot, R. F.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Burke, J. R.; Hardy, J. C.; Nakamura, L. L.; Ridenoure, B. P.; Shippony, Z.; Thurstans, R. P.; Thurstans, R. P.; Avallone, L. M.; Toohey, D. W.; deZafra, R. L.; Shindell, D. T.

    1996-01-01

    Validation of stratospheric ClO measurements by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is described. Credibility of the measurements is established by (1) the consistency of the measured ClO spectral emission line with the retrieved ClO profiles and (2) comparisons of ClO from MLS with that from correlative measurements by balloon-based, ground-based, and aircraft-based instruments. Values of "noise" (random), "scaling" (multiplicative), and "bias" (additive) uncertainties are determined for the Version 3 data, in the first version public release of the known artifacts in these data are identified. Comparisons with correlative measurements indicate agreement to within the combined uncertainties expected for MLS and the other measurements being compared. It is concluded that MLS Version 3 ClO data, with proper consideration of the uncertainties and "quality" parameters produced with these data, can be used for scientific analyses at retrieval surfaces between 46 and 1 hPa (approximately 20-50 km in height). Future work is planned to correct known problems in the data and improve their quality.

  1. High resolution infrared radiation sounder for the Nimbus F spacecraft. [design and fabrication of protoflight unit

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1973-01-01

    The activities on the HIRS program are described for the period of July through September, 1973. Completion of design activity and early fabrication effort on the protoflight unit were the major efforts. Operation of the engineering model in spacecraft integration tests was completed during July and August, after which the unit was returned for added test and evaluation.

  2. Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants

    NASA Astrophysics Data System (ADS)

    Liu, Lixian; Mandelis, Andreas; Melnikov, Alexander; Michaelian, Kirk; Huan, Huiting; Haisch, Christoph

    2016-07-01

    Air pollutants have adverse effects on the Earth's climate system. There is an urgent need for cost-effective devices capable of recognizing and detecting various ambient pollutants. An FTIR photoacoustic spectroscopy (FTIR-PAS) method based on a commercial FTIR spectrometer developed for air contamination monitoring will be presented. A resonant T-cell was determined to be the most appropriate resonator in view of the low-frequency requirement and space limitations in the sample compartment. Step-scan FTIR-PAS theory for regular cylinder resonator has been described as a reference for prediction of T-cell vibration principles. Both simulated amplitude and phase responses of the T-cell show good agreement with measurement data Carbon dioxide IR absorption spectra were used to demonstrate the capacity of the FTIR-PAS method to detect ambient pollutants. The theoretical detection limit for carbon dioxide was found to be 4 ppmv. A linear response to carbon dioxide concentration was found in the range from 2500 ppmv to 5000 ppmv. The results indicate that it is possible to use step-scan FTIR-PAS with a T-cell as a quantitative method for analysis of ambient contaminants.

  3. Ship-based measurements for infrared sensor validation during Aerosol and Ocean Science Expedition 2004

    NASA Astrophysics Data System (ADS)

    Nalli, Nicholas R.; Clemente-Colón, Pablo; Minnett, Peter J.; Szczodrak, Malgorzata; Morris, Vernon; Joseph, Everette; Goldberg, Mitchell D.; Barnet, Christopher D.; Wolf, Walter W.; Jessup, Andy; Branch, Ruth; Knuteson, Robert O.; Feltz, Wayne F.

    2006-05-01

    This paper describes a unique validation data set acquired from a marine intensive observing period (IOP) conducted on board the NOAA Ship Ronald H. Brown (RHB) during the 2004 Aerosol and Ocean Science Expedition (AEROSE) in the tropical North Atlantic Ocean from 29 February to 26 March 2004. The radiometric and in situ data complement includes marine observations of the Saharan air layer (SAL), including two significant Saharan dust outbreaks over the Atlantic Ocean. Because the impact of tropospheric dust aerosols on satellite infrared (IR) radiometric observations has not yet been fully characterized, the AEROSE data are particularly valuable for IR sensor validation. Shipboard radiometric data germane to satellite validation include observations from a Marine Atmospheric Emitted Radiance Interferometer (M-AERI), a Calibrated Infrared In situ Measurement System (CIRIMS), and Microtops handheld sunphotometers. Among other things, these data provide, for the first time, coincident IR spectra of the dry, dusty SAL from both the uplooking M-AERI and the downlooking Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite. In situ data collected throughout the cruise include Vaisala RS80/90 radiosondes, launched ≃3-hourly to include Aqua overpass times. The Aqua matchup profiles provide data for validation of AIRS in the presence of high dust loading, along with temperature and water vapor profile retrievals of the SAL. The frequency of sonde launches also enables validation of coincident uplooking M-AERI boundary layer profile retrievals. Preliminary analyses of the AEROSE data are presented here. Focused AEROSE validation studies are the subjects of separate papers.

  4. Reconciling biases and uncertainties of AIRS and MODIS ice cloud properties

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Gettelman, A.

    2015-12-01

    We will discuss comparisons of collocated Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) ice cloud optical thickness (COT), effective radius (CER), and cloud thermodynamic phase retrievals. The ice cloud comparisons are stratified by retrieval uncertainty estimates, horizontal inhomogeneity at the pixel-scale, vertical cloud structure, and other key parameters. Although an estimated 27% globally of all AIRS pixels contain ice cloud, only 7% of them are spatially uniform ice according to MODIS. We find that the correlations of COT and CER between the two instruments are strong functions of horizontal cloud heterogeneity and vertical cloud structure. The best correlations are found in single-layer, horizontally homogeneous clouds over the low-latitude tropical oceans with biases and scatter that increase with scene complexity. While the COT comparisons are unbiased in homogeneous ice clouds, a bias of 5-10 microns remains in CER within the most homogeneous scenes identified. This behavior is entirely consistent with known sensitivity differences in the visible and infrared bands. We will use AIRS and MODIS ice cloud properties to evaluate ice hydrometeor output from climate model output, such as the CAM5, with comparisons sorted into different dynamical regimes. The results of the regime-dependent comparisons will be described and implications for model evaluation and future satellite observational needs will be discussed.

  5. Investigation of AIRS and AMSU sounding products in regional numerical weather simulation

    NASA Astrophysics Data System (ADS)

    Hsu, Shen-Cha; Liu, Chian-Yi; Kuo, Szu-Chen

    2016-05-01

    The initial and boundary conditions are critical to the numerical weather prediction (NWP) model. It is known that satellite observations can overcome the limitations of the terrain, especially over the oceans where conventional observations are difficult to obtain. Therefore, the use of satellite data will expect to improve those regions where lack of traditional observation. The Advanced Microwave Sounding Unit (AMSU) and Atmospheric InfraRed Sounder (AIRS) onboard NASA's EOS Aqua satellite, represent microwave and hyperspectral infrared observations, respectively. Both of them may provide atmospheric temperature and moisture soundings with complementary characteristics. For example, AMSU has the advantage to give cloudy retrievals while AIRS may retain the atmospheric gradient due to its finer high spatial resolution. Both data could estimate atmospheric thermodynamic state with substantial accuracy to improve high impact weather forecast In this study, we adopt the Weather Research and Forecasting (WRF) model and the community Gridpoint Statistical Interpolation (GSI) data assimilation system to evaluate the use of AMSU/AIRS retrievals for severe precipitation at Taiwan. The front, UTC 2016/01/05 22Z, is selected to demonstrate the benefit of using sounding data. The preliminary results shows a positive impact on total precipitable water while the time slope may need further investigation.

  6. Using an extractive Fourier transform infrared spectrometer for improving cleanroom air quality in a semiconductor manufacturing plant.

    PubMed

    Li, Shou-Nan; Chang, Chin-Ta; Shih, Hui-Ya; Tang, Andy; Li, Alen; Chen, Yin-Yung

    2003-01-01

    A mobile extractive Fourier transform infrared (FTIR) spectrometer was successfully used to locate, identify, and quantify the "odor" sources inside the cleanroom of a semiconductor manufacturing plant. It was found that ozone (O(3)) gas with a peak concentration of 120 ppm was unexpectedly releasing from a headspace of a drain for transporting used ozonized water and that silicon tetrafluoride (SiF(4)) with a peak concentration of 3 ppm was off-gassed from silicon wafers after dry-etching processing. When the sources of the odors was pinpointed by the FTIR, engineering control measures were applied. For O(3) control, a water-sealed pipeline was added to prevent the O(3) gas (emitting from the ozonized water) from entering the mixing unit. A ventilation system also was applied to the mixing unit in case of O(3) release. For SiF(4) mitigation, before the wafer-out chamber was opened, N(2) gas with a flow rate of 150 L/min was used for 100 sec to purge the wafer-out chamber, and a vacuum system was simultaneously activated to pump away the purging N(2). The effectiveness of the control measures was assured by using the FTIR. In addition, the FTIR was used to monitor the potential hazardous gas emissions during preventative maintenance of the semiconductor manufacturing equipment.

  7. Remote sensing of boundary layer properties using Infrared Sounding

    NASA Astrophysics Data System (ADS)

    Martins, J. P. A.; Teixeira, J.; Soares, P. M. M.; Miranda, P. M. A.; Santos, A. F.; Dang, V.; Irion, F. W.; Fetzer, E.; Fishbein, E. F.

    2010-09-01

    Several techniques have been used to measure Planetary Boundary Layer (PBL) properties, but none of them allows the spatial and temporal sampling properties of spaceborne remote sensing instruments. This work addresses the potential of diagnosing PBL height using an almost unexplored dataset from the Atmopheric InfraRed Sounder (AIRS) suite, known as the support product, which samples the atmospheric properties in a 100-level grid. This kind of vertical sampling allowed the use of a simple algorithm to detect strong gradients on the potential temperature and relative humidity profiles to determine the PBL height. A comparison of these estimates against rawinsonde data from the Rain in Cumulus over the Ocean (RICO) campaign was made and good agreement between the two datasets was found at the local scale. A global distribution of PBL height was also computed and compared against other datasets such as Radio Occultation measurements and model reanalysis. Temporal and spatial variability of this quantity can easily be discussed in light of well known large scale circulation features, revealing the true potential of this dataset has to provide important information useful to develop new parameterization schemes.

  8. Atmospheric Precipitable Water and its association with Surface Air Temperatures over Different Climate Regims

    NASA Astrophysics Data System (ADS)

    Ye, H.; Fetzer, E. J.; Olsene, E. T.; Granger, S. L.; Kahn, B. H.; Fishbein, E. F.; Chen, L.; Teixeira, J.; Lambrigtsen, B. H.

    2008-12-01

    As a greenhouse gas and a key component in the hydrologic cycle, atmospheric water vapor is very important in the earth's climate system. The relationship between air temperature and water vapor content at the surface and in different layers of the atmosphere have been examined in many studies in trying to better understand the magnitude of water vapor feedback in our climate system. Studies have found large spatial variability and large regional and vertical deviations from the Clapeyron-Clausius relation of constant relative humidity. However, there is an ongoing need to understand the climatology of the relationship between the surface air temperature and total column water vapor, and to examine any potential thresholds associated with sudden changes in this relationship as air temperatures continue to increase. This study uses 5-year total precipitable water vapor records measured by the Atmospheric Infrared Sounders (AIRS) and surface air temperature to examine their relationships at tropical to mid latitude conditions found at 60°S- 60°N for winter and summer seasons. In addition, the relationships will be examined for different climate regimes based on Koppen's system. This will help distinguish the geographical regions and physical processes where different relationships are found. This information will improve our understanding of the regional patterns of water vapor feedback associated with warming climate.

  9. Atmospheric total precipitable water from AIRS and ECMWF during Antarctic summer

    NASA Astrophysics Data System (ADS)

    Ye, Hengchun; Fetzer, Eric J.; Bromwich, David H.; Fishbein, Evan F.; Olsen, Edward T.; Granger, Stephanie L.; Lee, Sung-Yung; Chen, Luke; Lambrigtsen, Bjorn H.

    2007-10-01

    This study compares the atmospheric total precipitable water (PWV) obtained by Atmospheric Infrared Sounder (AIRS) with radiosondes and the European Centre for Medium-range Weather Forecasts (ECMWF) operational analysis products during December 2003 and January 2004. We find that PWV from AIRS Level 3 (daily gridded) data is about 9% drier while ECMWF is 14% moister than sondes at the two grid points closest to the Dome C radiosonde site on the Antarctic Plateau at 3233 m elevation. The largest ECMWF moist biases occur on warmer days at Dome C. When AIRS Level 3 data are compared with ECMWF over the entire Antarctic continent, AIRS and ECMWF PWV have similar variability (correlation coefficients are predominantly 0.8 or higher), but with AIRS drier over most of the Antarctic by a consistent offset of about 0.1-0.2 mm. Because of this constant difference, the largest percentage differences are found over the highland areas of about 2500 meters and above, where absolute water vapor amounts are smallest.

  10. Regression analysis in modeling of air surface temperature and factors affecting its value in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Rajab, Jasim Mohammed; Jafri, Mohd. Zubir Mat; Lim, Hwee San; Abdullah, Khiruddin

    2012-10-01

    This study encompasses air surface temperature (AST) modeling in the lower atmosphere. Data of four atmosphere pollutant gases (CO, O3, CH4, and H2O) dataset, retrieved from the National Aeronautics and Space Administration Atmospheric Infrared Sounder (AIRS), from 2003 to 2008 was employed to develop a model to predict AST value in the Malaysian peninsula using the multiple regression method. For the entire period, the pollutants were highly correlated (R=0.821) with predicted AST. Comparisons among five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the southwest monsoon (SWM) season, within 1.3 K, and for in situ data, within 1 to 2 K. The validation results of AST with AST from AIRS showed high correlation coefficient (R=0.845 to 0.918), indicating the model's efficiency and accuracy. Statistical analysis in terms of β showed that H2O (0.565 to 1.746) tended to contribute significantly to high AST values during the northeast monsoon season. Generally, these results clearly indicate the advantage of using the satellite AIRS data and a correlation analysis study to investigate the impact of atmospheric greenhouse gases on AST over the Malaysian peninsula. A model was developed that is capable of retrieving the Malaysian peninsulan AST in all weather conditions, with total uncertainties ranging between 1 and 2 K.

  11. Validation of AIRS/AMSU Cloud Retrievals Using MODIS Cloud Analyses

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel

    2005-01-01

    The AIRS/AMSU (flying on the EOS-AQUA satellite) sounding retrieval methodology allows for the retrieval of key atmospheric/surface parameters under partially cloudy conditions (Susskind et al.). In addition, cloud parameters are also derived from the AIRS/AMSU observations. Within each AIRS footprint, cloud parameters at up to 2 cloud layers are determined with differing cloud top pressures and effective (product of infrared emissivity at 11 microns and physical cloud fraction) cloud fractions. However, so far the AIRS cloud product has not been rigorously evaluated/validated. Fortunately, collocated/coincident radiances measured by MODIS/AQUA (at a much lower spectral resolution but roughly an order of-magnitude higher spatial resolution than that of AIRS) are used to determine analogous cloud products from MODIS. This allows us for a rather rare and interesting possibility: the intercomparisons and mutual validation of imager vs. sounder-based cloud products obtained from the same satellite positions. First, we present results of small-scale (granules) instantaneous intercomparisons. Next, we will evaluate differences of temporally averaged (monthly) means as well as the representation of inter-annual variability of cloud parameters as presented by the two cloud data sets. In particular, we present statistical differences in the retrieved parameters of cloud fraction and cloud top pressure. We will investigate what type of cloud systems are retrieved most consistently (if any) with both retrieval schemes, and attempt to assess reasons behind statistically significant differences.

  12. The UARS and EOS Microwave Limb Sounder (MLS) Experiments.

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Jarnot, R. F.; Cofield, R. E.; Flower, D. A.; Lau, G. K.; Pickett, H. M.; Santee, M. L.; Wu, D. L.; Boyles, M. A.; Burke, J. R.; Lay, R. R.; Loo, M. S.; Livesey, N. J.; Lungu, T. A.; Manney, G. L.; Nakamura, L. L.;  Perun, V. S.;  Ridenoure, B. P.;  Shippony, Z.;  Siegel, P. H.;  Thurstans, R. P.;  Harwood, R. S.;  Pumphrey, H. C.;  Filipiak, M. J.

    1999-01-01

    The Microwave Limb Sounder (MLS) experiments obtain measurements of atmospheric composition, temperature, and pressure by observations of millimeter- and submillimeter-wavelength thermal emission as the instrument field of view is scanned through the atmospheric limb. Features of the measurement technique include the ability to measure many atmospheric gases as well as temperature and pressure, to obtain measurements even in the presence of dense aerosol and cirrus, and to provide near-global coverage on a daily basis at all times of day and night from an orbiting platform. The composition measurements are relatively insensitive to uncertainties in atmospheric temperature. An accurate spectroscopic database is available, and the instrument calibration is also very accurate and stable. The first MLS experiment in space, launched on the (NASA) Upper Atmosphere Research Satellite (UARS) in September 1991, was designed primarily to measure stratospheric profiles of ClO, O3, H2O, and atmospheric pressure as a vertical reference. Global measurement of ClO, the predominant radical in chlorine destruction of ozone, was an especially important objective of UARS MLS. All objectives of UARS MLS have been accomplished and additional geophysical products beyond those for which the experiment was designed have been obtained, including measurement of upper-tropospheric water vapor, which is important for climate change studies. A follow-on MLS experiment is being developed for NASA's Earth Observing System (EOS) and is scheduled to be launched on the EOS CHEMISTRY platform in late 2002. EOS MLS is designed for many stratospheric measurements, including HOx radicals, which could not be measured by UARS because adequate technology was not available, and better and more extensive upper-tropospheric and lower-stratospheric measurements.

  13. Validation of Aura Microwave Limb Sounder HCl Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Jiang, Y. B.; Lambert, A.; Livesey, N. J.; Read, W. G.; Waters, J. W.; Fuller, R. A.; Marcy, T. P.; Popp, P. J.; Gao, R. S.; Fahey, D. W.; Jucks, K. W.; Stachnik, R. A.; Toon, G. C.; Christensen, L. E.; Webster, C. R.; Bernath, P. F.; Boone, C. D.; Walker, K. A.; Pumphrey, H. C.; Harwood, R. S.; Manney, G. L.; Schwartz, M. J.; Daffer, W. H.; Drouin, B. J.

    2008-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided daily global HCl profiles since August 2004. We provide a characterization of the resolution, random and systematic uncertainties, and known issues for the version 2.2 MLS HCl data. The MLS sampling allows for comparisons with many (1500 to more than 3000) closely matched profiles from the Halogen Occultation Experiment (HALOE) and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). These data sets provide HCl latitudinal distributions that are, overall, very similar to those from (coincident) MLS profiles, although there are some discrepancies in the upper stratosphere between the MLS and HALOE gradients. As found in previous work, MLS and ACE HCl profiles agree very well (within approximately 5%, on average), but the MLS HCl abundances are generally larger (by 10-20%) than HALOE HCl. The bias versus HALOE is unlikely to arise mostly from MLS, as a similar systematic bias (of order 15%) is not observed between average MLS and balloon-borne measurements of HCl, obtained over Fort Sumner, New Mexico, in 2004 and 2005. At the largest pressure (147 hPa) for MLS HCl, a high bias (approximately 0.2 ppbv) is apparent in analyses of low to midlatitude data versus in situ aircraft chemical ionization mass spectrometry (CIMS) HCl measurements from the Aura Validation Experiment (AVE) campaigns in 2004, 2005, and 2006; this bias is also observed in comparisons of MLS and aircraftHCl/O3 correlations. Good agreement between MLS and CIMS HCl is obtained at 100 to 68 hPa. The recommended pressure range for MLS HCl is from 100 to 0.15 hPa.

  14. Improving of Aura Microwave Limb Sounder Data Products

    NASA Astrophysics Data System (ADS)

    Cuddy, D.; Wagner, P.; Read, W.; Livesey, N. J.; Martinez, E.

    2011-12-01

    The Microwave Limb Sounder (MLS) on NASA's Aura satellite began collecting atmospheric data in August of 2004, and the MLS Science Investigator-led Processing System (SIPS) processes the raw data to calibrated radiances and the 20 different geophysical parameters. Currently, SIPS provides two versions (V2 and V3) of these data products, and Goddard Earth Science Data and Information Service Centers (GES-DISC) archives and provides them to the user community. This paper will describe the current plans by the MLS Science Team (MST) to improve the V2 and V3 algorithms, and at the top of the list are how to ameliorate the issue with oscillations in the upper troposphere/lower stratosphere (UT/LS) ozone and improve behavior of UT/LS species in thick cloud. Other improvements include: removing adverse cloud interactions in some products (e.g. CO) that now occur in V3, ideally better still with the new cloud forward model; work to further reduce biases in 640 GHz species; extend species to lower altitude (including potentially those at 190 GHz); consider joint retrievals spanning multiple radiometers (e.g., joint 190/640 GHZ ClO to get methanol independently); better HCN lower down using a separate phase (q.v. 190 GHz goal above); and gain better understanding of hydrostatic / pressure inconsistency in Band 1. This paper will also discuss usability improvement such as TAI93 at 0Z of granule, day boundary discontinuities, and extending the data format to be compatible with NetCDF (network Common Data Form) that supports a machine-independent format for representing scientific data and is widely used in the community.

  15. Validation of UARS Microwave Limb Sounder temperature and pressure measurements

    NASA Astrophysics Data System (ADS)

    Fishbein, E. F.; Cofield, R. E.; Froidevaux, L.; Jarnot, R. F.; Lungu, T.; Read, W. G.; Shippony, Z.; Waters, J. W.; McDermid, I. S.; McGee, T. J.; Singh, U.; Gross, M.; Hauchecorne, A.; Keckhut, P.; Gelman, M. E.; Nagatani, R. M.

    1996-04-01

    The accuracy and precision of the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) atmospheric temperature and tangent-point pressure measurements are described. Temperatures and tangent-point pressure (atmospheric pressure at the tangent height of the field of view boresight) are retrieved from a 15-channel 63-GHz radiometer measuring O2 microwave emissions from the stratosphere and mesosphere. The Version 3 data (first public release) contains scientifically useful temperatures from 22 to 0.46 hPa. Accuracy estimates are based on instrument performance, spectroscopic uncertainty and retrieval numerics, and range from 2.1 K at 22 hPa to 4.8 K at 0.46 hPa for temperature and from 200 m (equivalent log pressure) at 10 hPa to 300 m at 0.1 hPa. Temperature accuracy is limited mainly by uncertainty in instrument characterization, and tangent-point pressure accuracy is limited mainly by the accuracy of spectroscopic parameters. Precisions are around 1 K and 100 m. Comparisons are presented among temperatures from MLS, the National Meteorological Center (NMC) stratospheric analysis and lidar stations at Table Mountain, California, Observatory of Haute Provence (OHP), France, and Goddard Spaceflight Center, Maryland. MLS temperatures tend to be 1-2 K lower than NMC and lidar, but MLS is often 5 - 10 K lower than NMC in the winter at high latitudes, especially within the northern hemisphere vortex. Winter MLS and OHP (44°N) lidar temperatures generally agree and tend to be lower than NMC. Problems with Version 3 MLS temperatures and tangent-point pressures are identified, but the high precision of MLS radiances will allow improvements with better algorithms planned for the future.

  16. Validation of UARS Microwave Limb Sounder ozone measurements

    NASA Astrophysics Data System (ADS)

    Froidevaux, L.; Read, W. G.; Lungu, T. A.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Jarnot, R. F.; Ridenoure, B. P.; Shippony, Z.; Waters, J. W.; Margitan, J. J.; McDermid, I. S.; Stachnik, R. A.; Peckham, G. E.; Braathen, G.; Deshler, T.; Fishman, J.; Hofmann, D. J.; Oltmans, S. J.

    1996-04-01

    This paper describes the validation of ozone data from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS). The MLS ozone retrievals are obtained from the calibrated microwave radiances (emission spectra) in two separate bands, at frequencies near 205 and 183 GHz. Analyses described here focus on the MLS Version 3 data (the first set of files made publicly available). We describe results of simulations performed to assess the quality of the retrieval algorithms, in terms of both mixing ratio and radiance closure. From actual MLS observations, the 205-GHz ozone retrievals give better closure (smaller radiance residuals) than that from the 183-GHz measurements and should be considered more accurate from the calibration aspects. However, the 183-GHz data are less noise limited in the mesosphere and can provide the most useful scientific results in that region. We compare the retrieved 205-GHz ozone profiles in the middle-to lower stratosphere to ozonesonde measurements at a wide range of latitudes and seasons. Ground-based lidar data from Table Mountain, California, provide a good reference for comparisons at higher altitudes. Based on these analyses, comparisons with balloon-borne measurements and others, as well as a detailed budget of estimated uncertainties, MLS results appear to be generally of high quality, with some biases worth mentioning. Results for the lowermost stratosphere (˜50 to 100 hPa) are still in need of improvement. A set of estimated precision and accuracy values is derived for the MLS ozone data sets. We also comment on recent updates in the retrieval algorithms and their impact on ozone values.

  17. Validation of UARS Microwave Limb Sounder Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Read, W. G.; Lungu, T. A.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Jarnot, R. F.; Ridenoure, B. P.; Shippony, Z.; Waters, J. W.; Margitan, J. J.; McDermid, I. S.; Stachnik, R. A.; Peckham, G. E.; Braathen, G.; Deshler, T.; Fishman, J.; Hofmann, D. J.; Oltmans, S. J.

    1996-01-01

    This paper describes the validation of ozone data from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS). The MLS ozone retrievals are obtained from the calibrated microwave radiances (emission spectra) in two separate bands, at frequencies near 205 and 183 GHz. Analyses described here focus on the MLS Version 3 data (the first set of files made publicly available). We describe results of simulations performed to assess the quality of the retrieval algorithms, in terms of both mixing ratio and radiance closure. From actual MLS observations, the 205-GHz ozone retrievals give better closure (smaller radiance residuals) than that from the 183-GHz measurements and should be considered more accurate from the calibration aspects. However, the 183-GHz data are less noise limited in the mesosphere and can provide the most useful scientific results in that region. We compare the retrieved 205-GHz ozone profiles in the middle-to lower stratosphere to ozonesonde measurements at a wide range of latitudes and seasons. Ground-based lidar data from Table Mountain, California, provide a good reference for comparisons at higher altitudes. Based on these analyses, comparisons with balloon-borne measurements and others, as well as a detailed budget of estimated uncertainties, MLS results appear to be generally of high quality, with some biases worth mentioning. Results for the lowermost stratosphere (approx. 50 to 100 bPa) are still in need of improvement. A set of estimated precision and accuracy values is derived for the MLS ozone data sets. We also comment on recent updates in the retrieval algorithms and their impact on ozone values.

  18. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report summarizes and documents the results of the 12-month phase 1 work effort. The objective of phase 1 was to establish the conceptional definition of the laser atmospheric wind sounder (LAWS) sensor system, including accommodations analyses to ensure compatibility with the Space Station Freedom (SSF) and the Earth Observing System (EOS) Polar Orbiting Platform (POP). Various concepts were investigated with trade studies performed to select the configuration to be carried forward to the phase 2 Preliminary Design Definition. A summary of the LAWS system and subsystem trade studies that were performed leading to the baseline design configuration is presented in the appendix. The overall objective of the LAWS Project is to define, design, and implement an operational space based facility, LAWS, for accurate measurement of Earth wind profiles. Phase 1 addressed three major areas: (1) requirements definition; (2) instrument concepts and configurations; and (3) performance analysis. For the LAWS instrument concepts and configurations, the issues which press the technological state of the art are reliable detector lifetime and laser performance and lifetime. Lag angle compensation, pointing accuracy, satellite navigation, and telescope design are significant technical issues, but they are considered to be currently state of the art. The primary issues for performance analysis concern interaction with the atmosphere in terms of backscatter and attenuation, wind variance, and cloud blockage. The phase 1 tasks were formulated to address these significant technical issues and demonstrate the technical feasibility of the LAWS concept. Primary emphasis was placed on analysis/trade and identification of candidate concepts. Promising configurations were evaluated for performance, sensitivities, risks, and budgetary costs. Lockheed's baseline LAWS configuration is presented.

  19. Validation of UARS Microwave Limb Sounder Temperature and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Fishbein, E. F.; Cofield, R. E.; Froidevaux, L.; Jarnot, R. F.; Lungu, T.; Read, W. G.; Shippony, Z.; Waters, J. W.; McDermid, I. S.; McGee, T. J.; Singh, U.; Gross, M.; Hauchecorne, A.; Keckhut, P.; Gelman, M. E.; Nagatani, R. M.

    1996-01-01

    The accuracy and precision of the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) atmospheric temperature and tangent-point pressure measurements are described. Temperatures and tangent- point pressure (atmospheric pressure at the tangent height of the field of view boresight) are retrieved from a 15-channel 63-GHz radiometer measuring O2 microwave emissions from the stratosphere and mesosphere. The Version 3 data (first public release) contains scientifically useful temperatures from 22 to 0.46 hPa. Accuracy estimates are based on instrument performance, spectroscopic uncertainty and retrieval numerics, and range from 2.1 K at 22 hPa to 4.8 K at 0.46 hPa for temperature and from 200 m (equivalent log pressure) at 10 hPa to 300 m at 0.1 hPa. Temperature accuracy is limited mainly by uncertainty in instrument characterization, and tangent-point pressure accuracy is limited mainly by the accuracy of spectroscopic parameters. Precisions are around 1 K and 100 m. Comparisons are presented among temperatures from MLS, the National Meteorological Center (NMC) stratospheric analysis and lidar stations at Table Mountain, California, Observatory of Haute Provence (OHP), France, and Goddard Spaceflight Center, Maryland. MLS temperatures tend to be 1-2 K lower than NMC and lidar, but MLS is often 5 - 10 K lower than NMC in the winter at high latitudes, especially within the northern hemisphere vortex. Winter MLS and OHP (44 deg N) lidar temperatures generally agree and tend to be lower than NMC. Problems with Version 3 MLS temperatures and tangent-point pressures are identified, but the high precision of MLS radiances will allow improvements with better algorithms planned for the future.

  20. Extension of radiative transfer code MOMO, matrix-operator model to the thermal infrared - Clear air validation by comparison to RTTOV and application to CALIPSO-IIR

    NASA Astrophysics Data System (ADS)

    Doppler, Lionel; Carbajal-Henken, Cintia; Pelon, Jacques; Ravetta, François; Fischer, Jürgen

    2014-09-01

    1-D radiative transfer code Matrix-Operator Model (MOMO), has been extended from [0.2-3.65 μm] the band to the whole [0.2-100 μm] spectrum. MOMO can now be used for the computation of a full range of radiation budgets (shortwave and longwave). This extension to the longwave part of the electromagnetic radiation required to consider radiative transfer processes that are features of the thermal infrared: the spectroscopy of the water vapor self- and foreign-continuum of absorption at 12 μm and the emission of radiation by gases, aerosol, clouds and surface. MOMO's spectroscopy module, Coefficient of Gas Absorption (CGASA), has been developed for computation of gas extinction coefficients, considering continua and spectral line absorptions. The spectral dependences of gas emission/absorption coefficients and of Planck's function are treated using a k-distribution. The emission of radiation is implemented in the adding-doubling process of the matrix operator method using Schwarzschild's approach in the radiative transfer equation (a pure absorbing/emitting medium, namely without scattering). Within the layer, the Planck-function is assumed to have an exponential dependence on the optical-depth. In this paper, validation tests are presented for clear air case studies: comparisons to the analytical solution of a monochromatic Schwarzschild's case without scattering show an error of less than 0.07% for a realistic atmosphere with an optical depth and a blackbody temperature that decrease linearly with altitude. Comparisons to radiative transfer code RTTOV are presented for simulations of top of atmosphere brightness temperature for channels of the space-borne instrument MODIS. Results show an agreement varying from 0.1 K to less than 1 K depending on the channel. Finally MOMO results are compared to CALIPSO Infrared Imager Radiometer (IIR) measurements for clear air cases. A good agreement was found between computed and observed radiance: biases are smaller than 0.5 K

  1. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  2. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1985-01-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  3. Validating the AIRS Version 5 CO Retrieval with DACOM In Situ Measurements During INTEX-A and -B

    NASA Technical Reports Server (NTRS)

    McMillan, Wallace W.; Evans, Keith D.; Barnet, Christopher D.; Maddy, Eric; Sachse, Glen W.; Diskin, Glenn S.

    2011-01-01

    Herein we provide a description of the atmospheric infrared sounder (AIRS) version 5 (v5) carbon monoxide (CO) retrieval algorithm and its validation with the DACOM in situ measurements during the INTEX-A and -B campaigns. All standard and support products in the AIRS v5 CO retrieval algorithm are documented. Building on prior publications, we describe the convolution of in situ measurements with the AIRS v5 CO averaging kernel and first-guess CO profile as required for proper validation. Validation is accomplished through comparison of AIRS CO retrievals with convolved in situ CO profiles acquired during the NASA Intercontinental Chemical Transport Experiments (INTEX) in 2004 and 2006. From 143 profiles in the northern mid-latitudes during these two experiments, we find AIRS v5 CO retrievals are biased high by 6% 10% between 900 and 300 hPa with a root-mean-square error of 8% 12%. No significant differences were found between validation using spiral profiles coincident with AIRS overpasses and in-transit profiles under the satellite track but up to 13 h off in time. Similarly, no significant differences in validation results were found for ocean versus land, day versus night, or with respect to retrieved cloud top pressure or cloud fraction.

  4. Improving AIRS radiance spectra in high contrast scenes using MODIS

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Manning, Evan M.; Elliott, Denis A.; Broberg, Steven E.

    2015-09-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in 2378 channels ranging in wavelength from 3.7-15.4 um with spectral resolution of better than 1200, and spatial resolution of 13.5 km with global daily coverage. The AIRS is designed to measure temperature and water vapor profiles for improvement in weather forecast accuracy and improved understanding of climate processes. As with most instruments, the AIRS Point Spread Functions (PSFs) are not the same for all detectors. When viewing a non-uniform scene, this causes a significant radiometric error in some channels that is scene dependent and cannot be removed without knowledge of the underlying scene. The magnitude of the error depends on the combination of non-uniformity of the AIRS spatial response for a given channel and the non-uniformity of the scene, but is typically only noticeable in about 1% of the scenes and about 10% of the channels. The current solution is to avoid those channels when performing geophysical retrievals. In this effort we use data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument to provide information on the scene uniformity that is used to correct the AIRS data. For the vast majority of channels and footprints the technique works extremely well when compared to a Principal Component (PC) reconstruction of the AIRS channels. In some cases where the scene has high inhomogeneity in an irregular pattern, and in some channels, the method can actually degrade the spectrum. Most of the degraded channels appear to be slightly affected by random noise introduced in the process, but those with larger degradation may be affected by alignment errors in the AIRS relative to MODIS or uncertainties in the PSF. Despite these errors, the methodology shows the ability to correct AIRS radiances in non-uniform scenes under some of the worst case conditions and improves the ability to match

  5. Using Regional Validation from SuomiNet, AMSR-e, and NWP Re-analysis to Assess the Precipitable Water Vapor from AIRS and CrIS for Detecting Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Roman, J.; Knuteson, R. O.; Ackerman, S. A.; Revercomb, H. E.; Smith, W.; Weisz, E.

    2012-12-01

    The IPCC 4th Assessment found that changes in extreme events, such as droughts, heat waves, and flooding, has occurred and the frequency of such events is expected to increase. Precipitable Water Vapor (PWV) is defined as the amount of liquid water that would be produced if all of the water vapor in an atmospheric column were condensed. It is a very useful parameter for forecasters to determine atmospheric stability and the probability of convection and severe weather forecast using Numerical Weather Prediction (NWP) models, making it critical for determining the occurrence of extreme events. The AMSR-E sensor on the NASA Aqua platform has produced a long record of PWV over ice-free ocean areas while the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite was the first of a new generation of satellite sensors that provided the capability to retrieve water vapor profiles at high vertical resolution and good absolute accuracy over both ocean and land areas using the same algorithm. The operational follow-on to the AIRS is the Cross-track Infrared Sounder (CrIS) successfully launched on the Suomi NPP satellite on 28 October 2011. The CrIS, along with ATMS, will provide the U.S. component of the joint U.S./European operational weather satellite system. A long record of observations from copies of these sensors is anticipated from this new network of advanced IR sounders. Among other atmospheric observables, the NASA AIRS science team has produced a global dataset of PWV beginning in September 2002 that is approaching ten years in length. This paper investigates the accuracy of satellite retrieved PWV climatology's. Validation data used is from the ground based GPS network (SuomiNet) and the conventional meteorological network as represented in NWP reanalysis products. The purpose of this study is to compare the retrievals of PWV from NASA's AIRS global gridded satellite products to our independent UW satellite retrievals, as well as compare NASA AIRS and

  6. NIMBUS-5 sounder data processing system. Part 2: Results

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Woolf, H. M.; Hayden, C. M.; Shen, W. C.

    1975-01-01

    The Nimbus-5 spacecraft carries infrared and microwave radiometers for sensing the temperature distribution of the atmosphere. Methods developed for obtaining temperature profiles from the combined set of infrared and microwave radiation measurements are described. Algorithms used to determine (a) vertical temperature and water vapor profiles, (b) cloud height, fractional coverage, and liquid water content, (c) surface temperature, and (d) total outgoing longwave radiation flux are described. Various meteorological results obtained from the application of the Nimbus-5 sounding data processing system during 1973 and 1974 are presented.

  7. Impact of MODIS and AIRS total precipitable water on modifying the vertical shear and Hurricane Emily simulations

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Chin; Chen, Shu-Hua; Chien, Fang-Ching

    2011-01-01

    The impact of retrieved total precipitable water (TPW) from Moderate Resolution Imaging Spectrometer (MODIS) infrared (IR), MODIS near-infrared (NIR), and the combined Atmospheric Infrared Sounder (AIRS)-IR and Advanced Microwave Sounding Unit-Microwave channels on simulations of Hurricane Emily was assessed and compared using the Weather Research and Forecasting model and its three-dimensional variation data assimilation (3D-Var) system. After assimilating MODIS IR TPW, the model clearly better reproduced storm tracking, intensity, and the 10 m wind field, while the improvement was limited or nil when assimilating either MODIS NIR TPW or AIRS TPW. After the data assimilation of MODIS IR TPW, a positive moisture increment was present to the east of the simulated storm in 3D-Var analysis (i.e., initial conditions). The positive TPW increment enhanced a convective cloud, which was also observed by satellites. The convective cloud effectively modulated the height and wind fields, resulting in a weakening of the vertical wind shear (VWS) over the region. The weak VWS band was then advected to the north of the storm, preventing the storm from attaching to the strong VWS zone located between 20°N and 30°N. There was no such positive moisture increment, convective cloud, or weak VWS band occurring to the east of the simulated storm in the other data assimilation experiments. This explains why the simulated storm intensified with assimilation of MODIS IR TPW but not for the other experiments.

  8. New and improved infrared absorption cross sections for chlorodifluoromethane (HCFC-22)

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2016-06-01

    The most widely used hydrochlorofluorocarbon (HCFC) commercially since the 1930s has been chloro-difluoromethane, or HCFC-22, which has the undesirable effect of depleting stratospheric ozone. As this molecule is currently being phased out under the Montreal Protocol, monitoring its concentration profiles using infrared sounders crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of chlorodifluoromethane over the spectral range 730-1380 cm-1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm pathlength cell. Spectra of chlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm-1 (calculated as 0.9/MOPD; MOPD denotes the maximum optical path difference) over a range of temperatures and pressures (7.5-762 Torr and 191-295 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN (HIgh-resolution TRANsmission) and GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques) databases; in particular it provides coverage over a wider range of pressures and temperatures, has more accurate wavenumber scales, more consistent integrated band intensities, improved signal-to-noise, is free of channel fringing, and additionally covers the ν2 and ν7 bands.

  9. New and improved infrared absorption cross sections for dichlorodifluoromethane (CFC-12)

    NASA Astrophysics Data System (ADS)

    Harrison, J. J.

    2015-03-01

    Despite its widespread commercial use throughout the twentieth century, primarily in the refrigeration industry, dichlorodifluoromethane (CFC-12) is now known to have the undesirable effect of depleting stratospheric ozone. As this long-lived molecule slowly degrades in the atmosphere, monitoring its vertical concentration profile using infrared sounders on satellite platforms crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of dichlorodifluoromethane over the spectral range 800-1270 cm-1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm-pathlength cell. Spectra of dichlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm-1 (calculated as 0.9/MOPD; MOPD = maximum optical path difference) over a range of temperatures and pressures (7.5-761 Torr and 190-294 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases.

  10. New and improved infrared absorption cross sections for dichlorodifluoromethane (CFC-12)

    NASA Astrophysics Data System (ADS)

    Harrison, J. J.

    2015-08-01

    Despite its widespread commercial use throughout the twentieth century, primarily in the refrigeration industry, dichlorodifluoromethane (CFC-12) is now known to have the undesirable effect of depleting stratospheric ozone. As this long-lived molecule slowly degrades in the atmosphere, monitoring its vertical concentration profile using infrared sounders on satellite platforms crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of dichlorodifluoromethane over the spectral range 800-1270 cm-1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm pathlength cell. Spectra of dichlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm-1 (calculated as 0.9/MOPD; MOPD = maximum optical path difference) over a range of temperatures and pressures (7.5-761 Torr and 190-294 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases.

  11. Infrared Heaters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  12. Body composition in Mexican adults by air displacement plethysmography (ADP) with the BOD-POD and deuterium oxide dilution using infrared spectroscopy (IRS-DOD).

    PubMed

    Macías, Nayeli; Calderón de la Barca, Ana María; Bolaños, Adriana V; Alemán, Heliodoro; Esparza, Julián; Valencia, Mauro E

    2002-09-01

    Thirty four subjects (13 men and 21 women), 24 to 70 years old from northern Mexico, were measured for body density by air displacement plethysmography (ADP) with the BOD-POD, and for total body water by deuterium oxide dilution and infrared spectroscopy (IRS-DOD). Subjects were given a 30 g dose of deuterium oxide. Saliva samples were filtered, sublimated, and deuterium was measured using a Miran 1 FF, IRS. Linear regression of the fat mass (FM) derived from both methods showed that the intercept (0.071) was not different from zero (p = .96) and the slope was 0.96 (p < .0001) demonstrating the techniques to be equivalent. Further, mean FM was 26.7 +/- 12.4 and 25.6 +/- 12.4 kg, for IRS-DOD and ADP techniques, respectively (p = .08). Precision analysis by the model R2 showed that 92.3% of the variability was explained (SEM = 3.4 kg). Bland-Altman analysis showed no significant bias (r = 0.017; p = .93). Mean difference between methods was -1.08 (CI: -2.3 to + 0.13) kg FM.

  13. Modelling a man-portable air-defence (MANPAD) system with a rosette scan two-colour infrared (IR) and ultraviolet (UV) seeker

    NASA Astrophysics Data System (ADS)

    Kumar, Devinder; Smith, Leon; Richardson, Mark A.; Ayling, Richard; Barlow, Nick

    2014-10-01

    The Ultraviolet (UV) band of the electromagnetic (EM) spectrum has the potential to be used as the host medium for the operation of guided weapons. Unlike in the Infrared (IR), a target propelled by an air breathing jet engine produces no detectable radiation in the UV band, and is opaque to the background UV produced by the Sun. Successful engineering of spectral airborne IR countermeasures (CM) against existing two colour IR seekers has encouraged missile counter-countermeasure (CCM) designers to utilise the silhouette signature of an aircraft in the UV as a means of distinguishing between a true target and a flare CM. In this paper we describe the modelling process of a dual band IR and UV rosette scan seeker using CounterSim, a missile engagement and countermeasure simulation software package developed by Chemring Countermeasures Ltd. Results are shown from various simulated engagements of the dual band MANPAD with a C-130 Hercules modelled by Chemring Countermeasures. These results have been used to estimate the aircrafts' vulnerability to this MANPAD threat. A discussion on possible future optical countermeasures against dual band IR-UV seekers is given in conclusion to the simulation results.

  14. Pixel-scale assessment and uncertainty analysis of AIRS and MODIS ice cloud optical thickness and effective radius

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Schreier, M. M.; Yue, Q.; Fetzer, E. J.; Irion, F. W.; Platnick, S.; Wang, C.; Nasiri, S. L.; L'Ecuyer, T. S.

    2015-11-01

    Comparisons of collocated Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) ice cloud optical thickness (τ) and effective radius (re) retrievals and their uncertainty estimates are described at the pixel scale. While an estimated 27% of all AIRS fields of view contain ice cloud, only 7% contain spatially uniform ice according to the MODIS 1 km optical property phase mask. The ice cloud comparisons are partitioned by horizontal variability in cloud amount, cloud top thermodynamic phase, vertical layering of clouds, and other parameters. The magnitudes of τ and re and their relative uncertainties are compared for a wide variety of pixel-scale cloud complexity. The correlations of τ and re between the two instruments are strong functions of horizontal cloud heterogeneity and vertical cloud structure, with the highest correlations found in single-layer, horizontally homogeneous clouds over the low-latitude tropical oceans. While the τ comparisons are essentially unbiased for homogeneous ice cloud with variability that depends on scene complexity, a bias of 5-10 µm remains in re within the most homogeneous scenes identified, consistent with known radiative transfer differences in the visible and infrared bands. The AIRS and MODIS uncertainty estimates reflect the wide variety of cloud complexity, with greater magnitudes in scenes with larger horizontal variability. The AIRS averaging kernels suggest scene-dependent information content that is consistent with infrared sensitivity to ice clouds. The AIRS-normalized χ2 radiance fits suggest that accounting for horizontal cloud variability is likely to improve the AIRS ice cloud retrievals.

  15. Multi-instrument gravity-wave measurements over Tierra del Fuego and the Drake Passage - Part 1: Potential energies and vertical wavelengths from AIRS, COSMIC, HIRDLS, MLS-Aura, SAAMER, SABER and radiosondes

    NASA Astrophysics Data System (ADS)

    Wright, C. J.; Hindley, N. P.; Moss, A. C.; Mitchell, N. J.

    2015-07-01

    Gravity waves in the terrestrial atmosphere are a vital geophysical process, acting to transport energy and momentum on a wide range of scales and to couple the various atmospheric layers. Despite the importance of these waves, the many studies to date have often exhibited very dissimilar results, and it remains unclear whether these differences are primarily instrumental or methodological. Here, we address this problem by comparing observations made by a diverse range of the most widely-used gravity wave resolving instruments in a common geographic region around the southern Andes and Drake Passage, an area known to exhibit strong wave activity. Specifically, we use data from three limb-sounding radiometers (MLS-Aura, HIRDLS and SABER), the COSMIC GPS-RO constellation, a ground-based meteor radar, the AIRS infrared nadir sounder and radiosondes to examine the gravity wave potential energy (GWPE) and vertical wavelengths (λz) of individual gravity wave packets from the lower troposphere to the edge of the lower thermosphere. Our results show important similarities and differences. Limb sounder measurements show high intercorrelation, typically > 0.80 between any instrument pair. Meteor-radar observations agree in form with the limb sounders, despite vast technical differences. AIRS and radiosonde observations tend to be uncorrelated or anticorrelated with the other datasets, suggesting very different behaviour of the wave field in the different spectral regimes accessed by each instrument. Except in spring, we see little dissipation of GWPE throughout the stratosphere and lower mesosphere. Observed GWPE for individual wave packets exhibits a log-normal distribution, with short-timescale intermittency dominating over a well-repeated monthly-median seasonal cycle. GWPE and λz exhibit strong correlations with the stratospheric winds, but not with local surface winds. Our results provide guidance for interpretation and intercomparison of such datasets in their full

  16. [Retrieval of the Optical Thickness and Cloud Top Height of Cirrus Clouds Based on AIRS IR High Spectral Resolution Data].

    PubMed

    Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai

    2015-05-01

    A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.

  17. Merged infrared catalogue

    NASA Technical Reports Server (NTRS)

    Schmitz, M.; Brown, L. W.; Mead, J. M.; Nagy, T. A.

    1978-01-01

    A compilation of equatorial coordinates, spectral types, magnitudes, and fluxes from five catalogues of infrared observations is presented. This first edition of the Merged Infrared Catalogue contains 11,201 oservations from the Two-Micron Sky Survey, Observations of Infrared Radiation from Cool Stars, the Air Force Geophysics Laboratory four Color Infrared Sky Survey and its Supplemental Catalog, and from Catalog of 10 micron Celestial Objects (HALL). This compilation is a by-product of a computerized infrared data base under development at Goddard Space Flight Center; the objective is to maintain a complete and current record of all infrared observations from 1 micron m to 1000 micron m of nonsolar system objects. These observations are being placed into a standardized system.

  18. Level-1C Product from AIRS: Principal Component Filtering

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Jiang, Yibo; Aumann, Hartmut H.; Elliott, Denis A.; Hannon, Scott

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS), launched on the EOS Aqua spacecraft on May 4, 2002, is a grating spectrometer with 2378 channels in the range 3.7 to 15.4 microns. In a grating spectrometer each individual radiance measurement is largely independent of all others. Most measurements are extremely accurate and have very low noise levels. However, some channels exhibit high noise levels or other anomalous behavior, complicating applications needing radiances throughout a band, such as cross-calibration with other instruments and regression retrieval algorithms. The AIRS Level-1C product is similar to Level-1B but with instrument artifacts removed. This paper focuses on the "cleaning" portion of Level-1C, which identifies bad radiance values within spectra and produces substitute radiances using redundant information from other channels. The substitution is done in two passes, first with a simple combination of values from neighboring channels, then with principal components. After results of the substitution are shown, differences between principal component reconstructed values and observed radiances are used to investigate detailed noise characteristics and spatial misalignment in other channels.

  19. Identifying Modes of Temperature Variability Using AIRS Data.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.; Yung, Y.

    2007-12-01

    We use the Atmospheric Infrared Sounder (AIRS) and Advance Microwave Sounding Unit (AMSU) data obtained on Aqua spacecraft to study mid-tropospheric temperature variability between 2002-2007. The analysis is focused on daily zonal means of the AIRS channel at 2388 1/cm in the CO2 R-branch and the AMSU channel #5 in the 57 GHz Oxygen band, both with weighting function peaking in the mid-troposphere (400 mb) and the matching sea surface temperature from NCEP (Aumann et al., 2007). Taking into account the nonlinear and non- stationary behavior of the temperature we apply the Empirical Mode Decomposition (Huang et al., 1998) to better separate modes of variability. All-sky (cloudy) and clear sky, day and night data are analyzed. In addition to the dominant annual variation, which is nonlinear and latitude dependent, we identified the modes with higher frequency and inter-annual modes. Some trends are visible and we apply stringent criteria to test their statistical significance. References: Aumann, H. H., D. T. Gregorich, S. E. Broberg, and D. A. Elliott, Geophys. Res. Lett., 34, L15813, doi:10.1029/2006GL029191, 2007. Huang, N. E. Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu, Proc. R. Soc. Lond., A 454, 903-995, 1998.

  20. AIRS Observations of DomeC in Antarctica and Comparison with Automated Weather Stations (AWS)

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, Dave; Broberg, Steve

    2006-01-01

    We compare the surface temperatures at Dome Concordia (DomeC) deduced from AIRS data and two Automatic Weather Stations at Concordia Station: AWS8989 , which has been in operation since December 1996, and AWS.it, for which data are available between January and November 2005. The AWS8989 readings are on average 3 K warmer than the AWS.it readings, with a warmer bias in the Antarctic summer than in the winter season. Although AIRS measures the skin brightness temperature, while the AWS reports the temperature of the air at 3 meter above the surface, the AIRS measurements agree well with the AWS.it readings for all data and separately for the summer and winter seasons, if data taken in the presence of strong surface inversions are filtered out. This can be done by deducing the vertical temperature gradient above the surface directly from the AIRS temperature sounding channels or indirectly by noting that extreme vertical gradients near the surface are unlikely if the wind speed is more than a few meters per second. Since the AIRS measurements are very well calibrated, the agreement with AWS.it is very encouraging. The warmer readings of AWS8989 are likely due to thermal contamination of the AWS8989 site by the increasing activity at Concordia Station. Data from an AWS.it quality station could be used for the evaluation of radiometric accuracy and stability of polar orbiting sounders at low temperatures. Unfortunately, data from AWS.it was available only for a limited time. The thermal contamination of the AWS8989 data makes long-term trends deduced from AWS8989 and possibly results about the rapid Antarctic warming deduced from other research stations on Antarctica suspect. AIRS is the first hyperspectral infrared sounder designed in support of weather forecasting and climate research. It was launched in May 2002 on the EOS Aqua spacecraft into a 704 km altitude polar sun-synchronous orbit. The lifetime of AIRS, estimated before launch to be at least 5 years is

  1. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Brad; Blackwell, William

    2014-01-01

    Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.

  2. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  3. ABOVE, The AIRS BBAERI Ocean Validation Experiment: Overview and Initial Results

    NASA Astrophysics Data System (ADS)

    McMillan, W. W.; Hoff, R.; Strow, L. L.; Rutledge, C. K.; Lightner, K.; McCourt, M. L.; McCann, K.; Comer, J.; Maddy, E.

    2002-12-01

    To provide correlative measurements characterizing the atmosphere and sea surface over the ocean for validation of NASA's Atmospheric InfraRed Sounder (AIRS) onboard the Aqua satellite, a complementary set of instruments was deployed to the United States Coast Guard (USCG) Chesapeake Light lighthouse platform. Located 25 km due east of Virginia Beach, VA, Chesapeake Light offers a relatively convenient site for measurements over the ocean while being far enough offshore for water only AIRS fields of view. Instruments deployed for AIRS forward model and radiance validation during August, September, and October, 2002, include the UMBC Baltimore Bomem Atmospheric Emitted Radiance Interferometer (BBAERI), the UMBC Elastic Lidar Facility (ELF), and Vaisala RS-90 rawinsondes. BBAERI provides profiling of the boundary layer and SST determination at 10 minute intervals 24-hours a day, as well as CO and O3 tropospheric abundances. ELF provides profiles of aerosols and clouds up to 15 km at one minute resolution for 1-2 hours before and after each Aqua overpasse. Approximately 100 Rawinsondes were flown during the ABOVE deployment providing full atmospheric profiles of temperature and moisture up to at least 100 mb for virtually every Aqua overpass. Preliminary comparisons of ABOVE data products to AIRS observations and retrievals will be presented.

  4. View-Angle Dependent AIRS Cloud Radiances: Implication for Tropical Gravity Waves and Anvil Structures

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Gong, Jie

    2011-01-01

    Tropical anvil clouds play important roles in redistributing energy, water in the troposphere. Interacting with dynamics at a wide range of spatial and temporal scales, they can become organized internally and form structured cells, transporting momentum vertically and laterally. To quantify small-scale structures inside cirrus and anvils, we study view-dependence of the cloud-induced radiance from Atmospheric Infrared Sounder (AIRS) using channels near CO2 absorption line. The analysis of tropical eight-year (30degS-30degN, 2003-2010) data suggests that AIRS east-views observe 10% more anvil clouds than westviews during day (13:30 LST), whereas east-views and westviews observe equally amount of clouds at midnight (1 :30 LST). For entire tropical averages, AIRS oblique views observe more anvils than the nadir views, while the opposite is true for deep convective clouds. The dominance of cloudiness in the east-view cannot be explained by AIRS sampling and cloud microphysical differences. Tilted and banded anvil structures from convective scale to mesoscale are likely the cause of the observed view-dependent cloudiness, and gravity wave-cloud interaction is a plausible explanation for the observed structures. Effects of the tilted and banded cloud features need to be further evaluated and taken into account potentially in large-scale model parameterizations because of the vertical momentum transport through cloud wave breaking.

  5. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  6. AIRS Science Data Services at NASA Goddard Earth Sciences Data and Info Services

    NASA Astrophysics Data System (ADS)

    Li, J.; Theobald, M.; Vollmer, B.; Hua, X.; Won, Y.

    2007-12-01

    The Atmospheric Infrared Sounder (AIRS) is a very high spectral resolution passive infrared sounder with more than 2000 well-calibrated spectral channels measuring in the range of 3.74 - 15.4 micron. The AIRS instrument was successfully launched aboard the NASA Aqua spacecraft in May, 2002 and has been providing global coverage ever since. The infrared radiance data product is stable to 10 mK/year and accurate to better than 250 mK. The AIRS product is the most accurate and stable set of hyperspectral infrared radiance spectra measurements made in space to date, and its meets the criteria identified by the National Research Council for climate data records. In addition, working in tandem with an Advanced Microwave Sounding Unit (AMSU-A) instrument, AIRS provides a three-dimensional view of the geophysical properties of the Earth's atmosphere. The geophysical products provide daily global temperature profiles at an accuracy of 1 K per 1 km thick layer in the troposphere and moisture profiles at an accuracy of 20% per 2 km thick layer in the lower troposphere (20% - 60% in the upper troposphere). AIRS standard swath and grid data products are available from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). The latest version of AIRS products (Version 5) has many improvements over previous versions including better temperature and water vapor profiles, enhanced Level 2 temperature data products over land and polar regions, first-time retrievals of carbon monoxide and methane, improvements to ozone retrievals, warning 'flags' to identify concentrations of sulfur dioxide and dust and overall improvements error and quality flag parameterization. In addition to the AIRS standard products, the swath-based AIRS products are also produced in near real time (NRT) at the GES DISC facility using the same core science algorithms as in the regular science data production but using predicted ephemeris in place of definitive ephemeris data

  7. Radiometric calibration of IR Fourier transform spectrometers - Solution to a problem with the High-Resolution Interferometer Sounder

    NASA Technical Reports Server (NTRS)

    Revercomb, Henry E.; Smith, William L.; Buijs, H.; Howell, Hugh B.; Laporte, D. D.

    1988-01-01

    A calibrated Fourier transform spectrometer, known as the High-Resolution Interferometer Sounder (HIS), has been flown on the NASA U-2 research aircraft to measure the infrared emission spectrum of the earth. The primary use - atmospheric temperature and humidity sounding - requires high radiometric precision and accuracy (of the order of 0.1 and 1 C, respectively). To meet these requirements, the HIS instruments, the HIS instrument performs inflight radiometric calibration, using observations of hot and cold blackbody reference sources as the basis for two-point calibrations at each wavenumber. Initially, laboratory tests revealed a calibration problem with brightness temperature errors as large as 15 C between 600 and 900/cm. The symptom of the problem, which occurred in one of the three spectral bands of HIS, was a source-dependent phase response. Minor changes to the calibration equations completely eliminated the anomalous errors. The new analysis properly accounts for the situation in which the phase response for radiance from the instrument itself differs from that for radiance from an external source. The mechanism responsible for the dual phase response of the HIS instrument is identified as emission from the interferometer beam splitter.

  8. Determination of chain orientation in the monolayers of amino-acid-derived schiff base at the air-water interface using in situ infrared reflection absorption spectroscopy.

    PubMed

    Liu, Huijin; Miao, Wangen; Du, Xuezhong

    2007-10-23

    The chain orientation in the monolayers of amino-acid-derived Schiff base, 4-(4-dodecyloxy)-2-hydroxybenzylideneamino)benzoic acid (DSA), at the air-water interface has been determined using infrared reflection absorption spectroscopy (IRRAS). On pure water, a condensed monolayer is formed with the long axes of Schiff base segments almost perpendicular to the water surface. In the presence of metal ions (Ca2+, Co2+, Zn2+, Ni2+, and Cu2+) in the subphase, the monolayer is expanded and the long axes of the Schiff base segments are inclined with respect to the monolayer normal depending on metal ion. The monolayer thickness, which is an important parameter for quantitative determination of orientation of hydrocarbon chains, is composed of alkyl chains and salicylideneaniline portions for the DSA monolayers. The effective thickness of the Schiff base portions is roughly estimated in the combination of the IRRAS results and surface pressure-area isotherms for computer simulation, since the only two observable p- and s-polarized reflectance-absorbance (RA) values can be obtained. The alkyl chains with almost all-trans conformations are oriented at an angle of about 10 degrees for H2O, 15 degrees for Ca2+, 30 degrees for Co2+, 35 degrees -40 degrees for Zn2+, and 35 degrees -40 degrees for Ni2+ with respect to the monolayer normal. The chain segments linked with gauche conformers in the case of Cu2+ are estimated to be 40 degrees -50 degrees away from the normal. PMID:17902721

  9. Shallow scattering layer in the subarctic pacific ocean: detection by high-frequency echo sounder.

    PubMed

    Barraclough, W E; Lebrasseur, R J; Kennedy, O D

    1969-10-31

    Shallow scattering layers consisting mainly of Calanus cristatus were detected on a trans-Pacific crossing to depths of 60 meters with a high-frequency echo sounder. Biomass estimates of these layers indicate concentrations of zoo-plankton that are greater and more extensive than previously reported in the open ocean. PMID:17778203

  10. Determination of film processing specifications for the Apollo 17 S-209 lunar sounder experiment

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1972-01-01

    The lunar sounder is described as a radar system operating at carrier frequencies of 5, 15, and 150 MHz. The radar echoes are recorded onto Kodak type S0-394 film through the use of an optical recorder utilizing a cathode ray tube as the exposing device. A processing configuration is determined with regard to linearity, dynamic range, and noise.

  11. High-powered Radar Sounders for the Investigation of Jupiter's Icy Moons

    NASA Technical Reports Server (NTRS)

    Safaeinili, A.; Rodriguez, E.; Edelstein, Wendy

    2003-01-01

    This talk will address the main drivers in the design of a radar sounder for the JIMO mission and provide a potential solution that will optimize the chances of success in the detection of ice/water interface and sub-surface stratigraphy.

  12. Evolution of satellite imagers and sounders and for low Earth orbit and technology directions at NASA

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; McClain, Charles R.

    2010-09-01

    Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.

  13. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder

    NASA Technical Reports Server (NTRS)

    Haines, D. Mark; Reinisch, Bodo W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of

  14. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  15. Direct assimilation of Chinese FY-3C Microwave Temperature Sounder-2 radiances in the global GRAPES system

    NASA Astrophysics Data System (ADS)

    Li, Juan; Liu, Guiqing

    2016-07-01

    FengYun-3C (FY-3C) is an operational polar-orbiting satellite carrying the new-generation microwave sounding instruments in China. This paper describes the assimilation of the FY-3C Microwave Temperature Sounder-2 (MWTS-2) radiances in the Global and Regional Assimilation and PrEdiction System (GRAPES) of China Meteorological Administration. A quality control (QC) procedure for the assimilation of MWTS-2 radiance is proposed. Extensive monitoring before assimilation shows that MWTS-2 observations exhibit a clear striping pattern. A technique combining principal component analysis (PCA) and ensemble empirical mode decomposition (EEMD) is applied to the observations to remove the striping noise. Cloudy field-of-views (FOVs) are identified by applying the Visible and InfrarRed Radiometer (VIRR) cloud fraction threshold of 76 %. Other QC steps are conducted in the follow order: (i) coastal FOVs are removed, (ii) eight outmost FOVs are not used, (iii) channel 5 data over sea ice and land are not used, (iv) channel 6 observations are not used if the terrain altitudes are higher than 500 m, and (v) outliers with large differences between observations and model simulations are removed. Approximately 83, 75, 40, and 40 % of the observations are removed by the proposed QC for channels 5-8, respectively. After QC, the global biases and standard deviations are reduced significantly. The assimilation of the MWTS-2 radiances shows a positive impact when the control experiment assimilates only conventional observations. The experiments also show that the analysis and forecast errors are slightly reduced when the striping noise is removed from the observations. The quality control scheme of extracting the striping noise may contribute to the analysis and forecast accuracy. The impact of MWTS-2 is neutral when the conventional data and other satellite data are all assimilated.

  16. The impact of AIRS atmospheric temperature and moisture profiles on hurricane forecasts: Ike (2008) and Irene (2011)

    NASA Astrophysics Data System (ADS)

    Zheng, Jing; Li, Jun; Schmit, Timothy J.; Li, Jinlong; Liu, Zhiquan

    2015-03-01

    Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data, especially over the oceans where conventional data are sparse. In this study, two types of AIRS-retrieved temperature and moisture profiles, the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product, were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011). The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis, especially between 200 hPa and 700 hPa. The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa, where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals. The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere. A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene. The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment. In terms of total precipitable water and rainfall forecasts, the hurricane moisture environment was found to be affected by the AIRS sounding assimilation. Meanwhile, improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.

  17. Spaceborne Methane Observations by Airs Over Alberta

    NASA Astrophysics Data System (ADS)

    Marey, H. S.; Hashisho, Z., Sr.; Fu, L.; Gille, J. C.; Chance, K.

    2015-12-01

    Methane (CH4) emitted from natural (e.g. wetland) and anthropogenic (e.g. oil and gas industry, and waste management) sources contribute to Alberta's GHG emission. The focus of this study is to examine the spatio-temporal variation of total column CH4 over Alberta, using data from the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite from 2003 to 2013. Spaceborne measurements by AIRS provide a global view of CH4 distribution in the mid-upper troposphere. This study demonstrates a significant rise of CH4 levels in Alberta in the last ten years. This ascending trend is consistent with the increase of global methane levels in the same time period. Monthly variations indicate a significant increase of CH4 levels in summer with maximum in August, which is probably driven by enhanced convection. Spatial distributions of CH4 reveal a strong west-east gradient with maximum levels in northern regions (55-65 N). The enhanced summer levels over northern and eastern regions suggest possible pathways for CH4 emitted from natural sources (wetlands, lakes and permafrost) in high northern latitude regions and Canadian wetlands (e.g. Hudson Bay wetland). However, the abrupt increase of CH4 concentration coincides with significant change in economic activities during that time period. Since some of the wetland CH4 fluxes are collocated with large anthropogenic source, it is difficult to account for different source contribution. Thus, further studies about CH4 emission and transport over Alberta are recommended to reduce the uncertainties about the natural and anthropogenic contributions of Alberta to Canada's CH4 emissions.

  18. Using Open and Interoperable Ways to Publish and Access LANCE AIRS Near-Real Time Data

    NASA Technical Reports Server (NTRS)

    Zhao, Peisheng; Lynnes, Christopher; Vollmer, Bruce; Savtchenko, Andrey; Theobald, Michael; Yang, Wenli

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) Near-Real Time (NRT) data from the Land Atmosphere Near real-time Capability for EOS (LANCE) element at the Goddard Earth Sciences Data and Information Services Center (GES DISC) provides information on the global and regional atmospheric state, with very low temporal latency, to support climate research and improve weather forecasting. An open and interoperable platform is useful to facilitate access to, and integration of, LANCE AIRS NRT data. As Web services technology has matured in recent years, a new scalable Service-Oriented Architecture (SOA) is emerging as the basic platform for distributed computing and large networks of interoperable applications. Following the provide-register-discover-consume SOA paradigm, this presentation discusses how to use open-source geospatial software components to build Web services for publishing and accessing AIRS NRT data, explore the metadata relevant to registering and discovering data and services in the catalogue systems, and implement a Web portal to facilitate users' consumption of the data and services.

  19. The global tropospheric ammonia distribution as seen in the 13 year AIRS measurement record

    NASA Astrophysics Data System (ADS)

    Warner, J. X.; Wei, Z.; Strow, L. L.; Dickerson, R. R.; Nowak, J. B.

    2015-12-01

    Ammonia (NH3) plays an increasingly important role in the global biogeochemical cycle of reactive nitrogen as well as in aerosol formation and climate. We present extensive and nearly continuous global ammonia measurements made by the Atmospheric Infrared Sounder (AIRS) from the Aqua satellite to identify and quantify major persistent and episodic sources as well as to characterize seasonality. We examine the 13 year period from September 2002 through August 2015 with a retrieval algorithm using an optimal estimation technique with a set of three, spatially and temporally uniform a priori profiles. Vertical profiles show good agreement (~5-15 %) between AIRS NH3 and the in situ profiles from the winter 2013 DISCOVER-AQ field campaign in central California, despite the likely biases due to spatial resolution differences between the two instruments. AIRS captures the strongest consistent NH3 emissions from the anthropogenic (agricultural) source regions, such as, South Asia (India/Pakistan), China, the US, parts of Europe, SE Asia (Thailand/Myanmar/Laos), the central portion of South America, as well as Western and Northern Africa. These correspond primarily to croplands with extensive animal feeding operations and fertilizer applications where a summer maximum and secondary spring maximum are reliably observable. In the Southern Hemisphere (SH) regular agricultural fires contribute to a spring maximum. Regions of strong episodic emissions include Russia and Alaska as well as parts of South America, Africa, and Indonesia. Biomass burning, especially wildfires, dominate these episodic NH3 emissions.

  20. Effects of data selection on the assimilation of AIRS data

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Brin, E.; Treadon, R.; Derber, J.; VanDelst, P.; DeSilva, A.; Marshall, J. Le; Poli, P.; Atlas, R.; Cruz, C.; Bungato, D.

    2006-01-01

    The Atmospheric InfraRed Sounder (AIRS), flying aboard NASA's Earth Observing System (EOS) Aqua satellite with the Advanced Microwave Sounding Unit-A (AMSU-A), has been providing data for use in numerical weather prediction (NWP) and data assimilation systems (DAS) for over three years. The full AIRS data set is currently not transmitted in near-real-time (NRT) to the NWP centers. Instead, data sets with reduced spatial and spectral information are produced and made available in NRT. In this paper, we evaluate the use of different channel selections and error specifications. We achieved significant positive impact from the Aqua AIRS/AMSU-A combination in both hemispheres during our experimental time period of January 2003. The best results were obtained using a set of 156 channels that did not include any in the 6.7micron water vapor band. The latter have a large influence on both temperature and humidity analyses. If observation and background errors are not properly specified, the partitioning of temperature and humidity information from these channels will not be correct, and this can lead to a degradation in forecast skill. We found that changing the specified channel errors had a significant effect on the amount of data that entered into the analysis as a result of quality control thresholds that are related to the errors. However, changing the channel errors within a relatively small window did not significantly impact forecast skill with the 155 channel set. We also examined the effects of different types of spatial data reduction on assimilated data sets and NWP forecast skill. Whether we picked the center or the warmest AIRS pixel in a 3x3 array affected the amount of data ingested by the analysis but had a negligible impact on the forecast skill.

  1. Retrievals with the Infrared Atmospheric Sounding Interferometer

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schlussel, Peter; Strow, L. Larrabee; Calbet, Xavier; Mango, Stephen A.

    2007-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations during the JAIVEx are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated.

  2. A global assessment of NASA AIRS v6 and EUMETSAT IASI v6 precipitable water vapor using ground-based GPS SuomiNet stations

    NASA Astrophysics Data System (ADS)

    Roman, Jacola; Knuteson, Robert; August, Thomas; Hultberg, Tim; Ackerman, Steve; Revercomb, Hank

    2016-08-01

    Satellite remote sensing of precipitable water vapor (PWV) is essential for monitoring moisture in real time for weather applications, as well as tracking the long-term changes in PWV for climate change trend detection. This study assesses the accuracies of the current satellite observing system, specifically the National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) v6 PWV product and the European Organization for the Exploitation of Meteorological Satellite Studies (EUMETSAT) Infrared Atmospheric Sounding Interferometer (IASI) v6 PWV product, using ground-based SuomiNet Global Positioning System (GPS) network as truth. Elevation-corrected collocated matchups to each SuomiNet GPS station in North America and around the world were created, and results were broken down by station, ARM region, climate zone, and latitude zone. The greatest difference, exceeding 5%, between IASI and AIRS retrievals occurred in the tropics. Generally, IASI and AIRS fall within a 5% error in the PWV range of 20-40 mm (a mean bias less than 2 mm), with a wet bias for extremely low PWV values (less than 5 mm) and a dry bias for extremely high PWV values (greater than 50 mm). The operational IR satellite products are able to capture the mean PWV but degrade in the extreme dry and wet regimes.

  3. Profiling wind and greenhouse gases by infrared-laser occultation: algorithm and results from end-to-end simulations in windy air

    NASA Astrophysics Data System (ADS)

    Plach, A.; Proschek, V.; Kirchengast, G.

    2015-01-01

    The new mission concept of microwave and infrared-laser occultation between low-Earth-orbit satellites (LMIO) is designed to provide accurate and long-term stable profiles of atmospheric thermodynamic variables, greenhouse gases (GHGs), and line-of-sight (l.o.s.) wind speed with focus on the upper troposphere and lower stratosphere (UTLS). While the unique quality of GHG retrievals enabled by LMIO over the UTLS has been recently demonstrated based on end-to-end simulations, the promise of l.o.s. wind retrieval, and of joint GHG and wind retrieval, has not yet been analyzed in any realistic simulation setting so far. Here we describe a newly developed l.o.s. wind retrieval algorithm, which we embedded in an end-to-end simulation framework that also includes the retrieval of thermodynamic variables and GHGs, and analyze the performance of both standalone wind retrieval and joint wind and GHG retrieval. The wind algorithm utilizes LMIO laser signals placed on the inflection points at the wings of the highly symmetric C18OO absorption line near 4767 cm-1 and exploits transmission differences from wind-induced Doppler shift. Based on realistic example cases for a diversity of atmospheric conditions, ranging from tropical to high-latitude winter, we find that the retrieved l.o.s wind profiles are of high quality over the lower stratosphere under all conditions, i.e., unbiased and accurate to within about 2 m s-1 over about 15 to 35 km. The wind accuracy degrades into the upper troposphere due to decreasing signal-to-noise ratio of the wind-induced differential transmission signals. The GHG retrieval in windy air is not vulnerable to wind speed uncertainties up to about 10 m s-1 but is found to benefit in case of higher speeds from the integrated wind retrieval that enables correction of wind-induced Doppler shift of GHG signals. Overall both the l.o.s. wind and GHG retrieval results are strongly encouraging towards further development and implementation of a LMIO mission.

  4. Aura Microwave Limb Sounder Observations of Dynamics and Transport During the Record-Breaking 2009 Arctic Stratospheric Major Warming

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Schwartz, Michael J.; Krueger, Kirstin; Santee, Michelle L.; Pawson, Steven; Lee, Jae N.; Daffer, William H.; Fuller, Ryan A.; Livesey, Nathaniel J.

    2009-01-01

    A major stratospheric sudden warming (SSW) in January 2009 was the strongest and most prolonged on record. Aura Microwave Limb Sounder (MLS) observations are used to provide an overview of dynamics and transport during the 2009 SSW, and to compare with the intense, long-lasting SSW in January 2006. The Arctic polar vortex split during the 2009 SSW, whereas the 2006 SSW was a vortex displacement event. Winds reversed to easterly more rapidly and reverted to westerly more slowly in 2009 than in 2006. More mixing of trace gases out of the vortex during the decay of the vortex fragments, and less before the fulfillment of major SSW criteria, was seen in 2009 than in 2006; persistent well-defined fragments of vortex and anticyclone air were more prevalent in 2009. The 2009 SSW had a more profound impact on the lower stratosphere than any previously observed SSW, with no significant recovery of the vortex in that region. The stratopause breakdown and subsequent reformation at very high altitude, accompanied by enhanced descent into a rapidly strengthening upper stratospheric vortex, were similar in 2009 and 2006. Many differences between 2006 and 2009 appear to be related to the different character of the SSWs in the two years.

  5. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  6. Classifying ice water content profiles of high-level clouds from AIRS/CALIPSO/CloudSat observations to better assess cloud radiative effects

    NASA Astrophysics Data System (ADS)

    Feofilov, Artem; Stubenrauch, Claudia; Armante, Raymond

    2013-04-01

    About 40% of all clouds on Earth are high-level clouds (< 440 hPa), which have a noticeable effect on the energetic budget of the atmosphere: optically thick clouds reflect the incoming solar radiation while thinner clouds act as "greenhouse films" preventing escape of the Earth's infrared radiation to space. Accurate modelling of the radiative properties of high-level clouds is essential both for estimating their energetic effects and for the retrieval of bulk microphysical properties from infrared observations. It requires knowing the scattering and absorbing characteristics of cloud particles, amount of ice in the cloud, and variation of these parameters if the cloud is extended. In this work, we concentrate on vertical distribution of ice water content (IWC) in the high-level ice clouds. For the analysis, we used a synergy of the active and passive sounders of the A-Train satellite constellation. Relatively high spectral resolution of the Atmospheric InfraRed Sounder (AIRS) allows the identification of cirrus clouds and the retrieval of their physical and bulk microphysical properties as well as their horizontal extent. Active sounders, the CALIPSO lidar and the CloudSat radar, provide the vertical structure of the clouds: the radar-lidar GEOPROF dataset (Mace et al., 2007) contains the vertical extent and position of each cloud layer while the liDARraDAR dataset (Delanoë and Hogan, 2010) gives the IWC profiles and effective ice crystal sizes. In addition, we use environmental parameters from ERA Interim reanalyses. We have classified IWC vertical distributions according to their profile shape and found that a) they can be sub-divided into four major types; b) profile shape mainly depends on the integrated IWC of the cloud; c) there is a weak correlation between vertical wind and dominating profile type. We discuss an impact of different IWC profile types on the energetics of the atmosphere and on bulk microphysical properties retrieval, using the calculations

  7. An improved radiance simulation for hyperspectral infrared remote sensing of Asian dust

    NASA Astrophysics Data System (ADS)

    Han, Hyo-Jin; Sohn, Byung-Ju; Huang, Hung-Lung; Weisz, Elisabeth; Saunders, Roger; Takamura, Tamio

    2012-05-01

    The fast Radiative Transfer for Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (RTTOV) (Version 9.3) model was used for simulating the effect of East Asian dust on top of atmosphere radiances. The size distribution of Asian dust was retrieved from nine years of sky radiometer measurements at Dunhunag located in the east of Taklimakan desert of China. The default surface emissivity in RTTOV was replaced by the geographically and monthly varying data from University of Wisconsin (UW)/Cooperative Institute for Meteorological Satellite Studies (CIMSS) infrared surface spectral emissivities. For a given size distribution and surface emissivity, the effects of three refractive indices of Optical Properties of Aerosols and Clouds (OPAC) mineral aerosol, dust-like aerosol by Volz, and High Resolution Transmission (HITRAN) quartz were examined. Results indicate that the specification of surface emissivity using geographically and monthly varying UW/CIMSS data significantly improved the performance of the simulation of AIRS brightness temperature (TB) difference (BTD) between window channels, in comparison to the results from the use of default emissivity value of 0.98 in the RTTOV model, i.e., increase of the correlation coe