Science.gov

Sample records for airs retrieved profiles

  1. Atmospheric profile retrieval with AIRS data and validation at the ARM CART site

    NASA Astrophysics Data System (ADS)

    Wu, Xuebao; Li, Jun; Zhang, Wenjian; Wang, Fang

    2005-09-01

    The physical retrieval algorithm of atmospheric temperature and moisture distribution from the Atmospheric InfraRed Sounder (AIRS) radiances is presented. The retrieval algorithm is applied to AIRS clearsky radiance measurements. The algorithm employs a statistical retrieval followed by a subsequent nonlinear physical retrieval. The regression coefficients for the statistical retrieval are derived from a dataset of global radiosonde observations (RAOBs) comprising atmospheric temperature, moisture, and ozone profiles. Evaluation of the retrieved profiles is performed by a comparison with RAOBs from the Atmospheric Radiation Measurement (ARM) Program Cloud And Radiation Testbed (CART) in Oklahoma, U. S. A. Comparisons show that the physicallybased AIRS retrievals agree with the RAOBs from the ARM CART site with a Root Mean Square Error (RMSE) of 1 K on average for temperature profiles above 850 hPa, and approximately 10% on average for relative humidity profiles. With its improved spectral resolution, AIRS depicts more detailed structure than the current Geostationary Operational Environmental Satellite (GOES) sounder when comparing AIRS sounding retrievals with the operational GOES sounding products.

  2. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Brad; Blackwell, William

    2014-01-01

    Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. This paper will describe the bias correction technique and results from forecasts evaluated by validation against a Total Precipitable Water (TPW) product from CIRA and against Global Forecast System (GFS) analyses.

  3. Bias Correction for Assimilation of Retrieved AIRS Profiles of Temperature and Humidity

    NASA Technical Reports Server (NTRS)

    Blakenship, Clay; Zavodsky, Bradley; Blackwell, William

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral radiometer aboard NASA's Aqua satellite designed to measure atmospheric profiles of temperature and humidity. AIRS retrievals are assimilated into the Weather Research and Forecasting (WRF) model over the North Pacific for some cases involving "atmospheric rivers". These events bring a large flux of water vapor to the west coast of North America and often lead to extreme precipitation in the coastal mountain ranges. An advantage of assimilating retrievals rather than radiances is that information in partly cloudy fields of view can be used. Two different Level 2 AIRS retrieval products are compared: the Version 6 AIRS Science Team standard retrievals and a neural net retrieval from MIT. Before assimilation, a bias correction is applied to adjust each layer of retrieved temperature and humidity so the layer mean values agree with a short-term model climatology. WRF runs assimilating each of the products are compared against each other and against a control run with no assimilation. Forecasts are against ERA reanalyses.

  4. Retrieval of the Nitrous Oxide Profiles using the AIRS Data in China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Ma, P.; Tao, J.; Li, X.; Zhang, Y.; Wang, Z.; Li, S.; Xiong, X.

    2014-12-01

    As an important greenhouse gas and ozone-depleting substance, the 100-year global warming potential of Nitrous Oxide (N2O) is almost 300 times higher than that of carbon dioxide. However, there are still large uncertainties about the quantitative N2O emission and its feedback to climate change due to the coarse ground-based network. This approach attempts to retrieve the N2O profiles from the Atmospheric InfraRed Sounder (AIRS) data. First, the sensitivity of atmospheric temperature and humidity profiles and surface parameters between two spectral absorption bands were simulated by using the radiative transfer model. Second, the eigenvector regression algorithm is used to construct a priori state. Third, an optimal estimate method was developed based on the band selection of N2O. Finally, we compared our retrieved AIRS profiles with HIPPO data, and analyzed the seasonal and annual N2O distribution in China from 2004 to 2013.

  5. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  6. AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile

    NASA Astrophysics Data System (ADS)

    Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.

    2013-12-01

    Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated

  7. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Retrieved Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle M.; Zavodsky, T.; Jedloved, Gary J.

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One operational forecast challenge is forecasting convective weather in data-void regions such as large bodies of water (e.g. Gulf of Mexico). To address this forecast challenge, SPoRT produces a twice-daily three-dimensional analysis that blends a model first-guess from the Advanced Research Weather Research and Forecasting (WRF-ARW) model with retrieved profiles from the Atmospheric Infrared Sounder (AIRS) -- a hyperspectral sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. AIRS profiles are unique in that they give a three dimensional view of the atmosphere that is not available through the current rawinsonde network. AIRS has two overpass swaths across North America each day, one valid in the 0700-0900 UTC timeframe and the other in the 1900-2100 UTC timeframe. This is helpful because the rawinsonde network only has data from 0000 UTC and 1200 UTC at specific land-based locations. Comparing the AIRS analysis product with control analyses that include no AIRS data demonstrates the value of the retrieved profiles to situational awareness for the pre-convective (and convective) environment. In an attempt to verify that the AIRS analysis was a good representation of the vertical structure of the atmosphere, both the AIRS and control analyses are compared to a Rapid Update Cycle (RUC) analysis used by operational forecasters. Using guidance from operational forecasters, convective available potential energy (CAPE) was determined to be a vital variable in making convective forecasts and is used herein to demonstrate the utility of the AIRS profiles in changing the vertical

  8. Improving 7-Day Forecast Skill by Assimilation of Retrieved AIRS Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Rosenberg, Bob

    2016-01-01

    We conducted a new set of Data Assimilation Experiments covering the period January 1 to February 29, 2016 using the GEOS-5 DAS. Our experiments assimilate all data used operationally by GMAO (Control) with some modifications. Significant improvement in Global and Southern Hemisphere Extra-tropical 7-day forecast skill was obtained when: We assimilated AIRS Quality Controlled temperature profiles in place of observed AIRS radiances, and also did not assimilate CrISATMS radiances, nor did we assimilate radiosonde temperature profiles or aircraft temperatures. This new methodology did not improve or degrade 7-day Northern Hemispheric Extra-tropical forecast skill. We are conducting experiments aimed at further improving of Northern Hemisphere Extra-tropical forecast skill.

  9. The validation of AIRS retrievals

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Olsen, Edward T.; Chen, Luke L.; Hagan, Denise E.; Fishbein, Evan; McMillin, Larry; Zhou, Jiang; McMillan, Wallace W.

    2003-01-01

    The initial validation of Atmospheric Infrared Sounder (SIRS) experiment retrievals were completed in August 2003 as part of public release of version 3.0 data. The associated analyses are reported at http://daac.gsfc.nasa.gov/atmodyn/airs/, where data may be accessed. Here we describe some of those analyses, with an emphasis on cloud cleared radiances, atmospheric temperature profiles, sea surface temperature, total water vapor and atmospheric water vapor profiles. The results are applicable over ocean in the latitude band +/-40 degrees.

  10. A Comparison of the Red Green Blue (RGB) Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles and NOAA G-IV Dropsondes

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Folmer, Michael; Dunion, Jason

    2014-01-01

    RGB air mass imagery is derived from multiple channels or paired channel differences. The combination of channels and channel differences means the resulting imagery does not represent a quantity or physical parameter such as brightness temperature in conventional single channel imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles and NOAA G-IV dropsondes provide insight about the vertical structure of the air mass represented on the RGB air mass imagery and are a first step to validating the imagery.

  11. Single-Footprint Retrievals from AIRS

    NASA Astrophysics Data System (ADS)

    Irion, F. W.; Fishbein, E.; Fu, D.; Hulley, G. C.; Kahn, B. H.; Schreier, M. M.; Yue, Q.; Wong, S.; Strow, L. L.; Desouza-Machado, S. G.; Kulawik, S. S.

    2014-12-01

    The Atmospheric Infrared Sounder, on the EOS-Aqua platform, retrieves temperature, water vapor and ozone profiles (among other constituents) in the thermal infrared, as well as cloud and aerosol information. The production version retrieves profiles using L2 cloud-cleared radiances, which are created using spectral data from adjacent scenes and data from the co-located AMSU microwave instrument. Current AIRS L2 profiles have a horizontal footprint of ~40 km at nadir. We present a new research retrieval using cloudy radiances directly from AIRS L1b radiances under an optimal estimation framework. Using co-located MODIS cloud results as a priori, and updated emissivitivies derived from a new database derived from ASTER and MODIS, this reduces the nadir footprint to 13.5 km. We present early L2 results from this effort and describe how this effort will be used to better understand the atmospheric water cycle.

  12. Brewer Umkehr ozone profile retrievals

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I. V.; Disterhoft, P.; Lantz, K. O.; Bhartia, P. K.; McPeters, R. D.; Flynn, L. E.; Oltmans, S. J.; Johnson, B. J.; Stanek, M.

    2011-12-01

    The Dobson Umkehr network has been a key data set for stratospheric ozone trend calculations (WMO Ozone assessments) and has earned its place as a benchmark network for stratospheric ozone profile observations. The Umkehr data has also been used to provide a long-term reference to the merging of the satellite ozone records (MOD), estimate the seasonal influence of an 11-year solar signal in the vertical distribution of stratospheric ozone, and to assess the ability of several remote and in-situ sensing systems in capturing ozone variability. It was found that Dobson Umkehr measurement errors were often comparable to errors derived for satellite and ozone-sounding methods. The Umkehr measurements are also available from the Brewer spectrophotometers [McElroy et al., 1995]. In 2005, the Dobson Umkehr algorithm (UMK04) was modified to retrieve ozone profile data from Brewer Umkehr measurements taken at two spectral channels [Petropavlovskikh et al, 2011]. The PC version of the Brewer algorithm was developed by M. Stanek (IOC, Canada and Czech Republic Meteorological Institute) in close collaboration with I. Petropavlovskikh. It was implemented at the NEUBrew network for operational processing of Umkehr data retrieved daily for all operational sites. The most recently developed Brewer ozone retrieval algorithm (MSBU) utilizes measurements that are currently available from the operational Brewer instruments. Umkehr measurements at multiple wavelength channels (similar to the satellite BUV method) and significantly reduced range of solar zenith angle are used for the twice a day operational ozone profile retrievals. Intercomparisons against ozone climatology, sounding, satellite overpasses and Dobson ozone datasets for NOASA/Goddard, Boulder, CO and MLO, HI sites are presented in this paper. The MSBU algorithm reduces noise in the intra-annual variability of the Brewer retrieved ozone as compared to the single pair ozone retrieval. Tropospheric ozone retrievals also

  13. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  14. Retrieval of GOMOS bright limb ozone profiles

    NASA Astrophysics Data System (ADS)

    Tukiainen, Simo; Verronen, Pekka T.; Kyrola, Erkki; Tamminen, Johanna

    GOMOS is a stellar occultation instrument on board the ENVISAT satellite. During day time occultations limb scattered sunlight spectra are also recorded. These can be used to retrieve vertical profiles of ozone between 15-70 km. The retrieval method is the modified onion peeling inversion method that we have used earlier for retrievals from the OSIRIS instrument. In the retrieval we use an accurate single scattering modeling and look up tables for the multiple scattering modeling. The look up tables are produced using the Monte Carlo radiative transfer model Siro. We present here examples of the retrievals and compare our results with GOMOS occultation retrievals and OSIRIS retrievals.

  15. Inter-comparison of MAX-DOAS Retrieved Vertical Profiles of Aerosol Extinction, SO2 and NO2 in the Alberta Oil Sands with LIDAR Data and GEM-MACH Air Quality Model.

    NASA Astrophysics Data System (ADS)

    Davis, Zoe; Friess, Udo; Strawbridge, Kevin; Whiteway, James; Aggarwal, Monika; Makar, Paul; Li, Shao-Meng; O'Brien, Jason; Baray, Sabour; Schnitzler, Elijah; Olfert, Jason S.; Osthoff, Hans D.; Lobo, Akshay; McLaren, Robert

    2016-04-01

    Understanding industrial emissions of trace gas pollutants in the Alberta oil sands is essential to maintaining air quality standards and informing public policy. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of trace gases can improve knowledge of pollutant levels, vertical distribution and chemical transformation. During an intensive air measurement campaign to study emissions, transport, transformation and deposition of oil sands air pollutants from August to September of 2013, a MAX-DOAS instrument was deployed at a site north of Fort McMurray, Alberta to determine the vertical profiles of aerosol extinction, NO2 and SO2 through retrieval from the MAX-DOAS spectral measurements using an optimal estimation method. The large complement of data collected from multiple instruments deployed during this field campaign provides a unique opportunity to validate and characterize the performance of the MAX-DOAS vertical profile retrievals. Aerosol extinction profiles determined from two Light Detection and Ranging (LIDAR) instruments, one collocated and the other on a Twin Otter aircraft that flew over the site during the study, will be compared to the MAX-DOAS aerosol extinction profile retrievals. Vertical profiles of NO2 and SO2 retrieved from the MAX-DOAS measurements will be further compared with the composite vertical profiles measured from the flights of a second aircraft, the NRC-Convair 580, over the field site during the same measurement period. Finally, the MAX-DOAS retrieved tropospheric vertical column densities (VCDs) of SO2 and NO2 will be compared to the predicted VCDs from Environment and Climate Change Canada's Global Environmental Multi-scale - Modelling Air quality and Chemistry (GEM-MACH) air quality model over the grid cell containing the field site. Emission estimates of SO2 from the major oil mining facility Syncrude Mildred Lake using the MAX-DOAS VCD results, validated through the detailed characterization above

  16. Utility of AIRS Retrievals for Climate Studies

    NASA Technical Reports Server (NTRS)

    Molnar, Guyla I.; Susskind, Joel

    2007-01-01

    Satellites provide an ideal platform to study the Earth-atmosphere system on practically all spatial and temporal scales. Thus, one may expect that their rapidly growing datasets could provide crucial insights not only for short-term weather processes/predictions but into ongoing and future climate change processes as well. Though Earth-observing satellites have been around for decades, extracting climatically reliable information from their widely varying datasets faces rather formidable challenges. AIRS/AMSU is a state of the art infrared/microwave sounding system that was launched on the EOS Aqua platform on May 4, 2002, and has been providing operational quality measurements since September 2002. In addition to temperature and atmospheric constituent profiles, outgoing longwave radiation and basic cloud parameters are also derived from the AIRS/AMSU observations. However, so far the AIRS products have not been rigorously evaluated and/or validated on a large scale. Here we present preliminary assessments of monthly and 8-day mean AIRS "Version 4.0" retrieved products (available to the public through the DAAC at NASA/GSFC) to assess their utility for climate studies. First we present "consistency checks" by evaluating the time series of means, and "anomalies" (relative to the first 4 full years' worth of AIRS "climate statistics") of several climatically important retrieved parameters. Finally, we also present preliminary results regarding interrelationships of some of these geophysical variables, to assess to what extent they are consistent with the known physics of climate variability/change. In particular, we find at least one observed relationship which contradicts current general circulation climate (GCM) model results: the global water vapor climate feedback which is expected to be strongly positive is deduced to be slightly negative (shades of the "Lindzen effect"?). Though the current AIRS climatology covers only -4.5 years, it will hopefully extend much

  17. Major Upgrades to the AIRS Version-6 Ozone Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting in the talk Improved Water Vapor and Ozone Profiles in SRT AIRS Version-6.X and the AIRS February 11, 2015 NetMeeting Further improvements in water vapor and ozone profiles compared to Version-6.AIRS Version-6 was finalized in late 2012 and is now operational. Version-6 contained many significant improvements in retrieval methodology compared to Version-5. However, Version-6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version-5, or even from Version-4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version-6. This talk will concentrate on O3 profile retrievals. Improvements in water vapor profile retrievals are given in a separate presentation.

  18. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) - GRAPHICS

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  19. Vertical grid of retrieved atmospheric profiles

    NASA Astrophysics Data System (ADS)

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera

    2016-05-01

    The choice of the vertical grid of atmospheric profiles retrieved from remote sensing observations is discussed considering the two cases of profiles used to represent the results of individual measurements and of profiles used for subsequent data fusion applications. An ozone measurement of the MIPAS instrument is used to assess, for different vertical grids, the quality of the retrieved profiles in terms of profile values, retrieval errors, vertical resolutions and number of degrees of freedom. In the case of individual retrievals no evident advantage is obtained with the use of a grid finer than the one with a reduced number of grid points, which are optimized according to the information content of the observations. Nevertheless, this instrument dependent vertical grid, which seems to extract all the available information, provides very poor results when used for data fusion applications. A loss of about a quarter of the degrees of freedom is observed when the data fusion is made using the instrument dependent vertical grid relative to the data fusion made using a vertical grid optimized for the data fusion product. This result is explained by the analysis of the eigenvalues of the Fisher information matrix and leads to the conclusion that different vertical grids must be adopted when data fusion is the expected application.

  20. AIRS Retrieval Validation During the EAQUATE

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Cuomo, Vincenzo; Taylor, Jonathan P.; Barnet, Christopher D.; DiGirolamo, Paolo; Pappalardo, Gelsomina; Larar, Allen M.; Liu, Xu; Newman, Stuart M.

    2006-01-01

    Atmospheric and surface thermodynamic parameters retrieved with advanced hyperspectral remote sensors of Earth observing satellites are critical for weather prediction and scientific research. The retrieval algorithms and retrieved parameters from satellite sounders must be validated to demonstrate the capability and accuracy of both observation and data processing systems. The European AQUA Thermodynamic Experiment (EAQUATE) was conducted mainly for validation of the Atmospheric InfraRed Sounder (AIRS) on the AQUA satellite, but also for assessment of validation systems of both ground-based and aircraft-based instruments which will be used for other satellite systems such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) from the NPOESS Preparatory Project and the following NPOESS series of satellites. Detailed inter-comparisons were conducted and presented using different retrieval methodologies: measurements from airborne ultraspectral Fourier transform spectrometers, aircraft in-situ instruments, dedicated dropsondes and radiosondes, and ground based Raman Lidar, as well as from the European Center for Medium range Weather Forecasting (ECMWF) modeled thermal structures. The results of this study not only illustrate the quality of the measurements and retrieval products but also demonstrate the capability of these validation systems which are put in place to validate current and future hyperspectral sounding instruments and their scientific products.

  1. Optimal Estimation Retrievals of CO2 from AIRS spectra

    NASA Astrophysics Data System (ADS)

    Irion, F. W.; Kulawik, S. S.; Kahn, B. H.; Worden, J.; Bowman, K. W.; Fishbein, E.

    2009-12-01

    Since September 2002, the Atmospheric Infrared Sounder (AIRS) on the EOS-Aqua platform has globally observed atmospheric profile information from nadir viewing of infrared emittance. Selecting cloud-free spectra over ocean, we apply an optimal estimation algorithm, similar to that used for the Tropospheric Emission Spectrometer (TES), to simultaneously retrieve profiles of CO2, water vapor, ozone, temperature and ocean skin temperature. Preliminary results and validation over the Western Pacific are presented, showing good correlation with seasonal variation and long-term increase of CO2 as determined by in-situ aircraft measurements.

  2. Ozone profile retrievals from the ESA GOME instrument

    NASA Technical Reports Server (NTRS)

    Munro, Rosemary; Kerridge, Brian J.; Burrows, John P.; Chance, Kelly

    1994-01-01

    The potential of the ESA Global Ozone Monitoring Experiment (GOME) to produce ozone profile information has been examined by carrying out two sample retrievals using simulated GOME data. The first retrieval examines the potential of the GOME instrument to produce stratospheric ozone profiles using the traditional back-scatter ultraviolet technique, while the second examines the possibility of obtaining tropospheric profile information, and improving the quality of the stratospheric profile retrievals, by exploiting the temperature dependence of the ozone Huggins bands.

  3. A Bayesian approach to microwave precipitation profile retrieval

    NASA Technical Reports Server (NTRS)

    Evans, K. Franklin; Turk, Joseph; Wong, Takmeng; Stephens, Graeme L.

    1995-01-01

    A multichannel passive microwave precipitation retrieval algorithm is developed. Bayes theorem is used to combine statistical information from numerical cloud models with forward radiative transfer modeling. A multivariate lognormal prior probability distribution contains the covariance information about hydrometeor distribution that resolves the nonuniqueness inherent in the inversion process. Hydrometeor profiles are retrieved by maximizing the posterior probability density for each vector of observations. The hydrometeor profile retrieval method is tested with data from the Advanced Microwave Precipitation Radiometer (10, 19, 37, and 85 GHz) of convection over ocean and land in Florida. The CP-2 multiparameter radar data are used to verify the retrieved profiles. The results show that the method can retrieve approximate hydrometeor profiles, with larger errors over land than water. There is considerably greater accuracy in the retrieval of integrated hydrometeor contents than of profiles. Many of the retrieval errors are traced to problems with the cloud model microphysical information, and future improvements to the algorithm are suggested.

  4. The OMPS Limb Profiler Instrument: Two-Dimensional Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Rault, Didier F.

    2010-01-01

    The upcoming Ozone Mapper and Profiler Suite (OMPS), which will be launched on the NPOESS Preparatory Project (NPP) platform in early 2011, will continue monitoring the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance (which is due to the scattering of solar photons by air molecules, aerosol and Earth surface) in the ultra-violet (UV), visible and near infrared, from 285 to 1000 nm. The LP simultaneously images the whole vertical extent of the Earth's limb through three vertical slits, each covering a vertical tangent height range of 100 km and each horizontally spaced by 250 km in the cross-track direction. Measurements are made every 19 seconds along the orbit track, which corresponds to a distance of about 150km. Several data analysis tools are presently being constructed and tested to retrieve ozone and aerosol vertical distribution from limb radiance measurements. The primary NASA algorithm is based on earlier algorithms developed for the SOLSE/LORE and SAGE III limb scatter missions. All the existing retrieval algorithms rely on a spherical symmetry assumption for the atmosphere structure. While this assumption is reasonable in most of the stratosphere, it is no longer valid in regions of prime scientific interest, such as polar vortex and UTLS regions. The paper will describe a two-dimensional retrieval algorithm whereby the ozone distribution is simultaneously retrieved vertically and horizontally for a whole orbit. The retrieval code relies on (1) a forward 2D Radiative Transfer code (to model limb

  5. Inter-comparison between AIRS and IASI through Retrieved Parameters

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Steve

    2008-01-01

    A State-of-the-art retrieval algorithm dealing with all-weather conditions has been applied to satellite/aircraft instruments retrieving cloud/surface and atmospheric conditions. High quality retrievals have been achieved from IASI data. Surface, cloud, and atmospheric structure and variation are well captured by IASI measurements and/or retrievals. The same retrieval algorithm is also applied to AIRS for retrieval inter-comparison. Both AIRS and IASI have a similar FOV size but AIRS has a higher horizontal resolution. AIRS data can be interpolated to IASI horizontal resolution for inter-comparison at the same geophysical locations, however a temporal variation between AIRS and IASI observations need to be considered. JAIVEx has employed aircraft to obtain the atmospheric variation filling the temporal gap between two satellites. First results show that both AIRS and IASI have a very similar vertical resolving power, atmospheric conditions are well captured by both instruments, and radiances are well calibrated. AIRS data shown in retrievals (e.g., surface emissivity and moisture) have a relatively higher noise level. Since the this type of retrieval is very sensitive to its radiance quality, retrieval products inter-comparison is an effective way to identify/compare their radiance quality, in terms of a combination of spectral resolution and noise level, and to assess instrument performance. Additional validation analyses are needed to provide more-definitive conclusions.

  6. High Lapse Rates in AIRS Retrieved Temperatures in Cold Air Outbreaks

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of AIRS provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of AIRS temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low air temperatures, large sea-air temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the AIRS experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold air mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows AIRS to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface air temperatures. The bias in near-surface air temperature is seen to be independent of sea surface temperature, however. AIRS is therefore sensitive to air-sea temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct AIRS near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this air-sea temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to

  7. Impact of NO2 Profile Shape in OMI Tropospheric NO2 Retrievals

    NASA Technical Reports Server (NTRS)

    Lamsal, Lok; Krotkov, Nickolay A.; Pickering, K.; Schwartz, W. H.; Celarier, E. A.; Bucsela, E. J.; Gleason, J. F.; Philip, S.; Nowlan, C.; Martin, R. V.; Irie, H.; Knepp, T. R.; He, H.; Brent, L.

    2013-01-01

    Nitrogen oxides (NOx NO + NO2) are key actors in air quality and climate change. Tropospheric NO2 columns from the nadir-viewing satellite sensors have been widely used to understand sources and chemistry of NOx. We have implemented several improvements to the operational algorithm developed at NASA GSFC and retrieved tropospheric NO2 columns. We present tropospheric NO2 validation studies of the new OMI Standard Product version 2.1 using ground-based and in-situ aircraft measurements. We show how vertical profile of scattering weight and a-priori NO2 profile shapes, which are taken from chemistry-transport models, affect air mass factor (AMF) and therefore tropospheric NO2 retrievals. Users can take advantage of scattering weights information that is made available in the operational NO2 product. Improved tropospheric NO2 data retrieved using thoroughly evaluated high spatial resolution NO2 profiles are helpful to test models.

  8. Test plan for air monitoring during the Cryogenic Retrieval Demonstration

    SciTech Connect

    Yokuda, E.

    1992-06-01

    This report presents a test plan for air monitoring during the Cryogenic Retrieval Demonstration (CRD). Air monitors will be used to sample for the tracer elements neodymium, terbium, and ytterbium, and dysprosium. The results from this air monitoring will be used to determine if the CRD is successful in controlling dust and minimizing contamination. Procedures and equipment specifications for the test are included.

  9. Stratospheric aerosol profile retrievals from SCIAMACHY limb-scatter observations

    NASA Astrophysics Data System (ADS)

    Ernst, Florian; Von Savigny, PD Christian; Rozanov, Alexei; Bovensmann, Heinrich; Brinkhoff, Lena; Burrows, John

    2012-07-01

    Stratospheric aerosol extinction profiles are retrieved from SCIAMACHY/Envisat limb-scatter observations in the visible and near-IR spectral range. The retrieval scheme is based on an optimal estimation approach in combination with the radiative transfer model SCIATRAN and employs normalized and paired limb-radiance profiles at 470 nm and 750 nm. This contribution provides an overview of the retrieval approach adopted and includes first results on stratospheric aerosol time series spanning the entire duration of the Envisat mission, i.e. from fall 2002 to the present. The time series display obvious signatures of the volcanic eruptions as well as strong pyroCb events that occurred during the period studied. Comparison of the stratospheric extinction profiles with co-located SAGE II aerosol extinction profiles yields agreement of the global mean profiles within 20% between 15 and 35 km altitude.

  10. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  11. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  12. AIRS-Retrieved Global Tropospheric Methane for August 2005

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image is the AIRS-retrieved global tropospheric methane for August 2005. This AIRS research product will aid in the identification of natural and anthropogenic sources of this greenhouse gas, its seasonal and multi-year variation and its transport around the globe at several altitudes in the troposphere.

  13. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  14. Validation of AIRS Retrievals of CO2 via Comparison to In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Olsen, Edward T.; Chahine, Moustafa T.; Chen, Luke L.; Jiang, Xun; Pagano, Thomas S.; Yung, Yuk L.

    2008-01-01

    Topics include AIRS on Aqua, 2002-present with discussion about continued operation to 2011 and beyond and background, including spectrum, weighting functions, and initialization; comparison with aircraft and FTIR measurements in Masueda (CONTRAIL) JAL flask measurements, Park Falls, WI FTIR, Bremen, GDF, and Spitsbergen, Norway; AIRS retrievals over addition FTIR sites in Darwin, AU and Lauder, NZ; and mid-tropospheric carbon dioxide weather and contribution from major surface sources. Slide titles include typical AIRS infrared spectrum, AIRS sensitivity for retrieving CO2 profiles, independence of CO2 solution with respect to the initial guess, available in situ measurements for validation and comparison, comparison of collocated V1.5x AIRS CO2 (N_coll greater than or equal to 9) with INTEX-NA and SPURT;

  15. Validating the AIRS Version 5 CO Retrieval with DACOM In Situ Measurements During INTEX-A and -B

    NASA Technical Reports Server (NTRS)

    McMillan, Wallace W.; Evans, Keith D.; Barnet, Christopher D.; Maddy, Eric; Sachse, Glen W.; Diskin, Glenn S.

    2011-01-01

    Herein we provide a description of the atmospheric infrared sounder (AIRS) version 5 (v5) carbon monoxide (CO) retrieval algorithm and its validation with the DACOM in situ measurements during the INTEX-A and -B campaigns. All standard and support products in the AIRS v5 CO retrieval algorithm are documented. Building on prior publications, we describe the convolution of in situ measurements with the AIRS v5 CO averaging kernel and first-guess CO profile as required for proper validation. Validation is accomplished through comparison of AIRS CO retrievals with convolved in situ CO profiles acquired during the NASA Intercontinental Chemical Transport Experiments (INTEX) in 2004 and 2006. From 143 profiles in the northern mid-latitudes during these two experiments, we find AIRS v5 CO retrievals are biased high by 6% 10% between 900 and 300 hPa with a root-mean-square error of 8% 12%. No significant differences were found between validation using spiral profiles coincident with AIRS overpasses and in-transit profiles under the satellite track but up to 13 h off in time. Similarly, no significant differences in validation results were found for ocean versus land, day versus night, or with respect to retrieved cloud top pressure or cloud fraction.

  16. Retrieval of ozone profiles from GOMOS limb scattered measurements

    NASA Astrophysics Data System (ADS)

    Tukiainen, S.; Kyrölä, E.; Verronen, P. T.; Fussen, D.; Blanot, L.; Barrot, G.; Hauchecorne, A.; Lloyd, N.

    2011-04-01

    The GOMOS (Global Ozone Monitoring by Occultation of Stars) instrument on board the Envisat satellite measures the vertical composition of the atmosphere using the stellar occultation technique. While the night-time occultations of GOMOS have been proven to be of good quality, the daytime occultations are more challenging due to weaker signal-to-noise ratio. During daytime GOMOS measures limb scattered solar radiation in addition to stellar radiation. In this paper we introduce a retrieval method that determines ozone profiles between 20-60 km from GOMOS limb scattered solar radiances. GOMOS observations contain a considerable amount of stray light at high altitudes. We introduce a method for removing stray light and demonstrate its feasibility by comparing the corrected radiances against those measured by the OSIRIS (Optical Spectrograph & Infra Red Imaging System) instrument. For the retrieval of ozone profiles, a standard onion peeling method is used. The first comparisons with other data sets suggest that the retrieved ozone profiles in 22-50 km are within 10% compared with the GOMOS night-time occultations and within 15% compared with OSIRIS. GOMOS has measured about 350 000 daytime profiles since 2002. The retrieval method presented here makes this large amount of data available for scientific use.

  17. Comparative Results of AIRS/AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRS/AMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS/AMSU. The objective of this research is to prepare for generation of long term CrIS/ATMS CDRs using a retrieval algorithm that is scientifically equivalent to AIRS/AMSU Version-7.

  18. Retrieval of ozone profiles from GOMOS limb scattered measurements

    NASA Astrophysics Data System (ADS)

    Tukiainen, S.; Kyrölä, E.; Verronen, P. T.; Fussen, D.; Blanot, L.; Barrot, G.; Hauchecorne, A.; Lloyd, N.

    2010-10-01

    The GOMOS (Global Ozone Monitoring by Occultation of Stars) instrument on board the Envisat satellite measures the vertical composition of the atmosphere using the stellar occultation technique. While the night-time data of GOMOS are proved to be of good quality, the daytime observations are more challenging due to poorer signal-to-noise ratio. In this paper we present an alternative technique, which uses GOMOS limb scattered radiances instead of the stellar signal, to retrieve stratospheric ozone profiles. Like for many other limb-viewing instruments, GOMOS observations contain stray light at high altitudes. We introduce a method for removing the stray light and demonstrate its feasibility by comparing the corrected radiances against those from the OSIRIS (Optical Spectrograph & Infra Red Imaging System) instrument. For the retrieval of ozone profiles, an onion peeling method is used. The first validation results suggest that the retrieval of stratospheric ozone is possible with a typical accuracy better than 10% at 22-50 km. GOMOS has measured about 350 000 daytime profiles since 2002. The new retrieval method presented here makes this large amount of data finally available for scientific use.

  19. A Module for Assimilating Hyperspectral Infrared Retrieved Profiles into the Gridpoint Statistical Interpolation System for Unique Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Srikishen, Jayanthi; Blankenship, Clay

    2015-01-01

    Hyperspectral infrared sounder radiance data are assimilated into operational modeling systems however the process is computationally expensive and only approximately 1% of available data are assimilated due to data thinning as well as the fact that radiances are restricted to cloud-free fields of view. In contrast, the number of hyperspectral infrared profiles assimilated is much higher since the retrieved profiles can be assimilated in some partly cloudy scenes due to profile coupling other data, such as microwave or neural networks, as first guesses to the retrieval process. As the operational data assimilation community attempts to assimilate cloud-affected radiances, it is possible that the use of retrieved profiles might offer an alternative methodology that is less complex and more computationally efficient to solve this problem. The NASA Short-term Prediction Research and Transition (SPoRT) Center has assimilated hyperspectral infrared retrieved profiles into Weather Research and Forecasting Model (WRF) simulations using the Gridpoint Statistical Interpolation (GSI) System. Early research at SPoRT demonstrated improved initial conditions when assimilating Atmospheric Infrared Sounder (AIRS) thermodynamic profiles into WRF (using WRF-Var and assigning more appropriate error weighting to the profiles) to improve regional analysis and heavy precipitation forecasts. Successful early work has led to more recent research utilizing WRF and GSI for applications including the assimilation of AIRS profiles to improve WRF forecasts of atmospheric rivers and assimilation of AIRS, Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI) profiles to improve model representation of tropopause folds and associated non-convective wind events. Although more hyperspectral infrared retrieved profiles can be assimilated into model forecasts, one disadvantage is the retrieved profiles have traditionally been assigned the

  20. Aerosols and Precipitation Retrievals over Eureka by Remote Sensing: Validation of Space Based Profiling Retrievals

    NASA Astrophysics Data System (ADS)

    Chaubey, J. P.; O'Neill, N. T.; Hudak, D. R.; Rodriguez, P.; Ivanescu, L.; Eloranta, E.; Duck, T.

    2014-12-01

    Aerosols and precipitation are among the agents responsible for the ongoing changes in the Arctic climate and the hydrological cycle. The seasonal variations of Arctic aerosols (Arctic haze for e.g.) are linked to the transport efficiency as well as precipitation (wet) scavenging. Aside from affecting aerosol concentrations, precipitation is an important hydrological variable that affects the moisture budget of the atmosphere. Aerosols, in turn, influence the vertical distribution of clouds and this induces changes in the precipitation pattern. The spatial and temporal sparsity of precipitation measurements over the Arctic region means that satellite remote sensing techniques take on an importance that considerably exceeds their role south of the Arctic circle. Radar reflectivity and snow profiles from CloudSat (in support of cloud and precipitation analyses) and backscattering measurements from CALIOP (investigations of aerosol and small cloud particle properties) can be used to study Arctic winter clouds and precipitation and the role of aerosols in their formation. In this study we attempt to validate satellite-based profiling retrievals of precipitation parameters using AHSRL (Arctic High Spectral Resolution Lidar), CRL (CANDAC Raman Lidar) and MMCR (Milli-Meter Cloud Radar) profiles acquired at the PEARL high-Arctic site in Eureka (80 °N, 86 °W), Nunavut, Canada. As part of the process of validating the profiling retrievals we aspire to learn more about the mechanisms controlling aerosol, cloud and precipitation inter-dynamics. In addition, ground-based, high-frequency observations of precipitation will be used for characterizing precipitation totals as well as the conditional probability of the type of precipitation (rain or snow) and thus to help understand and validate comparable information extracted from the satellite retrievals. We also aim to characterize different particle types using AHSRL and CRL depolarization profiles, MMCR Doppler velocity

  1. CrIS/ATMS Retrievals Using the Latest AIRS/AMSU Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is being done under the NPP Science Team Proposal: Analysis of CrISATMS Using an AIRS Version 6-like Retrieval Algorithm Objective: Generate a long term CrISATMS level-3 data set that is consistent with that of AIRSAMSU Approach: Adapt the currently operational AIRS Science Team Version-6 Retrieval Algorithm, or an improved version of it, for use with CrISATMS data. Metric: Generate monthly mean level-3 CrISATMS climate data sets and evaluate the results by comparison of monthly mean AIRSAMSU and CrISATMS products, and more significantly, their inter-annual differences and, eventually, anomaly time series. The goal is consistency between the AIRSAMSU and CrISATMS climate data sets.

  2. Improved Ozone Profile Retrievals Using Multispectral Measurements from NASA 'A Train' Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Worden, J.; Livesey, N. J.; Irion, F. W.; Schwartz, M. J.; Bowman, K. W.; Pawson, S.; Wargan, K.

    2013-12-01

    Ozone, a radiatively and chemically important trace gas, plays various roles in different altitude ranges in the atmosphere. In the stratosphere, it absorbs the solar UV radiation from the Sun and protects us from sunburn and skin cancers. In the upper troposphere, ozone acts as greenhouse gas. Ozone in the middle troposphere reacts with many anthropogenic pollutants and cleans up the atmosphere. Near surface ozone is harmful to human health and plant life. Accurate monitoring of ozone vertical distributions is crucial for a better understanding of air quality and climate change. The Ozone Monitoring Instrument (OMI) and the Microwave Limb Sounder (MLS) are both in orbit on the Earth Observing System Aura satellite and are providing ozone concentration profile measurements. MLS observes limb signals from 118 GHz to 2.5 THz, and measures upper tropospheric and stratospheric ozone concentration (among many other species) with a vertical resolution of about 3 km. OMI is a nadir-viewing pushbroom ultraviolet-visible (UV-VIS) imaging spectrograph that measures backscattered radiances covering the 270-500 nm wavelength range. AIRS is a grating spectrometer, on EOS Aqua satellite, that measures the thermal infrared (TIR) radiances emitted by Earth's surface and by gases and particles in the spectral range 650 - 2665 cm-1. We present an approach to combine simultaneously measured UV and TIR radiances together with the retrieved MLS ozone fields, to improve the ozone sounding. This approach has the potential to provide a decadal record of ozone profiles with an improved spatial coverage and vertical resolution from space missions. For evaluating the quality of retrieved profiles, we selected a set of AIRS and OMI measurements, whose ground pixels were collocated with ozonesonde launch sites. The results from combination of these measurements are presented and discussed. The improvements on vertical resolution of tropospheric ozone profiles from the MLS/AIRS/OMI joint

  3. Comparative Results of AIRS AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version 6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRSAMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrISATMS is the only scheduled follow on to AIRSAMSU. The objective of this research is to prepare for generation of a long term CrISATMS level-3 data using a finalized retrieval algorithm that is scientifically equivalent to AIRSAMSU Version-7.

  4. Dicoogle, a Pacs Featuring Profiled Content Based Image Retrieval

    PubMed Central

    Valente, Frederico; Costa, Carlos; Silva, Augusto

    2013-01-01

    Content-based image retrieval (CBIR) has been heralded as a mechanism to cope with the increasingly larger volumes of information present in medical imaging repositories. However, generic, extensible CBIR frameworks that work natively with Picture Archive and Communication Systems (PACS) are scarce. In this article we propose a methodology for parametric CBIR based on similarity profiles. The architecture and implementation of a profiled CBIR system, based on query by example, atop Dicoogle, an open-source, full-fletched PACS is also presented and discussed. In this solution, CBIR profiles allow the specification of both a distance function to be applied and the feature set that must be present for that function to operate. The presented framework provides the basis for a CBIR expansion mechanism and the solution developed integrates with DICOM based PACS networks where it provides CBIR functionality in a seamless manner. PMID:23671578

  5. The Retrieval of Ozone Profiles from Limb Scatter Measurements: Theory

    NASA Technical Reports Server (NTRS)

    Flittner, D. E.; Herman, B. M.; Bhartia, P. K.; McPeters, R. D.; Hilsenrath, E.

    1999-01-01

    An algorithm is presented for retrieving vertical profiles of O3 concentration using measurements of UV and visible light scattered from the limb of the atmosphere. The UV measurements provide information about the O3 profile in the upper and middle stratosphere, while only visible wavelengths are capable of probing the lower stratospheric O3 profile. Sensitivity to the underlying scene reflectance is greatly reduced by normalizing measurements at a tangent height high in the atmosphere (approximately 55 km), and relating measurements taken at lower altitudes to this normalization point. To decrease the effect of scattering by thin aerosols/clouds that may be present in the field of view, these normalized measurements are then combined by pairing wavelengths with strong and weak O3 absorption. We conclude that limb scatter can be used to measure O3 between 15 km and 50 km with 2-3 km vertical resolution and better than 10% accuracy.

  6. Results from CrIS-ATMS Obtained Using the AIRS Science Team Retrieval Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2013-01-01

    which significantly improved results of AIRS Version-6. Version-5.70 CrIS/ATMS temperature profile and surface skin temperature retrievals are of very good quality, and are better than AIRS Version-5 retrievals, but are still significantly poorer than those of AIRS Version-6. CrIS/ATMS retrievals should improve when a Neural-Net start-up system is ready for use. We also examined CrIS/ATMS retrievals generated by NOAA using their NUCAPS retrieval algorithm, which is based on earlier versions of the AIRS Science Team retrieval algorithms. We show that the NUCAPS algorithm as currently configured is not well suited for climate monitoring purposes.

  7. Temperature profile retrievals with extended Kalman-Bucy filters

    NASA Technical Reports Server (NTRS)

    Ledsham, W. H.; Staelin, D. H.

    1979-01-01

    The Extended Kalman-Bucy Filter is a powerful technique for estimating non-stationary random parameters in situations where the received signal is a noisy non-linear function of those parameters. A practical causal filter for retrieving atmospheric temperature profiles from radiances observed at a single scan angle by the Scanning Microwave Spectrometer (SCAMS) carried on the Nimbus 6 satellite typically shows approximately a 10-30% reduction in rms error about the mean at almost all levels below 70 mb when compared with a regression inversion.

  8. Retrieving Atmospheric Profiles Data in the Presence of Clouds from Hyperspectral Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Liu, Xu; Larar, Allen M.; Zhou, Daniel K.; Kizer, Susan H.; Wu, Wan; Barnet, Christopher; Divakarla, Murty; Guo, Guang; Blackwell, Bill; Smith, William L.; Yang, Ping; Gu, Degui

    2011-01-01

    Different methods for retrieving atmospheric profiles in the presence of clouds from hyperspectral satellite remote sensing data will be described. We will present results from the JPSS cloud-clearing algorithm and NASA Langley cloud retrieval algorithm.

  9. Evaluation of the Impact of AIRS Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of a long-term series of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  10. The OMPS Limb Profiler instrument: Data analysis and retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Rault, Didier; Loughman, Robert; Bourassa, Adam; Taha, Ghassan; Jaross, Glen; Flittner, Dave

    The Ozone Mapper and Profiler Suite (OMPS) is scheduled to be launched on the NPOESS Preparatory Project (NPP) platform in early 2010. The OMPS will continue monitoring ozone from space, using three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The collection of this ozone data is aimed at fulfilling the U.S. treaty obligation to monitor the ozone depletion for the Montreal Protocol to ensure no gaps on ozone coverage. The paper will describe the data analysis method being presently developed to retrieve ozone vertical distribution from the radiance data measured by the Limb Profiler (LP). The OMPS-LP instrument was designed based upon the SOLSE/LORE heritage and is specially conceived to minimize stray light. The sensor simultaneously images the whole vertical extent of the Earth's limb through three vertical slits, each horizontally spaced at 250 km cross-track interval and covering a vertical tangent height range of 100 km. The calibration stability, which is essential to enable long-term ozone monitoring, is maintained by periodic observations of the sun, using a transmissive diffuser to redirect the solar irradiance into the telescope. To satisfy the anticipated science needs, the accuracy/precision requirements imposed upon the OMPS-LP instrument are tight, ranging from 10

  11. Cloudy Sounding and Cloud-Top Height Retrieval From AIRS Alone Single Field-of-View Radiance Measurements

    NASA Technical Reports Server (NTRS)

    Weisz, Elisabeth; Li, Jun; Li, Jinlong; Zhou, Daniel K.; Huang, Hung-Lung; Goldberg, Mitchell D.; Yang, Ping

    2007-01-01

    High-spectral resolution measurements from the Atmospheric Infrared Sounder (AIRS) onboard the EOS (Earth Observing System) Aqua satellite provide unique information about atmospheric state, surface and cloud properties. This paper presents an AIRS alone single field-of-view (SFOV) retrieval algorithm to simultaneously retrieve temperature, humidity and ozone profiles under all weather conditions, as well as cloud top pressure (CTP) and cloud optical thickness (COT) under cloudy skies. For optically thick cloud conditions the above-cloud soundings are derived, whereas for clear skies and optically thin cloud conditions the profiles are retrieved from 0.005 hPa down to the earth's surface. Initial validation has been conducted by using the operational MODIS (Moderate Resolution Imaging Spectroradiometer) product, ECMWF (European Center of Medium range Weather Forecasts) analysis fields and radiosonde observations (RAOBs). These inter-comparisons clearly demonstrate the potential of this algorithm to process data from 38 high-spectral infrared (IR) sounder instruments.

  12. Intraosseous access in trauma by air medical retrieval teams.

    PubMed

    Sheils, Mark; Ross, Mark; Eatough, Noel; Caputo, Nicholas D

    2014-01-01

    Trauma accounts for a significant portion of overall mortality globally. Hemorrhage is the second major cause of mortality in the prehospital environment. Air medical retrieval services throughout the world have been developed to help improve the outcomes of patients suffering from a broad range of medical conditions, including trauma. These services often utilize intraosseous (IO) devices as an alternative means for access of both medically ill and traumatically injured patients in austere environments. However, studies have suggested that IO access cannot reach acceptable rates for massive transfusion. We review the subject to find the answer of whether IO access should be performed by air medical teams in the prehospital setting, or would central venous (CVC) access be more appropriate? We decided to assess the literature for capacity of IO access to meet resuscitation requirements in the prehospital management of trauma. We also decided to compare the insertion and complication characteristics of IO and CVC access. PMID:25049187

  13. Retrieval of humidity and temperature profiles over the oceans from INSAT 3D satellite radiances

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, C.; Kumar, Deo; Balaji, C.

    2016-03-01

    In this study, retrieval of temperature and humidity profiles of atmosphere from INSAT 3D-observed radiances has been accomplished. As the first step, a fast forward radiative transfer model using an Artificial neural network has been developed and it was proven to be highly effective, giving a correlation coefficient of 0.97. In order to develop this, a diverse set of physics-based clear sky profiles of pressure ( P), temperature ( T) and specific humidity ( q) has been developed. The developed database was further used for geophysical retrieval experiments in two different frameworks, namely, an ANN and Bayesian estimation. The neural network retrievals were performed for three different cases, viz., temperature only retrieval, humidity only retrieval and combined retrieval. The temperature/humidity only ANN retrievals were found superior to combined retrieval using an ANN. Furthermore, Bayesian estimation showed superior results when compared with the combined ANN retrievals.

  14. Profile measurements and OMI NO2 retrievals: New results from validation campaigns

    NASA Astrophysics Data System (ADS)

    Bucsela, E. J.; Celarier, E. A.; Gleason, J. F.; Cohen, R. C.; Bertram, T. H.; Brinksma, E.; Veefkind, P.; Swart, D.; Berkhout, S.; Martin, R. V.

    2005-12-01

    The retrieval of atmospheric NO2 from Ozone Monitoring Instrument (OMI) measurements requires a variety of a priori information. In particular, accurate knowledge of the vertical distribution of relative NO2 concentrations in the troposphere is needed to compute air mass factors (AMFs) for converting observed slant column densitites to tropospheric vertical column densities. Until recently, few measurements of tropospheric NO2 vertical profiles existed, and the profiles used in the retrieval algorithm were estimated from models. New data are now available from aircraft campaigns, such as the Intercontinental Chemical Transport Experiment (INTEX-A) in 2004 and the Polar AURA Validation Experiment(PAVE) in January-February 2005. Ground-based instruments during the Dutch Aerosol and Nitrogen Dioxide Experiments for Validation of OMI and SCHIAMACHY (DANDELIONS) have provided tropospheric NO2 measurements at Cabauw, The Netherlands, during OMI overpasses in May-June 2005. Together, these new measurements can help validate total NO2 column amounts from OMI and improve the a priori profiles for the OMI NO2 algorithm. We discuss the results from the validation campaigns in light of the most recent OMI data and examine the effects of improved profile information on AMF estimates.

  15. Retrieving Latent Heat Vertical Structure Using Precipitation and Cloud Profiles

    NASA Astrophysics Data System (ADS)

    Li, R.; Min, Q.; Wu, X.

    2011-12-01

    The latent heat (LH) released from tropical precipitation plays a critical role in driving regional and global atmosphere circulation. However, the vertical distribution of LH is one of most difficult parameters to be measured and has a large uncertainty in both residual diagnostic products and satellite retrievals. Most of current satellite LH products use limited observational information of precipitation and cloud profiles and highly depend on cloud resolving model (CRM) simulations. Our novel approach, distinguishing from existing schemes, is directly using observable precipitation and cloud profiles in combination with phase change partition parameterization of various kinds from the CRM simulations to produce the latent heating profiles. This hybrid latent heat algorithm separately deals with the condensation-evaporation heating (LHc_e), the deposition-sublimation heating (LHd_s) and the freezing-melting heating (LHf_m) for convective rain, stratiform rain, and shallow warm rain. Each component is based on physical processes, such as nucleation and auto conversion, by combining observable precipitation and cloud profiles. Although the proposed algorithm utilizes microphysical parameterizations from a specific CRM, the general LH vertical structure is primarily determined by the precipitation and cloud profiles observable from cloud and precipitation radars available at ground sites or from satellite platforms, and less sensitive to the specific CRM. The self consistency tests of this algorithm show good agreements with the CRM simulated LH at different spatial and temporal scales, even at simultaneous and pixel level. The applications of this algorithm are expected to provide new information for understanding the heating budget in the atmosphere and its impacts on the atmosphere circulations at various spatial and temporal scales.

  16. Adaptive neuro-fuzzy inference system for temperature and humidity profile retrieval from microwave radiometer observations

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.

    2015-01-01

    The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and

  17. Retrieval of atmospheric temperature profiles by a scanning microwave spectrometer

    NASA Technical Reports Server (NTRS)

    Rosenkranz, P. W.; Staelin, D. H.; Pettyjohn, R. L.

    1976-01-01

    The Nimbus-6 satellite carries a scanning microwave spectrometer (SCAMS) experiment. The five frequency bands observed are near 22.2, 31.6, 52.8, 53.8, and 55.4 GHz. The calibration system permitted preflight calibration to an accuracy of about 1 K. In orbit, small empirical corrections were made to the calibration constants to obtain agreement in the mean of SCAMS measurements with computations based on conventional data analyzed by the National Meteorological Center (NMC). Global maps of temperature profiles were retrieved from the SCAMS measurements by a statistical method. Using the NMC analysis as the verification, RMS errors in level temperatures range of about 2-4 K, depending on altitude. Errors for layers of octave extent in pressure are uniformly about 2 K. Theoretical computations show that additional spectrometer channels would improve temperature sensing performance

  18. Retrieval of Atmospheric and Surface Parameters from AIRS/AMSU/HSB Data Under Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Einaudi, Franco (Technical Monitor)

    2002-01-01

    New state of the art methodology is described to analyze AIRS/AMSU/HSB data in the presence of multiple cloud formations. The methodology forms the basis for the AIRS Science Team algorithm which will be used to analyze AIRS/AMSU/HSB data on EOS Aqua. The cloud clearing methodology requires no knowledge of the spectral properties of the clouds. The basic retrieval methodology is general and extracts the maximum information from the radiances, consistent with the channel noise covariance matrix. The retrieval methodology minimizes the dependence of the solution on the first guess field and the first guess error characteristics. Results are shown for AIRS Science Team simulation studies with multiple cloud formations. These simulation studies imply that clear column radiances can be reconstructed under partial cloud cover with an accuracy comparable to single spot channel noise in the temperature and water vapor sounding regions, temperature soundings can be produced under partial cloud cover with RMS errors on the order of, or better than, 1deg K in 1 km thick layers from the surface to 700 mb, 1 km layers from 700 mb to 300 mb, 3 km layers from 300 mb to 30 mb, and 5 km layers from 30 mb to 1 mb, and moisture profiles can be obtained with an accuracy better than 20% absolute errors in 1 km layers from the surface to nearly 200 mb.

  19. Retrieval of Hydrometeor Drop Size Distributions from TRMM Field Campaign Profiler Doppler Velocity Spectra Observations

    NASA Technical Reports Server (NTRS)

    Williams, Christopher R.; Gage, Kenneth S.

    2003-01-01

    Consistent with the original proposal and work plan, this project focused on estimating the raindrop size distributions (DSDs) retrieved from vertically pointing Doppler radar profilers and analyzing the relationship of the retrieved DSDs with the dynamics of the precipitation processes. The first phase of this project focused on developing the model to retrieve the DSD from the observed Doppler velocity spectra. The second phase used this model to perform DSD retrievals from the profiler observations made during the TRMM Ground Validation Field Campaigns of TEFLUN-B, TRMM-LBA, and KWAJEX. The third phase of this project established collaborations with scientists involved with each field campaign in order to validate the profiler DSD estimates and to enable the profiler retrievals to be used in their research. Through these collaborations, the retrieved DSDs were placed into context with the dynamical processes of the observed precipitating cloud systems.

  20. Evaluation of Ice cloud retrievals using CloudSat/CALIPSO/MODIS/AIRS and EarthCARE

    NASA Astrophysics Data System (ADS)

    Okamoto, H.; Sato, K.; Hagihara, Y.; Tanaka, K.; Ishimoto, H.; Makino, T.; Nishizawa, T.; Sugimoto, N.

    2014-12-01

    We analyzed characterization of ice water content and ice water path and discussed the uncertainties of these quantities. We developed the retrieval algorithms that use CloudSat and CALIOP on CALIPSO and also the one for CloudSat, CALIOP and MODIS on Aqua. There are several possible sources of uncertainties in the retrieved values. The backscattering properties of ice particles have not been yet fully understood in lidar wavelengths. There are also uncertainties in the retrieval results in radar- or lidar-only detected cloud regions where only one of the two sensors detected clouds. Multiple scattering contribution in space-borne lidar observations has not been fully evaluated too. In order to assess and reduce these uncertainties, we introduced two approaches. Analyses of independent physical quantities based on the same physical ice particle models used in the retrievals of microphysics might be useful in order to test consistency in the ice particle model and its scattering properties. Second approach is to develop a new type of ground-based active sensor system. Concerning the first approach, backscattering color ratio of ice particles was derived from the backscattering coefficient at 532nm and 1064nm for periods before and after the change of the laser tilt angle from 0.3 degrees off nadir to 3 degrees off nadir. Then we examined relationships between the retrieved color ratio and the retrieved microphysics and found the relations agreed with the theoretically estimated ones.For the second approach, Multi-Field of view Multiple Scattering Polarization Lidar has been developed to resolve the angular dependence of backscattering and depolarization ratio and has been employed to evaluate the uncertainties in the retrievals. We performed global evaluation of ice microphysical properties and examined relationships between ice microphysics and ice super saturation information from AIRS on Aqua. Finally we introduced the JAXA-ESA satellite mission EarthCARE that

  1. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS

  2. Humidity Profiles' Effect On The Relationship Between Ice Scattering And Rainfall In Microwave Rainfall Retrievals

    NASA Astrophysics Data System (ADS)

    Petkovic, V.; Kummerow, C. D.

    2013-12-01

    Currently, satellite microwave rainfall retrievals base their algorithm on an observed global average of the relationship between high frequency brightness temperature (Tb) depression and rainfall rate. This makes them very sensitive to differences in the ratio of ice to liquid in the cloud, resulting in regional biases of rainfall estimates. To address this problem we investigate how the environmental conditions that precede raining systems influence the ice to rainfall relationship. The vertical profile of humidity was found to be a key variable in predicting this ratio. We found that dry over moist air conditions are favorable for developing intense, well organized systems such as MCSs in West Africa and the Sahel, characterized by strong Tb depressions and amounts of ice aloft significantly above the globally observed average value. As a consequence, microwave retrieval algorithms misinterpret these systems assigning them unrealistically high rainfall rates. The opposite is true in the Amazon region, where observed raining systems exhibit very little ice while producing high rainfall rates. These regional differences correspond well with a map of radar to radiometer biases of rainfall. Deeper understanding of the influence of environmental conditions on this ice to rain ratio provides a foundation for mapping a global ice-scattering to rainfall rate relationship that will improve satellite microwave rainfall retrievals and our understanding of cloud microphysics globally.

  3. P-band Radar Retrieval of Root-Zone Soil Moisture: AirMOSS Methodology, Progress, and Improvements

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Tabatabaeenejad, A.; Chen, R.

    2015-12-01

    The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE)by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of themajor North American biomes. The radar snapshots are used to generate estimates of RZSM. To retrieve RZSM, weuse a discrete scattering model integrated with layered-soil scattering models. The soil moisture profile is representedas a quadratic function in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to beretrieved. The ancillary data necessary to characterize a pixel are available from various databases. We applythe retrieval method to the radar data acquired over AirMOSS sites including Canada's BERMS, Walnut Gulchin Arizona, MOISST in Oklahoma, Tonzi Ranch in California, and Metolius in Oregon, USA. The estimated soilmoisture profile is validated against in-situ soil moisture measurements. We have continued to improve the accuracyof retrievals as the delivery of the RZSMproducts has progressed since 2012. For example, the 'threshold depth' (thedepth up to which the retrieval is mathematically valid) has been reduced from 100 cm to 50 cm after the retrievalaccuracy was assessed both mathematically and physically. Moreover, we progressively change the implementationof the inversion code and its subroutines as we find more accurate and efficient ways of mathematical operations. Thelatest AirMOSS results (including soil moisture maps, validation plots, and scatter plots) as well as all improvementsapplied to the retrieval algorithm, including the one mentioned above, will be reported at the talk, following a briefdescription of the retrieval methodology. Fig. 1 shows a validation plot for a flight over Tonzi Ranch from September2014 (a) and a scatter plot for various threshold depths using 2012 and 2013 data.

  4. AIRS high-resolution stratospheric temperature retrievals evaluated with operational Level-2 data and ERA-Interim

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Hoffmann, Lars

    2015-04-01

    The Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite provides stratospheric temperature observations for a variety of scientific tasks. However, the horizontal resolution of the operational temperature retrievals is generally not sufficient for studies of gravity waves. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and therefore has nine times better horizontal sampling than the operational data. The retrieval configuration is optimized so that the results provide a trade-off between spatial resolution and retrieval noise which is considered optimal for gravity wave analysis. Here the quality of the high-resolution data is assessed by comparing a nine-year record (2003 - 2011) of stratospheric temperatures with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed a statistical comparison of the high-resolution retrieval and reference data sets based on zonal averages and time-series. The temperature data sets are split into day and night, because the AIRS high-resolution retrieval uses different configurations for day- and night-time conditions to cope with non-LTE effects. The temperature data are averaged on a latitudinal grid with a resolution of one degree. The zonal averages are calculated on a daily basis and show significant day-to-day variability. To further summarize the data we calculated monthly averages from the daily averaged data and also computed zonal means. Additionally, the standard deviation of the three data sets was computed. The comparisons show that the high-resolution temperature data are in good agreement with the reference data sets. The bias in the zonal averages is mostly within ± 2 K and reaches a maximum of 7 K to ERA-Interim and 4 K to the AIRS operational data at the stratopause, which is related to the different resolutions of the data sets. Variability is nearly the

  5. Hot air vulcanization of rubber profiles

    SciTech Connect

    Gerlach, J.

    1995-07-01

    Elastomer profiles are deployed in quantity by the automobile industry as seals and wateproofing in coachwork. The high standards demanded by the industry; improvement in weather prediction, noise reduction, restriction of tolerances, together with powerful demand for EPDM force the rubber processing industry into development, particularly of elastomers. Complex proofing systems must also be achieved with extremely complicated profile forms. All too often such profiles have an extremely large surface together with a low cross-section density. They frequently consist of two or three rubber compounds and are steel reinforced. Sometimes they are flocked and coated with a low friction finish. Such high-tech seals require an adjustment of the vulcanization method. The consistent trend in the nineties towards lower quantities of elastomer per sealing unit and the dielectric factor, especially with EPDM, has brought an old fashioned vulcanization method once more to the fore, a method developed over the past years to an extremely high standard, namely the hot-air method. This paper describes various vulcanization and curing methods and their relative merits and disadvantages, the Gerlach hot-air concept, the hot air installation concept, and energy saving and efficiency afforded by this technique. 4 figs.

  6. The OMPS Limb Profiler Instrument: An Alternative Data Analysis and Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Rault, Didier F.; Lumpe, Jerry; Eden, Thomas

    2009-01-01

    The upcoming Ozone Mapper and Profiler Suite (OMPS), which will be launched on the NPOESS Preparatory Project (NPP) platform in early 2011, will continue monitoring the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth fs limb radiance (which is due to the scattering of solar photons by air molecules, aerosol and Earth surface) in the ultra-violet (UV), visible and near infrared, from 285 to 1000 nm. The LP simultaneously images the whole vertical extent of the Earth's limb through three vertical slits, each covering a vertical tangent height range of 100 km and each horizontally spaced by 250 km in the cross-track direction. The focal plane of the LP spectrometer is a two ]dimensional CCD array comprised of 340 x 740 pixels. Several data analysis tools are presently being constructed and tested to retrieve ozone and aerosol vertical distribution from limb radiance measurements. The primary NASA algorithm is based on earlier algorithms developed for the SOLSE/LORE and SAGE III limb scatter missions. The paper will describe an alternative algorithm which will retrieve ozone density and aerosol extinction directly from radiance data collected on individual CCD pixels. This alternative method uses an optimal estimation approach to retrieve ozone and aerosol in the 10-60 km range from the information contained within an ensemble of about 50000 down-linked pixels. Tangent height registration is performed using the Rayleigh Scattering Attitude Sensor (RSAS) technique applied to columns of pixels in the 340-360 nm range. Cloud

  7. CO2 vertical profile retrieval from ground-based IR atmospheric spectra

    NASA Astrophysics Data System (ADS)

    Khosravian, Kobra; Loehnert, Ulrich; Turner, David; Ebell, Kerstin

    2016-04-01

    CO2 vertical profile retrieval from ground-based IR atmospheric spectra In this study, we developed an algorithm for retrieving the CO2 vertical profile from atmospheric ground-based zenith spectra in the mid IR. Providing the CO2 profile from continuous (24h/day) ground-based spectra would be a great potential for studying the carbon cycle, the evaluation of satellite measurements or the assessment of numerical models, which forecast the near-surface CO2 flux. In order to retrieve the CO2 profile, we used observations of the Atmospheric Emitted Radiance Interferometer (AERI) that was installed at the JOYCE (Jülich ObservatorY for Cloud Evolution), Germany in 2012. AERI measures downwelling infrared radiances from 520 cm-1 (3.3 μm) to 3020 cm-1 (19 μm) with a spectral resolution of 1 cm-1 and a temporal resolution of 1 minute. In a first step, we performed sensitivity studies for finding the most-suited spectral bands with highest sensitivity to the mean column amount of CO2 volume mixing ratio (VMR). Then an algorithm, known as AERIoe (Turner and Löhnert 2014), was applied to retrieve the mean column amount of CO2 VMR using simulated radiances in clear sky cases. AERIoe is a variational retrieval algorithm to provide information on Temperature, humidity, trace gases and clouds. The simulated AERI radiances were generated by a line by line radiative transfer model (LBLRTM) using model temperature, humidity and CO2 profile. The retrieval results of mean column amount of CO2 VMR are in good agreement with the true ones. In addition to the mean column amount, we modified AERIoe to retrieve the CO2 vertical profile. First results reveal that there is more than 1 degree of freedom for CO2 profile. We will show results how the retrieval method is refined to optimally exploit the information on the CO2 profile contained in the AERI measurements.

  8. Impact of AIRS Thermodynamic Profile on Regional Weather Forecast

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovee, Gary

    2010-01-01

    Prudent assimilation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. AIRS-enhanced analysis has warmer and moister PBL. Forecasts with AIRS profiles are generally closer to NAM analyses than CNTL. Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecasts. Including AIRS profiles in assimilation process enhances the moist instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  9. AIR PERMIT COMPLIANCE FOR WASTE RETRIEVAL OEPRATIONS INVOLVING MULTI-UNIT OPERATIONS

    SciTech Connect

    SIMMONS FM

    2007-11-05

    Since 1970, approximately 38,000 suspect-transuranic and transuranic waste containers have been placed in retrievable storage on the Hanford Site in the 200 Areas burial grounds. Hanford's Waste Retrieval Project is retrieving these buried containers and processing them for safe storage and disposition. Container retrieval activities require an air emissions permit to account for potential emissions of radionuclides. The air permit covers the excavation activities as well as activities associated with assaying containers and installing filters in the retrieved transuranic containers lacking proper venting devices. Fluor Hanford, Inc. is required to track radioactive emissions resulting from the retrieval activities. Air, soil, and debris media contribute to the emissions and enabling assumptions allow for calculation of emissions. Each of these activities is limited to an allowed annual emission (per calendar year) and .contributes to the overall total emissions allowed for waste retrieval operations. Tracking these emissions is required to ensure a permit exceedance does not occur. A tracking tool was developed to calculate potential emissions in real time sense. Logic evaluations are established within the tracking system to compare real time data against license limits to ensure values are not exceeded for either an individual activity or the total limit. Data input are based on field survey and workplace air monitoring activities. This tracking tool is used monthly and quarterly to verify compliance to the license limits. Use of this tool has allowed Fluor Hanford, Inc. to successfully retrieve a significant number of containers in a safe manner without any exceedance of emission limits.

  10. Evaluation of the Impact of Atmospheric Infrared Sounder (AIRS) Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of 6 weeks of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  11. An extended Kalman-Bucy filter for atmospheric temperature profile retrieval with a passive microwave sounder

    NASA Technical Reports Server (NTRS)

    Ledsham, W. H.; Staelin, D. H.

    1978-01-01

    An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.

  12. Retrieving vertical profiles of water-cloud droplet effective radius: Algorithm modification and preliminary application

    NASA Astrophysics Data System (ADS)

    Chang, Fu-Lung; Li, Zhanqing

    2003-12-01

    [2002] proposed a new cloud microphysics retrieval technique that can estimate the vertical profile of droplet effective radius (DER) for water clouds using multispectral near-infrared (NIR) measurements. The underlying principle of the retrieval technique is that radiance measurements at distinct multi-NIR wavelengths possess different penetration depths inside the cloud and this conveys certain information on the DER vertical profile (DVP). However, this information is insufficient to retrieve any shape of DVP and thus a linear DVP was assumed. In this study, three DVPs are examined: (1) as in [2002], a linear DVP proportional to the in-cloud optical depth, (2) a linear DVP proportional to the height within the cloud, and (3) a DVP where the liquid water content (LWC) within the cloud varies linearly with height. The latter two assumptions are in closer conformity with in-situ observations. Algorithms that can retrieve both the DVP and cloud liquid water path (LWP) are presented. The cloud LWPs derived based on the retrieved DVPs are more sound than those obtained from assuming a vertical-constant DER profile. To enhance the DVP retrievals, a split-window technique is presented to better estimate the amount of above-cloud precipitable water (PW). The retrieval algorithms are applied to the MODIS Level-1B 1-km data and presently tested for two stratiform cloud cases observed over the north-central Oklahoma where independent cloud microphysics data are available from the United States Department of Energy's Atmospheric Radiation Measurement (ARM) Program. Good agreements in the retrieved DER profile, LWP, and above-cloud PW are found in a preliminary demonstration of the new approach. Sensitivity of the retrieved DER profile to uncertainties in the above-cloud PW and surface albedos is also discussed.

  13. GFIT2: an experimental algorithm for vertical profile retrieval from near-IR spectra

    NASA Astrophysics Data System (ADS)

    Connor, Brian J.; Sherlock, Vanessa; Toon, Geoff; Wunch, Debra; Wennberg, Paul O.

    2016-08-01

    An algorithm for retrieval of vertical profiles from ground-based spectra in the near IR is described and tested. Known as GFIT2, the algorithm is primarily intended for CO2, and is used exclusively for CO2 in this paper. Retrieval of CO2 vertical profiles from ground-based spectra is theoretically possible, would be very beneficial for carbon cycle studies and the validation of satellite measurements, and has been the focus of much research in recent years. GFIT2 is tested by application both to synthetic spectra and to measurements at two Total Carbon Column Observing Network (TCCON) sites. We demonstrate that there are approximately 3° of freedom for the CO2 profile, and the algorithm performs as expected on synthetic spectra. We show that the accuracy of retrievals of CO2 from measurements in the 1.61μ (6220 cm-1) spectral band is limited by small uncertainties in calculation of the atmospheric spectrum. We investigate several techniques to minimize the effect of these uncertainties in calculation of the spectrum. These techniques are somewhat effective but to date have not been demonstrated to produce CO2 profile retrievals with sufficient precision for applications to carbon dynamics. We finish by discussing ongoing research which may allow CO2 profile retrievals with sufficient accuracy to significantly improve the scientific value of the measurements from that achieved with column retrievals.

  14. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  15. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  16. CrIS EDR Validation Assessment Model: test case study using IASI and AIRS retrievals

    NASA Astrophysics Data System (ADS)

    Pougatchev, N.; August, T.; Calbert, X.; Hultberg, T.; Oduleye, O.; Schluessel, P.; Stiller, B.; St Germain, K.; Bingham, G.

    2008-12-01

    Validation Assessment Model developed for the CrIS on NPP/NPOESS mission has been tested through its application to the validation of the EUMETSAT IASI temperature and water vapor retrievals against correlative radiosondes during July - August 2007. It has been also used to compare the IASI retrievals with the AIRS NOAA retrievals over Lindenberg for the same period. It has been demonstrated that IASI temperature retrievals perform to the expected accuracy. Averaging kernels adequately characterize the data. Assessed errors for water vapor are higher than expected but that may be caused by deficiency of radiosonde as the water vapor validation reference source. AIRS and IASI retrievals agree to the expected level of discrepancy caused by temporal non-coincidence of the overpasses.

  17. Satellite observation of atmospheric methane: intercomparison between AIRS and GOSAT TANSO-FTS retrievals

    NASA Astrophysics Data System (ADS)

    Zou, M.; Xiong, X.; Saitoh, N.; Warner, J.; Zhang, Y.; Chen, L.; Weng, F.

    2015-10-01

    Space-borne observations of atmospheric methane (CH4) have been made using the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite since August 2002 and the Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT) since April 2009. This study compared the GOSAT TANSO-FTS thermal infrared (TIR) version 1.0 CH4 product with the collocated AIRS version 6 CH4 product using data from 1 August 2010 to 30 June 2012, including the CH4 mixing ratios and the total column amounts. The results show that at 300-600 hPa, where both AIRS and GOSAT-TIR CH4 have peak sensitivities, they agree very well, but GOSAT-TIR retrievals tend to be higher than AIRS in layer 200-300 hPa. At 300 hPa the CH4 mixing ratio from GOSAT-TIR is, on average, 10.3 ± 31.8 ppbv higher than that from AIRS, and at 600 hPa GOSAT-TIR retrieved CH4 is -16.2 ± 25.7 ppbv lower than AIRS CH4. Comparison of the total column amount of CH4 shows that GOSAT-TIR agrees with AIRS to within 1 % in the mid-latitude regions of Southern Hemisphere and in tropics. In the mid to high latitudes in the Northern Hemisphere, GOSAT-TIR is ~ 1-2 % lower than AIRS, and in the high-latitude regions of Southern Hemisphere the difference of GOSAT from AIRS varies from -3 % in October to +2 % in July. The difference between AIRS and GOSAT TANSO-FTS retrievals is mainly due to the difference in retrieval algorithms and instruments itself, and the larger difference in the high latitude regions is associated with the low information content and small degree of freedoms of the retrieval. The degree of freedom of GOSAT-TIR retrievals is lower than that of AIRS also indicates that the constraint in GOSAT-TIR retrieval may be too strong. From the good correlation between AIRS and GOSAT-TIR retrievals and the seasonal variation they observed we are confident that the thermal infrared measurements from AIRS and GOSAT-TIR can provide

  18. Satellite observation of atmospheric methane: intercomparison between AIRS and GOSAT TANSO-FTS retrievals

    NASA Astrophysics Data System (ADS)

    Zou, Mingmin; Xiong, Xiaozhen; Saitoh, Naoko; Warner, Juying; Zhang, Ying; Chen, Liangfu; Weng, Fuzhong; Fan, Meng

    2016-08-01

    Space-borne observations of atmospheric methane (CH4) have been made using the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite since August 2002 and the Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on the Greenhouse Gases Observing Satellite (GOSAT) since April 2009. This study compared the GOSAT TANSO-FTS thermal infrared (TIR) version 1.0 CH4 product with the collocated AIRS version 6 CH4 product using data from 1 August 2010 to 30 June 2012, including the CH4 mixing ratios and the total column amounts. The results show that at 300-600 hPa, where both AIRS and GOSAT-TIR CH4 have peak sensitivities, they agree very well, but GOSAT-TIR retrievals tend to be higher than AIRS in layer 200-300 hPa. At 300 hPa the CH4 mixing ratio from GOSAT-TIR is, on average, 10.3 ± 31.8 ppbv higher than that from AIRS, and at 600 hPa GOSAT-TIR retrieved CH4 is -16.2 ± 25.7 ppbv lower than AIRS CH4. Comparison of the total column amount of CH4 shows that GOSAT-TIR agrees with AIRS to within 1 % in the mid-latitude regions of the Southern Hemisphere and in the tropics. In the mid to high latitudes in the Northern Hemisphere, comparison shows that GOSAT-TIR is ˜ 1-2 % lower than AIRS, and in the high-latitude regions of the Southern Hemisphere the difference of GOSAT from AIRS varies from -3 % in October to +2 % in July. The difference between AIRS and GOSAT TANSO-FTS retrievals is mainly due to the difference in retrieval algorithms and instruments themselves, and the larger difference in the high-latitude regions is associated with the low information content and small degrees of freedom of the retrieval. The degrees of freedom of GOSAT-TIR retrievals are lower than that of AIRS, which also indicates that the constraint in GOSAT-TIR retrievals may be too strong. From the good correlation between AIRS and GOSAT-TIR retrievals and the seasonal variation they observed, we are confident that the thermal infrared

  19. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) -GEOGRAPHIC, COMMON, AND MAINTENANCE SUBSYSTEM (GCS)

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  20. Improvement of OMI ozone profile retrievals by simultaneously fitting polar mesospheric clouds

    NASA Astrophysics Data System (ADS)

    Bak, Juseon; Liu, Xiong; Kim, Jae H.; Deland, Matthew T.; Chance, Kelly

    2016-09-01

    The presence of polar mesospheric clouds (PMCs) at summer high latitudes could affect the retrieval of ozone profiles using backscattered ultraviolet (UV) measurements. PMC-induced errors in ozone profile retrievals from Ozone Monitoring Instrument (OMI) backscattered UV measurements are investigated through comparisons with Microwave Limb Sounder (MLS) ozone measurements. This comparison demonstrates that the presence of PMCs leads to systematic biases for pressures smaller than 6 hPa; the biases increase from ˜ -2 % at 2 hPa to ˜ -20 % at 0.5 hPa on average and are significantly correlated with brightness of PMCs. Sensitivity studies show that the radiance sensitivity to PMCs strongly depends on wavelength, increasing by a factor of ˜ 4 from 300 to 265 nm. It also strongly depends on the PMC scattering, thus depending on viewing geometry. The optimal estimation-based retrieval sensitivity analysis shows that PMCs located at 80-85 km have the greatest effect on ozone retrievals at ˜ 0.2 hPa ( ˜ 60 km), where the retrieval errors range from -2.5 % with PMC vertical optical depth (POD) of 10-4 to -20 % with 10-3 POD at backscattering angles. The impacts increase by a factor of ˜ 5 at forward-scattering angles due to stronger PMC sensitivities. To reduce the interference of PMCs on ozone retrievals, we perform simultaneous retrievals of POD and ozone with a loose constraint of 10-3 for POD, which results in retrieval errors of 1-4 × 10-4. It is demonstrated that the negative bias of OMI ozone retrievals relative to MLS can be improved by including the PMC in the forward-model calculation and retrieval.

  1. Improvement of GOME-2 Tropospheric Ozone Profile Retrievals from Joint UV/Visible Measurements

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zoogman, P.; Chance, K.; Cai, Z.; Nowlan, C. R.

    2015-12-01

    It has been shown that adding visible measurements in the Chappuis band to UV measurements in the Hartley/Huggins bands can significantly enhance retrieval sensitivity to lower tropospheric ozone from backscattered solar radiances due to deeper photon penetration in the visible to the surface than in the ultraviolet. The first NASA EVI TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument is being developed to measure backscattered solar radiation in two channels (~290-490 and 540-740 nm) and make atmospheric pollution measurements over North America from the Geostationary orbit. However, this retrieval enhancement has yet to be solidly demonstrated from existing measurements due to the weak ozone absorption in the visible and strong interference from surface reflectance and the requirement of accurate radiometric calibration across different spectral channels. We present GOME-2 retrievals from joint UV/visible measurements using the SAO optimal estimation based ozone profile retrieval algorithm, to directly explore the retrieval improvement in lower tropospheric ozone from additional visible measurements. To reduce the retrieval interference from surface reflectance, we add characterization of surface spectral reflectance in the visible based on ASTER and other surface reflectance spectra and MODIS BRDF climatology into the ozone profile algorithm using two approaches: fitting several EOFs (Empirical Orthogonal Functions) and scaling reflectance spectra. We also perform empirical radiometric calibration of the GOME-2 data based on radiative transfer simulations. We evaluate the retrieval improvement of joint UV/visible retrieval over the UV retrieval. These results clearly show the potential of using the visible to improve lower tropospheric ozone retrieval.

  2. Significant Advances in the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Molnar, Gyula

    2012-01-01

    AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,

  3. Validation of AIRS/AMSU Cloud Retrievals Using MODIS Cloud Analyses

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel

    2005-01-01

    The AIRS/AMSU (flying on the EOS-AQUA satellite) sounding retrieval methodology allows for the retrieval of key atmospheric/surface parameters under partially cloudy conditions (Susskind et al.). In addition, cloud parameters are also derived from the AIRS/AMSU observations. Within each AIRS footprint, cloud parameters at up to 2 cloud layers are determined with differing cloud top pressures and effective (product of infrared emissivity at 11 microns and physical cloud fraction) cloud fractions. However, so far the AIRS cloud product has not been rigorously evaluated/validated. Fortunately, collocated/coincident radiances measured by MODIS/AQUA (at a much lower spectral resolution but roughly an order of-magnitude higher spatial resolution than that of AIRS) are used to determine analogous cloud products from MODIS. This allows us for a rather rare and interesting possibility: the intercomparisons and mutual validation of imager vs. sounder-based cloud products obtained from the same satellite positions. First, we present results of small-scale (granules) instantaneous intercomparisons. Next, we will evaluate differences of temporally averaged (monthly) means as well as the representation of inter-annual variability of cloud parameters as presented by the two cloud data sets. In particular, we present statistical differences in the retrieved parameters of cloud fraction and cloud top pressure. We will investigate what type of cloud systems are retrieved most consistently (if any) with both retrieval schemes, and attempt to assess reasons behind statistically significant differences.

  4. Improved Ozone and Carbon Monoxide Profile Retrievals Using Multispectral Measurements from NASA "A Train", NPP, and TROPOMI Satellites

    NASA Astrophysics Data System (ADS)

    Fu, D.; Bowman, K. W.; Kulawik, S. S.; Miyazaki, K.; Worden, J. R.; Worden, H. M.; Livesey, N. J.; Payne, V.; Luo, M.; Natraj, V.; Veefkind, P.; Aben, I.; Landgraf, J.; Flynn, L. E.; Han, Y.; Liu, X.; Strow, L. L.; Kuai, L.

    2015-12-01

    Tropospheric ozone is at the juncture of air quality and climate. Ozone directly impacts human and plant health, and directly forces the climate system through absorption of thermal radiation. Carbon monoxide is a chemical precursor of greenhouse gases CO2 and tropospheric O3, and is also an ideal tracer of transport processes due to its medium life time (weeks to months). The Aqua-AIRS and Aura-OMI instruments in the NASA "A-Train", CrIS and OMPS instruments on the NOAA Suomi-NPP, IASI and GOME-2 on METOP and TROPOMI aboard the Sentinel 5 precursor (S5p) have the potential to provide the synoptic chemical and dynamical context for ozone necessary to quantify long-range transport at global scales and to provide an anchor to the near-term constellation of geostationary sounders: NASA TEMPO, ESA Sentinel 4, and the Korean GEMS. We introduce the JPL MUlti-SpEctral, MUlti-SpEcies, MUlti-SatEllite (MUSES) retrieval algorithm, which ingests panspectral observations across multiple platforms in a non-linear optimal estimation framework. MUSES incorporates advances in remote sensing science developed during the EOS-Aura era including rigorous error analysis diagnostics and observation operators needed for trend analysis, climate model evaluation, and data assimilation. Its performance has been demonstrated through prototype studies for multi-satellite missions (AIRS, CrIS, TROPOMI, TES, OMI, and OMPS). We present joint tropospheric ozone retrievals from AIRS/OMI and CrIS/OMPS over global scales, and demonstrate the potential of joint carbon monoxide profiles from TROPOMI/CrIS. These results indicate that ozone can be retrieved with ~2 degrees of freedom for signal (dofs) in the troposphere, which is similar to TES. Joint CO profiles have dofs similar to the MOPITT multispectral retrieval but with higher spatial resolution and coverage. Consequently, multispectral retrievals show promise in providing continuity with NASA EOS observations and pave the way towards a new

  5. Air Permit Compliance for Hanford Waste Retrieval Operations Involving Multi-Unit Emissions

    SciTech Connect

    Faulk, D.E.; Simmons, F.M.

    2008-07-01

    Since 1970, approximately 38,000 suspect-transuranic and transuranic waste containers have been placed in retrievable storage on the Hanford Site in the 200 Areas burial grounds. Hanford's Waste Retrieval Project is retrieving these buried containers and processing them for safe storage and disposition. Container retrieval activities require an air emissions permit to account for potential emissions of radionuclides. The air permit covers the excavation activities as well as activities associated with assaying containers and installing filters in the retrieved transuranic containers lacking proper venting devices. Fluor Hanford, Inc. is required to track radioactive emissions resulting from the retrieval activities. Air, soil, and debris media contribute to the emissions and enabling assumptions allow for calculation of emissions. Each of these activities is limited to an allowed annual emission (per calendar year) and contributes to the overall total emissions allowed for waste retrieval operations. Tracking these emissions is required to ensure a permit exceedance does not occur. A tracking tool was developed to calculate potential emissions in real time sense. Logic evaluations are established within the tracking system to compare real time data against license limits to ensure values are not exceeded for either an individual activity or the total limit. Data input are based on field survey and workplace air monitoring activities. This tracking tool is used monthly and quarterly to verify compliance to the license limits. Use of this tool has allowed Fluor Hanford, Inc. to successfully retrieve a significant number of containers in a safe manner without any exceedance of emission limits. (authors)

  6. Retrieval of Mid-tropospheric CO2 Directly from AIRS Measurements

    NASA Technical Reports Server (NTRS)

    Olsen, Edward T.; Chahine, Moustafa T.; Chen, Luke L.; Pagano, Thomas S.

    2008-01-01

    We apply the method of Vanishing Partial Derivatives (VPD) to AIRS spectra to retrieve daily the global distribution of CO2 at a nadir geospatial resolution of 90 km x 90 km without requiring a first-guess input beyond the global average. Our retrievals utilize the 15 (micro)m band radiances, a complex spectral region. This method may be of value in other applications, in which spectral signatures of multiple species are not well isolated spectrally from one another.

  7. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  8. Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like" Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2015-01-01

    A main objective of AIRS/AMSU on EOS is to provide accurate sounding products that are used to generate climate data sets. Suomi NPP carries CrIS/ATMS that were designed as follow-ons to AIRS/AMSU. Our objective is to generate a long term climate data set of products derived from CrIS/ATMS to serve as a continuation of the AIRS/AMSU products. We have modified an improved version of the operational AIRS Version-6 retrieval algorithm for use with CrIS/ATMS. CrIS/ATMS products are of very good quality, and are comparable to, and consistent with, those of AIRS.

  9. Results from CrIS/ATMS obtained using an "AIRS Version-6 like" retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2015-09-01

    A main objective of AIRS/AMSU on EOS is to provide accurate sounding products that are used to generate climate data sets. Suomi NPP carries CrIS/ATMS that were designed as follow-ons to AIRS/AMSU. Our objective is to generate a long term climate data set of products derived from CrIS/ATMS to serve as a continuation of the AIRS/AMSU products. We have modified an improved version of the operational AIRS Version-6 retrieval algorithm for use with CrIS/ATMS. CrIS/ATMS products are of very good quality, and are comparable to, and consistent with, those of AIRS.

  10. Cris-atms Retrievals Using an AIRS Science Team Version 6-like Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.; Iredell, Lena

    2014-01-01

    CrIS is the infrared high spectral resolution atmospheric sounder launched on Suomi-NPP in 2011. CrISATMS comprise the IRMW Sounding Suite on Suomi-NPP. CrIS is functionally equivalent to AIRS, the high spectral resolution IR sounder launched on EOS Aqua in 2002 and ATMS is functionally equivalent to AMSU on EOS Aqua. CrIS is an interferometer and AIRS is a grating spectrometer. Spectral coverage, spectral resolution, and channel noise of CrIS is similar to AIRS. CrIS spectral sampling is roughly twice as coarse as AIRSAIRS has 2378 channels between 650 cm-1 and 2665 cm-1. CrIS has 1305 channels between 650 cm-1 and 2550 cm-1. Spatial resolution of CrIS is comparable to AIRS.

  11. Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.

    PubMed

    Feiyue, Mao; Wei, Gong; Yingying, Ma

    2012-02-15

    The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.

  12. The impact of AIRS atmospheric temperature and moisture profiles on hurricane forecasts: Ike (2008) and Irene (2011)

    NASA Astrophysics Data System (ADS)

    Zheng, Jing; Li, Jun; Schmit, Timothy J.; Li, Jinlong; Liu, Zhiquan

    2015-03-01

    Atmospheric InfraRed Sounder (AIRS) measurements are a valuable supplement to current observational data, especially over the oceans where conventional data are sparse. In this study, two types of AIRS-retrieved temperature and moisture profiles, the AIRS Science Team product (SciSup) and the single field-of-view (SFOV) research product, were evaluated with European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike (2008) and Hurricane Irene (2011). The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis, especially between 200 hPa and 700 hPa. The average standard deviation of both temperature profiles was approximately 1 K under 200 hPa, where the mean AIRS temperature profile from the AIRS SciSup retrievals was slightly colder than that from the AIRS SFOV retrievals. The mean SciSup moisture profile was slightly drier than that from the SFOV in the mid troposphere. A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting (WRF) model and its three-dimensional variational (3DVAR) data assimilation system for hurricanes Ike and Irene. The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment. In terms of total precipitable water and rainfall forecasts, the hurricane moisture environment was found to be affected by the AIRS sounding assimilation. Meanwhile, improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.

  13. COMPLIANCE FOR HANFORD WASTE RETRIEVAL RADIOACTIVE AIR EMISSIONS

    SciTech Connect

    FM SIMMONS

    2009-06-30

    {sm_bullet} Since 1970, approximately 38,000 suspect transuranic (TRU) and TRU waste cont{approx}iners have been placed in retrievable storage on the Hanford Site in the 200Area's burial grounds. {sm_bullet} TRU waste is defined as waste containing greater than 100 nanocuries/gram of alpha emitting transuranic isotopes with half lives greater than 20 years. {sm_bullet} The United States currentl{approx}permanently disposes of TRU waste at the Waste Isolation Pilot Plant (WIPP).

  14. Characterizing the errors in AIRS mid-tropospheric CO2 retrievals

    NASA Astrophysics Data System (ADS)

    Oda, T.; Baker, D. F.; Kawa, S. R.

    2014-12-01

    Mid- to upper-tropospheric carbon dioxide (CO2) has been retrieved since 2002 from thermal infrared channels of NASA's Atmospheric Infrared Sounder (AIRS) instrument. Unlike retrievals using near-IR data from the Japanese Greenhouse gas Observing SATellite (GOSAT) or NASA's Orbiting Carbon Observatory 2 (OCO2), the sensitivity of AIRS measurements does not peak near the surface; however, the AIRS tropospheric CO2 data cover nearly the entire globe across a decadal time period - they should provide a good constraint on long-term surface CO2 fluxes at broad spatial scales, in the absence of significant biases. In this study, we attempt to characterize the systematic and random errors in AIRS CO2 retrievals by comparing to CO2 fields generated by the PCTM transport model using CarbonTracker-optimized fluxes. We examine both the standard and support products of AIRS Version 5 Release Level 2 CO2, together with other parameters (e.g., cloud top pressure/temperature) retrieved using coincident microwave measurements from the Advanced Microwave Sounding Unit (AMSU). We formulate a bias correction for AIRS CO2 against these parameters, remove the bias, and use the bias-corrected data to solve for weekly flux corrections across 2009-2011 at a 3.0 x 3.75 deg resolution (lat/lon).

  15. Retrievals of Vertical Air Motion from the HIAPER Cloud Radar during CSET

    NASA Astrophysics Data System (ADS)

    Schwartz, M. C.; Ghate, V. P.; Vivekanandan, J.; Tsai, P.; Ellis, S. M.

    2015-12-01

    Marine boundary layer cumulus and stratocumulus clouds are significant factors in the Earth's climate system and hence need to be accurately represented in Global Climate Model (GCM) simulations. One feature germane to these clouds, and where GCMs encounter difficulty, is the transition from stratocumulus- to cumulus-capped marine boundary layers (MBLs). This transition is climatologically important due to the large decreases in cloud cover and to the significant changes in boundary layer structure that accompany it. An important component of understanding this transition is the ability to characterize the evolution of the vertical velocity structure of the MBL. During the Cloud System Evolution in the Trades (CSET) field program, held in July and August 2015, the NSF/NCAR Gulfstream-V High-performance Instrumented Airborne Platform for Environmental Research (GV HIAPER) aircraft made several transects from California to Hawaii to characterize the stratocumulus to Cumulus transition. The GV-HIAPER carried several remote sensing and in situ instruments for observing aerosol, cloud, precipitation, radiation and meteorological properties. Within selected air masses, flight legs were conducted above, inside, and below the cloud layers during aircraft transits from California to Hawaii. The same air masses (as determined by parcel trajectory analysis) were resampled on the return flight to California a day later. Of particular importance to studying MBL clouds are the HIAPER Cloud Radar (HCR) and the High Spectral Resolution Lidar (HSRL), which provided mapping of aerosol, cloud, and precipitation structures. From the W-band HCR, full radar Doppler spectra were calculated at 0.5 sec resolution. The 532 nm HSRL was fully calibrated and used to retrieve the aerosol extinction profiles. We have first combined the data collected by the HCR and the HSRL to create a hydrometeor mask, which will be used to characterize changes in the cloud structure. The Doppler spectrum from

  16. Endotracheal tube cuff pressure before, during, and after fixed-wing air medical retrieval.

    PubMed

    Brendt, Peter; Schnekenburger, Marc; Paxton, Karen; Brown, Anthony; Mendis, Kumara

    2013-01-01

    Abstract Background. Increased endotracheal tube (ETT) cuff pressure is associated with compromised tracheal mucosal perfusion and injuries. No published data are available for Australia on pressures in the fixed-wing air medical retrieval setting. Objective. After introduction of a cuff pressure manometer (Mallinckrodt, Hennef, Germany) at the Royal Flying Doctor Service (RFDS) Base in Dubbo, New South Wales (NSW), Australia, we assessed the prevalence of increased cuff pressures before, during, and after air medical retrieval. Methods. This was a retrospective audit in 35 ventilated patients during fixed-wing retrievals by the RFDS in NSW, Australia. Explicit chart review of ventilated patients was performed for cuff pressures and changes during medical retrievals with pressurized aircrafts. Pearson correlation was calculated to determine the relation of ascent and ETT cuff pressure change from ground to flight level. Results. The mean (± standard deviation) of the first ETT cuff pressure measurement on the ground was 44 ± 20 cmH2O. Prior to retrieval in 11 patients, the ETT cuff pressure was >30 cmH2O and in 11 patients >50 cmH2O. After ascent to cruising altitude, the cuff pressure was >30 cmH2O in 22 patients and >50 cmH2O in eight patients. The cuff pressure was reduced 1) in 72% of cases prior to take off and 2) in 85% of cases during flight, and 3) after landing, the cuff pressure increased in 85% of cases. The correlation between ascent in cabin altitude and ETT cuff pressure was r = 0.3901, p = 0.0205. Conclusions. The high prevalence of excessive cuff pressures during air medical retrieval can be avoided by the use of cuff pressure manometers. Key words: cuff pressure; air medical retrieval; prehospital. PMID:23252881

  17. Endotracheal tube cuff pressure before, during, and after fixed-wing air medical retrieval.

    PubMed

    Brendt, Peter; Schnekenburger, Marc; Paxton, Karen; Brown, Anthony; Mendis, Kumara

    2013-01-01

    Abstract Background. Increased endotracheal tube (ETT) cuff pressure is associated with compromised tracheal mucosal perfusion and injuries. No published data are available for Australia on pressures in the fixed-wing air medical retrieval setting. Objective. After introduction of a cuff pressure manometer (Mallinckrodt, Hennef, Germany) at the Royal Flying Doctor Service (RFDS) Base in Dubbo, New South Wales (NSW), Australia, we assessed the prevalence of increased cuff pressures before, during, and after air medical retrieval. Methods. This was a retrospective audit in 35 ventilated patients during fixed-wing retrievals by the RFDS in NSW, Australia. Explicit chart review of ventilated patients was performed for cuff pressures and changes during medical retrievals with pressurized aircrafts. Pearson correlation was calculated to determine the relation of ascent and ETT cuff pressure change from ground to flight level. Results. The mean (± standard deviation) of the first ETT cuff pressure measurement on the ground was 44 ± 20 cmH2O. Prior to retrieval in 11 patients, the ETT cuff pressure was >30 cmH2O and in 11 patients >50 cmH2O. After ascent to cruising altitude, the cuff pressure was >30 cmH2O in 22 patients and >50 cmH2O in eight patients. The cuff pressure was reduced 1) in 72% of cases prior to take off and 2) in 85% of cases during flight, and 3) after landing, the cuff pressure increased in 85% of cases. The correlation between ascent in cabin altitude and ETT cuff pressure was r = 0.3901, p = 0.0205. Conclusions. The high prevalence of excessive cuff pressures during air medical retrieval can be avoided by the use of cuff pressure manometers. Key words: cuff pressure; air medical retrieval; prehospital.

  18. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  19. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation

    NASA Astrophysics Data System (ADS)

    Miles, G. M.; Siddans, R.; Kerridge, B. J.; Latter, B. G.; Richards, N. A. D.

    2015-01-01

    This paper describes and assesses the performance of the RAL (Rutherford Appleton Laboratory) ozone profile retrieval scheme for the Global Ozone Monitoring Experiment 2 (GOME-2) with a focus on tropospheric ozone. Developments to the scheme since its application to GOME-1 measurements are outlined. These include the approaches developed to account sufficiently for UV radiometric degradation in the Hartley band and for inadequacies in knowledge of instrumental parameters in the Huggins bands to achieve the high-precision spectral fit required to extract information on tropospheric ozone. The assessment includes a validation against ozonesondes (sondes) sampled worldwide over 2 years (2007-2008). Standard deviations of the ensemble with respect to the sondes are considerably lower for the retrieved profiles than for the a priori, with the exception of the lowest subcolumn. Once retrieval vertical smoothing (averaging kernels) has been applied to the sonde profiles there is a retrieval bias of 6% (1.5 DU) in the lower troposphere, with smaller biases in the subcolumns above. The bias in the troposphere varies with latitude. The retrieval underestimates lower tropospheric ozone in the Southern Hemisphere (SH) (15-20% or ~ 1-3 DU) and overestimates it in the Northern Hemisphere (NH) (10% or 2 DU). The ability of the retrieval to reflect the geographical distribution of lower tropospheric ozone, globally (rather than just ozonesonde launch sites) is demonstrated by comparison with the chemistry transport model TOMCAT. For a monthly mean of cloud-cleared GOME-2 pixels, a correlation of 0.66 is found between the retrieval and TOMCAT sampled accordingly, with a bias of 0.7 Dobson Units. GOME-2 estimates higher concentrations in NH pollution centres but lower ozone in the Southern Ocean and South Pacific, which is consistent with the comparison to ozonesondes.

  20. Contribution of the AIRS Shortwave Sounding Channels to Retrieval Accuracy

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis

    2006-01-01

    AIRS contains 2376 high spectral resolution channels between 650/cm and 2665/cm, including channels in both the 15 micron (near 667/cm) and 4.2 micron (near 2400/cm) COP sounding bands. Use of temperature sounding channels in the 15 micron CO2 band has considerable heritage in infra-red remote sensing. Channels in the 4.2 micron CO2 band have potential advantages for temperature sounding purposes because they are essentially insensitive to absorption by water vapor and ozone, and also have considerably sharper lower tropospheric temperature sounding weighting functions than do the 15 micron temperature sounding channels. Potential drawbacks with regard to use of 4.2 micron channels arise from effects on the observed radiances of solar radiation reflected by the surface and clouds, as well as effects of non-local thermodynamic equilibrium on shortwave observations during the day. These are of no practical consequences, however, when properly accounted for. We show results of experiments performed utilizing different spectral regions of AIRS, conducted with the AIRS Science Team candidate Version 5 algorithm. Experiments were performed using temperature sounding channels within the entire AIRS spectral coverage, within only the spectral region 650/cm to 1614 /cm; and within only the spectral region 1000/cm-2665/cm. These show the relative importance of utilizing only 15 micron temperature sounding channels, only the 4.2 micron temperature sounding channels, and both, with regards to sounding accuracy. The spectral region 2380/cm to 2400/cm is shown to contribute significantly to improve sounding accuracy in the lower troposphere, both day and night.

  1. Vertical level selection for temperature and trace gas profile retrievals using IASI

    NASA Astrophysics Data System (ADS)

    Vincent, R. A.; Dudhia, A.; Ventress, L. J.

    2015-06-01

    This work presents a new iterative method for optimally selecting a vertical retrieval grid based on the location of the information while accounting for inter-level correlations. Sample atmospheres initially created to parametrise the Radiative Transfer Model for the Television Infrared Observation Satellite Operational Vertical Sounder (RTTOV) forward model are used to compare the presented iterative selection method with two other common approaches, which are using levels of equal vertical spacing and selecting levels based on the cumulative trace of the averaging kernel matrix (AKM). This new method is shown to outperform compared methods for simulated profile retrievals of temperature, H2O, O3, CH4, and CO with the Infrared Atmospheric Sounding Interferometer (IASI). However, the benefits of using the more complicated iterative approach compared to the simpler cumulative trace method are slight and may not justify the added effort for the cases studied, but may be useful in other scenarios where temperature and trace gases have strong vertical gradients with significant estimate sensitivity. Furthermore, comparing retrievals using a globally optimised static grid vs. a locally adapted one shows that a static grid performs nearly as well for retrievals of O3, CH4, and CO. However, developers of temperature and H2O retrieval schemes may at least consider using adaptive or location specific vertical retrieval grids.

  2. Validation of the IASI temperature and water vapor profile retrievals by correlative radiosondes

    NASA Astrophysics Data System (ADS)

    Pougatchev, Nikita; August, Thomas; Calbet, Xavier; Hultberg, Tim; Oduleye, Osoji; Schlüssel, Peter; Stiller, Bernd; St. Germain, Karen; Bingham, Gail

    2008-08-01

    The METOP-A satellite Infrared Atmospheric Sounding Interferometer (IASI) Level 2 products comprise retrievals of vertical profiles of temperature and water vapor. The L2 data were validated through assessment of their error covariances and biases using radiosonde data for the reference. The radiosonde data set includes dedicated launches as well as the ones performed at regular synoptic times at Lindenberg station, Germany). For optimal error estimate the linear statistical Validation Assessment Model (VAM) was used. The model establishes relation between the compared satellite and reference measurements based on their relations to the true atmospheric state. The VAM utilizes IASI averaging kernels and statistical characteristics of the ensembles of the reference data to allow for finite vertical resolution of the retrievals and spatial and temporal non-coincidence. For temperature retrievals expected and assessed errors are in good agreement; error variances/rms of a single FOV retrieval are 1K between 800 - 300 mb with an increase to ~1K in tropopause and ~2K at the surface, possibly due to wrong surface parameters and undetected clouds/haze. Bias against radiosondes oscillates within +/-0 5K . between 950 - 100 mb. As for water vapor, its highly variable complex spatial structure does not allow assessment of retrieval errors with the same degree of accuracy as for temperature. Error variances/rms of a single FOV relative humidity retrieval are between 10 - 13% RH in the 800 - 300 mb range.

  3. Retrieving Temperature and Moisture Profiles from AERI Radiance Observations. AERIPROF Value-Added Product Technical Description

    SciTech Connect

    Feltz, W. F.; Howell, H. B.; Comstock, J.; Mahon, R.; Turner, D. D.; Smith, W. L.; Woolf, H. M.; Halter, T.

    2007-04-01

    One of the goals of the Atmospheric Radiation Measurement (ARM) Program is to collect a long-term series of radiative and atmospheric state observations to improve the parameterization of these processes in global climate models. The ARM Program intended to move away from the traditional approach of directly measuring profiles of temperature and moisture using radiosondes, which is expensive in terms of expendables and manpower, and develop methods to retrieve these profiles with ground-based remote sensors. The atmospheric emitted radiance interferometer (AERI), whose radiance data contains information on the vertical distribution of water vapor and temperature, is an integral part of the ARM profiling plan.

  4. Retrieval of Vertical Ozone Profile Using Satellite Solar Occultation Method and Tests of its Sensitivity

    NASA Astrophysics Data System (ADS)

    Cho, Hi-Ku; Yoon, Young-Jun; Park, Jae H.; Lee, Kwang Mok; Tatsuya, Yokota

    1998-06-01

    Recently measurements of atmospheric trace gases from satellite are vigorous. So the development of its data processing algorithm is important. In this study, retrieval of vertical ozone profile from the atmospheric transmittance measured by satellite solar occultation method and its sensitivity to temperature and pressure are investigated. The measured transmittance from satellite is assumed to be given by the limb path transmittance simulated using annual averaged Umkehr data for Seoul. The limb path transmittance between wavelengths 9.89micro m and 10.02micro m is simulated with respect to tangent heights using the ozone data of HALOE SIDS(Hallogen Occultation Experiment Simulated Instrument Data Set) as an initial profile. Other input data such as pressure and temperature are also from HALOE SIDS. Vertical ozone profile is correctly retrieved from the measured transmittance by onion-peeling method from 50km to 11km tangent heights with the vertical resolution of 3km. The bias error of +/- 0.001 in measured transmittance, the forced error of +/- 3K in each layer temperature, and the forced +/- 3% error in each layer pressure are assumed for sensitivity tests. These errors are based on the ADEOS/ILAS error limitation. The error in ozone amount ranges from -6.5% to +6.9% due to transmittance error, from -9.5% to +10.5% due to temperature error, and from -5.1% to +5.4% due to pressure error, respectively. The present study suggests that accurate vertical ozone profile can be retrieved from satellite solar occultation method. Accuracy of vertical temperature profile is especially important in the retrieval of vertical ozone profile.

  5. The potential of LIRIC to validate the vertical profiles of the aerosol mass concentration estimated by an air quality model

    NASA Astrophysics Data System (ADS)

    Siomos, Nikolaos; Filoglou, Maria; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spyros; Melas, Dimitris; Chaikovsky, Anatoli; Balis, Dimitris

    2015-04-01

    Vertical profiles of the aerosol mass concentration derived by a retrieval algorithm that uses combined sunphotometer and LIDAR data (LIRIC) were used in order to validate the mass concentration profiles estimated by the air quality model CAMx. LIDAR and CIMEL measurements of the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki were used for this validation.The aerosol mass concentration profiles of the fine and coarse mode derived by CAMx were compared with the respective profiles derived by the retrieval algorithm. For the coarse mode particles, forecasts of the Saharan dust transportation model BSC-DREAM8bV2 were also taken into account. Each of the retrieval algorithm's profiles were matched to the models' profile with the best agreement within a time window of four hours before and after the central measurement. OPAC, a software than can provide optical properties of aerosol mixtures, was also employed in order to calculate the angstrom exponent and the lidar ratio values for 355nm and 532nm for each of the model's profiles aiming in a comparison with the angstrom exponent and the lidar ratio values derived by the retrieval algorithm for each measurement. The comparisons between the fine mode aerosol concentration profiles resulted in a good agreement between CAMx and the retrieval algorithm, with the vertical mean bias error never exceeding 7 μgr/m3. Concerning the aerosol coarse mode concentration profiles both CAMx and BSC-DREAM8bV2 values are severely underestimated, although, in cases of Saharan dust transportation events there is an agreement between the profiles of BSC-DREAM8bV2 model and the retrieval algorithm.

  6. Comparison of atmospheric profiles between microwave radiometer retrievals and radiosonde soundings

    NASA Astrophysics Data System (ADS)

    Xu, Guirong; Xi, Baike; Zhang, Wengang; Cui, Chunguang; Dong, Xiquan; Liu, Yuanyuan; Yan, Guopao

    2015-10-01

    Atmospheric profiles of temperature (T), vapor density (ρv), and relative humidity (RH) retrieved from ground-based microwave radiometer (MWR) measurements are compared with radiosonde soundings at Wuhan, China. The MWR retrievals were averaged in the ±30 min period centered at sounding times of 00 and 12 UTC. A total of 403 and 760 profiles under clear and cloudy skies were selected. Based on the comparisons, temperature profiles have better consistency than the ρv and RH profiles, lower levels are better than upper levels, and the cloudy are better than the clear-sky profiles. Three cloud types (low, middle, and high) were identified by matching the infrared radiation thermometer-detected cloud base temperature to the MWR-retrieved temperature-height profiles. Temperature profile under high cloud has the highest correlation coefficient (R) and the lowest bias and RMS, but under low cloud is in the opposite direction. The ρv profile under middle cloud has the highest R and the lowest bias but under high cloud has the lowest R, the largest bias, and RMS. Based on the radiosonde soundings, both clear and cloudy wind speeds and drifting distances increase with height but increase much faster under clear than cloudy above 4 km. The increased wind speeds and drifting distances with height have resulted in decreased correlation coefficient and increased temperature biases and RMSs with height for both clear and cloudy skies. The differences in R, bias, and RMS between clear and cloudy skies are primarily resulted from their wind speeds and drifting distances.

  7. Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like" Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2015-01-01

    AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6.Monthly mean August 2014 Version-6.22 AIRS and CrIS products agree reasonably well with OMPS, CERES, and witheach other. JPL plans to process AIRS and CrIS for many months and compare interannual differences. Updates to thecalibration of both CrIS and ATMS are still being finalized. We are also working with JPL to develop a joint AIRS/CrISlevel-1 to level-3 processing system using a still to be finalized Version-7 retrieval algorithm. The NASA Goddard DISCwill eventually use this system to reprocess all AIRS and recalibrated CrIS/ATMS. .

  8. Antiretroviral Non-Adherence is Associated With a Retrieval Profile of Deficits in Verbal Episodic Memory.

    PubMed

    Obermeit, Lisa C; Morgan, Erin E; Casaletto, Kaitlin B; Grant, Igor; Woods, Steven Paul

    2015-01-01

    HIV-associated deficits in verbal episodic memory are commonly associated with antiretroviral non-adherence; however, the specific aspects of memory functioning (e.g., encoding, consolidation, or retrieval) that underlie this established relationship are not well understood. This study evaluated verbal memory profiles of 202 HIV+ participants who underwent a 30-day electronic monitoring of antiretroviral adherence. At the group level, non-adherence was significantly associated with lower scores on immediate and delayed passage recall and word list learning. Retention and recognition of passages and word lists were not related to adherence. Participants were then classified as having either a normal verbal memory profile, a "subcortical" retrieval profile (i.e., impaired free recall with relatively spared recognition), or a "cortical" encoding profile (e.g., cued recall intrusions) based on the Massman et al. ( 1990 ) algorithm for the California Verbal Learning Test. HIV+ participants with a classic retrieval deficit had significantly greater odds of being non-adherent than participants with a normal or encoding profile. These findings suggest that adherence to prescribed antiretroviral regimens may be particularly vulnerable to disruption in HIV+ individuals due to deficits in the complex process of efficiently accessing verbal episodic information with minimal cues. A stronger relationship between non-adherence and passage (vs. word list) recall was also found and may reflect the importance of contextual features in remembering to take medications. Targeted interventions for enhancing and supporting episodic memory retrieval processes may improve antiretroviral adherence and overall health outcomes among persons living with HIV. PMID:25781903

  9. Antiretroviral Non-Adherence is Associated with a Retrieval Profile of Deficits in Verbal Episodic Memory

    PubMed Central

    Obermeit, Lisa C.; Morgan, Erin E.; Casaletto, Kaitlin B.; Grant, Igor; Woods, Steven Paul

    2015-01-01

    Objective HIV-associated deficits in verbal episodic memory are commonly associated with antiretroviral non-adherence; however, the specific aspects of memory functioning (e.g., encoding, consolidation, or retrieval) that underlie this established relationship are not well understood. Method This study evaluated verbal memory profiles of 202 HIV+ participants who underwent a 30-day electronic monitoring of antiretroviral adherence. Results At the group level, non-adherence was significantly associated with lower scores on immediate and delayed passage recall and word list learning. Retention and recognition of passages and word lists were not related to adherence. Participants were then classified as having either a normal verbal memory profile, a “subcortical” retrieval profile (i.e., impaired free recall with relatively spared recognition), or a “cortical” encoding profile (e.g., cued recall intrusions) based on the Massman et al. (1990) algorithm for the California Verbal Learning Test. HIV+ participants with a classic retrieval deficit had significantly greater odds of being non-adherent than participants with a normal or encoding profile. Conclusions These findings suggest that adherence to prescribed antiretroviral regimens may be particularly vulnerable to disruption in HIV+ individuals due to deficits in the complex process of efficiently accessing verbal episodic information with minimal cues. A stronger relationship between non-adherence and passage (vs. word list) recall was also found and may reflect the importance of contextual features in remembering to take medications. Targeted interventions for enhancing and supporting episodic memory retrieval processes may improve antiretroviral adherence and overall health outcomes among persons living with HIV. PMID:25781903

  10. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Anagnostou, Emmanouil N.; Olson, William S.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated using both simulated and airborne data. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) satellite multi-frequency active and passive observations. These observations are characterized by various spatial and sampling resolutions. This makes the retrieval problem mathematically more difficult and ill-determined because the quality of information decreases with decreasing resolution. A model that, given reflectivity profiles and a small set of parameters (including the cloud water content, the intercept drop size distribution, and a variable describing the frozen hydrometeor properties), simulates high-resolution brightness temperatures is used. The high-resolution simulated brightness temperatures are convolved at the real sensor resolution. An optimal estimation procedure is used to minimize the differences between simulated and observed brightness temperatures. The retrieval technique is investigated using cloud model synthetic and airborne data from the Fourth Convection And Moisture Experiment. Simulated high-resolution brightness temperatures and reflectivities and airborne observation strong are convolved at the resolution of the TRMM instruments and retrievals are performed and analyzed relative to the reference data used in observations synthesis. An illustration of the possible use of the technique in satellite rainfall estimation is presented through an application to TRMM data. The study suggests improvements in combined active and passive retrievals even when the instruments resolutions are significantly different. Future work needs to better quantify the retrievals performance, especially in connection with satellite applications, and the uncertainty of the models used in retrieval.

  11. Synergistic multi-wavelength remote sensing versus a posteriori combination of retrieved products: Application for the retrieval of atmospheric profiles using MetOp-A

    NASA Astrophysics Data System (ADS)

    Aires, F.; Aznay, O.; Prigent, C.; Paul, M.; Bernardo, F.

    2012-09-01

    In this paper, synergy refers to a process where the use of multiple satellite observations makes the retrieval more precise than the best individual retrieval. Two general strategies can be used in order to use multi-wavelength observations in an inversion scheme. First, the multi-wavelength observations are merged in the input of the retrieval scheme. This means that the various satellite observations are used simultaneously and that their possible interactions can be exploited by the retrieval scheme. Second, each multi-wavelength observations are used independently to retrieve a same geophysical variable and then, these independent retrievals are combined a posteriori using for example a simple weighted averaging. In this paper, it is shown that the first approach provides better synergy results: The retrieval is better suited to optimize the use of all the information available because they are provided to the algorithm simultaneously. In particular, the retrieval process is able, in this case, to exploit the possible interactions between the various input information. The two retrieval approaches are tested and compared using an application for the retrieval of atmospheric profiles and integrated column quantities (temperature, water vapor, and ozone) using MetOp-A observations from IASI, AMSU-A and MHS instruments. Although real satellite observations are considered in this analysis, the results are dependent on the correlation structure in the training data set (i.e. ECMWF analysis) used to calibrate the retrieval algorithm. However, it can be seen that the infrared and microwave observations have a good synergy for the retrieval of atmospheric temperature, water vapor, and for ozone thanks to an indirect synergy.

  12. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  13. First retrievals of MLT sodium profiles based on satellite sodium nightglow observations

    NASA Astrophysics Data System (ADS)

    Von Savigny, Christian; Zilker, Bianca; Langowski, Martin

    2016-07-01

    The Na D lines are a well known feature of the terrestrial airglow and have been identified for the first time in 1929. During the daytime the Na airglow emission is caused by resonance fluorescence, while during the night the excitation occurs by chemiluminescent reactions. Knowledge of Na in the mesopause region is of interest, because the Na layer is thought to be maintained by meteoric ablation and Na measurements allow constraining the meteoric mass influx into the Earth system. In this contribution we employ SCIAMACHY/Envisat nighttime limb measurements of the Na D-line airglow from fall 2002 to spring 2012 - in combination with photochemical models - in order to retrieve Na concentration profiles in the 75 - 100 km altitude range. The Na profiles show realistic peak altitudes, number densities and seasonal variations. The retrieval scheme, sample results and comparisons to ground-based LIDAR measurements of Na as well as SCIAMACHY daytime retrievals will be presented. Moreover, uncertainties in the assumed photochemical scheme and their impact on the Na retrievals will be discussed.

  14. Retrieval of upper atmosphere pressure-temperature profiles from high resolution solar occultation spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Russell, J. M., III; Park, J. H.; Namkung, J.

    1987-01-01

    Pressure-temperature profiles over the 18 to 75 km altitude range were retrieved from 0.01 cm(-1) resolution infrared solar absorption spectra recorded with the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer operating in the solar occultation mode during the Spacelab 3 shuttle mission (April 30 to May 1, 1985). The analysis method is described and preliminary results deduced for five occultation events are compared to correlative pressure-temperature measurments.

  15. [Retrieval of the Optical Thickness and Cloud Top Height of Cirrus Clouds Based on AIRS IR High Spectral Resolution Data].

    PubMed

    Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai

    2015-05-01

    A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.

  16. Backus-Gilbert theory and its application to retrieval of ozone and temperature profiles. [from remote sounding data

    NASA Technical Reports Server (NTRS)

    Conrath, B. J.

    1977-01-01

    The inversion method provides a quantitative evaluation of the trade-off between vertical resolution of a retrieved profile and formal root-mean-square (rms) error due to measurement noise propagation. The problem of retrieving the top-side ozone profile from backscattered ultraviolet (BUV) measurements is considered. For measurements of the type currently being obtained with the Nimbus 4 and AE-E BUV experiments, it is found that a vertical resolution of approximately 0.75 scale height can be achieved for a formal volume mixing ratio profile error of 10%. Other examples include treatments of the retrieval of temperature profiles from measurements in the 15 micron CO2 absorption band for both the terrestrial and Martian atmospheres. Finally, the method is applied to the problem of retrieving temperature profiles of the Jovian planets from measurements in the far infrared pressure induced H2 lines to be obtained from the Mariner Jupiter/Saturn fly-by missions.

  17. Comparison of Ozone Profiles Retrieved With Different Methods From Odin/osiris Limb Spectra

    NASA Astrophysics Data System (ADS)

    Haley, C. S.; von Savigny, C.; Auvinen, H.; Griffioen, E.; Hassinen, S.; Kyrölä, E.; McDade, I. C.; Oikarinen, L.; Siiskonen, T.; Sioris, C. E.

    The Swedish/Canadian/Finnish/French Odin satellite was launched on 20 February 2001 carrying the Optical Spectrograph and InfraRed Imager System (OSIRIS). The optical spectrograph measures the spectrum of sunlight scattered by the limb of the atmosphere in the spectral range 280 nm to 800 nm at a resolution of about 1 nm. The scattered sunlight spectra are used to determine vertical profiles of minor stratospheric constituents such as ozone, NO2, OClO, BrO and aerosols. Stratospheric ozone profiles are retrieved from OSIRIS measurements using three dif- ferent techniques: Modified Onion Peeling (MOP) (Auvinen et al., JGR, in press, 2001), Differential Optical Absorption Spectroscopy (DOAS), and a method based on the analysis of normalized and paired limb-radiance profiles (Flittner et al., GRL 27, 2601, 2000). All of the techniques incorporate the pseudo-spherical multiple scat- tering radiative transfer model LIMBTRAN. In this paper we compare results of the different retrieval methods for measurements during Northern Hemisphere summer and Antarctic ozone hole conditions. We find that all of the methods are able to re- cover the major features of the global morphology of stratospheric ozone. We also compare the retrievals with POAM III and EP-TOMS measurements and find good agreement.

  18. Retrieval of air temperatures from crowd-sourced battery temperatures of cell phones

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Robinson, James; Leijnse, Hidde; Uijlenhoet, Remko; Steeneveld, Gert-Jan; Horn, Berthold K. P.

    2013-04-01

    Accurate air temperature observations are important for urban meteorology, for example to study the urban heat island and adverse effects of high temperatures on human health. The number of available temperature observations is often relatively limited. A new development is presented to derive temperature information for the urban canopy from an alternative source: cell phones. Battery temperature data were collected by users of an Android application for cell phones (opensignal.com). The application automatically sends battery temperature data to a server for storage. In this study, battery temperatures are averaged in space and time to obtain daily averaged battery temperatures for each city separately. A regression model, which can be related to a physical model, is employed to retrieve daily air temperatures from battery temperatures. The model is calibrated with observed air temperatures from a meteorological station of an airport located in or near the city. Time series of air temperatures are obtained for each city for a period of several months, where 50% of the data is for independent verification. Results are presented for Buenos Aires, London, Los Angeles, Paris, Mexico City, Moscow, Rome, and Sao Paulo. The evolution of the retrieved air temperatures often correspond well with the observed ones. The mean absolute error of daily air temperatures is less than 2 degrees Celsius, and the bias is within 1 degree Celsius. This shows that monitoring air temperatures employing an Android application holds great promise. Since 75% of the world's population has a cell phone, 20% of the land surface of the earth has cellular telephone coverage, and 500 million devices use the Android operating system, there is a huge potential for measuring air temperatures employing cell phones. This could eventually lead to real-time world-wide temperature maps.

  19. Results from CrIS/ATMS Obtained Using an AIRS "Version-6 like" Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2015-01-01

    We tested and evaluated Version-6.22 AIRS and Version-6.22 CrIS products on a single day, December 4, 2013, and compared results to those derived using AIRS Version-6. AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6All AIRS and CrIS products agree reasonably well with each other. CrIS Version-6.22 T(p) and q(p) results are slightly poorer than AIRS over land, especially under very cloudy conditions. Both AIRS and CrIS Version-6.22 run now at JPL. Our short term plans are to analyze many common months at JPL in the near future using Version-6.22 or a further improved algorithm to assess the compatibility of AIRS and CrIS monthly mean products and their interannual differences. Updates to the calibration of both CrIS and ATMS are still being finalized. JPL plans, in collaboration with the Goddard DISC, to reprocess all AIRS data using a still to be finalized Version-7 retrieval algorithm, and to reprocess all recalibrated CrISATMS data using Version-7 as well.

  20. Results from CrIS/ATMS Obtained Using an AIRS "Version-6 Like" Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2015-01-01

    We have tested and evaluated Version-6.22 AIRS and Version-6.22 CrIS products on a single day, December 4, 2013, and compared results to those derived using AIRS Version-6. AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6All AIRS and CrIS products agree reasonably well with each other CrIS Version-6.22 T(p) and q(p) results are slightly poorer than AIRS under very cloudy conditions. Both AIRS and CrIS Version-6.22 run now at JPL. Our short term plans are to analyze many common months at JPL in the near future using Version-6.22 or a further improved algorithm to assess the compatibility of AIRS and CrIS monthly mean products and their interannual differencesUpdates to the calibration of both CrIS and ATMS are still being finalized. JPL plans, in collaboration with the Goddard DISC, to reprocess all AIRS data using a still to be finalized Version-7 retrieval algorithm, and to reprocess all recalibrated CrISATMS data using Version-7 as well.

  1. Simultaneous Retrieval of Temperature, Water Vapor and Ozone Atmospheric Profiles from IASI: Compression, De-noising, First Guess Retrieval and Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Aires, F.; Rossow, W. B.; Scott, N. A.; Chedin, A.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A fast temperature water vapor and ozone atmospheric profile retrieval algorithm is developed for the high spectral resolution Infrared Atmospheric Sounding Interferometer (IASI) space-borne instrument. Compression and de-noising of IASI observations are performed using Principal Component Analysis. This preprocessing methodology also allows, for a fast pattern recognition in a climatological data set to obtain a first guess. Then, a neural network using first guess information is developed to retrieve simultaneously temperature, water vapor and ozone atmospheric profiles. The performance of the resulting fast and accurate inverse model is evaluated with a large diversified data set of radiosondes atmospheres including rare events.

  2. Algorithm improvement toward better retrieval of CO2 and CH4 profiles from GOSAT/TANSO-FTS thermal infrared spectra

    NASA Astrophysics Data System (ADS)

    Saitoh, N.; Imasu, R.; Sugita, T.; Hayashida, S.; Shiomi, K.

    2012-12-01

    The Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) on board the Greenhouse Gases Observing Satellite (GOSAT) simultaneously observes column abundances and profiles of CO2 and CH4 in the same field of view, from the shortwave infrared (SWIR) and thermal infrared (TIR) bands, respectively. Combined use of the column abundances and profiles above the free troposphere is useful for deriving detailed information on concentrations in the boundary layer, and could provide a good constraint for inverse models. At this time, the version 00.01 (V00.01) data of the TIR L2 standard CO2 and CH4 products have been released to the public. The algorithm of the V00.01 TIR L2 products adopts a non-linear maximum a posteriori (MAP) method with linear mapping. In the V00.01 retrieval, our retrieval target was CO2 or CH4 profile only; temperature and water vapor profiles were taken from the Japan Meteorological Agency Grid Point Values (JMA-GPV) and treated as model parameters, and therefore, their uncertainties could affect the accuracy of the CO2 and CH4 retrieval. In this study, we used more accurate temperature and water vapor profiles observed with GPS radio occultation measurements to retrieve CO2 and CH4 profiles from TIR spectra, and assessed the impact of uncertainties in temperature and water vapor profiles on the TIR retrieval. We also tested simultaneous retrieval including a target gas (CO2 or CH4), contaminating gases such as H2O and N2O, and temperature information. Our preliminary retrieval results showed the simultaneous retrieval could produce better results than the single-target retrieval in some cases.

  3. Information content of MOPITT CO profile retrievals: Temporal and geographical variability

    NASA Astrophysics Data System (ADS)

    Deeter, M. N.; Edwards, D. P.; Gille, J. C.; Worden, H. M.

    2015-12-01

    Satellite measurements of tropospheric carbon monoxide (CO) enable a wide array of applications including studies of air quality and pollution transport. The MOPITT (Measurements of Pollution in the Troposphere) instrument on the Earth Observing System Terra platform has been measuring CO concentrations globally since March 2000. As indicated by the Degrees of Freedom for Signal (DFS), the standard metric for trace-gas retrieval information content, MOPITT retrieval performance varies over a wide range. We show that both instrumental and geophysical effects yield significant geographical and temporal variability in MOPITT DFS values. Instrumental radiance uncertainties, which describe random errors (or "noise") in the calibrated radiances, vary over long time scales (e.g., months to years) and vary between the four detector elements of MOPITT's linear detector array. MOPITT retrieval performance depends on several factors including thermal contrast, fine-scale variability of surface properties, and CO loading. The relative importance of these various effects is highly variable, as demonstrated by analyses of monthly mean DFS values for the United States and the Amazon Basin. An understanding of the geographical and temporal variability of MOPITT retrieval performance is potentially valuable to data users seeking to limit the influence of the a priori through data filtering. To illustrate, it is demonstrated that calculated regional-average CO mixing ratios may be improved by excluding observations from a subset of pixels in MOPITT's linear detector array.

  4. Benchmarking, Research, Development, and Support for ORNL Automated Image and Signature Retrieval (AIR/ASR) Technologies

    SciTech Connect

    Tobin, K.W.

    2004-06-01

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) with Applied Materials, Inc. (AMAT) of Santa Clara, California. This project encompassed the continued development and integration of the ORNL Automated Image Retrieval (AIR) technology, and an extension of the technology denoted Automated Signature Retrieval (ASR), and other related technologies with the Defect Source Identification (DSI) software system that was under development by AMAT at the time this work was performed. In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line, train yield management engineers, and examine historical data for trends. Image management in semiconductor data systems is a growing cause of concern in the industry as fabricators are now collecting up to 20,000 images each week. In response to this concern, researchers at the Oak Ridge National Laboratory (ORNL) developed a semiconductor-specific content-based image retrieval method and system, also known as AIR. The system uses an image-based query-by-example method to locate and retrieve similar imagery from a database of digital imagery using visual image characteristics. The query method is based on a unique architecture that takes advantage of the statistical, morphological, and structural characteristics of image data, generated by inspection equipment in industrial applications. The system improves the manufacturing process by allowing rapid access to historical records of similar events so that errant process equipment can be isolated and corrective actions can be quickly taken to improve yield. The combined ORNL and AMAT technology is referred to hereafter as DSI-AIR and DSI-ASR.

  5. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  6. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  7. Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Olson, W. S.; Meneghini, R.; Yang, S.; Simpson, J.; Kummerow, C.; Smith, E.

    2000-01-01

    This paper represents the first attempt to use TRMM rainfall information to estimate the four dimensional latent heating structure over the global tropics for February 1998. The mean latent heating profiles over six oceanic regions (TOGA COARE IFA, Central Pacific, S. Pacific Convergence Zone, East Pacific, Indian Ocean and Atlantic Ocean) and three continental regions (S. America, Central Africa and Australia) are estimated and studied. The heating profiles obtained from the results of diagnostic budget studies over a broad range of geographic locations are used to provide comparisons and indirect validation for the heating algorithm estimated heating profiles. Three different latent heating algorithms, the Goddard Convective-Stratiform (CSH) heating, the Goddard Profiling (GPROF) heating, and the Hydrometeor heating (HH) are used and their results are intercompared. The horizontal distribution or patterns of latent heat release from the three different heating retrieval methods are quite similar. They all can identify the areas of major convective activity (i.e., a well defined ITCZ in the Pacific, a distinct SPCZ) in the global tropics. The magnitude of their estimated latent heating release is also not in bad agreement with each other and with those determined from diagnostic budget studies. However, the major difference among these three heating retrieval algorithms is the altitude of the maximum heating level. The CSH algorithm estimated heating profiles only show one maximum heating level, and the level varies between convective activity from various geographic locations. These features are in good agreement with diagnostic budget studies. By contrast, two maximum heating levels were found using the GPROF heating and HH algorithms. The latent heating profiles estimated from all three methods can not show cooling between active convective events. We also examined the impact of different TMI (Multi-channel Passive Microwave Sensor) and PR (Precipitation Radar

  8. Vertical profiling of air pollution at RAPCD

    NASA Astrophysics Data System (ADS)

    Newchurch, Michael J.; Fuller, Kirk A.; Bowdle, David A.; Johnson, Steven; McNider, Richard T.; Knupp, Kevin; Lapenta, Bill; Gillani, Noor; Biazar, Arastoo; Burris, John

    2004-09-01

    Local and regional pollution interact at the interface between the Planetary Boundary Layer and the Free Troposphere. The vertical distributions of ozone, aerosols, and winds must be measured with high temporal and vertical resolution to characterize this interchange and ultimately to accurately forecast ozone and aerosol pollution. To address this critical issue, the Regional Atmospheric Profiling Center for Discovery (RAPCD) was built and instrumented in the National Space Science and Technology Center on the UAH campus. The UV DIAL ozone lidar, Nd:YAG aerosol lidar, and 2-micron Doppler wind lidar, along with balloon-borne ECC ozonesondes, form the core of the RAPCD instrumentation for studying this problem. Instrumentation in the associated Mobile Integrated Profiling (MIPS) laboratory includes a 915Mhz profiler, sodar, and ceilometer. The collocated Applied Micro-particle Optics and Radiometry (AμOR) laboratory hosts the FTIR, MOUDI, and optical particle counter. Using MODELS-3 analysis by colleagues, and cooperative ventures with the co-located National Weather Service Forecasting Office in Huntsville, AL, we are developing a unique facility for advancing the state-of-the-science in pollution forecasting.

  9. Vertical Profiling of Air Pollution at RAPCD

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; Fuller, Kirk A.; Bowdle, David A.; Johnson, Steven; Knupp, Kevin; Gillani, Noor; Biazar, Arastoo; Mcnider, Richard T.; Burris, John

    2004-01-01

    The interaction between local and regional pollution levels occurs at the interface of the Planetary Boundary Layer and the Free Troposphere. Measuring the vertical distribution of ozone, aerosols, and winds with high temporal and vertical resolution is essential to diagnose the nature of this interchange and ultimately for accurately forecasting ozone and aerosol pollution levels. The Regional Atmospheric Profiling Center for Discovery, RAPCD, was built and instrumented to address this critical issue. The ozone W DIAL lidar, Nd:YAG aerosol lidar, and 2.1 micron Doppler wind lidar, along with balloon- borne ECC ozonesondes form the core of the W C D instrumentation for addressing this problem. Instrumentation in the associated Mobile Integrated Profiling (MIPS) laboratory includes 91 5Mhz profiler, sodar, and ceilometer. The collocated Applied particle Optics and Radiometry (ApOR) laboratory hosts an FTIR along with MOUDI and optical particle counters. With MODELS-3 analysis by colleagues in the National Space Science and Technology Center on the UAH campus and the co- located National Weather Service Forecasting Office in Huntsville, AL we are developing a unique facility for advancing the state of the science of pollution forecasting.

  10. Validation of AIRS v4 ozone profiles in the UTLS using ozonesondes from Lauder, NZ and Boulder, USA

    NASA Astrophysics Data System (ADS)

    Monahan, K. P.; Pan, L. L.; McDonald, A. J.; Bodeker, G. E.; Wei, J.; George, S. E.; Barnet, C. D.; Maddy, E.

    2007-09-01

    Ozonesonde observations from Lauder (45.0°S, 169.7°E) and Boulder (39.9°N, 105.3°W) are used to examine the quality of the Atmospheric Infrared Sounder (AIRS) v4 vertical ozone profile product in the upper troposphere lower stratosphere (UTLS). At lower altitudes (˜700-200 hPa pressure range), AIRS ozone mixing ratios are larger than ozonesonde measurements, and at higher altitudes (˜100-30 hPa pressure range), AIRS ozone mixing ratios are smaller. Compared to the ozonesondes, AIRS retrieval results at Lauder have a median bias of 80% in the region 700-200 hPa, and 0 to -20% in the region 100-30 hPa. For Boulder these values are 40% and 0 to 5%, respectively. Using a tropopause adjusted vertical coordinate system, Lauder has median biases of +90 to +120% in the troposphere and 0 to +25% in the stratosphere whereas Boulder shows median biases of +45 to +70% in the troposphere and 0 to +35% in the stratosphere. Despite the bias, AIRS retrieval in the UTLS region shows a statistically significant positive correlation with the ozonesonde data, indicating that while the absolute values have a large uncertainty, the retrieval captures the variability of ozone in the UTLS region. Hence AIRS ozone is suitable for studies where the change in ozone is important rather than the absolute ozone mixing ratio. Examinations of the training data set show that the retrieval biases are likely influenced by the deficiency of the training data to represent ozone distribution during the regression step of the retrieval. Furthermore the physical retrieval adds little additional information to the final result.

  11. Estimation of Smoothing Error in SBUV Profile and Total Ozone Retrieval

    NASA Technical Reports Server (NTRS)

    Kramarova, N. A.; Bhartia, P. K.; Frith, S. M.; Fisher, B. L.; McPeters, R. D.; Taylor, S.; Labow, G. J.

    2011-01-01

    Data from the Nimbus-4, Nimbus-7 Solar Backscatter Ultra Violet (SBUV) and seven of the NOAA series of SBUV/2 instruments spanning 41 years are being reprocessed using V8.6 algorithm. The data are scheduled to be released by the end of August 2011. An important focus of the new algorithm is to estimate various sources of errors in the SBUV profiles and total ozone retrievals. We discuss here the smoothing errors that describe the components of the profile variability that the SBUV observing system can not measure. The SBUV(/2) instruments have a vertical resolution of 5 km in the middle stratosphere, decreasing to 8 to 10 km below the ozone peak and above 0.5 hPa. To estimate the smoothing effect of the SBUV algorithm, the actual statistics of the fine vertical structure of ozone profiles must be known. The covariance matrix of the ensemble of measured ozone profiles with the high vertical resolution would be a formal representation of the actual ozone variability. We merged the MLS (version 3) and sonde ozone profiles to calculate the covariance matrix, which in general case, for single profile retrieval, might be a function of the latitude and month. Using the averaging kernels of the SBUV(/2) measurements and calculated total covariance matrix one can estimate the smoothing errors for the SBUV ozone profiles. A method to estimate the smoothing effect of the SBUV algorithm is described and the covariance matrixes and averaging kernels are provided along with the SBUV(/2) ozone profiles. The magnitude of the smoothing error varies with altitude, latitude, season and solar zenith angle. The analysis of the smoothing errors, based on the SBUV(/2) monthly zonal mean time series, shows that the largest smoothing errors were detected in the troposphere and might be as large as 15-20% and rapidly decrease with the altitude. In the stratosphere above 40 hPa the smoothing errors are less than 5% and between 10 and 1 hPa the smoothing errors are on the order of 1%. We

  12. Special cases of AIRS v4.0.x retrievals: missing forecast surface pressure and regression-only retrieval

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Manning, Evan

    2005-01-01

    This memo examines the differences that can be expected when performing two special cases of retrievals with the v.4.0.x PGE: (1) retrivals without the surface pressure from the NOAA Global Forecast System (GFS) and (2) regression only retrievals. An understanding of these differences is important for users who may want to give up some accuracy in the retrieval in exchange for a rapid solution.

  13. Improved Limb Atmospheric Spectrometer (ILAS) data retrieval algorithm for Version 5.20 gas profile products

    NASA Astrophysics Data System (ADS)

    Yokota, T.; Nakajima, H.; Sugita, T.; Tsubaki, H.; Itou, Y.; Kaji, M.; Suzuki, M.; Kanzawa, H.; Park, J. H.; Sasano, Y.

    2002-12-01

    The Improved Limb Atmospheric Spectrometer (ILAS), a sensor for stratospheric ozone layer observation using a solar occultation technique, was mounted on the Advanced Earth Observing Satellite (ADEOS), which was put into a Sun-synchronous polar orbit in August 1996. Operational measurements were recorded over high-latitude regions from November 1996 to June 1997. This paper describes the data processing algorithm of Version 5.20 used to retrieve vertical profiles of gases such as ozone, nitric acid, nitrogen dioxide, nitrous oxide, methane, and water vapor from the infrared spectral measurements of ILAS. To simultaneously derive mixing ratios of individual gas species as a function of altitude, the nonlinear least squares method was utilized for spectral fitting, and the onion peeling method was applied to perform vertical profiling. This paper also discusses in detail estimation of errors (internal and external errors) associated with the derived gas profiles and compares the errors with repeatability. The internal error estimated from residuals in spectral fitting was generally larger than the repeatability, which suggests either that some unknown factors have not been incorporated into the forward model for simulating observed transmittance data or that some parameters in the model are inaccurate. The external error was almost comparable in magnitude to the repeatability. Numerical simulations were carried out to investigate performance of the nongaseous correction technique. The results showed that the background level of sulfuric acid aerosols has little effect on the retrieved profiles, while polar stratospheric clouds (PSCs) with extinction coefficients of the order of 10-3 km-1 at a wavelength of 780 nm have nonnegligible effects on the profiles of some gas species. Despite the problems that require further investigations, it is shown that the ILAS Version 5.20 algorithm generates scientifically useful products.

  14. Retrieval of Greenhouse Gas Profiles from SCIMACHY Solar Occultation Measurements with Onion Peeling DOAS

    NASA Astrophysics Data System (ADS)

    Noel, Stefan; Bramstedt, Klaus; Reuter, Max; Rozanov, Alexei; Bovensmann, Heinrich; Burrows, John P.

    2010-12-01

    A new retrieval method (called 'Onion Peeling DOAS') has been developed to derive stratospheric profiles of atmospheric constituents from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The method has already been successfully applied to water vapour. However, the Onion Peeling DOAS method can also be applied to other atmospheric constituents. Here, we summarise the results for stratospheric water vapour and present first results for other greenhouse gases, namely methane (CH4) and carbon dioxide (CO2).

  15. Intercomparison of OMI NO2 and HCHO air mass factor calculations: recommendations and best practices for retrievals

    NASA Astrophysics Data System (ADS)

    Lorente Delgado, Alba; Klaas Boersma, Folkert; Hilboll, Andreas; Richter, Andreas; Yu, Huan; van Roozendael, Michel; Dörner, Steffen; Wagner, Thomas; Barkley, Michael; Lamsal, Lok; Lin, Jintai; Liu, Mengyao

    2016-04-01

    We present a detailed comparison of the air mass factor (AMF) calculation process used by various research groups for OMI satellite retrievals of NO2 and HCHO. Although satellite retrievals have strongly improved over the last decades, there is still a need to better understand and reduce the uncertainties associated with every retrieval step of satellite data products, such as the AMF calculation. Here we compare and evaluate the different approaches used to calculate AMFs by several scientific groups (KNMI (WUR), IASB-BIRA, IUP-UNI. BREMEN, MPI-C, NASA GSFC, LEICESTER UNI. and PEKING UNI.). Each group calculated altitude dependent (box-) AMFs and clear sky and total tropospheric AMFs for several OMI orbits. First, European groups computed AMFs for one OMI orbit using common settings for the choice of surface albedo data, terrain height, cloud treatment and a priori vertical profile. Second, every group computed AMFs for two complete days in different seasons using preferred settings for the ancillary data and cloud treatment as a part of a Round Robin exercise. Box-AMFs comparison showed good consistency and underlined the importance of a correct treatment of the physical processes affecting the effective light path and the vertical discretization of the atmosphere. Using common settings, tropospheric NO2 AMFs in polluted pixels on average agreed within 4.7% whereas in remote pixels agreed within 3.5%. Using preferred settings relative differences between AMFs increase up to 15-30%. This increase is traced back to the different choices and assumptions made throughout the AMF calculation, which affect the final AMF values and thus the uncertainty in the AMF calculation. Differences between state of the art cloud treatment approaches highlight the importance of an accurate cloud correction: total and clear sky AMFs in polluted conditions differ by up to 40% depending on the retrieval scenario. Based on the comparison results, specific recommendations on best

  16. A sensitivity study on the retrieval of aerosol vertical profiles using the oxygen A-band

    NASA Astrophysics Data System (ADS)

    Colosimo, S. F.; Natraj, V.; Sander, S. P.; Stutz, J.

    2015-11-01

    Atmospheric absorption in the O2 A-band (12 950-13 200 cm-1) offers a unique opportunity to retrieve aerosol extinction profiles from space-borne measurements due to the large dynamic range of optical thickness in that spectral region. Absorptions in strong O2 lines are saturated; therefore, any radiance measured in these lines originates from scattering in the upper part of the atmosphere. Outside of O2 lines, or in weak lines, the atmospheric column absorption is small, and light penetrates to lower atmospheric layers, allowing for the quantification of aerosols and other scatterers near the surface. While the principle of aerosol profile retrieval using O2 A-band absorption from space is well known, a thorough quantification of the information content, i.e., the amount of vertical profile information that can be obtained, and the dependence of the information content on the spectral resolution of the measurements, has not been thoroughly conducted. Here, we use the linearized vector radiative transfer model VLIDORT to perform spectrally resolved simulations of atmospheric radiation in the O2 A-band in the presence of aerosol for four different generic scenarios: Urban, Highly polluted, Elevated layer, and Marine-Arctic. The high-resolution radiances emerging from the top of the atmosphere are degraded to different spectral resolutions, simulating spectrometers with different resolving powers. We use optimal estimation theory to quantify the information content in the aerosol profile retrieval with respect to different aerosol parameters and instrument spectral resolutions. The simulations show that better spectral resolution generally leads to an increase in the total amount of information that can be retrieved, with the number of degrees of freedom (DoF) varying between 0.34-2.11 at low resolution (5 cm-1) to 3.43-5.92 at high resolution (0.05 cm-1) for the four different cases. A particularly strong improvement was found in the retrieval of tropospheric

  17. Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval

    NASA Astrophysics Data System (ADS)

    González Abad, Gonzalo; Vasilkov, Alexander; Seftor, Colin; Liu, Xiong; Chance, Kelly

    2016-07-01

    This paper presents our new formaldehyde (H2CO) retrievals, obtained from spectra recorded by the nadir instrument of the Ozone Mapping and Profiler Suite (OMPS) flown on board NASA's Suomi National Polar-orbiting Partnership (SUOMI-NPP) satellite. Our algorithm is similar to the one currently in place for the production of NASA's Ozone Monitoring Instrument (OMI) operational H2CO product. We are now able to produce a set of long-term data from two different instruments that share a similar concept and a similar retrieval approach. The ongoing overlap period between OMI and OMPS offers a perfect opportunity to study the consistency between both data sets. The different spatial and spectral resolution of the instruments is a source of discrepancy in the retrievals despite the similarity of the physic assumptions of the algorithm. We have concluded that the reduced spectral resolution of OMPS in comparison with OMI is not a significant obstacle in obtaining good-quality retrievals. Indeed, the improved signal-to-noise ratio of OMPS with respect to OMI helps to reduce the noise of the retrievals performed using OMPS spectra. However, the size of OMPS spatial pixels imposes a limitation in the capability to distinguish particular features of H2CO that are discernible with OMI. With root mean square (RMS) residuals ˜ 5 × 10-4 for individual pixels we estimate the detection limit to be about 7.5 × 1015 molecules cm-2. Total vertical column density (VCD) errors for individual pixels range between 40 % for pixels with high concentrations to 100 % or more for pixels with concentrations at or below the detection limit. We compare different OMI products (SAO OMI v3.0.2 and BIRA OMI v14) with our OMPS product using 1 year of data, between September 2012 and September 2013. The seasonality of the retrieved slant columns is captured similarly by all products but there are discrepancies in the values of the VCDs. The mean biases among the two OMI products and our OMPS product

  18. Wind Profile Retrieval Method for Incoherent Doppler LIDAR in Partly Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Feng, Changzhong; Liu, Bingyi; Liu, Zhishen

    2014-11-01

    After the launch of ESA’s spaceborne Doppler lidar ALADIN, Ocean University of China is going to perform the ground validation using a ground based Doppler wind lidar which utilizes an iodine absorption filter as frequency discriminator to derive Doppler frequency shift of atmospheric wind from combined molecular and aerosol backscatter. Under circumstance of non-uniform aerosol horizontal distribution, such as partly cloudy conditions, the accuracy of wind measurements is seriously influenced. Therefore, an improved VAD (Velocity-Azimuth Display) method for retrieving wind profiles is developed, which significantly increases the accuracy. With the atmospheric return signal obtained from the line-of-sight velocity PPI (Plan Position Indicator) measurements, the spatial distribution of aerosol optical parameters can be derived and considered as a reference for the quality control of line-of-sight velocity. Consequently, the wind profile in partly cloudy conditions can be retrieved by using the quality controlled line-of-sight velocity. As a result, the applicability of the ground based Doppler lidar is improved.

  19. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency, Active and Passive Microwave Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.; Anagnostou, Emmanouil N.

    2003-01-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) observations and it is based on models that simulate high-resolution brightness temperatures as functions of observed reflectivity profiles and a parameter related to the rain drop-size-distribution. The modeled high-resolution brightness temperatures are used to determine normalized brightness temperature polarizations at the microwave radiometer resolution. An optimal estimation procedure is employed to minimize the differences between the simulated and observed normalized polarizations by adjusting the drop-size-distribution parameter. The impact of other unknowns that are not independent variables in the optimal estimation but affect the retrievals is minimized through statistical parameterizations derived from cloud model simulations. The retrieval technique is investigated using TRMM observations collected during the Kwajalein Experiment (KWAJEX). These observations cover an area extending from 5 deg to deg N latitude and 166 deg to 172 deg E longitude from July to September 1999, and are coincident with various ground-based observations, facilitating a detailed analysis of the retrieved precipitation. Using the method developed in this study, precipitation estimates consistent with both the passive and active TRMM observations are obtained. Various parameters characterizing these estimates, i.e. the rain rate, the precipitation water content, the drop-size-distribution intercept, and the mass weighted mean drop diameter, are in good qualitative agreement with independent experimental and theoretical estimates. Combined rain estimates are in general higher than the official TRMM Precipitation Radar (PR) only estimates for the area and the period considered in the study. Ground-based precipitation estimates

  20. A relative humidity profile retrieval from Megha-Tropiques observations without explicit thermodynamical constraints

    NASA Astrophysics Data System (ADS)

    Sivira, R. G.; Brogniez, H.; Mallet, C.; Oussar, Y.

    2014-09-01

    A statistical method trained and optimized to retrieve relative humidity (RH) profiles is presented and evaluated with measurements from radiosoundings. The method makes use of the microwave payload of the Megha-Tropiques plateform, namely the SAPHIR sounder and the MADRAS imager. The approach, based on a Generalized Additive Model (GAM), embeds both the physical and statistical characteritics of the inverse problem in the training phase and no explicit thermodynamical constraint, such as a temperature profile or an integrated water vapor content, is provided to the model at the stage of retrieval. The model is built for cloud-free conditions in order to avoid the cases of scattering of the microwave radiation in the 18.7-183.31 GHz range covered by the payload. Two instrumental configurations are tested: a SAPHIR-MADRAS scheme and a SAPHIR-only scheme, to deal with the stop of data acquisition of MADRAS in January 2013 for technical reasons. A comparison to retrievals based on the Multi-Layer Perceptron (MLP) technique and on the Least Square-Support Vector Machines (LS-SVM) shows equivalent performance over a large realistic set, promising low errors (bias < 2.2%) and scatters (correlation > 0.8) throughout the troposphere (150-900 hPa). A comparison to radiosounding measurements performed during the international field experiment CINDY/DYNAMO/AMIE of winter 2011-2012 confirms these results for the mid-tropospheric layers (correlation between 0.6 and 0.92), with an expected degradation of the quality of the estimates at the surface and top layers. Finally a rapid insight of the large-scale RH field from Megha-Tropiques is discussed and compared to ERA-Interim.

  1. Retrieval of Precipitation Profiles from Multiresolution, Multifrequency Active and Passive Microwave Observations.

    NASA Astrophysics Data System (ADS)

    Grecu, Mircea; Olson, William S.; Anagnostou, Emmanouil N.

    2004-04-01

    In this study, a technique for estimating vertical profiles of precipitation from multifrequency, multiresolution active and passive microwave observations is investigated. The technique is applicable to the Tropical Rainfall Measuring Mission (TRMM) observations, and it is based on models that simulate high-resolution brightness temperatures as functions of observed reflectivity profiles and a parameter related to the raindrop size distribution. The modeled high-resolution brightness temperatures are used to determine normalized brightness temperature polarizations at the microwave radiometer resolution. An optimal estimation procedure is employed to minimize the differences between the simulated and observed normalized polarizations by adjusting the drop size distribution parameter. The impact of other unknowns that are not independent variables in the optimal estimation, but affect the retrievals, is minimized through statistical parameterizations derived from cloud model simulations. The retrieval technique is investigated using TRMM observations collected during the Kwajalein Experiment (KWAJEX). These observations cover an area extending from 5° to 12°N latitude and from 166° to 172°E longitude from July to September 1999 and are coincident with various ground-based observations, facilitating a detailed analysis of the retrieved precipitation. Using the method developed in this study, precipitation estimates consistent with both the passive and active TRMM observations are obtained. Various parameters characterizing these estimates, that is, the rain rate, precipitation water content, drop size distribution intercept, and the mass- weighted mean drop diameter, are in good qualitative agreement with independent experimental and theoretical estimates. Combined rain estimates are, in general, higher than the official TRMM precipitation radar (PR)-only estimates for the area and the period considered in the study. Ground-based precipitation estimates, derived

  2. Implications of Multi-resolution AOD retrievals for Air Quality Studies

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Chu, A. D.

    2009-12-01

    Implications of Multi-resolution AOD retrievals for Air Quality Studies This paper examines the robustness of multi-resolution (2-km, 5-km and 10-km) AOD retrievals using MODIS measurements and with the sunphotometer measurements over the period 2000 to 2007 in two distinct aerosol loading environments: Bondville (USA) and Kanpur (India), with multi-annual mean (±standard deviation) of 0.161±0.0006 and 0.547±0.001, respectively. Our analysis suggests that 2-km and 5-km AODMODIS are significantly better correlated with the sunphotometer measurements as compared to 10-km AODMODIS irrespective of background aerosol loading. The best correlation (~0.91) is observed when both datasets are aggregated within the smallest space and time intervals of 0.025° and 15 minutes, and then the correlation decreases sharply with distance >0.075° and time interval >30 minutes. Based on these findings it is expected that the association between ground measurements of ambient particulates of different sizes and multi-resolution MODIS AOD is likely to vary significantly, and will have significant implications for air quality studies.

  3. Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Kim, Jhoon; Song, Chul H.; Choi, Myungje; Cheng, Yafang; Carmichael, Gregory R.

    2014-12-01

    Planned geostationary satellites will provide aerosol optical depth (AOD) retrievals at high temporal and spatial resolution which will be incorporated into current assimilation systems that use low-Earth orbiting (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) AOD. The impacts of such additions are explored in a real case scenario using AOD from the Geostationary Ocean Color Imager (GOCI) on board of the Communication, Ocean, and Meteorology Satellite, a geostationary satellite observing northeast Asia. The addition of GOCI AOD into the assimilation system generated positive impacts, which were found to be substantial in comparison to only assimilating MODIS AOD. We found that GOCI AOD can help significantly to improve surface air quality simulations in Korea for dust, biomass burning smoke, and anthropogenic pollution episodes when the model represents the extent of the pollution episodes and retrievals are not contaminated by clouds. We anticipate future geostationary missions to considerably contribute to air quality forecasting and provide better reanalyses for health assessments and climate studies.

  4. First characterization and validation of FORLI-HNO3 vertical profiles retrieved from IASI/Metop

    NASA Astrophysics Data System (ADS)

    Ronsmans, Gaétane; Langerock, Bavo; Wespes, Catherine; Hannigan, James W.; Hase, Frank; Kerzenmacher, Tobias; Mahieu, Emmanuel; Schneider, Matthias; Smale, Dan; Hurtmans, Daniel; De Mazière, Martine; Clerbaux, Cathy; Coheur, Pierre-François

    2016-09-01

    Knowing the spatial and seasonal distributions of nitric acid (HNO3) around the globe is of great interest and allows us to comprehend the processes regulating stratospheric ozone, especially in the polar regions. Due to its unprecedented spatial and temporal sampling, the nadir-viewing Infrared Atmospheric Sounding Interferometer (IASI) is capable of sounding the atmosphere twice a day globally, with good spectral resolution and low noise. With the Fast Optimal Retrievals on Layers for IASI (FORLI) algorithm, we are retrieving, in near real time, columns as well as vertical profiles of several atmospheric species, among which is HNO3. We present in this paper the first characterization of the FORLI-HNO3 profile products, in terms of vertical sensitivity and error budgets. We show that the sensitivity of IASI to HNO3 is highest in the lower stratosphere (10-20 km), where the largest amounts of HNO3 are found, but that the vertical sensitivity of IASI only allows one level of information on the profile (degrees of freedom for signal, DOFS; ˜ 1). The sensitivity near the surface is negligible in most cases, and for this reason, a partial column (5-35 km) is used for the analyses. Both vertical profiles and partial columns are compared to FTIR ground-based measurements from the Network for the Detection of Atmospheric Composition Change (NDACC) to characterize the accuracy and precision of the FORLI-HNO3 product. The profile validation is conducted through the smoothing of the raw FTIR profiles by the IASI averaging kernels and gives good results, with a slight overestimation of IASI measurements in the upper troposphere/lower stratosphere (UTLS) at the six chosen stations (Thule, Kiruna, Jungfraujoch, Izaña, Lauder and Arrival Heights). The validation of the partial columns (5-35 km) is also conclusive with a mean correlation of 0.93 between IASI and the FTIR measurements. An initial survey of the HNO3 spatial and seasonal variabilities obtained from IASI

  5. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair)

    DOE Data Explorer

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  6. High-resolution tropospheric carbon monoxide profiles retrieved from CrIS and TROPOMI

    NASA Astrophysics Data System (ADS)

    Fu, Dejian; Bowman, Kevin W.; Worden, Helen M.; Natraj, Vijay; Worden, John R.; Yu, Shanshan; Veefkind, Pepijn; Aben, Ilse; Landgraf, Jochen; Strow, Larrabee; Han, Yong

    2016-06-01

    The Measurements of Pollution in the Troposphere (MOPITT) instrument is the only satellite-borne sensor in operation that uses both thermal (TIR) and near-infrared (NIR) channels to estimate CO profiles. With more than 15 years (2000 to present) of validated multispectral observations, MOPITT provides the unique capability to separate CO in the lowermost troposphere (LMT, surface to 3 km (˜ 700 hPa)) from the free-tropospheric abundance. To extend this record, a new, hyper-spectral approach is presented here that will provide CO data products exceeding the capabilities of MOPITT by combining the short-wavelength infrared (SWIR, equivalent to the MOPITT NIR) channels from the TROPOspheric Monitoring Instrument (TROPOMI) to be launched aboard the European Sentinel 5 Precursor (S5p) satellite in 2016 and the TIR channels from the Cross-track Infrared Sounder (CrIS) aboard the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite. We apply the MUlti-SpEctra, MUlti-SpEcies, Multi-SEnsors (MUSES) retrieval algorithm to quantify the potential of this joint CO product. CO profiles are retrieved from a single-footprint, full-spectral-resolution CrIS transect over Africa on 27-28 August 2013 coincident with significant biomass burning. Comparisons of collocated CrIS and MOPITT CO observations for the LMT show a mean difference of 2.8 ± 24.9 ppb, which is well within the estimated measurement uncertainty of both sensors. The estimated degrees of freedom (DOF) for CO signals from synergistic CrIS-TROPOMI retrievals are approximately 0.9 in the LMT and 1.3 above the LMT, which indicates that the LMT CO can be distinguished from the free troposphere, similar to MOPITT multispectral observations (0.8 in the LMT, and 1.1 above the LMT). In addition to increased sensitivity, the combined retrievals reduce measurement uncertainty, with ˜ 15 % error reduction in the LMT. With a daily global coverage and a combined spatial footprint of 14 km, the joint Cr

  7. Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval

    NASA Astrophysics Data System (ADS)

    González Abad, G.; Vasilkov, A.; Seftor, C.; Liu, X.; Chance, K.

    2015-09-01

    This paper presents our new formaldehyde (H2CO) retrievals, obtained from spectra recorded by the nadir instrument of the Ozone Mapping and Profiler Suite (OMPS) flown on-board NASA's Suomi National Polar-orbiting Partnership (SUOMI-NPP) satellite. Our algorithm is similar to the one currently in place for the production of NASA's Ozone Monitoring Instrument (OMI) operational H2CO product. We are now able to produce a consistent set of long term data from two different instruments that share a similar concept. The ongoing overlap period between OMI and OMPS offers a perfect opportunity to study the consistency between both data sets. The different spatial and spectral resolution of the instruments is a source of discrepancy in the retrievals despite the similarity of the physic assumptions of the algorithm. We have concluded that the reduced spectral resolution of OMPS in comparison with OMI is not a significant obstacle in obtaining good quality retrievals. Indeed, the improved signal to noise ratio (SNR) of OMPS with respect to OMI helps to reduce the noise of the retrievals performed using OMPS spectra. However, the size of OMPS spatial pixels imposes a limitation in the capability to distinguish particular features of H2CO that are discernible with OMI. With root mean square (RMS) residuals ~ 5 × 10-4 for individual pixels we estimate the detection limit to be about 7.5 × 1015 molecules cm-2. Total vertical column densities (VCD) errors for individual pixels range between 40 % for pixels with high concentrations to 100 % or more for pixels with concentrations at or below the detection limit. We compare different OMI products with our OMPS product using one year of data, between September 2012 and September 2013. The seasonality of the retrieved slant columns is captured similarly by all products but there are discrepancies in the values of the VCDs. The mean biases among the two OMI products and our OMPS product are 21 % between OMI SAO and OMPS SAO and 38

  8. Retrieval of Vertical Columns of Sulfur Dioxide From SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation

    NASA Astrophysics Data System (ADS)

    Lee, C.; Martin, R. V.; Donkelaar, A. V.; O'Byrne, G.; Krotkov, N.; Richter, A.; Huey, G.; Holloway, J. S.

    2009-05-01

    Sulfur dioxide (SO2) is released into the atmosphere as a result of both anthropogenic activities and natural phenomena. SO2 oxidizes rapidly in the atmosphere, leading to aerosol formation and acid deposition. Outstanding questions exist about SO2 emissions and its atmospheric chemistry. Global mapping of atmospheric SO2 concentrations can provide critical information on its emissions and transport and generally improve scientific understanding of its atmospheric chemistry. Here, we present an improved retrieval of sulfur dioxide (SO2) vertical columns from satellite instruments (SCIAMACHY and OMI) that measure solar backscattered UV radiance. Particular attention is devoted to development of a local air mass factor (AMF) algorithm to convert slant columns to vertical columns. For each SCIAMACHY and OMI observation, we calculate an AMF from the relative vertical SO2 distribution (shape factor) determined locally with a 3-D global model of atmospheric chemistry (GEOS-Chem), weighted by altitude-dependent scattering weights computed with a radiative transfer model (LIDORT). Seasonal mean instrument sensitivity to SO2 (AMF) is generally twice as high over ocean than land. Mineral dust can reduce seasonal mean instrument sensitivity by 50%. Mean relative vertical profiles of SO2 simulated with GEOS-Chem and used in the AMF calculation are highly consistent with airborne in situ measurements (INTEX-A and INTEX-B); differences would affect the retrieved SO2 columns by 10%. The retrieved vertical columns are validated (r = 0.9) with coincident airborne in-situ measurements (INTEX-A, INTEX-B, and a campaign over East China). A global uniform AMF would reduce the correlation with aircraft measurements by 0.1 - 0.2. The overall error assessment leads to 45 - 80% errors for yearly averages over the polluted regions. Seasonal mean SO2 columns retrieved from SCIAMACHY and OMI for 2006 are significantly spatially correlated with those from GEOS-Chem, in particular over the

  9. Retrieving Temperature and Moisture Profiles from AERI Radiance Observations: AERIPROF Value-Added Product Technical Description Revision 1

    SciTech Connect

    WF Feltz; HB Howell; RO Knuteson; JM Comstock; R Mahon; DD Turner; WL Smith; HM Woolf; C Sivaraman; TD Halter

    2007-04-30

    This document explains the procedure to retrieve temperature and moisture profiles from high-spectral resolution infrared radiance data measured by the U.S. Department Of Energy (DOE) Atmospheric Radiation (ARM) Program’s atmospheric emitted radiance interferometer (AERI) instrument. The technique has been named the AERIPROF thermodynamic retrieval algorithm. The software has been developed over the last decade at the University of Wisconsin-Madison and has matured into an ARM Value-Added Procedure. This document will describe the AERIPROF retrieval procedure, outline the algorithm routines, discuss the software heritage, and, finally, provide references with further documentation.

  10. Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain

    NASA Astrophysics Data System (ADS)

    Massaro, G.; Stiperski, I.; Pospichal, B.; Rotach, M. W.

    2015-08-01

    Within the Innsbruck Box project, a ground-based microwave radiometer (RPG-HATPRO) was operated in the Inn Valley (Austria), in very complex terrain, between September 2012 and May 2013 to obtain temperature and humidity vertical profiles of the full troposphere with a specific focus on the valley boundary layer. In order to assess its performance in a deep alpine valley, the profiles obtained by the radiometer with different retrieval algorithms based on different climatologies are compared to local radiosonde data. A retrieval that is improved with respect to the one provided by the manufacturer, based on better resolved data, shows a significantly smaller root mean square error (RMSE), both for the temperature and humidity profiles. The improvement is particularly substantial at the heights close to the mountaintop level and in the upper troposphere. Lower-level inversions, common in an alpine valley, are resolved to a satisfactory degree. On the other hand, upper-level inversions (above 1200 m) still pose a significant challenge for retrieval. For this purpose, specialized retrieval algorithms were developed by classifying the radiosonde climatologies into specialized categories according to different criteria (seasons, daytime, nighttime) and using additional regressors (e.g., measurements from mountain stations). The training and testing on the radiosonde data for these specialized categories suggests that a classification of profiles that reproduces meaningful physical characteristics can yield improved targeted specialized retrievals. A novel and very promising method of improving the profile retrieval in a mountainous region is adding further information in the retrieval, such as the surface temperature at fixed levels along a topographic slope or from nearby mountaintops.

  11. Retrieving seawater-backscattering profiles from coupling Raman and elastic lidar data.

    PubMed

    Malinka, Aleksey V; Zege, Eleonora P

    2004-07-01

    We propose a technique for retrieving seawater-backscattering profiles that is based on the joint use of elastic and Raman lidar returns. We suggest using two lidar channels: the Raman channel and the elastic channel with a light frequency equal to a half-sum of initial and Raman-shifted frequencies of the Raman channel. These specific wavelengths provide the same attenuation laws for elastic and Raman signals if absorption and scattering spectra can be approximated by a power law. In particular, seawater supplies such a possibility in the region of 400-500 nm if extremely bioproductive waters are not considered and the chlorophyll absorption peak at 440 nm does not come out of the background of dissolved organic matter absorption. With these specific initial wavelengths, the elastic and Raman lidar returns differ only in the backscattering coefficients. Because the Raman-backscattering coefficient is constant along the profile, the (elastic-to-Raman) ratio of these lidar returns directly produces the profile of the elastic-backscattering coefficient. This technique stays valid even under multiple-scattering conditions, which is of great importance for seawater sounding.

  12. Radiocarbon analysis of stratospheric CO2 retrieved from AirCore sampling

    NASA Astrophysics Data System (ADS)

    Paul, Dipayan; Chen, Huilin; Been, Henk A.; Kivi, Rigel; Meijer, Harro A. J.

    2016-10-01

    Radiocarbon (14C) is an important atmospheric tracer and one of the many used in the understanding of the global carbon budget, which includes the greenhouse gases CO2 and CH4. Measurement of radiocarbon in atmospheric CO2 generally requires the collection of large air samples (a few liters) from which CO2 is extracted and then the concentration of radiocarbon is determined using accelerator mass spectrometry (AMS). However, the regular collection of air samples from the stratosphere, for example using aircraft and balloons, is prohibitively expensive. Here we describe radiocarbon measurements in stratospheric CO2 collected by the AirCore sampling method. AirCore is an innovative atmospheric sampling system, which comprises a long tube descending from a high altitude with one end open and the other closed, and it has been demonstrated to be a reliable, cost-effective sampling system for high-altitude profile (up to ≈ 30 km) measurements of CH4 and CO2. In Europe, AirCore measurements have been being performed on a regular basis near Sodankylä (northern Finland) since September 2013. Here we describe the analysis of samples from two such AirCore flights made there in July 2014, for determining the radiocarbon concentration in stratospheric CO2. The two AirCore profiles were collected on consecutive days. The stratospheric part of the AirCore was divided into six sections, each containing ≈ 35 µg CO2 ( ≈ 9.6 µgC), and stored in a stratospheric air subsampler constructed from 1/4 in. coiled stainless steel tubing ( ≈ 3 m). A small-volume extraction system was constructed that enabled > 99.5 % CO2 extraction from the stratospheric air samples. Additionally, a new small-volume high-efficiency graphitization system was constructed for graphitization of these extracted CO2 samples, which were measured at the Groningen AMS facility. Since the stratospheric samples were very similar in mass, reference samples were also prepared in the same mass range for

  13. A study of air/space-borne dual-wavelength radar for estimation of rain profiles

    NASA Astrophysics Data System (ADS)

    Liang, Liao; Meneghini, Robert

    2005-11-01

    In this study, a framework is given by which air/space-borne dual-wavelength radar data can be used to estimate the characteristic parameters of hydrometeors. The focus of the study is on the Global Precipitation Measurement (GPM) precipitation radar, a dual-wavelength radar that will operate in the Ku (13.6 GHz) and Ka (35 GHz) bands. A key aspect of the retrievals is the relationship between the differential frequency ratio (DFR) and the median volume diameter, D0, and its dependence on the phase state of the hydrometeors. It is shown that parametric plots of D0 and particle concentration in the plane of the DFR and the radar reflectivity factor in the Ku band can be used to reduce the ambiguities in deriving D0 from DFR. A self-consistent iterative algorithm, which does not require the use of an independent pathattenuation constraint, is examined by applying it to the apparent radar reflectivity profiles simulated from a drop size distribution (DSD) model. For light to moderate rain, the self-consistent rain profiling approach converges to the correct solution only if the same shape factor of the Gamma distributions is used both to generate and retrieve the rain profiles. On the other hand, if the shape factors differ, the iteration generally converges but not to the correct solution. To further examine the dual-wavelength techniques, the selfconsistent iterative algorithm, along with forward and backward rain profiling algorithms, are applied to measurements taken from the 2nd generation Precipitation Radar (PR-2) built by the Jet Propulsion Laboratory. Consistent with the model results, it is found that the estimated rain profiles are sensitive to the shape factor of the size distribution when the iterative, self-consistent approach is used but relatively insensitive to this parameter when the forward- and backward-constrained approaches are used.

  14. Retrieving moisture profiles from precipitable water measurements using a variational data assimilation approach

    SciTech Connect

    Guo, Y.R.; Zou, X.; Kuo, Y.H.

    1996-04-01

    Atmospheric moisture distribution is directly related to the formation of clouds and precipitation and affects the atmospheric radiation and climate. Currently, several remote sensing systems can measure precipitable water (PW) with fairly high accuracy. As part of the development of an Integrated Data Assimilation and Sounding System in support of the Atmospheric Radiation Measurement Program, retrieving the 3-D water vapor fields from PW measurements is an important problem. A new four dimensional variational (4DVAR) data assimilation system based on the Penn State/National Center for Atmospheric Research (NCAR) mesoscale model (MM5) has been developed by Zou et al. (1995) with the adjoint technique. In this study, we used this 4DVAR system to retrieve the moisture profiles. Because we do not have a set of real observed PW measurements now, the special soundings collected during the Severe Environmental Storm and Mesoscale Experiment (SESAME) in 1979 were used to simulate a set of PW measurements, which were then assimilated into the 4DVAR system. The accuracy of the derived water vapor fields was assessed by direct comparison with the detailed specific humidity soundings. The impact of PW assimilation on precipitation forecast was examined by conducting a series of model forecast experiments started from the different initial conditions with or without data assimilation.

  15. Retrieval of Stratospheric CH4 and CO2 Profiles from SCIAMACHY Solar Occultation Measurements with Onion Peeling DOAS

    NASA Astrophysics Data System (ADS)

    Noël, Stefan; Bramstedt, Klaus; Rozanov, Alexej; Bovensmann, Heinrich; Burrows, John P.

    2010-05-01

    A new retrieval method (called "Onion Peeling DOAS") has been developed to derive stratopheric profiles of atmospheric constituents from solar occultation measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). This method is intentionally kept simple and based on a combination of an onion peeling approach with a modified DOAS (Differential Optical Absorption Spectroscopy) fit. The method has already been successfully used to derive stratospheric water vapour profiles. However, the Onion Peeling DOAS method can also be applied to other atmospheric constituents. Here, we will present first retrieval results for methane (CH4) and carbon dioxide (CO2).

  16. Validation of Ozone Profiles Retrieved from SAGE III Limb Scatter Measurements

    NASA Technical Reports Server (NTRS)

    Rault, Didier F.; Taha, Ghassan

    2007-01-01

    Ozone profiles retrieved from Stratospheric Aerosol and Gas Experiment (SAGE III) limb scatter measurements are compared with correlative measurements made by occultation instruments (SAGE II, SAGE III and HALOE [Halogen Occultation Experiment]), a limb scatter instrument (Optical Spectrograph and InfraRed Imager System [OSIRIS]) and a series of ozonesondes and lidars, in order to ascertain the accuracy and precision of the SAGE III instrument in limb scatter mode. The measurement relative accuracy is found to be 5-10% from the tropopause to about 45km whereas the relative precision is found to be less than 10% from 20 to 38km. The main source of error is height registration uncertainty, which is found to be Gaussian with a standard deviation of about 350m.

  17. Ozone retrievals from MAGEAQ GEO TIR+VIS for air quality

    NASA Astrophysics Data System (ADS)

    Quesada-Ruiz, Samuel; Attié, Jean-Luc; Lahoz, William A.; Abida, Rachid; El-Amraoui, Laaziz; Ricaud, Philippe; Zbinden, Regina; Spurr, Robert; da Silva, Arlindo M.

    2016-04-01

    Nowadays, air quality monitoring is based on the use of ground-based stations (GBS) or satellite measurements. GBS provide accurate measurements of pollutant concentrations, especially in the planetary boundary layer (PBL), but usually the spatial coverage is sparse. Polar-orbiting satellites provide good spatial resolution but low temporal coverage -this is insufficient for tracking pollutants exhibiting a diurnal cycle (Lahoz et al., 2012). However, pollutant concentrations can be measured by instruments placed on board a geostationary satellite, which can provide sufficiently high temporal and spatial resolutions (e.g. Hache et al., 2014). In this work, we investigate the potentiality of a possible future geostationary instrument, MAGEAQ (Monitoring the Atmosphere from Geostationary orbit for European Air Quality), for retrieving ozone measurements over Europe. In particular, MAGEAQ can provide 1-hour temporal sampling at 10x10km pixel resolution for measurements in both visible (VIS) and thermal infrared (TIR) bands -thus, we will be able to measure during the day and at night. MAGEAQ synthetic radiance observations are obtained through radiative transfer (RT) simulations using the VLIDORT discrete ordinate RT model (Spurr, 2006) based on output from the GEOS-5 Nature Run (Gelaro et al., 2015) providing optical information, plus a suitable instrument model. Ozone is retrieved from these synthetic measurements using the optimal estimation inversion scheme of Levenberg-Marquardt. Finally, we examine an application of the air quality concept based on these ozone retrievals during the heatwave event of July 2006 over Europe. REFERENCES Gelaro, R., Putman, W. M., Pawson, S., Draper, C., Molod, A., Norris, P. M., Ott, L., Privé, N., Reale, O., Achuthavarier, D., Bosilovich, M., Buchard, V., Chao, W., Coy, L., Cullather, R., da Silva, A., Darmenov, A., Errico, R. M., Fuentes, M., Kim, M-J., Koster, R., McCarty, W., Nattala, J., Partyka, G., Schubert, S., Vernieres, G

  18. On the possible use of radio occultation middle latitude electron density profiles to retrieve thermospheric parameters

    NASA Astrophysics Data System (ADS)

    Mikhailov, Andrei V.; Belehaki, Anna; Perrone, Loredanna; Zolesi, Bruno; Tsagouri, Ioanna

    2014-04-01

    This paper investigates possible use of middle latitude daytime COSMIC and CHAMP ionospheric radio occultation (IRO) electron density profiles (EDPs) to retrieve thermospheric parameters, based on the Mikhailov et al. (2012) method. The aim of this investigation is to assess the applicability of this type of observations for the routine implementation of the method. According to the results extracted from the analysis presented here, about half of COSMIC IRO EDP observed under solar minimum (2007-2008) conditions gave neutral gas density with an inaccuracy close to the declared absolute inaccuracy ±(10-15)% of CHAMP observations, with the results being better than the empirical models JB-2008 and MSISE-00 provide. For the other half of IRO EDP, either the solution provided by the method had to be rejected due to insufficient accuracy or no solution could be obtained. For these cases, the parameters foF2 and hmF2 extracted from the corresponding IRO profiles have been found to be inconsistent with the classic mid-latitude daytime F2-layer formalism that the method relies on, and they are incompatible with the general trend provided by the IRI model. For solar maximum conditions (2002) the method was tested with IRO EDP from CHAMP and it is indicated that its performance is quite stable in the sense that a solution could be obtained for all the cases analyzed here. However available CHAMP EDP are confined by ~ 400 km in altitude and this might be the reason for the 20% bias of the retrieved densities toward larger values in respect to the observed densities. IRO observations up to 600 km under solar maximum are required to confirm the exact performance of the method.

  19. Development of ATLID-MSI synergy for retrieving the vertical profiles of aerosol components

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Nishizawa, T.; Higurashi, A.; Sugimoto, N.; Oikawa, E.

    2014-12-01

    EarthCARE is an earth observation satellite and will be launched in 2016. Using its two sensors, ATLID (High spectral resolution lidar) and MSI (Multi-spectral imager), we are developing the synergy algorithm to retrieve the vertical profiles of extinction coefficients at 355 nm of four aerosol components (Water-soluble, black carbon, dust, and sea-salt particles), and the column mean of mode radii of water-soluble and dust particles. The ATLID data are extinction coefficient, backscatter coefficient, and depolarization ratio for total aerosols at 355 nm. The MSI data are radiances at 670 and 865 nm. The dry volume concentrations of four aerosol components at each altitude and the mode radii of water-soluble and dust particles in the column are simultaneously optimized to ATLID and MSI data by the gauss newton method. After the optimization, the vertical profiles of the extinction coefficient at 355 nm of four aerosol components are obtained. The size distributions of four aerosol components are assumed to be a lognormal distribution. The refractive indices of four aerosol components are given from previously observational studies. The humidity growth is considered for water-soluble and sea-salt particles. The volume concentration and the mode radius of the sea-salt particle are parameterized using the surface wind speed on the ocean. We assumed that the shape of the water-soluble, black carbon, and sea-salt particles are spherical, and the shape of the dust particle is spheroidal. We tested the algorithm using the ATLID and MSI data simulated using clean, dust-transported, and smoke-transported aerosols. The extinction coefficients of each component at 355 nm are retrieved well. The mode radius of water-soluble and dust particles were somehow overestimated.

  20. The average longitudinal air shower profile: exploring the shape information

    NASA Astrophysics Data System (ADS)

    Conceição, R.; Andringa, S.; Diogo, F.; Pimenta, M.

    2015-08-01

    The shape of the extensive air shower (EAS) longitudinal profile contains information about the nature of the primary cosmic ray. However, with the current detection capabilities, the assessment of this quantity in an event-by-event basis is still very challenging. In this work we show that the average longitudinal profile can be used to characterise the average behaviour of high energy cosmic rays. Using the concept of universal shower profile it is possible to describe the shape of the average profile in terms of two variables, which can be already measured by the current experiments. These variables present sensitivity to both average primary mass composition and to hadronic interaction properties in shower development. We demonstrate that the shape of the average muon production depth profile can be explored in the same way as the electromagnetic profile having a higher power of discrimination for the state of the art hadronic interaction models. The combination of the shape variables of both profiles provides a new powerful test to the existing hadronic interaction models, and may also provide important hints about multi-particle production at the highest energies.

  1. A sensitivity study on the retrieval of aerosol vertical profiles using the oxygen A-band

    NASA Astrophysics Data System (ADS)

    Fedele Colosimo, Santo; Natraj, Vijay; Sander, Stanley P.; Stutz, Jochen

    2016-04-01

    Atmospheric absorption in the O2 A-band (12 950-13 200 cm-1) offers a unique opportunity to retrieve aerosol extinction profiles from space-borne measurements due to the large dynamic range of optical thickness in that spectral region. Absorptions in strong O2 lines are saturated; therefore, any radiance measured in these lines originates from scattering in the upper part of the atmosphere. Outside of O2 lines, or in weak lines, the atmospheric column absorption is small, and light penetrates to lower atmospheric layers, allowing for the quantification of aerosols and other scatterers near the surface.

    While the principle of aerosol profile retrieval using O2 A-band absorption from space is well-known, a thorough quantification of the information content, i.e., the amount of vertical profile information that can be obtained, and the dependence of the information content on the spectral resolution of the measurements, has not been thoroughly conducted. Here, we use the linearized vector radiative transfer model VLIDORT to perform spectrally resolved simulations of atmospheric radiation in the O2 A-band for four different aerosol extinction profile scenarios: urban (urban-rural areas), highly polluted (megacity areas with large aerosol extinction), elevated layer (identifying elevated plumes, for example for biomass burning) and low extinction (representative of small aerosol extinction, such as vegetated, marine and arctic areas). The high-resolution radiances emerging from the top of the atmosphere measurements are degraded to different spectral resolutions, simulating spectrometers with different resolving powers. We use optimal estimation theory to quantify the information content in the aerosol profile retrieval with respect to different aerosol parameters and instrument spectral resolutions. The simulations show that better spectral resolution generally leads to an increase in the total amount of information that can be retrieved, with the number of

  2. Relationship between ozone and the air pollutants in Peninsular Malaysia for 2003 retrieved from SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2013-05-01

    Since few decades ago, air pollution has become a hot topic of environmental and atmospheric research due to the impact of air pollution on human health. Ozone is one of the important chemical constituent of the atmosphere, which plays a key role in atmospheric energy budget and chemistry, air quality and global change. Results from the analysis of the retrieved monthly data from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) were utilized, in order to analyze the impact of air pollutants (CO2, CH4, H2O, and NO2) on the ozone in Peninsular Malaysia for 2003 using multiple regression analysis. SCIAMACHY onboard ENVISAT as part of the atmospheric chemistry payload of the third European Space Agency (ESA) Earth observation, is the first satellite instrument whose measurements is enough precise and sensitive for all the greenhouse gases to make observation at all atmospheric altitude levels down to the Earth's surface. Among the four pollutants, ozone was most affected by water vapor (H2O vapor), indicated by a strong beta coefficient (-0.769 - 0.997), depends on the seasonal variety. In addition, CO2 also shows a strong Beta coefficient (-0.654 - 0.717) and also affected by the seasonal variation. The variation of pollutants on the average explains change 50.1% of the ozone. This means that about 50.1% of the ozone is attributed to these pollutant gases. The SCIAMACHY data and the satellite measurements successfully identify the increase of the atmospheric air pollutants over the study area.

  3. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  4. Profiling wind and greenhouse gases by infrared-laser occultation: results from end-to-end simulations in windy air

    NASA Astrophysics Data System (ADS)

    Plach, A.; Proschek, V.; Kirchengast, G.

    2015-07-01

    The new mission concept of microwave and infrared-laser occultation between low-Earth-orbit satellites (LMIO) is designed to provide accurate and long-term stable profiles of atmospheric thermodynamic variables, greenhouse gases (GHGs), and line-of-sight (l.o.s.) wind speed with focus on the upper troposphere and lower stratosphere (UTLS). While the unique quality of GHG retrievals enabled by LMIO over the UTLS has been recently demonstrated based on end-to-end simulations, the promise of l.o.s. wind retrieval, and of joint GHG and wind retrieval, has not yet been analyzed in any realistic simulation setting. Here we use a newly developed l.o.s. wind retrieval algorithm, which we embedded in an end-to-end simulation framework that also includes the retrieval of thermodynamic variables and GHGs, and analyze the performance of both stand-alone wind retrieval and joint wind and GHG retrieval. The wind algorithm utilizes LMIO laser signals placed on the inflection points at the wings of the highly symmetric C18OO absorption line near 4767 cm-1 and exploits transmission differences from a wind-induced Doppler shift. Based on realistic example cases for a diversity of atmospheric conditions, ranging from tropical to high-latitude winter, we find that the retrieved l.o.s. wind profiles are of high quality over the lower stratosphere under all conditions, i.e., unbiased and accurate to within about 2 m s-1 over about 15 to 35 km. The wind accuracy degrades into the upper troposphere due to the decreasing signal-to-noise ratio of the wind-induced differential transmission signals. The GHG retrieval in windy air is not vulnerable to wind speed uncertainties up to about 10 m s-1 but is found to benefit in the case of higher speeds from the integrated wind retrieval that enables correction of wind-induced Doppler shift of GHG signals. Overall both the l.o.s. wind and GHG retrieval results are strongly encouraging towards further development and implementation of a LMIO mission.

  5. Comparison of Tropical Ozone from SHADOZ with Remote Sensing Retrievals from Suomi-npp Ozone Mapping Profile Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Witte, Jacquelyn C.; Thompson, Anne M.; Ziemke, Jerald R.; Wargan, Krzysztof

    2014-01-01

    The Ozone Mapping Profile Suite (OMPS) was launched October 28, 2011 on-board the Suomi NPP satellite (http://npp.gsfc.nasa.gov). OMPS is the next generation total column ozone mapping instrument for monitoring the global distribution of stratospheric ozone. OMPS includes a limb profiler to measure the vertical structure of stratosphere ozone down to the mid-troposphere. This study uses tropical ozonesonde profile measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ, http://croc.gsfc.nasa.gov/shadoz) archive to evaluate total column ozone retrievals from OMPS and concurrent measurements from the Aura Ozone Monitoring Instrument (OMI), the predecessor of OMPS with a data record going back to 2004. We include ten SHADOZ stations that contain data overlapping the OMPS time period (2012-2013). This study capitalizes on the ozone profile measurements from SHADOZ to evaluate OMPS limb profile retrievals. Finally, we use SHADOZ sondes and OMPS retrievals to examine the agreement with the GEOS-5 Ozone Assimilation System (GOAS). The GOAS uses data from the OMI and the Microwave Limb Sounder (MLS) to constrain the total column and stratospheric profiles of ozone. The most recent version of the assimilation system is well constrained to the total column compared with SHADOZ ozonesonde data.

  6. ALTIUS, a future small mission for O3 and other atmospheric trace species concentration profiles retrieval

    NASA Astrophysics Data System (ADS)

    Dekemper, Emmanuel; Fussen, Didier; Vanhellemont, Filip; Pieroux, Didier; Mateshvili, Nina; Franssens, Ghislain; Errera, Quentin; Vanhamel, Jurgen; Neefs, Eddy; De Vos, Lieve; Aballea, Ludovic

    2016-04-01

    The ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere) mission aims at the retrieval of atmospheric trace species concentration profiles with a good vertical resolution and a global coverage. It will be flown on a PROBA-type platform on a Sun-synchronous orbit with a 10:00 AM typical local time. The instrument exploits the concept of hyperspectral imaging of different light sources: limb-scattered radiance, Sun, Moon, stars, planets. These sources are observed sequentially, depending on their availability and good positioning. This multi-mode observation capability enables measurements in both bright and dark side of the orbit, extending the coverage to virtually all latitudes and different illumination conditions (including polar night). The instrument concept relies on three independent spectral channels: UV, VIS and NIR. The imaging technique alleviates the need for scanning systems as the field of view will capture the atmosphere from cloud top to the lower thermosphere at once. It also makes the pointing calibration more easy and robust, an important feature knowing that tangent altitude misregistration is one of the major sources of bias in the retrieved products. In each channel, the wavelength selection for each image will be performed by a tunable filter: an AOTF (Acousto-Optical Tunable Filter) for the VIS and NIR, and a FPI (Fabry-Perot Interferometer) in the UV. ALTIUS has recently completed a phase B1 under ESA supervision. The next milestone will be the preliminary design review (PDR) that will take place within a few months from now. Launch is expected for 2020 with a 3-5 years design lifetime. We will present the scientific objectives of the mission, and the current status of the payload and platform concepts. An overview of the main in-flight calibration strategies will be given, and the expected performance of the O3 level-2 product for the different modes of observation will be shown.

  7. Case studies of aerosol and ocean color retrieval using a Markov chain radiative transfer model and AirMSPI measurements

    NASA Astrophysics Data System (ADS)

    Xu, F.; Diner, D. J.; Seidel, F. C.; Dubovik, O.; Zhai, P.

    2014-12-01

    A vector Markov chain radiative transfer method was developed for forward modeling of radiance and polarization fields in a coupled atmosphere-ocean system. The method was benchmarked against an independent Successive Orders of Scattering code and linearized through the use of Jacobians. Incorporated with the multi-patch optimization algorithm and look-up-table method, simultaneous aerosol and ocean color retrievals were performed using imagery acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) when it was operated in step-and-stare mode with 9 viewing angles ranging between ±67°. Data from channels near 355, 380, 445, 470*, 555, 660*, and 865* nm were used in the retrievals, where the asterisk denotes the polarimetric bands. Retrievals were run for AirMSPI overflights over Southern California and Monterey Bay, CA. For the relatively high aerosol optical depth (AOD) case (~0.28 at 550 nm), the retrieved aerosol concentration, size distribution, water-leaving radiance, and chlorophyll concentration were compared to those reported by the USC SeaPRISM AERONET-OC site off the coast of Southern California on 6 February 2013. For the relatively low AOD case (~0.08 at 550 nm), the retrieved aerosol concentration and size distribution were compared to those reported by the Monterey Bay AERONET site on 28 April 2014. Further, we evaluate the benefits of multi-angle and polarimetric observations by performing the retrievals using (a) all view angles and channels; (b) all view angles but radiances only (no polarization); (c) the nadir view angle only with both radiance and polarization; and (d) the nadir view angle without polarization. Optimized retrievals using different initial guesses were performed to provide a measure of retrieval uncertainty. Removal of multi-angular or polarimetric information resulted in increases in both parameter uncertainty and systematic bias. Potential accuracy improvements afforded by applying constraints on the surface

  8. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.

    1976-01-01

    An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.

  9. Influence of controlled encoding and retrieval facilitation on memory performance in patients with different profiles of mild cognitive impairment.

    PubMed

    Perri, Roberta; Monaco, Marco; Fadda, Lucia; Serra, Laura; Marra, Camillo; Caltagirone, Carlo; Bruni, Amalia C; Curcio, Sabrina; Bozzali, M; Carlesimo, Giovanni A

    2015-01-01

    Memory tests able to differentiate encoding and retrieval processes from the memoranda storing ones should be used to differentiate patients in a very early phase of AD. In fact, individuals with mild cognitive impairment (MCI) can be characterized by two different memory profiles: a pure amnestic one (with poor learning and retrieval and poor improvement when encoding is assisted and retrieval is facilitated) and a dysexecutive one (with inefficient encoding and/or poor retrieval strategies and improvement with assisted encoding and retrieval). The amnestic profile characterizes subjects affected by medio-temporal atrophy typical of AD. In this study, a Grober-Buschke memory procedure was used to evaluate normal controls and MCI patients with different cognitive profiles: pure amnestic (aMCIsd), amnestic plus other cognitive impairments (aMCImd) and non-amnestic (naMCI). An index of sensitivity of cueing (ISC) measured the advantage passing from free to cued recall. Results showed that both strategic and consolidation abilities were impaired in the aMCIsd and aMCImd groups and were preserved in the naMCI group. aMCImd, however, compensated the memory deficit with assisted encoding and retrieval, but aMCIsd performed very poorly. When MCI subjects were defined according to the ISC value, subjects with poor ISC were primarily in the aMCIsd group and, to a lesser extent, in the aMCImd group and the naMCI group. Finally, patients with a poor ISC showed cerebral atrophy documented in the precocious phase of AD and the retrosplenial cerebral areas seemed to be the most useful areas for identifying patients in the early phase of AD. PMID:25670528

  10. New technique for retrieval of atmospheric temperature profiles from Rayleigh-scatter lidar measurements using nonlinear inversion.

    PubMed

    Khanna, Jaya; Bandoro, Justin; Sica, R J; McElroy, C Thomas

    2012-11-20

    The conventional method of calculating atmospheric temperature profiles using Rayleigh-scattering lidar measurements has limitations that necessitate abandoning temperatures retrieved at the greatest heights, due to the assumption of a pressure value required to initialize the integration at the highest altitude. An inversion approach is used to develop an alternative way of retrieving nightly atmospheric temperature profiles from the lidar measurements. Measurements obtained by the Purple Crow lidar facility located near The University of Western Ontario are used to develop and test this new technique. Our results show temperatures can be reliably retrieved at all heights where measurements with adequate signal-to-noise ratio exist. A Monte Carlo technique was developed to provide accurate estimates of both the systematic and random uncertainties for the retrieved nightly average temperature profile. An advantage of this new method is the ability to seed the temperature integration from the lowest rather than the greatest height, where the variability of the pressure is smaller than in the mesosphere or lower thermosphere and may in practice be routinely measured by a radiosonde, rather than requiring a rocket or satellite-borne measurement. Thus, this new technique extends the altitude range of existing Rayleigh-scatter lidars 10-15 km, producing the equivalent of four times the power-aperture product.

  11. Spectral Retrieval of Latent Heating Profiles from TRMM PR Data: Comparison of Look-Up Tables

    NASA Technical Reports Server (NTRS)

    Shige, Shoichi; Takayabu, Yukari N.; Tao, Wei-Kuo; Johnson, Daniel E.; Shie, Chung-Lin

    2003-01-01

    differences in melting layer heights. We are now extending our study to simulations of other field experiments (e.g. SCSMEX and ARM) in order to examine the universality of the look-up table. The impact of look-up tables on the retrieved latent heating profiles will also be assessed.

  12. Analysis of CrIS-ATMS Data Using an AIRS Science Team Version 6 - Like Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Kouvaris, Louis C.

    2013-01-01

    CrIS/ATMS is flying on NPP and is scheduled to fly on JPSS-1. CrIS/ATMS has roughly equivalent capabilities to AIRS/AMSU. The AIRS Science Team Version 6 retrieval algorithm is currently producing very high quality level-3 Climate Data Records (CDR's) that will be critical for understanding climate processes AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS AMSU. I have been asked by Ramesh Kakar if CrIS/ATMS can be counted on to adequately continue the AIRS/AMSU CDRs beyond 2020, or is something better needed? This research is being done to answer that question. A minimum requirement to obtain a yes answer is that CrIS/ATMS be analyzed using an AIRS Version 6 - like algorithm. NOAA is currently generating CrIS/ATMS products using 2 algorithms: IDPS and NUCAPS

  13. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  14. High-resolution air quality monitoring from space: a fast retrieval scheme for CO from hyperspectral infrared measurements

    NASA Astrophysics Data System (ADS)

    Smith, N.; Huang, H.-L.; Weisz, E.; Annegarn, H. J.; Pierce, R. B.

    2011-06-01

    The first results of the Fast Linear Inversion Trace gas System (FLITS) retrieval scheme are presented here for CO from IASI (Infrared Atmospheric Sounding Interferometer) measurements using RAQMS (Real time Air Quality Modelling System) as atmospheric background. FLITS is a simple linear inversion scheme with a stable performance that retrieves total column CO concentrations (molec cm-2) at single field-of-view (FOV) irrespective of cloud cover. A case study is presented here for a biomass burning plume over the Pacific on 29 March 2010. For each FOV a single tropospheric CO density, vertically integrated over 200-800 hPa, is retrieved with 12 channels in the spectral range 2050-2225 cm-1. Despite variations in cloud cover and temperature, the degrees of freedom for signal (DFS) of the solution ranges between 0.8 and 0.95. In addition, the retrieval error is at least half the background error of 10 %, with dominant contribution from uncertainty in the measurement and temperature. With its stability and processing speed, FLITS meet two of the key requirements for operational processing. We conclude that the linear combination of space-borne measurements with a chemical transport model in the FLITS retrieval scheme holds potential for real-time air quality monitoring and evaluation of pollutant transport at high spatial resolution.

  15. Retrieval-Based Model Accounts for Striking Profile of Episodic Memory and Generalization

    PubMed Central

    Banino, Andrea; Koster, Raphael; Hassabis, Demis; Kumaran, Dharshan

    2016-01-01

    A fundamental theoretical tension exists between the role of the hippocampus in generalizing across a set of related episodes, and in supporting memory for individual episodes. Whilst the former requires an appreciation of the commonalities across episodes, the latter emphasizes the representation of the specifics of individual experiences. We developed a novel version of the hippocampal-dependent paired associate inference (PAI) paradigm, which afforded us the unique opportunity to investigate the relationship between episodic memory and generalization in parallel. Across four experiments, we provide surprising evidence that the overlap between object pairs in the PAI paradigm results in a marked loss of episodic memory. Critically, however, we demonstrate that superior generalization ability was associated with stronger episodic memory. Through computational simulations we show that this striking profile of behavioral findings is best accounted for by a mechanism by which generalization occurs at the point of retrieval, through the recombination of related episodes on the fly. Taken together, our study offers new insights into the intricate relationship between episodic memory and generalization, and constrains theories of the mechanisms by which the hippocampus supports generalization. PMID:27510579

  16. Satellite retrieval of cloud properties from the O2 A-band for air quality and climate applications

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; van der A, R.

    2009-04-01

    The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar measurements of clouds shows that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. From ground-based validation (P. Wang et al., Atmos. Chem. Phys., 8, 6565-6576, 2008) it appears that the FRESCO+ cloud retrievals improve the retrieval of tropospheric NO2 as compared to FRESCO. So FRESCO+ contributes to better monitoring of air quality from space. The FRESCO+ cloud algorithm has been applied to GOME and SCIAMACHY measurements since the beginning of the missions. Monthly averaged SCIAMACHY FRESCO+ effective cloud fraction and cloud pressure maps show similar patterns as the ISCCP cloud maps, although there are some differences, due to the different meaning of the cloud products and due to the fact that photons in the O2 A-band penetrate into clouds. The 6-year averaged seasonal cloud maps from SCIAMACHY data have good agreement with the global circulation patterns. Therefore, the FRESCO+ products are not only efficient for cloud correction of trace gas retrievals but also contribute additional information for climate research.

  17. The Capability of Microwave Radiometers In Retrieving Soil Moisture Profiles Using A Neural Networks

    NASA Astrophysics Data System (ADS)

    Macelloni, G.; Paloscia, S.; Santi, E.; Tedesco, M.

    Hydrological models require the knowledge of land surface parameters like soil mois- ture and snow properties with a large spatial distribution and high temporal frequency. Whilst conventional methods are unable to satisfy the constraints of space and time estimation of these parameters, the use of remote sensing data represents a real im- provement. In particular the potential of data collected by microwave radiometers at low frequencies to extract soil moisture has been clearly demonstrated in several pa- pers. However, the penetration power into the soil depends on frequency and, whereas L-band is able to estimate the moisture of a relatively thick soil layer, higher frequen- cies are only sensitive to the moisture of soil layer closer to the surface. This remark leads to the hypothesis that multifrequency observations could be able to retrieve a soil moisture profile. In several experiments carried out both on agricultural fields and on samples of soil in a tank, by using the IROE multifrequency microwave radiometers, the effect of moisture and surface roughness on different frequencies was studied. From this experiments the capability of L-band in measuring the moisture of a soil layer of several centimeters, in the order of the wavelength, was confirmed, as well the sensitivity to the moisture of the first centimeters layer at C- and X-bands, and the one of the very first layer of smooth soil at Ka-band. Using an electromagnetic model (Integral Equation Model, IEM) the brightness temperatures as a function of the in- cidence angle were computed at 1.4, 6, 10, and 37 GHz for different soil moisture profiles and different surface roughness. A particular consideration was dedicated to the latter parameter, since, especially at Ka band, surface roughness strongly affects the emission and masks the effect of moisture. Different soil moisture profiles have been tested: increasing and decreasing with depth and also constant for sandy and sandy-loam soils. After this

  18. Retrievals of Profiles of Fine And Coarse Aerosols Using Lidar And Radiometric Space Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Leon, Jean-Francois; Pelon, Jacques; Lau, William K. M. (Technical Monitor)

    2002-01-01

    In couple of years we expect the launch of the CALIPSO lidar spaceborne mission designed to observe aerosols and clouds. CALIPSO will collect profiles of the lidar attenuated backscattering coefficients in two spectral wavelengths (0.53 and 1.06 microns). Observations are provided along the track of the satellite around the globe from pole to pole. The attenuated backscattering coefficients are sensitive to the vertical distribution of aerosol particles, their shape and size. However the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Infinite number of physical solutions can reconstruct the same two wavelength backscattered profile measured from space. CALIPSO will fly in formation with the Aqua satellite and the MODIS spectro-radiometer on board. Spectral radiances measured by MODIS in six channels between 0.55 and 2.13 microns simultaneously with the CALIPSO observations can constrain the solutions and resolve this ambiguity, albeit under some assumptions. In this paper we describe the inversion method and apply it to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the SHADE experiment. It is shown that the product of the single scattering albedo, omega, and the phase function, P, for backscattering can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. The resultant value of (omega)P(180 deg.) = 0.016/sr are significantly different from what is expected using Mie theory, but are in good agreement with recent results obtained from lidar observations of dust episodes. The inversion is robust in the presence of noise of 10% and 20% in the lidar signal in the 0.53 and 1.06 pm channels respectively. Calibration errors of the lidar of 5 to 10% can cause an error in optical thickness of 20 to 40% respectively in the tested cases. The lidar calibration errors cause degradation in the

  19. Inter-comparison of CALIPSO and CloudSat retrieved profiles of aerosol and cloud microphysical parameters with aircraft profiles over a tropical region

    NASA Astrophysics Data System (ADS)

    Padmakumari, B.; Harikishan, G.; Maheskumar, R. S.

    2016-05-01

    Satellites play a major role in understanding the spatial and vertical distribution of aerosols and cloud microphysical parameters over a large area. However, the inherent limitations in satellite retrievals can be improved through inter-comparisons with airborne platforms. Over the Indian sub-continent, the vertical profiles retrieved from space-borne lidar such as CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) on board the satellite CALIPSO and Cloud Profiling Radar (CPR) on board the satellite CloudSat were inter- compared with the aircraft observations conducted during Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX). In the absence of high clouds, both aircraft and CALIOP showed similar features of aerosol layering and water-ice cloud signatures. As CALIOP could not penetrate the thick clouds, the aerosol information below the cloud is missed. While the aircraft could measure high concentrations below the cloud base and above the low clouds in the presence of high clouds. The aircraft derived liquid water content (LWC) and droplet effective radii (Re) showed steady increase from cloud base to cloud top with a variable cloud droplet number concentration (CDNC). While the CloudSat derived LWC, CDNC and Re showed increase from the cloud top to cloud base in contradiction to the aircraft measurements. The CloudSat profiles are underestimated as compared to the corresponding aircraft profiles. Validation of satellite retrieved vertical profiles with aircraft measurements is very much essential over the tropics to improve the retrieval algorithms and to constrain the uncertainties in the regional cloud parameterization schemes.

  20. AIRS retrieved CO2 and its association with climatic parameters over India during 2004-2011.

    PubMed

    Kumar, K Ravi; Revadekar, J V; Tiwari, Yogesh K

    2014-04-01

    Atmospheric Infrared Sounder (AIRS) retrieved mid-tropospheric Carbon Dioxide (CO2) have been used to study the variability and its association with the climatic parameters over India during 2004 to 2011. The study also aims in understanding transport of CO2 from surface to mid-troposphere over India. The annual cycle of mid-tropospheric CO2 shows gradual increase in concentration from January till the month of May at the rate ~0.6 ppm/month. It decreases continuously in summer monsoon (JJAS) at the same rate during which strong westerlies persists over the region. A slight increase is seen during winter monsoon (DJF). Being a greenhouse gas, annual cycle of CO2 show good resemblance with annual cycle of surface air temperature with correlation coefficient (CC) of +0.8. Annual cycle of vertical velocity indicate inverse pattern compared to annual cycle of CO2. High values of mid-tropospheric CO2 correspond to upward wind, while low values of mid-tropospheric CO2 correspond to downward wind. In addition to vertical motion, zonal winds are also contributing towards the transport of CO2 from surface to mid-troposphere. Vegetation as it absorbs CO2 at surface level, show inverse annual cycle to that of annual cycle of CO2 (CC-0.64). Seasonal variation of rainfall-CO2 shows similarities with seasonal variation of NDVI-CO2. However, the use of long period data sets for CO2 at the surface and at the mid-troposphere will be an advantage to confirm these results.

  1. Mid-Air Retrieval technology for returning of reusable launch vehicles' boosters

    NASA Astrophysics Data System (ADS)

    Antonenko, S. V.; Belavskiy, S. A.

    2009-09-01

    The multilateral analysis of reusable launch vehicles (RLV) has been carried out by the authors' team within 8 years. The studies are based on the world experience and also on the large practical experience of Khrunichev Space Center in designing, production, and operation of aerospacecraft (incuding reentry one). The analysis results are monosemantic and are the following: The only one feasible principle for the nearest future is a mid-air retrieval (MAR), which will permit potentially the creation of the effective RLV. For practical realization of the results obtained, the authors in cooperation with M. L. Mil's Moscow Helicopter Plant (MHP) and "Parachute Design" Scientific Institute have developed the launch vehicles' booster MAR technology (including the structure and principles of main elements formation). The general conclusions of the mar technology are the following: (i) it can be realized with a minimal technical risk at the earliest time (2-3 years); (ii) it can be applied to the existing expendable launch vehicles (ELV) and can be easily adapted to different launch vehicles; (iii) it can be demonstrated at minimal costs and time; and (iν) it permits the creation of the most economically effective RLV (budget savings will be up to 30% and in case of using a special operation technology, the savings can attain 41.5%).

  2. Impact of ENSO on variability of AIRS retrieved CO2 over India

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, K.; Tiwari, Yogesh K.; Revadekar, J. V.; Vellore, Ramesh; Guha, Tania

    2016-10-01

    This study investigates the impact of ENSO on the CO2 variability over the Indian subcontinent for the period 2003-2011 based on the relationships between NINO indices derived from the sea surface temperature (SST) and AIRS-retrieved mid-tropospheric CO2 concentrations. The NINO4 region exhibits positive influence on the variability of CO2 almost during the entire year except for the post-monsoon/winter months (October through December; OND). Significant positive relationship (correlation coefficient r = +0.68) between NINO4 index and CO2 levels is observed for the month of June, while negative relationship (r = -0.73) for the month of October, and the negative relationship tends to continue till November with decreasing magnitudes (r = -0.41). The spatial distribution of mid-tropospheric CO2 concentrations during El Niño and La Niña periods also indicate large-scale impact over the Indian subcontinent with positive (negative) anomalies of about 1-2 ppm during El Niño (La Niña).

  3. Round-robin evaluation of nadir ozone profile retrievals: methodology and application to MetOp-A GOME-2

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Lambert, J.-C.; Granville, J.; Miles, G.; Siddans, R.; van Peet, J. C. A.; van der A, R. J.; Hubert, D.; Verhoelst, T.; Delcloo, A.; Godin-Beekmann, S.; Kivi, R.; Stübi, R.; Zehner, C.

    2014-11-01

    A methodology for the round-robin evaluation and geophysical validation of ozone profile data retrieved from nadir UV backscatter satellite measurements is detailed and discussed, consisting of dataset content studies, information content studies, co-location studies, and comparisons with reference measurements. Within ESA's Climate Change Initiative on ozone (Ozone_cci project), the proposed round-robin procedure is applied to two nadir ozone profile datasets retrieved at KNMI and RAL, using their respective OPERA v1.26 and RAL v2.1 optimal estimation algorithms, from MetOp-A GOME-2 measurements taken in 2008. The ground-based comparisons use ozonesonde and lidar profiles as reference data, acquired by the Network for the Detection of Atmospheric Composition Change (NDACC), Southern Hemisphere Additional Ozonesonde programme (SHADOZ), and other stations of WMO's Global Atmosphere Watch. This direct illustration highlights practical issues that inevitably emerge from discrepancies in e.g. profile representation and vertical smoothing, for which different recipes are investigated and discussed. Several approaches for information content quantification, vertical resolution estimation, and reference profile resampling are compared and applied as well. The paper concludes with compliance estimates of the two GOME-2 ozone profile datasets with user requirements from GCOS and from climate modellers.

  4. Round-robin evaluation of nadir ozone profile retrievals: methodology and application to MetOp-A GOME-2

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Lambert, J.-C.; Granville, J.; Miles, G.; Siddans, R.; van Peet, J. C. A.; van der A, R. J.; Hubert, D.; Verhoelst, T.; Delcloo, A.; Godin-Beekmann, S.; Kivi, R.; Stubi, R.; Zehner, C.

    2015-05-01

    A methodology for the round-robin evaluation and the geophysical validation of ozone profile data retrieved from nadir UV backscatter satellite measurements is detailed and discussed, consisting of data set content studies, information content studies, co-location studies, and comparisons with reference measurements. Within the European Space Agency's Climate Change Initiative on ozone (Ozone_cci project), the proposed round-robin procedure is applied to two nadir ozone profile data sets retrieved at the Royal Netherlands Meteorological Institute (KNMI) and the Rutherford Appleton Laboratory (RAL, United Kingdom), using their respective OPERA v1.26 and RAL v2.1 optimal estimation algorithms, from MetOp-A GOME-2 (i.e. the second generation Global Ozone Monitoring Experiment on the first Meteorological Operational Satellite) measurements taken in 2008. The ground-based comparisons use ozonesonde and lidar profiles as reference data, acquired by the Network for the Detection of Atmospheric Composition Change (NDACC), Southern Hemisphere Additional Ozonesonde programme (SHADOZ), and other stations of the World Meteorological Organisation's Global Atmosphere Watch (WMO GAW). This direct illustration highlights practical issues that inevitably emerge from discrepancies in e.g. profile representation and vertical smoothing, for which different recipes are investigated and discussed. Several approaches for information content quantification, vertical resolution estimation, and reference profile resampling are compared and applied as well. The paper concludes with compliance estimates of the two GOME-2 ozone profile data sets with user requirements from the Global Climate Observing System (GCOS) and from climate modellers.

  5. On Study of Air/Space-borne Dual-Wavelength Radar for Estimates of Rain Profiles

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert

    2004-01-01

    In this study, a framework is discussed to apply air/space-borne dual-wavelength radar for the estimation of characteristic parameters of hydrometeors. The focus of our study is on the Global Precipitation Measurements (GPM) precipitation radar, a dual-wavelength radar that operates at Ku (13.8 GHz) and Ka (35 GHz) bands. As the droplet size distributions (DSD) of rain are expressed as the Gamma function, a procedure is described to derive the median volume diameter (D(sub 0)) and particle number concentration (N(sub T)) of rain. The correspondences of an important quantity of dual-wavelength radar, defined as deferential frequency ratio (DFR), to the D(sub 0) in the melting region are given as a function of the distance from the 0 C isotherm. A self-consistent iterative algorithm that shows a promising to account for rain attenuation of radar and infer the DSD without use of surface reference technique (SRT) is examined by applying it to the apparent radar reflectivity profiles simulated from the DSD model and then comparing the estimates with the model (true) results. For light to moderate rain the self-consistent rain profiling approach converges to unique and correct solutions only if the same shape factors of Gamma functions are used both to generate and retrieve the rain profiles, but does not converges to the true solutions if the DSD form is not chosen correctly. To further examine the dual-wavelength techniques, the self-consistent algorithm, along with forward and backward rain profiling algorithms, is then applied to the measurements taken from the 2nd generation Precipitation Radar (PR-2) built by Jet Propulsion Laboratory. It is found that rain profiles estimated from the forward and backward approaches are not sensitive to shape factor of DSD Gamma distribution, but the self-consistent method is.

  6. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  7. A single field of view method for retrieving tropospheric temperature profiles from cloud-contaminated radiance data

    NASA Technical Reports Server (NTRS)

    Hodges, D. B.; Scoggins, J. R.

    1977-01-01

    The paper presents a method for retrieving single field of view tropospheric temperature profiles directly from cloud-contaminated radiance data through the use of auxiliary data such as observed shelter temperatures and estimated cloud-top height. A model was formulated to calculate cloud parameters for use with the radiative transport equation at an estimated cloud-top level. The cloud and temperature data are used in conjunction with real and simulated radiance data from NOAA satellites.

  8. Comparing Water Vapor Mixing Ratio Profiles and Cloud Vertical Structure from Multiwavelength Raman Lidar Retrievals and Radiosounding Measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, Montserrat; Stachlewska, Iwona S.; Markowicz, Krzysztof

    2016-06-01

    A study of comparison of water vapor mixing ratio profiles, relative humidity profiles, and cloud vertical structures using two different instruments, a multiwavelength Aerosol-Depolarization-Raman lidar and radiosoundings, is presented. The observations were taken by the lidar located in Warsaw center and the radiosoundings located about 30km to the North in Legionowo (Poland). We compared the ground-based remote sensing technology with in-situ method in order to improve knowledge about water content thought the atmosphere and cloud formation. The method used for retrieving the cloud vertical structure can be improved comparing the radiosonde results with the lidar observations, which show promising results.

  9. Climatology of Vertical Air Motion During Rainfall in Niamey, Niger and Black Forest, Germany using an Innovative Cloud Radar Retrieval Technique

    NASA Astrophysics Data System (ADS)

    Luke, E. P.; Giangrande, S. E.; Kollias, P.

    2008-12-01

    In recent years, the DOE Atmospheric Radiation Measurement (ARM) program has deployed its ARM Mobile Facility (AMF) to collect continuous measurements in several climatologically distinct locations, including a year-long stay in Niamey, Niger and eight months in Germany's Black Forest. The AMF includes a vertically pointing 95 GHz cloud radar, a tool of choice for profiling non-precipitating clouds at high spatial and temporal resolutions, but commonly considered poorly suited to the quantitative study of precipitation, due in large part to attenuation. However, an innovative technique first explored by Lhermitte in the late 1980s, and subsequently by others, sidesteps much of the quantitative uncertainty imposed by attenuation by exploiting non-Rayleigh resonance effects of scattering from raindrops at 95 GHz. Given a modest range of suitable drop sizes, non-Rayleigh resonances appear as distinct peaks and valleys in Doppler spectra, which once identified, can be directly mapped to known drop sizes by Mie theory. Although attenuation in rain at 95 GHz is substantial, key to the technique is that all non-Rayleigh peaks and valleys in a given Doppler spectrum are affected equally, preserving their relative positions and magnitudes (barring feature extinction). Vertical air motion is retrieved very accurately by taking the difference between the measured Doppler velocity of a resonance feature (usually the first valley) and the known terminal velocity of its associated drop size. We have achieved promising retrieval accuracies at spatial and temporal resolutions of 30 meters and 2 seconds. Here we present lessons learned when the retrieval technique is automated and applied to measurements taken in rain over the full durations of the Niamey and Black Forest AMF deployments, comparing vertical air velocity patterns of monsoonal precipitation over the African desert with those of the orographically influenced precipitation in Germany's mountains.

  10. Instabilities in retrieval of atmospheric trace gas profiles caused by the use of atmospheric level models

    NASA Astrophysics Data System (ADS)

    von Clarmann, Thomas; Fischer, Herbert; Oelhaf, Hermann

    1991-07-01

    The onion-peeling-method and the global-fit method algorithms for inverse radiative transfer calculations were applied to atmospheric level models and to layer models to evaluate their applicability in these models. It is shown that, when either of the algorithms is applied to the atmospheric level models (rather than to layer models), the stability of retrieval may significantly deteriorate but that this behavior is due to the choice of the model and not to the retrieval algorithms.

  11. The feasibility of retrieving vertical temperature profiles from satellite nadir UV observations: A sensitivity analysis and an inversion experiment with neural network algorithms

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Del Frate, F.

    2014-07-01

    Atmospheric temperature profiles are inferred from passive satellite instruments, using thermal infrared or microwave observations. Here we investigate on the feasibility of the retrieval of height resolved temperature information in the ultraviolet spectral region. The temperature dependence of the absorption cross sections of ozone in the Huggins band, in particular in the interval 320-325 nm, is exploited. We carried out a sensitivity analysis and demonstrated that a non-negligible information on the temperature profile can be extracted from this small band. Starting from these results, we developed a neural network inversion algorithm, trained and tested with simulated nadir EnviSat-SCIAMACHY ultraviolet observations. The algorithm is able to retrieve the temperature profile with root mean square errors and biases comparable to existing retrieval schemes that use thermal infrared or microwave observations. This demonstrates, for the first time, the feasibility of temperature profiles retrieval from space-borne instruments operating in the ultraviolet.

  12. P.88 Regional Precipitation Forecast with Atmospheric Infrared Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2010-01-01

    Prudent assimulation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. In general, AIRS-enhanced analysis more closely resembles radiosondes than the CNTL; forecasts with AIRS profiles are generally closer to NAM analyses than CNTL for sensible weather parameters (not shown here). Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecases. Including AIRS profiles in assimilation process enhances the low-level instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  13. Retrieval of atmospheric O(3), HNO(3), CFC-11, and CFC-12 profiles from MIPAS-B-89 limb emission spectra.

    PubMed

    Clarmann, T V; Oelhaf, H; Fischer, H

    1993-11-20

    During the night from May 17 to May 18, 1989, the first of four flights of the Michelson Interferometer for Passive Atmospheric Sounding, Balloon-borne version (MIPAS-B) instrument took place from the Centre National d'Etudes Spatiales balloon-launching site at Aire-sur-l'Adour (France, 44° N latitude). From approximately 33 km float altitude, stratospheric and tropospheric limb infrared emission spectra have been recorded by this novel type of fast-scanning interferometer. Although the measured spectra did not reach the expected quality and the a priori information on the corresponding viewing directions was coarse, the data were processed successfully with a retrieval algorithm specially adapted for application to noisydata. Mixingratio profiles of ozone, nitric acid, CFC-11, and CFC-12 havebeen retrieved from limb sequences of wide spectral intervals by nonlinear least-squares fitting in combination with a layer-bylayer onion-peeling approach. A rigorous error analysis has been carried out by means of Monte Carlo calculations.

  14. Phase retrieval from a single interferometric pattern to determine the profile caused by laser ablation on spherical surfaces

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, M. I.; López-Olazagasti, E.; Rosales, M. A.; Ibarra, Jorge; Tepichín, E.

    2009-08-01

    We have been working in the interferometric analysis of the ablation profile obtained with different techniques of refractive surgery, applied directly on hard contact lenses. We have demonstrated qualitatively that different ablations produce different fringe patterns; implying different focal shifts1. These results were obtained by means of a Mach- Zehnder type interferometer, where we used a similar unablated contact lens as a reference. Due to the size of each sample, it is difficult to get different fringe patterns with different phase factors. Therefore, the typical phase shifting methods are not suitable in our case. To determine the corresponding profile caused by the different ablation techniques we applied in this work the interpolation method that provide an analysis of static fringe patterns. This method of phase retrieval allows us to obtain the PSF and MTF related to each profile. The advantage of this procedure is that we can obtain a time invariant performance of the resulting ablated surface.

  15. [Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder].

    PubMed

    Ma, Peng-fei; Chen, Liang-fu; Zou, Ming-min; Zhang, Ying; Tao, Ming-hui; Wang, Zi-leng; Su, Lin

    2015-12-01

    Ozone is a particularly critical trace gas in the Earth's atmosphere, since this molecule plays a key role in the photochemical reactions and climate change. The TIR measurements can capture the variability of ozone and are weakly sensitive to the lowermost tropospheric ozone content but can provide accurate measurements of tropospheric ozone and higher vertical resolution ozone profiles, with the additional advantage that measurements are also possible during the night. Because of the influence of atmospheric temperature, the ozone profile retrieval accuracy is severely limited. This paper analyze and discuss the ozone absorption spectra and weighting function sensitivity of temperature and its influence on ozone profile retrieval in detail. First, we simulate the change of atmospheric transmittance and radiance by importing 1 K temperature uncertainty, using line-by-line radiative transfer mode under 6 different atmosphere modes. The results show that the transmittance change ratio for 1 K temperature variation was consistent with the transmittance change ratio for 5%-6% change of ozone density variation in all layers of the profile. Then, we calculate the change of weighting function by a temperature error of 1 K, using the Community Radiative Transfer Model (CRTM) for the Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite and calculate the corresponding change of retrieval result. The results demonstrate that CrIS is sensitive to Ozone in the middle to upper stratosphere, with the peak vertical sensitivity between 10-100 hPa and the change of weighting function for 1 K temperature variation was consistent with 6% change in the ozone profile. Finally, the paper retrieves ozone profiles from the CrIS radiances with a nonlinear Newton iteration method and use the eigenvector regression algorithm to construct the a priori state. In order to resolve the problem of temperature uncertainty and get high accuracy

  16. Stratospheric NO2 vertical profile retrieved from ground-based Zenith-Sky DOAS observations at Kiruna, Sweden

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Hendrick, François; Pukite, Janis; Van Roozendael, Michel; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2014-05-01

    Stratospheric NO2 destroys ozone and acts as a buffer against halogen-catalyzed ozone loss through the formation of reservoir species (ClONO2, BrONO2). Since the importance of both mechanisms depends on the altitude, the investigation of stratospheric NO2 vertical distribution can provide more insight into the role of nitrogen compounds in the destruction of ozone. Here we present stratospheric NO2 vertical profiles retrieved from twilight ground-based zenith-sky DOAS observations at Kiruna, Sweden (68.84°N, 20.41°E) covering 1997 - 2013 periods. This instrument observes zenith scattered sunlight. The sensitivity for stratospheric trace gases is highest during twilight due to the maximum altitude of the scattering profile and the light path through the stratosphere, which vary with the solar zenith angle. The profiling algorithm, based on the Optimal Estimation Method, has been developed by IASB-BIRA and successfully applied at other stations (Hendrick et al., 2004). The basic principle behind this profiling approach is that during twilight, the mean Rayleigh scattering altitude scans the stratosphere rapidly, providing height-resolved information on the absorption by stratospheric NO2. In this study, the long-term evolution of the stratospheric NO2 profile at polar latitude will be investigated. Hendrick, F., B. Barret, M. Van Roozendael, H. Boesch, A. Butz, M. De Mazière, F. Goutail, C. Hermans, J.-C. Lambert, K. Pfeilsticker, and J.-P. Pommereau, Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: Validation of the technique through correlative comparisons, Atmospheric Chemistry and Physics, 4, 2091-2106, 2004

  17. Evaluation of the MODIS aerosol optical depth retrieval over different ecosystems in China during EAST-AIRE

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Xin, Jinyuan; Wang, Yuesi; Li, Zhanqing; Liu, Guangren; Li, Jing

    The accuracy of the Moderate Resolution Imaging Spectroradiometer's (MODIS) aerosol products is still uncertain in China, due to a lack of validation by long-term and large-scale ground-based observations. In this paper, the MODIS aerosol optical depth (AOD) product is evaluated using Chinese Sun Hazemeter Network (CSHNET) data as ground truths over different ecological regions in China during the East Asian Study of Tropospheric Aerosols—an International Regional Experiment (EAST-AIRE). The evaluation results show very large differences in the MODIS AOD retrieval between different ecosystems and geographic locations. The most agreement between the MODIS data and that of the CSHNET was in farmland sites in central-southern China, where high correlation ( R>0.82) and large percentages ( R2>72%) within the expected error lines issued by NASA were found. In temperate forest, coastal regions, and northeast and central farmlands, there appeared moderate agreement, with R˜0.64-0.80 and 45-73% of retrieval data falling within the expected errors. The poorest agreement existed in northern arid and semiarid regions, in remote northeast farmlands, in the Tibetan and Loess Plateau, and in southern forests, with 13-54% of retrieval data falling within the expected errors. In addition, the MODIS AOD retrievals were significantly overestimated in the northern arid and semiarid regions and underestimated in remote northeast farmlands and southern forests.

  18. Improving the instantaneous vertical profiling of precipitation for passive-microwave retrievals

    NASA Astrophysics Data System (ADS)

    Kacimi, S.; Haddad, Z. S.; Turk, J.

    2013-12-01

    Current passive-microwave retrieval approaches that are based on the a-priori knowledge provided by a representative database of columns of atmospheric variables and their corresponding microwave signatures, depend crucially on the realism of the representation of the cloud and precipitation in the column. Most approaches rely on columns produced by cloud-permitting model simulations, which suffer from oversimplifications of the very variables to which the microwave brightness temperatures are most sensitive, namely the type, concentration and relative sizes of the hydrometeors. Others rely on retrieved descriptions obtained from imperfect remotely-sensed measurements. The TRMM radar being a single-channel instrument cannot, by itself identify the phase of the condensation. The GPM radar that offers an additional Ka-band frequency should be slightly better. This presentation will summarize our approach of using higher-sensitivity ground-based measurements to address these shortcomings. During the CINDY-DYNAMO experiment (2011-2012), the dual-wavelength polarimetric radar SPolKa was deployed, providing a unique set of observations. This allows insight into rainfall characteristics for different species. Using a Bayesian approach with Mie-scattering calculations, the rainfall rate, cloud liquid water, mean diameter and other parameters can be retrieved from SPolKa data. Different assumptions (on hydrometeor habit and size distributions) for those simulations were used, and their impact on the retrievals evaluated. This preliminary study will eventually enable the elaboration of a passive-microwave retrievals' database, accounting for the quantitative vertical distribution of precipitation.

  19. Self-consistent retrieval of temperature profiles and cloud structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 radiation measurements

    NASA Astrophysics Data System (ADS)

    Haus, R.; Kappel, D.; Arnold, G.

    2013-12-01

    Improved radiative transfer simulation and multi-window retrieval procedures (MWR) are described that are applied to investigate thermal structure and cloud features in the nightside atmosphere of Venus over the northern hemisphere. Comparative analyses of spectroscopic data, which were recorded independently in different parts of the infrared spectrum by the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M-IR) aboard ESA's Venus Express space probe and the Profile Measuring Instrument for Venus (PMV, Fourier spectrometer FS-1/4) during the earlier Soviet Venera-15 experiment, are combined with self-consistent temperature profile and cloud parameter retrievals. MWR performance is studied using synthetic spectra at different latitudes and for different atmospheric temperature profiles and cloud parameters. VIRTIS and PMV retrieval result comparisons are used to determine constraints on physical state parameter variations, especially on applicability of different cloud models. An analytically parameterized initial model of four-modal cloud altitude distributions is proposed. Together with retrieved cloud parameters, which encompass individual mode factors and cloud upper altitude boundary, it permits optimum fits of measured radiances and brightness temperatures in the 4.3 and 15 µm CO2 bands utilized for atmospheric temperature profile retrievals. A new multi-spectrum retrieval (MSR) method (Kappel et al., 2012, Kappel, in press) provides deep atmosphere CO2 opacity correction parameters, which affect cloud parameter retrievals from short-wavelength emission windows.

  20. Seasonal Variations in the CO Line Profile and the Retrieved Thermal/Pressure Structures in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Khayat, Alain; Villanueva, G. L.; Mumma, M. J.; Riesen, T. E.; Tokunaga, A. T.

    2013-10-01

    We report retrievals of temperature vertical profiles up to 100 km over Tharsis and Syrtis regions on Mars obtained by inverting the strong rotational (3-2) line of carbon monoxide (CO) at 346 GHz. Observations of CO were made from mid Northern Spring to early Northern Summer on Mars (Ls= 36°-108°, 23 Nov, 2011 - 13 May, 2012) using the Caltech Submillimeter Observatory's (CSO) high-resolution heterodyne receiver (Barney) on top of Mauna Kea, Hawai'i. The temperature profiles were derived using our radiative transfer model that considers the latest spectroscopic constants for CO collisionally broadened by CO2. We observe notable changes of the line profile for different dates, which are directly related to seasonal variations in the thermal/pressure structure of the atmosphere. The seasonal variability of the martian CO line profile, the extracted temperature profiles, and comparisons with modeled profiles from the Mars Climate Database (Lewis et al, 1999) will be presented. We gratefully acknowledge support from the NASA Planetary Astronomy Program , NASA Astrobiology Institute, Planetary Atmospheres programs. This material is based upon work at the Caltech Submillimeter Observatory, which is operated by the California Institute of Technology under cooperative agreement with the National Science Foundation, grant number AST-0838261.

  1. Retrieval of thermospheric parameters from routinely observed F2-layer Ne(h) profiles at the geomagnetic equator

    NASA Astrophysics Data System (ADS)

    Mikhailov, Andrei; Belehaki, Anna; Perrone, Loredana; Zolesi, Bruno; Tsagouri, Ioanna

    2013-04-01

    A principal possibility to retrieve basic thermospheric parameters (neutral temperature Tex, atomic [O] and molecular [O2] oxygen as well as molecular nitrogen [N2] concentrations) from the observed daytime electron density profiles Ne(h) in the equatorial F2-region is demonstrated for the first time. The reduction of a 2D continuity equation for electron concentration in the low-latitude F2-region at the geomagnetic equator (I = 0) results in a simple 1D equation which can be efficiently solved. The method was tested using Jicamarca Incoherent Scatter Radar (ISR) and Digisonde Ne(h) profiles for the periods when CHAMP and GRACE neutral gas density observations are available in the vicinity of the Jicamarca Observatory. The retrieved from ISR Ne(h) neutral gas densities were shown to be close to the observed ones (MRD < 10%) being within the announced absolute uncertainty (10-15%) of the neutral gas density observations and more successful than the predictions of the empirical models JB-2008 (MRD = 32%) and MSISE-00 (MRD = 27%) for the analyzed cases. The implementation of the method with Jicamarca Digisonde Ne(h) profiles has also shown acceptable results especially for solar minimum conditions (MRD ~ 12%) and higher prediction accuracy than modern empirical models provide. This finding seems to open a way for the practical exploitation of the method for thermospheric monitoring purposes.

  2. MicroRNA Profile of Granulosa Cells after Ovarian Stimulation Differs According to Maturity of Retrieved Oocytes

    PubMed Central

    Kim, Y. J.; Ku, S.-Y.; Kim, Y. Y.; Suh, C. S.; Kim, S. H.; Choi, Y. M.

    2016-01-01

    Background: Recent animal studies demonstrated that regulating the microRNA (miRNA) in granulosa cells (GCs) modulates the meiotic competence of oocytes. However, the difference in expression profiles of miRNAs in human GCs according to the maturity of the oocyte still remains to be elucidated. Objective: This observational study investigated whether the miRNA profile of human GCs differs according to the maturity of the retrieved oocyte after controlled ovarian stimulation for in vitro fertilization (IVF). Methods: Ten women who underwent ovarian stimulation cycles with GnRH agonist long protocols were recruited. The follicular fluid (FF) from dominant follicles was individually aspirated at oocyte retrieval. Oocytes were divided into two groups according to oocyte maturity (“mature group” vs. “immature group”). GCs were collected from the FF and miRNA was analyzed using real-time PCR. Results: Mean number of MII oocytes in the mature group was 1.6 ± 0.9 with none in the immature group (p = 0.008). Mean number of MI oocytes was 5.6 ± 2.1 in the mature group and 1.0 ± 0.0 in the immature group (p = 0.008). The total number of retrieved oocytes was 8.8 ± 1.9 in the mature group and 2.0 ± 1.2 in the immature group (p = 0.008). The GCs of the mature group showed a significantly lower expression of hsa-let-7b compared to the GCs of the immature group (p < 0.001). Conclusion: Taken together, the miRNA expression profiles of human GCs obtained from dominant follicles are associated with maturity of the adjacent oocyte and may be useful as a prognosticator of IVF outcome. PMID:27365541

  3. Subject Compatibility between "Chemical Abstracts" Subject Sections and Search Profiles Used for Computerized Information Retrieval

    ERIC Educational Resources Information Center

    Hansen, Inge Berg

    1972-01-01

    Analysis of the distribution of relevant answers to 41 search profiles among the 80 subject sections of Chemical Abstracts" revealed that the average profile requires 10 CA-subject sections for adequate coverage. The average printing expense could be reduced 25 percent by searching the individual profiles in the appropriate subject sections. (5…

  4. Retrieval of atmospheric particles optical properties by combining ground-based and spaceborne lidar elastic scattering profiles.

    PubMed

    Wang, Xuan; Frontoso, Maria Grazia; Pisani, Gianluca; Spinelli, Nicola

    2007-05-28

    A simple algorithm is derived to retrieve the aerosol backscattering and extinction vertical profiles from simultaneously detected ground and space elastic lidar signals, without any a priori hypothesis on aerosol particles properties. This technique can be applied at any wavelength whenever two "counter looking" lidars are available and the atmosphere can be considered horizontally homogeneous in a spatial scale of the order of the distance between the two lidar beams. To test the accuracy of the algorithm a numerical simulation has been performed. Moreover, it has been applied in a real case to level 1 products from CALIPSO. PMID:19546983

  5. A 3-D tomographic trajectory retrieval for the air-borne limb-imager GLORIA

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Lotz, J.; Leppkes, K.; Guggenmoser, T.; Kaufmann, M.; Preusse, P.; Naumann, U.; Riese, M.

    2011-06-01

    Infrared limb sounding from aircraft can provide 2-D curtains of multiple trace gas species. However, conventional limb sounders view perpendicular to the aircraft axis and are unable to resolve the observed airmass along their line-of-sight. GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) is a new remote sensing instrument able to adjust its horizontal view angle with respect to the aircraft flight direction from 45° to 135°. This will allow for tomographic measurements of mesoscale structures for a wide variety of atmospheric constituents. Many flights of the GLORIA instrument will not follow closed curves that allow measuring an airmass from all directions. Consequently, it is examined by means of simulations, what results can be expected from tomographic evaluation of measurements made during a straight flight. It is demonstrated that the achievable resolution and stability is enhanced compared to conventional retrievals. In a second step, it is shown that the incorporation of channels exhibiting different optical depth can greatly enhance the 3-D retrieval quality enabling the exploitation of previously unused spectral samples. A second problem for tomographic retrievals is that advection, which can be neglected for conventional retrievals, plays an important role for the time-scales involved in a tomographic measurement flight. This paper presents a method to diagnose the effect of a time-varying atmosphere on a 3-D retrieval and demonstrates an effective way to compensate for effects of advection by incorporating wind-fields from meteorological datasets as a priori information.

  6. Improvement of OMI Ozone Profile Retrievals in the Troposphere and Lower Troposphere by the Use of the Tropopause-Based Ozone Profile Climatology

    NASA Technical Reports Server (NTRS)

    Bak, Juseon; Liu, X.; Wei, J.; Kim, J. H.; Chance, K.; Barnet, C.

    2011-01-01

    An advance algorithm based on the optimal estimation technique has beeen developed to derive ozone profile from GOME UV radiances and have adapted it to OMI UV radiances. OMI vertical resolution : 7-11 km in the troposphere and 10-14 km in the stratosphere. Satellite ultraviolet measurements (GOME, OMI) contain little vertical information for the small scale of ozone, especially in the upper troposphere (UT) and lower stratosphere (LS) where the sharp O3 gradient across the tropopause and large ozone variability are observed. Therefore, retrievals depend greatly on the a-priori knowledge in the UTLS

  7. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  8. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  9. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  10. Operational use of the AIRS Total Column Ozone Retrievals along with the RGB Airmass product as part of the GOES-R Proving Ground

    NASA Astrophysics Data System (ADS)

    Folmer, M. J.; Zavodsky, B. T.; Molthan, A.

    2012-12-01

    The Red, Green, Blue (RGB) Air Mass product has been demonstrated in the GOES-R Proving Ground as a possible decision aid. Forecasters have been trained on the usefulness of identifying stratospheric intrusions and potential vorticity (PV) anomalies that can lead to explosive cyclogenesis, genesis of mesoscale convective systems (MCSs), or the transition of tropical cyclones to extratropical cyclones. It has also been demonstrated to distinguish different air mass types from warm, low ozone air masses to cool, high ozone air masses and the various interactions with the PV anomalies. To assist the forecasters in understanding the stratospheric contribution to high impact weather systems, the Atmospheric Infrared Sounder (AIRS) Total Column Ozone Retrievals have been made available as an operational tool. These AIRS retrievals provide additional information on the amount of ozone that is associated with the red coloring seen in the RGB Air Mass product. This paper discusses how the AIRS retrievals can be used to quantify the red coloring in RGB Air Mass product. These retrievals can be used to diagnose the depth of the stratospheric intrusions associated with different types of weather systems and provide the forecasters with decision aid tools that can improve the quality of forecast products.

  11. Operational use of the AIRS Total Column Ozone Retrievals along with the RGB Airmass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, M.; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The Red, Green, Blue (RGB) Air Mass product has been demonstrated in the GOES ]R Proving Ground as a possible decision aid. Forecasters have been trained on the usefulness of identifying stratospheric intrusions and potential vorticity (PV) anomalies that can lead to explosive cyclogenesis, genesis of mesoscale convective systems (MCSs), or the transition of tropical cyclones to extratropical cyclones. It has also been demonstrated to distinguish different air mass types from warm, low ozone air masses to cool, high ozone air masses and the various interactions with the PV anomalies. To assist the forecasters in understanding the stratospheric contribution to high impact weather systems, the Atmospheric Infrared Sounder (AIRS) Total Column Ozone Retrievals have been made available as an operational tool. These AIRS retrievals provide additional information on the amount of ozone that is associated with the red coloring seen in the RGB Air Mass product. This paper discusses how the AIRS retrievals can be used to quantify the red coloring in RGB Air Mass product. These retrievals can be used to diagnose the depth of the stratospheric intrusions associated with different types of weather systems and provide the forecasters decision aid tools that can improve the quality of forecast products.

  12. Measurements of the O2A- and B-bands for determining temperature and pressure profiles from ACE MAESTRO: Forward model and retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; McElroy, C. T.; Drummond, J. R.

    2007-12-01

    The ACE-MAESTRO (Atmospheric Chemistry Experiment Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) instrument on the SCISAT satellite is able to measure solar occultation absorption in the A- and B-bands of molecular oxygen with a spectral resolution of 2 nm. Profiles of total atmospheric density are derived by exploiting the constant and known mixing ratio of O2, and are used to determine profiles of pressure and temperature using hydrostatic balance and the ideal gas law. A highly accurate combined fast-line-by-line and extended correlated-k technique is implemented to fast forward model MAESTRO's O2 absorption measurements, which ensures that errors in pressure and temperature resulting from the forward model approximation are essentially negligible. Estimated errors in pressure and temperature are determined for the A-, B-, and combined A B-band retrievals for a typical retrieval, and demonstrate that pressure profiles should be derivable to within 1% and temperature to within 2 K over most altitudes using a combined A B retrieval. The combined retrieval provides an improvement of up to 0.25% in pressure and 0.5 K in temperature over the A-band retrieval alone. The B-band could also be used alone below about 50 km, where its independent retrieval produces error estimates of 1 1.5% in pressure and 2 3 K in temperature.

  13. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    NASA Technical Reports Server (NTRS)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; VanReken, Timothy; Flagan, Richard C.; Seinfeld, John H.

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  14. Assimilation of NUCAPS Retrieved Profiles in GSI for Unique Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Berndt, Emily Beth; Zavodsky, Bradley; Srikishen, Jayanthi; Blankenship, Clay

    2015-01-01

    Hyperspectral IR profiles can be assimilated in GSI as a separate observation other than radiosondes with only changes to tables in the fix directory. Assimilation of profiles does produce changes to analysis fields and evidenced by: Innovations larger than +/-2.0 K are present and represent where individual profiles impact the final temperature analysis.The updated temperature analysis is colder behind the cold front and warmer in the warm sector. The updated moisture analysis is modified more in the low levels and tends to be drier than the original model background Analysis of model output shows: Differences relative to 13-km RAP analyses are smaller when profiles are assimilated with NUCAPS errors. CAPE is under-forecasted when assimilating NUCAPS profiles, which could be problematic for severe weather forecasting Refining the assimilation technique to incorporate an error covariance matrix and creating a separate GSI module to assimilate satellite profiles may improve results.

  15. Retrieval of sodium number density profiles in the mesosphere and lower thermosphere from SCIAMACHY limb emission measurements

    NASA Astrophysics Data System (ADS)

    Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.

    2016-01-01

    An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analyzed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode (mid-2008 to early 2012). The Na layer has a nearly constant peak altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but significant seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At middle to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the summer hemisphere, have lower number densities, with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at middle latitudes. The results are compared with other observations and models and there is overall a good agreement with these.

  16. AIRS Level 2 Data Products

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto

    2003-01-01

    The Atmospheric InfraRed Sounder (AIRS) Standard Retrieval Product consists of retrieved cloud and surface properties; profiles of retrieved temperature, water vapor, and ozone; and a flag indicating the presence of cloud ice or water. They contain quality assessment flags in addition to retrieved quantities and are generated for all locations where atmospheric soundings are taken. An AIRS granule consists of 6 minutes of data. This corresponds to approximately 1/15 of an orbit but exactly 45 scan lines of AMSU-A data or 135 scan lines of AIRS and HSB data.

  17. Retrieval of high-spectral-resolution lidar for atmospheric aerosol optical properties profiling

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Luo, Jing; Yang, Yongying; Cheng, Zhongtao; Zhang, Yupeng; Zhou, Yudi; Duan, Lulin; Su, Lin

    2015-10-01

    High-spectral-resolution lidars (HSRLs) are increasingly being developed for atmospheric aerosol remote sensing applications due to the straightforward and independent retrieval of aerosol optical properties without reliance on assumptions about lidar ratio. In HSRL technique, spectral discrimination between scattering from molecules and aerosol particles is one of the most critical processes, which needs to be accomplished by means of a narrowband spectroscopic filter. To ensure a high retrieval accuracy of an HSRL system, the high-quality design of its spectral discrimination filter should be made. This paper reviews the available algorithms that were proposed for HSRLs and makes a general accuracy analysis of the HSRL technique focused on the spectral discrimination, in order to provide heuristic guidelines for the reasonable design of the spectral discrimination filter. We introduce a theoretical model for retrieval error evaluation of an HSRL instrument with general three-channel configuration. Monte Carlo (MC) simulations are performed to validate the correctness of the theoretical model. Results from both the model and MC simulations agree very well, and they illustrate one important, although not well realized fact: a large molecular transmittance and a large spectral discrimination ratio (SDR, i.e., ratio of the molecular transmittance to the aerosol transmittance) are beneficial t o promote the retrieval accuracy. The application of the conclusions obtained in this paper in the designing of a new type of spectroscopic filter, that is, the field-widened Michelson interferometer, is illustrated in detail. These works are with certain universality and expected to be useful guidelines for HSRL community, especially when choosing or designing the spectral discrimination filter.

  18. Improved Methodology for Surface and Atmospheric Soundings, Error Estimates, and Quality Control Procedures: the AIRS Science Team Version-6 Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2014-01-01

    The AIRS Science Team Version-6 AIRS/AMSU retrieval algorithm is now operational at the Goddard DISC. AIRS Version-6 level-2 products are generated near real-time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. This paper describes some of the significant improvements in retrieval methodology contained in the Version-6 retrieval algorithm compared to that previously used in Version-5. In particular, the AIRS Science Team made major improvements with regard to the algorithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the cloud clearing and retrieval procedures; and 3) derive error estimates and use them for Quality Control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, Version-6 also operates in an AIRS Only (AO) mode which produces results almost as good as those of the full AIRS/AMSU mode. This paper also demonstrates the improvements of some AIRS Version-6 and Version-6 AO products compared to those obtained using Version-5.

  19. An intercomparison study of tropospheric NO2 columns retrieved from MAX-DOAS and simulated by regional air quality models

    NASA Astrophysics Data System (ADS)

    Blechschmidt, Anne-Marlene

    2016-04-01

    Tropospheric NO2 is hazardous to human health and can lead to tropospheric ozone formation, eutrophication of ecosystems and acid rain production. It is therefore very important to accurately observe and simulate tropospheric NO2 on a regional and global scale. In the present study, MAX-DOAS tropospheric NO2 column retrievals from three European measurement stations are applied for validation of a regional model ensemble. In general, there is a good agreement between simulated and retrieved NO2 column values for individual MAX-DOAS measurements, indicating that the model ensemble does well represent the emission and tropospheric chemistry of NOx. However, the model ensemble tends to overestimate low and underestimate high tropospheric NO2 column values, respectively. Pollution transport towards the stations is on average well represented by the models. However, large differences can be found for individual pollution plumes. Seasonal cycles are overestimated by the model ensemble, which could point to problems in simulating photochemistry. While weekly cycles are reproduced well by the models, model performance is rather poor for diurnal cycles. In particular, simulated morning rush hour peaks are not confirmed by MAX-DOAS retrievals, which may result from inappropriate hourly scaling of NOx emissions, possibly combined with errors in chemistry. Our results demonstrate that a large number of validation points are available from MAX-DOAS data, which should therefore be used more extensively in future regional air quality modelling studies.

  20. On systematic errors in spectral line parameters retrieved with the Voigt line profile

    NASA Astrophysics Data System (ADS)

    Kochanov, V. P.

    2012-08-01

    Systematic errors inherent in the Voigt line profile are analyzed. Molecular spectrum processing with the Voigt profile is shown to underestimate line intensities by 1-4%, with the errors in line positions being 0.0005 cm-1 and the decrease in pressure broadening coefficients varying from 5% to 55%.

  1. Profiling wind and greenhouse gases by infrared-laser occultation: algorithm and results from end-to-end simulations in windy air

    NASA Astrophysics Data System (ADS)

    Plach, A.; Proschek, V.; Kirchengast, G.

    2015-01-01

    The new mission concept of microwave and infrared-laser occultation between low-Earth-orbit satellites (LMIO) is designed to provide accurate and long-term stable profiles of atmospheric thermodynamic variables, greenhouse gases (GHGs), and line-of-sight (l.o.s.) wind speed with focus on the upper troposphere and lower stratosphere (UTLS). While the unique quality of GHG retrievals enabled by LMIO over the UTLS has been recently demonstrated based on end-to-end simulations, the promise of l.o.s. wind retrieval, and of joint GHG and wind retrieval, has not yet been analyzed in any realistic simulation setting so far. Here we describe a newly developed l.o.s. wind retrieval algorithm, which we embedded in an end-to-end simulation framework that also includes the retrieval of thermodynamic variables and GHGs, and analyze the performance of both standalone wind retrieval and joint wind and GHG retrieval. The wind algorithm utilizes LMIO laser signals placed on the inflection points at the wings of the highly symmetric C18OO absorption line near 4767 cm-1 and exploits transmission differences from wind-induced Doppler shift. Based on realistic example cases for a diversity of atmospheric conditions, ranging from tropical to high-latitude winter, we find that the retrieved l.o.s wind profiles are of high quality over the lower stratosphere under all conditions, i.e., unbiased and accurate to within about 2 m s-1 over about 15 to 35 km. The wind accuracy degrades into the upper troposphere due to decreasing signal-to-noise ratio of the wind-induced differential transmission signals. The GHG retrieval in windy air is not vulnerable to wind speed uncertainties up to about 10 m s-1 but is found to benefit in case of higher speeds from the integrated wind retrieval that enables correction of wind-induced Doppler shift of GHG signals. Overall both the l.o.s. wind and GHG retrieval results are strongly encouraging towards further development and implementation of a LMIO mission.

  2. Automated information retrieval using CLIPS

    NASA Technical Reports Server (NTRS)

    Raines, Rodney Doyle, III; Beug, James Lewis

    1991-01-01

    Expert systems have considerable potential to assist computer users in managing the large volume of information available to them. One possible use of an expert system is to model the information retrieval interests of a human user and then make recommendations to the user as to articles of interest. At Cal Poly, a prototype expert system written in the C Language Integrated Production System (CLIPS) serves as an Automated Information Retrieval System (AIRS). AIRS monitors a user's reading preferences, develops a profile of the user, and then evaluates items returned from the information base. When prompted by the user, AIRS returns a list of items of interest to the user. In order to minimize the impact on system resources, AIRS is designed to run in the background during periods of light system use.

  3. One-dimensional surface profile retrieval from grazing incidence images under coherent X-ray illumination

    NASA Astrophysics Data System (ADS)

    Suvorov, A.; Ohashi, H.; Goto, S.; Yamauchi, K.; Ishikawa, T.

    2010-05-01

    Three different approaches to the problem of mirror surface retrieval by means of coherent X-ray imaging are analyzed. First, an analytical approximation to the problem is presented. Then, an iterative algorithm is applied to the linearized problem. Finally an algorithm based on artificial neural networks is advanced. To evaluate the performance of the algorithms described, noise-free simulations with synthetically generated data were performed. It is demonstrated that the examined algorithms can be combined with each other to improve the overall performance, and can be used for data analysis in X-ray-based mirror metrology.

  4. Principal component analysis of the evolution of the Saharan air layer and dust transport: Comparisons between a model simulation and MODIS and AIRS retrievals

    NASA Astrophysics Data System (ADS)

    Wong, Sun; Colarco, Peter R.; Dessler, Andrew E.

    2006-10-01

    The onset and evolution of Saharan air layer (SAL) episodes during June-September 2002 are diagnosed by applying principal component analysis to the NCEP reanalysis temperature anomalies at 850 hPa, where the largest SAL-induced temperature anomalies are located along the west coast of Africa. The first principal component (PC) represents the onset of SAL episodes, which are associated with large warm anomalies located at the west coast of Africa. The second PC represents two opposite phases of the evolution of the SAL. The positive phase corresponds to the southwestward migration of the warm anomalies into the tropical-subtropical North Atlantic Ocean, and the negative phase corresponds to the northwestward migration into the subtropical to midlatitude North Atlantic Ocean and the southwest Europe. AIRS retrievals of temperatures in September 2002 verify the migration depicted by the second PC. In addition, a dust transport model (CARMA) and the MODIS retrievals of aerosol optical thickness are used to study the associated effects on dust distribution and deposition. The positive (negative) phase of the second PC corresponds to a strengthening (weakening) of the offshore flows in the lower troposphere around 10-20°N, causing more (less) dust being transported toward the tropical North Atlantic Ocean. The 700-hPa anticyclonic circulation associated with the warm anomalies plays a role in connecting the dust with the warm anomalies.

  5. Profiling the SO2 Plume from Volcan Turrialba: Ticosonde Balloon Measurements Compared with OMI and OMPS Retrievals

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry; Krotkov, Nickolay; Li, Can; Morris, Gary (Inventor); Diaz, Jorge Andres; Carn, Simon; Vomel, Holger; Corrales, Ernesto; Nord, Paul; Larson, Kelsey

    2014-01-01

    The summit of Volcan Turrialba (elev. 3340 m) lies less than 50 km upstream in the prevailing easterlies from the Ticosonde balloon launch site at San Jose, Costa Rica, where ECC ozone sondes have been launched regularly since 2005. In 2006 we began to see telltale notches in the ozone profiles in the altitude range between 2 and 6 km. Given the proximity of Turrialba, it seemed likely that SO2 in the volcano's plume was interfering in the chemical reaction in the ECC ozone sonde used to detect ozone. In early 2010, fumarolic activity in the Turrialba crater increased strongly, and the profile notches in our soundings increased in frequency as well, consistent with this hypothesis. In February 2012 we tested a dual ECC sonde system, where an additional sonde is flown on the same payload using a selective SO2 filter. The difference of the measurements in the dual sonde is a direct measure of the amount of SO2 encountered. This first dual sonde passed through the plume, and the data indicated a tropospheric SO2 column of 1.4 DU, comparing favorably with a total column of 1.7 DU in the OMI 3-km linear fit (LF) product at the sonde profile location and at nearly the same time. We are now launching dual sondes on a regular basis with 18 launches in the first 12 months through July 2014; 11 of these have detectable SO2 signals. These soundings have great potential for validation of the Aura OMI and the Suomi-NPP OMPS retrievals of SO2. Here we present the sonde measurements and compare them with two satellite datasets: the Aura OMI Linear Fit (LF) product and the Suomi-NPP OMPS Principal Components Analysis (PCA) boundary layer product. The PCA algorithm reduces retrieval noise and artifacts by more accurately accounting for various interferences in SO2 retrievals such as O3 absorption and rotational Raman scattering. The comparisons with the in situ observations indicate a significant improvement of the PCA algorithm in capturing relatively weak volcanic SO2 signals.

  6. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  7. Technical Note: Variance-covariance matrix and averaging kernels for the Levenberg-Marquardt solution of the retrieval of atmospheric vertical profiles

    NASA Astrophysics Data System (ADS)

    Ceccherini, S.; Ridolfi, M.

    2010-03-01

    The variance-covariance matrix (VCM) and the averaging kernel matrix (AKM) are widely used tools to characterize atmospheric vertical profiles retrieved from remote sensing measurements. Accurate estimation of these quantities is essential for both the evaluation of the quality of the retrieved profiles and for the correct use of the profiles themselves in subsequent applications such as data comparison, data assimilation and data fusion. We propose a new method to estimate the VCM and AKM of vertical profiles retrieved using the Levenberg-Marquardt iterative technique. We apply the new method to the inversion of simulated limb emission measurements. Then we compare the obtained VCM and AKM with those resulting from other methods already published in the literature and with accurate estimates derived using statistical and numerical estimators. The proposed method accounts for all the iterations done in the inversion and provides the most accurate VCM and AKM. Furthermore, it correctly estimates the VCM and the AKM also if the retrieval iterations are stopped when a physically meaningful convergence criterion is fulfilled, i.e. before achievement of the numerical convergence at machine precision. The method can be easily implemented in any Levenberg-Marquardt iterative retrieval scheme, either constrained or unconstrained, without significant computational overhead.

  8. EVA Retriever Demonstration

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The EVA retriever is demonstrated in the Manipulator Development Facility (MDF). The retriever moves on the air bearing table 'searching' for its target, in this case tools 'dropped' by astronauts on orbit.

  9. Decomposition Odour Profiling in the Air and Soil Surrounding Vertebrate Carrion

    PubMed Central

    2014-01-01

    Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains. PMID:24740412

  10. Decomposition odour profiling in the air and soil surrounding vertebrate carrion.

    PubMed

    Forbes, Shari L; Perrault, Katelynn A

    2014-01-01

    Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains.

  11. Operational Use of the AIRS Total Column Ozone Retrievals Along with the RGB Air Mass Product as Part of the GOES-R Proving Ground

    NASA Technical Reports Server (NTRS)

    Folmer, Michael; Zavodsky, Bradley; Molthan, Andrew

    2012-01-01

    The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Hydrometeorological Prediction Center (HPC) and Ocean Prediction Center (OPC) provide short-term and medium-range forecast guidance of heavy precipitation, strong winds, and other features often associated with mid-latitude cyclones over both land and ocean. As a result, detection of factors that lead to rapid cyclogenesis and high wind events is key to improving forecast skill. One phenomenon that has been identified with these events is the stratospheric intrusion that occurs near tropopause folds. This allows for deep mixing near the top of the atmosphere where dry air high in ozone concentrations and potential vorticity descends (sometimes rapidly) deep into the mid-troposphere. Observations from satellites can aid in detection of these stratospheric air intrusions (SAI) regions. Specifically, multispectral composite imagery assign a variety of satellite spectral bands to the red, green, and blue (RGB) color components of imagery pixels and result in color combinations that can assist in the detection of dry stratospheric air associated with PV advection, which in turn may alert forecasters to the possibility of a rapidly strengthening storm system. Single channel or RGB satellite imagery lacks quantitative information about atmospheric moisture unless the sampled brightness temperatures or other data are converted to estimates of moisture via a retrieval process. Thus, complementary satellite observations are needed to capture a complete picture of a developing storm system. Here, total column ozone retrievals derived from a hyperspectral sounder are used to confirm the extent and magnitude of SAIs. Total ozone is a good proxy for defining locations and intensity of SAIs and has been used in studies evaluating that phenomenon (e.g. Tian et al. 2007, Knox and Schmidt 2005). Steep gradients in values of total ozone seen by satellites have been linked

  12. Gene Expression Profiling of Histiocytic Sarcomas in a Canine Model: The Predisposed Flatcoated Retriever Dog

    PubMed Central

    Boerkamp, Kim M.; van Wolferen, Monique E.; Groot Koerkamp, Marian J. A.; van Leenen, Dik; Grinwis, Guy C. M.; Penning, Louis C.; Wiemer, Erik A. C.; Rutteman, Gerard R.

    2013-01-01

    Background The determination of altered expression of genes in specific tumor types and their effect upon cellular processes may create insight in tumorigenesis and help to design better treatments. The Flatcoated retriever is a dog breed with an exceptionally high incidence of histiocytic sarcomas. The breed develops two distinct entities of histiocytic neoplasia, a soft tissue form and a visceral form. Gene expression studies of these tumors have value for comparable human diseases such as histiocytic/dendritic cell sarcoma for which knowledge is difficult to accrue due to their rare occurrence. In addition, such studies may help in the search for genetic aberrations underlying the genetic predisposition in this dog breed. Methods Microarray analysis and pathway analyses were performed on fresh-frozen tissues obtained from Flatcoated retrievers with localized, soft tissue histiocytic sarcomas (STHS) and disseminated, visceral histiocytic sarcomas (VHS) and on normal canine spleens from various breeds. Expression differences of nine genes were validated with quantitative real-time PCR (qPCR) analyses. Results QPCR analyses identified the significantly altered expression of nine genes; PPBP, SpiC, VCAM1, ENPEP, ITGAD (down-regulated), and GTSF1, Col3a1, CD90 and LUM (up-regulated) in the comparison of both the soft tissue and the visceral form with healthy spleen. DAVID pathway analyses revealed 24 pathways that were significantly involved in the development of HS in general, most of which were involved in the DNA repair and replication process. Conclusions This study identified altered expression of nine genes not yet implicated in histiocytic sarcoma manifestations in the dog nor in comparable human histiocytic/dendritic sarcomas. Exploration of the downside effect of canine inbreeding strategies for the study of similar sarcomas in humans might also lead to the identification of genes related to these rare malignancies in the human. PMID:23936488

  13. Building America Top Innovations 2013 Profile – High-Efficiency Window Air Conditioners

    SciTech Connect

    none,

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  14. Vertical profile of δ18OOO from middle stratosphere to lower mesosphere derived by retrieval algorithm developed for SMILES spectra

    NASA Astrophysics Data System (ADS)

    Sato, T. O.; Sagawa, H.; Yoshida, N.; Kasai, Y.

    2013-10-01

    Ozone is known to have large oxygen isotopic enrichments of about 10 % in the middle stratosphere, however, there have been no reports on ozone isotopic enrichments above the middle stratosphere. We derived an enrichment δ18OOO by a retrieval algorithm specified for the isotopic ratio from the stratosphere to the lower mesosphere based on observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the International Space Station (ISS). The retrieval algorithm includes (i) an a priori covariance matrix constrained by oxygen isotopic ratios in ozone, (ii) an optimization of spectral windows for ozone isotopomers and isotopologues, and (iii) a common tangent height information for all windows. The δ18OOO obtained by averaging the SMILES measurements at the latitude range of 20° N to 40° N from February to March in 2010 with solar zenith angle <80° was 15% (at 32 km) and the systematic error was estimated to be about 5%. SMILES and past measurements were in good agreement with δ18OOO increasing with altitude between 30 and 40 km. The vertical profile of δ18OOO obtained in this study showed an increase and a decrease with altitude in the stratosphere and mesosphere, respectively. Stratopause is the peak-height of the δ18OOO value, and it rose to 18%. The δ18OOO has a positive correlation with temperature in the range of 220-255 K, indicating that temperature can be a dominant factor to control the vertical profile of δ18OOO in the stratosphere and mesosphere. This is the first report of the observation of δ18OOO over a wide range extending from the stratosphere to the mesosphere.

  15. Vertical profile of delta 18000 from middle stratosphere to lower mesosphere derived by retrieval algorithm developed for SMILES spectra

    NASA Astrophysics Data System (ADS)

    Kasai, Yasuko; Sato, Tomohiro; Sagawa, Hideo

    Ozone is known to have large oxygen isotopic enrichments of about 10% in the middle stratosphere, however, there have been no reports on ozone isotopic enrichments above the middle stratosphere. We derived an enrichment delta18OOO by a retrieval algorithm specified for the isotopic ratio from the stratosphere to the lower mesosphere based on observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) onboard the International Space Station (ISS). The retrieval algorithm includes (i) an a priori covariance matrix constrained by oxygen isotopic ratios in ozone, (ii) an optimization of spectral windows for ozone isotopomers and isotopologues, and (iii) a common tangent height information for all windows. The delta18OOO obtained by averaging the SMILES measurements at the latitude range of 20N to 40N from February to March in 2010 with solar zenith angle less than 80(°) °was 15 % (at 32 km) and the systematic error was estimated to be about 5 percent. SMILES and past measurements were in good agreement with delta18OOO increasing with altitude between 30 and 40 km. The vertical profile of δ18OOO obtained in this study showed an increase and a decrease with altitude in the stratosphere and mesosphere, respectively. Stratopause is the peak-height of the delta18OOO value, and it rose to 18 %. The delta18OOO has a positive correlation with temperature in the range of 220-255 K, indicating that temperature can be a dominant factor to control the vertical profile of delta18OOO in the stratosphere and mesosphere. This is the first report of the observation of delta18OOO over a wide range extending from the stratosphere to the mesosphere.

  16. NO 2 vertical profiles retrieved from ground-based measurements during spring 1999 in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Melo, Stella M. L.; Farahani, E.; Strong, K.; Bassford, M. R.; Preston, K. E.; McLinden, C. A.

    2004-01-01

    During the 1990s, Arctic stratospheric temperatures were lower and the breakup of the Arctic vortex occurred later than has been observed in earlier decades. These cold winters have been followed by significant ozone loss. A clear identification of all the processes involved in springtime Arctic ozone depletion is complicated by the strong coupling between transport, formation of solid and liquid aerosols, and halogen activation. One of the key chemical species in the photochemistry of ozone is NO 2. As the role of NO 2 is strongly dependent on altitude, it is desirable to know not only the NO 2 total column, but also its vertical distribution. We have a portable UV-Vis grating spectrometer that was deployed at Eureka, Canada (80.1°N, 86.4°W) in spring 1999, 2000, 2001, and 2003, and at Resolute Bay, Canada (74.7°N, 94.6°W) in spring 2002. Eureka is part of the Arctic primary station of the Network for the Detection of Stratospheric Change. Among other species, the spectrometer measures stratospheric NO 2 through observation of sunlight scattered from the zenith sky during twilight. Due to the scattering geometry, the NO 2 slant column increases with solar zenith angle (SZA), making it possible to retrieve information about the vertical distribution of NO 2 from the observed slant column variation with SZA. In this paper, we use the optimal estimation technique with a formal characterization of the errors to retrieve NO 2 concentration profiles from slant column observations made at Eureka during March and April 1999. Such measurements can also be used in the validation of NO 2 profile measurements made by satellite instruments.

  17. A layer-averaged relative humidity profile retrieval for microwave observations: design and results for the Megha-Tropiques payload

    NASA Astrophysics Data System (ADS)

    Sivira, R. G.; Brogniez, H.; Mallet, C.; Oussar, Y.

    2015-03-01

    A statistical method trained and optimized to retrieve seven-layer relative humidity (RH) profiles is presented and evaluated with measurements from radiosondes. The method makes use of the microwave payload of the Megha-Tropiques platform, namely the SAPHIR sounder and the MADRAS imager. The approach, based on a generalized additive model (GAM), embeds both the physical and statistical characteristics of the inverse problem in the training phase, and no explicit thermodynamical constraint - such as a temperature profile or an integrated water vapor content - is provided to the model at the stage of retrieval. The model is built for cloud-free conditions in order to avoid the cases of scattering of the microwave radiation in the 18.7-183.31 GHz range covered by the payload. Two instrumental configurations are tested: a SAPHIR-MADRAS scheme and a SAPHIR-only scheme to deal with the stop of data acquisition of MADRAS in January 2013 for technical reasons. A comparison to learning machine algorithms (artificial neural network and support-vector machine) shows equivalent performance over a large realistic set, promising low errors (biases < 2.2%RH) and scatters (correlations > 0.8) throughout the troposphere (150-900 hPa). A comparison to radiosonde measurements performed during the international field experiment CINDY/DYNAMO/AMIE (winter 2011-2012) confirms these results for the mid-tropospheric layers (correlations between 0.6 and 0.92), with an expected degradation of the quality of the estimates at the surface and top layers. Finally a rapid insight of the estimated large-scale RH field from Megha-Tropiques is presented and compared to ERA-Interim.

  18. Retrieval of stratospheric O3, HNO3, and ClONO2 profiles from 1992 MIPAS-B limb emission spectra: method, results, and error analysis

    NASA Astrophysics Data System (ADS)

    Clarmann, T. von; Fischer, H.; Friedl-Vallon, F.; Linden, A.; Oelhaf, H.; Piesch, C.; Seefeldner, M.; Völker, W.

    1993-11-01

    Within the framework of the European Arctic Stratospheric Ozone Experiment, two flights of the balloon-borne MIPAS-B limb emission spectrometer were performed in the Arctic stratosphere from Kiruna, northern Sweden. During the early hours of January 13 and the night from March 14 to March 15, 1992, several limb sequences of infrared spectra were recorded which have permitted the retrieval of vertical profiles of many trace gases relevant for ozone chemistry. In the present work, the retrieval strategy, error estimation strategy, and resulting profiles of O3, HNO3, and ClONO2 are reported. The data analysis procedure, consisting of data preprocessing including calibration, analysis of auxiliary data including temperature profiles and line of sight determination, and retrieval of trace gas profiles, is described in detail. The last is carried out by means of multiparameter nonlinear least squares fitting in combination with onion peeling. An astonishingly high ClONO2 amount of 2.6 ppb by volume at about 19-km altitude was inferred for the March flight. A rigorous error analysis, which takes into account systematic and random errors and their often nonlinear impact on the results, proves the significance of the retrieved trace gas profiles.

  19. the validation of FORMOSAT-3/COSMIC atmospheric retrieval profile with high-resolution in-situ sounding data

    NASA Astrophysics Data System (ADS)

    Lin, P.-H.

    2009-04-01

    This study collected the high-resolution data of dropsonde, balloon radiosonde as well as MIST-sonde of driftsonde system during SoMWEX 2008, DOTSATR 2008 and THORPEX/PARC 2008. These in-situ atmospheric sounding data from the same temperature/humidity sensor, Vaisala RS92-PTU module, in these weather experiments around western Pacific and Taiwan region provide the unique reference for comparing FORMOSAT-3/COSMIC temperature and humidity profiles. FORMOSAT-3/COSMIC, similar to CHAMP GPS radio occultation soundings, was launched in 2006 and had provided global coverage of temperature and humidity profiles for numerical weather prediction. The near geo-location (less than 200 km radius) and near synchronized time window (less than 2 hours) are the matching conditions to compare the remote and in-situ profiles with 100 m vertical resolution from surface to upper air. 51 pairs of comparison showed that FORMOSAT-3/COSMIC has -0.06±0.88℃ cold bias (0.53±3.34℃ warm bias) below (above) 10 km height. The humidity profile has dry bias from -0.38 to -0.07 g/kg from lower atmosphere to higher altitude.The averaged slant distance (~130km) from FORMOSAT-3/COSMIC might cause the lager deviation on moisture profile to the near-vertical in-situ radio soundings.

  20. Seven years of IASI ozone retrievals from FORLI: validation with independent total column and vertical profile measurements

    NASA Astrophysics Data System (ADS)

    Boynard, Anne; Hurtmans, Daniel; Koukouli, Mariliza E.; Goutail, Florence; Bureau, Jérôme; Safieddine, Sarah; Lerot, Christophe; Hadji-Lazaro, Juliette; Wespes, Catherine; Pommereau, Jean-Pierre; Pazmino, Andrea; Zyrichidou, Irene; Balis, Dimitris; Barbe, Alain; Mikhailenko, Semen N.; Loyola, Diego; Valks, Pieter; Van Roozendael, Michel; Coheur, Pierre-François; Clerbaux, Cathy

    2016-09-01

    This paper presents an extensive intercomparison and validation for the ozone (O3) product measured by the two Infrared Atmospheric Sounding Interferometers (IASIs) launched on board the MetOp-A and MetOp-B satellites in 2006 and in 2012 respectively. IASI O3 total columns and vertical profiles obtained from Fast Optimal Retrievals on Layers for IASI (FORLI) v20140922 software (running up until recently) are validated against independent observations during the period 2008-2014 on a global scale. On average for the period 2013-2014, IASI-A and IASI-B total ozone columns (TOCs) retrieved using FORLI are consistent, with IASI-B providing slightly lower values with a global difference of only 0.2 ± 0.8 %. The comparison between IASI-A and IASI-B O3 vertical profiles shows differences within ± 2 % over the entire altitude range. Global validation results for 7 years of IASI TOCs from FORLI against the Global Ozone Monitoring Experiment-2 (GOME-2) launched on board MetOp-A and Brewer-Dobson data show that, on average, IASI overestimates the ultraviolet (UV) data by 5-6 % with the largest differences found in the southern high latitudes. The comparison with UV-visible SAOZ (Système d'Analyse par Observation Zénithale) measurements shows a mean bias between IASI and SAOZ TOCs of 2-4 % in the midlatitudes and tropics and 7 % at the polar circle. Part of the discrepancies found at high latitudes can be attributed to the limited information content in the observations due to low brightness temperatures. The comparison with ozonesonde vertical profiles (limited to 30 km) shows that on average IASI with FORLI processing underestimates O3 by ˜ 5-15 % in the troposphere while it overestimates O3 by ˜ 10-40 % in the stratosphere, depending on the latitude. The largest relative differences are found in the tropical tropopause region; this can be explained by the low O3 amounts leading to large relative errors. In this study, we also evaluate an updated version of FORLI-O3

  1. Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar systems

    NASA Astrophysics Data System (ADS)

    Vuorenkoski, Anni K.; Dalgleish, Fraser R.; Twardowski, Michael S.; Ouyang, Bing; Trees, Charles C.

    2015-05-01

    A fine structure underwater imaging LiDAR (FSUIL) has recently been developed and initial field trials have been conducted. The instrument, which rapidly scans an array of closely spaced, narrow, collimated laser pulses into the water column produces two-dimensional arrays of backscatter profiles, with fine spatial and temporal resolution. In this paper a novel method to derive attenuation profiles is introduced. This approach is particularly attractive in applications where primary on-board processing is required, and other applications where conventional model-based approaches are not feasible due to a limited computational capacity or lack of a priori knowledge of model input parameters. The paper also includes design details regarding the new FSUIL instrument are given, with field results taken in clear to moderately turbid water being presented to illustrate the various effects and considerations in the analysis of the system data. LiDAR waveforms and LiDAR derived attenuation coefficients are analyzed and compared to calibrated beam attenuation, particulate scattering and absorption coefficients. The system was field tested during the NATO Ligurian Sea LIDAR & Optical Measurements Experiment (LLOMEx) cruise in March 2013, during the spring bloom conditions. Throughout a wide range of environmental conditions, the FSUIL was deployed on an in situ profiler obtaining thousands of three-dimensional LiDAR scans from the near surface down to the lower thermocline. Deployed concurrent to the FSUIL was a range of commercially available off-the-shelf instruments providing side-by-side in-situ attenuation measurement.

  2. Retrieval of structure functions of air temperature and refractive index from large eddy simulations of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Wilson, Chris; van Eijk, Alexander M.; Fedorovich, Evgeni

    2013-09-01

    A methodology is presented to infer the refractive-index structure function parameter and the structure parameters for temperature and humidity from numerical simulations of the turbulent atmospheric convective boundary layer (CBL). The method employs spatial and temporal averaging of multiple realizations of the CBL flow field reproduced by a large-eddy simulation (LES) of the atmosphere. The Cn2 values yielded by LES-based approach agree fairly well with Cn2 values predicted by the Monin-Obukhov similarity theory. In this respect, the Cn2 retrieval from the LES data is promising for evaluating the vertical profile of Cn2 throughout the entire CBL. Under the considered CBL conditions and for the selected optical wavelength of 0.55 μm the value of Cn2 was found to be dominated by the CT2 contribution in the first few hundred meters above the surface, whereas the CTq contribution became significant aloft.

  3. Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method

    SciTech Connect

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America-funded research by teams and national laboratories that resulted in the development of an ASHRAE standard and a standardized testing method for testing the air leakage of HVAC air handlers and furnace cabinets and has spurred equipment manufacturers to tighten the cabinets they use for residential HVAC systems.

  4. AIRS CO2 Retrievals Using the Method of Vanishing Partial Derivatives (VPD)

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa; Yung, Yuk; Li, Qinbin; Olsen, Ed; Chen, Luke; Krakauer, Nir

    2006-01-01

    This document consists of presentation slides that review the work being done with observations from the Atmospheric Infrared Sounder (AIRS) using the concept of Vanishing Partial Derivatives. The infrared region is where several minor gases such as CO2, O3, CO, CH4 and SO2 are radiatively active.

  5. Vertical profiles of N2O5 along with CH4, N2O, and H2O in the late Arctic winter retrieved from MIPAS-B infrared limb emission measurements

    NASA Astrophysics Data System (ADS)

    Wetzel, G.; von Clarmann, T.; Oelhaf, H.; Fischer, H.

    1995-11-01

    Vertical profiles of N2O5, CH4, N2O, and H2O inside the arctic vortex were retrieved from nighttime infrared limb emission spectra obtained during a flight of the Michelson interferometer for passive atmospheric sounding, balloonborne version (MIPAS-B) Fourier spectrometer from Kiruna (Sweden, 68°N) on March 14/15, 1992, as part of the European Arctic Stratospheric Ozone Experiment. Spectra were analyzed by a nonlinear multiparameter least squares fitting procedure in combination with an onion-peeling retrieval algorithm. The N2O5 results were derived from the intensity of the v12 band near 8 μm. These data represent the first ever reported N2O5 profile inside the polar vortex. Between 21.5 and 31.7 km altitude, N2O5 mixing ratios from 0.38 to 0.74 parts per billion by volume (ppbv) were inferred. Below 21.5 km there is a steep decrease in the mixing ratio toward values lower than 0.07 ppbv at 18.9 and 16.1 km. This discontinuity in the vertical profile correlates in altitude with the bulk of the Pinatubo aerosol layer inside the arctic vortex. N2O5 concentrations are calculated as a function of time since local sunset by using initial NO2 concentrations, O3 concentrations, aerosol surface area densities, and reaction rate coefficients, as found in the literature; calculated N2O5 concentrations are consistent with the MIPAS results. These suggest efficient heterogeneous hydrolysis of N2O5 having taken place on sulphate aerosol particles. Retrieved CH4 and N2O profiles reflect the subsided polar vortex air.

  6. North American Tropospheric Ozone Profiles from IONS (INTEX Ozonesonde Network Study, 2004, 2006): Ozone Budgets, Polution Statistics, Satellite Retrievals

    NASA Astrophysics Data System (ADS)

    Dougherty, M.; Thompson, A. M.; Witte, J. C.; Miller, S. K.; Oltmans, S. J.; Cooper, O. R.; Tarasick, D. W.; Chatfield, R. B.; Taubman, B. F.; Joseph, E.; Baumgardner, D.; Merrill, J. T.; Morris, G. A.; Rappenglueck, B.; Lefer, B.; Forbes, G.; Newchurch, M. J.; Schmidlin, F. J.; Pierce, R. B.; Leblanc, T.; Dubey, M.; Minschwaner, K.

    2007-12-01

    During INTEX-B (both Milagro and IMPEX phases in Spring 2006) and during the summer TEXAQS- 2006/GOMACCS period, the INTEX Ozonesonde Network Study (IONS-06) coordinated ozonesonde launches over North America for Aura overpasses. IONS-06 supported aircraft operations and provided profiles for ozone budgets and pollution transport, satellite validation and evaluation of models. In contrast to IONS-04, IONS-06 had a greater range (all but one 2004 IONS site plus a dozen in California, New Mexico, Mexico City, Barbados and southwestern Canada), yielding more than 700 profiles. Tropospheric pollution statistics to guide Aura satellite retrievals and contrasts in UT-LS (upper tropospheric-lower stratospheric) ozone between 2004 and 2006 are presented. With IONS-04 dominated by low-pressure conditions over northeastern North America, UT ozone originated 25% from the stratosphere [Thompson et al., 2007a,b] with significant amounts from aged or relatively fresh pollution and lightning [Cooper et al., 2006; Morris et al., 2006]. Both IONS-04 and IONS-06 summer periods displayed a persistent UT ozone maximum [Cooper et al., 2007] over the south-central US. March 2006 IONS sondes over Mexico manifested persistent UT/LS gravity wave influence and more sporadic pollution. Regional and seasonal contrasts in IONS-06 ozone distributions are described. intexb/ions06.html

  7. Retrievals of Extensive and Intensive Aerosol Parameters from Vertical Profiles of Extinction Coefficient Acquired by the MAESTRO Occultation Spectrometer: Case Study of Sarychev Volcano Plumes

    NASA Astrophysics Data System (ADS)

    Saha, A.; O'Neill, N. T.; McElroy, C. T.; Sioris, C.; Zou, J.

    2011-12-01

    The Canadian MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) instrument aboard the SCISAT-1 Satellite is an aerosol profiling occultation device that is part of the ACE (Atmospheric Chemistry Experiment) mission. This spectrometer produces spectra of aerosol extinction profiles above the upper troposphere. The extinction coefficient spectra permit the discrimination of sub-micron (fine mode) and super-micron (coarse mode) contributions and, in principle, the retrieval of fine mode effective radius. Retrievals applied to lower stratospheric and upper tropospheric aerosol plumes resulting from the eruption of the Sarychev-peak volcano in June of 2009 are presented. Preliminary results indicate that the fine and coarse mode discrimination and the particle sizing capability are coherent with available information on Sarychev aerosols.

  8. A Novel Method to Retrieve Aerosol Optical Thickness from High-Resolution Optical Satellite Images for Air Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; Wilson, R. T.; Milton, E. J.

    2015-12-01

    Aerosol Optical Thickness (AOT) data has many important applications including atmospheric correction of satellite imagery and monitoring of particulate matter air pollution. Current data products are generally available at a kilometre-scale resolution, but many applications require far higher resolutions. For example, particulate matter concentrations vary on a metre-scale, and thus data products at a similar scale are required to provide accurate assessments of particle densities and allow effective monitoring of air quality and analysis of local air quality effects on health. A novel method has been developed which retrieves per-pixel AOT values from high-resolution (~30m) satellite data. This method is designed to work over a wide range of land covers - including both bright and dark surfaces - and requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT). The HOT was originally designed for assessing areas of thick haze in satellite imagery by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to provide AOT data instead. Significant extensions include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values through radiative transfer modelling. This novel method will enable many new applications of AOT data that were impossible with previously available low-resolution data, and has the potential to contribute significantly to our understanding of the air quality on health, the accuracy of satellite image atmospheric correction and the role of aerosols in the climate system.

  9. Unimpeded air velocity profiles of air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that relies on tree structure information to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Unimpeded air jet velocities from an air assisted, five-port sprayer in an open field were measured at four height...

  10. Application of Artificial Neural Networks to the Development of Improved Multi-Sensor Retrievals of Near-Surface Air Temperature and Humidity Over Ocean

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne

    2012-01-01

    Improved estimates of near-surface air temperature and air humidity are critical to the development of more accurate turbulent surface heat fluxes over the ocean. Recent progress in retrieving these parameters has been made through the application of artificial neural networks (ANN) and the use of multi-sensor passive microwave observations. Details are provided on the development of an improved retrieval algorithm that applies the nonlinear statistical ANN methodology to a set of observations from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A) that are currently available from the NASA AQUA satellite platform. Statistical inversion techniques require an adequate training dataset to properly capture embedded physical relationships. The development of multiple training datasets containing only in-situ observations, only synthetic observations produced using the Community Radiative Transfer Model (CRTM), or a mixture of each is discussed. An intercomparison of results using each training dataset is provided to highlight the relative advantages and disadvantages of each methodology. Particular emphasis will be placed on the development of retrievals in cloudy versus clear-sky conditions. Near-surface air temperature and humidity retrievals using the multi-sensor ANN algorithms are compared to previous linear and non-linear retrieval schemes.

  11. Sensitivity of Temperature Profiles Retrieved from Mars Global Surveyor Thermal Emission Spectrometer (MGS/TES) Observations to the GSFC Synthetic Mars Model Atmosphere

    NASA Technical Reports Server (NTRS)

    Maguire, William C.; Pearl, J. C.; Smith, M. D.; Thompson, R. F.; Conrath, B. J.; Dason, S.; Kaelberer, M. S.; Christensen, P. R.

    1999-01-01

    Part of the task of interpreting IR spectral features observed by MGS/TES due to surface minerals requires distinguishing those IR signatures from atmospheric signatures of gas and dust. Surface-atmosphere separation for MGS/TES depends on knowledge of the retrieved temperature profile. In turn, the temperature retrieval Erom the observed data depends on molecular parameters including 15 micron CO2 line shape or line intensities which contribute to defining the Mars synthetic radiative transfer model. Using a simple isothermal, homogeneous single layer model of Pinnock and Shine, we find the ratio of (the error in degrees Kelvin of the retrieved temperature profile) to (the percentage error in the absorption coefficient) (deg K/percent) to be 0.4 at 200K. This ratio at 150K and 250K is 0.2 and 0.6, respectively. A more refined model, incorporating observed MGS/TES retrieved temperature profiles, the TES instrumental resolution and the most recent molecular modelling, will yield an improved knowledge of this error sensitivity. We present results of such a sensitivity study to determine the dependence of temperature profiles inverted from MGS/TES on these and other molecular parameters. This work was supported in part by NASA's Mars Data Analysis Program.

  12. Technical Note: Variance-covariance matrix and averaging kernels for the Levenberg-Marquardt solution of the retrieval of atmospheric vertical profiles

    NASA Astrophysics Data System (ADS)

    Ceccherini, S.; Ridolfi, M.

    2009-11-01

    The variance-covariance matrix (VCM) and the averaging kernel matrix (AKM) are widely used tools to characterize atmospheric vertical profiles retrieved from remote sensing measurements. Accurate estimation of these quantities is essential for both the evaluation of the quality of the retrieved profiles and for the correct use of the profiles themselves in subsequent applications such as data comparison, data assimilation and data fusion. We propose a new method to estimate the VCM and AKM of vertical profiles retrieved using the Levenberg-Marquardt iterative technique. We apply the new method to the inversion of simulated limb emission measurements. Then we compare the obtained VCM and AKM with those resulting from other methods already published in the literature and with accurate estimates derived using statistical and numerical estimators. The proposed method accounts for all the iterations done in the inversion and provides the most accurate VCM and AKM. The method can be easily implemented in any Levenberg-Marquardt iterative retrieval scheme, either constrained or unconstrained, without significant computational overhead.

  13. Retrieval of Vertical LAI Profiles Over Tropical Rain Forests using Waveform Lidar at La Selva, Costa Rica

    NASA Technical Reports Server (NTRS)

    Tang, Hao; Dubayah, Ralph; Swatantra, Anu; Hofton, Michelle; Sheldon, Sage; Clark, David B.; Blair, Bryan

    2012-01-01

    This study explores the potential of waveform lidar in mapping the vertical and spatial distributions of leaf area index (LAI) over the tropical rain forest of La Selva Biological Station in Costa Rica. Vertical profiles of LAI were derived at 0.3 m height intervals from the Laser Vegetation Imaging Sensor (LVIS) data using the Geometric Optical and Radiative Transfer (GORT) model. Cumulative LAI profiles obtained from LVIS were validated with data from 55 ground to canopy vertical transects using a modular field tower to destructively sample all vegetation. Our results showed moderate agreement between lidar and field derived LAI (r2=0.42, RMSE=1.91, bias=-0.32), which further improved when differences between lidar and tower footprint scales (r2=0.50, RMSE=1.79, bias=0.27) and distance of field tower from lidar footprint center (r2=0.63, RMSE=1.36, bias=0.0) were accounted for. Next, we mapped the spatial distribution of total LAI across the landscape and analyzed LAI variations over different land cover types. Mean values of total LAI were 1.74, 5.20, 5.41 and 5.62 over open pasture, secondary forests, regeneration forests after selective-logging and old-growth forests respectively. Lastly, we evaluated the sensitivities of our LAI retrieval model to variations in canopy/ground reflectance ratio and to waveform noise such as induced by topographic slopes. We found for both, that the effects were not significant for moderate LAI values (about 4). However model derivations of LAI might be inaccurate in areas of high-slope and high LAI (about 8) if ground return energies are low. This research suggests that large footprint waveform lidar can provide accurate vertical LAI profile estimates that do not saturate even at the high LAI levels in tropical rain forests and may be a useful tool for understanding the light transmittance within these canopies.

  14. Spectral Retrieval of Latent Heating Profiles from TRMM PR data. Part 3; Moistening Estimates over Tropical Ocean Regions

    NASA Technical Reports Server (NTRS)

    Shige, S.; Takayabu, Y.; Tao, W.-K.

    2007-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for threefourths of the total heat energy available to the Earth's atmosphere. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to rne-sosynoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations In environmental prediction models. However, the LH and water vapor profile or budget (called the apparent moisture sink, or Q2) is closely related. This paper presented the development of an algorithm for retrieving Q2 using 'TRMM precipitation radar. Since there is no direct measurement of LH and Q2, the validation of algorithm usually applies a method called consistency check. Consistency checking involving Cloud Resolving Model (CRM)-generated LH and 42 profiles and algorithm-reconstructed is a useful step in evaluating the performance of a given algorithm. In this process, the CRM simulation of a time-dependent precipitation process (multiple-day time series) is used to obtain the required input parameters for a given algorithm. The algorithm is then used to "econsti-LKth"e heating and moisture profiles that the CRM simulation originally produced, and finally both sets of conformal estimates (model and algorithm) are compared each other. The results indicate that discrepancies between the reconstructed and CM-simulated profiles for Q2, especially at low levels

  15. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    NASA Technical Reports Server (NTRS)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  16. A Case Study of the Impact of AIRS Temperature Retrievals on Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Reale, O.; Atlas, R.; Jusem, J. C.

    2004-01-01

    Large errors in numerical weather prediction are often associated with explosive cyclogenesis. Most studes focus on the under-forecasting error, i.e. cases of rapidly developing cyclones which are poorly predicted in numerical models. However, the over-forecasting error (i.e., to predict an explosively developing cyclone which does not occur in reality) is a very common error that severely impacts the forecasting skill of all models and may also present economic costs if associated with operational forecasting. Unnecessary precautions taken by marine activities can result in severe economic loss. Moreover, frequent occurrence of over-forecasting can undermine the reliance on operational weather forecasting. Therefore, it is important to understand and reduce the prdctions of extreme weather associated with explosive cyclones which do not actually develop. In this study we choose a very prominent case of over-forecasting error in the northwestern Pacific. A 960 hPa cyclone develops in less than 24 hour in the 5-day forecast, with a deepening rate of about 30 hPa in one day. The cyclone is not versed in the analyses and is thus a case of severe over-forecasting. By assimilating AIRS data, the error is largely eliminated. By following the propagation of the anomaly that generates the spurious cyclone, it is found that a small mid-tropospheric geopotential height negative anomaly over the northern part of the Indian subcontinent in the initial conditions, propagates westward, is amplified by orography, and generates a very intense jet streak in the subtropical jet stream, with consequent explosive cyclogenesis over the Pacific. The AIRS assimilation eliminates this anomaly that may have been caused by erroneous upper-air data, and represents the jet stream more correctly. The energy associated with the jet is distributed over a much broader area and as a consequence a multiple, but much more moderate cyclogenesis is observed.

  17. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  18. Microwave temperature profiler for clear air turbulence prediction

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    1992-01-01

    A method is disclosed for determining Richardson Number, Ri, or its reciprocal, RRi, for clear air prediction using measured potential temperature and determining the vertical gradient of potential temperature, d(theta)/dz. Wind vector from the aircraft instrumentation versus potential temperature, dW/D(theta), is determined and multiplies by d(theta)/dz to obtain dW/dz. Richardson number or its reciprocal is then determined from the relationship Ri = K(d theta)/dz divided by (dW/dz squared) for use in detecting a trend toward a threshold value for the purpose of predicting clear air turbulence. Other equations for this basic relationship are disclosed together with the combination of other atmospheric observables using multiple regression techniques.

  19. Psychiatric profiles in the U.S. Air Force: a clinical interpretation of Air Force Instruction 48-123.

    PubMed

    Chozinski, J P; Bourgeois, J A

    2001-02-01

    The foundations of our current system for profiling military psychiatric patients were laid during World War II, well before the development of the first version of the Diagnostic and Statistical Manual of Mental Disorders. The general principles and terminology remain in use today through Air Force Instruction 48-123, Medical Examination and Standards. The terminology used is clearly outdated, making it difficult to use and risking misuse, deploying the wrong person or denying deployment to an appropriate person. Our objective is to review the current standards for making psychiatric profiles in the U.S. Air Force and propose a practical interpretation of the current Air Force Instruction. Considerable research remains to be done to improve our profile system, especially in light of the development of effective treatments for many psychiatric illnesses. Although prognostic data are available for some illnesses, little research has been done on military populations and essentially none of it considers the rigors of military deployment. Diagnosis, prognosis, duty environments, and demands of duties all must be considered in making profile decisions. Reductionistic approaches more simple than this will serve neither the commander nor the airman.

  20. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    SciTech Connect

    Pu, Zhaoxia

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  1. Retrieving Atmospheric Temperature and Moisture Profiles from NPP CRIS/ATMS Sensors Using Crimss EDR Algorithm

    NASA Technical Reports Server (NTRS)

    Liu, X.; Kizer, S.; Barnet, C.; Dvakarla, M.; Zhou, D. K.; Larar, A. M.

    2012-01-01

    The Joint Polar Satellite System (JPSS) is a U.S. National Oceanic and Atmospheric Administration (NOAA) mission in collaboration with the U.S. National Aeronautical Space Administration (NASA) and international partners. The NPP Cross-track Infrared Microwave Sounding Suite (CrIMSS) consists of the infrared (IR) Crosstrack Infrared Sounder (CrIS) and the microwave (MW) Advanced Technology Microwave Sounder (ATMS). The CrIS instrument is hyperspectral interferometer, which measures high spectral and spatial resolution upwelling infrared radiances. The ATMS is a 22-channel radiometer similar to Advanced Microwave Sounding Units (AMSU) A and B. It measures top of atmosphere MW upwelling radiation and provides capability of sounding below clouds. The CrIMSS Environmental Data Record (EDR) algorithm provides three EDRs, namely the atmospheric vertical temperature, moisture and pressure profiles (AVTP, AVMP and AVPP, respectively), with the lower tropospheric AVTP and the AVMP being JPSS Key Performance Parameters (KPPs). The operational CrIMSS EDR an algorithm was originally designed to run on large IBM computers with dedicated data management subsystem (DMS). We have ported the operational code to simple Linux systems by replacing DMS with appropriate interfaces. We also changed the interface of the operational code so that we can read data from both the CrIMSS science code and the operational code and be able to compare lookup tables, parameter files, and output results. The detail of the CrIMSS EDR algorithm is described in reference [1]. We will present results of testing the CrIMSS EDR operational algorithm using proxy data generated from the Infrared Atmospheric Sounding Interferometer (IASI) satellite data and from the NPP CrIS/ATMS data.

  2. Assimilation of Quality Controlled AIRS Temperature Profiles using the NCEP GFS

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste; Iredell, Lena; Rosenberg, Robert

    2013-01-01

    We have previously conducted a number of data assimilation experiments using AIRS Version-5 quality controlled temperature profiles as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The data assimilation and forecast system we used was the Goddard Earth Observing System Model , Version-5 (GEOS-5) Data Assimilation System (DAS), which represents a combination of the NASA GEOS-5 forecast model with the National Centers for Environmental Prediction (NCEP) operational Grid Point Statistical Interpolation (GSI) global analysis scheme. All analyses and forecasts were run at a 0.5deg x 0.625deg spatial resolution. Data assimilation experiments were conducted in four different seasons, each in a different year. Three different sets of data assimilation experiments were run during each time period: Control; AIRS T(p); and AIRS Radiance. In the "Control" analysis, all the data used operationally by NCEP was assimilated, but no AIRS data was assimilated. Radiances from the Aqua AMSU-A instrument were also assimilated operationally by NCEP and are included in the "Control". The AIRS Radiance assimilation adds AIRS observed radiance observations for a select set of channels to the data set being assimilated, as done operationally by NCEP. In the AIRS T(p) assimilation, all information used in the Control was assimilated as well as Quality Controlled AIRS Version-5 temperature profiles, i.e., AIRS T(p) information was substituted for AIRS radiance information. The AIRS Version-5 temperature profiles were presented to the GSI analysis as rawinsonde profiles, assimilated down to a case-by-case appropriate pressure level p(sub best) determined using the Quality Control procedure. Version-5 also determines case-by-case, level-by-level error estimates of the temperature profiles, which were used as the uncertainty of each temperature measurement. These experiments using GEOS-5 have shown that forecasts

  3. Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: Simplified Kalman filter covariance forecasting and field application

    NASA Astrophysics Data System (ADS)

    Walker, Jeffrey P.; Willgoose, Garry R.; Kalma, Jetse D.

    2002-12-01

    The Kalman filter data assimilation technique is applied to a distributed three-dimensional soil moisture model for retrieval of the soil moisture profile in a 6 ha catchment using near-surface soil moisture measurements. A simplified Kalman filter covariance forecasting methodology is developed based on forecasting of the state correlations and imposed state variances. This covariance forecasting technique, termed the modified Kalman filter, was then used in a 1 month three-dimensional field application. Two updating scenarios were tested: (1) updating every 2 to 3 days and (2) a single update. The data used were from the Nerrigundah field site, near Newcastle, Australia. This study demonstrates the feasibility of data assimilation in a quasi three-dimensional distributed soil moisture model, provided simplified covariance forecasting techniques are used. It also identifies that (1) the soil moisture profile cannot be retrieved from near-surface soil moisture measurements when the near-surface and deep soil layers become decoupled, such as during extreme drying events; (2) if simulation of the soil moisture profile is already good, the assimilation can result in a slight degradation, but if the simulation is poor, assimilation can yield a significant improvement; (3) soil moisture profile retrieval results are independent of initial conditions; and (4) the required update frequency is a function of the errors in model physics and forcing data.

  4. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Blaisdell, John; Iredell, Lena; Lee, Jae N.

    2015-01-01

    Additional changes in Version-6.19 include all previous updates made to the q(p) retrieval since Version-6: Modified Neural-Net q0(p) guess above the tropopause Linearly tapers the neural net guess to match climatology at 70 mb, not at the top of the atmosphereChanged the 11 trapezoid q(p) perturbation functions used in Version-6 so as to match the 24 functions used in T(p) retrieval step. These modifications resulted in improved water vapor profiles in Version-6.19 compared to Version-6.Version-6.19 is tested for all of August 2013 and August 2014, as well for select other days. Before finalized and operational in 2016, the V-6.19 can be acquired upon request for limited time intervals.

  5. Retrieval assessment using the microwave simulation tool for the High Altitude and LOng range aircraft HALO: humidity, temperature and hydrometeor profiles

    NASA Astrophysics Data System (ADS)

    Mech, M.; Crewell, S.; Orlandi, E.; Hirsch, L.

    2011-12-01

    realistic particle habits and shapes. In this presentation the HAMP instruments, the simulation test bed, and the retrieval approaches and results will be introduced. The capability of HAMP for hydrometeor observations and the retrieval of integrated contents are shown based on a data set of simulated brightness temperatures and concurrent hydrometeor contents and profiles. Furthermore, the potential of the selected passive microwave frequencies for the derivation of temperature and humidity profiles, especially upper tropospheric water vapor, is presented. In the simulations the different sensitivities of the various passive microwave frequencies to varying hydrometeor contents and surface properties can be seen clearly. Additionally, the results of retrieval approaches with an integrated profiling technique combining the active and passive information for hydrometeor contents and profiles over ocean and land are presented.

  6. The retrieval of atmospheric constituent mixing-ratio profiles from solar absorption spectra. Ph.D. Thesis. Interim Technical Report

    NASA Technical Reports Server (NTRS)

    Shaffer, W. A.

    1983-01-01

    Methods used to determine various atmospheric gas distributions are summarized. The experimentally determined mixing ratio profiles (the mixing ratio of a gas is the ratio of the number of gas molecules to the number of air molecules) of some atmospheric gases are shown. In most in situ experiments stratospheric gas samples are collected at several altitudes by balloon, aircraft, or rocket. These samples are then analyzed by various methods. Mixing ratio profiles of Ci, ClO, and OH were determined by laser induced fluorescence of samples. Others have analyzed gas samples by gas chromatography in order to determine the molecular abundances of CCl2F2, CCl4, CCl3F, CFCl3, CF2Cl2, CHClF2, CH3CCl3, CH4, CO, C2Cl3F3, C2Cl4, C2HCl3, C2H2, C2H4, C2H6, C3H8, C6H6, C7H8, H2, and N2O.

  7. Heating, Ventilation, Air-conditioning, and Refrigeration. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for heating, ventilation, air conditioning, and refrigeration occupations. The list contains units (with and without…

  8. Absolute accuracy and sensitivity analysis of OP-FTIR retrievals of CO2, CH4 and CO over concentrations representative of "clean air" and "polluted plumes"

    NASA Astrophysics Data System (ADS)

    Smith, T. E. L.; Wooster, M. J.; Tattaris, M.; Griffith, D. W. T.

    2011-01-01

    When compared to established point-sampling methods, Open-Path Fourier Transform Infrared (OP-FTIR) spectroscopy can provide path-integrated concentrations of multiple gases simultaneously, in situ and near-continuously. The trace gas pathlength amounts can be retrieved from the measured IR spectra using a forward model coupled to a non-linear least squares fitting procedure, without requiring "background" spectral measurements unaffected by the gases of interest. However, few studies have investigated the accuracy of such retrievals for CO2, CH4 and CO, particularly across broad concentration ranges covering those characteristic of ambient to highly polluted air (e.g. from biomass burning or industrial plumes). Here we perform such an assessment using data collected by a field-portable FTIR spectrometer. The FTIR was positioned to view a fixed IR source placed at the other end of an IR-transparent cell filled with the gases of interest, whose target concentrations were varied by more than two orders of magnitude. Retrievals made using the model are complicated by absorption line pressure broadening, the effects of temperature on absorption band shape, and by convolution of the gas absorption lines and the instrument line shape (ILS). Despite this, with careful model parameterisation (i.e. the optimum wavenumber range, ILS, and assumed gas temperature and pressure for the retrieval), concentrations for all target gases were able to be retrieved to within 5%. Sensitivity to the aforementioned model inputs was also investigated. CO retrievals were shown to be most sensitive to the ILS (a function of the assumed instrument field-of-view), which is due to the narrow nature of CO absorption lines and their consequent sensitivity to convolution with the ILS. Conversely, CO2 retrievals were most sensitive to assumed atmospheric parameters, particularly gas temperature. Our findings provide confidence that FTIR-derived trace gas retrievals of CO2, CH4 and CO based on

  9. Absolute accuracy and sensitivity analysis of OP-FTIR retrievals of CO2, CH4 and CO over concentrations representative of ''clean air'' and ''polluted plumes''

    NASA Astrophysics Data System (ADS)

    Smith, T. E. L.; Wooster, M. J.; Tattaris, M.; Griffith, D. W. T.

    2010-08-01

    When compared to established point-sampling methods, Open-Path Fourier Transform Infrared (OP-FTIR) spectroscopy can provide path-integrated concentrations of multiple gases simultaneously, in situ and near-continuously. Concentrations can be retrieved from the measured IR spectra using a forward model coupled to a non-linear least squares fitting procedure, without requiring ''background'' spectral measurements unaffected by the gases of interest. However, few studies have investigated the accuracy of such retrievals for CO2, CH4 and CO, particularly across a broad concentration range covering ambient to highly polluted air (e.g. from biomass burning or industrial plumes). Here we perform such an assessment using data collected by a field-portable FTIR spectrometer. The FTIR was positioned to view a fixed IR source placed at the other end of an IR-transparent cell filled with the gases of interest, whose target concentrations were varied by up to two orders of magnitude. Retrievals made using the forward model are complicated by absorption line pressure broadening, the effects of temperature on absorption band shape and by convolution of the gas absorption lines and the instrument line shape (ILS). Despite this, with optimal forward model parameterisation (i.e. the wavenumber range used in the retrieval, gas temperature, pressure and ILS), concentration retrievals for all gases were able to be made to within 5% of the true value. Sensitivity to the aforementioned model inputs was also investigated. CO retrievals were shown to be most sensitive to the ILS (a function of the assumed instrument FOV), which is due to the narrow nature of CO absorption lines and their consequent sensitivity to convolution with the ILS. Conversely, CO2 retrievals were most sensitive to assumed atmospheric parameters, particularly temperature. The analysis suggests that trace gas concentration retrieval errors can remain well below 10%, even with the uncertainties in atmospheric pressure

  10. Atmospheric profiles at the southern Pierre Auger Observatory and their relevance to air shower measurement

    SciTech Connect

    Keilhauer, B.; Bluemer, J.; Engel, R.; Gora, D.; Homola, P.; Klages, H.; Pekala, J.; Risse, M.; Unger, M.; Wilczynska, B.; Wilczynski, H.

    2005-07-01

    The dependence of atmospheric conditions on altitude and time have to be known at the site of an air shower experiment for accurate reconstruction of extensive air showers and their simulations. The height-profile of atmospheric depth is of particular interest as it enters directly into the reconstruction of longitudinal shower development and of the primary energy and mass of cosmic rays. For the southern part of the Auger Observatory, the atmosphere has been investigated in a number of campaigns with meteorological radio soundings and with continuous measurements of ground-based weather stations. Focusing on atmospheric depth and temperature profiles, temporal variations are described and monthly profiles are developed. Uncertainties of the monthly atmospheres that are currently applied in the Auger reconstruction are discussed.

  11. Study of aerosol microphysical properties profiles retrieved from ground-based remote sensing and aircraft in-situ measurements during a Saharan dust event

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, M. J.; Bravo-Aranda, J. A.; Baumgardner, D.; Guerrero-Rascado, J. L.; Pérez-Ramírez, D.; Navas-Guzmán, F.; Veselovskii, I.; Lyamani, H.; Valenzuela, A.; Olmo, F. J.; Titos, G.; Andrey, J.; Chaikovsky, A.; Dubovik, O.; Gil-Ojeda, M.; Alados-Arboledas, L.

    2015-09-01

    In this work we present an analysis of mineral dust optical and microphysical properties obtained from different retrieval techniques applied to active and passive remote sensing measurements, including a comparison with simultaneous in-situ aircraft measurements. Data were collected in a field campaign performed during a mineral dust outbreak a Granada, Spain, experimental site (37.16° N, 3.61° W, 680 m a.s.l.) on the 27 June 2011. Column-integrated properties are provided by sun- and star-photometry which allows a continuous evaluation of the mineral dust optical properties during both day and night-time. Both the Linear Estimation and AERONET (Aerosol Robotic Network) inversion algorithms are applied for the retrieval of the column-integrated microphysical particle properties. In addition, vertically-resolved microphysical properties are obtained from a multi-wavelength Raman lidar system included in EARLINET (European Aerosol Research Lidar Network), by using both LIRIC (Lidar Radiometer Inversion Code) algorithm during daytime and an algorithm applied to the Raman measurements based on the regularization technique during night-time. LIRIC retrievals reveal several dust layers between 3 and 5 km a.s.l. with volume concentrations of the coarse spheroid mode up to 60 μm3 cm-3. The combined use of the regularization and LIRIC methods reveals the night-to-day evolution of the vertical structure of the mineral dust microphysical properties and offers complementary information to that from column-integrated variables retrieved from passive remote sensing. Additionally, lidar depolarization profiles and LIRIC retrieved volume concentration are compared with aircraft in-situ measurements. This study presents for the first time a comparison of both volume concentration and dust particle polarization ratios measured with in-situ and remote sensing techniques. Results for the depolarization measurements in the dust layer indicate reasonable agreement within the

  12. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Brendt. Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2014-01-01

    Tropopause folds are identified by warm, dry, high-potential vorticity, ozone-rich air and are one explanation for damaging non-convective wind events. Could improved model representation of stratospheric air and associated tropopause folding improve non-convective wind forecasts and high wind warnings? The goal of this study is to assess the impact of assimilating Hyperspectral Infrared (IR) profiles on forecasting stratospheric air, tropopause folds, and associated non-convective winds: (1) AIRS: Atmospheric Infrared Sounder (2) IASI: Infrared Atmospheric Sounding Interferometer (3) CrIMSS: Cross-track Infrared and Microwave Sounding Suite

  13. AIR CONVECTION NOISE OF PENCIL-BEAM INTERFERMETER FOR LONG TRACE PROFILER.

    SciTech Connect

    YASHCHUK, V.V.; IRICK, S.C.; MACDOWELL, A.A.; MCKINNEY, W.R.; TAKACS, P.Z.

    2006-08-14

    In this work, we investigate the effect of air convection on laser-beam pointing noise essential for the long trace profiler (LTP). We describe this pointing error with noise power density (NPD) frequency distributions. It is shown that the NPD spectra due to air convection have a very characteristic form. In the range of frequencies from {approx}0.05 Hz to {approx}0.5 Hz, the spectra can be modeled with an inverse-power-law function. Depending on the intensity of air convection that is controlled with a resistive heater of 100 to 150 mW along a one-meter-long optical path, the power index lies between 2 and 3 at an overall rms noise of {approx}0.5 to 1 microradian. The efficiency of suppression of the convection noise by blowing air across the beam optical path is also discussed. Air-blowing leads to a white-noise-like spectrum. Air blowing was applied to the reference channel of an LTP allowing demonstration of the contribution of air convection noise to the LTP reference beam. The ability to change (with the blowing technique presented) the spectral characteristics of the beam pointing noise due to air convection allows one to investigate the contribution of the convection effect, and thus make corrections to the power spectral density spectra measured with the LTP.

  14. 3-D Surface Depression Profiling Using High Frequency Focused Air-Coupled Ultrasonic Pulses

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. This article shows quantitative surface topography profiles as obtained using only high-frequency focused air-coupled ultrasonic pulses. The profiles were obtained using a profiling system developed by NASA Glenn Research Center and Sonix, Inc (via a formal cooperative agreement). (The air transducers are available as off-the-shelf items from several companies.) The method is simple and reproducible because it relies mainly on knowledge and constancy of the sound velocity through the air. The air transducer is scanned across the surface and sends pulses to the sample surface where they are reflected back from the surface along the same path as the incident wave. Time-of-flight images of the sample surface are acquired and converted to depth/surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in air (V). The system has the ability to resolve surface depression variations as small as 25 microns, is useable over a 1.4 mm vertical depth range, and can profile large areas only limited by the scan limits of the particular ultrasonic system. (Best-case depth resolution is 0.25 microns which may be achievable with improved isolation from vibration and air currents.) The method using an optimized configuration is reasonably rapid and has all quantitative analysis facilities on-line including 2-D and 3-D visualization capability, extreme value filtering (for faulty data), and leveling capability. Air-coupled surface profilometry is applicable to plate-like and curved samples. In this article, results are shown for several proof-of-concept samples, plastic samples burned in microgravity on the STS-54 space shuttle mission, and a partially-coated cylindrical ceramic

  15. DNA methylation profile of Aire-deficient mouse medullary thymic epithelial cells

    PubMed Central

    2012-01-01

    Background Medullary thymic epithelial cells (mTECs) are characterized by ectopic expression of self-antigens during the establishment of central tolerance. The autoimmune regulator (Aire), which is specifically expressed in mTECs, is responsible for the expression of a large repertoire of tissue-restricted antigens (TRAs) and plays a role in the development of mTECs. However, Aire-deficient mTECs still express TRAs. Moreover, a subset of mTECs, which are considered to be at a stage of terminal differentiation, exists in the Aire-deficient thymus. The phenotype of a specific cell type in a multicellular organism is governed by the epigenetic regulation system. DNA methylation modification is an important component of this system. Every cell or tissue type displays a DNA methylation profile, consisting of tissue-dependent and differentially methylated regions (T-DMRs), and this profile is involved in cell-type-specific genome usage. The aim of this study was to examine the DNA methylation profile of mTECs by using Aire-deficient mTECs as a model. Results We identified the T-DMRs of mTECs (mTEC-T-DMRs) via genome-wide DNA methylation analysis of Aire−/− mTECs by comparison with the liver, brain, thymus, and embryonic stem cells. The hypomethylated mTEC-T-DMRs in Aire−/− mTECs were associated with mTEC-specific genes, including Aire, CD80, and Trp63, as well as other genes involved in the RANK signaling pathway. While these mTEC-T-DMRs were also hypomethylated in Aire+/+ mTECs, they were hypermethylated in control thymic stromal cells. We compared the pattern of DNA methylation levels at a total of 55 mTEC-T-DMRs and adjacent regions and found that the DNA methylation status was similar for Aire+/+ and Aire−/− mTECs but distinct from that of athymic cells and tissues. Conclusions These results indicate a unique DNA methylation profile that is independent of Aire in mTECs. This profile is distinct from other cell types in the thymic microenvironment and is

  16. Comparison of Profiling Microwave Radiometer, Aircraft, and Radiosonde Measurements From the Alliance Icing Research Study (AIRS)

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.

    2001-01-01

    Measurements from a profiling microwave radiometer are compared to measurements from a research aircraft and radiosondes. Data compared is temperature, water vapor, and liquid water profiles. Data was gathered at the Alliance Icing Research Study (AIRS) at Mirabel Airport outside Montreal, Canada during December 1999 and January 2000. All radiometer measurements were found to lose accuracy when the radome was wet. When the radome was not wetted, the radiometer was seen to indicate an inverted distribution of liquid water within a cloud. When the radiometer measurements were made at 15 deg. instead of the standard zenith, the measurements were less accurate.

  17. Retrieval with Infrared Atmospheric Sounding Interferometer and Validation during JAIVEx

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    A state-of-the-art IR-only retrieval algorithm has been developed with an all-season-global EOF Physical Regression and followed by 1-D Var. Physical Iterative Retrieval for IASI, AIRS, and NAST-I. The benefits of this retrieval are to produce atmospheric structure with a single FOV horizontal resolution (approx. 15 km for IASI and AIRS), accurate profiles above the cloud (at least) or down to the surface, surface parameters, and/or cloud microphysical parameters. Initial case study and validation indicates that surface, cloud, and atmospheric structure (include TBL) are well captured by IASI and AIRS measurements. Coincident dropsondes during the IASI and AIRS overpasses are used to validate atmospheric conditions, and accurate retrievals are obtained with an expected vertical resolution. JAIVEx has provided the data needed to validate the retrieval algorithm and its products which allows us to assess the instrument ability and/or performance. Retrievals with global coverage are under investigation for detailed retrieval assessment. It is greatly desired that these products be used for testing the impact on Atmospheric Data Assimilation and/or Numerical Weather Prediction.

  18. Classifying ice water content profiles of high-level clouds from AIRS/CALIPSO/CloudSat observations to better assess cloud radiative effects

    NASA Astrophysics Data System (ADS)

    Feofilov, Artem; Stubenrauch, Claudia; Armante, Raymond

    2013-04-01

    About 40% of all clouds on Earth are high-level clouds (< 440 hPa), which have a noticeable effect on the energetic budget of the atmosphere: optically thick clouds reflect the incoming solar radiation while thinner clouds act as "greenhouse films" preventing escape of the Earth's infrared radiation to space. Accurate modelling of the radiative properties of high-level clouds is essential both for estimating their energetic effects and for the retrieval of bulk microphysical properties from infrared observations. It requires knowing the scattering and absorbing characteristics of cloud particles, amount of ice in the cloud, and variation of these parameters if the cloud is extended. In this work, we concentrate on vertical distribution of ice water content (IWC) in the high-level ice clouds. For the analysis, we used a synergy of the active and passive sounders of the A-Train satellite constellation. Relatively high spectral resolution of the Atmospheric InfraRed Sounder (AIRS) allows the identification of cirrus clouds and the retrieval of their physical and bulk microphysical properties as well as their horizontal extent. Active sounders, the CALIPSO lidar and the CloudSat radar, provide the vertical structure of the clouds: the radar-lidar GEOPROF dataset (Mace et al., 2007) contains the vertical extent and position of each cloud layer while the liDARraDAR dataset (Delanoë and Hogan, 2010) gives the IWC profiles and effective ice crystal sizes. In addition, we use environmental parameters from ERA Interim reanalyses. We have classified IWC vertical distributions according to their profile shape and found that a) they can be sub-divided into four major types; b) profile shape mainly depends on the integrated IWC of the cloud; c) there is a weak correlation between vertical wind and dominating profile type. We discuss an impact of different IWC profile types on the energetics of the atmosphere and on bulk microphysical properties retrieval, using the calculations

  19. Retrieval of atmospheric temperature and moisture vertical profiles from satellite Advanced Infrared Sounder radiances with a new regularization parameter selecting method

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wu, Chunqiang; Li, Jun

    2016-06-01

    Considering the characteristics of nonlinear problems, a new method based on the L-curve method and including the concept of entropy was designed to select the regularization parameter in the one-dimensional variational analysis-based sounding retrieval method. In the first iteration, this method uses an empirical regularization parameter derived by minimizing the entropy of variables. During subsequent iterations, it uses the L-curve method to select the regularization parameter in the vicinity of the regularization parameter selected in the last iteration. The new method was employed to select the regularization parameter in retrieving atmospheric temperature and moisture profiles from Atmospheric Infrared Sounder radiance measurements selected from the first day of each month in 2008. The results show that compared with the original L-curve method, the new method yields 5.5% and 2.5% improvements on temperature and relative humidity profiles, respectively. Compared with the discrepancy principle method, the improvements on temperature and relative humidity profiles are 1.6% and 2.0%, respectively.

  20. A 3-D tomographic retrieval approach with advection compensation for the air-borne limb-imager GLORIA

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Lotz, J.; Leppkes, K.; Hoffmann, L.; Guggenmoser, T.; Kaufmann, M.; Preusse, P.; Naumann, U.; Riese, M.

    2011-11-01

    Infrared limb sounding from aircraft can provide 2-D curtains of multiple trace gas species. However, conventional limb sounders view perpendicular to the aircraft axis and are unable to resolve the observed airmass along their line-of-sight. GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) is a new remote sensing instrument that is able to adjust its horizontal view angle with respect to the aircraft flight direction from 45° to 135°. This will allow for tomographic measurements of mesoscale structures for a wide variety of atmospheric constituents. Many flights of the GLORIA instrument will not follow closed curves that allow measuring an airmass from all directions. Consequently, it is examined by means of simulations, what spatial resolution can be expected under ideal conditions from tomographic evaluation of measurements made during a straight flight. It is demonstrated that the achievable horizontal resolution in the line-of-sight direction could be reduced from over 200 km to around 70 km compared to conventional retrievals and that the tomographic retrieval is also more robust against horizontal gradients in retrieved quantities in this direction. In a second step, it is shown that the incorporation of channels exhibiting different optical depth can further enhance the spatial resolution of 3-D retrievals enabling the exploitation of spectral samples usually not used for limb sounding due to their opacity. A second problem for tomographic retrievals is that advection, which can be neglected for conventional retrievals, plays an important role for the time-scales involved in a tomographic measurement flight. This paper presents a method to diagnose the effect of a time-varying atmosphere on a 3-D retrieval and demonstrates an effective way to compensate for effects of advection by incorporating wind-fields from meteorological datasets as a priori information.

  1. A new technique for retrieval of tropospheric and stratospheric ozone profiles using sky radiance measurements at multiple view angles: Application to a Brewer spectrometer

    NASA Astrophysics Data System (ADS)

    Tzortziou, Maria; Krotkov, Nickolay A.; Cede, Alexander; Herman, Jay R.; Vasilkov, Alexander

    2008-03-01

    This paper describes and applies a new technique for retrieving diurnal variability in tropospheric ozone vertical distribution using ground-based measurements of ultraviolet sky radiances. The measured radiances are obtained by a polarization-insensitive modified Brewer double spectrometer located at Goddard Space Flight Center, in Greenbelt, Maryland, USA. Results demonstrate that the Brewer angular (0-72° viewing zenith angle) and spectral (303-320 nm) measurements of sky radiance in the solar principal plane provide sufficient information to derive tropospheric ozone diurnal variability. In addition, the Brewer measurements provide stratospheric ozone vertical distributions at least twice per day near sunrise and sunset. Frequent measurements of total column ozone amounts from direct-sun observations are used as constraints in the retrieval. The vertical ozone profile resolution is shown in terms of averaging kernels to yield at least four points in the troposphere-low stratosphere, including good information in Umkehr layer 0 (0-5 km). The focus of this paper is on the derivation of stratospheric and tropospheric ozone profiles using both simulated and measured radiances. We briefly discuss the necessary modifications of the Brewer spectrometer that were used to eliminate instrumental polarization sensitivity so that accurate sky radiances can be obtained in the presence of strong Rayleigh scattering and aerosols. The results demonstrate that including a site-specific and time-dependent aerosol correction, based on Brewer direct-sun observations of aerosol optical thickness, is critical to minimize the sky radiance residuals as a function of observing angle in the optimal estimation inversion algorithm and improve the accuracy of the retrieved ozone profile.

  2. Retrieving Leaf Area Index and Foliage Profiles Through Voxelized 3-D Forest Reconstruction Using Terrestrial Full-Waveform and Dual-Wavelength Echidna Lidars

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Yang, X.; Li, Z.; Schaaf, C.; Wang, Z.; Yao, T.; Zhao, F.; Saenz, E.; Paynter, I.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Martel, J.; Howe, G.; Hewawasam, K.; Jupp, D.; Culvenor, D.; Newnham, G.; Lowell, J.

    2013-12-01

    Measuring and monitoring canopy biophysical parameters provide a baseline for carbon flux studies related to deforestation and disturbance in forest ecosystems. Terrestrial full-waveform lidar systems, such as the Echidna Validation Instrument (EVI) and its successor Dual-Wavelength Echidna Lidar (DWEL), offer rapid, accurate, and automated characterization of forest structure. In this study, we apply a methodology based on voxelized 3-D forest reconstructions built from EVI and DWEL scans to directly estimate two important biophysical parameters: Leaf Area Index (LAI) and foliage profile. Gap probability, apparent reflectance, and volume associated with the laser pulse footprint at the observed range are assigned to the foliage scattering events in the reconstructed point cloud. Leaf angle distribution is accommodated with a simple model based on gap probability with zenith angle as observed in individual scans of the stand. The DWEL instrument, which emits simultaneous laser pulses at 1064 nm and 1548 nm wavelengths, provides a better capability to separate trunk and branch hits from foliage hits due to water absorption by leaf cellular contents at 1548 nm band. We generate voxel datasets of foliage points using a classification methodology solely based on pulse shape for scans collected by EVI and with pulse shape and band ratio for scans collected by DWEL. We then compare the LAIs and foliage profiles retrieved from the voxel datasets of the two instruments at the same red fir site in Sierra National Forest, CA, with each other and with observations from airborne and field measurements. This study further tests the voxelization methodology in obtaining LAI and foliage profiles that are largely free of clumping effects and returns from woody materials in the canopy. These retrievals can provide a valuable 'ground-truth' validation data source for large-footprint spaceborne or airborne lidar systems retrievals.

  3. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  4. Retrieval of stratospheric ozone and nitrogen dioxide profiles from Odin Optical Spectrograph and Infrared Imager System (OSIRIS) limb-scattered sunlight measurements

    NASA Astrophysics Data System (ADS)

    Haley, Craig Stuart

    2009-12-01

    Key to understanding and predicting the effects of global environmental problems such as ozone depletion and global warming is a detailed understanding of the atmospheric processes, both dynamical and chemical. Essential to this understanding are accurate global data sets of atmospheric constituents with adequate temporal and spatial (vertical and horizontal) resolutions. For this purpose the Canadian satellite instrument OSIRIS (Optical Spectrograph and Infrared Imager System) was launched on the Odin satellite in 2001. OSIRIS is primarily designed to measure minor stratospheric constituents, including ozone (O3) and nitrogen dioxide (NO2), employing the novel limb-scattered sunlight technique, which can provide both good vertical resolution and near global coverage. This dissertation presents a method to retrieve stratospheric O 3 and NO2 from the OSIRIS limb-scatter observations. The retrieval method incorporates an a posteriori optimal estimator combined with an intermediate spectral analysis, specifically differential optical absorption spectroscopy (DOAS). A detailed description of the retrieval method is presented along with the results of a thorough error analysis and a geophysical validation exercise. It is shown that OSIRIS limb-scatter observations successfully produce accurate stratospheric O3 and NO2 number density profiles throughout the stratosphere, clearly demonstrating the strength of the limb-scatter technique. The OSIRIS observations provide an extremely useful data set that is of particular importance for studies of the chemistry of the middle atmosphere. The long OSIRIS record of stratospheric ozone and nitrogen dioxide may also prove useful for investigating variability and trends.

  5. Quantitative volatile metabolite profiling of common indoor fungi: relevancy for indoor air analysis.

    PubMed

    Schuchardt, Sven; Kruse, Hermann

    2009-08-01

    Microorganisms such as bacteria and molds produce an enormous variety of volatile metabolites. To determine whether typical microbial volatile metabolites can be used as indicator compounds for the detection of hidden mold in indoor environments, we examined 14 typical indoor fungal strains for their growth rates and their capability to produce volatile organic compounds (VOC) on standard clinical media and on agar medium made from building materials. Air samples from Headspace Chambers (HSC) were adsorbed daily on Tenax TA tubes and analyzed by thermal desorption gas chromatography and mass spectrometry. In parallel, metabolic activity was measured by determining oxygen demand, the microbial biomass was assessed by dry weighing. Profiling of the volatile metabolites showed that VOC production depended greatly on fungal strain, culture medium, biological activity, and time. The laboratory-derived maximum emission rates were extrapolated to approximate indoor air concentrations in a hypothetical mold-infested room. The extrapolated indoor air data suggest that most of the microbial-produced VOC concentrations were below the analytical detection limit for conventional indoor air analysis. Additionally, conducted indoor air analysis in mold homes confirmed these findings for the most part. The present findings raise doubts about the utility of indicator VOC for the detection of hidden mold growth in indoor environments.

  6. Asthmatics Exhibit Altered Oxylipin Profiles Compared to Healthy Individuals after Subway Air Exposure

    PubMed Central

    Nording, Malin; Klepczynska-Nyström, Anna; Sköld, Magnus; Haeggström, Jesper Z.; Grunewald, Johan; Svartengren, Magnus; Hammock, Bruce D.; Larsson, Britt-Marie; Eklund, Anders; Wheelock, Åsa M.; Wheelock, Craig E.

    2011-01-01

    Background Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM) and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications. Objectives This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air. Methods Sixty-four oxylipins representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS) of bronchoalveolar lavage (BAL)-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ). Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information. Results Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E2 (PGE2). Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change. Conclusions Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas. PMID:21897859

  7. Use of high-resolution measurements for the retrieval of temperature and gas-concentration profiles from outgoing infrared spectra in the presence of cirrus clouds.

    PubMed

    Huang, Xianglei L; Yung, Yuk L; Margolis, Jack S

    2003-04-20

    We explore ways in which high-spectral-resolution measurements can aid in the retrieval of atmospheric temperature and gas-concentration profiles from outgoing infrared spectra when optically thin cirrus clouds are present. Simulated outgoing spectra that contain cirrus are fitted with spectra that do not contain cirrus, and the residuals are examined. For those lines with weighting functions that peak near the same altitude as the thin cirrus, unique features are observed in the residuals. These unique features are highly sensitive to the resolution of the instrumental line shape. For thin cirrus these residual features are narrow (< or = 0.1 cm(-1)), so high spectral resolution is required for unambiguous observation. The magnitudes of these unique features are larger than the noise of modern instruments. The sensitivities of these features to cloud height and cloud optical depth are also discussed. Our sensitivity studies show that, when the errors in the estimation of temperature profiles are not large, the dominant contribution to the residuals is the misinterpretation of cirrus. An analysis that focuses on information content is also presented. An understanding of the magnitude of the effect and of its dependence on spectral resolution as well as on spectral region is important for retrieving spacecraft data and for the design of future infrared instruments for forecasting weather and monitoring greenhouse gases.

  8. Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS 1A) Earth limb spectral measurements, calibration, and atmospheric O3, HNO3, CFC-12, and CFC-11 profile retrieval

    NASA Astrophysics Data System (ADS)

    Bingham, G. E.; Zhou, D. K.; Bartschi, B. Y.; Anderson, G. P.; Smith, D. R.; Chetwynd, J. H.; Nadile, R. M.

    1997-02-01

    During the Space Transportation System 39 (STS 39) flight of April 28 to May 6, 1991, the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS 1A) measured spectral and spatial ("Earth limb scan") distributions of the atmospheric infrared (IR) emissions using a Michelson interferometer. The IR spectral radiant emissions from the greenhouse gases were collected at a shuttle altitude of 260 km in the 9-13 μm atmosphere infrared window. Before and after the flight, the response of CIRRIS 1A to the IR spectral emission sources was calibrated using absolute and spectral source types. The Fast Atmospheric Signature Code 3, which used the HITRAN92 database and predetermined temperature-pressure profiles from the National Meteorological Center, was used in an onion-peeling routine to retrieve gas concentrations from absolutely calibrated spectral data (moderate resolution ˜1.0 cm-1). Vertical profiles of O3, HNO3, CFC-12, and CFC-11 are presented. An error analysis is presented to show the quality of the measured spectral data and the accuracy of these retrieval results. The concentrations of CFC-11 (3.0×10-4 ppmv) and CFC-12 (4.9×10-4 ppmv) in the tropopause region are consistent with a global flux increment rate of about 5% yr-1. The observed concentrations of HNO3 are consistent with previous reports for a relatively clean stratosphere.

  9. Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system.

    PubMed

    Zhang, Xueli; Yan, Xing; Gao, Pingping; Wang, Linghua; Zhou, Zhihua; Zhao, Liping

    2005-01-01

    Sequence retrieval from single bands of polymerase chain reaction (PCR)-denaturing gel electrophoresis (DGE) profiles is an important but often difficult step for molecular diversity analysis of complex microbial communities such as activated sludge systems. We analyzed the temperature gradient gel electrophoresis (TGGE) profiles of PCR-amplified 16S rDNA fragments from an activated sludge sample of a coking wastewater treatment plant. Single bands were excised, and a clone library was constructed for each. Sequence heterogeneity in each single band was found to be significantly overestimated due to single-stranded DNA (ssDNA) contamination formed during the PCR amplification, since only 10-60% of library clones of each single TGGE band had identical migration behavior compared with the parent band. Three methods, digestion with mung bean nuclease, optimization of PCR amplification, and purification via denatured polyacrylamide gel electrophoresis (d-PAGE), were compared for their ability to minimize ssDNA contamination, with the last one being the most efficient. After using d-PAGE to minimize ssDNA to a nearly nondetectable level, 70-100% of library clones for each single TGGE band had identical migration compared with the parent band. Several sequences were found in each of six single bands, and this co-migration could be predicted with the Poland software. The predominant bacteria of the activated sludge were assessed via a combination of sequence retrieval from each single TGGE band and band intensity analysis. Only beta and alpha subclasses of the Proteobacteria were detected, 93.8% and 6.2%, respectively. Our work suggests that prior to constructing a clone library to retrieve the actual sequence diversity of a single DGE band, it is advisable to minimize ssDNA contamination to a nondetectable level.

  10. Retrieval of atmospheric-temperature and water-vapor profiles by use of combined satellite and ground-based infrared spectral-radiance measurements.

    PubMed

    Ho, Shu-Peng; Smith, William L; Huang, Hung-Lung

    2002-07-10

    A nonlinear sounding retrieval algorithm is used to produce vertical-temperature and water-vapor profiles from coincident observations taken by the airborne High-resolution Interferometer Sounder (HIS) and the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the SUbsonic Contrails and Clouds Effects Special Study (SUCCESS). Also, clear sky Geostationary Operational Environmental Satellite (GOES) and AERI radiance measurements, achieved on a daily real-time basis at the Department of Energy's Oklahoma CART (Cloud and Radiation Testbed) site, are used to demonstrate the current profiling capability by use of simultaneous geostationary satellite and ground-based remote sensing observations under clear-sky conditions. The discrepancy principle, a method to find the proper smoothing parameters from the minimum value between the normalized spectral residual norm and the a priori upper bound, is used to demonstrate the feasibility and effectiveness of on-line simultaneous tuning of the multiple weighting and smoothing parameters from the combined satellite/airborne and ground-based measurements for the temperature and water-vapor retrieval in this nonlinear-retrieval process. An objective method to determine the degrees of freedom (d.f.) of the observation signal is derived. The d.f. of the radiance signal for the combined GOES and AERI measurements is larger than that for either instrument alone; while the d.f. of the observation signal for the combined GOES and AERI measurements is larger than that for either instrument alone and of the combined GOES and AERI measurements. The use of simultaneous clear-sky AERI and GOES data now provides improved vertical temperature and moisture soundings on an hourly basis for use in the Atmospheric Radiation Measurement program [J. Appl. Meteorol. 37, 875 (1998)]. PMID:12141504

  11. Retrieval of atmospheric-temperature and water-vapor profiles by use of combined satellite and ground-based infrared spectral-radiance measurements.

    PubMed

    Ho, Shu-Peng; Smith, William L; Huang, Hung-Lung

    2002-07-10

    A nonlinear sounding retrieval algorithm is used to produce vertical-temperature and water-vapor profiles from coincident observations taken by the airborne High-resolution Interferometer Sounder (HIS) and the ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the SUbsonic Contrails and Clouds Effects Special Study (SUCCESS). Also, clear sky Geostationary Operational Environmental Satellite (GOES) and AERI radiance measurements, achieved on a daily real-time basis at the Department of Energy's Oklahoma CART (Cloud and Radiation Testbed) site, are used to demonstrate the current profiling capability by use of simultaneous geostationary satellite and ground-based remote sensing observations under clear-sky conditions. The discrepancy principle, a method to find the proper smoothing parameters from the minimum value between the normalized spectral residual norm and the a priori upper bound, is used to demonstrate the feasibility and effectiveness of on-line simultaneous tuning of the multiple weighting and smoothing parameters from the combined satellite/airborne and ground-based measurements for the temperature and water-vapor retrieval in this nonlinear-retrieval process. An objective method to determine the degrees of freedom (d.f.) of the observation signal is derived. The d.f. of the radiance signal for the combined GOES and AERI measurements is larger than that for either instrument alone; while the d.f. of the observation signal for the combined GOES and AERI measurements is larger than that for either instrument alone and of the combined GOES and AERI measurements. The use of simultaneous clear-sky AERI and GOES data now provides improved vertical temperature and moisture soundings on an hourly basis for use in the Atmospheric Radiation Measurement program [J. Appl. Meteorol. 37, 875 (1998)].

  12. The Influence of African Dust on Air Quality in the Caribbean Basin: An Integrated Analysis of Satellite Retrievals, Ground Observations, and Model Simulations

    NASA Astrophysics Data System (ADS)

    Yu, H.; Prospero, J. M.; Chin, M.; Randles, C. A.; da Silva, A.; Bian, H.

    2015-12-01

    Long-term surface measurements in several locations extending from northeastern coast of South America to Miami in Florida have shown that African dust arrives in the Greater Caribbean Basin throughout a year. This long-range transported dust frequently elevates the level of particulate matter (PM) above the WHO guideline for PM10, which raises a concern of possible adverse impact of African dust on human health in the region. There is also concern about how future climate change might affect dust transport and its influence on regional air quality. In this presentation we provide a comprehensive characterization of the influence of African dust on air quality in the Caribbean Basin via integrating the ground observations with satellite retrievals and model simulations. The ground observations are used to validate and evaluate satellite retrievals and model simulations of dust, while satellite measurements and model simulations are used to extend spatial coverage of the ground observations. An analysis of CALIPSO lidar measurements of three-dimensional distribution of aerosols over 2007-2014 yields altitude-resolved dust mass flux into the region. On a basis of 8-year average and integration over the latitude zone of 0°-30°N, a total of 76 Tg dust is imported to the air above the Greater Caribbean Basin, of which 34 Tg (or 45%) is within the lowest 1 km layer and most relevant to air quality concern. The seasonal and interannual variations of the dust import are well correlated with ground observations of dust in Cayenne, Barbados, Puerto Rico, and Miami. We will also show comparisons of the size-resolved dust amount from both NASA GEOS-5 aerosol simulation and MERRA-2 aerosol reanalysis (i.e., column aerosol loading being constrained by satellite measurements of radiance at the top of atmosphere) with the ground observations and satellite measurement.

  13. An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Zeszotek, Michelle

    2004-01-01

    A series of tests was performed to determine the internal temperature profile in a compliant bump-type foil journal air bearing operating at room temperature under various speeds and load conditions. The temperature profile was collected by instrumenting a foil bearing with nine, type K thermocouples arranged in the center and along the bearing s edges in order to measure local temperatures and estimate thermal gradients in the axial and circumferential directions. To facilitate the measurement of maximum temperatures from viscous shearing in the air film, the thermocouples were tack welded to the backside of the bumps that were in direct contact with the top foil. The mating journal was coated with a high temperature solid lubricant that, together with the bearing, underwent high temperature start-stop cycles to produce a smooth, steady-state run-in surface. Tests were conducted at speeds from 20 to 50 krpm and loads ranging from 9 to 222 N. The results indicate that, over the conditions tested, both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. The temperature distribution was nearly symmetric about the bearing center at 20 and 30 krpm but became slightly skewed toward one side at 40 and 50 krpm. Surprisingly, the maximum temperatures did not occur at the bearing edge where the minimum film thickness is expected but rather in the middle of the bearing where analytical investigations have predicted the air film to be much thicker. Thermal gradients were common during testing and were strongest in the axial direction from the middle of the bearing to its edges, reaching 3.78 8C/mm. The temperature profile indicated the circumferential thermal gradients were negligible.

  14. A Framework for Identifying Distinct Multipollutant Profiles in Air Pollution Data

    PubMed Central

    Austin, Elena; Coull, Brent; Thomas, Dylan; Koutrakis, Petros

    2013-01-01

    BACKGROUND The importance of describing, understanding and regulating multi-pollutant mixtures has been highlighted by the US National Academy of Science and the Environmental Protection Agency. Furthering our understanding of the health effects associated with exposure to mixtures of pollutants will lead to the development of new multi-pollutant National Air Quality Standards. OBJECTIVES Introduce a framework within which diagnostic methods that are based on our understanding of air pollution mixtures are used to validate the distinct air pollutant mixtures identified using cluster analysis. METHODS: S ix years of daily gaseous and particulate air pollution data collected in Boston, MA were classified solely on their concentration profiles. Classification was performed using k-means partitioning and hierarchical clustering. Diagnostic strategies were developed to identify the most optimal clustering. RESULTS The optimal solution used k-means analysis and contained five distinct groups of days. Pollutant concentrations and elemental ratios were computed in order to characterize the differences between clusters. Time-series regression confirmed that the groups differed in their chemical compositions. The mean values of meteorological parameters were estimated for each group and air mass origin between clusters was examined using back-trajectory analysis. This allowed us to link the distinct physico-chemical characteristics of each cluster to characteristic weather patterns and show that different clusters were associated with distinct air mass origins. CONCLUSIONS This analysis yielded a solution that was robust to outlier points and interpretable based on chemical, physical and meteorological characteristics. This novel method provides an exciting tool with which to identify and further investigate multi-pollutant mixtures and link them directly to health effects studies. PMID:22584082

  15. Self-focusing of profiled ultrashort-wavelength laser beams in air

    SciTech Connect

    Geints, Yu. E.; Zemlyanov, A. A.; Izyumov, N. A.; Ionin, A. A.; Kudryashov, S. I.; Seleznev, L. V. Sinitsyn, D. V.; Sunchugasheva, E. S.

    2013-02-15

    We report on the results of laboratory experiments of filamentation of sharply focused gigawatt femtosecond laser radiation passed through various aperture diaphragms in air. For the multiple filamentation regime, the dependences of the length and spatial structure of the filamentation region on the initial beam profile are established. It is found that light beam profiling by a diaphragm leads in some cases to a displacement of the filamentation region and to repeated self-focusing of radiation behind the linear focal waist. In the beam of the same power in the absence of a diaphragm and in the regime of the formation of a single filament, this effect terminates in front of the geometrical focus. The experimental results are illustrated by numerical simulation data.

  16. Self-focusing of profiled ultrashort-wavelength laser beams in air

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Zemlyanov, A. A.; Izyumov, N. A.; Ionin, A. A.; Kudryashov, S. I.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.

    2013-02-01

    We report on the results of laboratory experiments of filamentation of sharply focused gigawatt femtosecond laser radiation passed through various aperture diaphragms in air. For the multiple filamentation regime, the dependences of the length and spatial structure of the filamentation region on the initial beam profile are established. It is found that light beam profiling by a diaphragm leads in some cases to a displacement of the filamentation region and to repeated self-focusing of radiation behind the linear focal waist. In the beam of the same power in the absence of a diaphragm and in the regime of the formation of a single filament, this effect terminates in front of the geometrical focus. The experimental results are illustrated by numerical simulation data.

  17. Comparison of Air Fluorescence and Ionization Measurements of E.M. Shower Depth Profiles: Test of a UHECR Detector Technique

    SciTech Connect

    Belz, J.; Cao, Z.; Huentemeyer, P.; Jui, C.C.H.; Martens, K.; Matthews, J.; Maestas, M.; Smith, J.; Sokolsky, P.; Springer, R.W.; Thomas, J.; Thomas, S.; Chen, P.; Field, Clive; Hast, C.; Iverson, R.; Ng, J.S.T.; Odian, A.; Reil, K.; Vincke, H.; Walz, D.; /SLAC /Montana U. /Rutgers U., Piscataway /Taiwan, Natl. Taiwan U.

    2005-10-07

    Measurements are reported on the fluorescence of air as a function of depth in electromagnetic showers initiated by bunches of 28.5 GeV electrons. The light yield is compared with the expected and observed depth profiles of ionization in the showers. It validates the use of atmospheric fluorescence profiles in measuring ultra high energy cosmic rays.

  18. Field observations of turbulent dissipation rate profiles immediately below the air-water interface

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Liao, Qian

    2016-06-01

    Near surface profiles of turbulence immediately below the air-water interface were measured with a free-floating Particle Image Velocimetry (PIV) system on Lake Michigan. The surface-following configuration allowed the system to measure the statistics of the aqueous-side turbulence in the topmost layer immediately below the water surface (z≈0˜15 cm, z points downward with 0 at the interface). Profiles of turbulent dissipation rate (ɛ) were investigated under a variety of wind and wave conditions. Various methods were applied to estimate the dissipation rate. Results suggest that these methods yield consistent dissipation rate profiles with reasonable scattering. In general, the dissipation rate decreases from the water surface following a power law relation in the top layer, ɛ˜z-0.7, i.e., the slope of the decrease was lower than that predicted by the wall turbulence theory, and the dissipation was considerably higher in the top layer for cases with higher wave ages. The measured dissipation rate profiles collapse when they were normalized with the wave speed, wave height, water-side friction velocity, and the wave age. This scaling suggests that the enhanced turbulence may be attributed to the additional source of turbulent kinetic energy (TKE) at the "skin layer" (likely due to micro-breaking), and its downward transport in the water column.

  19. A statistical inference approach for the retrieval of the atmospheric ozone profile from simulated satellite measurements of solar backscattered ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Bonavito, N. L.; Gordon, C. L.; Inguva, R.; Serafino, G. N.; Barnes, R. A.

    1994-01-01

    NASA's Mission to Planet Earth (MTPE) will address important interdisciplinary and environmental issues such as global warming, ozone depletion, deforestation, acid rain, and the like with its long term satellite observations of the Earth and with its comprehensive Data and Information System. Extensive sets of satellite observations supporting MTPE will be provided by the Earth Observing System (EOS), while more specific process related observations will be provided by smaller Earth Probes. MTPE will use data from ground and airborne scientific investigations to supplement and validate the global observations obtained from satellite imagery, while the EOS satellites will support interdisciplinary research and model development. This is important for understanding the processes that control the global environment and for improving the prediction of events. In this paper we illustrate the potential for powerful artificial intelligence (AI) techniques when used in the analysis of the formidable problems that exist in the NASA Earth Science programs and of those to be encountered in the future MTPE and EOS programs. These techniques, based on the logical and probabilistic reasoning aspects of plausible inference, strongly emphasize the synergetic relation between data and information. As such, they are ideally suited for the analysis of the massive data streams to be provided by both MTPE and EOS. To demonstrate this, we address both the satellite imagery and model enhancement issues for the problem of ozone profile retrieval through a method based on plausible scientific inferencing. Since in the retrieval problem, the atmospheric ozone profile that is consistent with a given set of measured radiances may not be unique, an optimum statistical method is used to estimate a 'best' profile solution from the radiances and from additional a priori information.

  20. AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.; Pagano, Thomas S.; Aumann, Hartmut H.; Atlas, Robert; Barnet, Christopher; Blaisdell, John; Chen, Luke; Divakarla, Murty; Fetzer, Eric J.; Goldberg, Mitch; Gautier, Catherine; Granger, Stephanie; Hannon, Scott; Irion, Fredrick W; Kakar, Ramesh; Kalnay, Eugenia; Lambrigtsen, Bjorn H.; Lee, Sung-Yung; Marshall, John Le; McMillan, W. Wallace; McMillin, Larry; Olsen, Edward T.; Revercomb, Henry; Rosenkranz, Philip; Smith, William L.

    2006-01-01

    This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.

  1. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  2. Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Esteban-Fermandez, D.

    2010-01-01

    A report discusses ASAP (Air-sea Spray Airborne Profiler), a dual-wavelength radar profiler that provides measurement information about the droplet size distribution (DSD) of sea-spray, which can be used to estimate heat and moisture fluxes for hurricane research. Researchers have recently determined that sea spray can have a large effect on the magnitude and distribution of the air-sea energy flux at hurricane -force wind speeds. To obtain information about the DSD, two parameters of the DSD are required; for example, overall DSD amplitude and DSD mean diameter. This requires two measurements. Two frequencies are used, with a large enough separation that the differential frequency provides size information. One frequency is 94 GHz; the other is 220 GHz. These correspond to the Rayleigh and Mie regions. Above a surface wind speed of 10 m/ s, production of sea spray grows exponentially. Both the number of large droplets and the altitude they reach are a function of the surface wind speed.

  3. Piloted simulation of an air-ground profile negotiation process in a time-based Air Traffic Control environment

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1993-01-01

    Historically, development of airborne flight management systems (FMS) and ground-based air traffic control (ATC) systems has tended to focus on different objectives with little consideration for operational integration. A joint program, between NASA's Ames Research Center (Ames) and Langley Research Center (Langley), is underway to investigate the issues of, and develop systems for, the integration of ATC and airborne automation systems. A simulation study was conducted to evaluate a profile negotiation process (PNP) between the Center/TRACON Automation System (CTAS) and an aircraft equipped with a four-dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution which satisfies the separation requirements of ATC while remaining as close as possible to the aircraft's preferred trajectory. Results from the experiment indicate the potential for successful incorporation of aircraft-preferred arrival trajectories in the CTAS automation environment. Fuel savings on the order of 2 percent to 8 percent, compared to fuel required for the baseline CTAS arrival speed strategy, were achieved in the test scenarios. The data link procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. In particular, additional pilot control and understanding of the proposed aircraft-preferred trajectory, and a simplified clearance procedure were cited as necessary for operational implementation of the concept.

  4. Retrieval of Cloud Ice Water Content Profiles from Advanced Microwave Sounding Unit-B Brightness Temperatures Near the Atmospheric Radiation Measurement Southern Great Plains Site

    SciTech Connect

    Seo, E-K.; Liu, G.

    2005-03-18

    One of the Atmospheric Radiation Measurement (ARM) Program important goals is to develop and test radiation and cloud parameterizations of climate models using single column modeling (SCMs) (Randall et al. 1996). As forcing terms, SCMs need advection tendency of cloud condensates besides the tendencies of temperature, moisture and momentum. To compute the tendency terms of cloud condensates, 3D distribution of cloud condensates over a scale much larger than the climate model's grid scale is needed. Since they can cover a large area within a short time period, satellite measurements are useful utilities to provide advection tendency of cloud condensates for SCMs. However, so far, most satellite retrieval algorithms only retrieve vertically integrated quantities, for example, in the case of cloud ice, ice water path (IWP). To fulfill the requirement of 3D ice water content field for computing ice water advection, in this study, we develop an ice water content profile retrieval algorithm by combining the vertical distribution characteristics obtained from long-term surface radar observations and satellite high-frequency microwave observations that cover a large area. The algorithm is based on the Bayesian theorem using a priori database derived from analyzing cloud radar observations at the Southern Great Plains (SGP) site. The end product of the algorithm is a 3D ice water content covering 10{sup o} x 10{sup o} surrounding the SGP site during the passage of the satellite. This 3D ice water content, together with wind field analysis, can be used to compute the advection tendency of ice water for SCMs.

  5. Study on the impact of industrial flue gases on the PCDD/Fs congener profile in ambient air.

    PubMed

    Węgiel, Małgorzata; Chrząszcz, Ryszard; Maślanka, Anna; Grochowalski, Adam

    2014-11-01

    The aim of this study was to examine the impact of emissions from combustion processes from sinter, medical, waste and sewage waste incineration plants on the PCDD and PCDF congener profile in ambient air in Krakow (city in Poland). The subject matter of the study were air samples from the outskirts and the city center. It was found that in flue gases from industrial sources and in ambient air the share of PCDF congeners in relation to the total content of PCDD/Fs was higher than the share of PCDDs. However, in air samples collected in the city center, this relationship was reversed. The PCDD congener profiles in flue gases and in air samples are comparable. However, in the samples from the city centre, the share of OCDD is significantly higher and amounts to about 80%. The PCDF congener shares show higher spatial diversity, although in all the analyzed air samples, ODCF and 1,2,3,4,6,7,8 HpCDF dominated. Analyzing the share of congeners in regard to the sum of PCDDs/Fs a mutual resemblance of air from the suburbs, exhaust gases from the sinter ore and sewage sludge incinerator plant was observed. The study showed a similarity between the profile of congeners in air from the city centre and exhaust gases from the medical waste incinerator.

  6. The Retrieval of Ozone Profiles from Limb Scatter Measurements: Results from the Shuttle Ozone Limb Sounding Experiment

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Janz, Scott J.; Hilsenrath, Ernest; Brown, Tammy L.; Flittner, David E.; Heath, Donald F.

    1999-01-01

    Two instruments were flown on shuttle flight STS-87 to test a new technique for inferring the ozone vertical profile using measurements of scattered sunlight from the Earth's limb. The instruments were an ultraviolet imaging spectrometer designed to measure ozone between 30 and 50 km, and a multi-filter imaging photometer that uses 600 nm radiances to measure ozone between 15 km and 35 km. Two orbits of limb data were obtained on December 2, 1997. For the scans analyzed the ozone profile was measured from 15 km to 50 km with approximately 3 km vertical resolution. Comparisons with a profile from an ozonesonde launched from Ascension Island showed agreement mostly within +/- 5%. The tropopause at 15 km was clearly detected.

  7. Translational Temperature Profiles in Atmospheric Air Microdischarges by Ultraviolet Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Adams, Steven; Caplinger, James; Hensley, Amber; Tolson, Allen

    2014-03-01

    Spatially resolved temperature measurements within a microdischarge in atmospheric pressure air have been conducted using Rayleigh scattering of a pulsed ultraviolet laser. The scatter image intensity along the laser beam axis is proportional to the background gas target density and thus, according to the ideal gas law, is inversely proportional to gas translational temperature. By measuring the scatter image with and without a discharge, the temperature was determined in 1-dimension along the laser beam passing radially through the discharge. The 1-dimensional scattering intensity profiles were then used to generate 2-dimensional cross-sectional slices of temperature by transitioning the height of the laser beam. The cross-sectional temperature profiles exhibited a high degree of cylindrical symmetry with the radial width of the high temperature region expanding with increasing discharge current. Peak temperatures determined by Rayleigh scattering for each current were compared to temperatures derived from standard optical emission spectral analyses of N2(C-B) bands, where the calculated rotational temperatures from emission were in reasonable agreement with the Rayleigh translational temperature profiles.

  8. Retrieval of carbon dioxide vertical profiles from solar occultation observations and associated error budgets for ACE-FTS and CASS-FTS

    NASA Astrophysics Data System (ADS)

    Sioris, C. E.; Boone, C. D.; Nassar, R.; Sutton, K. J.; Gordon, I. E.; Walker, K. A.; Bernath, P. F.

    2014-07-01

    An algorithm is developed to retrieve the vertical profile of carbon dioxide in the 5 to 25 km altitude range using mid-infrared solar occultation spectra from the main instrument of the ACE (Atmospheric Chemistry Experiment) mission, namely the Fourier transform spectrometer (FTS). The main challenge is to find an atmospheric phenomenon which can be used for accurate tangent height determination in the lower atmosphere, where the tangent heights (THs) calculated from geometric and timing information are not of sufficient accuracy. Error budgets for the retrieval of CO2 from ACE-FTS and the FTS on a potential follow-on mission named CASS (Chemical and Aerosol Sounding Satellite) are calculated and contrasted. Retrieved THs have typical biases of 60 m relative to those retrieved using the ACE version 3.x software after revisiting the temperature dependence of the N2 CIA (collision-induced absorption) laboratory measurements and accounting for sulfate aerosol extinction. After correcting for the known residual high bias of ACE version 3.x THs expected from CO2 spectroscopic/isotopic inconsistencies, the remaining bias for tangent heights determined with the N2 CIA is -20 m. CO2 in the 5-13 km range in the 2009-2011 time frame is validated against aircraft measurements from CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container), CONTRAIL (Comprehensive Observation Network for Trace gases by Airline), and HIPPO (HIAPER Pole-to-Pole Observations), yielding typical biases of -1.7 ppm in the 5-13 km range. The standard error of these biases in this vertical range is 0.4 ppm. The multi-year ACE-FTS data set is valuable in determining the seasonal variation of the latitudinal gradient which arises from the strong seasonal cycle in the Northern Hemisphere troposphere. The annual growth of CO2 in this time frame is determined to be 2.6 ± 0.4 ppm year-1, in agreement with the currently accepted global growth rate based on

  9. Using Voxelized Point-Cloud Forest Reconstructions from Ground-Based Full-Waveform Lidar to Retrieve Leaf Area Index and Foliage Profiles

    NASA Astrophysics Data System (ADS)

    Yang, X.; Strahler, A. H.; Schaaf, C.; Li, Z.; Yao, T.; Zhao, F.; Wang, Z.; Woodcock, C. E.; Jupp, D.; Culvenor, D.; Newnham, G.; Lovell, J.

    2012-12-01

    This study presents a new methodology to directly retrieve two important biophysical parameters, Leaf Area Index (LAI; m^2) and Foliage Area Volume Density (FAVD; m^2 LAI/m^3 volume) profiles through the voxelization of point-cloud forest reconstructions from multiple ground-based full-waveform Echidna® lidar scans. Previous studies have verified that estimates of LAI and FAVD made from single EVI scans, using azimuth-averaged gap probability with zenith angle (Jupp et al. 2009; Zhao et al. 2011), agree well with those of traditional hemispherical photos and LAI-2000 measurements. Strahler et al. (2008) and Yang et al. (2012) established a paradigm for the 3-D reconstruction of forest stands using a full-waveform, ground-based, scanning lidar by merging point clouds constructed from overlapping EVI scans, thereby allowing virtual direct representation of forest biomass. Classification procedures (Yang et al. 2012), based on the shape of the laser pulse returned to the instrument, can separate trunk from foliage scattering events. Volumetric datasets are produced by properly assigning attributes, such as gap probability, apparent reflectance, and volume associated with the laser pulse footprint at the observed range, to the foliage scattering events in the reconstructed point cloud. Leaf angle distribution is accommodated with a simple model based on gap probability with zenith angle as observed in individual scans of the stand. Clumping occurring at scales coarser than elemental volumes associated with scattering events is observed directly and therefore does not require parametric correction. For validation, comparisons are made between LAI and FAVD profiles retrieved directly from the voxelized 3-D forest reconstructions and those observed from airborne and field measurements. The voxelized 3-D forest reconstructions derived from EVI point clouds provide a pathway to estimate "ground truth" FAVD, LAI, and above-ground biomass without destructive sampling. These

  10. Use of the maximum entropy method to retrieve the vertical atmospheric ozone profile and predict atmospheric ozone content

    NASA Technical Reports Server (NTRS)

    Turner, B. Curtis

    1992-01-01

    A method is developed for prediction of ozone levels in planetary atmospheres. This method is formulated in terms of error covariance matrices, and is associated with both direct measurements, a priori first guess profiles, and a weighting function matrix. This is described by the following linearized equation: y = A(matrix) x X + eta, where A is the weighting matrix and eta is noise. The problems to this approach are: (1) the A matrix is near singularity; (2) the number of unknowns in the profile exceeds the number of data points, therefore, the solution may not be unique; and (3) even if a unique solution exists, eta may cause the solution to be ill conditioned.

  11. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  12. Evaluation of the impact of AIRS profiles on prediction of Indian summer monsoon using WRF variational data assimilation system

    NASA Astrophysics Data System (ADS)

    Raju, Attada; Parekh, Anant; Kumar, Prashant; Gnanaseelan, C.

    2015-08-01

    This study investigates the impact of temperature and moisture profiles from Atmospheric Infrared Sounder (AIRS) on the prediction of the Indian summer monsoon, using the variational data assimilation system annexed to the Weather Research and Forecasting model. In this study, three numerical experiments are carried out. The first is the control and includes no assimilation; in the second, named Conv, assimilation of conventional Global Telecommunication System data is performed. The third one, named ConvAIRS, is identical to the Conv except that it also includes assimilation of AIRS profiles. The initial fields of tropospheric temperature and water vapor mixing ratio showed significant improvement over the model domain. Assimilation of AIRS profiles has significant impact on predicting the seasonal mean monsoon characteristics such as tropospheric temperature, low-level moisture distribution, easterly wind shear, and precipitation. The vertical structure of the root-mean-square error is substantially affected by the assimilation of AIRS profiles, with smaller errors in temperature, humidity, and wind magnitude. The consequent improved representation of moisture convergence in the boundary layer (deep convection as well) causes an increase in precipitation forecast skill. The fact that the monsoonal circulation is better captured, thanks to an improved representation of thermal gradients, which in turn leads to more realistic moisture transport, is particularly noteworthy. Several previous data impact studies with AIRS and other sensors have focused on the short or medium range of the forecast. The demonstrated improvement in all the predicted fields associated with the Indian summer monsoon, consequent to the month long assimilation of AIRS profiles, is an innovative finding with large implications to the operational seasonal forecasting capabilities over the Indian subcontinent.

  13. Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model

    NASA Technical Reports Server (NTRS)

    Molod, Andrea

    2012-01-01

    Atmospheric general circulation model (AGCM) cloud parameterizations generally include an assumption about the subgrid-scale probability distribution function (PDF) of total water and its vertical profile. In the present study, the Atmospheric Infrared Sounder (AIRS) monthly-mean cloud amount and relative humidity fields are used to compute a proxy for the second moment of an AGCM total water PDF called the RH01 diagnostic, which is the AIRS mean relative humidity for cloud fractions of 0.1 or less. The dependence of the second moment on horizontal grid resolution is analyzed using results from a high-resolution global model simulation.The AIRS-derived RH01 diagnostic is generally larger near the surface than aloft, indicating a narrower PDF near the surface, and varies with the type of underlying surface. High-resolution model results show that the vertical structure of profiles of the AGCM PDF second moment is unchanged as the grid resolution changes from 200 to 100 to 50 km, and that the second-moment profiles shift toward higher values with decreasing grid spacing.Several Goddard Earth Observing System, version 5 (GEOS-5), AGCM simulations were performed with several choices for the profile of the PDF second moment. The resulting cloud and relative humidity fields were shown to be quite sensitive to the prescribed profile, and the use of a profile based on the AIRS-derived proxy results in improvements relative to observational estimates. The AIRS-guided total water PDF profiles, including their dependence on underlying surface type and on horizontal resolution, have been implemented in the version of the GEOS-5 AGCM used for publicly released simulations.

  14. Mixture model-based atmospheric air mass classification: a probabilistic view of thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Pernin, Jérôme; Vrac, Mathieu; Crevoisier, Cyril; Chédin, Alain

    2016-10-01

    Air mass classification has become an important area in synoptic climatology, simplifying the complexity of the atmosphere by dividing the atmosphere into discrete similar thermodynamic patterns. However, the constant growth of atmospheric databases in both size and complexity implies the need to develop new adaptive classifications. Here, we propose a robust unsupervised and supervised classification methodology of a large thermodynamic dataset, on a global scale and over several years, into discrete air mass groups homogeneous in both temperature and humidity that also provides underlying probability laws. Temperature and humidity at different pressure levels are aggregated into a set of cumulative distribution function (CDF) values instead of classical ones. The method is based on a Gaussian mixture model and uses the expectation-maximization (EM) algorithm to estimate the parameters of the mixture. Spatially gridded thermodynamic profiles come from ECMWF reanalyses spanning the period 2000-2009. Different aspects are investigated, such as the sensitivity of the classification process to both temporal and spatial samplings of the training dataset. Comparisons of the classifications made either by the EM algorithm or by the widely used k-means algorithm show that the former can be viewed as a generalization of the latter. Moreover, the EM algorithm delivers, for each observation, the probabilities of belonging to each class, as well as the associated uncertainty. Finally, a decision tree is proposed as a tool for interpreting the different classes, highlighting the relative importance of temperature and humidity in the classification process.

  15. Wintertime vertical profiles of air pollutants over a suburban area in central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Lung; Tsuang, Ben-Jei; Tu, Chia-Ying; Cheng, Wan-Li; Lin, Min-Der

    Using a tethered balloon, vertical air pollutant concentrations (CO, SO 2, NO, NO 2 and O 3) were measured in central Taiwan during field campaigns in the winters of 1999 and 2001. Modified novel lightweight sampling equipment was used to take samples at heights of 1, 13, 100, 300, 500 and 1200 m. A balloon was launched every 3 h and in total there were 133 flights during the three campaigns. The data were collected in order to examine the temporal and vertical variations of pollutants. The average daytime profiles showed greater vertical convection mixing in unstable circumstances. The characteristics of shapes and time behavior of profiles are reported. Except for a slight decrease near the ground and strong photochemical reactions at clear daytime, titration of O 3 by NO was observed at all altitudes in the atmospheric boundary layer during these campaigns. Ground level ozone may be contributed by downward mixing from above. A fair correlation appeared between the maximum ozone concentration at the surface during the daytime ( C¯0 Max) and average ozone concentration above the NBL ( C¯a NBL). A linear regression equation is shown as C¯0 Max=29+0.91 C¯a NBL.

  16. Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2003-01-01

    The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.

  17. NOPE: a new inversion method for the total attenuation profile retrieval in atmospheric tomography from space-borne experiments

    NASA Astrophysics Data System (ADS)

    Fussen, Didier

    1995-12-01

    The tomography of the Earth's atmosphere by the solar occultation method leads to a highly non-linear inverse problem if the full solar disc is used as the light source. Well known heuristic methods like Chahine's algorithm or onion peeling fail to solve the inversion. We present a new method referred to as NOPE (for natural orthogonal polynomial expansion) that addresses this class of inverse problems by focusing on the morphological content of the unknown profile and allowing also a fine tuning of the a priori information.

  18. Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data

    NASA Astrophysics Data System (ADS)

    Kouadio, Louis; Duveiller, Grégory; Djaby, Bakary; El Jarroudi, Moussa; Defourny, Pierre; Tychon, Bernard

    2012-08-01

    Earth observation data, owing to their synoptic, timely and repetitive coverage, have been recognized as a valuable tool for crop monitoring at different levels. At the field level, the close correlation between green leaf area (GLA) during maturation and grain yield in wheat revealed that the onset and rate of senescence appeared to be important factors for determining wheat grain yield. Our study sought to explore a simple approach for wheat yield forecasting at the regional level, based on metrics derived from the senescence phase of the green area index (GAI) retrieved from remote sensing data. This study took advantage of recent methodological improvements in which imagery with high revisit frequency but coarse spatial resolution can be exploited to derive crop-specific GAI time series by selecting pixels whose ground-projected instantaneous field of view is dominated by the target crop: winter wheat. A logistic function was used to characterize the GAI senescence phase and derive the metrics of this phase. Four regression-based models involving these metrics (i.e., the maximum GAI value, the senescence rate and the thermal time taken to reach 50% of the green surface in the senescent phase) were related to official wheat yield data. The performances of such models at this regional scale showed that final yield could be estimated with an RMSE of 0.57 ton ha-1, representing about 7% as relative RMSE. Such an approach may be considered as a first yield estimate that could be performed in order to provide better integrated yield assessments in operational systems.

  19. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    NASA Astrophysics Data System (ADS)

    Antón, M.; López, M.; Costa, M. J.; Serrano, A.; Bortoli, D.; Bañón, M.; Vilaplana, J. M.; Silva, A. M.

    2009-08-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75°. In addition, the relative differences remain lower than 2% at 85°. These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7±1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80°. Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes.

  20. Water-Air Spray Cooling of Extruded Profiles: Process Integrated Heat Treatment of the Alloy EN AW-6082

    NASA Astrophysics Data System (ADS)

    Nowak, M.; Golovko, O.; Nürnberger, F.; Frolov, I.; Schaper, M.

    2013-09-01

    Quenching by spray cooling in the press line is a promising way to harden Al-Mg-Si alloys with regard to reducing profile distortion. For alloys such as EN AW-6082, high cooling rates are required. A device for spray cooling by means of water and compressed air was integrated into a 10 MN horizontal, hydraulic, short-stroke extrusion press. Various spray parameters were investigated. By using 32 water-air nozzles having a total water deposition rate of about 15 L/min and extruding with a profile velocity of 2.5 m/min, high mechanical properties were imparted to 30 mm diameter extruded rods. This arrangement ensures the extruded alloy is cooled to almost room temperature. Comparable properties can be achieved by water quenching, although the water consumption will be tenfold higher. The distribution of water deposition density on the profiles' surfaces was determined. It was shown that an adjustment of the water-air pressure ratio allows the final temperature of the profiles to be controlled over a wide range. Minimization of temperature gradients in the cross section of complex profiles allows profile distortions to be reduced.

  1. Assessing Radiometric Calibration, Retrieved Atmospheric Temperature Profiles Quality and Radiative Transfer Model Accuracy Using GPS-RO temperature Profiles in the Summer Stratospheric Hemisphere

    NASA Astrophysics Data System (ADS)

    Fishbein, E.; Ao, C. O.; Lambrigtsen, B.; Lee, S.; Mannucci, A.

    2012-12-01

    The summer stratospheric hemisphere is a uniquely simply environment in which to study the performance of satellite-based atmospheric sounders. The stratosphere is primarily in radiative balance with high pressure over the pole and weak axisymmetric easterly flow persisting for months. Temperature is highly correlated zonally and intercomparisons between observations have precision better than 1 K over zonal distances greater than 1,000 km. Therefore good sampling statistics are possible with infrequent observations because mismatch error grows slowly with increasing coincidence time and distance. In this presentation we compare ATMS and CrIS radiances in stratospheric temperature sounding channels against calculated radiances from GPS radio occultation (GPS-RO) profiles and numerical weather forecast (NWF) models. The GPS-RO comparisons are generally good in the mid-stratosphere, while the NWF intercomparisons are generally poorer, limited by radiation modeling of the stratosphere in the NWF. We have analyzed dependence of the radiance residuals on cloud contamination in tropospheric channels, because clouds are not expected to influence stratosphere-sensing IR radiances and this is a simple test on the CrIS instrument performance. ATMS brightness temperatures are sorted by latitude and scan angle and compared with near coincident GPS-RO temperature profiles to separate errors in radiative transfer modeling from antenna pattern and spectroscopy. We demonstrate the value of stratospheric observations for characterizing instrument performance, which can than be applied to climatically more interesting regimes.

  2. Idea Retrieval.

    ERIC Educational Resources Information Center

    Shively, Daniel

    1988-01-01

    Discusses the need to retrieve ideas in addition to content retrieval by such means as classification, subject headings, and keywords. Three models for idea retrieval are described, and a new model is proposed which combines selection, a controlled vocabulary, and logical structure. (seven references) (CLB)

  3. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-10-01

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric 137Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12-23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric 137Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models.

  4. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations.

    PubMed

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-10-22

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric (137)Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12-23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric (137)Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models.

  5. Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Meneghini, Robert

    1994-01-01

    This paper briefly reviews several single-frequency rain profiling methods for an airborne or spaceborne radar. The authors describe the different methods from a unified point of view starting from the basic differential equation. This facilitates the comparisons between the methods and also provides a better understanding of the physical and mathematical basis of the methods. The application of several methods to airborne radar data taken during the Convective and Precipitation/Electrification Experiment is shown. Finally, the authors consider a hybrid method that provides a smooth transition between the Hitschfeld-Bordan method, which performs well at low attenuations, and the surface reference method, for which the relative error decreases with increasing path attenuation.

  6. Description and validation of a limb scatter retrieval method for Odin/OSIRIS

    NASA Astrophysics Data System (ADS)

    Tukiainen, S.; Hassinen, S.; SeppäLä, A.; Auvinen, H.; KyröLä, E.; Tamminen, J.; Haley, C. S.; Lloyd, N.; Verronen, P. T.

    2008-02-01

    In this paper we present the Modified Onion Peeling (MOP) inversion method, which is for the first time used to retrieve vertical profiles of stratospheric trace gases from Odin/OSIRIS limb scatter measurements. Since the original publication of the method in 2002, the method has undergone major modifications discussed here. The MOP method now uses a spectral microwindow for the NO2 retrieval, instead of the wide UV-visible band used for the ozone, air, and aerosol retrievals. We give a brief description of the algorithm itself and show its performance with both simulated and real data. Retrieved ozone and NO2 profiles from the OSIRIS measurements were compared with data from the GOMOS and HALOE instruments. No more than 5% difference was found between OSIRIS daytime and GOMOS nighttime ozone profiles between 21 and 45 km. The difference between OSIRIS and HALOE sunset NO2 mixing ratio profiles was at most 25% between 20 and 40 km. The neutral air density was compared with the ECMWF analyzed data and around 5% difference was found at altitudes from 20 to 55 km. However, OSIRIS observations yield as much as 80% greater aerosols number density than GOMOS observations between 15 and 35 km. These validation results indicate that the quality of MOP ozone, NO2, and neutral air is good. The new version of the method introduced here is also easily expanded to retrieve additional species of interest.

  7. Characterization of air profiles impeded by plant canopies for a variable-rate air-assisted sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The preferential design for variable-rate orchard and nursery sprayers relies on tree structure to control liquid and air flow rates. Demand for this advanced feature has been incremental as the public demand on reduction of pesticide use. A variable-rate, air assisted, five-port sprayer had been in...

  8. Retrieval of effective leaf area index (LAIe) and leaf area density (LAD) profile at individual tree level using high density multi-return airborne LiDAR

    NASA Astrophysics Data System (ADS)

    Lin, Yi; West, Geoff

    2016-08-01

    As an important canopy structure indicator, leaf area index (LAI) proved to be of considerable implications for forest ecosystem and ecological studies, and efficient techniques for accurate LAI acquisitions have long been highlighted. Airborne light detection and ranging (LiDAR), often termed as airborne laser scanning (ALS), once was extensively investigated for this task but showed limited performance due to its low sampling density. Now, ALS systems exhibit more competing capacities such as high density and multi-return sampling, and hence, people began to ask the questions like-"can ALS now work better on the task of LAI prediction?" As a re-examination, this study investigated the feasibility of LAI retrievals at the individual tree level based on high density and multi-return ALS, by directly considering the vertical distributions of laser points lying within each tree crown instead of by proposing feature variables such as quantiles involving laser point distribution modes at the plot level. The examination was operated in the case of four tree species (i.e. Picea abies, Pinus sylvestris, Populus tremula and Quercus robur) in a mixed forest, with their LAI-related reference data collected by using static terrestrial laser scanning (TLS). In light of the differences between ALS- and TLS-based LAI characterizations, the methods of voxelization of 3D scattered laser points, effective LAI (LAIe) that does not distinguish branches from canopies and unified cumulative LAI (ucLAI) that is often used to characterize the vertical profiles of crown leaf area densities (LADs) was used; then, the relationships between the ALS- and TLS-derived LAIes were determined, and so did ucLAIs. Tests indicated that the tree-level LAIes for the four tree species can be estimated based on the used airborne LiDAR (R2 = 0.07, 0.26, 0.43 and 0.21, respectively) and their ucLAIs can also be derived. Overall, this study has validated the usage of the contemporary high density multi

  9. Wavelet based de-noising of breath air absorption spectra profiles for improved classification by principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.

    2015-11-01

    The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.

  10. The dependence of vertical cloud profiles from CloudSat-CALIPSO retrievals on the degree of convective aggregation

    NASA Astrophysics Data System (ADS)

    Holloway, Chris; Stein, Thorwald; Tobin, Isabelle; Bony, Sandrine

    2015-04-01

    Previous work (Tobin et al. 2012, Tobin et al. 2013) has found that the degree of aggregation of convection in satellite observations, as measured by the Simple Convective Aggregation Index (SCAI), is associated with systematic differences in mean environmental moisture and outgoing longwave radiation for a given large-scale forcing. This suggests that climate models need to simulate the degree of organization of convection, and not just the mean precipitation and convective fluxes, in order to fully represent interactions between convection and larger scales. In this study, we use five years of CloudSat-CALIPSO cloud profiles alongside TRMM rainfall, geostationary IR data, ERA- Interim water vapor, and other observations to investigate the relationship between vertical cloud distributions and the SCAI aggregation index. We find that there is a significant decrease in anvil cloud (and in cloudiness as a whole) and increase in clear sky and low cloud (including cumulus) as aggregation increases (for a given precipitation rate). The changes in anvil and shallow cumulus are proportional to the changes in total cold cloud area (CCA), meaning that anvil per CCA and cumulus as a fraction of non-cold cloud area (1-CCA) do not change much even as CCA decreases with increased aggregation; in contrast, the change in clear sky occurs in both an absolute sense and as a fraction of non-cold cloud area (1-CCA).

  11. Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm.

    PubMed

    Ma, Xia L; Wan, Zhengming; Moeller, Christopher C; Menzel, W Paul; Gumley, Liam E

    2002-02-10

    An extension to the two-step physical retrieval algorithm was developed. Combined clear-sky multitemporal and multispectral observations were used to retrieve the atmospheric temperature-humidity profile, land-surface temperature, and surface emissivities in the midwave (3-5 microns) and long-wave (8-14.5 microns) regions. The extended algorithm was tested with both simulated and real data from the Moderate-Resolution Imaging Spectroradiometer (MODIS) Airborne Simulator. A sensitivity study and error analysis demonstrate that retrieval performance is improved by the extended algorithm. The extended algorithm is relatively insensitive to the uncertainties simulated for the real observations. The extended algorithm was also applied to real MODIS daytime and nighttime observations and showed that it is capable of retrieving medium-scale atmospheric temperature water vapor and retrieving surface temperature emissivity with retrieval accuracy similar to that achieved by the Geostationary Operational Environmental Satellite (GOES) but at a spatial resolution higher than that of GOES. PMID:11908219

  12. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    PubMed

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-01

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty. PMID:25438089

  13. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    PubMed

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-01

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty.

  14. Validation of OMI total ozone retrievals from the SAO ozone profile algorithm and three operational algorithms with Brewer measurements

    NASA Astrophysics Data System (ADS)

    Bak, J.; Liu, X.; Kim, J. H.; Chance, K.; Haffner, D. P.

    2015-01-01

    The accuracy of total ozone computed from the Smithsonian Astrophysical Observatory (SAO) optimal estimation (OE) ozone profile algorithm (SOE) applied to the Ozone Monitoring Instrument (OMI) is assessed through comparisons with ground-based Brewer spectrometer measurements from 2005 to 2008. We also compare the three OMI operational ozone products, derived from the NASA Total Ozone Mapping Spectrometer (TOMS) algorithm, the KNMI (Royal Netherlands Meteorological Institute) differential optical absorption spectroscopy (DOAS) algorithm, and KNMI's Optimal Estimation (KOE) algorithm. The best agreement is observed between SAO and Brewer, with a mean difference of within 1% at most individual stations. The KNMI OE algorithm systematically overestimates Brewer total ozone by 2% at low and mid-latitudes and 5% at high latitudes while the TOMS and DOAS algorithms underestimate it by ~1.65% on average. Standard deviations of ~1.8% are calculated for both SOE and TOMS, but DOAS and KOE have higher values of 2.2% and 2.6%, respectively. The stability of the SOE algorithm is found to have insignificant dependence on viewing geometry, cloud parameters, or total ozone column. In comparison, the KOE-Brewer differences are significantly correlated with solar and viewing zenith angles and show significant deviations depending on cloud parameters and total ozone amount. The TOMS algorithm exhibits similar stability to SOE with respect to viewing geometry and total column ozone, but has stronger cloud parameter dependence. The dependence of DOAS on observational geometry and geophysical conditions is marginal compared to KOE, but is distinct compared to the SOE and TOMS algorithms. Comparisons of all four OMI products with Brewer show no apparent long-term drift, but seasonal features are evident, especially for KOE and TOMS. The substantial differences in the KOE vs. SOE algorithm performance cannot be sufficiently explained by the use of soft calibration (in SOE) and the use of

  15. Temperature profile retrieval in axisymmetric combustion plumes using multilayer perceptron modeling and spectral feature selection in the infrared CO2 emission band.

    PubMed

    García-Cuesta, Esteban; de Castro, Antonio J; Galván, Inés M; López, Fernando

    2014-01-01

    In this work, a methodology based on the combined use of a multilayer perceptron model fed using selected spectral information is presented to invert the radiative transfer equation (RTE) and to recover the spatial temperature profile inside an axisymmetric flame. The spectral information is provided by the measurement of the infrared CO2 emission band in the 3-5 μm spectral region. A guided spectral feature selection was carried out using a joint criterion of principal component analysis and a priori physical knowledge of the radiative problem. After applying this guided feature selection, a subset of 17 wavenumbers was selected. The proposed methodology was applied over synthetic scenarios. Also, an experimental validation was carried out by measuring the spectral emission of the exhaust hot gas plume in a microjet engine with a Fourier transform-based spectroradiometer. Temperatures retrieved using the proposed methodology were compared with classical thermocouple measurements, showing a good agreement between them. Results obtained using the proposed methodology are very promising and can encourage the use of sensor systems based on the spectral measurement of the CO2 emission band in the 3-5 μm spectral window to monitor combustion processes in a nonintrusive way.

  16. Retrieval Studies with LIDORT

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K. (Technical Monitor); Spurr, Robert J. D.; Chance, K. V.

    2003-01-01

    This short program of LIDORT-based research in atmospheric trace gas retrieval was conducted over the 1 year period 01 July 2002 to 30 June 2003. After consultation with the NASA reporting officer, the first of the two original proposal activities (development of a direct-fitting total O3 column retrieval algorithm with operational capability for GOME data) was replaced by other tasks. The three activities addressed were: (1) Sensitivity studies for column and profile retrieval of NO2 distributions from a new generation of multi-axis ground-based spectrometers; (2) use of the LIDORT-RRS model to determine the effect of inelastic rotational Raman scattering at SBUV wavelengths; (3) an examination of ozone profile weighting functions in the presence of optically thick tropospheric clouds.

  17. Observation on retrieved Hylamer glenoids in shoulder arthroplasty: problems associated with sterilization by gamma irradiation in air.

    PubMed

    Rockwood, Charles A; Wirth, Michael A

    2002-01-01

    Hylamer is an ultra-high molecular weight polyethylene that was used in the glenoid prosthesis of the Global Shoulder. It was developed from a joint venture with DePuy Orthopaedics, Inc, and E.I. DuPont Company. In presterilization evaluations it was noted to have improved mechanical strength with superior creep and wear resistance. However, after sterilization was performed with gamma irradiation in an air environment from 1990 to 1993, the Hylamer glenoids were affected by oxidation, which altered the mechanical properties, and they became brittle and eroded. From 1993 to 1995 Hylamer glenoids were sterilized by gamma irradiation in a nitrogen environment. From 1995 to 1998 sterilization was by gas plasma processes, which do not create the oxidation problem. Since 1998 the glenoid prosthesis of the Global Shoulder has been made exclusively of Enduron and is gas sterilized. The primary purpose of this article is to provide orthopaedic surgeons the best information available about Hylamer glenoids. We make suggestions concerning the diagnosis and treatment of the patients who had a Hylamer glenoid inserted between 1990 and 1993.

  18. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  19. Principle Component Analysis of the Evolution of the Saharan Air Layer and Dust Transport: Comparisons between a Model Simulation and MODIS Retrievals

    NASA Technical Reports Server (NTRS)

    Wong, S.; Colarco, P. R.; Dessler, A.

    2006-01-01

    The onset and evolution of Saharan Air Layer (SAL) episodes during June-September 2002 are diagnosed by applying principal component analysis to the NCEP reanalysis temperature anomalies at 850 hPa, where the largest SAL-induced temperature anomalies are located. The first principal component (PC) represents the onset of SAL episodes, which are associated with large warm anomalies located at the west coast of Africa. The second PC represents two opposite phases of the evolution of the SAL. The positive phase of the second PC corresponds to the southwestward extension of the warm anomalies into the tropical-subtropical North Atlantic Ocean, and the negative phase corresponds to the northwestward extension into the subtropical to mid-latitude North Atlantic Ocean and the southwest Europe. A dust transport model (CARMA) and the MODIS retrievals are used to study the associated effects on dust distribution and deposition. The positive (negative) phase of the second PC corresponds to a strengthening (weakening) of the offshore flows in the lower troposphere around 10deg - 20degN, causing more (less) dust being transported along the tropical to subtropical North Atlantic Ocean. The variation of the offshore flow indicates that the subseasonal variation of African Easterly Jet is associated with the evolution of the SAL. Significant correlation is found between the second PC time series and the daily West African monsoon index, implying a dynamical linkage between West African monsoon and the evolution of the SAL and Saharan dust transport.

  20. Stratospheric CH4, N2O, H2O, NO2, N2O5, and ClONO2 profiles retrieved from Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS 1A)/STS 39 measurements

    NASA Astrophysics Data System (ADS)

    Zhou, D. K.; Bingham, G. E.; Rezai, B. K.; Anderson, G. P.; Smith, D. R.; Nadile, R. M.

    1997-02-01

    Atmospheric infrared spectral measurements were made by the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS 1A) during the Space Transportation System 39 (STS 39) mission (April 28 to May 6, 1991). High quality Earth limb emissions were collected by an interference filter bandwidth limited cryogenic Michelson interferometer. Volume mixing ratios (VMRs) of the various gases were retrieved using an onion-peeling technique with the Fast Atmospheric Signature Code 3 and the HITRAN92 database as a forward model and predetermined temperature-pressure profiles from the National Meteorological Center as the auxiliary parameters. The high quality of the moderate-resolution (˜1.0 cm-1) CIRRIS 1A (C-1A) interferometer data and the accuracy of the forward model allowed VMR profiles of the prominent atmospheric gases (e.g., CFC-11, CFC-12, HNO3, O3, CH4, N2O, H2O, NO2, N2O5, and ClONO2) to be retrieved simultaneously through the stratosphere. Profiles were recorded near the northern arctic region (daytime) and in the southern midlatitude region (nighttime). VMR profiles from C-1A measurements reported in this paper are compared with measurements collected by other investigators. While only a few atmospheric profiles are available from the C-1A data set, the values are significant, as they are the last atmospheric profiles of these strategically important gases collected before the Mount Pinatubo eruption of June 12-15, 1991.

  1. A novel Whole Air Sample Profiler (WASP) for the quantification of volatile organic compounds in the boundary layer

    SciTech Connect

    Mak, J. E.; Su, L.; Guenther, Alex B.; Karl, Thomas G.

    2013-10-16

    The emission and fate of reactive VOCs is of inherent interest to those studying chemical biosphere-atmosphere interactions. In-canopy VOC observations are obtainable using tower-based samplers, but the lack of suitable sampling systems for the full boundary 5 layer has limited the data characterizing the vertical structure of such gases above the canopy height and still in the boundary layer. This is the important region where many reactive VOCs are oxidized or otherwise removed. Here we describe an airborne sampling system designed to collect a vertical profile of air into a 3/800 OD tube 150m in length. The inlet ram air pressure is used to flow sampled air through the 10 tube, which results in a varying flow rate based on aircraft speed and altitude. Since aircraft velocity decreases during ascent, it is necessary to account for the variable flow rate into the tube. This is accomplished using a reference gas that is pulsed into the air stream so that the precise altitude of the collected air can be reconstructed post-collection. The pulsed injections are also used to determine any significant effect 15 from diffusion/mixing within the sampling tube, either during collection or subsequent extraction for gas analysis. This system has been successfully deployed, and we show some measured vertical profiles of isoprene and its oxidation products methacrolein and methyl vinyl ketone from a mixed canopy near Columbia, Missouri.

  2. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  3. The impact of drought and air pollution on metal profiles in peat cores.

    PubMed

    Souter, Laura; Watmough, Shaun A

    2016-01-15

    Peat cores have long been used to reconstruct atmospheric metal deposition; however, debate remains regarding how well historical depositional patterns are preserved in peat. This study examined peat cores sampled from 14 peatlands in the Sudbury region of Ontario, Canada, which has a well-documented history of acid and metal deposition. Copper (Cu) and lead (Pb) concentrations within individual peat cores were strongly correlated and were elevated in the upper 10 cm, especially in the sites closest to the main Copper Cliff smelter. In contrast, nickel (Ni) and cobalt (Co) concentrations were often elevated at depths greater than 10 cm, indicating much greater post-depositional movement of these metals compared with Cu and Pb. Post-depositional movement of metals is supported by the observation that Ni and Co concentrations in peat pore water increased by approximately 530 and 960% for Ni and Co, respectively between spring and summer due to drought-induced acidification, but there was much less change in Cu concentration. Sphagnum cover and (210)Pb activity measured at 10 cm at the 14 sites significantly increased with distance from Copper Cliff, and the surface peat von Post score decreased with distance from Copper Cliff, indicating the rate of peat formation increases with distance from Sudbury presumably as a result of improved Sphagnum survival. This study shows that the ability of peat to preserve deposition histories of some metals is strongly affected by drought-induced post-depositional movement and that loss of Sphagnum due to air pollution impairs the rate of peat formation, further affecting metal profiles in peatlands. PMID:26473705

  4. Profile negotiation: An air/ground automation integration concept for managing arrival traffic

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Arbuckle, P. Douglas; Green, Steven M.; Denbraven, Wim

    1993-01-01

    NASA Ames Research Center and NASA Langley Research Center conducted a joint simulation study to evaluate a profile negotiation process (PNP) between a time-based air traffic control ATC system and an airplane equipped with a four dimensional flight management system (4D FMS). Prototype procedures were developed to support the functional implementation of this process. The PNP was designed to provide an arrival trajectory solution that satisfies the separation requirements of ATC while remaining as close as possible to the airplane's preferred trajectory. The Transport Systems Research Vehicle cockpit simulator was linked in real-time to the Center/TRACON Automation System (CTAS) for the experiment. Approximately 30 hours of simulation testing were conducted over a three week period. Active airline pilot crews and active Center controller teams participated as test subjects. Results from the experiment indicate the potential for successful incorporation of airplane preferred arrival trajectories in the CTAS automation environment. Controllers were able to consistently and effectively negotiate nominally conflict-free trajectories with pilots flying a 4D-FMS-equipped airplane. The negotiated trajectories were substantially closer to the airplane's preference than would have otherwise been possible without the PNP. Airplane fuel savings relative to baseline CTAS were achieved in the test scenarios. The datalink procedures and clearances developed for this experiment, while providing the necessary functionality, were found to be operationally unacceptable to the pilots. Additional pilot control and understanding of the proposed airplane-preferred trajectory and a simplified clearance procedure were cited as necessary for operational implementation of the concept. From the controllers' perspective, the main concerns were the ability of the 4D airplane to accurately track the negotiated trajectory and the workload required to support the PNP as implemented in this study.

  5. The impact of drought and air pollution on metal profiles in peat cores.

    PubMed

    Souter, Laura; Watmough, Shaun A

    2016-01-15

    Peat cores have long been used to reconstruct atmospheric metal deposition; however, debate remains regarding how well historical depositional patterns are preserved in peat. This study examined peat cores sampled from 14 peatlands in the Sudbury region of Ontario, Canada, which has a well-documented history of acid and metal deposition. Copper (Cu) and lead (Pb) concentrations within individual peat cores were strongly correlated and were elevated in the upper 10 cm, especially in the sites closest to the main Copper Cliff smelter. In contrast, nickel (Ni) and cobalt (Co) concentrations were often elevated at depths greater than 10 cm, indicating much greater post-depositional movement of these metals compared with Cu and Pb. Post-depositional movement of metals is supported by the observation that Ni and Co concentrations in peat pore water increased by approximately 530 and 960% for Ni and Co, respectively between spring and summer due to drought-induced acidification, but there was much less change in Cu concentration. Sphagnum cover and (210)Pb activity measured at 10 cm at the 14 sites significantly increased with distance from Copper Cliff, and the surface peat von Post score decreased with distance from Copper Cliff, indicating the rate of peat formation increases with distance from Sudbury presumably as a result of improved Sphagnum survival. This study shows that the ability of peat to preserve deposition histories of some metals is strongly affected by drought-induced post-depositional movement and that loss of Sphagnum due to air pollution impairs the rate of peat formation, further affecting metal profiles in peatlands.

  6. ODIN/OSIRIS Level 2 retrieval and validation at Finnish Meteorological Institute

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Hassinen, S.; Auvinen, H.; Kyrölä, E.; Karpetchko, A.; Haley, C. S.

    2003-04-01

    The Odin satellite launched on February 2001 carries two instruments, OSIRIS (Optical Spectrograph and InfraRed Imaging System) and SMR (Sub-Millimeter Radiometer). OSIRIS and SMR are both used for making aeronomical measurements whereas SMR makes astronomical measurements as well. In aeronomy mode both instruments use the limb scanning technique to retrieve vertical profiles of minor constituents in the middle atmosphere. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), Finland (Tekes) and France (CNES). OSIRIS measurements cover the altitude range from 7 to 60 km (or alternatively to 120 km). The Level 1 processing of the OSIRIS measurement data is done in Canada by University of Saskatchewan. The Level 2 processing is done separately by teams in Canada and Finland using different retrieval methods. In Finland the Level 2 processing is done by the Finnish Meteorological Institute (FMI) using the Modified Onion Peeling (MOP) method. The aim of the processing is to simultaneously retrieve vertical profiles of ozone, NO_2, BrO, OClO and aerosols. The profile of neutral air density is also retrieved. The processing takes place at Sodankylä processing center. The processed FMI Level 2 data will be compared with OSIRIS data processed with other retrieval methods e.g. the ozone profiles retrieved using the so-called Flittner method. The validation will also be done against other satellite instruments and various soundings. These validation results will be presented.

  7. Subchronic inhalation exposure study of an airborne polychlorinated biphenyl (PCB) mixture resembling the Chicago ambient air congener profile

    PubMed Central

    Hu, Xin; Adamcakova-Dodd, Andrea; Lehmler, Hans-Joachim; Hu, Dingfei; Hornbuckle, Keri; Thorne, Peter S

    2013-01-01

    Although inhalation of atmospheric PCBs is the most universal exposure route and has become a substantial concern in urban areas, research is lacking to determine the body burden of inhaled PCBs and consequent health effects. To reflect the Chicago airshed environment and mimic the PCB profile in Chicago air, we generated vapors from a Chicago Air Mixture (CAM). Sprague-Dawley rats were exposed to the CAM vapor for 1.6 hr/day via nose-only inhalation for 4 wks, 520±10 μg/m3. Congener-specific quantification in tissue and air samples was performed by GC/MS/MS. In contrast to the lower-chlorinated congener enriched vapor, body tissues mainly contained tri- to hexachlorobiphenyls. Congener profiles varied between vapor and tissues, and among different organs. The toxic equivalence (TEQ) and neurotoxic equivalence (NEQ) were also investigated for tissue distribution. We evaluated a variety of endpoints to catalog the effects of long-term inhalation exposure, including immune responses, enzyme induction, cellular toxicity and histopathologic abnormalities. GSSG/GSH ratio was increased in blood of exposed animals, accompanied by elevation of hematocrit. This study demonstrated that inhalation contributed to the body burden of mostly tri- to hexachlorobiphenyls and produced a distinct profile of congeners in tissue, yet minimal toxicity was found at this exposure dose estimated at 134 μg/rat. PMID:22846166

  8. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  9. Impact of AIRS Thermodynamic Profiles on Precipitation Forecasts for Atmospheric River Cases Affecting the Western United States

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley T.; Jedlovec, Gary J.; Blakenship, Clay B.; Wick, Gary A.; Neiman, Paul J.

    2013-01-01

    This project is a collaborative activity between the NASA Short-term Prediction Research and Transition (SPoRT) Center and the NOAA Hydrometeorology Testbed (HMT) to evaluate a SPoRT Advanced Infrared Sounding Radiometer (AIRS: Aumann et al. 2003) enhanced moisture analysis product. We test the impact of assimilating AIRS temperature and humidity profiles above clouds and in partly cloudy regions, using the three-dimensional variational Gridpoint Statistical Interpolation (GSI) data assimilation (DA) system (Developmental Testbed Center 2012) to produce a new analysis. Forecasts of the Weather Research and Forecasting (WRF) model initialized from the new analysis are compared to control forecasts without the additional AIRS data. We focus on some cases where atmospheric rivers caused heavy precipitation on the US West Coast. We verify the forecasts by comparison with dropsondes and the Cooperative Institute for Research in the Atmosphere (CIRA) Blended Total Precipitable Water product.

  10. Assessment of hematological profiles of adult male athletes from two different air pollutant zones of West Bengal, India.

    PubMed

    Das, Paulomi; Chatterjee, Pinaki

    2015-01-01

    Health effects from air pollution are severe concern of today's world. The study was undertaken to assess the effects of air pollution on hematological profiles of trained and untrained males of West Bengal. The sample consisted of 60 sprinters, 60 footballers, and 120 untrained males, subdivided into two groups from two zones, namely, Tollygunge and Sonarpur. Suspended particulate matter (SPM), respirable particulate matter (RPM), oxides of sulfur (SOx), and oxides of nitrogen (NOx) of ambient air were monitored for both zones. Height and weight of all the subjects were measured. Venous blood sample was drawn from the cubital vein, and the red blood cell count (TC), packed cell volume (PCV), hemoglobin (Hb) concentration, mean corpuscular volume (MCV), and mean corpuscular hemoglobin concentration (MCHC) were determined by standard methods. Results revealed that SPM, RPM, SOx, and NOx concentrations were significantly higher in the Tollygunge area than Sonarpur. TC, PCV, and Hb concentration of untrained males were significantly higher than footballers in both regions but no significant difference were observed when compared with sprinters, except the Hb concentration in the Tollygunge zone. On the other hand, all hematological parameters of both trained and untrained males were significantly higher in the Sonarpur area than Tollygunge. It was concluded that environmental air pollutants might influence hematological profile adversely both in trained and sedentary males. However, further investigation in this area is needed.

  11. Retrieval of Tropopause with Hyperspectral Infrared Radiance Measurements

    NASA Astrophysics Data System (ADS)

    Liu, C.; Li, J.; Schmit, T. J.; Weisz, E.; Li, J.; Ackerman, S. A.

    2008-12-01

    Signatures of the global tropopause relate to mechanisms in dynamic meteorology, stratosphere-troposphere exchange (STE), and climate variability and change. The accurate atmospheric profiling from synergistic use of the Atmospheric Infrared Sounder (AIRS) and the Moderate-Resolution Image Spectroradiometer (MODIS) measurements onboard the NASA Earth Observing System's (EOS) Aqua satellite enables the monitoring of global atmospheric profile and cloud distribution. The thermal-based tropopause height is derived from the temperature profile which is retrieved from the synergistic algorithm using the definition promulgated by the World Meteorological Organization's (WMO) Commission for Aerology. The synergistic algorithm is able to provide the thermo-derived tropopause height at AIRS single-field-of-view (SFOV) spatial resolution (13.5 km at nadir view) with high accuracy with its greatly enhanced hyperspectral remote sensing capability. The derived tropopause heights from the synergistic algorithm are compared with ECMWF model reanalysis field, to demonstrate the advantage of combined MODIS and AIRS in spatial and vertical resolution. Tropopause folding is associated with jet streak location and is recognized as a key feature of atmospheric structure in midlatitudes. A case study on synoptic scale frontal system were also used for comparison; results show that tropopause signature from synergistic AIRS and MODIS retrievals have good agreement with RAOBs, which gives an option for tropopause studies.

  12. Interpretation of combined wind profiler and aircraft-measured tropospheric winds and clear air turbulence

    NASA Technical Reports Server (NTRS)

    Thomson, D. W.; Syrett, William J.; Fairall, C. W.

    1991-01-01

    In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.

  13. Carbon Dioxide and Methane Column Abundances Retrieved from Ground-Based Near-Infrared Solar Spectra and Comparison with In Situ Aircraft Profiles

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Toon, G. C.; Blavier, J.; Wennberg, P. O.; Yang, Z.; Vay, S. A.; Sachse, G. W.; Blake, D. R.; Matross, D. M.; Gerbig, C.

    2004-12-01

    We have developed an automated observatory for measuring ground-based column abundances of CO2, CH4, CO, N2O, O2, H2O, and HF. Near-infrared spectra of the direct sun are measured between 3,900 - 15,600 cm-1 (0.67 - 2.56 μ m) by a Bruker 125HR Fourier Transform Spectrometer. This is the first laboratory in a proposed network of ground-based solar observatories that will be used for carbon cycle studies and validation of spaceborne column measurements of greenhouse gases. The laboratory was assembled in Pasadena, California and then permanently deployed to northern Wisconsin during May 2004. It is located in the heavily forested Chequamegon National Forest at the WLEF Tall Tower site, 14 km east of Park Falls, Wisconsin. This site was chosen because NOAA CMDL and other groups conduct intensive measurements in the area, including continuous monitoring of CO2 at six heights on the 447-m tall tower. CO2 and CH4 column abundances for May - November 2004 demonstrate ˜0.1% precision. The seasonal drawdown of CO2 is recognizable within the late-May column abundances. As part of the INTEX and COBRA campaigns, the DC-8 or King Air recorded in situ measurements during profiles over the WLEF site during five dates in July and August 2004. We will compare the column abundances of CO2, CH4, and CO with these in situ aircraft measurements.

  14. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Knuteson, Robert O.; Lesht, Barry M.; Strow, L. Larrabee; Hannon, Scott E.; Feltz, Wayne F.; Moy, Leslie A.; Fetzer, Eric J.; Cress, Ted S.

    2006-05-01

    The Atmospheric Infrared Sounder (AIRS) is the first of a new generation of advanced satellite-based atmospheric sounders with the capability of obtaining high-vertical resolution profiles of temperature and water vapor. The high-accuracy retrieval goals of AIRS (e.g., 1 K RMS in 1 km layers below 100 mbar for air temperature, 10% RMS in 2 km layers below 100 mbar for water vapor concentration), combined with the large temporal and spatial variability of the atmosphere and difficulties in making accurate measurements of the atmospheric state, necessitate careful and detailed validation using well-characterized ground-based sites. As part of ongoing AIRS Science Team efforts and a collaborative effort between the NASA Earth Observing System (EOS) project and the Department of Energy Atmospheric Radiation Measurement (ARM) program, data from various ARM and other observations are used to create best estimates of the atmospheric state at the Aqua overpass times. The resulting validation data set is an ensemble of temperature and water vapor profiles created from radiosondes launched at the approximate Aqua overpass times, interpolated to the exact overpass time using time continuous ground-based profiles, adjusted to account for spatial gradients within the Advanced Microwave Sounding Unit (AMSU) footprints, and supplemented with limited cloud observations. Estimates of the spectral surface infrared emissivity and local skin temperatures are also constructed. Relying on the developed ARM infrastructure and previous and ongoing characterization studies of the ARM measurements, the data set provides a good combination of statistics and accuracy which is essential for assessment of the advanced sounder products. Combined with the collocated AIRS observations, the products are being used to study observed minus calculated AIRS spectra, aimed at evaluation of the AIRS forward radiative transfer model, AIRS observed radiances, and temperature and water vapor profile

  15. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  16. Measuring solar- and greenhouse radiation profiles in the atmosphere using upper-air radiosondes

    NASA Astrophysics Data System (ADS)

    Philipona, R.; Kräuchi, A.

    2012-04-01

    Solar shortwave and thermal longwave irradiance is usually measured at the Earth's surface with ground radiation stations and at the top of the atmosphere with satellites. Here we show for the first time radiative flux profiles and the radiation budget in the atmosphere measured with radiosondes ascending from the Earth's surface to 35 km into the stratosphere. During two-hour flights solar shortwave and thermal longwave irradiance, downward and upward, is measured with four individual sensors at one-second resolution, along with standard PTU radiosonde profiles. Nighttime longwave radiation measurements are contrasted to daytime measurements and 24 hours means of radiation budget- and total net radiation profiles are shown. Of particular interest for greenhouse effect investigations are in situ measured longwave greenhouse radiation profiles and their vertical changes in relation to temperature, clouds, water vapour and other greenhouse gases.

  17. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile

    SciTech Connect

    Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya; Hasegawa, Susumu; Maruta, Kaoru

    2010-08-15

    Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for the present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)

  18. Characterisation of volatile profile and sensory analysis of fresh-cut "Radicchio di Chioggia" stored in air or modified atmosphere.

    PubMed

    Cozzolino, Rosaria; Martignetti, Antonella; Pellicano, Mario Paolo; Stocchero, Matteo; Cefola, Maria; Pace, Bernardo; De Giulio, Beatrice

    2016-02-01

    The volatile profile of two hybrids of "Radicchio di Chioggia", Corelli and Botticelli, stored in air or passive modified atmosphere (MAP) during 12 days of cold storage, was monitored by solid phase micro-extraction (SPME) GC-MS. Botticelli samples were also subjected to sensory analysis. Totally, 61 volatile organic compounds (VOCs) were identified in the headspace of radicchio samples. Principal component analysis (PCA) showed that fresh product possessed a metabolic content similar to that of the MAP samples after 5 and 8 days of storage. Projection to latent structures by partial least squares (PLS) regression analysis showed the volatiles content of the samples varied depending only on the packaging conditions. Specifically, 12 metabolites describing the time evolution and explaining the effects of the different storage conditions were highlighted. Finally, a PCA analysis revealed that VOCs profile significantly correlated with sensory attributes.

  19. Dissolved methane concentration profiles and air-sea fluxes from 41°S to 27°N

    NASA Astrophysics Data System (ADS)

    Kelley, Cheryl A.; Jeffrey, Wade H.

    2002-07-01

    Water column samples from a transect cruise from southern Chile through the Panama Canal to the Gulf of Mexico were used to determine dissolved methane depth profiles and air-sea methane fluxes. In the Gulf of Mexico, surface concentrations were approximately 40% supersaturated with respect to the atmosphere, whereas near the equator and in the Peru upwelling region, 10-20% supersaturation generally occurred. These saturation ratios translate into an average flux of methane from the sea surface to the atmosphere of 0.38 μmol m-2 d-1. In addition, water column profiles of dissolved methane indicate that subsurface maxima in dissolved methane concentrations are a consistent feature of the open ocean, except near the equator. At the equator, the subsurface peak at the base of the mixed layer may be bowed down by the Equatorial Undercurrent. The highest methane concentration (12 nM) was observed in the Peru upwelling region.

  20. Application of 50 MHz doppler radar wind profiler to launch operations at Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schumann, Robin S.; Taylor, Gregory E.; Smith, Steve A.; Wilfong, Timothy L.

    1994-01-01

    This paper presents a case study where a significant wind shift, not detected by jimspheres, was detected by the 50 MHz DRWP (Doppler Radar Wind Profiler) and evaluated to be acceptable prior to the launch of a Shuttle. This case study illustrates the importance of frequent upper air wind measurements for detecting significant rapidly changing features as well as for providing confidence that the features really exist and are not due to instrumentation error. Had the release of the jimsphere been timed such that it would have detected the entire wind shift, there would not have been sufficient time to release another jimsphere to confirm the existence of the feature prior to the scheduled launch. We found that using a temporal median filter on the one minute spectral estimates coupled with a constraining window about a first guess velocity effectively removes nearly all spurious signals from the velocity profile generated by NASA's 50 MHz DRWP while boosting the temporal resolution to as high as one profile every 3 minutes. The higher temporal resolution of the 50 MHz DRWP using the signal processing algorithm described in this paper ensures the detection of rapidly changing features as well as provides the confidence that the features are genuine. Further benefit is gained when the profiles generated by the DRWP are examined in relation to the profiles measured by jimspheres and/or rawinsondes. The redundancy offered by using two independent measurements can dispel or confirm any suspicion regarding instrumentation error or malfunction and wind profiles can be examined in light of their respective instruments' strengths and weaknesses.

  1. Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval

    NASA Astrophysics Data System (ADS)

    González Abad, G.; Liu, X.; Chance, K.; Wang, H.; Kurosu, T. P.; Suleiman, R.

    2015-01-01

    We present and discuss the Smithsonian Astrophysical Observatory (SAO) formaldehyde (H2CO) retrieval algorithm for the Ozone Monitoring Instrument (OMI) which is the operational retrieval for NASA OMI H2CO. The version of the algorithm described here includes relevant changes with respect to the operational one, including differences in the reference spectra for H2CO, the fit of O2-O2 collisional complex, updates in the high-resolution solar reference spectrum, the use of a model reference sector over the remote Pacific Ocean to normalize the retrievals, an updated air mass factor (AMF) calculation scheme, and the inclusion of scattering weights and vertical H2CO profile in the level 2 products. The setup of the retrieval is discussed in detail. We compare the results of the updated retrieval with the results from the previous SAO H2CO retrieval. The improvement in the slant column fit increases the temporal stability of the retrieval and slightly reduces the noise. The change in the AMF calculation has increased the AMFs by 20%, mainly due to the consideration of the radiative cloud fraction. Typical values for retrieved vertical columns are between 4 × 1015 and 4 × 1016 molecules cm-2, with typical fitting uncertainties ranging between 45 and 100%. In high-concentration regions the errors are usually reduced to 30%. The detection limit is estimated at 1 × 1016 molecules cm-2.

  2. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2015-04-01

    The current estimates for the internal radiation doses from inhalation by the Fukushima Daiichi Nuclear Power Station (FD1NPS) accident on March 11, 2011 have large uncertainty, because no observed data has been found of continuous monitoring of radioactive materials in the atmosphere in the Fukushima prefecture (FP) just after the accident, compared with the many observed datasets of deposition densities of radionuclides on the grounds in eastern Japan. To retrieve the atmospheric transport of radioactive materials released from the FD1NPS, we collected the used filter tapes installed in Suspended Particulate Matter (SPM) monitors with beta-ray attenuation method operated in the air pollution monitoring network of eastern Japan. Then, we measured hourly Cs-134 and Cs-137 concentrations in SPM at 40 monitoring sites in the FP and Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPS, after more than one year. The period for measurements was during March 12-23, 2011, when atmospheric, aquatic, and terrestrial environments were seriously suffered in most of eastern Japan by a large amount of radioactive materials released from the FD1NPS. In this paper, a comprehensive study will be reported for the first time on a spatio-temporal variation of atmospheric Cs-137 concentrations in the FP and the TMA. Major results are as follows; (1) Nine major plumes with Cs-137 concentrations higher than 10 Bq m-3 were found, of which 5 and 4 plumes were transported to the FP and TMA, respectively. The radioactive materials from the FD1NPS was transported four times in the period to the northern part of Hamadori located in the east coast of the FP, and which was little known up to this study. (2) Two plumes transported to the TMA were newly founded, in addition to the well-known two major plumes on March 15 and 21, 2011. (3) The radiation dose rate measured at some monitoring posts in Nakadori located in the central area of the FP, did not increase even when

  3. Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Zhou, D. K.; Huang, H.-L.; Li, Jun; Liu, X.; Larar, A. M.

    2003-01-01

    Clouds act to reduce the signal level and may produce noise dependence on the complexity of the cloud properties and the manner in which they are treated in the profile retrieval process. There are essentially three ways to extract profile information from cloud contaminated radiances: (1) cloud-clearing using spatially adjacent cloud contaminated radiance measurements, (2) retrieval based upon the assumption of opaque cloud conditions, and (3) retrieval or radiance assimilation using a physically correct cloud radiative transfer model which accounts for the absorption and scattering of the radiance observed. Cloud clearing extracts the radiance arising from the clear air portion of partly clouded fields of view permitting soundings to the surface or the assimilation of radiances as in the clear field of view case. However, the accuracy of the clear air radiance signal depends upon the cloud height and optical property uniformity across the two fields of view used in the cloud clearing process. The assumption of opaque clouds within the field of view permits relatively accurate profiles to be retrieved down to near cloud top levels, the accuracy near the cloud top level being dependent upon the actual microphysical properties of the cloud. The use of a physically correct cloud radiative transfer model enables accurate retrievals down to cloud top levels and below semi-transparent cloud layers (e.g., cirrus). It should also be possible to assimilate cloudy radiances directly into the model given a physically correct cloud radiative transfer model using geometric and microphysical cloud parameters retrieved from the radiance spectra as initial cloud variables in the radiance assimilation process. This presentation reviews the above three ways to extract profile information from cloud contaminated radiances. NPOESS Airborne Sounder Testbed-Interferometer radiance spectra and Aqua satellite AIRS radiance spectra are used to illustrate how cloudy radiances can be used

  4. Comparisons of Upper Tropospheric Humidity Retrievals from TOVS and METEOSAT

    NASA Technical Reports Server (NTRS)

    Escoffier, C.; Bates, J.; Chedin, A.; Rossow, W. B.; Schmetz, J.

    1999-01-01

    Two different methods for retrieving Upper Tropospheric Humidities (UTH) from the TOVS (TIROS Operational Vertical Sounder) instruments aboard NOAA polar orbiting satellites are presented and compared. The first one, from the Environmental Technology Laboratory, computed by J. Bates and D. Jackson (hereafter BJ method), estimates UTH from a simplified radiative transfer analysis of the upper tropospheric infrared water vapor channel at wavelength measured by HIRS (6.3 micrometer). The second one results from a neural network analysis of the TOVS (HIRS and MSU) data developed at, the Laboratoire de Meteorologie Dynamique (hereafter the 3I (Improved Initialization Inversion) method). Although the two methods give very similar retrievals in temperate regions (30-60 N and S), an absolute bias up to 16% appears in the convective zone of the tropics. The two datasets have also been compared with UTH retrievals from infrared radiance measurements in the 6.3 micrometer channel from the geostationary satellite METEOSAT (hereafter MET method). The METEOSAT retrievals are systematically drier than the TOVS-based results by an absolute bias between 5 and 25%. Despite the biases, the spatial and temporal correlations are very good. The purpose of this study is to explain the deviations observed between the three datasets. The sensitivity of UTH to air temperature and humidity profiles is analysed as are the clouds effects. Overall, the comparison of the three retrievals gives an assessment of the current uncertainties in water vapor amounts in the upper troposphere as determined from NOAA and METEOSAT satellites.

  5. Information content of ozone retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.

    1989-01-01

    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.

  6. Moisture correspondence between lower and upper troposphere over oceans using AIRS observations

    NASA Technical Reports Server (NTRS)

    Ye, Hengchun; Fetzer, E. J.; Granger, S.; Lee, S. -Y.; Olsen, E. T.; Lambridgtsen, B. H.; Chen, L.

    2006-01-01

    The Atmospheric Infrared Sounder (AIRS) mounted on Aqua space craft measures vertical profiles of air temperature and humidity using both microwaves and infrared irradiance. The AIRS' level III data that provide gridded values of 1(sup o) latitude by 1(sup o) longitude for the highest temporal resolution of twice per day became available recently (Granger et al. 2005). This level III data were derived from the level II Version 4.0 AIRS retrieval algorithm. This study uses this level III AIRS moisture profile data to reveal geographical correspondences of atmospheric moisture content between the lower and upper troposphere.

  7. Regional Data Assimilation of AIRS Profiles and Radiances at the SPoRT Center

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Chou, Shih-hung; Jedlovec, Gary

    2009-01-01

    This slide presentation reviews the Short Term Prediction Research and Transition (SPoRT) Center's mission to improve short-term weather prediction at the regional and local scale. It includes information on the cold bias in Weather Research and Forcasting (WRF), troposphere recordings from the Atmospheric Infrared Sounder (AIRS), and vertical resolution of analysis grid.

  8. SYSTEMIC BIOMARKERS AND CARDIAC GENE EXPRESSION PROFILES OF RAT DISEASE MODELS EMPLOYED IN AIR POLLUTION STUDIES

    EPA Science Inventory

    Cardiovascular disease (CVD) models are used for identification of mechanisms of susceptibility to air pollution. We hypothesized that baseline systemic biomarkers and cardiac gene expression in CVD rat models will have influence on their ozone-induced lung inflammation. Male 12-...

  9. Heating, Ventilation, Air-Conditioning, and Refrigeration. Occupational Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    This Occupational Competency Analysis Profile (OCAP) contains a competency list verified by expert workers and developed through a modified DACUM (Developing a Curriculum) involving business, industry, labor, and community agency representatives from Ohio. This OCAP identifies the occupational, academic, and employability skills (competencies)…

  10. Retrieving Vegetation Parameters and Soil Reflection Coefficients with P-band SAR Polarimetry

    NASA Astrophysics Data System (ADS)

    Alemohammad, S. H.; Konings, A. G.; Jagdhuber, T.; Entekhabi, D.

    2015-12-01

    Photosynthetic activity of plants is highly dependent on the water available to the plant through its roots. Therefore, measuring the root-zone-soil-moisture across large spatial scales is of great importance for crop monitoring and yield estimation as well as hydrological and ecological modeling. Unlike L-band instruments, which are sensitive to only a few centimeters of the top soil layer, P-band Synthetic Aperture Radar (SAR) instruments have a penetration depth that can be used to retrieve soil moisture profiles in depths of several tens of centimeters (depending on soil texture and moisture content). NASA's Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission is designed to study the application of P-band SAR measurements for monitoring root-zone-soil-moisture. In this study, we introduce a new framework to retrieve vegetation parameters and smooth-surface soil reflection coefficients using SAR polarimetry and the fully polarimetric covariance matrix of the backscattering signal from AirMOSS observations. The retrieved soil reflectivities (both horizontally and vertically -polarized) can then be used to estimate the soil moisture profile. The retrieval model takes into account contributions from surface, dihedral and volume scattering coming from the vegetation and soil components, and does not require prior vegetation parameters. This approach reduces the dependency of the retrieval on allometry-based vegetation models with large numbers of uncertain parameters. The performance of this method will be validated using observations from AirMOSS field campaigns in July 2013 over Harvard Forest in Massachusetts, USA. This will enable a quality assessment of the polarimetry-based retrieval of the soil reflectivities and the estimated root-zone-soil-moisture profiles.

  11. Ozone Profiles and Tropospheric Ozone from Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Liu, X.; Chance, K.; Sioris, C. E.; Sparr, R. J. D.; Kuregm, T. P.; Martin, R. V.; Newchurch, M. J.; Bhartia, P. K.

    2003-01-01

    Ozone profiles are derived from backscattered radiances in the ultraviolet spectra (290-340 nm) measured by the nadir-viewing Global Ozone Monitoring Experiment using optimal estimation. Tropospheric O3 is directly retrieved with the tropopause as one of the retrieval levels. To optimize the retrieval and improve the fitting precision needed for tropospheric O3, we perform extensive wavelength and radiometric calibrations and improve forward model inputs. Retrieved O3 profiles and tropospheric O3 agree well with coincident ozonesonde measurements, and the integrated total O3 agrees very well with Earth Probe TOMS and Dobson/Brewer total O3. The global distribution of tropospheric O3 clearly shows the influences of biomass burning, convection, and air pollution, and is generally consistent with our current understanding.

  12. SAGE II stratospheric density and temperature retrieval experiment

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Chu, W. P.; Lenoble, J.; Nagatani, R. M.; Chanin, M. L.; Barnes, R. A.; Schmidlin, F.; Rowland, M.

    1992-01-01

    This paper describes a stratospheric density and temperature retrieval experiment based on the solar occultation measurement of the Stratospheric Aerosol and Gas Experiment (SAGE II). The entire retrieval analysis involves two inversion steps: the vertical structure inversion, which derives the profile of local atmospheric extinction from SAGE II limb optical depth data, and the species inversion, which inverts the concentration of air molecules, aerosols, ozone, and nitrogen dioxide from the derived atmospheric extinction at five SAGE II short wavelengths (0.385, 0.448, 0.453, 0.525, and 0.600 microns). The derived density profile is then used to infer the temperature distribution, assuming that the atmosphere is in hydrostatic equilibrium and obeys the ideal gas law. The temperature profiles retrieved from the SAGE II observations are compared with near-coincident, in both time and space, French Rayleigh lidar and NASA Wallops Flight Facility rocket datasonde soundings as well as the National Meteorological Center (NMC) data analyses. The results indicate that the mean SAGE II temperature agrees with the mean lidar measurements to within 2 C at altitudes from 30.5 to 52.5 km. The SAGE II and datasonde observations agree to within about 4 C in approximately the same altitude region.

  13. Ventilation, air confinement and high radon level in an underground gallery studied from profiles measurements.

    NASA Astrophysics Data System (ADS)

    Richon, P.; Perrier, F.; Sabroux, J.-C.; Pili, E.; Ferry, C.; Dezayes, C.; Voisin, V.

    2003-04-01

    An horizontal closed-end tunnel, 128 m long and 2 m in diameter, located within the eastern margin of the Belledonne crystalline basement, French Alps, near the west shore of the Roselend artificial lake, 600 m NE of the dam, has been instrumented since 1995 for radon emanation and deformation measurements. Radon bursts are repeatedly associated with transient deformation events induced by variations in lake levels (Trique et al., 1999). This high radon anomalies (up to 30,000 Bq.m-3) in the air of the tunnel result from its particular geometry, its excellent confinement, the water and radium-226 contents of rocks, and the crossing of several faults. We calculated the equilibrium factor F, directly proportional to air ventilation, from the ratios of radon-222 gas activity measured with an AlphaGUARDTM, and the Potential Alpha Energy Concentration (PAEC, in μJ.m-3) of its short-lived daughters measured with a TracerlabTM, simultaneously in five locations along the tunnel. The calculated equilibrium factors of 0.60 to 0.78 show that confinement is very good all along the tunnel. Fast Fourier Transform of the radon-222 signals measured during six months simultaneously with six BarasolTM distributed along the tunnel shows also the poor ventilation and the weak influence of atmospheric pressure and air temperature.

  14. Transuranic (TRU) Waste Phase I Retrieval Plan

    SciTech Connect

    MCDONALD, K.M.

    1999-08-27

    Phase I retrieval of post-1970 TRU wastes from burial ground 218-W-4C can be done in a safe, efficient, and cost-effective manner. Initiating TRU retrieval by retrieving uncovered drums from Trenches 1, 20, and 29, will allow retrieval to begin under the current SWBG safety authorization basis. The retrieval of buried drums from Trenches 1, 4, 20, and 29, which will require excavation, will commence once the uncovered drum are retrieved. This phased approach allows safety analysis for drum venting and drum module excavation to be completed and approved before the excavation proceeds. In addition, the lessons learned and the operational experience gained from the retrieval of uncovered drums can be applied to the more complicated retrieval of the buried drums. Precedents that have been set at SRS and LANL to perform retrieval without a trench cover, in the open air, should be followed. Open-air retrieval will result in significant cost savings over the original plans for Phase I retrieval (Project W-113). Based on LANL and SRS experience, open-air retrieval will have no adverse impacts to the environment or to the health and safety of workers or the public. Assaying the waste in the SWBG using a mobile assay system, will result in additional cost savings. It is expected that up to 50% of the suspect-TRU wastes will assay as LLW, allowing those waste to remain disposed of in the SWBG. Further processing, with its associated costs, will only occur to the portion of the waste that is verified to be TRU. Retrieval should be done, to the extent possible, under the current SWBG safety authorization basis as a normal part of SWBG operations. The use of existing personnel and existing procedures should be optimized. By working retrieval campaigns, typically during the slow months, it is easier to coordinate the availability of necessary operations personnel, and it is easier to coordinate the availability of a mobile assay vendor.

  15. Radioactive air emissions notice of construction for installation and operation of a waste retrieval system and tanks 241-AP-102 and 241-AP-104 project

    SciTech Connect

    DEXTER, M.L.

    1999-11-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246 247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61 07 for the installation and operation of one waste retrieval system in the 24 1 AP-102 Tank and one waste retrieval system in the 241 AP 104 Tank Pursuant to 40 CFR 61 09 (a)( 1) this application is also intended to provide anticipated initial start up notification Its is requested that EPA approval of this application will also constitute EPA acceptance of the initial start up notification Project W 211 Initial Tank Retrieval Systems (ITRS) is scoped to install a waste retrieval system in the following double-shell tanks 241-AP 102-AP 104 AN 102, AN 103, AN-104, AN 105, AY 102 AZ 102 and SY-102 between now and the year 2011. Because of the extended installation schedules and unknowns about specific activities/designs at each tank, it was decided to submit NOCs as that information became available This NOC covers the installation and operation of a waste retrieval system in tanks 241 AP-102 and 241 AP 104 Generally this includes removal of existing equipment installation of new equipment and construction of new ancillary equipment and buildings Tanks 241 AP 102 and 241 AP 104 will provide waste feed for immobilization into a low activity waste (LAW) product (i.e. glass logs) The total effective dose equivalent (TEDE) to the offsite maximally exposed individual (MEI) from the construction activities is 0 045 millirem per year The unabated TEDE to the offsite ME1 from operation of the mixer pumps is 0 042 millirem per year.

  16. Soil air carbon dioxide and nitrous oxide concentrations in profiles under tallgrass prairie and cultivation

    SciTech Connect

    Sotomayor, D.; Rice, C.W.

    1999-05-01

    Assessing the dynamics of gaseous production in soils is of interest because they are important sources and sinks of greenhouse gases. Changes in soil air carbon dioxide (CO{sub 2}) and nitrous oxide (N{sub 2}O) concentrations were studied in a Reading silt loam under prairie and cultivation. Concentrations were measured in situ over a 17-mo period to a depth of 3 m. Multilevel samples permitted collection of gases with subsequent measurement by gas chromatography in the laboratory. Soil air N{sub 2}O concentrations were near atmospheric levels for a majority of the study period in the prairie site but were significantly higher in the cultivated site. Annual mean N{sub 2}O concentrations were 0.403 and 1.09 {micro}L L{sup {minus}1} in the prairie and cultivated sites, respectively. Soil air CO{sub 2} annual mean concentrations were 1.56 {times} 10{sup 4} and 1.10 {times} 10{sup 4} {micro}L L{sup {minus}1} and ranged from 0.096 {times} 10{sup 4} to 6.45 {times} 10{sup 4} {micro}L L{sup {minus}1} and 0.087 {times} 10{sup 4} to 3.59 {times} 10{sup 4} {micro}L L{sup {minus}1} in the prairie and cultivated sites, respectively. Concentrations generally increased with depth, with maximum soil air N{sub 2}O and CO{sub 2} concentrations at 1.0 m in the prairie site and 0.5 m in the cultivated site. Nitrous oxide in the cultivated site and CO{sub 2} at both sites did not change markedly over winter months, but CO{sub 2} and N{sub 2}O concentrations reached maximums during the summer months and decreased as the year progressed. Although soil air concentrations peaked and decreased faster at shallower depths, deeper depths exhibited relative maximum concentrations for longer time periods.

  17. Physical activity profile of 2014 FIFA World Cup players, with regard to different ranges of air temperature and relative humidity

    NASA Astrophysics Data System (ADS)

    Chmura, Paweł; Konefał, Marek; Andrzejewski, Marcin; Kosowski, Jakub; Rokita, Andrzej; Chmura, Jan

    2016-09-01

    The present study attempts to assess changes in soccer players' physical activity profiles under the simultaneous influence of the different combinations of ambient temperature and relative humidity characterising matches of the 2014 FIFA World Cup hosted by Brazil. The study material consisted of observations of 340 players representing 32 national teams taking part in the tournament. The measured indices included total distances covered; distances covered with low, moderate, or high intensity; numbers of sprints performed, and peak running speeds achieved. The analysis was carried out using FIFA official match data from the Castrol Performance Index system. Ultimately, consideration was given to a combination of three air temperature ranges, i.e. below 22 °C, 22-28 °C, and above 28 °C; and two relative humidity ranges below 60 % and above 60 %. The greatest average distance recorded (10.54 ± 0.91 km) covered by players at an air temperature below 22 °C and a relative humidity below 60 %, while the shortest (9.83 ± 1.08 km) characterised the same air temperature range, but conditions of relative humidity above 60 % (p ≤ 0.001). Two-way ANOVA revealed significant differences (p ≤ 0.001) in numbers of sprints performed by players, depending on whether the air temperature range was below 22 °C (40.48 ± 11.17) or above 28 °C (30.72 ± 9.40), but only where the relative humidity was at the same time below 60 %. Results presented indicate that the conditions most comfortable for physical activity on the part of players occur at 22 °C, and with relative humidity under 60 %.

  18. Serum profiling identifies novel muscle miRNA and cardiomyopathy-related miRNA biomarkers in Golden Retriever muscular dystrophy dogs and Duchenne muscular dystrophy patients.

    PubMed

    Jeanson-Leh, Laurence; Lameth, Julie; Krimi, Soraya; Buisset, Julien; Amor, Fatima; Le Guiner, Caroline; Barthélémy, Inès; Servais, Laurent; Blot, Stéphane; Voit, Thomas; Israeli, David

    2014-11-01

    Duchenne muscular dystrophy (DMD) is a fatal, X-linked neuromuscular disease that affects 1 boy in 3500 to 5000 boys. The golden retriever muscular dystrophy dog is the best clinically relevant DMD animal model. Here, we used a high-thoughput miRNA sequencing screening for identification of candidate serum miRNA biomarkers in golden retriever muscular dystrophy dogs. We confirmed the dysregulation of the previously described muscle miRNAs, miR-1, miR-133, miR-206, and miR-378, and identified a new candidate muscle miRNA, miR-95. We identified two other classes of dysregulated serum miRNAs in muscular dystrophy: miRNAs belonging to the largest known miRNA cluster that resides in the imprinting DLK1-DIO3 genomic region and miRNAs associated with cardiac disease, including miR-208a, miR-208b, and miR-499. No simple correlation was identified between serum levels of cardiac miRNAs and cardiac functional parameters in golden retriever muscular dystrophy dogs. Finally, we confirmed a dysregulation of miR-95, miR-208a, miR-208b, miR-499, and miR-539 in a small cohort of DMD patients. Given the interspecies conservation of miRNAs and preliminary data in DMD patients, these newly identified dysregulated miRNAs are strong candidate biomarkers for DMD patients.

  19. Solid rocket booster retrieval operations

    NASA Technical Reports Server (NTRS)

    Rasmussen, A. M.

    1985-01-01

    Solid Rocket Booster Retrieval operations are discussed in detail. The recovery of expended boosters and associated hardware without damage attributable to retrieval procedures is the main goal. The retrieval force consists tof ship's personnel and retrieval team members, each of whom has been trained and is highly skilled in multi-faceted operations. The retrieval force is equipped with two specially-built, highly maneuverable ships outfitted with parachute reels, retrieval cranes, towing winches, large volume-low pressure air compressors, SCUBA diving gear, inflatable boats with outboard motors and diver-operated SRB dewatering devices. The two ships are deployed in sufficient time to conduct an electronic and visual search of the impact area prior to launch. Upon search completeion, each ship takes station a safe distance from the predetermined impact point initiating both visual and electronic search in the direction of flight path, ensuring SRB acquisition at splashdown. When safe, the ships enter the impact area and commence recovery of all floating flight hardware which is subsequently returned to the Disassembly Facility for refurbishment and reuse. Retrieval techniques have evolved in parallel with equipment and flight hardware configuration changes. Additional changes have been initiated to improve personnel safety.

  20. Light propagation characteristics in photonic crystal fibers with α-power profiles of air hole diameter distributions and their application to fiber collimator

    NASA Astrophysics Data System (ADS)

    Yokota, Hirohisa; Higuchi, Keiichi; Imai, Yoh

    2016-08-01

    Light propagation characteristics in photonic crystal fibers (PCFs) with α-power profiles of air hole diameter distributions were theoretically investigated. It was clarified that the intensity peak of the beam propagating in the PCF with Gaussian beam excitation varied periodically with little power attenuation. It was found that the envelope of the periodic intensity variation depended on α. We theoretically demonstrated that the PCF with the α-power profile of the air hole diameter distribution could be applied to a collimator for a conventional PCF with uniform air holes in Gaussian beam excitation to reduce coupling loss, where a PCF of appropriate length with the α-power air hole diameter distribution was spliced to a conventional PCF. It was also found that the coupling efficiency was higher for a larger α.

  1. Efficient Methods to Assimilate Satellite Retrievals Based on Information Content. Part 2; Suboptimal Retrieval Assimilation

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Dee, D. P.

    1998-01-01

    ignores the cross-covariances between background errors and retrieval errors. We show that interactive retrieval assimilation (where the same background used for assimilation is also used in the retrieval step) is equivalent to direct assimilation of radiances with suboptimal analysis weights. We illustrate and extend these theoretical arguments with several one-dimensional assimilation experiments, where we estimate vertical atmospheric profiles using simulated data from both the High-resolution InfraRed Sounder 2 (HIRS2) and the future Atmospheric InfraRed Sounder (AIRS).

  2. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    NASA Astrophysics Data System (ADS)

    Siomos, N.; Filioglou, M.; Poupkou, A.; Liora, N.; Dimopoulos, S.; Melas, D.; Chaikovsky, A.; Balis, D. S.

    2016-06-01

    Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC), that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E) from the period 2013-2014 were used in this study.

  3. Environmental impacts of proposed Monitored Retrievable Storage

    SciTech Connect

    Scharber, Wayne K.; Macintire, H. A.; Davis, Paul E.; Cothron, Terry K.; Stephens, Barry K.; Travis, Norman; Walter, George; Mobley, Mike

    1985-12-17

    This report describes environmental impacts from a proposed monitored retrievable storage facility for spent fuels to be located in Tennessee. Areas investigated include: water supply, ground water, air quality, solid waste management, and health hazards. (CBS)

  4. The impact of day-to-day variability in input assumptions on regional satellite retrievals of NO2

    NASA Astrophysics Data System (ADS)

    Laughner, J.; Zare, A.; Cohen, R. C.

    2015-12-01

    In the retrieval of satellite measurements of NO2, the conversion of the observed slant column densities (SCDs) to the desired vertical column densities (VCDs) requires a priori knowledge of information such as NO2 profiles to calculate the air mass factor (AMF) necessary for the conversion. Day to day changes in this information introduce uncertainty in retrievals. As an example, biomass burning events substantially enhance the NO2 concentration in usually clean regions, causing an underestimation of the NO2 columns due to an incorrect NO2 profile. Similarly, AMFs for pixels surrounding a city will vary day to day as the winds shift, leading to potential underestimation of the plume downwind of the city, with consequences for estimates of NO2 lifetime calculated from these plumes. Building upon the existing BErkeley High Resolution (BEHR) NO2 retrieval, we have implemented daily a priori NO2 profiles to the retrieval algorithm for several test cases and will demonstrate the quantitative effect of these daily profiles on the retrieved NO2 columns.

  5. Identification of novel monosodium urate crystal regulated mRNAs by transcript profiling of dissected murine air pouch membranes

    PubMed Central

    Pessler, Frank; Mayer, Christian T; Jung, Sung Mun; Behrens, Ed M; Dai, Lie; Menetski, Joseph P; Schumacher, H Ralph

    2008-01-01

    that amplify or perpetuate inflammation. Transcript profiling of the isolated air pouch membrane promises to be a powerful tool for identifying genes that act at different stages of inflammation. PMID:18522745

  6. Temperature and Humidity Profiles in the TqJoint Data Group of AIRS Version 6 Product for the Climate Model Evaluation

    NASA Technical Reports Server (NTRS)

    Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher

    2014-01-01

    The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.

  7. Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire).

    PubMed

    Oliveira, Ernna H; Macedo, Claudia; Donate, Paula B; Almeida, Renata S; Pezzi, Nicole; Nguyen, Catherine; Rossi, Marcos A; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2013-01-01

    In the thymus of non-obese diabetic (NOD) mice, the expression of the autoimmune regulator (Aire) gene varies with age, and its down-regulation in young mice precedes the later emergence of type 1 diabetes mellitus (T1D). In addition, the insulin (Ins2) peripheral tissue antigen (PTA) gene, which is Aire-dependent, is also deregulated in these mice. Based in these findings, we hypothesized that the imbalance in PTA gene expression in the thymus can be associated with slight variations in Aire transcript levels. To test this, we used siRNA to knockdown Aire by in vivo electro-transfection of the thymus of BALB/c mice. The efficiency of the electro-transfection was monitored by assessing the presence of irrelevant Cy3-labeled siRNA in the thymic stroma. Importantly, Aire-siRNA reached medullary thymic epithelial cells (mTECs) down-regulating Aire. As expected, the in vivo Aire knockdown was partial and transient; the maximum 59% inhibition occurred in 48 h. The Aire knockdown was sufficient to down-regulate PTA genes; however, surprisingly, several others, including Ins2, were up-regulated. The modulation of these genes after in vivo Aire knockdown was comparable to that observed in NOD mice before the emergence of T1D. The in vitro transfections of 3.10 mTEC cells with Aire siRNA resulted in samples featuring partial (69%) and complete (100%) Aire knockdown. In these Aire siRNA-transfected 3.10 mTECs, the expression of PTA genes, including Ins2, was down-regulated. This suggests that the expression profile of PTA genes in mTECs is affected by fine changes in the transcription level of Aire.

  8. Radioactive Air Emissions Notice of Construction Application for Installation and Operation of a Waste Retrieval System in Tanks 241-AN-101

    SciTech Connect

    HILL, J.S.

    2000-05-15

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the installation and operation of one waste retrieval system in each of the following tanks; 241-AN-101, -AN-102, -AN-103, -AN-104, -AN-105 and -AN-107. Pursuant to 40 CFR 61.09 (aXI), this application is also intended to provide anticipated initial start-up notification. It is requested that EPA approval of this application will also constitute EPA acceptance of the initial start-up notification. This NOC covers the installation and operation o f a waste retrieval system in tanks 241-AN-101, -AN-102, -AN-103, -AN-104, -AN-105 and -AN-107, and the 241-AN-A/-B Valve Pits. Generally, this includes removal of existing equipment, installation of new equipment, and construction of new ancillary equipment and buildings between now and the year2011. Tanks 241-AN-101, -AN-102, -AN-103, -AN-104, -AN-105 and -AN-107 will provide waste feed for immobilization into a low activity waste (LAW) product.

  9. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  10. Mixed Layers and Satellite Retrievals

    NASA Technical Reports Server (NTRS)

    Boers, R.

    1984-01-01

    As part of the process to determine whether it is possible to retrieve boundary layer structure with the current sounding techniques, temperature retievals were performed for radiosonde profiles that showed temperature inversions. It was found that when temperature inversions exceed 8 to 10 C a retrieval will indeed show a temperature increase with height over a limited vertical distance. For weaker inversions retrieved temperatures are generally smoothly decreasing with height. It is, however, impossible to determine the actual mixed layer height from the retrievals. Whether the water vapor channels could be used in observing mixed layer structure was investigated. Temperature inversions are accompanied by significant drops in relative humidity. While this effect is very pronounced in parts of the trade wind regimes with relative humidity drops of up to 60%, it is widespread in other areas of the ocean as well. A simulation experiment was performed in which brightness temperatures were computed for smooth temperature and humidity profiles and compared with those computed from inversion profiles.

  11. Retrieving the vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: A method based on a neural network with potential for global-scale applications

    NASA Astrophysics Data System (ADS)

    Sauzède, R.; Claustre, H.; Jamet, C.; Uitz, J.; Ras, J.; Mignot, A.; D'Ortenzio, F.

    2015-01-01

    neural network-based method is developed to assess the vertical distribution of (1) chlorophyll a concentration ([Chl]) and (2) phytoplankton community size indices (i.e., microphytoplankton, nanophytoplankton, and picophytoplankton) from in situ vertical profiles of chlorophyll fluorescence. This method (FLAVOR for Fluorescence to Algal communities Vertical distribution in the Oceanic Realm) uses as input only the shape of the fluorescence profile associated with its acquisition date and geo-location. The neural network is trained and validated using a large database including 896 concomitant in situ vertical profiles of High-Performance Liquid Chromatography (HPLC) pigments and fluorescence. These profiles were collected during 22 oceanographic cruises representative of the global ocean in terms of trophic and oceanographic conditions, making our method applicable to most oceanic waters. FLAVOR is validated with respect to the retrieval of both [Chl] and phytoplankton size indices using an independent in situ data set and appears to be relatively robust spatially and temporally. To illustrate the potential of the method, we applied it to in situ measurements of the BATS (Bermuda Atlantic Time Series Study) site and produce monthly climatologies of [Chl] and associated phytoplankton size indices. The resulting climatologies appear very promising compared to climatologies based on available in situ HPLC data. With the increasing availability of spatially and temporally well-resolved data sets of chlorophyll fluorescence, one possible global-scale application of FLAVOR could be to develop 3-D and even 4-D climatologies of [Chl] and associated composition of phytoplankton communities. The Matlab and R codes of the proposed algorithm are provided as supporting information.

  12. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells.

    PubMed

    Kumru, Mert; Eren, Hilal; Catal, Tunc; Bermek, Hakan; Akarsubaşi, Alper Tunga

    2012-09-01

    Five textile azo dyes, as part of an artificial mixture, were treated in single-chamber air-cathode microbial fuel cells while simultaneously utilizing acetate for electricity production. Remazol Black, Remazol Brilliant Blue, Remazol Turquoise Blue, Reactive Yellow and Reactive Red at concentrations of 40 or 80 mg L(-1) were decolorized to a similar extent, at averages of 78, 95, 53, 93 and 74%, respectively, in 24 hours. During the process of decolorization, electricity generation from acetate oxidation continued. Power densities obtained in the presence of textile dyes ranged from 347 to 521 mW m(-2) at the current density range of 0.071 - 0.086 mA cm(-2). Microbial community analyses of cathode biofilm exhibited dynamic changes in abundant species following dye decolorization. Upon the addition of the first dye, a major change (63%) in microbial diversity was observed; however, subsequent addition of other dyes did not affect the community profile significantly. Actinobacteria, Aquamicrobium, Mesorhizobium, Ochrobactrum, Thauera, Paracoccus, Achromobacter and Chelatacoccus affiliated phylotypes were the major phylotypes detected. Our results demonstrate that microbial fuel cells could be a promising alternative for treatment of textile wastewaters and an active bacterial community can rapidly be established for simultaneous azo dye decolorization and sustainable electricity generation.

  13. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells.

    PubMed

    Kumru, Mert; Eren, Hilal; Catal, Tunc; Bermek, Hakan; Akarsubaşi, Alper Tunga

    2012-09-01

    Five textile azo dyes, as part of an artificial mixture, were treated in single-chamber air-cathode microbial fuel cells while simultaneously utilizing acetate for electricity production. Remazol Black, Remazol Brilliant Blue, Remazol Turquoise Blue, Reactive Yellow and Reactive Red at concentrations of 40 or 80 mg L(-1) were decolorized to a similar extent, at averages of 78, 95, 53, 93 and 74%, respectively, in 24 hours. During the process of decolorization, electricity generation from acetate oxidation continued. Power densities obtained in the presence of textile dyes ranged from 347 to 521 mW m(-2) at the current density range of 0.071 - 0.086 mA cm(-2). Microbial community analyses of cathode biofilm exhibited dynamic changes in abundant species following dye decolorization. Upon the addition of the first dye, a major change (63%) in microbial diversity was observed; however, subsequent addition of other dyes did not affect the community profile significantly. Actinobacteria, Aquamicrobium, Mesorhizobium, Ochrobactrum, Thauera, Paracoccus, Achromobacter and Chelatacoccus affiliated phylotypes were the major phylotypes detected. Our results demonstrate that microbial fuel cells could be a promising alternative for treatment of textile wastewaters and an active bacterial community can rapidly be established for simultaneous azo dye decolorization and sustainable electricity generation. PMID:23240212

  14. JURASSIC Retrieval Processing

    NASA Astrophysics Data System (ADS)

    Blank, J.; Ungermann, J.; Guggenmoser, T.; Kaufmann, M.; Riese, M.

    2012-04-01

    The Gimballed Limb Observer for Radiance Imaging in the Atmosphere (GLORIA) is an aircraft based infrared limb-sounder. This presentation will give an overview of the retrieval techniques used for the analysis of data produced by the GLORIA instrument. For data processing, the JUelich RApid Spectral SImulation Code 2 (JURASSIC2) was developed. It consists of a set of programs to retrieve atmospheric profiles from GLORIA measurements. The GLORIA Michelson interferometer can run with a wide range of parameters. In the dynamics mode, spectra are generate with a medium spectral and a very high temporal and spatial resolution. Each sample can contain thousands of spectral lines for each contributing trace gas. In the JURASSIC retrieval code this is handled by using a radiative transport model based on the Emissivity Growth Approximation. Deciding which samples should be included in the retrieval is a non-trivial task and requires specific domain knowledge. To ease this problem we developed an automatic selection program by analysing the Shannon information content. By taking into account data for all relevant trace gases and instrument effects, optimal integrated spectral windows are computed. This includes considerations for cross-influence of trace gases, which has non-obvious consequence for the contribution of spectral samples. We developed methods to assess the influence of spectral windows on the retrieval. While we can not exhaustively search the whole range of possible spectral sample combinations, it is possible to optimize information content using a genetic algorithm. The GLORIA instrument is mounted with a viewing direction perpendicular to the flight direction. A gimbal frame makes it possible to move the instrument 45° to both direction. By flying on a circular path, it is possible to generate images of an area of interest from a wide range of angles. These can be analyzed in a 3D-tomographic fashion, which yields superior spatial resolution along line of

  15. Validation of AIRS Cloud Cleared Radiances Using MODIS and its Affect on QualityControl

    NASA Astrophysics Data System (ADS)

    Wilson, R. C.; Schreier, M. M.

    2015-12-01

    The Atmospheric Infrared Sounder (AIRS) was launched aboard the AQUA satellite to provide measurements of temperature, humidity, and various trace gases in support of climate research and weather prediction. Only clear sky measurements of the outgoing radiance are used in the AIRS physical retrieval of temperature, water vapor, and certain trace gases. To overcome cloud contamination the clear sky radiance is estimated using an iterative procedure that combines an initial estimate of the clear state from a neural network along with a three by three grid of AIRS measurements. The radiance error estimate, a component critical to the AIRS physical retrieval, must include contributions from all assumed parameters input to the forward model on top of instrument noise and amplification from cloud clearing. When the error estimate is too large the AIRS physical retrieval becomes over-constrained to the first guess profile. Therefore quantifying the cloud cleared error estimate is essential to an effective physical retrieval. We will validate the cloud-cleared radiances through the use of nearby clear ocean scenes and with comparisons to clear pixels from the Moderate Resolution Imaging Spectro-radiometer (MODIS). AIRS cloud cleared radiances are spectrally convolved to MODIS channels for this comparison. This analysis quantifies error due to cloud-clearing and demonstrates that clear MODIS pixels can be used with the standard AIRS quality control procedure to improve identification poor retrievals.

  16. Polarimetric Retrievals of Cloud Droplet Number Concentrations

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; Cairns, B.; Hair, J. W.; Hu, Y.; Hostetler, C. A.

    2014-12-01

    Cloud droplet number concentration (CDNC) is one of the most significant microphysical properties of liquid clouds and is essential for the understanding of aerosol-cloud interaction. It impacts radiative forcing, cloud evolution, precipitation, global climate and, through observation, can be used to monitor the cloud albedo effect, or the first indirect effect. The IPCC's Fifth Assessment Report continues to consider aerosol-cloud interactions as one of the largest uncertainties in radiative forcing of climate. The SABOR experiment, which was a NASA-led ship and air campaign off the east coast of the United States during July and August of 2014, provided an opportunity for the Research Scanning Polarimeter (RSP) to develop and cross-validate a new approach of sensing CDNC with the High Spectral Resolution Lidar (HSRL). The RSP is an airborne prototype of the Aerosol Polarimetry Sensor (APS) that was on-board the Glory satellite. It is a scanning sensor that provides high-precision measurements of polarized and full-intensity radiances at multiple angles over a wide spectral range. The distinctive feature of the polarimetric technique is that it does not make any assumption of the liquid water profile within the cloud. The approach involves (1) estimating the droplet size distribution from polarized reflectance observations in the rainbow, (2) using polarized reflectance to estimate above cloud water vapor and total reflectance to find how much near infra-red light is being absorbed in clouds, (3) finding cloud physical thickness from the absorption and cloud top pressure retrievals assuming a saturated mixing ratio for water vapor and (4) determining the cloud droplet number concentration from the physical thickness and droplet size distribution retrievals. An overview of the polarimetric technique will be presented along with the results of applying the new approach to SABOR campaign data. An analysis of the algorithm's performance when compared with the HSRL

  17. Retrieval of temperature profiles and cloud parameters in the nightside mesosphere of Venus based on VIRTIS-M-IR and VENERA-15-PMV radiation measurements

    NASA Astrophysics Data System (ADS)

    Haus, R.; Arnold, G.; Kappel, D.; Piccioni, G.; Drossart, P.; Zasova, L.

    2011-10-01

    Latitudinal variations of mesospheric temperature profiles, cloud top altitudes, and cloud optical depths were investigated using both VIRTIS-M-IR and VENERA-15-PMV nadir-looking nightside radiation measurements over the northern hemisphere of Venus. Prominent and well-known temperature structures like 'cold collar' and 'hot dipole' were reexamined and decreasing cloud top altitudes towards the pole were identified. First results on spectral changes of cloud optical depth were obtained that are required to produce optimum fits of measured brightness spectra. The variations may indicate spatial and temporal changes of cloud composition.

  18. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2006-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze Atmospheric InfraRed Sounder/Advanced Microwave Sounding Unit/Humidity Sounder Brazil (AIRS/AMSU/HSB) data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lower tropospheric temperature retrieved with 80 percent cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC (Distributed Active Archive Center) in April 2003 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  19. Differential transcript profiles of MHC class Ib(Qa-1, Qa-2, and Qa-10) and Aire genes during the ontogeny of thymus and other tissues.

    PubMed

    Melo-Lima, Breno Luiz; Evangelista, Adriane Feijó; de Magalhães, Danielle Aparecida Rosa; Passos, Geraldo Aleixo; Moreau, Philippe; Donadi, Eduardo Antonio

    2014-01-01

    Qa-2 and Qa-1 are murine nonclassical MHC class I molecules involved in the modulation of immune responses by interacting with T CD8(+) and NK cell inhibitory receptors. During thymic education, the Aire gene imposes the expression of thousands of tissue-related antigens in the thymic medulla, permitting the negative selection events. Aiming to characterize the transcriptional profiles of nonclassical MHC class I genes in spatial-temporal association with the Aire expression, we evaluated the gene expression of H2-Q7(Qa-2), H2-T23(Qa-1), H2-Q10(Qa-10), and Aire during fetal and postnatal development of thymus and other tissues. In the thymus, H2-Q7(Qa-2) transcripts were detected at high levels throughout development and were positively correlated with Aire expression during fetal ages. H2-Q7(Qa-2) and H2-T23(Qa-1) showed distinct expression patterns with gradual increasing levels according to age in most tissues analyzed. H2-Q10(Qa-10) was preferentially expressed by the liver. The Aire transcriptional profile showed increased levels during the fetal period and was detectable in postnatal ages in the thymus. Overall, nonclassical MHC class I genes started to be expressed early during the ontogeny. Their levels varied according to age, tissue, and mouse strain analyzed. This differential expression may contribute to the distinct patterns of mouse susceptibility/resistance to infectious and noninfectious disorders.

  20. Lamb wave dispersion and anisotropy profiling of composite plates via non-contact air-coupled and laser ultrasound

    NASA Astrophysics Data System (ADS)

    Harb, M. S.; Yuan, F. G.

    2015-03-01

    Conventional ultrasound inspection has been a standard non-destructive testing method for providing an in-service evaluation and noninvasive means of probing the interior of a structure. In particular, measurement of the propagation characteristics of Lamb waves allows inspection of plates that are typical components in aerospace industry. A rapid, complete non-contact hybrid approach for excitation and detection of Lamb waves is presented and applied for non-destructive evaluation of composites. An air-coupled transducer (ACT) excites ultrasonic waves on the surface of a composite plate, generating different propagating Lamb wave modes and a laser Doppler vibrometer (LDV) is used to measure the out-of-plane velocity of the plate. This technology, based on direct waveform imaging, focuses on measuring dispersive curves for A0 mode in a composite laminate and its anisotropy. A two-dimensional fast Fourier transform (2D-FFT) is applied to out-of-plane velocity data captured experimentally using LDV to go from the time-spatial domain to frequency-wavenumber domain. The result is a 2D array of amplitudes at discrete frequencies and wavenumbers for A0 mode in a given propagation direction along the composite. The peak values of the curve are then used to construct frequency wavenumber and phase velocity dispersion curves, which are also obtained directly using Snell's law and the incident angle of the excited ultrasonic waves. A high resolution and strong correlation between numerical and experimental results are observed for dispersive curves with Snell's law method in comparison to 2D-FFT method. Dispersion curves as well as velocity curves for the composite plate along different directions of wave propagation are measured. The visual read-out of the dispersion curves at different propagation directions as well as the phase velocity curves provide profiling and measurements of the composite anisotropy. The results proved a high sensitivity of the air-coupled and laser

  1. Simulating satellite infrared sounding retrievals in support of Observing System Simulation Experiments (OSSEs)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Mathews, William; Irion, Frederick W.; Sturm, Erick J.

    2014-09-01

    A new set of Observing System Simulation Experiments (OSSEs) are underway to assess the impact of higher spatial and temporal resolution sounding on hurricane forecast accuracy. To support these studies, we have developed an OSSE retrieval simulation system. The system uses a simulated satellite orbit track to provide sample locations and footprint area of the infrared sounder configuration to be simulated over the region of interest. The data to be sampled are an OSSE nature run developed by the NOAA Atlantic Oceanographic Meteorological Laboratory (AOML) and the University of Miami (UM). The nature run is sampled at the sounder locations and integrated over the sounder footprint area. The resulting averaged profiles are smoothed vertically with simulated averaging kernels for the Atmospheric Infrared Sounder (AIRS) using a linear retrieval simulation to produce calculated temperature and water vapor profiles. With reasonable fidelity, the sampled and smoothed profiles simulate the retrievals we can expect from a sounder like AIRS for the orbit and sampling configurations under test. Three instruments were simulated corresponding to the AIRS 45×45km footprint in LEO, a hypothetical sounder at 2×2km footprint in LEO, and a hypothetical GEO sounder at 5×5km regional and 10km × 10km full disk footprint sizes. RMS error relative to the nature run is calculated to demonstrate the error characteristics of the simulation system. The simulated retrievals as a result of this effort are currently being assessed by NOAA AOML in an OSSE study to determine the impact of advanced hyperspectral infrared sounders on hurricane forecast improvement.

  2. Retrieval of constituent mixing ratios from limb thermal emission spectra

    NASA Technical Reports Server (NTRS)

    Shaffer, William A.; Kunde, Virgil G.; Conrath, Barney J.

    1988-01-01

    An onion-peeling iterative, least-squares relaxation method to retrieve mixing ratio profiles from limb thermal emission spectra is presented. The method has been tested on synthetic data, containing various amounts of added random noise for O3, HNO3, and N2O. The retrieval method is used to obtain O3 and HNO3 mixing ratio profiles from high-resolution thermal emission spectra. Results of the retrievals compare favorably with those obtained previously.

  3. Retrieval of constituent mixing ratios from limb thermal emission spectra

    NASA Astrophysics Data System (ADS)

    Shaffer, William A.; Kunde, Virgil G.; Conrath, Barney J.

    1988-08-01

    An onion-peeling iterative, least-squares relaxation method to retrieve mixing ratio profiles from limb thermal emission spectra is presented. The method has been tested on synthetic data, containing various amounts of added random noise for O3, HNO3, and N2O. The retrieval method is used to obtain O3 and HNO3 mixing ratio profiles from high-resolution thermal emission spectra. Results of the retrievals compare favorably with those obtained previously.

  4. Improved Soundings and Error Estimates using AIRS/AMSU Data

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2006-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1 K, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, and a post-launch algorithm which differed only in the minor details from the at-launch algorithm, have been described previously. The post-launch algorithm, referred to as AIRS Version 4.0, has been used by the Goddard DAAC to analyze and distribute AIRS retrieval products. In this paper we show progress made toward the AIRS Version 5.0 algorithm which will be used by the Goddard DAAC starting late in 2006. A new methodology has been developed to provide accurate case by case error estimates for retrieved geophysical parameters and for the channel by channel cloud cleared radiances used to derive the geophysical parameters from the AIRS/AMSU observations. These error estimates are in turn used for quality control of the derived geophysical parameters and clear column radiances. Improvements made to the retrieval algorithm since Version 4.0 are described as well as results comparing Version 5.0 retrieval accuracy and spatial coverage with those obtained using Version 4.0.

  5. Data Assimilation of AIRS Water Vapor Profiles: Impact on Precipitation Forecasts for Atmospheric River Cases Affecting the Western of the United States

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay; Zavodsky, Bradley; Jedlovec, Gary; Wick, Gary; Neiman, Paul

    2013-01-01

    Atmospheric rivers are transient, narrow regions in the atmosphere responsible for the transport of large amounts of water vapor. These phenomena can have a large impact on precipitation. In particular, they can be responsible for intense rain events on the western coast of North America during the winter season. This paper focuses on attempts to improve forecasts of heavy precipitation events in the Western US due to atmospheric rivers. Profiles of water vapor derived from from Atmospheric Infrared Sounder (AIRS) observations are combined with GFS forecasts by a three-dimensional variational data assimilation in the Gridpoint Statistical Interpolation (GSI). Weather Research and Forecasting (WRF) forecasts initialized from the combined field are compared to forecasts initialized from the GFS forecast only for 3 test cases in the winter of 2011. Results will be presented showing the impact of the AIRS profile data on water vapor and temperature fields, and on the resultant precipitation forecasts.

  6. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    PubMed

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances.

  7. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    PubMed

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances. PMID:25594282

  8. Simulation of air and ground temperatures in PMIP3/CMIP5 last millennium simulations: implications for climate reconstructions from borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    García-García, A.; Cuesta-Valero, F. J.; Beltrami, H.; Smerdon, J. E.

    2016-04-01

    For climate models to simulate the continental energy storage of the Earth’s energy budget they must capture the processes that partition energy across the land-atmosphere boundary. We evaluate herein the thermal consequences of these processes as simulated by models in the third phase of the paleoclimate modelling intercomparison project and the fifth phase of the coupled model intercomparison project (PMIP3/CMIP5). We examine air and ground temperature tracking at decadal and centennial time-scales within PMIP3 last-millennium simulations concatenated to historical simulations from the CMIP5 archive. We find a strong coupling between air and ground temperatures during the summer from 850 to 2005 CE. During the winter, the insulating effect of snow and latent heat exchanges produce a decoupling between the two temperatures in the northern high latitudes. Additionally, we use the simulated ground surface temperatures as an upper boundary condition to drive a one-dimensional conductive model in order to derive synthetic temperature-depth profiles for each PMIP3/CMIP5 simulation. Inversion of these subsurface profiles yields temperature trends that retain the low-frequency variations in surface air temperatures over the last millennium for all the PMIP3/CMIP5 simulations regardless of the presence of seasonal decoupling in the simulations. These results demonstrate the robustness of surface temperature reconstructions from terrestrial borehole data and their interpretation as indicators of past surface air temperature trends and continental energy storage.

  9. Photogrammetric Retrieval of Etna's Plume Height from SEVIRI and MODIS

    NASA Astrophysics Data System (ADS)

    Zaksek, K.; Ganci, G.; Hort, M. K.

    2013-12-01

    Even remote volcanoes can impact the modern society due to volcanic ash dispersion in the atmosphere. A lot of research is currently dedicated to minimizing the impact of volcanic ash on air traffic. But the ash transport in the atmosphere and its deposition on land and in the oceans may also significantly influence the climate through modifications of atmospheric CO2. The emphasis of this contribution is the retrieval of volcanic ash plume height. This is important information for air traffic, to predict ash transport and to estimate the mass flux of the ejected material. The best way to monitor volcanic ash cloud top height (ACTH) on the global level is using satellite remote sensing. The most commonly used method for satellite ACTH compares brightness temperature of the cloud with the atmospheric temperature profile. Because of well-known uncertainties of this method we propose photogrammetric methods based on the parallax between data retrieved from geostationary (SEVIRI, HRV band; 1000 m spatial resolution) and polar orbiting satellites (MODIS, band 1; 250 m spatial resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously butMODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. ACTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The proposed method has already been tested for the case of the Eyjafjallajökull eruption in April 2010. This case study had almost perfect conditions as the plume was vast and stretching over a homogeneous background - ocean. Here we show results of ACTH estimation during lava fountaining activity of Mount Etna in years 2011-2013. This activity resulted in volcanic ash plumes that are much smaller than

  10. Apperception of Clouds in AIRS Data

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Smith, William L.

    2005-01-01

    Our capacity to simulate the radiative characteristics of the Earth system has advanced greatly over the past decade. However, new space based measurements show that idealized simulations might not adequately represent the complexity of nature. For example, AIRS simulated multi-layer cloud clearing research provides an excellent groundwork for early Atmospheric Infra-Red Sounder (AIRS) operational cloud clearing and atmospheric profile retrieval. However, it doesn't reflect the complicated reality of clouds over land and coastal areas. Thus far, operational AIRS/AMSU (Advanced Microwave Sounding Unit) cloud clearing is not only of low yield but also of unsatisfying quality. This is not an argument for avoiding this challenging task, rather a powerful argument for exploring other synergistic approaches, and for adapting these strategies toward improving both indirect and direct use of cloudy infrared sounding data. Ample evidence is shown in this paper that the indirect use of cloudy sounding data by way of cloud clearing is sub-optimal for data assimilation. Improvements are needed in quality control, retrieval yield, and overall cloud clearing retrieval performance. For example, cloud clearing over land, especially over the desert surface, has led to much degraded retrieval quality and often a very low yield of quality controlled cloud cleared radiances. If these indirect cloud cleared radiances are instead to be directly assimilated into NWP models, great caution must be used. Our limited and preliminary cloud clearing results from AIRS/AMSU (with the use of MODIS data) and an AIRS/MODIS synergistic approach have, however, shown that higher spatial resolution multispectral imagery data can provide much needed quality control of the AIRS/AMSU cloud clearing retrieval. When AIRS and Moderate Resolution Imaging Spectroradiometer (MODIS) are used synergistically, a higher spatial resolution over difficult terrain (especially desert areas) can be achieved and with a

  11. Processing AIRS Scientific Data Through Level 2

    NASA Technical Reports Server (NTRS)

    Oliphant, Robert; Lee, Sung-Yung; Chahine, Moustafa; Susskind, Joel; arnet, Christopher; McMillin, Larry; Goldberg, Mitchell; Blaisdell, John; Rosenkranz, Philip; Strow, Larrabee

    2007-01-01

    The Atmospheric Infrared Spectrometer (AIRS) Science Processing System (SPS) is a collection of computer programs, denoted product generation executives (PGEs), for processing the readings of the AIRS suite of infrared and microwave instruments orbiting the Earth aboard NASA s Aqua spacecraft. AIRS SPS at an earlier stage of development was described in "Initial Processing of Infrared Spectral Data' (NPO-35243), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 39. To recapitulate: Starting from level 0 (representing raw AIRS data), the PGEs and their data products are denoted by alphanumeric labels (1A, 1B, and 2) that signify the successive stages of processing. The cited prior article described processing through level 1B (the level-2 PGEs were not yet operational). The level-2 PGEs, which are now operational, receive packages of level-1B geolocated radiance data products and produce such geolocated geophysical atmospheric data products such as temperature and humidity profiles. The process of computing these geophysical data products is denoted "retrieval" and is quite complex. The main steps of the process are denoted microwave-only retrieval, cloud detection and cloud clearing, regression, full retrieval, and rapid transmittance algorithm.

  12. Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2009-01-01

    The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.

  13. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-10-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of <10 %. This new and optimized vertical-resolution scheme retains the ability to resolve fluctuations in the known ozone profile, but it now allows near-field signals to be more appropriately smoothed. With these revisions to the previous TROPOZ retrieval, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the

  14. Analyzing Document Retrievability in Patent Retrieval Settings

    NASA Astrophysics Data System (ADS)

    Bashir, Shariq; Rauber, Andreas

    Most information retrieval settings, such as web search, are typically precision-oriented, i.e. they focus on retrieving a small number of highly relevant documents. However, in specific domains, such as patent retrieval or law, recall becomes more relevant than precision: in these cases the goal is to find all relevant documents, requiring algorithms to be tuned more towards recall at the cost of precision. This raises important questions with respect to retrievability and search engine bias: depending on how the similarity between a query and documents is measured, certain documents may be more or less retrievable in certain systems, up to some documents not being retrievable at all within common threshold settings. Biases may be oriented towards popularity of documents (increasing weight of references), towards length of documents, favour the use of rare or common words; rely on structural information such as metadata or headings, etc. Existing accessibility measurement techniques are limited as they measure retrievability with respect to all possible queries. In this paper, we improve accessibility measurement by considering sets of relevant and irrelevant queries for each document. This simulates how recall oriented users create their queries when searching for relevant information. We evaluate retrievability scores using a corpus of patents from US Patent and Trademark Office.

  15. Emissions Estimation from Satellite Retrievals: a Review of Current Capability

    NASA Technical Reports Server (NTRS)

    Streets, David; Canty, Timothy; Carmichael, Gregory R.; deFoy, Benjamin; Dickerson, Russell R.; Duncan, Bryan N.; Edwards, David P.; Haynes, John A.; Henze, Daven K.; Houyoux, Marc R.; Jacob, Daniel J.; Krotkov, Nickolay A.; Lamsal, Lok N.; Liu, Yang; Lu, Zifeng; Martin, Randall V.; Pfister, Gabriele G.; Pinder, Robert W.; Salawitch, Ross J.; Wecht, Kevin J.

    2013-01-01

    Since the mid-1990s a new generation of Earth-observing satellites has been able to detect tropospheric air pollution at increasingly high spatial and temporal resolution. Most primary emitted species can be measured by one or more of the instruments. This review article addresses the question of how well we can relate the satellite measurements to quantification of primary emissions and what advances are needed to improve the usability of the measurements by U.S. air quality managers. Built on a comprehensive literature review and comprising input by both satellite experts and emission inventory specialists, the review identifies several targets that seem promising: large point sources of NOx and SO2, species that are difficult to measure by other means (NH3 and CH4, for example), area sources that cannot easily be quantified by traditional bottom-up methods (such as unconventional oil and gas extraction, shipping, biomass burning, and biogenic sources), and the temporal variation of emissions (seasonal, diurnal, episodic). Techniques that enhance the usefulness of current retrievals (data assimilation, oversampling, multi-species retrievals, improved vertical profiles, etc.) are discussed. Finally, we point out the value of having new geostationary satellites like GEO-CAPE and TEMPO over North America that could provide measurements at high spatial (few km) and temporal (hourly) resolution.

  16. The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field Wind-Tunnel Experiment Over a Wide Range of Altitude

    NASA Astrophysics Data System (ADS)

    Han, Qingjie; Qu, Jianjun; Dong, Zhibao; Zu, Ruiping; Zhang, Kecun; Wang, Hongtao; Xie, Shengbo

    2013-11-01

    Aeolian sand transport results from interactions between the surface and the airflow above. Air density strongly constrains airflow characteristics and the resulting flow of sand, and therefore should not be neglected in sand transport models. In the present study, we quantify the influence of air density on the sand flow structure, sand transport rate, adobe abrasion profiles, and abrasion rate using a portable wind-tunnel in the field. For a given wind speed, the flow's ability to transport sand decreases at low air density, so total sand transport decreases, but the saltation height increases. Thus, the damage to human structures increases compared with what occurs at lower altitudes. The adobe abrasion rate by the cloud of blowing sand decreases exponentially with increasing height above the surface, while the wind erosion and dust emission intensity both increase with increasing air density. Long-term feedback processes between air density and wind erosion suggest that the development of low-altitude areas due to long-term deflation plays a key role in dust emission, and will have a profound significance for surface Aeolian processes and geomorphology.

  17. Validation of selected analytical methods using accuracy profiles to assess the impact of a Tobacco Heating System on indoor air quality.

    PubMed

    Mottier, Nicolas; Tharin, Manuel; Cluse, Camille; Crudo, Jean-René; Lueso, María Gómez; Goujon-Ginglinger, Catherine G; Jaquier, Anne; Mitova, Maya I; Rouget, Emmanuel G R; Schaller, Mathieu; Solioz, Jennifer

    2016-09-01

    Studies in environmentally controlled rooms have been used over the years to assess the impact of environmental tobacco smoke on indoor air quality. As new tobacco products are developed, it is important to determine their impact on air quality when used indoors. Before such an assessment can take place it is essential that the analytical methods used to assess indoor air quality are validated and shown to be fit for their intended purpose. Consequently, for this assessment, an environmentally controlled room was built and seven analytical methods, representing eighteen analytes, were validated. The validations were carried out with smoking machines using a matrix-based approach applying the accuracy profile procedure. The performances of the methods were compared for all three matrices under investigation: background air samples, the environmental aerosol of Tobacco Heating System THS 2.2, a heat-not-burn tobacco product developed by Philip Morris International, and the environmental tobacco smoke of a cigarette. The environmental aerosol generated by the THS 2.2 device did not have any appreciable impact on the performances of the methods. The comparison between the background and THS 2.2 environmental aerosol samples generated by smoking machines showed that only five compounds were higher when THS 2.2 was used in the environmentally controlled room. Regarding environmental tobacco smoke from cigarettes, the yields of all analytes were clearly above those obtained with the other two air sample types. PMID:27343591

  18. Validation of selected analytical methods using accuracy profiles to assess the impact of a Tobacco Heating System on indoor air quality.

    PubMed

    Mottier, Nicolas; Tharin, Manuel; Cluse, Camille; Crudo, Jean-René; Lueso, María Gómez; Goujon-Ginglinger, Catherine G; Jaquier, Anne; Mitova, Maya I; Rouget, Emmanuel G R; Schaller, Mathieu; Solioz, Jennifer

    2016-09-01

    Studies in environmentally controlled rooms have been used over the years to assess the impact of environmental tobacco smoke on indoor air quality. As new tobacco products are developed, it is important to determine their impact on air quality when used indoors. Before such an assessment can take place it is essential that the analytical methods used to assess indoor air quality are validated and shown to be fit for their intended purpose. Consequently, for this assessment, an environmentally controlled room was built and seven analytical methods, representing eighteen analytes, were validated. The validations were carried out with smoking machines using a matrix-based approach applying the accuracy profile procedure. The performances of the methods were compared for all three matrices under investigation: background air samples, the environmental aerosol of Tobacco Heating System THS 2.2, a heat-not-burn tobacco product developed by Philip Morris International, and the environmental tobacco smoke of a cigarette. The environmental aerosol generated by the THS 2.2 device did not have any appreciable impact on the performances of the methods. The comparison between the background and THS 2.2 environmental aerosol samples generated by smoking machines showed that only five compounds were higher when THS 2.2 was used in the environmentally controlled room. Regarding environmental tobacco smoke from cigarettes, the yields of all analytes were clearly above those obtained with the other two air sample types.

  19. Improving Forecast Skill by Assimilation of AIRS Temperature Soundings

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Reale, Oreste

    2010-01-01

    AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best

  20. Connectionist Interaction Information Retrieval.

    ERIC Educational Resources Information Center

    Dominich, Sandor

    2003-01-01

    Discussion of connectionist views for adaptive clustering in information retrieval focuses on a connectionist clustering technique and activation spreading-based information retrieval model using the interaction information retrieval method. Presents theoretical as well as simulation results as regards computational complexity and includes…

  1. New Technology-Large-Area Three- Dimensional Surface Profiling Using Only Focused Air-Coupled Ultrasound-Given 1999 R&D 100 Award

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    2000-01-01

    Surface topography, which significantly affects the performance of many industrial components, is normally measured with diamond-tip profilometry over small areas or with optical scattering methods over larger areas. To develop air-coupled surface profilometry, the NASA Glenn Research Center at Lewis Field initiated a Space Act Agreement with Sonix, Inc., through two Glenn programs, the Advanced High Temperature Engine Materials Program (HITEMP) and COMMTECH. The work resulted in quantitative surface topography profiles obtained using only high-frequency, focused ultrasonic pulses in air. The method is nondestructive, noninvasive, and noncontact, and it does not require light-reflective surfaces. Air surface profiling may be desirable when diamond-tip or laserbased methods are impractical, such as over large areas, when a significant depth range is required, or for curved surfaces. When the configuration is optimized, the method is reasonably rapid and all the quantitative analysis facilities are online, including two- and three-dimensional visualization, extreme value filtering (for faulty data), and leveling.

  2. Simulation of Air and Ground Temperatures in PMIP3/CMIP5 Last Millennium Simulations: Implications for Climate Reconstructions from Borehole Temperature Profiles

    NASA Astrophysics Data System (ADS)

    Beltrami, Hugo; García-García, Almudena; José Cuesta-Valero, Francisco; Smerdon, Jason

    2016-04-01

    For General Circulation Models (GCMs) to simulate the continental energy storage of the Earth's energy budget it is crucial that they correctly capture the processes that partition energy across the land-atmosphere boundary. We evaluate herein the characteristics of these processes as simulated by models in the third phase of the Paleoclimate Modelling Intercomparison Project and the fifth phase of the Coupled Model Intercomparison Project (PMIP3/CMIP5). We examine the seasonal differences between air and ground temperatures within PMIP3 last-millennium simulations concatenated with historical simulations from the CMIP5 archive. We find a strong air-ground coupling during the summer from 850 to 2000 CE. During the winter, the insulating effect of snow and latent heat exchanges produce a decoupling between air and ground temperatures in the northern high latitudes. Additionally, we use the simulated temperature trends as an upper boundary condition to force a one-dimensional conductive model to derive synthetic temperature-depth profiles for each PMIP3/CMIP5 simulation. The inversions of these subsurface profiles yield temperature trends that retain the surface temperature variations of the last millennium for all the PMIP3/CMIP5 simulations. These results support the use of underground temperatures to reconstruct past changes in ground surface temperature and to estimate the continental energy storage.

  3. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method.

    PubMed

    Sica, R J; Haefele, A

    2016-02-01

    Lidar measurements of the atmospheric water vapor mixing ratio provide an excellent complement to radiosoundings and passive, ground-based remote sensors. Lidars are now routinely used that can make high spatial-temporal resolution measurements of water vapor from the surface to the stratosphere. Many of these systems can operate during the day and night, with operation only limited by clouds thick enough to significantly attenuate the laser beam. To enhance the value of these measurements for weather and climate studies, this paper presents an optimal estimation method (OEM) to retrieve the water vapor mixing ratio, aerosol optical depth profile, Ångstrom exponent, lidar constants, detector dead times, and measurement backgrounds from multichannel vibrational Raman-scatter lidars. The OEM retrieval provides the systematic uncertainties due to the overlap function, calibration factor, air density and Rayleigh-scatter cross sections, in addition to the random uncertainties of the retrieval due to measurement noise. The OEM also gives the vertical resolution of the retrieval as a function of height, as well as the height to which the contribution of the a priori is small. The OEM is applied to measurements made by the Meteoswiss Raman Lidar for Meteorological Observations (RALMO) in the day and night for clear and cloudy conditions. The retrieved water vapor mixing ratio is in excellent agreement with both the traditional lidar retrieval method and coincident radiosoundings. PMID:26836078

  4. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method.

    PubMed

    Sica, R J; Haefele, A

    2016-02-01

    Lidar measurements of the atmospheric water vapor mixing ratio provide an excellent complement to radiosoundings and passive, ground-based remote sensors. Lidars are now routinely used that can make high spatial-temporal resolution measurements of water vapor from the surface to the stratosphere. Many of these systems can operate during the day and night, with operation only limited by clouds thick enough to significantly attenuate the laser beam. To enhance the value of these measurements for weather and climate studies, this paper presents an optimal estimation method (OEM) to retrieve the water vapor mixing ratio, aerosol optical depth profile, Ångstrom exponent, lidar constants, detector dead times, and measurement backgrounds from multichannel vibrational Raman-scatter lidars. The OEM retrieval provides the systematic uncertainties due to the overlap function, calibration factor, air density and Rayleigh-scatter cross sections, in addition to the random uncertainties of the retrieval due to measurement noise. The OEM also gives the vertical resolution of the retrieval as a function of height, as well as the height to which the contribution of the a priori is small. The OEM is applied to measurements made by the Meteoswiss Raman Lidar for Meteorological Observations (RALMO) in the day and night for clear and cloudy conditions. The retrieved water vapor mixing ratio is in excellent agreement with both the traditional lidar retrieval method and coincident radiosoundings.

  5. Investigation of NO2 vertical distribution from satellite data by using two NO2 DOAS retrievals

    NASA Astrophysics Data System (ADS)

    Behrens, Lisa K.; Hilboll, Andreas; Richter, Andreas; Peters, Enno; Burrows, John P.

    2016-04-01

    NO2 is an important indicator for air pollution from anthropogenic as well as natural sources. NOx emission sources and their horizontal distribution are well known from satellite measurements. In contrast, knowledge of the vertical NO2 distribution is only limited. To address this issue we developed a new NO2 differential optical absorption spectroscopy (DOAS) retrieval in the UV spectral range for satellite observations from the GOME-2 instrument on board EUMETSAT's MetOp-A satellite. This new UV NO2 retrieval is compared to a common NO2 retrieval in the visible spectral range. Here we show that by using retrievals in the UV and visible, sensitivity to the vertical distribution of NO2 can be achieved in satellite measurements. Box air mass factor calculations show that sensitivity below 9km is clearly higher in the visible spectral range whereas above 9km, the sensitivity is somewhat higher in the UV range. Due to the higher sensitivity of the visible spectral range closer to the ground, the NO2 slant columns derived from the visible spectral range are mostly higher than in the UV spectral range. Nevertheless, our new NO2 retrieval and the common NO2 retrieval from the visible spectral range show a similar horizontal distribution. In both spectral ranges, well known NO2 signals over highly polluted areas, e.g., China or biomass burning areas like Africa south of the equator can be observed. However in some areas, NO2 signals clearly visible in the visible spectral range cannot be detected in the UV spectral range, such as in Africa north of the equator over the biomass burning regions. From the differences in NO2 slant columns, we can gain insight into the vertical distribution of NO2. By using air mass factors, slant columns can be converted into vertical columns. For air mass factor calculations, an a priori NO2 profile is needed from model simulations, here the MACC2 interim reanalysis fields. If the model simulates the NO2 profile with correct height

  6. Retrieval of Minor Species Densities From Limb Scatter Measurements by OSIRIS on Odin Using a Modified Onion Peeling Method

    NASA Astrophysics Data System (ADS)

    Auvinen, H.; Oikarinen, L.; Kyrola, E.; Siiskonen, T.; Hassinen, S.; Odin Team

    2002-05-01

    In this paper we present a Modified Onion Peeling (MOP) method to retrieve minor species densities from UV-visible limb scatter measurements by OSIRIS on Odin. We retrieve vertical profiles of ozone, NO2, OClO and BrO densities, and also aerosol and Rayleigh extinction from a limb scan between altitudes 60 (alternatively 120 km) to 7 km. The MOP method uses the whole UV-visible spectral range of OSIRIS. The large number of wavelength points minimizes the sensitivity of the retrieval to measurement noise. In order to relax requirements on absolute calibration the measurements are divided with a reference measurement made at a high tangent altitude by the same instrument. Multiple scattering is taken into account by pre-calculated total to single scattering radiance ratios tabulated as a function of wavelength, tangent altitude and several other relevant parameters. Our method uses air density profiles from ECMWF as a prior data for the simulation of the reference spectrum. A corresponding temperature profile from ECMWF is used also as a prior during the inversion process. The method uses absolute cross sections. We approximate the atmosphere to be locally spherically symmetric. The inversion is handled as a non-linear problem and several constituents are inverted simultaneously. We show first retrieval results from selected OSIRIS scans. These results are compared against validating measurements. Odin is a Swedish-led satellite project funded jointly by Sweden (SNSB), Canada (CSA), Finland (Tekes) and France (CNES).

  7. Ceilometer calibration for retrieval of aerosol optical properties

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Kai, Kenji; Kawai, Kei; Nagai, Tomohiro; Sakai, Tetsu; Yamazaki, Akihiro; Uchiyama, Akihiro; Batdorj, Dashdondog; Sugimoto, Nobuo; Nishizawa, Tomoaki

    2015-03-01

    Ceilometers are durable compact backscatter lidars widely used to detect cloud base height. They are also useful for measuring aerosols. We introduced a ceilometer (CL51) for observing dust in a source region in Mongolia. For retrieving aerosol profiles with a backscatter lidar, the molecular backscatter signal in the aerosol free heights or system constant of the lidar is required. Although the system constant of the ceilometer is calibrated by the manufacturer, it is not necessarily accurate enough for the aerosol retrieval. We determined a correction factor, which is defined as the ratio of true attenuated backscattering coefficient to the measured attenuated backscattering coefficient, for the CL51 ceilometer using a dual-wavelength Mie-scattering lidar in Tsukuba, Japan before moving the ceilometer to Dalanzadgad, Mongolia. The correction factor determined by minimizing the difference between the ceilometer and lidar backscattering coefficients was approximately 1.2±0.1. Applying the correction to the CL51 signals, the aerosol optical depth (AOD) agreed well with the sky-radiometer AOD during the observation period (13-17 February 2013) in Tsukuba (9 ×10-3 of mean square error). After moving the ceilometer to Dalanzadgad, however, the AOD observed with the CL51 (calibrated by the correction factor determined in Tsukuba) was approximately 60% of the AErosol RObotic NETwork (AERONET) sun photometer AOD. The possible causes of the lower AOD results are as follows: (1) the limited height range of extinction integration (< 3 km); (2) change in the correction factor during the ceilometer transportation or with the window contamination in Mongolia. In both cases, on-site calibrations by dual-wavelength lidar are needed. As an alternative method, we showed that the backward inversion method was useful for retrieving extinction coefficients if the AOD was larger than 1.5. This retrieval method does not require the system constant and molecular backscatter signals

  8. A retrieval algorithm for approaching XCH4 from satellite measurements: Sensitivity study and preliminary test

    NASA Astrophysics Data System (ADS)

    Deng, Jianbo; Liu, Yi; Yang, Dongxu; Cai, Zhaonan

    2014-05-01

    Satellite measurements of column-averaged dry air mole fractions of CH4 (XCH4) in shortwave infrared (SWIR) with very high spectral resolution and high sensitivity near the surface, such as the Thermal And Near-infrared Sensor for carbon Observation (TANSO) onboard the Green gas Observing SATellite (GOSAT, launched 2009), are expected to provide the large spatial and temporal information on the sources and sinks of CH4, which would contribute to the understanding of CH4 variation in global region and its impact on climate change. One of the important science requirements of monitoring CH4 from hypsespectral measurements is to establish a highly accurate retrieval algorithm. To approach XCH4efficiently, we developed a SWIR two-band (5900-6150 cm-1 and 4800-4900 cm-1) physical retrieval algorithm after a series of sensitivity study. The forward model in this algorithm was based on a vector linearized discrete ordinate radiative transfer (VLIDORT) model coupled with a line-by-line radiative transfer model (LBLRTM), which was applied to realize online calculation of absorption coefficient and backscattered solar radiance. The information content of CH4, H2O, CO2 and temperature in different retrieval band and bands combination was investigated in order to improve the algorithm. The selected retrieval bands retains more than 90% of the information content of CH4, CO2, and temperature, and more than 85% of that of H2O. The sensitivity studies demonstrate that the uncertainty of H2O, temperature and CO2 will cause unacceptable errors if they were ignored, for example, a 10% bias on H2O profile will lead to 50 ppb retrieval error, and a 5 K shift on temperature profile will cause 20 ppb error to the result while CO2 has little influence. The simulated retrieval test shows it is more efficient to revise the influence of temperature and H2O with a profile model than with a temperature offset and a H2O scale factor model. A preliminarily retrieval test using GOSAT Level 1B

  9. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)

    DOE Data Explorer

    Williams, Christopher; Jensen, Mike

    2012-11-06

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

  10. Characteristics of Water Vapor Under Partially Cloudy Conditions: Observations by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Fishbein, E.

    2003-12-01

    The variability and quality of tropical water vapor derived from the Atmospheric Infrared Sounder (AIRS) are characterized. Profiles of water vapor, temperature and surface characteristics (states) are derived from coincident Advance Microwave Sounding Unit (AMSU) and 3x3 sets of AIRS footprints. States are obtained under partially cloudy conditions by estimating the radiances emitted from the clear portions of the AIRS footprints. This procedure, referred to as cloud clearing, amplifies the measurement noise, and the amplification increases with cloud amount and uniformity. Cumulus and stratus cloud amount are related to the water vapor saturation, and noise amplification and water vapor amount may be partially correlated. The correlations between the uncertainty of retrieved water vapor, cloudiness and noise amplification are characterized. Retrieved water vapor is generally good when the amplification is less than three. Water vapor profiles are compared with correlative data, such as radiosondes and numerical weather center analyses and are in relatively good agreement in the lower troposphere

  11. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu

    2006-01-01

    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  12. Desert Dust Satellite Retrieval Intercomparison

    NASA Technical Reports Server (NTRS)

    Carboni, E.; Thomas, G. E.; Sayer, A. M.; Siddans, R.; Poulsen, C. A.; Grainger, R. G.; Ahn, C.; Antoine, D.; Bevan, S.; Braak, R.; Brindley, H.; DeSouza-Mchado, S.; Deuze, J. L.; Diner, D.; Ducos, F.; Grey, W.; Hsu, C.; Kalashnikova, O. V.; Kahn, R.; North, P. R. J.; Salustro, C.; Smith, A.; Tanre, D.; Torres, O.; Veihelmann, B.

    2012-01-01

    This work provides a comparison of satellite retrievals of Saharan desert dust aerosol optical depth (AOD) during a strong dust event through March 2006. In this event, a large dust plume was transported over desert, vegetated, and ocean surfaces. The aim is to identify and understand the differences between current algorithms, and hence improve future retrieval algorithms. The satellite instruments considered are AATSR, AIRS, MERIS, MISR, MODIS, OMI, POLDER, and SEVIRI. An interesting aspect is that the different algorithms make use of different instrument characteristics to obtain retrievals over bright surfaces. These include multi-angle approaches (MISR, AATSR), polarisation measurements (POLDER), single-view approaches using solar wavelengths (OMI, MODIS), and the thermal infrared spectral region (SEVIRI, AIRS). Differences between instruments, together with the comparison of different retrieval algorithms applied to measurements from the same instrument, provide a unique insight into the performance and characteristics of the various techniques employed. As well as the intercomparison between different satellite products, the AODs have also been compared to co-located AERONET data. Despite the fact that the agreement between satellite and AERONET AODs is reasonably good for all of the datasets, there are significant differences between them when compared to each other, especially over land. These differences are partially due to differences in the algorithms, such as as20 sumptions about aerosol model and surface properties. However, in this comparison of spatially and temporally averaged data, at least as significant as these differences are sampling issues related to the actual footprint of each instrument on the heterogeneous aerosol field, cloud identification and the quality control flags of each dataset.

  13. Coupling Between Air and Ground Temperatures in PMIP3/CMIP5 Last Millennium Simulations and the Implications for Climate Reconstructions from Borehole Temperature Profiles

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; García-García, A.; Cuesta-Valero, F. J.; Smerdon, J. E.

    2015-12-01

    The continental energy storage for the second half of the 20th20^{th} century has been estimated from geothermal data to be about 7±1×1021J7 ± 1 × 10^{21} J under the assumption that there exists a long-term coupling between the lower atmosphere and the continental subsurface. For General Circulation Models (GCMs) to simulate the continental energy storage of the Earth's energy budget, however, it is crucial that they correctly capture the processes that partition energy across the land-atmosphere boundary. We evaluate herein the characteristics of these processes as simulated by models in the third phase of the Paleoclimate Modelling Intercomparison Project and the fifth phase of the Coupled Model Intercomparison Project (PMIP33/CMIP55). We examine the seasonal differences between air and ground temperatures within PMIP3 last-millennium simulations concatenated with historical simulations from the CMIP5 archive. We find a strong air-ground coupling during the summer from 850850 to 20002000 CE. During the winter, the insulating effect of snow and latent heat exchanges produce a decoupling between air and ground temperatures in the northern high latitudes. These seasonal differences decrease with depth, supporting the central assumption of climate reconstructions from borehole temperature profiles. Additionally, we use the simulated temperature trends as an upper boundary condition to force a one-dimensional conductive model to derive synthetic temperature-depth profiles for each PMIP3/CMIP5 simulation. The inversions of these subsurface profiles yield temperature trends that retain the surface temperature variations of the last millennium for all the PMIP3/CMIP5 simulations. These results support the use of underground temperatures to reconstruct past changes in ground surface temperature and to estimate the continental energy storage. Results also provide guidance for improving the land-surface components of GCMs.

  14. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1 017.8 eV

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2014-12-01

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1 017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. The energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.

  15. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $$10^{17.8}$$ eV

    DOE PAGES

    Aab, Alexander

    2014-12-31

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. Finally, the energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations formore » different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.« less

  16. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $10^{17.8}$ eV

    SciTech Connect

    Aab, Alexander

    2014-12-31

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. Finally, the energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.

  17. AQA - Air Quality model for Austria: comparison of ALADIN and ALARO forecasts with observed meteorological profiles and PM10 predictions with CAMx

    NASA Astrophysics Data System (ADS)

    Hirtl, M.; Krüger, B. C.; Kaiser, A.

    2009-09-01

    In AQA, Air Quality model for Austria, the regional weather forecast model ALADIN-Austria of the Central Institute for Meteorology and Geodynamics (ZAMG) is used in combination with the chemical transport model CAMx (www.camx.com) to conduct forecasts of gaseous and particulate air pollutants over Austria. The forecasts which are done in cooperation with the University of Natural Resources and Applied Life Sciences in Vienna (BOKU) are supported by the regional governments since 2005. In the current model version AQA uses the operational meteorological forecasts conducted with ALADIN which has a horizontal resolution of 9.7 km. Since 2008 the higher resolved ALARO is also available at the ZAMG. It has a horizontal resolution of 4.9 km and models the PBL with more vertical layers than ALADIN. ALARO also uses more complex algorithms to calculate precipitation, radiation and TKE. Another advantage of ALARO concerning the chemical modelling with CAMx is that additionally to the higher resolved meteorological forecasts it is possible to use finer emission inventories which are available for Austria. From 2006 to 2007 a SODAR-RASS of the ZAMG was operated in the north-eastern Austrian flat lands (Kittsee). In this study the measured vertical profiles of wind and temperature are compared with the model predictions. The evaluation is conducted for an episode in January 2007 when high PM10 concentrations were measured at the air quality station Kittsee. Analysis of the RASS-temperature-profiles show that during this episode a strong nocturnal inversion developed at the investigated area. The ability of the models ALADIN and ALARO to predict this complex meteorological condition is investigated. Both models are also used as meteorological driver for the chemical dispersion model CAMx and the results of predicted PM10 concentrations are compared to air quality measurements.

  18. Composition profiles and health risk of PCDD/F in outdoor air and fly ash from municipal solid waste incineration and adjacent villages in East China.

    PubMed

    Li, Jiafu; Dong, Han; Sun, Jie; Nie, Jihua; Zhang, Shuyu; Tang, Jinshun; Chen, Zhihai

    2016-11-15

    In present study, composition profiles and health risk of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in outdoor air and fly ash from domestic waste treatment center (DWTC) were studied. In addition, the composition profiles and health risk of PCDD/F in outdoor air from adjacent villages were researched and used to quantitatively analyze the difference between onsite workers and adjacent villagers. Moreover, the difference between old intake method and new inhalation dosimetry method in the process of assessing the health risk of PCDD/Fs in outdoor air was quantitatively compared and analyzed. The results of this study were summarized as follows. (1) The 95th percentile carcinogenic risk (CR) and non-carcinogenic risk (non-CR) for onsite workers and adjacent villagers were much lower than the threshold values of 10(-6) and 1.0, respectively, suggesting no potential health risk. (2) The 95th percentile CR for onsite workers was 1.27×10(-8) and was 64.8 times higher than that of adjacent villagers (1.99×10(-10)). (3) The 95th percentile non-CR for onsite workers and adjacent villagers were 1.37×10(-4) and 1.31×10(-7), respectively. (3) Accidental ingestion of fly ash was the largest contributor to CR and non-CR for onsite workers, contributing 62.98% and 64.04% to CR and non-CR, respectively. (4) The CR and non-CR of PCDD/Fs in outdoor air for onsite workers and adjacent villagers which calculated by old intake method was much higher than the results from new inhalation dosimetry method. The results quantitatively showed the levels and potential risks of PCDD/Fs posed by a DWTC site, which can be helpful to predict the influence from DWTC sites and promote the management of DWTC in China. PMID:27432723

  19. Thermodynamic and cloud parameter retrieval using infrared spectral data

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.

    2005-01-01

    High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).

  20. Comprehensive Retrieval of Spatio-temporal Variations in Atmospheric Radionuclides just after the Fukushima Accident by Analyzing Filter-tapes of Operational Air Pollution Monitoring Stations in Eastern Japan

    NASA Astrophysics Data System (ADS)

    Tsuruta, H.; Oura, Y.; Ebihara, M.; Ohara, T.; Nakajima, T.

    2015-12-01

    After the Fukushima Daiichi Nuclear Power Station (FD1NPS) accident on March 11, 2011, many datasets have been available of deposition density of radionuclides in soils in eastern Japan. By contrast, no time-series data of atmospheric radionuclides has been measured in the Fukushima prefecture (FP), although very limited data is available in the Tokyo metropolitan area (TMA) located more than 170 km southwest of the FD1NPS. As a result, atmospheric transport models simulating the atmospheric concentrations and surface deposition of radionuclides have large uncertainty, as well as the estimate of release rate of source terms and of internal exposure from inhalation. One year after the accident, we collected the used filter-tapes installed in Suspended Particulate Matter (SPM) monitors with beta-ray attenuation method operated by local governments in the air pollution monitoring network of eastern Japan. By measuring radionuclides in SPM on the filter-tapes, we retrieved hourly atmospheric Cs-134 and Cs-137 concentrations during March 12-23, 2011, when atmospheric, aquatic, and terrestrial environments were seriously suffered in most of eastern Japan. Until now, we measured hourly radiocesium at around 100 SPM sites in the southern Tohoku region (ST) including the FP and in the TMA. By analysing the dataset, nine major plumes with Cs-137 concentrations higher than 10 Bq m-3 were found, and some plumes were newly found in this study. A local area of relatively high Cs-137 deposition density in the TMA by precipitation on the morning of March 21, was consistent with an area where the time-integrated atmospheric Cs-137 concentrations were also high due to the transport of a plume on the morning of March 21. In the FP, however, the correlation was not so clear. High radionuclides trapped in a cloud layer might be transported to the ST with relatively high Cs-137 deposition densities, because the atmospheric Cs-137 concentrations were under the detection limit.

  1. Comprehensive Retrieval of Spatio-temporal Variations in Atmospheric Radionuclides just after the Fukushima Accident by Analyzing Filter-tapes of Operational Air Pollution Monitoring Stations in Eastern Japan

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Moriguchi, Yuichi; Nakajima, Teruyuki

    2016-04-01

    After the Fukushima Daiichi Nuclear Power Station (FD1NPS) accident on March 11, 2011, many datasets have been available of deposition density of radionuclides in soils in eastern Japan. By contrast, no time-series data of atmospheric radionuclides has been measured in the Fukushima prefecture (FP), although very limited data is available in the Tokyo metropolitan area (TMA) located more than 170 km southwest of the FD1NPS. As a result, atmospheric transport models simulating the atmospheric concentrations and surface deposition of radionuclides have large uncertainty, as well as the estimate of release rate of source terms and of internal exposure from inhalation. One year after the accident, we collected the used filter-tapes installed in Suspended Particulate Matter (SPM) monitors with beta-ray attenuation method operated by local governments in the air pollution monitoring network of eastern Japan. The SPM monitoring stations are mostly located in the urban and/or industrial area to measure the hourly mass concentration of SPM less than 10 μm in diameter for health effect due to atmospheric aerosols. By measuring radionuclides in SPM on the filter-tapes, we retrieved hourly atmospheric Cs-134 and Cs-137 concentrations during March 12-23, 2011, when atmospheric, aquatic, and terrestrial environments were seriously suffered in most of eastern Japan. Until now, we measured hourly radiocesium at around 100 SPM sites in the southern Tohoku region (ST) including the FP and in the TMA. By analysing the dataset, about 10 plumes/polluted air masses with Cs-137 concentrations higher than 10 Bq m-3 were found, and some plumes were newly detected in this study. And the spatio-temporal distributions of atmospheric Cs-137 were clearly shown for all the plumes. The east coast area of the FP where the FD1NPS was located in the centre was attacked several times by the plumes, and suffered the highest time-integrated Cs-137 concentration during the period among the ST and TMA

  2. Competency Index for Air Conditioning and Refrigeration Programs in Missouri. A Crosswalk of Selected Instructional Materials against Missouri's Competency Profile.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This index was developed to help air conditioning and refrigeration instructors in Missouri use existing instructional materials and keep track of student progress on the VAMS system. The list was compiled by a committee of instructors who selected appropriate references and identified areas that pertained to Missouri competencies. The index lists…

  3. Using optimal estimation method for upper atmospheric Lidar temperature retrieval

    NASA Astrophysics Data System (ADS)

    Zou, Rongshi; Pan, Weilin; Qiao, Shuai

    2016-07-01

    Conventional ground based Rayleigh lidar temperature retrieval use integrate technique, which has limitations that necessitate abandoning temperatures retrieved at the greatest heights due to the assumption of a seeding value required to initialize the integration at the highest altitude. Here we suggests the use of a method that can incorporate information from various sources to improve the quality of the retrieval result. This approach inverts lidar equation via optimal estimation method(OEM) based on Bayesian theory together with Gaussian statistical model. It presents many advantages over the conventional ones: 1) the possibility of incorporating information from multiple heterogeneous sources; 2) provides diagnostic information about retrieval qualities; 3) ability of determining vertical resolution and maximum height to which the retrieval is mostly independent of the a priori profile. This paper compares one-hour temperature profiles retrieved using conventional and optimal estimation methods at Golmud, Qinghai province, China. Results show that OEM results show a better agreement with SABER profile compared with conventional one, in some region it is much lower than SABER profile, which is a very different results compared with previous studies, further studies are needed to explain this phenomenon. The success of applying OEM on temperature retrieval is a validation for using as retrieval framework in large synthetic observation systems including various active remote sensing instruments by incorporating all available measurement information into the model and analyze groups of measurements simultaneously to improve the results.

  4. Environmental impacts of proposed Monitored Retrievable Storage. Final report

    SciTech Connect

    Not Available

    1985-12-17

    This report describes environmental impacts from a proposed monitored retrievable storage facility for spent fuels to be located in Tennessee. Areas investigated include: water supply, ground water, air quality, solid waste management, and health hazards. (CBS)

  5. Mid-upper tropospheric methane retrieval from IASI and its validation

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Barnet, C.; Maddy, E. S.; Gambacorta, A.; King, T. S.; Wofsy, S. C.

    2013-03-01

    Mid-upper tropospheric atmospheric methane (CH4), as an operational product at NOAA's (National Oceanic and Atmospheric Administration) Comprehensive Large Array-data Stewardship System (CLASS), has been retrieved from the Infrared Atmospheric Sounding Interferometer (IASI) since 2008. This paper provides a description of the retrieval method and the validation using 596 CH4 vertical profiles from aircraft measurements by the HIAPER Pole-to-Pole Observations (HIPPO) program over the Pacific Ocean. The degree of freedom of the CH4 retrieval is mostly less than 1.5, and it decreases under cloudy conditions. The most sensitivity layer is between 100-600 hPa in the tropics, 200-750 hPa in the mid to high latitude. Validation is accomplished using aircraft measurements (convolved by applying the averaging kernels) collocated with all the retrieved profiles within 200 km and in the same day, and the results show that, on average, the largest error of CH4 occurs at 300-500 hPa, and the bias in the trapezoid of 374-477 hPa is -1.74% with residual standard deviation of 1.20%. The retrieval error is relatively larger in the high northern latitude regions and/or under cloudy conditions. The main reasons for this negative bias might be due to the uncertainty in the spectroscopy near methane Q-branch and/or the empirical bias correction, plus cloud-contamination in the cloud-cleared radiances. It is expected for NOAA to generate the CH4 product for 20+ yr using similar algorithm from three similar thermal infrared sensors, i.e. Atmospheric Infrared Sounder (AIRS), IASI and the Cross-track Infrared Sounder (CrIS). Such a unique product will provide a supplementary to current ground-based observation network, particularly in the Arctic, for monitoring the CH4 cycle, its transport and trend associated with climate change.

  6. Effect of dry-air chilling on sensory descriptive profiles of cooked broiler breast meat deboned four hours after the initiation of chilling.

    PubMed

    Zhuang, H; Savage, E M; Smith, D P; Berrang, M E

    2009-06-01

    The objective of this study was to evaluate the effect of a dry air-chilling (AC) method on sensory texture and flavor descriptive profiles of broiler pectoralis major (fillet) and pectoralis minor (tender). The profiles of the muscles immersion-chilled and deboned at the same postmortem time and the profiles of the muscles hot-boned (or no chill) were used for the comparison. A total of 108 eviscerated carcasses (6-wk-old broilers) were obtained from a commercial processing line before the chillers. Carcasses were transported to a laboratory facility where they were either i) chilled by a dry AC method (0.7 degrees C, 150 min in a cold room), ii) chilled by immersion chilling (IC; 0.3 degrees C, 50 min in a chiller), or iii) not chilled (9 birds per treatment per replication). Both IC and AC fillets and tenders were removed from the bone at 4 h after the initiation of chilling (approximately 4.75 h postmortem) in a processing area (18 degrees C). The no-chill muscles were removed immediately upon arrival. The sensory properties (21 attributes) of cooked broiler breast meat were evaluated by trained panelists using 0- to 15-point universal intensity scales. The average intensity scores of the 9 flavor attributes analyzed ranged from 0.9 to 4.0. Regardless of breast muscle type, there were no significant differences in sensory flavor descriptive profiles between the 3 treatments. The average intensity scores of the 12 texture attributes ranged from 1.5 to 7.5 and there were no significant differences between the AC and IC samples. The average intensity scores of the texture attributes, cohesiveness, hardness, cohesiveness of mass, rate of breakdown, and chewiness of the no chill fillets and tenders were significantly higher than those of either of the chilled samples. These results demonstrate that chicken breast meat from AC retains sensory flavor profile characteristics but AC results in sensory texture profile differences when compared with no-chill meat. Sensory

  7. Ground return signal simulation and retrieval algorithm of spaceborne integrated path DIAL for CO2 measurements

    NASA Astrophysics Data System (ADS)

    Liu, Bing-Yi; Wang, Jun-Yang; Liu, Zhi-Shen

    2014-11-01

    Spaceborne integrated path differential absorption (IPDA) lidar is an active-detection system which is able to perform global CO2 measurement with high accuracy of 1ppmv at day and night over ground and clouds. To evaluate the detection performance of the system, simulation of the ground return signal and retrieval algorithm for CO2 concentration are presented in this paper. Ground return signals of spaceborne IPDA lidar under various ground surface reflectivity and atmospheric aerosol optical depths are simulated using given system parameters, standard atmosphere profiles and HITRAN database, which can be used as reference for determining system parameters. The simulated signals are further applied to the research on retrieval algorithm for CO2 concentration. The column-weighted dry air mixing ratio of CO2 denoted by XCO2 is obtained. As the deviations of XCO2 between the initial values for simulation and the results from retrieval algorithm are within the expected error ranges, it is proved that the simulation and retrieval algorithm are reliable.

  8. Measurements of the Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory and their Composition Implications

    NASA Astrophysics Data System (ADS)

    de Souza, V.

    We describe how the analysis of air showers detected by the Pierre Auger Observatory leads to an accurate determination of the depth of maximum (Xmax). First, the analysis of the air-shower which leads to the reconstruction of Xmax is discussed. The properties of the detector and its measurement biases are treated and carefully taken into consideration. The Xmax results are interpreted in terms of composition, where the interpretation depends mainly on the hadronic interaction models. A global fit of the Xmax distribution yields an estimate of the abundance of four primaries species. The analysis represents the most statistically significant composition information ever obtained for energies above 1017.8 eV. The scenario that emerges shows no support for a strong flux of iron nuclei and a strong energy dependence of the proton fraction.

  9. Aerosol Correction for Improving OMPS/LP Ozone Retrieval

    NASA Technical Reports Server (NTRS)

    Chen, Zhong; Bhartia, Pawan K.; Loughman, Robert

    2015-01-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite was launched on Oct. 28, 2011. Limb profilers measures the radiance scattered from the Earth's atmospheric in limb viewing mode from 290 to 1000 nm and infer ozone profiles from tropopause to 60 km. The recently released OMPS-LP Version 2 data product contains the first publicly released ozone profiles retrievals, and these are now available for the entire OMPS mission, which extends from April, 2012. The Version 2 data product retrievals incorporate several important improvements to the algorithm. One of the primary changes is to turn off the aerosol retrieval module. The aerosol profiles retrieved inside the ozone code was not helping the ozone retrieval and was adding noise and other artifacts. Aerosols including polar stratospheric cloud (PSC) and polar mesospheric clouds (PMC) have a detectable effect on OMPS-LP data. Our results show that ignoring the aerosol contribution would produce an ozone density bias of up to 10 percent in the region of maximum aerosol extinction. Therefore, aerosol correction is needed to improve the quality of the retrieved ozone concentration profile. We provide Aerosol Scattering Index (ASI) for detecting aerosols-PMC-PSC, defined as ln(Im-Ic) normalized at 45km, where Im is the measured radiance and Ic is the calculated radiance assuming no aerosols. Since ASI varies with wavelengths, latitude and altitude, we can start by assuming no aerosol profiles in calculating the ASIs and then use the aerosol profile to see if it significantly reduces the residuals. We also discuss the effect of aerosol size distribution on the ozone profile retrieval process. Finally, we present an aerosol-PMC-PSC correction scheme.

  10. Supersonic aerodynamic trade data for a low-profile monoplanar missile concept. [air launched maneuvering missile design

    NASA Technical Reports Server (NTRS)

    Graves, E. B.; Robins, A. W.

    1979-01-01

    A monoplanar missile concept has been studied which shows promise of improving the aerodynamic performance of air-launched missiles. This missile concept has a constant eccentricity elliptical cross-section body. Since current guidance and propulsion technologies influence missile nose and base shapes, an experimental investigation has been conducted at Mach number 2.50 to determine the effects of variations in these shapes on the missile aerodynamics. Results of these tests are presented.

  11. A New Retrieval Algorithm for OMI NO2: Tropospheric Results and Comparisons with Measurements and Models

    NASA Technical Reports Server (NTRS)

    Swartz, W. H.; Bucesla, E. J.; Lamsal, L. N.; Celarier, E. A.; Krotkov, N. A.; Bhartia, P, K,; Strahan, S. E.; Gleason, J. F.; Herman, J.; Pickering, K.

    2012-01-01

    Nitrogen oxides (NOx =NO+NO2) are important atmospheric trace constituents that impact tropospheric air pollution chemistry and air quality. We have developed a new NASA algorithm for the retrieval of stratospheric and tropospheric NO2 vertical column densities using measurements from the nadir-viewing Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. The new products rely on an improved approach to stratospheric NO2 column estimation and stratosphere-tropospher